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Selection Acting on Genomes

Carolin Kosiol and Maria Anisimova

Abstract

Populations evolve as mutations arise in individual organisms and, through hereditary transmission, may
become “fixed” (shared by all individuals) in the population. Most mutations are lethal or have negative
fitness consequences for the organism. Others have essentially no effect on organismal fitness and can
become fixed through the neutral stochastic process known as random drift. However, mutations may also
produce a selective advantage that boosts their chances of reaching fixation. Regions of genomes where new
mutations are beneficial, rather than neutral or deleterious, tend to evolve more rapidly due to positive
selection. Genes involved in immunity and defense are a well-known example; rapid evolution in these
genes presumably occurs because new mutations help organisms to prevail in evolutionary “arms races”
with pathogens. In recent years genome-wide scans for selection have enlarged our understanding of the
genome evolution of various species. In this chapter, we will focus on methods to detect selection on the
genome. In particular, we will discuss probabilistic models and how they have changed with the advent of
new genome-wide data now available.

Key words Conserved and accelerated regions, Positive selection scans, Codon models, Selection-
mutation models, Polymorphism-aware phylogenetic models

1 Introduction

In the past selection studies mainly focused on the analysis of
particular loci such as genes, proteins, or regular elements of inter-
est. With the availability of comparative genomic data, the emphasis
has shifted from the study of individual proteins to genome-wide
scans for selection.

The search for selection can be performed on different levels
comparing homologous nucleotide sequences or protein-coding
genes in one or multiple genomes. The evolutionary processes in
all these levels can be described by probabilistic models, which set
the basis for evaluating selective pressures and selection tests. This
book chapter will give an introduction into fundamental properties
of the probabilistic models used to detect selection in the Subhead-
ing 3 as well as examples of genome-wide scans.

Maria Anisimova (ed.), Evolutionary Genomics: Statistical and Computational Methods, Methods in Molecular Biology, vol. 1910,
https://doi.org/10.1007/978-1-4939-9074-0_12, © The Author(s) 2019

373

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9074-0_12&domain=pdf
https://doi.org/10.1007/978-1-4939-9074-0_12


In Fig. 1, we summarize the different data levels and time scales
of modeling selection on genomes.

2 Comparative Genome Data

Several whole genome sequence data sets are now available for
selection scans. Mammalian genomes are well represented
(in particular primates), and insect genomes are becoming more
numerous (in particular Drosophila). These data can be down-
loaded as orthologous alignments from the Ensembl [1] and
UCSC [2] browsers.

In light of recent advances in DNA sequencing, with so-called
next generation sequencing (NGS) technologies that have dramat-
ically reduced the cost and time needed to sequence an organism’s
entire genome, large-scale (involving many organisms) sequencing
projects have been and are currently being undertaken. Just to
name a few, genome projects re-sequencing 1000 D. melanogaster
[3] and 1001 Arabidopsis [4] were accomplished, and the 100,000
human genome project [5] is ongoing. These polymorphism data
from multiple individuals from several species enable us to detect
very recent selection.

Together with the progress in sequencing technologies, algo-
rithmic advances now allow the de novo assembly of genomes from
NGS data, including complex mammalian genomes (e.g., giant
panda genome [6]). Therefore, not only international consortia
but also small groups and individual labs can now envisage to
sequence the organisms of their interest. As a consequence plat-
forms for sharing this data have been established. For example, the
Genome 10K project aims to assemble a genomic zoo—a collection

Fig. 1 A diagram illustrating the different data and levels to analyze genomic
sequences and the relationship of the various approaches modeling selection
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of DNA sequences representing the genomes of 10,000 vertebrate
species, approximately one for every vertebrate genus. All these
genomes can be subject to scans for selection, for which we outline
methods below.

3 Methods

3.1 Probabilistic

Models for Genome

Evolution

The statistical modeling of the evolutionary process is of great
importance when performing selection studies. When comparing
reasonably divergent sequences, counting the raw sequence iden-
tity (percentage of sites with observed changes) underestimates the
amount of evolution that has occurred because, by chance alone,
some sites will have incurred multiple substitutions. In this chapter
we discuss maximum likelihood (ML) and Bayesian methods to
detect selection based on probabilistic models of character evolu-
tion. Such substitution models provide more accurate evolutionary
distance estimates by accounting for these unobserved changes and
often explicitly model the selection pressures.

One of the primary assumptions made in defining probabilistic
substitution models is that future evolution is only dependent on its
current state and not on previous (ancestral) states. Statistical pro-
cesses with this lack of memory are called Markov processes. The
assumption itself is reasonable, because during the evolution muta-
tion and natural selection can only act upon the molecules present
in an organism and have no knowledge of what came previously.
However, some large-scale mutational events, such as recombina-
tion [7], gene conversion (e.g., see [8, 9]), or horizontal transfer
[10] might not satisfy this “memoryless” condition.

To reduce the complexity of evolutionary models, it is often
further assumed that each site in a sequence evolves independently
from all other sites. There is evidence that the independence of sites
assumption is violated. In real proteins, chemical interactions
between neighboring sites or the protein structure affects how
other sites in the sequence change. Steps have been made toward
context-dependent models, where the specific characters at neigh-
boring sites affect the sites evolution (e.g., see [11, 12]).

The Markov model asserts that one sequence is derived from
another by a series of independent substitutions, each changing one
character in the first sequence to another character in the second
during the evolution. Thereby we assume independence of evolu-
tion at different sites. A continuous-time Markov process is fully
defined by its instantaneous rate matrix Q ¼ {qij}i,j¼1 . . . N.

The diagonal elements of Q are defined by a mathematical
requirement that the rows sum up to zero. For multiple sequence
alignments, the substitution process runs in continuous time over a
tree representing phylogenetic relations between the sequences.
The transition probability matrix P(t) ¼ {pij(t)} ¼ eQt consists of
transition probabilities from residue i to residue j over time t and is
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found as a solution of the differential equation dP(t)/dt ¼ P(t)Q
with P(0) being the identity matrix. In order for tree branches to be
measured by the expected number of substitutions per site, the Q-
matrix is scaled so that the average substitution rate at equilibrium
equals 1.

As a matter of mathematical and computational convenience
rather than biological reality, several simplifying assumptions are
usually made. Standard substitution models allow any state to
change into any other. Such Markov process is called irreducible
and has a unique stationary distribution corresponding to the
equilibrium codon frequencies π ¼ {πi}. Time reversibility implies
that the direction of the change between two states i and j is
indistinguishable, so that πipij(t) ¼ πjpji(t). This assumption helps
to reduce the number of model parameters and is convenient when
calculating the matrix exponential (Q-matrix of a reversible process
has only real eigenvectors and eigenvalues [13]). Fully unrestrained
Q-matrix for N characters defines an irreversible model with N
(N � 1) � 1 free parameters, while for a reversible process this
number is N(N + 1)/2 � 2.

By comparing how well substitution models explain sequence
evolution, and by examining the parameters estimated from data,
ML and Bayesian inference can be used to address many biologi-
cally important questions. In this section we focus on probabilistic
models that are used to detect selection.

3.2 Detecting

Regions of Accelerated

Genome Evolution

Understanding the forces shaping the evolution of specific lineages
is one of the most exciting areas in evolutionary genomics. In
particular, regions of accelerated evolution in mammalian and
insect species have been studied (e.g., see [14]). To eliminate non-
functional regions, one strategy is to begin with a search for regions
that are conserved through the mammalian history or longer. A
likelihood ratio test (LRT) may be used to detect acceleration of
rates in a lineage of interest, for example, the human lineage. Such
LRT compares the likelihood of the alignment data under two
probabilistic models. The null model has a single scale parameter
representing shortening (more conserved) and lengthening (less
conserved) of all branches of the tree. The alternative model has an
additional parameter for the human lineage, which is constraint to
be �1. This extra parameter allows the human branch to be rela-
tively longer (accelerated) than the branches in the rest of the tree.

For example, this approach was used to identify genomic
regions that are conserved in most vertebrates but have evolved
rapidly in humans. Interestingly, the majority of the human accel-
erated regions (HARs) were noncoding, and many were located
near protein-coding genes with protein functions related to the
nervous system [14].

In contrast, the majority ofDrosophila melanogaster accelerated
regions (DMARs) are found in protein-coding regions and
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primarily result from rapid adaptive change at synonymous sites
[15]. This could be because flies have much more compact gen-
omes compared to humans; however, even after considering the
genomic content, in Drosophila a significant excess of DMARs
occur in protein-coding regions. Furthermore, Holloway and col-
leagues observed a mutational bias from G|C to A|T, and therefore
the accelerated divergence in DMARs might be attributed to a shift
in codon usage and a fixation of many suboptimal codons.

In a similar manner, amino acid based models search for site- or
lineage-specific rate accelerations and residues subject to altered
functional constraints. Such sites are likely to be contributing to
the change in protein function over time. The advantage of amino
acid-based models is that they might be suitable for the analysis of
deep divergences of fast-evolving genes, where sequences rapidly
saturate over time. Also amino acid methods are not influenced by
the effects of codon bias, a topic that is discussed at the end of this
chapter. The idea is that adaptive change on the level of amino acid
sequences may not necessarily correspond to an adaptive change in
protein function but rather to peaks in the protein adaptive land-
scape reflecting the optimization of the protein function in a par-
ticular species to long-term environmental changes. One class of
methods for detecting functional divergence searches for a lineage-
specific change in the shape parameter of the gamma distribution
that is used to model rate heterogeneity (see [16–19]). Other
methods search for evidence of clade-specific rate shifts at individual
sites (see [20–26]). For example, Gu [21] proposed a simple sto-
chastic model for estimating the degree of divergence between two
pre-specified clusters. The statistical significance was tested using
site-specific profiles based on a hidden Markov model, which was
used to identify amino acids responsible for these functional differ-
ences between two gene clusters. More flexible evolutionary mod-
els were incorporated in the maximum likelihood approach
applicable to the simultaneous analysis of several gene clusters
[27]. This was extended [28] to evaluate site-specific shifts in
amino acid properties, in comparison with site-specific rate shifts.
Pupko and Galtier [24] used the LRT to compare ML estimates of
the replacement rate at an amino acid site in distinct subtrees.

3.3 Codon Models:

Site, Branch, and

Branch-Site Specificity

3.3.1 Basic Codon

Models

In protein-coding sequences, nucleotide sites at different codon
positions usually evolve with highly heterogeneous patterns (e.g.,
[29]). Thus DNA substitution models fail to account for this
heterogeneity unless the sequences are partitioned by codon posi-
tions for the analysis. But even then, DNA models do not model
the structure of genetic code or selection at the protein level.
Indeed, one advantage of studying protein-coding sequences at
the codon level is the ability to distinguish between nonsynon-
ymous (AA replacing) and synonymous (silent) codon changes.
Based on this distinction, the selective pressure on the protein-
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coding level can be measured by the ratio ω ¼ dN/dS of the
nonsynonymous to synonymous substitution rates. The nonsynon-
ymous substitution rate may be higher than the synonymous rate,
and thus ω > 1 due to fitness advantages associated with recurrent
AA changes in the protein, i.e., positive selection on the protein. In
contrast, purifying selection acts to preserve the protein sequence,
so that the nonsynonymous substitution rate is lower than the
synonymous rate, with ω < 1. Neutrally evolving sequences exhibit
similar nonsynonymous and synonymous rates, with ω � 1.

First methods that used the ω ratio as a criterion to detect
positive selection were based on pairwise estimation of dN and dS
rates with “counting” methods (e.g., see [30]). However, ML
estimates of pairwise dN and dS based on a codon model were
shown to outperform all other approaches [31]. Moreover, a Mar-
kov codon model is naturally extended to multiple sequence align-
ments, unlike the counting methods. This, together with the
benefits of the probabilistic framework within which codon models
are defined, made codon models very popular in studies of positive
selection in protein-coding genes.

The first two codon models were proposed simultaneously in
the same issue of Molecular Biology and Evolution [32, 33]. The
model of Goldman and Yang [32] included the transition/trans-
version rate ratio κ, and modeled the selective effect indirectly using
a multiplicative factor based on Grantham [34] distances, but was
later simplified to estimate the selective pressure explicitly using the
ω parameter [35]. The main distinction between the first codon
models concerns the way to describe the instantaneous rates with
respect to equilibrium frequencies: (1) proportional to the equilib-
rium frequency of a target codon (as in Goldman and Yang [32]) or
(2) proportional to the frequency of a target nucleotide (as in Muse
and Gaut [33]).

In 2006, empirical codon models have been estimated (see
[36, 37]) that summarize substitution patterns from large quanti-
ties of protein-coding gene families. In contrast to the parametric
codon models that estimate gene-specific parameters (e.g.,
transition-transversion κ, selective pressure ω, etc.), the empirical
codon models do not explicitly consider distinct factors that shape
protein evolution. Standard parametric models assume that protein
evolution proceeds only by successive single-nucleotide substitu-
tions. However, empirical codon models indicate that model accu-
racy is significantly improved by incorporating instantaneous
doublet and triplet changes. Kosiol et al. [37] also found that the
affiliations between codon, the amino acid it encodes, and the
physicochemical properties of the amino acid are main driving
factors of the process of codon evolution. Neither multiple nucleo-
tide changes nor the strong influence of the genetic code nor amino
acid properties form a part of the standard parametric models.
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On the other hand, parametric models have been very success-
ful in applications studying biological forces shaping protein evolu-
tion of individual genes. Thus combining the advantages of
parametric and empirical approaches offers a promising direction.
Kosiol, Holmes, and Goldman [37] explored a number of com-
bined codon models that incorporated empirical AA exchangeabil-
ities from ECM while using parameters to study selective pressure,
transition/transversion biases, and codon frequencies. Similarly,
AA exchangeabilities from (suitable) empirical AA matrices may
be used to alter probabilities of nonsynonymous changes, together
with traditional parameters ω, κ, and codon frequencies πj [38]. In
2013, De Maio et al. [39] extended the ECM approach to accom-
modate site-specific variation of selective pressure and lineage-
specific variation. Simulations showed that ECMs allowing for
double and triple mutations is more conservative: they reduce the
number of false positives and have less power to detect positive
selection [39].

3.3.2 Accounting for

Variability of Selective

Pressures

First codon models assumed constant nonsynonymous and synon-
ymous rates among sites and over time. Although most proteins
evolve under purifying selection most of the time, positive selection
may drive the evolution in some lineages. During episodes of
adaptive evolution, only a small fraction of sites in the protein
have the capacity to increase the fitness of the protein via AA
replacements. Thus approaches assuming constant selective pres-
sure over time and over sites lack power in detecting genes affected
by positive selection. Consequently, various scenarios of variation in
selective pressure were incorporated in codon models, making
them more powerful at detecting positive selection, and short
episodes of adaptive evolution in particular. Evidence of positive
selection on a gene can be obtained by a LRT comparing two
nested models: a model that does not allow positive selection
(constraining ω � 1 to represent the null hypothesis) and a model
that allows positive selection (ω > 1 is allowed in the alternative
hypothesis). Positive selection is detected if a model ω > 1 fits data
significantly better compared to the model restricting ω � 1 at all
sites and lineages. However, the asymptotic null distribution may
vary from the standard χ2 due to boundary problems or if some
parameters become not estimable (e.g., see [40, 41]).

3.3.3 Case Study:

Application of a Genome-

Wide Scan of Positive

Selection on Six

Mammalian Genomes

In 2006, six high-coverage genome assemblies became available for
eutherian mammals. The increased phylogenetic depth of this data
set permitted Kosiol and colleagues [42] to perform several new
lineage- and clade-specific tests using branch-site codonmodels. Of
~16,500 human genes with high-confidence orthologs in at least
two other species, 544 genes showed significant evidence of posi-
tive selection using branch-site codon models and standard LRTs.
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Interestingly, several pathways were found to be strongly
enriched in genes with positive selection, suggesting possible
coevolution of interacting genes. A striking example is the comple-
ment immunity system, a biochemical cascade responsible for the
elimination of pathogens. This system consists of several small
proteins found in the blood that cooperate to kill target cells by
disrupting their plasma membranes. Of 78 genes associated with
this pathway in KEGG (see http://www.genome.jp/kegg-bin/
show_pathway?map04610 for the complement cascades), nine
were under positive selection (FDR < 0.05), and five others had
nominal P < 0.05. Most of genes under positive selection are
inhibitors (DAF, CFH, CFI) and receptors (C5AR1, CR2), but
some are part of the membrane attack complex (C7, C9, C8B),
which punctures cell membranes to initiate cell lysis. Here we focus
on the analysis of these proteins of the membrane attack complex.

First we calculate gene averaged ω value using the basic M0
model [32]. TheML estimates of ω< 1 (ω¼ 0.31 for C7,ω¼ 0.25
for C8B, and ω ¼ 0.44 for C9) indicate that most sites in these
genes are under purifying selection. However, selection pressure
could be variable at different locations of the membrane proteins,
and we therefore continue our analysis by applying models that
allow for variation in selective pressure across sites.

3.3.4 Selective Variability

Among Codons: Site

Models

The simplest site models use the general discrete distribution with a
pre-specified number of site classes. Each site class i has an inde-
pendent parameter ωi estimated by ML together with proportions
of sites pi in each class. Since a large number of site categories
require many parameters, three categories are usually used (requir-
ing five independent parameters). To test for positive selection,
several pairs of nested site models were defined to represent the
null and alternative hypotheses in LRTs. For example, model M1a
includes two site classes, one with ω0 < 1 and another with ω1 ¼ 1,
representing the neutral model of evolution (the null hypothesis).
The alternative model M2a extends M1a by adding an extra site
class with ω2 � 1 to accommodate sites evolving under positive
selection. Significance of the LRT is tested using the χ22-distribution
for the M1 vs. M2 comparison. We test the C7 gene for positive
selection by the LRT comparing nested models M1a and M2a
(Table 1).

Model M2a has two additional parameters compared to model
M1a. The resulting LRT statistic is 2(log L2 � log L1) ¼ 2
(�6377.35 � (�6369.67)) ¼ 2 � 7.68 ¼ 15.36. This is much
greater than the critical value of the chi-square distribution
χ2 (df ¼ 2, at 5%) ¼ 5.99, and we calculate a p-value of
P ¼ 5.0e�04. However, the M1a vs. M2a comparison for genes
C8B and C9 is not significant.
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Another LRT can be performed on the basis of the modified
model M8 with two site classes: one with sites where the ω ratio is
drawn from the beta distribution (with 0 � ω � 1 describing the
neutral scenario) and the second, discrete class, with ω � 1. Con-
straining ω ¼ 1 for this second class provides a sufficiently flexible
null hypothesis, whereby all evolution can be explained by sites with
ω from the beta distribution or from a discrete site class with ω¼ 1.
Significance of the LRT is tested the mixture

1

2
χ20 þ

1

2
χ21 for the M8

(ω ¼ 1) vs. M8 comparison. If the LRT for positive selection is
found to be significant, specific sites under positive selection may be
predicted based on the values of posterior probabilities (PP) to
belong to the site class under positive selection (usually
PP > 0.95, but see [43, 44]). Such posterior probabilities are
estimated using the naı̈ve empirical Bayesian approach (NEB,
[45]), full hierarchical Bayesian approach ([46]; BEB [44]), or a
mid-way approach � the Bayes empirical Bayes (BEB [44]). For a
discussion on these approaches, see Scheffler and Seoighe [47] and
Aris-Brosou [48]. Alternatively, Massingham and Goldman [49]
proposed a site-wise likelihood ratio estimation to detect sites
under purifying or positive selection.

For the C7 gene, using BEB we identified several amino acids
sites to be putatively under selection: residue R at position
223 (PP¼ 0.94), H at position 239 (PP¼ 0.93), and N at position
331 (PP ¼ 0.93). Unfortunately, the crystal structures of C7
(as well as C8B and C9) are not known, and we cannot relate the
location of amino acids in the protein sequence to relevant 3D data,
such as sites of protein-protein interaction or binding sites of the

Table 1
Parameter estimates and log-likelihoods for a LRT of positive selection for the complement immunity
component C7

M1a (neutral)

Site class 0 1

Proportion p0 ¼ 0.69 ( p1 ¼ 1 � p0 ¼ 0.31)

ω ratio ω0 ¼ 0.07 (ω1 ¼ 1)

Log-likelihood L1 ¼ �6377.35

M2a (selection)

Site class 0 1 2

Proportion p0 ¼ 0.70 p1 ¼ 0.29 ( p2 ¼ 1 � p0 � p1 ¼ 0.01)

ω ratio ω0 ¼ 0.08 (ω1 ¼ 1) ω2 ¼ 10.89

Log-likelihood L2 ¼ �6369.67

The model M2a is the alternative model with a class of sites with ω2 � 1. The null hypothesis M1a is the same model but

with ω2 ¼ 1 fixed
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protein. If such structural information were known, it would also
be possible to use this biological knowledge in a model that is aware
of the position of the different structural elements.

Site models that do not use a priori partitioning of codons
(as those described above) are known as random-effect
(RE) models. In contrast, fixed-effect (FE) models categorize
sites based on a prior knowledge, e.g., according to tertiary struc-
ture for single genes, or by gene category for multigene data. Site
partitions for FE models can be defined also based on inferred
recombination breakpoints, useful for inferences of positive selec-
tion from recombining sequences (see [50, 51]); although the
uncertainty of breakpoint inference is ignored in this way. FE
models with each site being a partition should be avoided, as they
lead to the “infinitely many parameter trap” (e.g., see [52]). Given a
biologically meaningful a priori partitioning, FE models are useful
to study heterogeneity among partitions. However, a priori infor-
mation is not always available.

3.3.5 Selective Variability

over Time: Branch Models

A simple way to include the variation of the selective pressure over
time is by using separate parameters ω for each branch of a phylog-
eny (known as free-ratio model; [35]). Compared with the one-
ratiomodel (which assumes constant selection over time), the free-
ratio model requires additional 2T � 4 ω parameters for T species.
Figure 2 shows the estimates of the free-ratio model for the C8B
gene. Although theML estimates ofω values on the rodent lineages
are visibly higher than on the primate lineages, none of the
branches has ω > 1.

Other branch models can be defined by constraining different
sets of branches of a tree to have an individual ω. LRTs are used to
decide (1) whether selective pressure is significantly different on a
pre-specified set of branches and (2) whether these branches are
under positive selection.

However, branch models have relatively poor power to detect
selection [53] in comparison to branch-site models that are dis-
cussed in the next section. Also note that testing of multiple
hypotheses on the same data requires a correction, so the overall
false-positive rate is kept at the required level (most often 5%).
Correction for multiple testing further reduces the power of the
method, especially when many hypotheses are tested simulta-
neously (see Subheading 4 later).

3.3.6 Temporal and

Spatial Variation of

Selective Pressure

Several solutions were proposed to simultaneously account for
differences in selective constraints among codons and the episodic
nature of molecular evolution at individual sites. One of the first
models—model MA [45]—assumes four site classes. Two classes
contain sites evolving constantly over time: one under purifying
selection with ω0 < 1; another with ω1 ¼ 1. The other two site
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classes allow selective pressure at a site to change over time on a
pre-specified set of branches, known as the foreground. The two
variable classes are derived from the constant classes so that sites
typically evolving with ω0 < 1 or ω1 ¼ 1 are allowed to be under
positive selection with ω2 � 1 on the foreground. Testing for
positive selection on the rodent clade involves a LRT comparing a
constrained version of MA (with ω2 ¼ 1) vs. an unconstrained MA
model. Compared to branch models, the branch-site formulation
improves the chance of detecting short spills of adaptive pressure in
the past even if these occurred at a small fraction of sites.

Returning to our example of gene C8B of the complement
pathway, we perform a branch-site LRT for positive selection using
the M1a vs. M2a comparison. Thereby we take mouse and the rat
lineage, respectively, as foreground branches and all other branches
as background branches. Significance of the LRT is tested the
mixture

1

2
χ20 þ

1

2
χ21 with critical values to be 2.71 at 5%. For the

C8B gene, we calculate 2(log L2 � log L1) ¼ 2 � 2.23 ¼ 4.46 for
the mouse lineage and 11.2 for the rate lineage, respectively.

A major drawback of described branch-site models is their
reliance on a biologically viable a priori hypothesis. In context of
detecting sites and lineages affected by positive selection, one pos-
sible solution is to perform multiple branch-site LRTs, each setting
a different branch at the foreground [54]. In the example of six
species (Fig. 2), a total of nine tests (for an unrooted tree) are
necessary in the absence of an a priori hypothesis. Multiple test
correction has to be applied to control excessive false inferences.
This strategy tends to be conservative but can be sufficiently pow-
erful in detecting episodic instances of adaptation. As with all

Fig. 2 An estimate of ω for each branch of a six-species phylogeny. Shown is the
maximum likelihood estimate for the gene 8B. Each branch is labeled with the
corresponding estimate of ω
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model-based techniques, precautions are necessary for data with
unusual heterogeneity patterns, which may cause deviations from
the asymptotic null distribution and thus result in an elevated false-
positive rate.

In the case of episodic selection where any combination of
branches of a phylogeny can be affected, a Bayesian approach in
lieu of the standard LRTs andmultiple testing have been suggested.
The multiple LRT approach is most concerned with controlling the
false-positive rate of selection inference and is less suited to infer the
best-fitting selection history. In the hypothetical example (Fig. 2), a
total of 29 � 1 ¼ 511 selection histories (excluding the history
without selection on any branch) need to be considered. The
Bayesian analysis allows a probability distribution over possible
selection histories to be computed and therefore permits estimates
of prevalence of positive selection on individual branches and
clades. Such approach evaluates uncertainty in selection histories
using their posterior probabilities and allows robust inference of
interesting parameters such as the switching probabilities for gains
and losses of positive selection [42].

Other models (e.g., with dS variation among sites [55]) may be
extended to allow changes of selective regimes on different
branches. This is achieved by adding further parameters, one per
branch, describing the deviation of selective pressure on a branch
from the average level on the whole tree under the site model. Such
model is parameter-rich and can be used for exploratory purposes
on data with long sequences but does not provide a robust way of
testing whether ω > 1 on a branch is due to positive selection on a
lineage or due to inaccuracy of the ML estimation.

Kosakovsky Pond and Frost [55] suggested detecting lineage-
specific variation in selective pressure using the genetic algorithm
(GA)—a computational analogue of evolution by natural selection.
The GA approach was successfully applied to phylogenetic recon-
struction. In the context of detecting lineage-specific positive selec-
tion, GA does not require an a priori hypothesis. Instead the
algorithm samples regions of the whole hypotheses space according
to their “fitness” measured by AICC. The branch-model selection
with GA may also be adapted to incorporate dN and dS among site
variation, although this imposes a much heavier computational
burden.

In branch and branch-site models, change in selection regime is
always associated with nodes of a tree, but the selective pressure
remains constant over the length of each branch. Guindon et al.
[56] proposed aMarkov-modulated model where switches of selec-
tion regimes may occur at any site and any time on the phylogeny.
In a covarion-like manner, this codon model combines twoMarkov
processes: one governs the codon substitution, while the other
specifies rates of switches between selective regimes. These models
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can be used to study the patterns of the changes in selective pres-
sures over time and across sites, by estimating the relative rates of
changes between different selective regimes (purifying, neutral, and
positive).

3.3.7 Polymorphism-

Aware Phylogenetic

Models

Polymorphism-aware phylogenetic models (POMOs, [57, 58]) use
polymorphism and divergence data simultaneously to estimate rel-
ative mutation rates and scaled selection coefficients. Similar to
DNA substitution models, the PoMo approach is based on a
continuous-time Markov process to model evolution of hereditary
sequences along a species tree. However, not only evolution of a
single reference site but rather evolution of a population is
considered.

PoMo includes polymorphisms as states of theMarkov chain, in
addition to the four nucleotide states of classical nucleotide models.
Sequence evolution is modeled as a gradual process made by small
allele frequency changes. PoMo accounts for ancestral polymorph-
isms and in particular for ancestral shared polymorphisms and
incomplete lineage sorting (when two speciation events are sepa-
rated by a lapse of time not sufficient for polymorphisms to reach
fixation, seeMaddison and Knowles [59]). The parameters in PoMo
do not merely describe substitution rate but are also informative of
mutation rates, fixation biases, root nucleotide frequencies, and
branch lengths. All these parameters are estimated within a ML
framework. De Maio et al. [57] performed a comprehensive study
of evolutionary patterns of fourfold-degenerate sites in great apes
populations. They show evidence in favor of variation in mutation
and fixation rates between genomic regions with different base
composition, contributing to the long-standing debate regarding
the origin and maintenance of GC content variation (e.g., see Eyre-
Walker and Hurst [60]). They found that both mutation rates and
biased gene conversion vary with GC content. They also found
lineage-specific differences, with weaker fixation biases in orangu-
tan species, suggesting a reduced historical effective population
size. As PoMo can distinguish between the contributions of muta-
tion and fixation biases, it might also contribute to addressing the
problem of disentangling signatures of selection and biased gene
conversion (see Subheading 4.2).

3.4 Software The software PHAST (PHylogenetic Analysis with Space/Time
models) includes several phylo-HMM-based programs. Two pro-
grams in PHAST are particularly interesting in the context of
selection studies: PhastCons is a program for conservation scoring
and identification of conserved elements (Siepel et al. [61]). PhyloP
is designed to compute p-values for conservation or acceleration,
either lineage-specific or across all branches (Pollard et al. [62]).
Recently, the software can also be run through a webportal at
http://compgen.cshl.edu/phastweb/.
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A variety of codon models to detect selection, including
branch-site models and the recent selection-mutation model, are
implemented in the CODEML program of PAML [63]. HYPHY is
another implementation that includes a large variety of codon
models [64]. PoMo has been implemented as part of the
IQ-TREE software package (http://www.iqtree.org/) by
Schrempf et al. [65].

These programs are primarily developed for maximum likeli-
hood inference on a fixed tree. ML inference of phylogeny under
codon models is possible with CodonPhyML, which allows to
explicitly account for selection on the protein level [66].

4 Notes/Discussion

With the wider use of codon models to detect selection, some
questioned the statistical basis of testing based on branch-site mod-
els. In 2004, Zhang found that the original branch-site test [67]
produced excessive false positives when its assumptions were not
met. The modified branch-site test was shown to be more robust to
model violations (see [43, 68]) and is now commonly used in
genome-wide selection scans (e.g., see [69]). Recently, however,
another simulation study by Nozawa et al. [70] suggested that
this modification also showed an excess of false positives. Yang
and Dos Reis [52] defended the branch-site test by examining the
null distribution and showing that Nozawa and colleagues [70]
misinterpreted their simulation results. However, it is clear that
even tests with good statistical properties will be affected by data
quality and the extent of models violations. Below we list factors
that can affect the test and so should be taken into account when
analyzing genome-wide data.

4.1 Quality of

Multiple Alignments

The impact of the quality of sequence and the alignment is a major
concern when performing positive selection scans. For example, in
their analysis of 12 genomes Markova-Raina and Petrov [71] found
that the results were highly sensitive to the choice of an alignment
method. Furthermore, visual analysis indicated that most sites
inferred as positively selected are in fact misaligned at the codon
level. The rate of false positives ranged ~50% and more depending
on the aligner used. Some of these results can be ascribed to the
high divergence level of the 12 Drosophila species and could be
addressed by better filtering of the data. Nevertheless, even in
mammals where alignment is easier, problems have been observed.

Bakewell et al. [72] used the branch-site test to analyze
~14,000 genes from the human, chimpanzee, and macaque and
detected more genes to be under positive selection on the chim-
panzee lineage than on the human lineage (233 vs. 154). The same
pattern was also observed by Arbiza et al. [73] and Gibbs et al.
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[74]. Mallick et al. [75] re-examined 59 genes detected to be under
positive selection on the chimpanzee lineage by Bakewell et al.
[72], using more stringent filters to remove less reliable nucleotides
and using synteny information to remove misassembled and mis-
aligned regions. They found that with improved data quality, the
signal of positive selection disappeared in most of the cases when
the branch-site test was applied. It now appears that, as suggested
by Mallick et al. [75], the earlier discovery of more frequent posi-
tive selection on the chimpanzee lineage than on the human lineage
is an artifact of the poorer quality of the chimpanzee genomic
sequence. This interpretation is also consistent with a few recent
studies analyzing both real and simulated data, which suggest that
sequence and alignment errors may cause excessive false positives
(see [76, 77]). Indeed, most commonly used alignment programs
tend to place nonhomologous codons or amino acids into the same
column (see [78, 79]), generating the wrong impression that mul-
tiple nonsynonymous substitutions occurred at the same site and
misleading the codon models into detecting positive selection
[77]. In 2012, Jordan and Goldman [80] investigated the effect
of various multiple alignment and filtering programs on the identi-
fication of positive selection. They found that alignment software
PRANK [79] and the filter Guidance [81] performed best in simu-
lations. However, it remains very challenging to develop a pipeline
to detect positive selection that is robust to errors in the sequences
or alignments. Instead we advise to carefully check the alignments
of genes that are putatively under selection by any method
described here.

4.2 Biased Gene

Conversion and

Recombination

Mutation rate variation can also cause genomic regions to have
different substitution rates without any change in fixation rate.
Recent studies of guanine and cytosine (GC)-isochores in the
mammalian genome have suggested the importance of another
selectively neutral evolutionary process that affects nucleotide evo-
lution. As described in the work of Laurent Duret and others (see
[82, 83]), biased gene conversion (BGC) is a mechanism caused by
the mutagenic effects of recombination combined with the prefer-
ence in recombination-associated DNA repair toward strong
(GC) versus weak (adenine and thymine [AT]) nucleotide pairs at
non-Watson-Crick heterozygous sites in heteroduplex DNA during
crossover in meiosis. Thus, beginning with random mutations,
BGC results in an increased probability of fixation of G and C
alleles. In particular, methods looking for accelerated regions in
coding DNA but also codon models cannot distinguish positive
selection from BGC (see [84, 85]). Therefore, the putatively
selected genes should be checked for GC content and closeness to
recombination hotspots and telomeres.

Most codon models assume a single phylogeny and a constant
synonymous rate among sites, implying that rate variation among
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codons is solely due to the variation of the nonsynonymous rate.
Recent studies question whether such assumptions are generally
realistic (e.g., see [86]) suggesting that failure to account for synon-
ymous rate variation may be one of the reasons why LRTs for
positive selection are vulnerable on data with high recombination
rates. Some selection scans try to control this problem by checking
putatively selected genes for recombination either manually or
automated with traditional detection software (e.g., RDP [87]).
Also Drummond and Suchard [88] have recently developed a
Bayesian approach to detect recombination within a gene.

Another approach is to explicitly consider recombination. For
example, Scheffler, Martin, and Seoighe [89] extended codon
models with both dN and dS site variation and allowed changes of
topology at the detected recombination breakpoints. Certainly,
fast-evolving pathogens (such as viruses) undergo frequent recom-
bination which often changes either the whole shape of the under-
lying tree, or only the apparent branch lengths. While the efficiency
of the approach depends on the success of inferring recombination
breakpoints, the study demonstrated that taking into account alter-
native topologies achieves a substantial decrease of false-positive
inferences of selection while maintaining reasonable power. In
principle the correlation structure of a collection of orthologous
sequences can be fully described by a network known as an ancestral
recombination graph (ARG). However, methods for ARG infer-
ences have not been fast enough for practical use, and for applica-
tions on large-scale genomic data, approximations are necessary
(Rassmussen et al. [90]).

4.3 Selection on

Synonymous Sites

Most selection studies to date focused on detecting selection on the
protein, since synonymous changes are often presumed neutral and
so unaffected by selective pressures. However, selection on synony-
mous sites has been documented more than a decade ago. Codon
usage bias is known to affect the majority of genes and species. In
his seminal work, Akashi [91] demonstrated purifying selection on
genes ofDrosophila melanogaster, where strong codon bias favoring
certain (optimal) codons serves to increase the translational accu-
racy. Pressure to optimize for translational efficiency, robustness,
and kinetics leads to synonymous codon bias, which was shown to
widely affect mammalian genes [92], as well as genes of fast-
evolving pathogens like viruses [93]. The standard approach to
study selection on codon usage computes various codon adaptation
indexes on full-length protein-coding genes (see [94] for review).
More recently, methods to study selection on synonymous changes
adopted more sophisticated approaches, mainly the following stra-
tegies: (1) account for synonymous rate variation within sequences;
(2) include codon fitness parameters within a modeling framework
that connects population and intraspecific parameters; and
(3) allow for selection on synonymous substitutions by introducing
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the dependency on the rate of protein production and nonsense
error rates. Below we elaborate on these approaches.

In the past decade, evidence has accumulated to suggest that
codon bias may vary not only between genomes and genes of the
same genome but also within genes. Rather than just measuring
codon biases in single sequences, a more powerful approach is to
model evolution and selection across a set of homologous
sequences. Taking the evolutionary perspective into account,
Resch et al. [95] conducted a large-scale study of selection on
synonymous sites in mammalian genes. They measured selection
by comparing the average rate of synonymous substitutions (dS) to
the average substitution rate in the corresponding introns (dI).
While purifying selection was found to affect 28% of genes (dS/
dI < 1), 12% of genes were found to have been affected by positive
selection on synonymous sites (dS/dI > 1). The signal of positive
selection correlated with lower predicted mRNA stability compared
to genes with negative selection on synonymous sites, suggesting
that mRNA destabilization (affecting mRNA levels and translation)
could be driving positive selection on synonymous sites.

An increasing number of experimental studies exemplify differ-
ent scenarios explaining how synonymous mutation may be
affected by positive or negative selection. Codon bias to match
skews of tRNA abundances may influence translation [96]. Changes
at silent sites can disrupt splicing control elements and create new
“cryptic” splice sites, as well as mRNA and transcript stability can be
affected through preference or avoidance of certain sequence
motifs (see [92, 97]). Silent changes may affect gene regulation
via constraints for efficient binding of miRNA to sense mRNA
(e.g., [92, 98]). Selection may act on the choice of synonymous
codons near miRNA targets, improving the binding site accessibil-
ity, binding efficiency and consequently the function of miRNA
itself [99]. Programmed ribosomal frameshifting may be another
reason for selection to act on specific codon positions [100]. Speed-
dependent protein folding also has been proposed to be a result of
selective pressure [101]. According to the co-translational protein
folding hypothesis, slower production could cause the protein to
take an altered final form (as has been shown in multidrug
resistance-1, [102]). Finally, synonymous changes may act to mod-
ulate expression by altering mRNA secondary structure, affecting
protein abundance [103].

Models of codon evolution currently provide the most power-
ful approach for studying selection on silent sites. Models with
variable synonymous rates (see [64, 104]) have been used to evalu-
ate the extent of variability of synonymous rates in a gene and to
predict specific sites with most extreme—low or high—synony-
mous rates (for example see [93]). A large-scale study of synony-
mous rate variation [105] described some intriguing general
patterns and showed that the phenomenon is widespread in
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protein-coding genes. Genes displaying significantly varying synon-
ymous rates increased association with several genetic diseases
(especially cancers and diabetes) and were enriched for metabolic
pathways. Other studies specifically focusing on human oncogenes
revealed that a significant proportion of all cancer driver mutations
were synonymous [106]. This suggests that synonymous rates
cannot be automatically assumed fitness-neutral. Note that
ω ¼ dN/dS, an accepted measure of selection on the protein, is
not designed to detect selection on synonymous codons, particu-
larly when dS is assumed constant. Yet, some cautioned that low
synonymous rates preserved by purifying selection might errone-
ously lead to the detection of positive selection on the protein (e.g.,
Rubinstein et al. [107]). However, the usage of the ω ratio does not
rely on the assumption that synonymous sites are neutral (pages
58–59 of Yang [108]; and Section 6.3 of Anisimova and Liberles
[109]); rather, it is defined as a ratio of two ratios, comparing the
proportions of nonsynonymous and synonymous sites after and
before selection has operated on the protein (ω ¼ 1). In general
we can assume that the evolutionary forces apply equally to synon-
ymous and nonsynonymous sites. Forces that act differentially on
synonymous and nonsynonymous sites should be rare in real data,
but they can affect the validity of the ω measure. The only known
example of such a natural force is probably synonymous phasing,
considered by Xing and Lee [110]. But even in this case, and with a
worst case scenario, the estimated effect is very weak. More cru-
cially, an adequate description of mutational processes at the DNA
level allows to circumvent biases in the estimation of the ω
ratio [106].

Further testing, however, is necessary to decide whether any
specific site has been affected by selection on synonymous codon
usage. For example, Zhou, Gu, and Wilke [111] suggested distin-
guishing two types of synonymous substitution rates: the rate of
conserving synonymous changes dSC (between “preferred” codons
or between “rare” codons) and the rate of non-conserving synony-
mous changes dSN (between codons from the two different groups
“rare” and “preferred”). Silent sites with dSN/dSC > 1 may be
considered to be under positive selection, and significance can be
tested based on a likelihood ratio test. Alternatively, synonymous
rates at sites may be compared to the mean substitution rate in the
corresponding intron, which can be implemented in a joint codon
and DNA model, similar to the approach proposed by Wong and
Nielsen [112].

Mutation-selection models include selective and mutational
effects separately and allow estimating the fitness of various codon
changes (see [113–115]). The relative rate of substitution for
selected mutations to neutral mutations is given by ω ¼ 2γ/
(1 � e�2γ), where γ ¼ 2Ns is the scaled selection coefficient (see
Exercise 3 for a derivation). Nielsen et al. [114] assumed that all
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changes between preferred and rare codons have the same fitness
(and so the same selection coefficient). They used one selection
coefficient for optimal codon usage for each branch of a phylogeny
and estimated these jointly with the ω ratio by ML. Using this
approach to study ancestral codon usage bias, Nielsen et al. [114]
confirmed the reduction in selection for optimal codon usage in
D. melanogaster. In contrast, Yang and Nielsen [115] estimated
individual codon fitness parameters and used them to estimate
optimal codon frequencies for a gene across multiple species. LRT
is used to test whether the codon bias is due to the mutational bias
alone. Nevertheless, one remarkable contribution of the mutation-
selection models is the connection they make between the interspe-
cific and population parameters. Exploiting this further should
provide insights to how changing demographic factors influence
observed intraspecific patterns. Mutation-selection models also
allow a new perspective on understanding codon models in the
context of fitness landscapes with statistical implications as
discussed in Subheading 4.2 of Chapter 13 by Jones, Susko, and
Bielawski.

Finally, it is also possible to study selection on synonymous
changes by introducing a parametric relationship between fitness
and protein production cost. The idea was first described by Gilchr-
ist [116], who assumed that, in addition to mutation and drift, the
codon bias evolved under selection to reduce the cost of nonsense
errors. Protein production cost can be computed as a ratio of the
expected cost to the expected benefit [117]. Kubatko and collea-
gues [118] have extended a standard codon model to include the
difference in protein production due to the usage of different
codons (and therefore different elongation probabilities). How-
ever, such a model requires position-specific instantaneous rate
matrices, and consequently also the probability transition matrices,
making the approach computationally very intensive. To circum-
vent this, a GPU-based implementation was developed and used for
phylogeny inference from 104 gene data set from Saccharomyces
cerevisiae. Based on the standard model selection measure AIC, the
new model outperformed the simplest model M0 as well as the
mutation-selection model FMutSel of Yang and Nielsen.

5 Exercises

Q1. Amino Acid and Codon Substitution Models

How many parameters need to be estimated in the instantaneous
rate matrix Q defining a reversible empirical AA model? How many
such parameters are necessary to estimate for a reversible empirical
codon model? How many parameters are to be estimated in both
cases if a model is nonreversible?

Selection Acting on Genomes 391

https://doi.org/10.1007/978-1-4939-9074-0_13


Q2. Positive Selection Scans

1. Go to the UCSC genome browser (http://genome.ucsc.edu).
Search for the HAVCR1 (hepatitis A virus cellular receptor 1)
in the human genome (assembly GRCh38/hg38) belonging
to the mammalian clade. The USCS genome browser tracks
provide the summary of previous analysis of coding regions.
Switch the “Cons_30_Primates” under “Comparative Geno-
mics” to full and “refresh.” Why are only a few bases in the
HAVCR1 gene conserved according to the PhastCons track?
Click on the “Cons_30_Primates” track to learn more about
the conservation scores used.

2. To retrieve the multiple sequence alignments for the HAVCR1
gene, go to “Tools” and “Table Browser” at the top bar of the
webpage. This will open a new page. Choose the table
“ccdsGene” under the “Genes and Gene Predictions” group
and “CCDS” track. Select “CDS FASTA alignment from mul-
tiple alignment” option in the output format and “Show
nucleotides” to download the aligned coding sequences of
the HAVCR1 gene. Alternatively you can retrieve the multiple
alignments from Ensembl using BioMart. Here, you have
options for more file formats including PHYLIP that is needed
for the PAML software.

3. Use the PAML software (http://abacus.gene.ucl.ac.uk/soft
ware/paml.html) to test the models for positive selection on
any lineage of the mammalian trees by comparing models M1a
and M2a with a likelihood ratio test.

4. Use PAML to identify sites under positive selection by using
the Bayes Empirical Bayes approach. Do you find the same sites
to be under selection as in Fig. 2 of Kosiol et al. [43]?

Q3. Selection-Mutation Models

Selection-mutation rely on a theoretical relationship between
the nonsynonymous-synonymous rate ratio ω and the scaled selec-
tion coefficient γ ¼ 2Ns. The probability that a new mutation
eventually becomes fixed is

Pr fixationð Þ ¼ 1� e�2s
� �

= 1� e�4Ns
� � ¼ 2s= 1� e�4Ns

� �

if we assume that the selection coefficient s is small and N is large
and represents the effective population size, which is constant in
time (Kimura and Ohta [119]). Furthermore, assume that synony-
mous substitutions are neutral and nonsynonymous have equal
(and small) selection coefficients. Derive the relationship:

ω ¼ 4s= 1� e�4Ns
� � ¼ 2γ= 1� e�2γ

� �

that combines phylogenetic with population genetic quantities and
is crucial for mutation-selection models.
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