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Abstract 
 

An overarching goal of multisensory research is to understand the rules by which multiple sensory 

signals are combined to produce behavioural benefits. One example of a multisensory benefit is that 

response times (RTs) to multisensory signals are faster than RTs to either component unisensory signal 

(the redundant signal effect). In contrast to other areas of multisensory research, a common 

explanatory model framework (and thus the basic combination rule) has yet to emerge for 

multisensory RT benefits. One key reason for this lack of progress would seem to be that additional 

processing interactions are infrequently quantified, and are rarely incorporated into a formal model 

of RTs. In this thesis, I assess the ability of a previously-neglected model class – so called race models 

– to account for both benefits and interactions. To do so, I develop and apply a comparative approach 

to RT analysis. This approach tests different experimental factors which attempt target sources of 

benefits and interactions. The effect of these manipulations is compared across 3 key analytical steps. 

First, the size of the multisensory benefit (i.e. the redundant signal effect) is computed, and compared 

to the basic prediction of the race model combination rule. Second, indicators of processing 

interactions beyond the basic combination rule are quantified. Third, a formal race model is applied 

to explain benefits and processing interactions. By consistently applying this comparative approach, I 

demonstrate that the race model framework offers a simple yet powerful account of multisensory 

benefits across participants. This suggests a basic combination rule for multisensory RT benefits. In 

addition, a new interpretation of interactions emerges by applying a race model framework, which 

highlights an important role of context. This approach suggests a common foundation for future 

studies of multisensory RTs, which can implement the same analytical steps within a wide range of 

experimental contexts.   
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1. General Introduction  

 Thesis Topic  

In everyday life, even some of the most common tasks involve the processing of signals from multiple 

senses at once. One simple example is receiving a call on a smartphone. Smartphones are capable of 

signalling their users to make a response (i.e. take the call) in multiple sensory modalities (Figure 1.1). 

For instance, it might play a ringtone (auditory signal), vibrate (tactile signal) or flash something 

onscreen (visual signal). In isolation, each of these is a unisensory signal. Alternatively, the device may 

present two or more of these signals simultaneously; this would be a multisensory signal. In many real-

world cases, from phone calls (as in Figure 1.1) to alerts regarding potential dangers (e.g. sirens and 

flashing lights on alarm systems), multisensory signals are used. This is often despite the fact that a 

unisensory signal alone would suffice to elicit the necessary response (i.e. the multiple signals are 

redundant). One important reason for this is that multisensory signals are often advantageous, 

eliciting behavioural benefits above unisensory signals alone: individuals respond to them both more 

quickly (e.g. Miller, 1982; Raab, 1962; Todd, 1912) and more accurately (e.g. Frassinetti, Bolognini, & 

Ladavas, 2002; Lovelace, Stein, & Wallace, 2003; Spence, Baddeley, Zampini, James, & Shore, 2003).  

 

Figure 1.1 Unisensory and multisensory signals in everyday life 
Devices such as smartphones provide signals to different senses. Each of these signals often 
requires the same response (e.g. answer a call). On the top row, examples of unisensory signals are 
shown (where only one sensory modality is activated). In the bottom row, these unisensory 
component signals are combined into a multisensory signal. This can also be considered a redundant 
signal, as response to any one component is sufficient to successfully answer the call. Such 
multisensory signals are reliably associated with benefits (e.g. faster response times than the 
individual unisensory components).    
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A proper understanding of the processes which lead to these multisensory benefits has direct 

implications for these everyday tasks. To return to the simple examples above, it would allow us to 

more effectively design and interact with technological devices (see Pomper, Brincker, Harwood, 

Prikhodko, & Senkowski, 2014 for an implementation of the smartphone example). Further, 

multisensory research is already targeted toward the development of effective warning systems (e.g. 

van Erp, Toet, & Janssen, 2015) and driver safety systems (e.g. Biondi, Strayer, Rossi, Gastaldi, & 

Mulatti, 2017; Ho, Reed, & Spence, 2007; Keyes, Whitmore, Naneva, & McDermott, 2018; 

Reinmueller, Koehler, & Steinhauser, 2018; Spence & Ho, 2008). In short, gaining a better 

understanding of the underlying brain mechanisms of multisensory benefits allows us to exploit them 

in important scenarios.  

Perhaps to this end, multisensory research has seen a surge in recent years, whereas 

understanding of perception had previously focused on senses in isolation (Alais, Newell, & 

Mamassian, 2010). One advantage of this, however, is that our understanding of unisensory 

perceptual decision-making is now advanced on multiple levels, describing empirical effects on both 

behaviour and the neural level (Gold & Shadlen, 2007; Smith & Ratcliff, 2004). Further, links between 

these levels of understanding exist in the form of clear model frameworks i.e. formalised descriptions 

of the underlying processes which give rise to empirical effects (e.g. Mulder, van Maanen, & 

Forstmann, 2014 for a review). Multisensory research, similarly, now has a wealth of data 

demonstrating empirical effects on behaviour (e.g. Gondan & Minakata, 2016) and individual neurons 

(Stein & Stanford, 2008; Stein, Stanford, & Rowland, 2014). What must also be developed, then, are 

clear multisensory model frameworks, which can build upon the well-established unisensory 

framework. To effectively extend the unisensory framework to multisensory responses, however, we 

need to understand how multiple unisensory inputs are combined (i.e. the fundamental combination 

rule for multiple sensory inputs). Beyond this fundamental step, we also need to understand how 

implementation of the combination rule differs depending on the situation (i.e. understand processing 

interactions between different sensory inputs, which may influence how effectively signals can be 

combined).  

In some fields of multisensory research, the modelling of combination rules has already been 

enormously successful. For example, model explanations of how multiple senses combine to allow 

more accurate estimates, e.g. using vision and touch in combination to better estimate the size of an 

object (Ernst & Banks, 2002; Ernst & Bulthoff, 2004), provide clear accounts of behaviour and offer 

links to neuronal implementations. However, for understanding response time (RT), progress in 

understanding the underlying combination rules has been lacking. Indeed, a recent review of the 

literature on a classic multisensory RT paradigm (with similar demands to that shown in Figure 1.2) 
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has suggested that there simply may be no common model which can explain behavioural results 

across different experiments (Gondan & Minakata, 2016, p. 731). The lack of a common model 

framework for multisensory RTs is the problem which this thesis attempts to address.  

1.1.1. Chapter Overview  

In the General Introduction, I show how we might develop a common model framework for 

understanding simple multisensory RTs. To do this, I first cover the necessary background on the 

unisensory RT framework. Second, I extend this to the multisensory RT task of interest (known as the 

redundant signal paradigm). Third, I review candidate models which explain multisensory RT benefits 

observed in this task, and describe why neither is yet considered to be a common framework. After 

this overview, I detail what I consider the essential analytical steps for understanding multisensory RT 

benefits. I then describe how these can be applied within a comparative approach (i.e. an 

experimental approach which will allow understanding of multisensory RT benefits across factors). 

Ultimately, what I suggest after applying the comparative approach is that an excellent candidate for 

a common model framework has long been known, but simply neglected. 

 

Figure 1.2 Combining multiple senses for a single response 
In the above example, auditory and visual signal components are presented simultaneously. 
Following signal input from two senses, the observer must somehow process both unisensory 
components to produce a single response (e.g. answer the call). Though this combination rule 
cannot be observed directly (illustrated by the black box), we can develop predictions and 
explanations for responses by constructing a model of it. 
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 Unisensory Response Times (Background)  

The development of a multisensory RT framework begins by understanding the simpler case of 

unisensory RTs. By studying unisensory RTs and comparing them between different conditions, 

researchers have been able to understand the timing of the processing stages which make up 

behaviour, as part of a field known as mental chronometry (Posner, 2005). In the field of perceptual 

decision-making, studying RTs is also useful because they mostly reflect decision-related processing 

(e.g. Oswal, Ogden, & Carpenter, 2007). As such, the underlying ‘rules’ of decision-making can be 

understood by deconstructing elements of RT distributions according to a formal model. For 

unisensory RTs, a widely agreed-upon model framework already exists, which multisensory 

researchers have attempted to extend in various ways. In this section, I detail this unisensory 

framework, and the approaches to measuring and evaluating RTs used in this thesis. For 

demonstration, I also detail some empirical effects in unisensory RTs, and show how the unisensory 

model framework allows us to understand them.  

1.2.1. Measuring RTs: The Simple Detection Task   

One of the most straightforward paradigms for RT research is the simple detection task (Luce, 1986; 

Woods, Wyma, Yund, Herron, & Reed, 2015). Here, participants respond (e.g. by button-press) as 

quickly as possible following the onset of a signal, and their RT is measured across trials (see Figure 

1.3 for a more detailed overview). To ensure RTs genuinely reflect decision-making (and not, for 

example, a response in anticipation of the signal) the signal onset times are typically randomised, and 

on some trials the signal is not shown at all (catch trials). The experimenter can also record any 

responses made when a signal was not present (false alarms), or record when any signal was not 

responded to (misses); however, as signals presented are usually easy to detect (and there is only a 

single response option) the number of these errors should be close to zero (i.e. participants 

demonstrate ceiling performance). It should be noted that there are also more complex forms of RT 

task. For example, some paradigms involve discrimination or choice between multiple stimuli and 

response options (e.g. Luce, 1986), which allow researchers to consider performance as well as RT. 

For present purposes, I have detailed only the simple detection task as it forms the basis of all of the 

experimental work in this thesis. Regardless, as a window onto perceptual decision-making, the simple 

detection task is incredibly effective as evaluating simple RTs alone (as seen in the following sections) 

allows significant insight into the architecture of perceptual decisions.  
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1.2.2. Evaluating RTs: The Cumulative Distribution Function  

Once collected, RTs must be meaningfully evaluated (Figure 1.4). This involves analysing summary 

statistics (Figure 1.4a), such as the central tendency (e.g. mean, median) and variability (e.g. standard 

deviation, median absolute deviation). Additionally, the distribution of RTs (Figure 1.4b) in its entirety 

should be considered. A straightforward representation of this is the cumulative distribution function 

(CDF), which has long been used in RT research (Houghton & Grange, 2011; Ratcliff, 1979). As well as 

displaying the whole range of RTs measured for a given signal, these plots link RT to probability, which 

forms a useful basis for further modelling work.  

To plot the CDF, all RTs collected for a given signal are first ranked from fastest to slowest. 

Next, the corresponding cumulative probability (CP) value is assigned. CP, for any given value of RT, 

essentially describes the probability that a response has been recorded up to and including that 

timepoint. For example, assume an RT value of 0.4 s corresponds to a CP of 0.3. This would mean 30% 

of RTs were recorded 0.4 s after signal onset. As for any probability, CP values range from 0 to 1. To 

compute CP, the following equation is applied 

𝐶𝑃𝑖 =  
𝑖 − 0.5

𝑁
, (1) 

 

where 𝑁 indicates the total number of RTs, and 𝑖 is a rank index from 1 to 𝑁. According to Equation 

1, the median of RT directly corresponds to a CP value of 0.5.  

 

Figure 1.3 The simple detection task 
a) Trial example. During the foreperiod (tstart –t0), the participant waits for the onset of a signal. The 
foreperiod is randomly varied from trial-to-trial to make signal onset unpredictable. When the 
signal is presented (e.g. white circle), an onset timestamp (t0) is recorded. A response window then 
follows when the participant should respond to the signal (t0 – tmax). The time of the response (t0 + 
RT) is also recorded. RTs (in s) can be calculated by subtracting t0 from the response timestamps.  
b) Simple RT data. 10 simulated RTs, similar to those recorded in detection tasks, are shown ranked 
fastest to slowest. The central tendency (mean) is shown below (shaded grey). 
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The CDF is a useful graphical tool to represent RTs, particularly if one is interested in variability, 

as it allows for a detailed comparison of RTs from different experimental conditions. For instance, as 

shown in Figure 1.4b, a steeper curve immediately indicates a less variable RT distribution (X), whereas 

a flatter curve indicates a more variable RT distribution (Y). It is also highlighted here because it forms 

a main level of RT analysis. Working on a distributional level is important as using summary statistics 

alone to describe RTs is insufficient (e.g. Houghton & Grange, 2011; Whelan, 2008). For instance, two 

signals may elicit a very similar mean RT, but completely different distributions. Any statistical test 

based only on central tendency, or sometimes even based on a simple approximation of the 

distribution, may fail to detect these differences (Noorani & Carpenter, 2011). 

There are several additional reasons to work with RT distributions, which are important for 

later chapters. First, certain empirical effects are known to occur at the extremes of the CDF. Benefits 

between conditions (e.g. congruent vs. incongruent stimulus-response compatibility in Simon Tasks) 

sometimes occur primarily on the fastest RTs, whereas interactions (e.g. task-switching effects) have 

different impacts across parts of the whole distribution (see Houghton & Grange, 2011). The CDF is 

therefore important for any approach interested in benefits or interactions between signals. Second, 

 

Figure 1.4 Evaluating RTs 
a) Summary statistics (central tendency). 10 simulated RTs, ranked fastest to slowest, are shown for 
two different kinds of signal (X and Y). Central tendency (mean) is shaded grey. As the means are 
very similar, it might be concluded that the signals are processed in a similar way.  
b) Cumulative Distribution Functions (CDFs). The same RTs are now shown plotted as distributions, 
with fastest RTs on the left of the plot and slowest RTs on the right. This shows that while RTs may 
be similar in terms of central tendency, the shape of the distributions is very different. For this 
reason, it is better to work on the CDF to understand how RTs change depending on different 
signals. 
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RT distributions act as an additional test of model fit (Lacouture & Cousineau, 2008; Wolfe, Palmer, & 

Horowitz, 2010). Many models may be able to capture the mean RT, however it is much more difficult 

to accurately capture entire distributions, which can help distinguish between model explanations. 

1.2.3. Explaining RTs: Models of Unisensory Decision-Making  

Consistent empirical effects can be observed even in simple RTs (e.g. Figure 1.4). One example is that 

RTs are typically much slower and more variable than can be accounted for by elementary sensory 

processing and motor response (e.g. Genest, Hammond, & Carpenter, 2016; Noorani & Carpenter, 

2011, 2016). Another example is that distributions of RTs are not normal, but are instead skewed. In 

particular, RTs are right-skewed, with larger variability at the slow tail than at the fast tail of the 

distribution. It is difficult to make sense of these effects without an idea of the underlying decision-

making process; a useful approach, therefore, is to construct a decision-making model which can 

account for them.  

The most widely agreed-upon modelling explanation of unisensory RTs is sequential sampling 

(for reviews, see Forstmann, Ratcliff, & Wagenmakers, 2016; Gold & Shadlen, 2007; Smith & Ratcliff, 

2004). This broad class of models assumes the following common processes in unisensory decisions, 

such as the simple detection of a signal. To begin, sensory evidence is available from the environment 

relating to the presence or absence of the signal. The observer is able to acquire samples of evidence 

from the environment at various time points (Figure 1.5a). However, the amount of evidence that can 

be sampled at each time point is not constant. Rather, it is subject to fluctuations arising from random 

activity in sensory receptors and neurons. We can refer to this generally as noise. The goal of the 

decision-maker, therefore, is to accurately detect signals despite the presence of noise. The 

assumption is that to counteract noise, the observer accumulates evidence over time, until at some 

point a threshold level is reached (Figure 1.5b). At this point, the decision process is terminated and 

the response is triggered. Under the sequential sampling framework, understanding of noise is also 

important, as both evidence and noise determine RT. While the signal may be essentially identical 

between trials, the noise elicited can change depending on experimental conditions (Figure 1.6a).  

The sequential sampling framework is well-regarded for multiple reasons. First, it is an 

accurate approximation of neural behaviour during decision making (e.g. Hanes & Schall, 1996; 

Shadlen & Newsome, 2001). Second, it captures and explains empirical effects observed in RTs (Figure 

1.6). For instance, RT variability can be understood as fluctuations in evidence between trials, which 

affects the time taken to accumulate to a decision threshold (Figure 1.6a). Also, the rightward skew 

of RTs is explained by the model geometry (e.g. Smith & Ratcliff, 2004). For a simple illustration of this, 

the accumulation to threshold can be simplified as a linear process (Figure 1.6b). Symmetrically 

increasing and decreasing the mean rate of evidence accumulation results in asymmetrical RTs. For 
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such reasons, the sequential sampling framework provides a useful link between behaviour and the 

underlying brain processes.  

Though the common framework of sequential sampling is agreed upon, specific model 

implementations can differ considerably. One main difference is the level of complexity. In choice RT, 

for instance, one classic model is the Diffusion Decision Model, or DDM (Ratcliff, 1978; Ratcliff & 

McKoon, 2008). This model very precisely captures the evidence accumulation trace over time, 

modelling this as a random walk of accumulation between two thresholds (one for each response 

option). However, an alternative formulation of a choice RT model is the Linear Ballistic Accumulator, 

or LBA (Brown & Heathcote, 2008).  In contrast to the DDM, the LBA simplifies accumulation of 

evidence to a linear rise to threshold (as in Figure 1.6b). It also employs two accumulators to a single 

 

Figure 1.5 The unisensory decision-making process 
a) Sampling evidence. The strength of evidence for the presence of a signal is shown over time. This 
is subject to random fluctuations in the sensory system (noise). The red line shows an example 
timecourse with a signal present. The blue line shows an example with no signal present. Based on 
any individual sample, it is difficult to correctly determine the presence of a signal. Considering 
sample point A, evidence for a signal was stronger when a signal was present, as expected. 
Considering sample point B, however, evidence for a signal was stronger when no signal was 
present, owing to noise.  
b) Accumulating evidence. The same evidence is shown, but summed over time. By integrating 
evidence, it becomes easier to distinguish whether a signal was present or absent (evident by the 
clear divergence of the traces). A criterion level of accumulated evidence (or ‘threshold’) is also 
implemented. The decision to respond is made only when this criterion is met.   
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threshold, rather than a single accumulator between two thresholds. The important point here is that 

many models capture the important elements of decision-making framework, but each is useful in 

different scenarios. The DDM very precisely models within-trial variabilities in evidence accumulation. 

However, it cannot easily be extended to tasks with more than two choices. Conversely, the LBA 

disregards within-trial variability in evidence accumulation (which is often a useful simplification for 

behavioural work). However, it is easily extended to multiple response options. Overall, the model 

employed depends on the task and the level of detail needed. In the following section, I detail a model 

which is useful for the purposes of simple detection tasks.    

 

Figure 1.6 Explaining empirical observations in response times 
a) Response time variability. The accumulation of the evidence over time for two different trials is 
shown. Because of the variability in the evidence over time, the time taken to reach threshold (black 
dots) varies between trials, which results in RT variability.  
b) Response time skew. To demonstrate how skew arises, the accumulation process is simplified to 
a linear accumulation to threshold. In each trace (red lines) the mean rate of evidence accumulation 
has been incrementally altered by ± 1 unit (vertical arrows). The model geometry, however, means 
that the points at which the traces reach threshold (black dots) are asymmetrically distributed, and 
thus the resulting RT distribution will be right-skewed. 
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1.2.3.1. The LATER Model  

A specific model implementation of the sequential sampling framework is the Linear Approach to 

Threshold with Ergodic Rate (LATER) model (Carpenter & Williams, 1995; Noorani & Carpenter, 2016). 

This model will be detailed in the General Methods (Section 2.4.4.1), but I describe it here briefly as a 

primer.  As the name implies, the LATER model (Figure 1.7) simplifies within-trial variability in evidence 

accumulation down to a linear accumulation (as also in Figure 1.6b). Thus, to describe RT, the LATER 

procedure simply attempts to model between-trial variability in evidence accumulation (i.e. the rate 

of evidence accumulation on each trial). This between-trial variability is defined by two parameters: 

the mean (mu) and standard deviation (sigma) of the rate distribution.  

The LATER model is particularly appealing for its simplicity; with only two parameters, it 

provides a well-fitting, continuous description of the entire RT distribution. This is a parsimonious 

platform for further modelling work. The rise-to-threshold also approximates the behaviour of 

neurons prior to a response, for instance in the oculomotor network (e.g. Hanes & Schall, 1996). It is 

important, however, to be aware of the LATER model’s limitations. First, it does not provide a way to 

 

Figure 1.7 The LATER model 
RTs to signal X are determined by a linear rise-to-threshold. Values for the linear rate of 
accumulation are defined by a normal distribution with parameters mu and sigma (shown in grey). 
A single example accumulation is shown with the red line. The projection of the rate distribution 
onto the threshold results in a right-skewed RT distribution (probability density function shown in 
green). This figure is partially modelled after Noorani & Carpenter (2016; their Figure 4).  
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model error responses, as the entire RT distribution is modelled by a single accumulation process. 

Thus, while it might not be an appropriate model if performance is poor, LATER fits will generally be 

good in instances where performance is at ceiling (as in simple detection tasks presented here). 

Second, the LATER model does not explicitly model the non-decision components of RT, and considers 

entire RTs reflective of decisional processes. Thus, while using the LATER model may not be ideal in 

cases where non-decision processes are examined, there are few problems if non-decisional 

components are constant over conditions. Despite these limitations, the model is seen as appropriate 

and useful in many contexts (Gold & Shadlen, 2007).  

 Multisensory Response Times 

Having reviewed the background on unisensory RTs, I will now turn to the thesis topic: multisensory 

RTs. Following a similar overall structure, I discuss the RT paradigm which is the focus of the thesis 

(the redundant signal paradigm). I will also detail the multisensory RT benefit observed within the task 

(the redundant signal effect). I will then describe extensions to the unisensory model framework which 

could account for the benefit: in contrast to unisensory RTs, however, there is no agreed-upon 

framework. I therefore detail the two most common model explanations.  

1.3.1. The Redundant Signal Paradigm (RSP) 

Multisensory RTs can be evaluated in the redundant signal paradigm, or RSP (Figure 1.8). This is an 

extension of a simple detection task (see Section 1.2.1) but in this version there are more trial types. 

On some trials, one of two unisensory signals is presented, each in a different sensory modality (for 

example, an auditory beep on some trials, and a visual flash on others). For generalisability, I will refer 

to these unisensory signals as signal X and signal Y. On other trials, both unisensory signals are 

presented simultaneously for a multisensory, or redundant, signal (for example, the beep and the flash 

together). For generalisability, I refer to the redundant signal as signal XY. On additional trials, no 

stimulus is presented at all (catch trials). With these 4 trial types (Figure 1.8a), the task follows the 

same instruction as simple detection: respond as long as any signal is present (X, Y or XY) and refrain 

from responding on trials when no signal is presented (catch trials). Two points can be noted regarding 

this description of the RSP. First, redundancy is not meant here in the sense that each signal 

component necessarily provides an estimate of the same physical properties, as in other multisensory 

contexts (Ernst & Banks, 2002; Ernst & Bulthoff, 2004); rather, the multisensory signal is redundant in 

the sense that response to either signal component (X or Y) is sufficient for a correct response. Second, 

examining the task demands of the RSP (Figure 1.8b), it is clear that it matches a logical disjunction, 

or the behaviour of an OR-gate (Otto & Mamassian, 2017; Townsend & Eidels, 2011). Overall, by 

examining RTs in the RSP (Figure 1.8c,d), differences in the underlying unisensory and multisensory 

processing can be made apparent.  
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The RSP has become a standard task for evaluating multisensory decision-making, with 

application over a wide field of research including neuroimaging (e.g. Martuzzi et al., 2007), 

neuroelectrophysiology (e.g. Molholm et al., 2002; Murray, Thelen, Ionta, & Wallace, 2018; Wang et 

al., 2018; Wynn, Jahshan, & Green, 2014) and neurostimulation (e.g. Bolognini, Miniussi, Savazzi, 

Bricolo, & Maravita, 2009; Bolognini, Olgiati, Rossetti, & Maravita, 2010; Romei, Murray, Merabet, & 

Thut, 2007). It has been used as a tool to study difference in multisensory processing between chosen 

populations, for instance between genders (e.g. Collignon et al., 2010) and age groups (e.g. Couth, 

 

Figure 1.8 The redundant signal paradigm (RSP) 
a) The four trial types in the RSP. Participants are presented with unisensory signals (X, Y), a 
multisensory/redundant signal (XY), or no signal (catch) on any given trial. These trials are equally 
likely (25% each), and are typically randomised within an experimental session.  
b) Task demands. For any given trial, participants are required to respond if any signal is present, 
but withhold responses if no signal is present. This mirrors a logical disjunction (OR-gate). 
c) Summarising RTs. The left columns show RTs collected for each trial type (10 simulated RTs, 
ranked, with mean in grey). RTs for the redundant signal (RTXY) are on average faster than either 
component (RTX, RTY). 
d) Visualising RTs. Each distribution, as in c), is plotted as a CDF. It can be seen that the redundant 
distribution (XY) is faster than both of the unisensory distributions.    
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Gowen, & Poliakoff, 2018; Downing, Barutchu, & Crewther, 2014; Murray, Eardley, et al., 2018; Peiffer, 

Mozolic, Hugenschmidt, & Laurienti, 2007; Ren, Yang, Nakahashi, Takahashi, & Wu, 2017; Wang et al., 

2018). It has also been used to study how multisensory processing changes in clinical conditions such 

as Parkinson’s Disease (e.g. Plat, Praamstra, & Horstink, 2000; Ren et al., 2018), schizophrenia (e.g. 

Williams, Light, Braff, & Ramachandran, 2010; Wynn et al., 2014), and dyslexia (e.g. Harrar et al., 

2014). The paradigm has also been adapted for comparative research between humans and non-

human animals (e.g. Juan et al., 2017; Lanz, Moret, Rouiller, & Loquet, 2013). In short, the continually-

developing applications of the RSP are vast. As such, any tool which can help guide research by finding 

commonalities will almost certainly be beneficial.   

1.3.2. The Redundant Signal Effect (RSE)  

The classic empirical effect arising in the RSP is that RTs to the redundant signal combination are faster 

than to the individual unisensory components (Figure 1.8c,d). This benefit, first described by Todd 

(1912), is known as the redundant signal effect, or RSE (Kinchla, 1974; Miller, 1982). The reliability of 

the RSE is firmly established; it has been observed across most sensory pairings, including audio-tactile 

(AT; Gondan, Lange, Rosler, & Roder, 2004; Marinovic, Milford, Carroll, & Riek, 2015; Nava et al., 

2014), tactile-visual (TV; Forster, Cavina-Pratesi, Aglioti, & Berlucchi, 2002; Girard, Pelland, Lepore, & 

Collignon, 2013), olfactory-visual (e.g. Amsellem, Hochenberger, & Ohla, 2018) and gustatory-

olfactory (e.g. Veldhuizen, Shepard, Wang, & Marks, 2010) signals, as well as with trisensory (i.e. 

auditory, tactile and visual) signals (e.g. Couth et al., 2018; Diederich & Colonius, 2004; Hagmann & 

Russo, 2016; Pomper et al., 2014). In addition, there is a body of research which has reported the RSE 

using multiple sensory signals within the same modality, such as vision (e.g. Corballis, 2002; Mishler & 

Neider, 2018; Mittelstadt & Miller, 2018; Moradi, Yankouskaya, Duta, Hewstone, & Humphreys, 2016; 

Mordkoff & Danek, 2011; Ridgway, Milders, & Sahraie, 2008; Ritchie, Bannerman, & Sahraie, 2014; 

Savazzi & Marzi, 2008; Vrancken, Vermeulen, Germeys, & Verfaillie, 2018). However, the most 

common signal arrangement, building on classic studies (Hershenson, 1962; Miller, 1982), is audio-

visual (AV). This is also the main focus of this thesis.  

Considering even just AV pairings, the range of signals which have been shown to elicit the 

RSE is vast. For example, in the majority of studies, the signal is sudden-onset, however the RSE has 

also been observed when signals are presented in continuous background stimulation (e.g. Otto, 

Dassy, & Mamassian, 2013; Otto & Mamassian, 2012). Signal qualities are also broad. In the auditory 

case, typical signals range from pure tones (e.g. Miller, 1982; Minakata & Gondan, 2018; Murray, 

Eardley, et al., 2018; Murray, Thelen, et al., 2018; Otto et al., 2013; Otto & Mamassian, 2012; Plat et 

al., 2000) to noise bursts (e.g. Bolognini et al., 2010; Harrar, Harris, & Spence, 2017; Harrar et al., 2014; 

Hershenson, 1962). In the visual case, typical signals range from simple pattern or shapes (e.g. 
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Bolognini et al., 2010; Murray, Eardley, et al., 2018; Murray, Thelen, et al., 2018; Plat et al., 2000), to 

more complex psychophysical stimuli such as Gabor patches (e.g. Harrar et al., 2017; Harrar et al., 

2014; Minakata & Gondan, 2018) or random dot motion (e.g. Otto et al., 2013; Otto & Mamassian, 

2012). More ‘realistic’ stimuli have also been examined, such as congruent real word images and 

sounds (e.g. Bailey, Mullaney, Gibney, & Kwakye, 2018; Collignon et al., 2010; Downing et al., 2014; 

Juan et al., 2017). Overall, therefore, there is huge potential for comparative investigation across 

stimuli to understand the factors which meaningfully influence the overall benefit.  

Despite such a broad literature, however, it appears that there has been little progress in the 

development of a common modelling approach. In fact, in a recent review of the RSE literature, 

Gondan and Minakata (2016, p. 731) speculate that this may not be possible given the breadth of 

stimuli and contexts in which the task is used. To understand further the lack of a common framework, 

which ultimately prevents comparative analysis, it is important to understand candidate models of 

multisensory decision-making.   

1.3.3. Models of Multisensory Decision-Making 

As the unisensory decision-making model is widely agreed-upon, expanding it to multisensory 

decisions is an obvious starting point. However, there are multiple alternate ways to extend the 

unisensory accumulation framework (i.e. one signal input) to the more complex case of multisensory 

decisions (two signal inputs). Each explanation has a different architecture, and thus a different 

explanation for how the RSE arises. The two dominant model classes are described here in detail. The 

first (race model framework) extends the unisensory framework by assuming there are two decision-

units which process each signal in parallel. The second (pooling model framework) assumes that there 

is a single decision-unit into which evidence from both signals is combined.  

1.3.3.1. Race Models  

The first explanation of the RSE is given by race models (e.g. Mordkoff & Yantis, 1991; Otto & 

Mamassian, 2012; Raab, 1962). The basic race model architecture (Figure 1.9) assumes that for the 

two unisensory signals (X, Y), separate unisensory decision-units accumulate evidence in parallel. Each 

unisensory decision-unit is independently capable of reaching a decision threshold. These two 

decision-units are then coupled by a logical ‘OR’ gate to a response component. Either decision-unit 

is able to trigger a motor response when presented with a multisensory signal.  

1.3.3.2. Pooling Models   

A second explanation of the RSE is given by pooling models (e.g. Diederich, 1995; Miller, 1982, 1986; 

W. Schwarz, 1989, 1994; Zehetleitner, Ratko-Dehnert, & Muller, 2015). The basic pooling model 

architecture (Figure 1.10) assumes that during multisensory signal presentations, evidence for each 

signal is summed together into a single decision-unit. When this decision-unit reaches threshold, a 
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response is triggered. Note that pooling models are also sometimes known as ‘co-activation’ models 

(Miller, 1982, 2016). However, as co-activation (meaning one decision-unit influences the decision 

time of the other) can be implemented within a race or a pooling architecture, I follow the terminology 

of Otto and Mamassian (2017) in this thesis (see also Mordkoff & Yantis, 1991, p. 537).  

1.3.3.3. How Do Race and Pooling Models Explain the RSE?  

Race and pooling models suggest two different combination rules. These are shown in terms of 

evidence accumulation in Figure 1.11. Assume that we have two evidence traces for a given redundant 

trial, one for each unisensory component signal (Figure 1.11a). According to race models (Figure 

1.11b), the RSE arises as a result of statistical facilitation (Raab, 1962). When multisensory signals are 

presented, two decision-units gather evidence in parallel to reach a threshold level of evidence; 

whichever decision-unit reaches threshold first triggers the motor response (i.e. the minimum decision 

time of two accumulation processes). The distribution of these times is overall faster and less variable, 

which accounts for the benefit. For a simple illustration of this process using runners’ lap times, refer 

 

Figure 1.9 The basic race model architecture 
When presented with multisensory signals, evidence accumulates for signal components X and Y 
independently with individual decision-units working in parallel. Each decision-unit can reach a 
decision threshold. The decision-units are coupled by a logical OR gate, such that whichever reaches 
threshold first triggers the response (e.g. button press).  

 

 

Figure 1.10 The basic pooling model architecture 
When presented with multisensory signals, evidence for signal components X and Y is summed 
together (pooled) into a single decision-making process. When a threshold level of evidence is 
reached, this triggers the response.  
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to the appendices (Section 9.1). According to pooling models (Figure 1.11c), the RSE arises as sensory 

evidence on multisensory trials is ‘pooled’ from two sources rather than from only one source, and 

thus threshold is reached faster. 

 

Figure 1.11 Race and pooling model explanations of the RSE 
a) Evidence traces for unisensory component signals (X, Y) on a redundant signal trial (XY).  
b) The race model explanation. Multisensory RTs, under a race model, are triggered by the faster 
of two unisensory accumulators to reach threshold. As shown above, the accumulator for 
unisensory component X (green line) reaches threshold before the accumulator for unisensory 
component Y (blue line). On this trial, therefore, the RT is determined by X. According to race 
models, multisensory benefit arises from always choosing the faster (or minimum) decision time 
from two accumulation processes over multiple trials. 
c) The pooling model explanation. Multisensory RTs, under a pooling model, are triggered by an 
accumulator which pools evidence from unisensory components X and Y together (grey line). 
According to a pooling model, multisensory benefit arises because threshold is reached faster when 
pooling two sources of evidence together compared to one. Note also, by comparison to panel b), 
that pooling model benefits can very easily exceed those possible with a race model.   
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1.3.4. Deciding Between Multisensory Models: An Evaluation of Current Practice 

Despite the fact that there are two main explanations for the RSE, there has been surprisingly little 

debate regarding which model explains the RSE for number of decades. The general consensus is that 

the race model architecture cannot explain the RSE. This is interesting, given the task demands map 

onto a logical disjunction (OR-gate), which perfectly matches the architecture of the race model. The 

reason for this rejection is discussed in the following section.   

1.3.4.1. Testing the Race Model  

The rejection of race models dates back to a seminal paper by Miller (1982). In this paper, Miller 

developed a test with the goal of aiding model selection in RSE research. The validity of the test will 

be considered in much more detail later (Section 1.7.2). The basic idea, however, is this: a pure 

statistical facilitation mechanism, which is the core of the race model framework (Figure 1.9), has an 

upper bound regarding the size of the possible benefit. In other words, there is a limit to the redundant 

RT distribution in relation to the unisensory RT distributions. This is known as Miller’s bound. If Miller’s 

bound is violated (i.e. the redundant XY distribution is faster than the bound at any point), then 

according to the test’s logic, race models cannot explain the RSE. In Miller’s 1982 paper, and in many 

papers since, violations of this bound are indeed reported, which has led to a general rejection of all 

race models as an explanation for multisensory benefits (for a recent review, see Gondan & Minakata, 

2016). In current practice, therefore, the race model is effectively a “nullmodel” (W. Schwarz, 1989, 

p. 498) against which the empirical RSE is evaluated. If violated, the results are taken in support 

pooling models. 

1.3.4.2. Re-examining the Race Model Test  

Since Miller (1982) and the widespread rejection of race models, it might be expected that the 

development of pooling models is well-advanced. However, as noted in the introduction, there has 

been little progress in terms of a common model framework. A likely reason for this is that most RSP 

studies neglect to apply a formal model to explain the RT data collected. This was recently highlighted 

by Gondan and Minakata (2016). In their review, the authors collated 83 papers which claimed to 

show violations of Miller’s bound. Of these papers, only 9 actually followed up with a formal RT model 

of any kind. Thus, model development under the dominant pooling approach appears to be lacking.  

This seems to remain largely the case. To evaluate publications from the previous year (2018), 

I followed the same journal search procedure as Gondan and Minakata (2016). From this search (see 

Section 9.2 in the appendices for details) I collated 55 Journal articles, of which 22 papers measured 

human RTs and applied some evaluation of the race architecture (e.g. Miller’s bound). Of the 22 papers 

included in the review, only 2 applied any formal model of RTs. It appears, therefore, that despite an 
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implicit consensus regarding how multisensory benefits could be quantified and explained, an explicit 

modelling approach is still not being applied.  

Given this lack of a common model framework, it is crucial to return to the race model test 

and evaluate its validity. As the most basic race model (Figure 1.9) relies only on statistic facilitation, 

the deduction that this model is inadequate following a violation of Miller’s bound is valid. However, 

the rejection of all possible race models is not valid. The main reason to question the general rejection 

is one of the assumptions of Miller’s bound. It has since been shown that Miller’s bound relies on the 

assumption of context invariance (Ashby & Townsend, 1986; Gondan & Minakata, 2016; Luce, 1986; 

Miller, 2016; Otto & Mamassian, 2017; C. T. Yang, Altieri, & Little, 2018). This assumption will also be 

considered in much more detail later (Section 1.4.2) but in essence, this is the assumption that the 

processing of one unisensory signal is unaffected by the presence or absence of the other unisensory 

signal. To return to our example of runners (see Section 9.1), this is equivalent to stating that the lap 

time of runner X is unaffected by the presence or absence of runner Y (and vice versa for runner Y). 

Context invariance is a useful simplification in the formulation of models, including the most basic race 

model; however, it is not clear if this is actually the case for how signals are processed, and there is no 

straightforward method to test the assumption experimentally (Luce, 1986). This is a crucial point for 

how we interpret the results of Miller’s bound. Given that context invariance is assumed in the test, 

violations of Miller’s bound can only show that the race model architecture and context invariance 

are not both true (Otto & Mamassian, 2017). An alternative explanation, which also allows for 

violations of Miller’s test, is that the race architecture is correct, but the context of the unisensory 

signal is also important. Returning to the runner metaphor, runner X may be affected by the presence 

or absence of runner Y: it may make runner X faster, or more variable across laps. Similarly, in the case 

of race models, decision-units could either exchange evidence, for faster processing, or noise, for more 

variable processing (Otto & Mamassian, 2017; C. T. Yang et al., 2018).  

Ultimately, as Miller’s bound is unable to conclusively test architecture (Yang et al., 2018), 

violation of Miller’s bound indicates two possible routes of progress. The first is to turn to the 

alternative pooling model architecture. The second is to assume there are additional processing 

interactions to be accounted for and incorporated by a race model architecture. Previous research has 

explored the first approach in detail, with a common comparative framework for studies yet to 

emerge. The potential of the second approach to provide a comparative framework, on the other 

hand, remains unexplored. In this thesis, I explore the potential of race models in offering a common 

framework for the RSE.  
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 Formulating the Basic Race Model  

A common framework for the RSE must begin with the output of the basic race model architecture 

(Figure 1.9), because this provides the benchmark for whatever model explanation is subsequently 

adopted. For more complex race model approaches, it provides a baseline understanding for benefits 

and highlights where development is necessary. For pooling model approaches (Figure 1.10), it 

provides the “nullmodel” (W. Schwarz, 1989) which must be exceeded for justifying an alternative 

model architecture. Before attempting to develop a common framework, understanding of the basic 

race model must be clear in terms of how it is formulated. 

In its most correct form, the race model is formulated in terms of decision time (𝑇). We can 

represent these decision times as random variables for all signal distributions. Recall that in the RSP, 

there are typically two unisensory signals (X, Y) and the redundant signal (XY). Unisensory decision 

time variables are denoted as 𝑇𝑋 and 𝑇𝑌, and the redundant variable is represented by the union of 

unisensory component signals (𝑇𝑋∪𝑌). For redundant signal trials, 𝑇 is determined by the faster 

decision time of the two parallel decision-units which process the unisensory signal components (X, 

Y). Thus, the redundant signal XY distribution is calculated by taking the minimum distribution of 

decision times for unisensory signals X and Y. This can be formalised for the decision time variables as 

follows:   

𝑇𝑋∪𝑌 = 𝑚𝑖𝑛(𝑇𝑋 , 𝑇𝑌).  (2) 

To generate a model of the redundant distribution, we need to compute 𝑃𝑋𝑌(𝑇𝑋∪𝑌 ≤ 𝑡); this is the 

probability (𝑃𝑋𝑌, the subscript denoting that both signals were presented) that the decision time for 

redundant signals (𝑇𝑋∪𝑌) is smaller than or equal to a particular timepoint (𝑡). According to a race 

process, the model of the redundant distribution is formalised as:  

𝑃𝑋𝑌(𝑇𝑋∪𝑌 ≤ 𝑡) = 𝑃𝑋𝑌(𝑇𝑋 ≤ 𝑡) + 𝑃𝑋𝑌(𝑇𝑌 ≤ 𝑡) − 𝑃𝑋𝑌(𝑇𝑋∩𝑌 ≤ 𝑡), (3) 

where 𝑃𝑋𝑌(𝑇𝑋 ≤ 𝑡) and 𝑃𝑋𝑌(𝑇𝑌 ≤ 𝑡) are the unisensory cumulative probabilities, and 𝑃𝑋𝑌(𝑇𝑋∩𝑌 ≤ 𝑡) 

is the cumulative probability that both responses have been triggered (i.e. the joint probability). The 

essential idea of the equation therefore, as shown by the Venn diagrams in Figure 1.12, is to sum 

unisensory probabilities together and then remove any of the overlap between the two.  
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In this form (Equation 3), however, the race model cannot be implemented. One reason is 

that the equation is formulated in terms of decision time, whereas in experiments we measure overall 

response time (the latter being the sum of both decision and non-decision components). However, as 

non-decision time is assumed to be a small, fixed component of overall RT, the empirical RT 

distribution is typically substituted as an estimation of the values of 𝑇, as standard procedure in RT 

analysis (Gondan & Minakata, 2016; Luce, 1986). Regardless of this substitution, however, there are 

also two unknowns in the equation, i.e. two values which cannot be measured from the corresponding 

RT, but are necessary to calculate the race model. To address these unknowns, two further 

assumptions can be made which simplify the model.  

1.4.1. Assumption 1: Statistical Independence  

The first unknown in the race model (Equation 3) is the size of the joint probability, 𝑃𝑋𝑌(𝑇𝑋∩𝑌 ≤ 𝑡). 

The size of the joint probability is determined by any statistical dependencies in decision times (i.e. 

how one decision time affects another). A positive dependency will ultimately increase the joint 

probability, whereas a negative dependency will decrease the joint probability (e.g. Hughes et al., 

1994). One simple approach, which avoids the issue of an unknown joint probability, is to assume that 

decision times to signals X and Y are actually independent events (e.g. Meijers & Eijkman, 1977). This 

is the assumption of statistical independence. To relate this back to the runner analogy (Section 9.1), 

this assumption is equivalent to stating that the time on each lap does not influence other lap times 

in any way.  Following the multiplication law, the joint probability of two independent events is given 

by the product of two. The race model equation (Equation 3) can therefore be simplified to the case 

of independence as 

𝑃𝑋𝑌(𝑇𝑋∪𝑌 ≤ 𝑡) = 𝑃𝑋𝑌(𝑇𝑋 ≤ 𝑡) + 𝑃𝑋𝑌(𝑇𝑌 ≤ 𝑡) − 𝑃𝑋𝑌(𝑇𝑋 ≤ 𝑡)  ×  𝑃𝑋𝑌(𝑇𝑌 ≤ 𝑡) (4) 

I will refer to any race model which assumes statistical independence by the general term independent 

race model.  

 

Figure 1.12 A Venn diagram illustration of the race model equation (Otto & Mamassian, 2017) 
To model the decision time for the multisensory signal (XY), the distributions for unisensory decision 
times (X and Y) are added together. In doing so, the overlapping of the distributions (i.e. the joint 
probability) has been included twice, so must be subtracted. Reprinted from Otto and Mamassian 
(2017; their Figure 3), which is freely available for redistribution under the Creative Commons 
licence Attribution 3.0 Unported (CC BY 3.0). No changes have been made. 



31 
General Introduction  

1.4.2. Assumption 2: Context Invariance  

The second unknown in the race model (Equation 3) is the probability associated with unisensory 

signals, X and Y, on presentation of redundant signal XY: 𝑃𝑋𝑌(𝑇𝑋 ≤ 𝑡) and 𝑃𝑋𝑌(𝑇𝑌 ≤ 𝑡). There is no 

way to estimate these probabilities directly, as we cannot record corollary RTs to both components of 

the redundant signal – in the RSP, we only have one RT for the redundant signal and no simple way of 

knowing whether signal X or Y triggered it.  

One simple approach, in the absence of a direct corollary for these decision times, is to 

substitute the probabilities derived from unisensory conditions. In doing so, however, the implicit 

assumption is made that decision times to each unisensory signal are the same regardless of presence 

or absence of the other component signal. This assumption, which was encountered earlier (Section 

1.3.4.2) is known as context invariance (Ashby & Townsend, 1986; Gondan & Minakata, 2016; Luce, 

1986; Otto & Mamassian, 2017; C. T. Yang et al., 2018). To relate this back to the runner analogy 

(Section 9.1), this assumption would be equivalent to stating that the lap times for each runner are 

unaffected by whether they run alone or together. Under the context invariance assumption, 

Equation 4 can be written as 

𝑃𝑋𝑌(𝑇𝑋∪𝑌 ≤ 𝑡) = 𝑃𝑋(𝑇𝑋 ≤ 𝑡) + 𝑃𝑌(𝑇𝑌 ≤ 𝑡) − 𝑃𝑋(𝑇𝑋 ≤ 𝑡)  ×  𝑃𝑋(𝑇𝑌 ≤ 𝑡). (5) 

This model is the most straightforward implementation of the model architecture proposed by Raab 

(1962). It is interesting to note that this simple formulation of the race model is parameter-free, i.e. 

the redundant distribution can be predicted by providing only the empirical unisensory distributions, 

with no additional parameters needed. I will therefore refer to this specific, parameter-free 

formulation as the simple race model. A useful feature of the simple race model, as will be discussed 

in a following section, is that benefits can also be predicted based only on unisensory distributions.  

 Developing a Comparative Approach  

The goal of this thesis is to test the ability of race models to provide a common framework for 

understanding the RSE. Previously, evaluation of the race model framework has been limited to testing 

for violations of Miller’s bound, and rejecting the race model if any are observed. The model itself, 

however, has considerable power to predict benefits, which has previously not been investigated. 

Beyond this, violations may also be the result of a violation of context invariance. The ability of the 

race model to account for such interactions in a more complex form has also remained relatively 

unexplored. To test the race model, a comparative approach was established. The essential idea of 

the comparative approach is to test the predictive and explanatory power of the race model 

framework.  
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Within this comparative approach, experimental factors are introduced to target benefits or 

interactions. Next, three analytical steps are applied for a comprehensive understanding of RTs in the 

RSP. At each stage, the race model is in some way evaluated. The first analytical step is to determine 

the benefit (i.e. the RSE). Given the basic race model (Section 1.4) can also predict the size of the 

benefit, a comparison between predicted and empirical benefit will give an indication of how strong 

the most basic race model (Raab, 1962) account is. The second analytical step is to quantify empirical 

processing interactions, such as violations of Miller’s bound (Miller, 1982), which the basic race model 

cannot explain. If a race model framework is assumed to be correct, these indicate violations of the 

assumptions of Raab’s basic race model, which must be accounted for. The third analytical step is to 

account for both benefits and interactions with a further model. In this thesis, as I evaluate the ability 

of race models to account for the RSE, I will apply a more complex race model with additional 

interaction parameters (Otto & Mamassian, 2012). Over the next three sections, I detail each step in 

full.  

 Comparative Approach Step 1: Understand Benefits   

The first step of the comparative analysis is to quantify the benefit (i.e. the RSE). In the typical RSP, 

RTs are collected from two unisensory signals (X, Y) and the redundant signal (XY). Working on the 

distributions, we can calculate the benefit as the area between the redundant distribution and the 

faster of the two unisensory distributions at each comparison point (Figure 1.13). By comparing 

changes in benefit over different experimental manipulations, we can gain insight into the underlying 

processes which are important.  

1.6.1. Race Model Principles for Multisensory RT Benefit 

As in this thesis I am evaluating the power of race models to provide a common framework, it is 

important to understand the principles that race models offer for how multisensory benefits should 

change. This topic was first addressed by Raab (1962) alongside his proposal of the original race model. 

Here, it was noted that the race model distribution shifted more towards smaller values (i.e. larger 

benefit) as the overlap between the component distributions increased (Raab, 1962; his Figure 7). In 

terms of RTs, therefore, one prediction would be that the redundant distribution becomes faster on 

average as the overlap between component unisensory distributions increases. Until recently, 

however, such proposals had not been systematically investigated. In this section, an overview of 

recent work on race model predictions is presented.    

A clear way to establish race model principles for multisensory benefits is to systematically 

manipulate unisensory distributions X and Y and examine changes in the predicted benefit. This was 

done by Otto et al. (2013) in a series of RT simulations. Using the simple race model (Equation 5), the 

same unisensory CDFs can also be used to generate a quantitative parameter-free prediction for the 
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redundant CDF. This is done by substituting the simple race model CDF in place of the empirical 

redundant CDF. Based on their results (summarised in the following sections), two principles for 

maximising multisensory benefits were established: the principle of equal effectiveness and the 

variability rule.  

1.6.1.1. Principle 1: Equal Effectiveness 

As a first step to understanding race model principles of multisensory benefit, Otto et al. (2013) posed 

the following question: given a fixed CDF for signal X, which CDF for signal Y would produce the most 

benefit? First, the authors worked towards a mathematical proof on the level of individual cumulative 

probability points (i.e. independent of any assumptions about the shape of RT distributions). 

According to the simple race model equation, for any arbitrary RT, maximum benefit occurs when the 

cumulative probability of Y is identical to X. Building on Raab’s (1962) original observation, therefore, 

it can be concluded as a general principle that the largest benefit should occur when the unisensory 

distributions are identical.  

Second, the authors worked on the same principle, but demonstrated it on the more concrete 

level of RT distributions. A fixed RT distribution was simulated for signal X. The distribution was 

summarised by two statistics: median and median absolute deviation (MAD). The authors then varied 

the median and MAD of RTs to signal Y according to a linear grid space. The predicted benefit for each 

 

Figure 1.13 Calculating benefit 
50 simulated RTs are shown for each condition of the RSP. The benefit (in seconds) is calculated as 
the average difference between the redundant curve (XY) and the faster of the two unisensory 
curves (X, Y), considering all cumulative probability points. The benefit area is highlighted in green. 
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distribution of X and Y was then computed using the simple race model (Figure 1.14; centre panel). 

The largest predicted benefit occurred when distributions X and Y shared the same median and MAD 

i.e. when the unisensory RT distributions were the same. This principle was termed equal effectiveness 

(also known as congruent effectiveness), and can be summarised as follows: following a race model 

architecture, benefits increase as unisensory RT distributions become more similar.  

1.6.1.2. Principle 2: Variability Rule  

As a second step to understanding race model principles of multisensory benefit, Otto et al. (2013) 

repeated the previous simulation with an added level of complexity. As well as varying the properties 

of distribution Y within simulations, the properties of distribution X were also varied between 

simulations (Figure 1.14). As one manipulation, the median of X was increased or decreased while 

leaving the MAD fixed. These results are shown across the horizontal of Figure 1.14. It was shown that 

the principle of equal effectiveness holds across simulations, as in each plot the maximum benefit 

occurs when both distributions are the same. The overall benefit size was not particularly affected by 

changes in the median, as the benefits are similar across plots.  

As a second manipulation, the MAD of X was increased or decreased while leaving the median 

fixed. These results are shown on the vertical plots. Once more, the principle of equal effectiveness 

holds across simulations. However, the overall benefits are no longer similar across plots. Benefit 

increases as variability (as assessed by MAD) increases. This demonstrates a key point: variability in 

the unisensory RTs, according to race models, is the driving force behind multisensory benefits. 

Specifically, increases in benefits are determined by the least variable of the two unisensory 

distributions. Note for instance, that benefit remains maximal at the point where the MAD of RTs to 

both X and Y is the same, and does not increase further as the MAD of RT to Y increases. This principle 

was termed the variability rule and can be summarised as follows: following a race model architecture, 

benefits increase as the unisensory RT distributions become more variable.  

1.6.1.3. An Analogy for Understanding Race Model Principles  

The race model principles for multisensory benefit can be understood more intuitively by returning to 

the analogy with runners’ lap times (see also Section 9.1). Recall that here, the faster time of two 

runners (X and Y) is taken as the winning time overall. First, to understand the equal effectiveness 

principle, consider their relative performance. If one runner (e.g. X) is always much faster than another 

(e.g. Y) on every lap, the winning time would always come from runner X. If this was true, then both 

the winning times and the lap times of runner X would be the same, and there would be no 

improvement by taking the faster time of X and Y. However, if runners X and Y are equally matched, 

then the opportunity for winning times to be faster than either individual is much larger. A similar 

mechanism explains the speedup of RTs. If the underlying unisensory decision times (as measured by 
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RT) are very different, then there is no improvement when going from unisensory to redundant 

conditions; the faster unisensory process always determines the redundant trial RTs. However, if there 

is equal effectiveness, then the potential to see multisensory benefits is maximised because 

redundant RTs are always triggered by the faster of two unisensory processes.    

 Second, to understand the variability rule, consider the lap-to-lap variability of these runners. 

Assume again that we are taking the faster time of X and Y as the winning time, and in this case they 

have similar (equally effective) performance across laps. If these runners are both consistent in their 

 

Figure 1.14 Predicted benefits according to the simple race model (Otto et al., 2013)  
For signal X, the RT distribution is given a fixed median and MAD in each plot, shown by the dotted 
line. The RT distribution for signal Y is then allowed to vary along the axes of the grid. Each colour 
point on the grid represents the size of the predicted benefit for that combination of distributions 
for signals X and Y. Warmer colours indicate larger benefits. All plots demonstrate the principle of 
equal effectiveness i.e. the maximum benefit (red dot) always occurs at the point where the 
distributions for X and Y are equal. The horizontal row of plots show changes to the median of signal 
X (with a fixed MAD). The vertical plots show changes to the MAD of signal X (with a fixed median). 
The large increase in benefit as MAD increases demonstrates the variability rule. This figure is 
reproduced from Otto et al. (2013; their Figure 3), published in the Journal of Neuroscience. It is 
reprinted with permission of Society for Neuroscience in the format “republish in a 
thesis/dissertation” via Copyright Clearance Centre. No changes have been made.   



36 
General Introduction  

times, then the winning times on average will be very similar to the average times of each runner (i.e. 

they will not be much faster than either individual runner). If these runners are very variable in their 

times, however, then on average the winning times will be very different than the average times for 

each individual runner. On some laps, runner X will be fast, and on others very slow (the latter laps 

slowing down their individual average time). Similarly on different laps, runner Y will also be fast and 

on others slow. The winning times however only take into account the faster time of the two runners 

on each lap, and so will be impacted less often by any slow times. This means that on average, the 

winning times will be much faster than the average lap time for either runner. A similar process is at 

work on decision times, according to the race model; if unisensory decision times (as measured by RT) 

are not variable, then there will be little benefit going from unisensory to redundant conditions. 

However if there is large variability in decision times, then the multisensory benefit (i.e. the difference 

between redundant and unisensory performance) will be much larger.    

1.6.2. Key Analysis: Compare Predicted and Empirical Benefits  

An important step to evaluating the race model framework is to compare predicted benefits with 

empirical benefits. In previous research, this important comparison is neglected: benefit is typically 

calculated on the level of central tendency, followed by an evaluation on the level of distribution 

(computing Miller’s bound) to accept or reject the race model. The general interpretation from the 

latter is that race models predict benefits which are slower than empirical benefits. The goal of the 

comparative approach, however, is to evaluate this on a much more detailed level. For instance, it 

may be that the simple race model falls short on average, owing to simplified assumptions, but the 

general directional predictions offered by the race model principles hold true across factors. By 

comparing changes in predicted and empirical benefits on the level of the group average and the level 

of the individual participant, a clearer idea of how these principles account for benefits can be gained.  

 Comparative Approach Step 2: Quantify Interactions  

There are at least two empirical interactions observed in RSP studies which the simple race model is 

unable to account for. It is important that these are quantified for a complete explanation of 

multisensory behaviour. These also relate strongly to the assumptions which are made in formulating 

the race model, therefore understanding the interactions is important to know how they must be 

accounted for by any more complex model.  

1.7.1. Interaction 1: Statistical Dependence (Trial History Effects) 

One key assumption in the formulation of the simple race model is statistical independence (Section 

1.4.1). This simplification is inaccurate, however, as in experimental trial sequences there are often 

sequential dependencies across trials (Fischer & Whitney, 2014). In the specific case of the RSP, RTs on 

a given trial are influenced by RTs from previous trials (Gondan et al., 2004; Juan et al., 2017; Miller, 
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1982, 1986; Otto & Mamassian, 2012). I refer to these as trial history effects (Otto & Mamassian, 

2017). These are particularly observed on unisensory trials in the form of a ‘modality switch’ effect. 

For instance, if the current trial is a repetition of the previous unisensory trial, then the current RT is 

typically fast, and if the current trial is a switch from the previous unisensory trial, then RT is typically 

slow (Figure 1.15). A typical measure of this is to calculate the cost of the modality switch (i.e. the 

difference between switch and repetition trials).  

The modality switch cost impacts the overall correlation between unisensory RTs. If the 

previous trial was auditory (A), then RT will be fast if the current trial is A, but slow if it is visual (V). If 

the previous trial was V, however, then RT will be fast if the current trial is V but slow if it is A. Because 

switches work in these opposing ways between unisensory RTs, the dependency overall is assumed to 

be negative (Miller, 1982). This negative dependency between unisensory RTs has been shown in 

experiments (Otto & Mamassian, 2012). As shown in the formulation of the race model (Section 1.4) 

a negative dependency will mean that the joint probability is smaller than the simple race model 

assuming independence. Overall, therefore, benefit will likely be larger than predicted by independent 

race models. Though potential correlations created by history effects cannot be accounted for by a 

simple race model, they do not challenge the pure race model architecture in and of themselves. This 

is because joint probability is not limited to the case of statistical independence; it can take on any 

value between 0 and 1. However, if independence is not assumed, then there is still the issue of the 

joint probability being unknown. The next interaction returns to this problem.  

1.7.2. Interaction 2: Context Variance (Violations of Miller’s Bound)  

The second assumption in the formulation of the basic race model is context invariance (Section 

1.4.2). This assumption is also made by Miller’s bound, which is typically used to test the race model. 

Assuming the race model framework is correct, violations of the race model bounds are indicative of 

context variance i.e. the unisensory signals interact in some way, which means that processing is 

 

Figure 1.15 Trial history effects 
Examples of history effects in trial sequences. Unisensory repetition typically produces a fast RT. 
Unisensory switches, however, typically produce a slow RT.  
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different between unisensory and multisensory trials. An indication of context variance can then be 

given by quantifying the amount of violation observed.  

1.7.2.1. Bounds of the Race Model  

Determining the bounds of the race model (Figure 1.16) under the context invariance assumption 

brings us back to the problem of the unknown joint probability. A classical line of reasoning, beginning 

with Miller (1982), simplifies this problem and allows us to compute bounds to the race model. As the 

joint probability can only take on values between 0 and 1, this leads to an interesting point: the joint 

probability can only be a positive number, and removing it from Equation 3 means the left hand term, 

𝑃𝑋𝑌(𝑇𝑋∪𝑌 ≤ 𝑡), can only become larger (or remain unchanged, if the joint probability is 0).  

Formally, this can be written as follows:  

 

Figure 1.16 Limits of the race model (assuming context invariance) 
The same simulated unisensory RTs (X, Y) as in Figure 1.13 are shown. According the basic race 
model equation under context invariance (Equation 5), the redundant curve (XY, not shown) must 
lie within the green area. This is defined by two bounds (red lines). Grice’s bound represents the 
case of maximum positive correlation, and follows the faster unisensory distribution at each 
cumulative probability point; if the redundant RT distribution exceeds this bound, it indicates a cost 
of redundant signals which a basic race process cannot account for. More crucially, Miller’s bound 
represents the case of maximum negative correlation; if the redundant RT distribution exceeds this 
bound it indicates a benefit of redundant signals which a basic race process cannot account for. The 
simple race model (i.e. assuming statistical independence) is shown plotted for reference (green 
line).  



39 
General Introduction  

𝑃𝑋𝑌(𝑇𝑋∪𝑌 ≤ 𝑡) ≤ 𝑃𝑋𝑌(𝑇𝑋 ≤ 𝑡) + 𝑃𝑋𝑌(𝑇𝑌 ≤ 𝑡). (6) 

This inequality represents the upper bound to the context invariant race model. It is also the case of a 

race model with maximal negative correlation between unisensory units, which gives rise the largest 

benefit (e.g. Colonius, 1990; Colonius, Wolff, & Diederich, 2017). However, as written here, it is not 

possible to compute, because of the unknown probabilities. To compute the bound, Miller (1982) 

substituted the unisensory probabilities into the equation (i.e. assumed context invariance; see 

Section 1.4.2). The inequality in Equation 6 can then be rewritten as 

Following this substitution, the upper bound to the race model (Miller’s bound) is calculated as  

As a corollary, we can also compute a lower bound for the race model (Grice, Canham, & Gwynne, 

1984). This assumes the maximum possible joint probability, and can be stated as follows:   

Following a similar substitution using the context invariance assumption, the lower bound to the race 

model (Grice’s bound) is calculated as:  

This bound is the race model in the case of a maximal positive correlation. Theoretically, this bound 

can be used to test whether RTs are slower than the race model prediction (Van Zandt & Townsend, 

2013). However, as we typically observe benefits in the RSP (i.e. the redundant curve is faster than 

Grice’s bound), this is generally not of interest. However, much like Miller’s bound represents the case 

of maximal benefit, Grice’s Bound indicates the case of no benefit, as the distribution follows the faster 

of the two unisensory distributions at all time points. Grice’s bound, therefore, is actually useful in the 

computation of benefit across the entire RT distribution (see Section 2.3.2.1).  

1.7.3. Key Analysis: Quantify History Effects and Violations   

It is important to quantify both history effects and violations of Miller’s bound (Figure 1.17) because 

they both contribute to benefit beyond the simple race model. Under a race model framework, this 

can point to processing interactions which go beyond the basic combination rule (statistical 

𝑃𝑋𝑌(𝑇𝑋∪𝑌 ≤ 𝑡) ≤ 𝑃𝑋(𝑇𝑋 ≤ 𝑡) + 𝑃𝑌(𝑇𝑌 ≤ 𝑡). (7) 

𝑀𝑖𝑙𝑙𝑒𝑟′𝑠 𝑏𝑜𝑢𝑛𝑑 = 𝑃𝑋(𝑇𝑋 ≤ 𝑡) + 𝑃𝑌(𝑇𝑌 ≤ 𝑡). (8) 

𝑚𝑎𝑥(𝑃𝑋𝑌(𝑇𝑋 ≤ 𝑡) + 𝑃𝑋𝑌(𝑇𝑌 ≤ 𝑡)) ≤  𝑃𝑋𝑌(𝑇𝑋∪𝑌 ≤ 𝑡). (9) 

𝐺𝑟𝑖𝑐𝑒′𝑠 𝑏𝑜𝑢𝑛𝑑 = max (𝑃𝑋(𝑇𝑋 ≤ 𝑡), 𝑃𝑌(𝑇𝑌 ≤ 𝑡)). (10) 
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facilitation). History effects, for instance, contribute to the overall variability of unisensory RTs. 

According to the variability rule, if history effects make RTs more variable, they should contribute to 

the overall benefit. As detailed later, it is possible to measure how much the history effect contributes 

to overall variability (Section 2.3.3.1). Further, violations of Miller’s bound (by definition) represent 

the area of multisensory benefit which is not accounted for by race models. A race model framework 

attributes this to context variance i.e. changes in the processing of one unisensory component 

depending on the presence/absence of the other component signal. By comparing changes in 

interactions across conditions, we can understand their sources and hence which elements of 

stimulation contribute to benefits beyond the race mechanism.  

 Comparative Approach Step 3: Apply and Evaluate a Model  

A final step, after quantifying benefits and interactions, is to attempt to fit a formal model to the data 

which can explain the effects. In comparison to the earlier quantification stages, this latter stage is 

more discretionary – as shown earlier (Section 1.3.4.2), violations may be accounted for by race or 

pooling models. In this thesis, my general aim is to evaluate the race model framework, so rather than 

turn to existing pooling models, I apply the context variant race model (Otto et al., 2013; Otto & 

 

Figure 1.17 Violation of Miller’s bound 
The same simulated RTs as in Figure 1.13. Miller’s Bound (red line) is calculated according to 
Equation 8 based on the unisensory (X, Y) distributions. The redundant curve (XY) exceeds, or 
violates, this bound at the fast tail (filled red area). This violation area represents facilitation 
unaccounted for by a pure race process.  
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Mamassian, 2012, 2017). The reason for this is that, to my knowledge, it is the only published model 

which has shown the potential to account for benefits and interactions on the level of entire RT 

distributions.  

1.8.1. The Context Variant Race Model  

The context variant race model (Otto & Mamassian, 2012) is an extension of the basic race model 

architecture, which attempts to address the assumptions. As a first step, it establishes a basic race 

model. To do this, it makes use of the LATER model (Section 1.2.3.1 and Section 2.4.4.1) to fit 

continuous distributions to each unisensory RT distribution. This provides an independent race model 

with just 4 parameters for the decision-units (muX, muY, sigmaX, sigmaY). As a second step, the 

modelling process adds two free parameters, one for each interaction (Figure 1.18). To address history 

effects in the data, the statistical independence assumption is dropped and a correlation parameter 

(rho) is modelled between unisensory decision-units. By explicitly modelling dependencies by 

correlation, there is no longer any issue of an unknown joint probability as the correlation indicates 

the size of this area; complete overlap of unisensory probabilities is the case of maximal positive 

correlation, and no overlap is the case of maximal negative correlation. Thus, the model can take on 

any shape between Miller’s bound and Grice’s bound. Typically, unisensory RTs are assumed to be 

negatively correlated (Miller, 1982; W. Schwarz, 1989); one reason for this is that trial history effects 

work in opposing ways (as evidenced by an overall switch cost). In accordance with this, Otto and 

colleagues (Otto et al., 2013; Otto & Mamassian, 2012) find that the correlation parameters for their 

group RT distributions are negative.  

To address the issue of context variance, the context invariance assumption of the model is 

dropped, and a noise parameter (eta) is modelled for the accumulation process in redundant trials. 

This parameter is motivated by empirical observations of the redundant RT distribution. As noted by 

Otto and Mamassian (2017), violations of Miller’s bound are usually interpreted as evidence of faster 

RTs than predicted by the basic race model. However, violations typically only occur at the faster tail 

of the redundant distribution; as the slower tail is generally not violated, it is not evaluated. Otto and 

Mamassian (2012) evaluated the residuals between the empirical redundant distribution and the best 

fitting race model (including the correlation parameter). In line with Miller’s bound violations, 

empirical RTs were faster than the race model fit at the fast tail of the distribution. In addition, 

empirical RTs were slower than the race model fit at the slow tail. Their interpretation, therefore, is 

not that empirical CDF for redundant RTS is overall faster than an independent race model predicts, 

but rather more variable. To be clear, however, this does not mean that multisensory RTs are more 

variable than unisensory RTs; as shown previously, the race mechanism results in faster and less 

variable performance in multisensory conditions compared to unisensory conditions (see Section 9.1). 
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This additional noise, therefore, is variability in redundant RTs in relation to the prediction of the 4 

parameter independent race model. This is modelled as a constant added onto both unisensory sigma 

parameters. In accordance with their interpretation, Otto and colleagues (Otto et al., 2013; Otto & 

Mamassian, 2012) found that additional noise was modelled beyond the basic race model to account 

for their group RT distributions.   

1.8.2. Key Analysis: Observe Changes in Model Parameters    

Model parameters introduced by the context variant race model to account for the empirical 

processing interactions observed in Analysis Step 2 (Section 1.7). In the first instance, therefore, it is 

expected that there is a correspondence between changes in interactions and changes in the model 

parameters. In the case of the latter, however, these are modelled across entire distributions of RTs, 

whereas interactions are quantified on smaller samples. For example, the history effect is only 

calculated on unisensory repetition and switch trials. Violations, similarly, are observed only at the 

fast tail of the distribution. In this sense, model parameters are likely to be more sensitive to 

 

Figure 1.18 Fitting the context variant race model 
The same simulated RTs as in Figure 1.13 are shown here with model fits. The dashed lines indicate 
the underlying unisensory LATER model fits. The solid red line shows the context variant race model 
fit (including additional parameters (rho, eta). In this individual simulation, the recovered 
parameters show there was basically no correlation between unisensory RTs, but a large amount of 
additional noise in the accumulation process on redundant trials. This is in accordance with the large 
violation area shown in Figure 1.17.    
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underlying changes in RTs. By formalizing these changes in terms of a model, it also allows us to link 

the empirical effects to underlying processing rules (which this thesis aims to understand).  

 Thesis Chapter Outline  

In this first chapter, I have covered the necessary background for RT frameworks to understand 

multisensory benefits in the RSP. 

 In the following chapter (Chapter 2), I describe the General Methods that I used across all 

experimental work presented in the remaining thesis. This includes procedures used to collect 

experimental data, steps for processing data and computing statistical measures for analysis, and a 

necessary background to understand the specific modelling and simulation work.  

 In the following three chapters (Chapter 3-5), I describe all experimental work which was 

carried out using the novel comparative approach (Figure 1.19). In each experiment, I manipulate 

factors according to a 2×2 within-subjects factorial design. In the first experimental chapter (Chapter 

3), I establish the overall comparative approach. As such, I introduce factors which target both benefits 

and interactions. The first manipulation, stimulus construction, aims to clarify how basic elements of 

signals across RSP research contribute to the overall RSE. The second manipulation, signal features, 

explicitly targets history effects in an attempt to understand their underlying source.  

Having established the comparative approach, the second experiment (Chapter 4) focuses on 

revealing sources of interactions. The first manipulation, signal duration, aims to understand the 

underlying source of history effects. The second manipulation, task-irrelevant stimulation, attempts 

to understand context variance, and how violations of Miller’s bound might arise within a race model 

framework. 

 Having provided a comprehensive account of benefits and interactions in previous chapters, 

the last experimental chapter (Chapter 5) focuses on potential sources of multisensory benefits at 

different processing stages (i.e. decisional, non-decisional). The first manipulation, signal strength, 

aims to clarify how the strength of evidence for signals impacts the overall RSE. The second 

manipulation, response effector, aims to clarify how non-decisional elements (i.e. different methods 

of responding) contribute to the overall RSE.  

 Following the experimental chapters, I attempt to provide an overall assessment of how the 

basic principles of the comparative framework established here account for benefits. In an overall 

summary analysis chapter (Chapter 6), I use the data from experimental chapters to highlight key 

relationships between variables. I assess the overall predictive and explanatory power of race models, 

and look in more detail at how effective specific implementations of race models are as an overall 

explanation by using model comparisons methods.  
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 In my final chapter (Chapter 7), I provide a General Discussion of the overall experimental 

work in relation to our current understanding of multisensory behaviour. I conclude that the 

comparative approach based on race models presented here is a promising start for a multisensory 

RT framework.  

 

 

Figure 1.19 Overview of the comparative approach 
Experimental manipulations are developed which attempt to target the sources of processing 
interactions (e.g. a 2×2 within-subjects design). Three analytical steps are then applied to identify 
how the race model can account for the RSE across these conditions. First, benefit is predicted using 
the simple race model (green line) and compared to empirical benefit. Second, interactions beyond 
the simple race model are quantified, such as violations of Miller’s bound (red line). Third, a more 
complex model is applied, which can account for benefits and interactions (the red line shows the 
context variant race model fit). This figure has been adapted from original material which was later 
included in Innes and Otto (2019). The latter is available for redistribution in any form according to 
the Creative Commons licence Attribution 4.0 International (CC BY 4.0).  
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2. General Methods  

 Experimental Procedures 

In this section, I describe the general procedures involved in setting up and conducting my 

experiments. All procedures were submitted to and approved by the University Teaching and Research 

Ethics Committee (UTREC, approval code: PS12181).  

2.1.1. Apparatus 

All experiments (unless otherwise stated) were run on a Dell Optiplex XE2 (Windows 7) with an AMD 

Raedon HD 8490 graphics card. A dual-display setup (Figure 2.1) was used, with a Dell UltraSharp 

2009W monitor (1680×1050 pixel resolution) functioning as the experimenter’s control screen and a 

U2713HM monitor (1920×1200 resolution; 60 Hz refresh rate) functioning as the experimental display 

(Figure 2.1). Viewing distance was 57 cm from the experimental display, as maintained by a chinrest. 

Experiments were conducted in dim light with a small lamp behind the experimental display. Auditory 

stimulation was delivered using Sennheiser HD 280 Pro over-ear headphones at a sample frequency 

of 44.1 kHz. All stimuli were calibrated individually (see Section 2.1.3). In some experiments (see 

Chapter 4) tactile stimuli were also presented using a C-2 Tactor (Engineering Acoustics, Inc.). All 

experiments were coded in MATLAB (versions R2015b onwards) with standard toolboxes installed. 

Additional Psychtoolbox 3.0 functions (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997) 

were also used to generate stimuli (Section 2.1.2).  

RTs were measured using an RTbox Version 5 (Figure 2.2) and the corresponding MATLAB 

toolbox (Li, Liang, Kleiner, & Lu, 2010). The RTbox records and stores the time of button-presses 

according to its own microcontroller, which is synchronised to the computer clock prior to data 

collection. This avoids any random delays introduced by USB data transfer (e.g. Woods et al., 2015), 

and allows for extremely accurate (millisecond precision) recording of RTs. Custom-built push button 

controllers were used for manual responses in all experiments. For responses by foot, a custom-built 

foot pedal was used. The additional photodiode and sound ports of this device were also used for 

calibration of sensory stimuli (Section 2.1.4). 

2.1.2. Stimulus Generation  

Auditory stimuli were generated as vectors. The resolution of stimulus vectors was the same as the 

sample frequency (44.1 kHz), thus a stimulus lasting 1 s consisted of 44100 elements. Presentation of 

auditory stimuli was handled using the Psychtoolbox PsychPortAudio functions. The presentation area 

for all stimuli in this thesis was a notional annulus: the inner annulus radius was 1° and the outer radius 

was 4°. All stimuli were presented on a grey screen, with a central green fixation point (0.11° degrees 

visual angle). Presentation of visual stimuli was handled using the Psychtoolbox Screen functions. 
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Figure 2.1 Setup of experimental equipment 
Participants sat at the chinrest and were presented with experimental stimuli via the headphones 
and display monitor. The experiment code was run from the control monitor. 
 

 
Figure 2.2 The RTbox 
The device (A) was connected to custom hand (B) and foot (C) response controllers via the TTL IN 
port. The LIGHT and SOUND ports were connected to a photodiode and audio jack respectively to 
record the onset of sensory stimuli prior to running experiments (these were not connected during 
experiments). 
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Two kinds of audio-visual stimulation were constructed in this thesis, which I will refer to broadly as 

simple and complex. Simple auditory stimuli were pure tones (Figure 2.3a). The signal was the sudden 

onset of the tone. Pure tones were generated using the Psychtoolbox function MakeBeep. Complex 

auditory stimuli were filtered Gaussian noise (Figure 2.3b). The signal was a noise burst with narrower 

edge frequencies (e.g. 1.0/1.2 kHz) than the background noise (e.g. 0.5/2.4 kHz). Gaussian noise was 

generated using Butterworth filters with the MATLAB function butter.  

 

Figure 2.3 Auditory signal examples 
a) Pure tone (simple) signal. The example shown here is 440 Hz tone.  
b) Noise sound (complex) signal. The example shown here is a randomly-generated Gaussian noise 
with edge frequencies of 1.0/1.2 kHz. These complex signals were presented within continuous 
background noise with broader edge frequencies e.g. 0.5/2.4 kHz (not depicted). Both signals are 
shown played over 0.2 s with a 0.01 s ramp onset.  
 

 
 
Figure 2.4 Visual signal examples 
a) Concentric ring (simple) signal. On each trial, participants were presented with only the grey 
screen and the green fixation point. The signal was the sudden onset of the rings.  
b) Random dot (complex) signals. On each trial, dots moved linearly with a randomised direction 
and speed. The signal was the coherent rotation of a certain percentage (e.g. 50%) of the dots.   
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Simple visual stimuli were 3 concentric rings (Figure 2.4a). The rings were spaced in 1° increments and 

alternated black and white. The signal was the sudden onset of the rings. Complex visual stimuli were 

random dot kinematograms (Figure 2.4b). 1000 dots (each 1 pixel; either black or white) were 

distributed uniformly throughout the presentation area. Each dot had a lifetime of 0.1s, after which 

they were randomly replaced at a new location within the annulus. Each dot initially moved in a 

random linear direction with a speed of 1 (SD ±0.2) °/s. The signal was the coherent rotation of a 

percentage (e.g. 50%) of the dots (random allocation). The mean rotation speed for signal dots was 

0.67 (SD ±0.067) rad/s. 

2.1.3. Volume Setting & Calibration  

Auditory stimulus volume was controlled in MATLAB by controlling the amplitude of the stimulus 

vector. The volume of each stimulus was individually calibrated with a Brüel and Kjær Type 2250 

sound level meter equipped with a Type 4153 artificial ear (Figure 2.5). The artificial ear 

approximates the structure of the human ear, thus the pressure on the ear drum when the stimulus 

is played through the headphones can be estimated in dB SPL. 

The procedure for calibration (Figure 2.6) follows 3 basic steps. As a first step, I measured 

the volume of the stimulus using the sound level meter (recorded volume), and compared this to the 

desired volume (as was programmed in MATLAB). Consider an example where I generated a stimulus 

to play at 60 dB SPL (desired), but measured the volume as 67 dB SPL (recorded). In this example, 

there is a 7 dB SPL discrepancy to correct for. As a second step, the stimulus was calibrated. To do 

this, I calculated a theoretical 0 dB SPL value from the recorded volume. This was done using the 

MATLAB function db2mag. This function converts decibels to magnitude such that 

 

Figure 2.5 Calibrating volume of auditory stimuli 
The headphones were secured to an artificial ear (A) and the stimulus sound was played 
continuously. The preamp was connected to a sound level meter (B) which measured the volume 
from the headphones (in dB SPL).  
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𝑦𝑑𝐵 =  20 𝑙𝑜𝑔10(𝑦), 

 

(11) 
 

where 𝑦𝑑𝐵 is the specified volume in dB SPL and 𝑦 is the magnitude. To calculate the theoretical 0dB 

SPL value, I computed db2mag(-recorded). In the above example, the recorded value is 67, so I would 

compute db2mag(-67). To play the stimulus to the desired volume, I would multiply the theoretical 0 

value by the desired volume: 0dB SPL × db2mag(desired). Considering the above example, the desired 

value is 60, so I would compute 0dB SPL × db2mag(60). Third, to validate the calibration, stimulus 

volume was recorded again; calibration was validated when the recorded volume reliably matched 

the desired volume.  

2.1.4. Calibrating Stimulus Timing  

As one of the areas of focus of this thesis is RT variability, it is important that timing variability 

elsewhere i.e. coming from hardware and software, is measured and corrected for. Accurate 

calculation of RT is highly dependent on an accurate timestamp for signal onset. However, with 

uncalibrated equipment, onset timestamps can be inaccurate. This is because there is a delay between 

the command to present the stimulus (which provides the timestamp) and the physical onset of the 

stimulus (e.g. Woods et al., 2015). Onset delays affect both auditory and visual stimulus presentation, 

but are typically larger for visual stimuli. With reliable equipment, delays are consistent, and can 

simply be measured and subtracted from RTs (offline correction). With unreliable equipment, 

however, the delay can be unpredictable across trials, and each physical onset should also be recorded 

to provide an accurate timestamp (online correction).  

 

Figure 2.6 Procedure for calibrating auditory stimulus volume 
Stimulus vectors were manipulated in MATLAB using the function db2mag. First, the volume is 
measured with a sound level meter. Second, the stimulus is calibrated by finding a theoretical 0 dB 
SPL level. Third, the stimulus volume is validated by multiplying the 0 dB SPL value by the desired 
volume. If the recorded volume reliably matches the desired volume, the stimulus is calibrated. 
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To first assess stimulus timing, onset delays for auditory and visual stimuli (i.e. the delay 

between the requested stimulus onset time and actual stimulus onset) were measured using the 

RTbox. A 3.5 mm audio cable (running from the experimental computer) was connected to the SOUND 

port of the RTbox to measure the onset delay for a test auditory stimulus (a pure tone). A photodiode 

was connected to the LIGHT port of the RTbox to measure the onset delay for a test visual stimulus (a 

white square on a black background; Figure 2.7). When measured, the auditory delay was 0.0042 

(±0.00029) s and the visual delay was 0.0268 (±0.00004) s. 

Next, onset delays were adjusted to ensure synchronous presentation of signals on redundant 

trials. As the auditory onset delay was smaller than the visual delay, an additional delay was added to 

auditory stimuli to create synchrony with visual stimuli. The additional delay was simply the difference 

between the audio and visual delay (i.e. 0.0226 s). To demonstrate the effectiveness of this approach, 

a synchronisation test was run using the RTbox. Here, the audio and visual test stimuli were presented 

simultaneously and the onset difference between the individual signals was recorded over 1000 trials. 

The mean difference between auditory and visual onset was 0.00011 s (±0.000009 s), indicating 

excellent synchrony. As the overall variability of stimulus onset was small (< 0.001 s for both signals) 

an offline correction of RT was used (i.e. the synchronised stimulus onset delay was subtracted from 

all RTs).  

 

Figure 2.7 Measuring visual onset delay 
A photodiode is shown attached to the centre of the display monitor via suction cup. To measure 
visual onset delay, a test stimulus (white square) was flashed onscreen. The time difference 
between the display command timestamp (recorded in MATLAB) and the physical onset (recorded 
by the photodiode attached to the RTBox) was then calculated over many trials to give an estimate 
the average visual delay.   
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 Analytic Procedures  

In this section, I describe the general procedures for processing and analysis of experimental data. All 

data handling and preparation was performed using MATLAB. All analyses, unless otherwise stated, 

were performed in IBM SPSS Statistics (versions 22 onwards).  

2.2.1. Assessing General Performance  

In the study of decision-making, there are known trade-offs between RT and accuracy (Forstmann et 

al., 2016; Gold & Shadlen, 2007). Unless performance is close to ceiling (100% accuracy), RT data needs 

to be analysed or adjusted in conjunction with accuracy data. In some cases, researchers are explicitly 

interested in such trade-offs, or in modelling both accuracy and RT together; however, this thesis is 

only concerned with RTs. For this reason, ceiling performance is often assumed in the measures used. 

This assumption must be assessed with each data set collected to ensure good quality.  

Useful indicators of performance are the number of false alarms (i.e. responses when a signal 

was not present) and misses (failures to respond when a signal was present). A high percentage of 

false alarms, especially on trials with no signals (catch trials), suggests that RT distributions are 

contaminated by a large number of non-genuine anticipatory responses. A high percentage of misses, 

on the other hand, is more clearly indicative of poor accuracy. If a participant has a high miss rate, this 

is problematic as many of the CDF plotting procedures used assume an overall cumulative probability 

of 1 (100% accuracy). With a miss rate of 0.2 (20%), for example, the cumulative probability would in 

truth only sum to 0.8. If large discrepancies like this are simply ignored, it distorts the CDF of RTs, 

which can lead to errors in calculations. For these reasons, the percentage of false alarms and misses 

was always evaluated prior to analysis of RTs. 

2.2.2. Outlier Correction  

Human RT performance is never perfect, even in the absence of false alarms and misses. A brief lapse 

in attention, for instance, may produce an unusually slow RT. Similarly, an erroneous response may 

just happen to fall shortly after signal onset within the valid response window, producing an unusually 

fast RT. Broadly, these RTs are outliers, as they do not clearly reflect the genuine behaviour of interest.  

Prior to data analysis, we should conduct outlier correction, which removes these responses and 

conserves only genuine RTs.  

The problem here is that there is no fool-proof way to detect outliers amongst valid responses. 

As such, there is no universally-applied outlier correction. In many experiments, simple cut-offs are 

used to trim the data based on reasonable assumptions about the nature of RTs. For example, one 

frequently applied cut-off excludes all RTs faster than 0.1 s, as this was estimated to be the minimum 

time to execute a manual response (Luce, 1986). However, there is no corollary cut-off for slow 

outliers, as RT is largely dependent on the task and the data set collected (Whelan, 2008). Another 
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approach is to use central tendency based measures (e.g. ±3 SD around the mean of the RT 

distribution). There are however some problems with such an approach. First, these methods assume 

normally-distributed data, but RTs are known to be right-skewed. Secondly, the standard deviation of 

RTs is itself strongly impacted by outliers, so the criterion may be ineffective at identifying RTs to 

remove.  

In light of these considerations, the method of outlier correction used here was based on 

median and median absolute deviation (MAD), adapted from Leys, Ley, Klein, Bernard, and Licata 

(2013). Unlike using mean and SD, median and MAD are less impacted by outliers. In this thesis, outlier 

correction was performed on the 1/RT transformed data. There were two main motivations for this. 

First, this addresses the issue of skew in outlier correction, as 1/RT distributions are typically assumed 

to be normally distributed (Noorani & Carpenter, 2011, 2016). Second, model fitting was also 

performed on the 1/RT space (see Section 2.4.4). Clear model deviations can be informative for 

identifying outliers which are not obvious from the data alone (Baayen & Milin, 2010). In the specific 

case of RTs, the fastest RTs in a distribution can sometimes reveal themselves as extreme outliers 

when transformed into 1/RT. This issue can be identified by clear problems in model fitting (Figure 

2.8).  

To maintain an approach which retains as many valid RTs as possible, whilst also facilitating 

accurate modelling, we used a data-conservative criterion of ±1.4826 × 3 MADs around the median 

1/RT. Under the assumption of a normal distribution, this would be equivalent to ±3 SDs with a 

corresponding exclusion of around 0.27% of RTs. As a general rule, we would expect that the number 

of excluded trials is not much larger than this ideal value if the data is good quality. Therefore, the 

percentage of outliers is always reported prior to RT analysis.   

 Creating RT Distributions 

In order to compute benefits and interactions and analyse changes across participants, distributions 

of RT data need to be created. One way that this has been done previously is to create a group 

distribution of RTs, i.e. a single CDF representing the RTs of all participants for that condition. To 

estimate a group CDF, one technique is Vincent averaging (Ratcliff, 1979). Essentially, each individual 

participant’s CDF is computed with a common number of cumulative probability points (e.g. 100). The 

RT values at each cumulative probability point are then averaged, creating a single CDF representing 

the whole group. The Vincent averaging approach has previously been used to create CDFs for 

applying the models used in this thesis (Otto et al., 2013; Otto & Mamassian, 2012). However, the 

present work is primarily interested in variability sources in RT data, which are linked to benefits. 

Averaging RT distributions introduces group variability into RT data, which is not the primary interest 

of this research. Further, recent simulation work by Otto (2019) has shown that even when data is 
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drawn from independent race models, the Vincent average process can create artificial violations of 

Miller’s bound. Therefore, in the present work, the calculation of empirical measures and modelling 

were always done on the individual CDFs.  

2.3.1. Linear Interpolation of RTs 

Linear interpolation was used to estimate continuous RT distributions based on empirical RT data from 

each participant. Such continuous distributions are needed later, for example in the computation of 

the simple race model (Raab, 1962). The advantage of using linear interpolation to acquire continuous 

distributions (as opposed to model fitting) is that it requires no distributional assumptions to be made 

about the underlying RTs. The linear interpolation process is shown in Figure 2.9.   

Another specific use of linear interpolation is down-sampling of RT distributions. For instance, 

to measure the size of the multisensory benefit for each participant, we take the difference between 

redundant RT distribution and the minimum of the unisensory RT distributions for each cumulative 

 

Figure 2.8 The effect of fast outliers on modelling 
a) 50 RTs were first simulated. To approximate an anticipatory response falling in the valid response 
window, a single RT was randomly replaced with a fast outlier (according to the MAD criterion). The 
outlier is shown by the arrow. The presence of a fast outlier causes the model (red curve) to strongly 
deviate from the RT data. 
b) The same data, but now plotted in the 1/RT space where the model is fitted. Note that the outlier 
is even more pronounced following this transformation.  
c) The same data after outlier correction by the data-conservative MAD criterion. The model-fit (and 
associated parameters) now closely resembles the simulated data (and associated parameters).  
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probability point (see Section 2.3.2). This procedure requires equal numbers of trials in each condition 

to compare equivalent cumulative probability points. However, while these experiments were 

programmed to present equal numbers of trials in each condition, the number of remaining valid trials 

(following outlier correction) is often not equal. In such cases, linear interpolation can be used to 

create equal numbers of cumulative probability points. As a simple procedure in this thesis, I down-

sampled all original RT distributions using linear interpolation to a smaller common sample size (50 

data points per condition) where necessary.  

2.3.2. Measures of Benefit (The RSE) 

One of the overarching goals of this thesis is to establish a model framework which allows for a 

comprehensive understanding of multisensory processing in the RSP. The framework of this model is 

consistently applied in all experiments to understand changes in benefits and interactions (as well as 

modelled parameters for different factors). Here, the relevant calculations and procedures for each 

step are detailed.  

2.3.2.1. Empirical Benefit  

In RSP research, multisensory benefit is typically assessed on central tendency measures e.g. the 

difference between the mean redundant RT and the smaller of the two means for unisensory RTs. This 

can be expressed as 

 

Figure 2.9 Linear interpolation of RTs 
a) Estimating RTs. In linear interpolation, a straight line (red) is fitted between each point. 
Corresponding RT values (x-axis) can then be found for any cumulative probability value (y-axis) 
within the existing range. This example shows 20 simulated RTs with interpolation query points of 
0.2 and 0.8 on the y-axis.  
b) Down-sampling RT distributions. The original data (20 simulated RTs) are shown in black (as in 
panel a). Linear interpolation (shown by the solid red line) was used to down-sample this data. The 
down-sampled data (10 RTs) are shown in red. 
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𝑏𝑒𝑛𝑒𝑓𝑖𝑡 =  𝑚𝑖𝑛(�̅�, �̅�) −  𝑋𝑌̅̅ ̅̅ , 
 

(12) 
 

where 𝑋 and 𝑌 are the RT distributions for two unisensory signals and 𝑋𝑌 is the redundant RT 

distribution. RT measures based only on central tendency, however, neglect differences which only 

occur at the extremes of RT distributions (Noorani & Carpenter, 2011; Whelan, 2008).  

A more precise estimate of benefit, therefore, would be gained by calculating benefit across 

the entire CDFs (Figure 2.10). For each cumulative probability point, the measure of benefit (as in 

Equation 12) can be applied. As the CDFs of RTs in unisensory conditions can cross over, the minimum 

term must be applied at all cumulative probability points. Note that this is equivalent to Grice’s bound 

(see Section 1.7.2.1). Grice’s bound is calculated as 

𝐺𝑟𝑖𝑐𝑒𝑖 =  𝑚𝑖𝑛(𝑋𝑖 , 𝑌𝑖), 
 
(13) 

 

where 𝑖 is an index of cumulative probability. To compute a measure of benefit based on the 

distribution (simulated from Otto et al., 2013 their Equation 3), we can essentially compute the 

difference between the redundant CDF and the faster of the two unisensory CDFs (Grice) at all 

cumulative probability points, and then average these values. This can be formalised as 

𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 =  
∑ 𝐺𝑟𝑖𝑐𝑒𝑖 − 𝑋𝑌𝑖

𝑁
, 

 

(14) 
 

where 𝑁 is the total number of cumulative probability points.   

2.3.2.2. Predicted Benefit  

A prediction of the multisensory benefit can be made by calculating the simple race model (Equation 

5). The CDF for the simple race model was computed from the unisensory CDFs (X, Y) using linear 

interpolation to obtain cumulative probability values for all unique timepoints of t (see Section 2.3.1):  

𝑃𝑅𝑎𝑎𝑏(𝑡) =  𝑃𝑋(𝑡) +  𝑃𝑌(𝑡) −  𝑃𝑋(𝑡) ×  𝑃𝑌(𝑡), (15) 

 

where 𝑃 is cumulative probability and 𝑡 is the associated timepoint. The formula for predicted benefit 

is the same as for empirical benefit (Equation 14), but each cumulative probability point of the 

empirical redundant CDF (𝑋𝑌𝑖) is substituted for the CDF generated by the simple race model (Raab):  

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 =  
∑ 𝐺𝑟𝑖𝑐𝑒𝑖 − 𝑅𝑎𝑎𝑏𝑖

𝑁
. (16) 
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Figure 2.10 Measuring multisensory benefit 
The data shows 50 simulated RTs in each of 3 conditions (X, Y, XY). The green area shows the overall 
benefit. The solid lines indicate the RT differences (s) between the redundant (XY) and minimum 
unisensory (X, Y) RT distributions at each cumulative probability point. These are averaged to 
measure the overall multisensory benefit. 

 

Figure 2.11 Predicting multisensory benefit 
The data shown is identical to Figure 2.10. The green area indicates the overall predicted benefit. 
The solid lines indicate the RT differences (s) between the simple race model (green line) and 
minimum unisensory (X, Y) RT distributions at each cumulative probability point. These are 
averaged to measure the overall predicted multisensory benefit. 
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2.3.2.3. Validation of Procedures 

To obtain empirical CDFs with equivalent cumulative probability points, all RT distributions are 

downsampled to a common N (50 data points; Section 2.3.1). To assess whether this procedure 

provides an unbiased measure of the true multisensory benefit size, 100 RTs were simulated (see 

Section 2.5.3) for each condition of a typical redundant signal experiment (i.e. unisensory conditions 

X and Y, and redundant XY). The calculated multisensory benefit (Equation 14) was compared for 

original and down-sampled RTs. This overall sampling procedure was repeated 1000 times (full 

parameter details are reported in the appendices in Section 9.3). A paired-samples t-test found a 

significant difference between the original (0.020 ±0.0005 s) and down-sampled (0.020 ±0.0005 s) 

benefit, t(999)=13.393, p<0.001. However, the down-sampled benefit was on average only 0.00006 s 

(± 0.0001) larger than original benefit. Given that this bias is extremely small, therefore, it is unlikely 

to affect the measure of multisensory benefit in practice. In addition, the correlation between original 

and down-sampled benefit closely follows identity (see Figure 2.12).  

2.3.3. Measures of Interactions 

2.3.3.1. History Effects  

Sequential dependencies in RT, i.e. the influence of one trial on another, violate the simple race model 

assumption of statistical independence in RTs (that each observed RT is not influenced by the previous 

RT). Sequential dependencies are particularly pronounced between unisensory trials. A simple 

measure of sequential dependency is to compute the RT cost for unisensory signals (Miller, 1982; 

Spence, Nicholls, & Driver, 2001). This measure will be referred to as the history effect (Otto & 

Mamassian, 2017). First, all valid unisensory RTs whereby the previous trial (N-1) was also a unisensory 

signal are indexed. These are then sorted into ‘repetitions’ and ‘switches’. For example, with 

unisensory signals X and Y, repetitions would be trials where the N-1 – N sequence was X-X or Y-Y. On 

the other hand, switches would be sequences X-Y or Y-X. The history effect can then be calculated as 

follows: 

ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑒𝑓𝑓𝑒𝑐𝑡 =  𝑅𝑇̅̅ ̅̅
𝑆𝑤𝑖𝑡𝑐ℎ −  𝑅𝑇̅̅ ̅̅

𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛. (17) 

This history effect was calculated for each unisensory condition (X, Y) separately and then averaged 

into a single measure.  

History effects are relevant because they contribute to the overall variability of unisensory 

RTs (which is linked to the size of multisensory benefit). To assess how much history effects contribute 

to the overall variability of unisensory RTs, therefore, we can also compute a measure which 

normalises the history effect by the variance of unisensory RTs. I refer to this measure as the history 

index. History index was calculated as 
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ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑖𝑛𝑑𝑒𝑥 =  
ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑒𝑓𝑓𝑒𝑐𝑡2

𝑣𝑎𝑟(𝑅𝑇)
. (18) 

As for history effects, history index was calculated for each unisensory RT distribution separately and 

averaged into a single measure.  

2.3.3.2. Violations of Miller’s Bound  

Violations of Miller’s bound, following a race model framework, indicate violations of the context 

variance assumption (i.e. that the processing of each component signal is not affected by the presence 

or absence of another signal). This violation is typically calculated on the whole distribution of RTs 

(Miller, 1982). Miller’s bound is defined by the equation:  

𝑃𝑀𝑖𝑙𝑙𝑒𝑟(𝑡) =  𝑚𝑖𝑛[𝑃𝑋(𝑡) +  𝑃𝑌(𝑡), 1]. (19) 

There are multiple methods for testing violations of Miller’s bound. Originally, Miller implemented a 

method in which the redundant curve and Miller’s bound are determined on the level of the individual 

participant. At predetermined comparison quantiles, the values of the redundant RT and Miller’s 

bound are compared by t-test to see if there is a significant difference (violation). An alternative 

method, introduced by Colonius and Diederich (2006), uses integration to calculate the area between 

the redundant CDF and Miller’s bound. Following a similar procedure for the calculation of benefit 

 

Figure 2.12 Validating the down-sampling procedure for benefit calculation 
Multisensory benefit calculated from the original (N=100) and down-sampled (N=50) simulated RTs. 
The dashed line indicates identity. Each point shows one of 1000 simulations. 
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(Otto et al., 2013, their Equation 3), this reduces the size of the violation across the distribution to a 

single value. This can be expressed, following Otto (2019), as:  

𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑋𝑌 =  ∫ 𝑚𝑎𝑥[𝑃𝑋𝑌(𝑡) −  𝑃𝑀𝑖𝑙𝑙𝑒𝑟(𝑡), 0]
𝑇

𝑑𝑡. 
(20) 

A clear appeal for using this latter approach is that it would place measures of benefit and violation in 

the same reference frame (i.e. measured in seconds). This would allow for direct comparison between 

the two, and allow a clearer investigation of how they relate.   

Following a similar calculation for benefits (Equation 14), therefore, the CDF for Miller’s bound 

(Miller) was computed from the unisensory CDFs (i.e. X and Y) using linear interpolation to obtain 

cumulative probability values for all unique timepoints of t (see Section 2.3.1). The difference between 

Miller and the empirical redundant CDF was then calculated at each cumulative probability point, and 

averaged over all comparison points (Figure 2.13). The formula for violation is:   

𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 =  
∑  𝑚𝑎𝑥(𝑀𝑖𝑙𝑙𝑒𝑟𝑖 − 𝑋𝑌𝑖 , 0)

𝑁
. (21) 

As we are only interested in comparison points where the redundant CDF (XY) exceeds Miller, we 

implement a maximum rule; this ensures that if the empirical curve falls behind Miller’s bound, a value 

 

Figure 2.13 Quantifying violations of Miller's bound 
The data shown is identical to Figure 1.13. The red area shows the overall violation. The solid lines 
indicate the RT differences (s) between Miller’s bound (red line) and redundant (XY) RT distributions 
at each cumulative probability  point. These are averaged to estimate the overall violation area. 
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of 0 s (no violation) is assigned to the comparison point. To obtain equal cumulative probability points, 

the same down-sampling procedure used for computing benefits was applied to the Miller CDF (see 

Section 2.3.2.3).   

  Model Fitting Procedures 

In this section, I describe all techniques used to fit models to the RT data collected in experiments.  

2.4.1. Parameter Search Methods  

Modelling of behavioural data involves estimating the best fitting values for the available free 

parameters of the specified model. For instance in the case of the LATER model (see Section 2.4.4.1) 

this would involve finding the best mu and sigma parameter values which describe the 1/RT 

distribution. The basis for parameter estimation is mathematical optimisation, whereby the best 

values are found according to a specified measure of discrepancy between the empirical data 

distribution and the model-fit distribution (i.e. some error measure). In model fitting, the 

mathematical optimisation of parameter estimates is treated as a minimisation problem, i.e. finding 

parameter values which minimise the discrepancy captured by the error measure.  

It is of course impossible to test all possible combinations of parameter values; therefore, 

search methods to sensibly limit the number of combinations tested are used. The goal of these search 

methods is to provide fit values which reflect or approximate the true global minimum of the error 

measure as closely as possible.  

2.4.1.1. Grid Search  

One search method is grid search (Figure 2.14), which approaches the optimisation problem in three 

steps. First, a grid is constructed with multiple parameter combinations (e.g. mu and sigma 

combinations when fitting a LATER model). Second, the optimisation measure is computed for each 

combination of parameters in the grid. Third, the best-fitting parameter values, i.e. the combination 

of parameter values that minimised the error measure the most, are selected as the model 

parameters.  

Grid search can be useful to provide a coarse-detail view of how the error measure changes 

over the whole parameter space. However, the model fit values returned are highly dependent on the 

resolution of the grid used. More precise estimates (gained by increasing the number of sample points 

for each parameter) become computationally expensive. This problem is made even greater the more 

free parameters are included in the model. Consider, for example, a simple two-parameter model. We 

can apply a grid search with 10 test values per parameter. To complete this grid search for just one 

experimental condition, the error measure for 100 parameter combinations must be evaluated. To 

improve our parameter estimation, we can increase the resolution of the search to 100 test values per 

parameter. This now means the error measure must be evaluated for 10000 parameter combinations. 
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Adding an additional parameter to the model would then further increase the number of evaluations 

to 1000000. Given that computational models typically have more than three parameters, and 

experiments can have large numbers of participants and experimental factors, it can be incredibly 

time-consuming to use grid search for fitting models. Further, even by evaluating the error measure 

over many parameter combinations, the best-fitting values may still be far from the true global 

minimum.  

2.4.1.2. Optimisation Algorithms   

An alternative search method is the use of an optimisation algorithm (Figure 2.15). Optimisation 

algorithms incrementally alter parameter values from given start values (an initial value chosen by the 

programmer). This is done to a point at which the error measure appears to be minimised. The main 

optimisation algorithm used in this work, for instance, is the Nelder-Mead SIMPLEX method (Nelder 

& Mead, 1965). The basic idea of this method is to construct a test space within the overall parameter 

space. Next, the algorithm adjusts the point of the test space which is least optimised on each 

iteration. Over iterations, the test area shrinks until the error appears to be minimised. This method 

is known to be effective for fitting RT distributions and can be implemented in MATLAB using 

 

Figure 2.14 The grid search method 
The figure shows a simple non-linear parameter space. The red dots represent 5 equidistant points 
at which the error measure is evaluated. The ‘best-fit’ point shows the grid search point at which 
the error measure was smallest. This is only somewhat close to the true global minimum (green 
dot). By further increasing the resolution of the grid, the best-fit point will more closely approximate 
the true global minimum, but at the expense of more computation time. This figure was inspired by 
Lacouture and Cousineau (2008; their Figure 3). 
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fminsearch (Lacouture & Cousineau, 2008). Additionally, the MATLAB function fmincon can be used 

to implement optimisation algorithms under certain parameter constraints. This is useful when 

estimates are bounded (such as correlation parameters, which must be between -1 and 1). Though 

such optimisation algorithms are computationally less expensive, the non-linear nature of the 

parameter space and the incremental nature of the algorithms means the returned parameters values 

can depend on the choice of start values. In some cases, parameter values which would further reduce 

the error measure are not returned, as the optimisation algorithm falls into a local minimum (Figure 

2.15). For this reason, multiple start points for parameter values are often selected, and convergence 

on the same parameter values following each starting point suggests the global minimum has been 

found. A straightforward way to select start values which are very likely to be close to the global 

minimum is to first conduct a coarse grid search (see Section 2.4.1.1) and select the combinations 

which minimise the error measure the most as starting points for optimisation algorithms. 

 

Figure 2.15 The optimisation algorithm method 
The figure shows the same simple, non-linear parameter space as Figure 2.14. A and B represent 
two possible start values for the algorithm’s search, which are then incrementally altered. If the 
algorithm starts from point A, the returned parameter value (blue dot) may be the result of a local 
minimum in the error measure. By contrast, with a different start point (B), the returned parameter 
value (green dot) is the result of the global minimum in the error measure. By using multiple start 
points, the possibility of falling into local minima is decreased. This figure was inspired by Lacouture 
and Cousineau (2008; their Figure 3). 



63 
General Methods 

2.4.2. Error Measures  

In addition to the choice of search method, the returned parameters will depend upon the choice of 

error measure. Here I review two error measures, which are relevant to the models fitted in this thesis.   

2.4.2.1. Root Mean Square Error  

Root Mean Square Error (RMSE) uses residuals (i.e. the difference between empirical data and model 

fit data at each point) as the error measure. The RMSE is calculated  

𝑅𝑀𝑆𝐸 = √
∑ (𝑚𝑜𝑑𝑒𝑙𝑖 − 𝑑𝑎𝑡𝑎𝑖)2𝑁

𝑖=1

𝑁
 (22) 

where 𝑖 indicates individual data points and 𝑁 is the total number of data points for the model and 

the empirical data. This provides a positive number which approaches 0 (indicating perfect fit to the 

data). RMSE is a straightforward method of parameter estimation, which does not necessarily require 

that the underlying structure of the distribution is known.  

RMSE has been previously used to fit the models applied in this thesis (Otto et al., 2013; Otto 

& Mamassian, 2012). RMSE, however, does not directly lend itself to model selection methods based 

on likelihood (see Section 2.4.3). To facilitate model selection in this thesis, therefore, all model fitting 

was adapted from this previous approach to use a different error measure: Maximum Likelihood 

Estimation.   

2.4.2.2. Maximum Likelihood Estimation (MLE)  

Maximum Likelihood Estimation (MLE) uses the log-likelihood of a model as the criterion for 

optimisation. Likelihood is the probability of obtaining data given the specified model parameters.  In 

contrast to RMSE therefore, which attempts to find the model parameters which generate the best fit 

to the data, MLE attempts to find model parameters that are the most likely to give rise to data 

(Myung, 2003; Van Zandt & Townsend, 2013). Likelihood is calculated  

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝜃) =  ∏ 𝑓𝑖(𝑑𝑎𝑡𝑎𝑖|𝜃),

𝑁

𝑖=1

 (23) 

where 𝑖 indicates individual data points, 𝑁 is the total number of data points, and 𝜃 indicates the 

model parameters. The overall model likelihood gives a value between 0 and ∞, with larger values 

indicating a higher likelihood that the model generated the data (i.e. better fit). Individual likelihood 

values however can be very small. When many such small values are multiplied, this can lead to 

computer underflow, i.e. the number requires more decimal places than the computer is capable of 

representing in its memory (Hélie, 2006; Lacouture & Cousineau, 2008). The solution is typically to 

log-transform the likelihood. As the logarithm of likelihood is a strictly increasing function, the 
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maximum likelihood value directly corresponds to the maximum log-likelihood value (e.g. Van Zandt 

& Townsend, 2013). Log-likelihood is calculated as 

𝑙𝑙(𝜃) = log ∏ 𝑓𝑖(𝑑𝑎𝑡𝑎𝑖|𝜃)

𝑁

𝑖=1

, (24) 

where 𝑙𝑙 is log-likelihood. The logarithm of a product is equal to the sum of the logarithms of the 

individual factors. Therefore instead of using the product, the sum can be used as 

𝑙𝑙(𝜃)  =  ∑ log 𝑓𝑖 (𝑑𝑎𝑡𝑎𝑖|𝜃)

𝑁

𝑖=1

. (25) 

MLE in practice attempts to find parameter values which maximise the log-likelihood (or, when 

expressed as a minimisation problem, minimises the negative log-likelihood). Because MLE uses 

likelihood, it provides a basis for engaging in model selection methods (see Section 2.4.3). MLE and 

the optimisation algorithm were implemented in MATLAB using the function mle.  

2.4.3. Model Selection  

Many different candidate models can offer an explanation for the same data. Thus, some method of 

selecting the model which most appropriately summarises the data is necessary. For models with the 

same number of parameters, the best model may simply be the one which minimises the error 

measure. When comparing models with varying numbers of parameters, however, this is not as 

straightforward. Additional parameters always provide an equal or improved fit to the dataset. 

However, the addition of unnecessary additional parameters limits the ability of the model to 

generalise to novel datasets (overfitting). Model selection methods are ways of quantifying whether 

the addition of parameters is necessary to explain the data, with the goal of selecting the model with 

the smallest number of necessary parameters. This is the principle of model parsimony (Burnham & 

Anderson, 2002; Palminteri, Wyart, & Koechlin, 2017). In this section, different model selection 

methods are examined.  

2.4.3.1. Likelihood Ratio Test (LRT) 

The likelihood ratio test (LRT) allows for direct selection between two competing nested models. A 

nested model is a simple (i.e. more constrained) version of a more general model (Hélie, 2006). For 

example, we can consider a hypothetical three parameter model. The full model, which includes all 

three free parameters, would be the general model. A nested version of this model can be created by 

constraining the general model to just two-parameters (e.g. by fixing one parameter to 0). This model 

is the simple model. The LRT is computed by comparing log-likelihood values for each version of the 

nested model. These log-likelihood values are then subjecting to the test  
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𝐿𝑅𝑇 = 2 × (−𝑙𝑙(𝑠𝑖𝑚𝑝𝑙𝑒) + 𝑙𝑙(𝑔𝑒𝑛𝑒𝑟𝑎𝑙)) (26) 

whereby ll is log-likelihood (Equation 25) and simple and general are the simple and general versions 

of the same nested model. The null hypothesis assumes that the simple model is correct. Lower values 

of the LRT statistic suggest that the null hypothesis is true, whereas larger values favour the general 

model. To assess statistical significance of the result, the LRT statistic is submitted to a chi-square test 

with degrees of freedom equal to the difference in the number of parameters between the simple and 

general model. A significant result indicates that the general model is favoured.  

 While the LRT is able to compare nested models (e.g. two race models), it cannot compare 

models with different formulations or architectures (e.g. a race model and a pooling model). Even in 

the case of nested models, only two models can be compared at one time, which requires large 

numbers of comparisons. Additional measures, like AIC and BIC, can be used to compare multiple 

models and select an overall most-desirable model, regardless of whether they are nested or non-

nested.   

2.4.3.2. Akaike’s Information Criterion (AIC)  

Similar to the likelihood ratio test, Akaike (1974) developed a test which compares likelihood for non-

nested models. This also penalises by the addition of free parameters to avoid the problem of 

overfitting. AIC is calculated as follows:  

𝐴𝐼𝐶 = 2[−𝑙𝑙(𝑚𝑜𝑑𝑒𝑙)] + 2𝑑, (27) 

whereby 𝑑 represents the number of free parameters. In a comparison of two or more models, the 

model with the smaller AIC value is selected as the more desirable model.  

2.4.3.3. Bayesian Information Criterion (BIC)  

The Bayesian Information Criterion (BIC), introduced by G. E. Schwarz (1978), is very closely linked to 

the AIC. However, a stricter approach is followed which penalises not only by the addition of free 

parameters but also by the number of observations. BIC follows a very similar equation to AIC 

(Equation 27) and is calculated as follows: 

𝐵𝐼𝐶 = 2[−𝑙𝑙(𝑚𝑜𝑑𝑒𝑙)] + log (𝑛)𝑑, (28) 

whereby 𝑛 is the number of observations. Both AIC and BIC were implemented in MATLAB using the 

function aicbic.  
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2.4.4. Models of Response Time Distributions  

In this section, the specific models fitted to RT distributions are detailed. Models of multisensory RT 

typically require continuous unisensory RT distributions. In contrast to an estimation with Linear 

Interpolation (see Section 2.3.1), it is necessary here to fit a model. To model unisensory RTs, the 

LATER model (Carpenter & Williams, 1995) was used. To model multisensory RTs, a race model was 

used which is similar to that introduced by Raab (1962), but with additional parameters to account for 

interactions (Otto & Mamassian, 2012).  

2.4.4.1. Unisensory RTs: The LATER model  

The Linear Approach to Threshold with Ergodic Rate (LATER; Carpenter & Williams, 1995) model is a 

straightforward, two-parameter model of RT distributions. This model takes advantage of the 

observation that, while RTs themselves are not normally distributed, the reciprocal of RT (1/RT) is 

normally distributed (Noorani & Carpenter, 2016). Such a distribution is sometimes called a recinormal 

distribution. In practice therefore, the RT distribution can be described by two parameters: the mean 

(mu) and standard deviation (sigma) of the recinormal 1/RT distribution.  

Relating to the unisensory model framework (see Section 1.2.3), the 1/RT values correspond 

to the rate of evidence accumulation on a given trial. Small rate values, therefore, correspond to long 

RTs (and vice versa). For this reason, 1/RT values are also referred to as rate (or r) values. As implied 

by the name, the LATER model simplifies what is assumed to be noisy accumulation to threshold to a 

linear accumulation to threshold (Figure 1.7). In behavioural work, however, this is of little concern as 

we are not particularly concerned with modelling the precise accumulation process. The mu 

parameter describes the mean rate of rise, whereas sigma describes the variability in the rate from 

trial to trial. 

Neither a starting point for evidence accumulation nor a threshold level need to be specified 

to fit the model. This is because these two parameters can be simplified into one parameter (i.e. 

distance between start point and threshold). Even including this parameter is unnecessary, as it causes 

the model to become over-specified (i.e. multiple parameter combinations equally minimise the error 

measure). The threshold therefore is implicitly set as 1. To implement the LATER model, the MATLAB 

function normfit was used to fit a normal distribution using a Minimum Variance Unbiased Estimator 

(MVUE). In addition to providing a continuous estimation of the RT distribution, the LATER model was 

also used as the primary basis for simulating RTs (see Section 2.5.3).  

2.4.4.2. Multisensory RTs: The Context Variant Race Model  

The model that was fitted to the redundant CDF to explain the RSE was the context variant race model 

(Otto & Mamassian, 2012). This model follows the same basic architecture of Raab’s (1962) simple 

race model. However, two parameters are added to this model to explain empirical interactions which 
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violate the simple race model’s assumptions. To account for violations of statistical independence (as 

evidenced by trial history effects) a correlation parameter rho is modelled between unisensory 

distributions. To account for violations of context invariance (as evidenced by violations of Miller’s 

bound), a noise parameter eta is modelled on the redundant distribution. This noise parameter adds 

to the variability of unisensory distributions when modelling the redundant distribution. This model is 

described formally by Otto and Mamassian (2012; Supplementary Material). The complete equations 

are also reproduced here in Section 9.4 of the appendices.  

 To fit the context variant race model to multisensory RTs, two LATER units are fit to the 

unisensory rate distributions. To fit the redundant rate condition according to a race model, the 

maximum rate distribution (corresponding to the minimum RT distribution after the reciprocal 

transform) must be computed from these units. The formula for the maximum distribution for two 

normal distributions is known (Nadarajah & Kotz, 2008), thus the redundant rate distribution can be 

directly modelled with a given correlation rho between these two unisensory LATER units. To allow 

for noise eta, the sigma parameters of the LATER units are adjusted by an additional constant in the 

fitting of the redundant rate distribution. Model fitting was done using MLE with the MATLAB function 

mle.  

The context variant race model could be fit in two ways. One option, which has been used 

previously (Otto et al., 2013; Otto & Mamassian, 2012), is a two-step fitting procedure. According to 

this method, LATER units (muX muY, sigmaX, sigmaY) are first fit to the unisensory distributions. The 

best-fitting values are then passed to a second fitting process with two free parameters (rho, eta). An 

alternative option is to fit all 6 parameters (muX muY, sigmaX, sigmaY, rho, eta) in a single step. The 

advantage of this method is that a single likelihood measure is returned, which opens the model up 

to evaluation and selection techniques (see Section 2.4.3). 

 Simulation Procedures  

In this section, I describe techniques used to conduct simulation work. Novel insights, predictions and 

tests can be developed by simulating data sets and subjecting them to analysis. This can also help 

indicate the validity of certain analytic approaches before applying it to real data. Further, when real 

data has been collected, additional resampling methods can be applied to give estimates of the 

reliability of certain results. Here I describe two sampling methods used to simulate data, and the 

specific techniques used to generate simulated RTs in this thesis.  

2.5.1. Monte Carlo Sampling  

Monte Carlo sampling, broadly, is a method of randomly-generating many data points (e.g. Kroese, 

Brereton, Taimre, & Botev, 2014). This might include, for instance, generating data sets from a defined 

probability distribution or model (e.g. a normal distribution, as in Figure 2.16). One particularly useful 
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application of Monte Carlo sampling for the present modelling work is the simulation of RTs (see 

Section 2.5.3). Provided a model is somehow defined (for example, the LATER model for RTs; see 

Section 2.4.4.1) then large numbers of simulated datasets can be generated from it (Burnham & 

Anderson, 2002). This is particularly useful if the model simulation parameters can be estimated from 

real subject data, as it can give the experimenter a clear prediction for how real data would change 

according to certain manipulations. Additionally, certain test statistics can be generated from Monte 

Carlo data and compared to real results. This is known as a Monte Carlo test (e.g. Manly, 2007).  

2.5.2. Bootstrapping 

Bootstrapping is a method to generate new, replicate datasets from an existing data set (Efron & 

Tibshirani, 1993). This method is useful for estimating the error of certain measurements. To perform 

bootstrapping, data points are resampled (with replacement) from the existing data set to create a 

dataset of the equivalent size. Each sample point is referred to a bootstrap sample, whereas each new 

data set is a bootstrap replicate. This process is repeated a large number of times (typically 1000) to 

create many replicates. From each bootstrap replicate, a measure of interest can be calculated. For 

instance, if the data were RTs, a model could be fitted to each replicate to give 1000 bootstrap 

estimates of the model parameters. By ranking bootstrap estimates from lowest to highest, 95% 

confidence intervals can be calculated simply by taking the 25th and 975th ranking estimates (Efron & 

Tibshirani, 1993). Bootstrapping was primarily used to visually inspect individual model fit values 

(Figure 2.18), which are not analysed here; by plotting the bootstrapped confidence intervals for each 

cumulative probability point, however, this gave an indication of the reliability of the model fits.   

 

Figure 2.16 Monte Carlo simulation 
A simple Monte Carlo simulation from a normal distribution. First, the distribution is defined (with 
the mu and sigma parameter values shown). Secondly, the desired number of samples (e.g. 10 per 
data set) is taken. These data are shown in the columns, ranked from smallest to largest values. 
Third, the sampling process is repeated until the desired number of data sets N is generated. These 
data were sampled using MATLAB’s normrnd function.   
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2.5.3. Simulating Response Times Using Models   

Simulation of unisensory RTs was done following the LATER model (see Section 2.4.4.1). First, rate (r) 

parameters are specified; these correspond to mu and sigma parameters of a normal distribution. 

Some typical values, for instance, would be a mu of 2.5 s-1 (corresponding to a median RT of 0.4 s) and 

 
Figure 2.17 Bootstrap sampling 
Bootstrapping relies on an existing data set (here, the data is identical to Figure 2.16, Data Set 1). 
From this data set, we randomly select the required number of samples (e.g. 10). Samples are 
replaced, i.e. the same data point can be sampled more than once. As such, numbers in the 
bootstrapped data sets (right columns; shown ranked smallest to largest) sometimes repeat. This 
process is repeated until the desired number of replicate data sets N is generated. 
 

 
Figure 2.18 Bootstrapping model fits 
The same simulated RTs as in Figure 1.13 are shown here with bootstrapped model fits. The dashed 
lines indicate the underlying unisensory LATER model fits. The solid red line shows the context 
variant race model fit, including additional parameters (rho, eta). The red shaded area indicates the 
95% bootstrapped confidence intervals (CIs) on the context variant race model fit.  
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a sigma of 0.4 s-1. Second, the required number of samples (N) is randomly taken from this distribution 

following Monte Carlo sampling (see Section 2.5.1). The MATLAB function normrnd was used to 

sample from a normal distribution.  Finally, the reciprocal of the rate values (1/r) is taken to transform 

the data into the RT space (Figure 2.19). As previously discussed, the rate relates to the average 

amount of evidence accumulated at each time point. As such, smaller rate values correspond to a 

longer time to reach threshold (resulting in slower RTs). Large rates, in turn, correspond to a shorter 

time to reach threshold (resulting in faster RTs).  

Simulation of redundant RTs was done following the context variant race model (Otto & 

Mamassian, 2012). First, the two underlying unisensory distributions are defined using LATER models 

(as above). Second, rate value pairs are sampled from these two distributions with Monte Carlo 

sampling. Thirdly, the maximum rate value for each pair (corresponding to the minimum RT) was taken 

to form the redundant rate distribution. Finally, all rate values are transformed into RT space by taking 

the reciprocal of the rate (1/rate). The above method generates redundant RTs which are consistent 

with the simple race model (i.e. assuming statistical independence and context invariance).  

To simulate interactions between RTs, the two additional parameters can also be included in 

this process. To simulate a correlation (rho), the covariance matrix was adjusted to reflect the desired 

correlation between the unisensory distributions. The MATLAB function mvnrnd was used to sample 

rate pairs following a multivariate normal distribution. To simulate additional noise (eta) in the 

redundant RT distribution, a constant was added to the sigma values of the unisensory LATER 

distributions when sampling rate pairs for the redundant distribution. Following the above simulation 

procedure, it is straightforward to simulate all conditions of a typical redundant signal experiment at 

 

Figure 2.19 Simulating unisensory RTs using a LATER model 
First, rate values are drawn from a normal distribution using Monte Carlo sampling. The rate data 
(left column) are identical to those in Figure 2.16 (Data Set 1). Secondly, simulated RT values are 
generated by taking the reciprocal of the rate sample (1/r). Note that following this transformation, 
smaller rate values correspond to slower RT values, and vice versa. 
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once (X, Y, XY). This can be useful for validating certain approaches before applying them to real data 

(see for instance Section 2.3.2.3). 
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3. Experiment 1: Stimulus Construction vs. Signal Features 

 Introduction  

Assessment of the RSP literature in the General Introduction (Section 1.3) indicated a lack of a 

consistent, model-based approach for understanding the RSE. The broad aim of this thesis therefore, 

beginning with this experiment, is to introduce and evaluate a novel comparative approach, based on 

the previously-neglected race model framework. This approach will allow for an evaluation of 

potential sources of benefits and interactions, which have previously been unclear. As a brief 

reminder, this comparative approach follows three broad steps (see Sections 1.6 to 1.8 for a complete 

outline). First, benefits are measured across conditions and compared to a benchmark prediction 

made by the parameter-free (simple) race model. Second, interactions which go beyond the simple 

race model are quantified. Third, a more complex model is applied which attempts to explain both 

benefits and interactions; to further explore the explanatory power of race models in this thesis, I 

apply a context variant race model with two additional parameters which account for the interactions. 

To evaluate the effectiveness of the approach, I introduce manipulations which are expected to target 

both benefits and interactions within a 2×2 within subjects design. These manipulations are motivated 

by the race model and the broader decision-making framework, and attempt to change RT 

distributions across factors. For benefits, the race model principles (see Section 1.6.1) provide a solid 

starting point for understanding underlying sources. For interactions, such as trial history effects (see 

Section 1.7.1), the wider literature suggests alternative hypotheses which can be tested across 

studies. It should be highlighted that a journal article corresponding to this chapter (Innes & Otto, 

2019) has been published, and is also included at the end of this thesis. 

3.1.1. Factor 1: Stimulus Construction  

The RSE has been replicated with a wide range of signals (Section 1.3.2). Elements of the effects 

observed in RSP studies, such as the overall size of the RSE (i.e. benefit), have been shown to change 

depending on elements of stimuli presented. For recent examples, Bailey et al. (2018) showed effects 

based on how ‘rich’ realistic stimuli were in virtual reality environments, whereas Juan et al. (2017) 

attempted to relate the size of benefits to physical properties of stimuli from a large databank. Given 

the lack of model framework, however, underlying explanations for why benefits change based on 

particular stimulus elements are not clear. A strong starting point for the comparative approach, 

therefore, would be to attempt to understand how basic stimulus elements can contribute to benefits.   

As a first factor, I consider stimulus construction, which attempts to capture broad differences 

in stimuli used across experiments. Consider, for now, just auditory stimuli from previous experiments. 

The most frequently used auditory stimuli are sudden-onset signals. One example is pure tones (e.g. 
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Miller, 1982; for recent examples: Minakata & Gondan, 2018; Murray, Eardley, et al., 2018; Murray, 

Thelen, et al., 2018; Noel, Modi, Wallace, & Van der Stoep, 2018; Ren et al., 2018; Wang et al., 2018). 

Another example is noise bursts (e.g. Herschenson, 1962; for recent examples: Freeman, Wood, & 

Bizley, 2018; Harrar et al., 2017; Sürig, Bottari, & Röder, 2018; W. Yang & Ren, 2018). Overall, pure 

tones and noise bursts clearly differ in randomness (or stochasticity). For instance, the frequency of 

tones presented is typically identical both within and between auditory trials. This signal could be 

considered somewhat simple. The frequencies of noise bursts, however, are randomly sampled within 

(and possibly between) trials. This signal could be considered more complex. In addition to this, some 

auditory signals have also been presented within background noise, which was randomised between 

trials (Otto et al., 2013; Otto & Mamassian, 2012). A useful comparison therefore would be to compare 

simple stimuli (i.e. non-random, sudden onset) and complex stimuli (i.e. randomised, presented in 

background stimulation). By directly comparing stimulus construction (Figure 3.1), it will be possible 

to observe its effect on the size of the RSE.   

Despite being largely neglected in past decades, the race model framework offers predictions 

for how stimulus construction should influence multisensory benefits. According to sequential 

sampling (see Section 1.2.3), variability of RT is linked to the variability in the evidence accumulation 

process; if evidence for a signal is more variable (as in complex compared to simple stimuli), then the 

overall RT distributions are also likely to be more variable. If this is the case, then the variability rule 

(see Section 1.6.1.2) would predict that benefits should also be larger for complex stimuli compared 

to simple stimuli. Regarding interactions, the potential effect of such stimulus construction is less 

 

Figure 3.1 Stimulus construction  
Previous experiments have typically used sudden onset stimuli (left column), but the RSE has also 
been observed in experiments with randomly generated stimuli, where signals are presented in 
noise (right column). To determine the contribution of these stimulus elements to the size of the 
RSE, two levels of stimulus construction (simple, complex) were implemented.  
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clear. Previous reports, however, suggest that transient onset elements of stimuli are important for 

multisensory processing (Jaekl, Perez-Bellido, & Soto-Faraco, 2014; Van der Burg, Cass, Olivers, 

Theeuwes, & Alais, 2010; Werner & Noppeney, 2011). Some difference in interactions between simple 

and complex conditions might therefore be expected.  

3.1.2. Factor 2: Signal Features  

As for benefits, the lack of a consistent model framework means that the sources of interactions (i.e. 

trial history effects and violations of Miller’s bound) remain unclear. For violations of Miller’s bound, 

there at least exists a substantial literature; following Miller (1982), testing the race model has become 

standard procedure in RSP, thus the vast majority of RSP papers since have quantified violation in 

some way. In contrast, trial history effects are often neglected, being investigated in only a few papers 

(e.g. Gondan et al., 2004; Juan et al., 2017; Miller, 1982, 1986; Otto & Mamassian, 2012). As a starting 

point, therefore, the most advantageous target interaction for advancing our understanding of the 

RSE is trial history effects.  

As a second factor, I consider signal features as a potential source of trial history effects. As 

described earlier (Section 1.7.1), one element of trial history effects is that the repetition of a 

unisensory signal leads to a faster RT compared to a switch. One simple explanation of this effect is 

that it arises due to repetition of low-level signal features. Continuing from the previous example, 

consider just auditory pure tone signals. Given the tonotopy of cells in auditory cortex (e.g. Saenz & 

Langers, 2014), a particular frequency (e.g. 440 Hz) will stimulate the same neural population every 

time it is played. On repetition trials, evidence accumulation may be facilitated by residual activity in 

these neurons, leading to faster RTs. There is already some suggestion that feature repetition may 

play a role in RT. In visual search tasks, repetition of features leads to facilitation of visual search 

(Kristjansson & Campana, 2010). Further, a comparison of auditory and visual search tasks suggests 

that similar processing might underlie repetition priming effects in both modalities (Klein & Stolz, 

2015). Relating this to history effects, it may be that a similar feature-repetition effect is involved.  

One way to test the signal feature explanation is to introduce multiple variants of each 

unisensory signal (Figure 3.2). Consider again the auditory pure tone signal (440 Hz). If history effects 

are linked causally to residual neural activity caused by this specific tone frequency, intermixing a 

second variant of the signal (a 660 Hz tone) across trials should reduce the overall effect, compared 

to conditions where there is just one signal variant across trials. The reasoning behind this is that the 

second variant would activate a different population of neurons, and thus residual activity from the 

previous trial would not contribute to accumulation on the current trial. By introducing multiple 

variants, therefore, it can be shown whether simple low-level features can explain trial history effects, 

or whether they are based in higher-level processes.  
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3.1.3. Experimental Hypotheses   

The experiment proceeded with the following hypotheses. Regarding the first factor, stimulus 

construction, it was hypothesised that benefits should be larger in complex conditions compared to 

simple conditions. Further, based on the role of sudden onsets in multisensory processing, it was also 

expected that interactions would be different for simple and complex signals. Regarding the second 

factor, signal features, it was hypothesised that trial history effects would be larger when signal 

features were consistent compared to alternating, if they are based on low-level feature repetition.  

 Methods  

3.2.1. Participants  

20 participants (14 female) were recruited at the University of St. Andrews. Age ranged from 18-29 

years. All were naïve as to the aims of the experiment. Normal hearing and normal/corrected-to-

normal vision was reported in all cases. Reimbursement was £9.  

3.2.2. Stimulus Design 

Stimuli were constructed according to a 2×2 design (Figure 3.3) with factors stimulus construction 

(simple, complex) and signal features (consistent, alternating). For stimulus construction, simple 

stimuli were identical across all trials and presented without background stimulation, whereas 

 

Figure 3.2 Signal features 
Repetition effects (leading to faster RTs) could be linked to repetition of low-level signal features 
(e.g. the specific frequency of an auditory pure tone) or to higher-level explanations (e.g. 
engagement of auditory attention generally). To tease apart these two classes of explanation, two 
levels of signal features can be implemented: only one tone variant (consistent) or two variants 
randomly intermixed (alternating). If the low-level signal features are important, the unisensory 
decision-making framework suggests that history effects should be smaller for alternating 
compared to consistent conditions.  
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complex stimuli were randomly generated and presented within background noise (see Section 2.1.2 

in General Methods for more details). For signal features, consistent conditions presented one signal 

variant per modality across trials, whereas alternating conditions presented two signal variants per 

modality across trials.  

3.2.2.1. Auditory Stimuli  

All signals were presented at 45 dB SPL with a ramp onset of 0.01 s. For simple conditions, the signal 

was a pure tone. In the simple-consistent condition, the tone frequency was 440 Hz. In the simple-

alternating condition, the tone frequency was either 440 or 660 Hz (with equal numbers of each across 

trials). For complex conditions, the signal was filtered noise. Noise signals were generated randomly 

from Gaussian noise with a 2nd order Butterworth filter applied. In the complex-consistent condition, 

the edge frequencies were 1.0/1.1 kHz. In the complex-alternating condition, the edge frequencies 

were either 1.0/1/1 or 1.1/1.2 kHz (with equal numbers of each across trials). Noise signals were 

always presented within a background noise (50 dB SPL). This was also generated from Gaussian noise 

with a 1st order Butterworth filter applied. Edge frequencies were 0.5/2.4 kHz in all conditions.  

3.2.2.2. Visual Stimuli 

For simple conditions, the signal was the onset of 3 concentric rings, which alternated between black 

and white. In the simple-consistent condition, the largest ring was black. In the simple-alternating 

 

Figure 3.3 Stimulus design for Chapter 3 
Illustrations depict the redundant signal pairings. For more details on stimulus construction, see  
Section 2.1.2. 
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condition, the largest ring was black or white (with equal numbers of each across trials). For complex 

conditions, the signal was the coherent rotation of 50% of dots within a random dot stimulus. In the 

simple-consistent condition, the dots coherently rotated clockwise. In the simple-alternating 

condition, the dots coherently rotated clockwise or anti-clockwise (with equal numbers of each across 

trials).  

3.2.3. Procedure  

Each trial began by presenting a green fixation point. The audio-visual background was also presented 

in complex conditions. This was followed by a random foreperiod. The duration of the foreperiod was 

determined by two components: a fixed duration (1 s) and a random component drawn from an 

exponential distribution (mean: 0.75 s). An exponential distribution for the foreperiod was used as 

they contain no information about signal onset (Gondan & Minakata, 2016; Luce, 1986). On signal 

trials, one of the three signals (A, V, or AV) was then presented until the participant responded 

(maximum signal duration: 1.5 s). On catch trials, no signal was presented and the audio-visual 

background continued for the maximum signal duration. If any response was made, the fixation point 

changed from green to red, to indicate that the response had been recorded and the next trial would 

soon be initiated. All stimulation was frozen for 0.25 s before initiating the next trial. Responses 

recorded within 1.5 s of a signal onset were initially considered valid. If the response was an error 

(false alarm or miss), a feedback screen was then presented for 2 s which informed the participant of 

the error. Responses within the foreperiod (or at any point during catch trials) were considered false 

alarms. Signal trials in which no response was recorded within the maximum duration were considered 

misses. The next trial then began immediately.   

Trials were randomly presented in blocks, which were initialised with 104 trials each (26 trials 

per signal type, 26 catch trials). A dummy trial was also inserted at the start of each block. Dummy 

trials always displayed AV consistent signal pairings (see Figure 3.3) and were not included in analyses. 

Trials in which a false alarm or miss was recorded were replaced within the trial order, which was 

reshuffled after every error. A dummy trial was also inserted before resuming experimental trials. A 

small pointer (attached to fixation) denoted progress through a block. This started in a vertical 

position, and after each trial the pointer was incremented clockwise. A complete rotation of the 

pointer indicated completion of a block. Each block lasted 4-5 minutes.  

The total experiment consisted of 16 blocks (4 blocks for each of the 4 experimental 

conditions). Block order was randomised for each participant according to a Latin square procedure. 

Breaks were given between blocks as required. The whole experimental session lasted for around 105 

minutes.  
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 Results  

For all repeated-measures ANOVAs presented in this section, I adhere to the following ordering of 

factors: stimulus construction (simple, complex) × signal features (consistent, alternating). In certain 

analyses, a third factor is included: signal modality (A, V, [AV]).   

3.3.1. General Performance 

Before the main analysis of RT, general performance was assessed. This was first considered because 

ceiling performance is an assumption of the present procedures for RT analysis. If the data deviate 

from this assumption (e.g. by demonstrating a high overall percentage of misses), then these 

procedures must be adapted to also account for accuracy. However, if the ceiling performance 

assumption is met, no adaptations are necessary. As a first step, the number of error responses (false 

alarms and misses) was calculated. As a second step, the number of remaining outliers was calculated. 

Error responses and outliers were removed to clean the dataset for further RT analysis.  

First, the percentage of false alarms was calculated for signal and catch trials. The mean 

percentage of false alarms was averaged across signal trials (A, V, AV); this is because no signal is 

actually presented on false alarm trials, as the response occurs in the foreperiod. For signal trials, false 

alarms occurred on 1.04% (±0.19%) of trials. A 2×2 ANOVA revealed no significant main or interaction 

effects (all F≤4.110, p≥0.057, ηp2≤0.178). For catch trials, false alarms occurred on 1.53% (±0.25%) of 

trials. A 2×2 ANOVA revealed a significant interaction between stimulus construction and signal 

features, F(1, 19)=4.774, p=0.042, ηp2=0.201. For simple conditions, the percentage of false alarms 

decreased from consistent conditions (1.86% ±0.39%) to alternating conditions (1.17 ±0.32%). For 

complex conditions, the percentage of false alarms increased from consistent conditions (1.26 

±0.32%) to alternating conditions (1.85 ±0.44%). A possible explanation for this is that in complex-

alternating conditions, it is overall more likely that random patterns in the background could be 

mistaken for a signal. For instance in audition, it is more likely that background noise mimicked a signal 

by chance if there were two possible signal variants (the signal window effectively ranging 1.0-1.2 kHz) 

compared to one (1.0-1.1 kHz). No other main effects were significant (all F≤0.024, p≥0.878, 

ηp2≤0.001). 

Second, the percentage of misses was calculated. The percentage of misses averaged across 

signal modalities was only 0.46% (±0.19%). A 2×2×3 ANOVA revealed a significant main effect of 

stimulus construction, F(1, 19)=5.231, p=0.034, ηp2=0.216. The percentage of misses was smaller for 

simple conditions (0.14 ±0.08%) than complex conditions (0.78 ±0.32%). This is expected as complex 

signals were presented in background noise, and thus the onset was less distinguishable. There was 

also a significant main effect of signal modality, F(1.211, 23.011)=4.033, p=0.050, ηp2=0.175. Pairwise 

comparisons revealed that the percentage of misses on visual trials (0.50 ±0.18%) was larger than on 
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redundant trials (0.14 ±0.08%), p = 0.010. The percentage of misses on auditory trials (0.73 ±0.33%) 

however was not significantly different to visual or redundant trials (both p>0.05). Smaller misses on 

redundant trials are expected as there are two signals. As for auditory trials, the percentage of misses 

was also larger and more variable across participants, which is perhaps why no significant difference 

was observed. No other main or interaction effects were significant (all F≤3.689, p≥0.061, ηp2≤0.163). 

Third, the number of outliers was calculated according to the ± 3 × 1.4826 MAD criterion (see 

Section 2.2.2). This was performed on the 1/RT transformed data, as this is the data to which the 

model is eventually fitted. On average, fast outliers occurred on 0.4% (±0.1%) of RTs, whereas slow 

outliers occurred on 0.5% (±0.1%) of RTs. Thus, the average percentage of outliers (0.9%) is only 

slightly larger than what would be expected if the 1/RT data followed a normal distribution (0.27%). 

Across all participants, 24720 valid RTs were included in the main analyses, with a mean of 103 (±0.1) 

valid RTs per participant for each condition (of a possible maximum of 104 RTs).  

Overall, this analysis shows that the general performance of participants was very close to 

ceiling, with a low number of false alarms and misses (<2% signal trials on average). Further, the 

number of outliers was small, and thus the number of analysed trials was close to the maximum. For 

these reasons, accuracy was not considered in further RT analyses.  

3.3.2. Unisensory RTs  

Before applying the comparative approach (Sections 1.6 to 1.8), an analysis of unisensory RTs was 

conducted. This is because according to the race model principles (see Section 1.6.1), changes in 

unisensory RTs suggest corresponding changes in benefit. Ideally, therefore, the experimental factors 

should influence overall RT; this will give directional predictions for how benefits should change, which 

can be compared to empirical benefits.  

As a first step, central tendency was evaluated to give a broad indication of how similar 

unisensory performance was; as RT distributions are right-skewed, this was done using the median 

RT. According to race models, benefit is maximised when unisensory RT distributions are the same 

(equal effectiveness). Though stimuli were not calibrated for each individual, stimulus values were 

selected following a pilot study, in which roughly similar performance in auditory and visual trials was 

observed across participants. As a second step, variability of unisensory RTs was assessed; 

corresponding to the median, this was done using median absolute deviation (MAD) of RTs. According 

to race models, the variability of unisensory RTs is the driving force of multisensory benefits (variability 

rule). Thus, changes in unisensory variability across conditions are indicative of changes in benefit, 

especially if the equal effectiveness principle holds. If unisensory RT variability increases for a 

particular condition, race models predict that benefit should increase correspondingly.  
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For median RT (Figure 3.4a), a 2×2×2 ANOVA revealed a significant main effect of stimulus 

construction, F(1, 19)=160.575, p≤0.001, ηp2=0.894. Median RT was smaller in simple conditions 

(0.316 ±0.010 s) compared to complex conditions (0.437 ±0.016 s). There was no main effect of signal 

features, and no other main or interaction effects were significant (all F≤2.258, p≥0.149, ηp2≤0.106). 

As there was no main effect of signal modality, median RT was similar for auditory and visual trials (i.e. 

auditory and visual performance was equally effective).  

For MAD of RT (Figure 3.4b), a 2×2×2 ANOVA revealed a significant main effect of stimulus 

construction, F(1, 19)=70.808, p≤0.001, ηp2=0.788. MAD of RT was smaller in simple conditions (0.044 

±0.003 s) compared to complex conditions (0.067 ±0.005 s). No other main or interaction effects were 

significant (all F≤4.021, p≥0.059, ηp2≤0.175). As there was no main effect of signal modality, MAD of 

RT was also similar for auditory and visual signals (giving a further indication of equal effectiveness).  

 

Figure 3.4 Unisensory RT analysis 
a, b) Median RT and MAD of RT across conditions. The left column shows auditory RTs and the right 
column shows visual RTs. All bars show a mean of 20 participants (±1 SEM).  
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 Overall, as unisensory RTs were similar for each factor, benefits will be maximised (according 

to the equal effectiveness principle). Further, as the variability of unisensory RTs was larger in complex 

conditions compared to simple conditions, this suggests that benefits will be larger in complex 

conditions compared to simple conditions (according to the variability rule).  

3.3.3. Comparative Approach Step 1: Multisensory Benefits 

Following analysis of unisensory RTs, the next step is to understand multisensory RTs using the 

comparative approach. The first step is to understand benefits seen in multisensory RTs (i.e. the RSE). 

So far, analysis of unisensory RTs has provided broad, directional predictions for changes in benefits 

by considering the race model principles. To more precisely assess the predictive power of race 

models, however, a quantitative prediction of benefit can be obtained using the simple race model 

(see Section 2.3.2.2). This accounts for both principles in a single, parameter-free prediction of benefit 

size, which can be used as a benchmark for empirical benefits. To understand how well this simple 

race model can account for changes in the RSE across conditions, predicted benefits and empirical 

benefits were calculated and compared.  

First, predicted benefits (Figure 3.5a) were calculated according to the simple race model 

(Section 2.3.2.2). A 2×2 ANOVA revealed a significant main effect of stimulus construction, F(1, 

19)=41.537, p≤0.001, ηp2=0.686. The simple race model thus predicted that benefits would be smaller 

in simple conditions (0.032 ±0.003 s) compared to complex conditions (0.046 ±0.004 s). There were 

no other significant main or interaction effects (all F≤0.796, p≥0.383, ηp2≤0.040).  

Second, empirical benefits (Figure 3.5b) were measured (Section 2.3.2.1). A 2×2 ANOVA 

revealed a significant main effect of stimulus construction, F(1, 19)=5.866, p≤0.026, ηp2=0.236. In line 

with the results for predicted benefits, empirical benefits were smaller in simple conditions (0.041 

±0.004 s) compared to complex conditions (0.052 ±0.003 s). There were no other significant main or 

interaction effects (all F≤0.413, p≥0.528, ηp2≤0.021). Thus, in terms of overall main effects, empirical 

benefits followed the predicted benefits.  

To further investigate the simple race model’s predictive power, a number of additional 

analytical steps were applied. First, the correlation between predicted and empirical benefits was 

evaluated on the individual participant level for each condition of the 2×2 design (Figure 3.5c). All 

correlation values were positive, and 3 of 4 were significant (Table 3.1). Second, differences between 

predicted and empirical benefits were assessed. As an initial broad indication of this difference, 

benefit was averaged across conditions and compared with a paired-samples t-test. Mean predicted 

benefit (0.039 ±0.003s) was smaller than mean empirical benefit (0.047 ±0.003 s), t(19)=3.066, 

p=0.006, two-tailed. To assess if this difference varied across conditions, predicted benefit was 

subtracted from empirical benefit for each condition. A 2×2 ANOVA revealed no significant main or 
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interaction effects (all F≤0.791, p≥0.385, ηp2≤0.040). Thus, the difference between predicted and 

empirical benefit (0.008 ±0.003 s) was consistent across conditions.  

Overall, the simple race model predicted changes in empirical benefit well. However, it did 

not completely account for the size of the empirical benefit, which was consistently larger than 

 

Figure 3.5 Predicting and measuring multisensory benefits 
a, b) Predicted and empirical benefits across conditions. All bars show the mean of 20 participants 
(±1 SEM). 
c) Empirical benefit as a function of predicted benefit. Each point represents data from one 
participant in one of the four conditions (80 data points total). Large symbols show the group mean.  

Table 3.1  Pearson correlation coefficients (and p values) comparing predicted and empirical 
benefits 

Stimulus construction  Predicted vs empirical 

  Signal features 

  Consistent  Alternating 

Simple  0.731 (p<0.001)  0.690 (p=0.001) 

Complex  0.447 (p=0.048)  0.332 (p=0.152) 
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predicted. This is likely because the simple race model cannot account for empirical interactions in the 

RSP, which also contribute to benefits. These interactions are thus quantified in the next step.   

3.3.4. Comparative Approach Step 2: Quantifying Interactions 

The second step of the comparative approach is to understand interactions which are not considered 

by the simple race model. Two interactions in particular, which have been observed in previous 

empirical work, are investigated: trial history effects (Section 1.7.1), and violations of Miller’s bound 

(Section 1.7.2). If these interactions are present, they must be quantified and accounted for by a 

further modelling approach.  

First, trial history effects were considered (Figure 3.6a). As a first evaluation of this, the history 

effect was calculated (Section 2.3.3.1, Equation 17). A 2×2 ANOVA first revealed a significant 

intercept, F(1, 19)=75.624, p<0.001, ηp2=0.799. Thus, the overall history effect (0.034 ±0.004 s) was 

significantly greater than 0, and must be accounted for. However, there were no significant main or 

interaction effects (all F≤4.134, p≥0.056, ηp2≤0.179). Therefore, contrary to the experimental 

hypothesis, the history effect did not change across conditions. It is important to note that the impact 

of the history effect on benefits depends on the overall variability of unisensory RTs. If unisensory RTs 

are generally not variable, then the contribution of the history effect will be relatively large in 

comparison to a case where unisensory RTs are highly variable. As a further evaluation, the history 

index was calculated (Section 2.3.3.1, Equation 18). This measure normalises the history effect by the 

variance of unisensory RTs. By doing so, it provides a measure of how history effects relate to the 

overall unisensory RT variability, and thus how much they are likely to contribute to multisensory 

benefits. For the history index (Figure 3.6b), as shown in the history effect, 2×2 ANOVA revealed no 

significant main or interaction effects (all F≤2.913, p≥0.104, ηp2≤0.133). Therefore, the overall 

contribution of the history effect to RT variability was consistent across conditions.  

 The second interaction considered was violations of Miller’s bound (Figure 3.6c). A 2×2 

ANOVA first revealed a significant intercept, F(1, 19)=130.701, p<0.001, ηp2=0.873. Thus, the overall 

violation area (0.008 ±0.001 s) was significantly greater than 0, and must be accounted for. Further, 

there was a significant main effect of stimulus construction, F(1, 19)=4.564, p<0.046, ηp2=0.194. 

Violation was larger for simple conditions (0.009 ±0.001s) than for complex conditions (0.006 ±0001s). 

There were no further significant main or interaction effects (all F≤0.054, p≥0.819, ηp2≤0.003).  

Overall, analysis revealed the presence of two interactions: trial history effects and violations 

of Miller’s bound. Contrary to the experimental hypothesis, the size of history effects did not change 

across conditions. Further, violations of Miller’s bound were larger for complex conditions compared 

to simple conditions. As neither of these interactions can be accounted for by the basic race model 

architecture alone, these must be explained by applying an alternative model.  
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3.3.5. Comparative Approach Step 3: Applying the Context Variant Race Model  

The third (and final) step of the comparative approach is to apply a model to understand both the 

benefits and interactions observed in previous steps. Here, the context variant race model (Section 

2.4.4.2) was fitted. Broadly, this follows the same architecture as an independent race model, but two 

parameters are added to account for interactions. First, a correlation parameter rho is added between 

unisensory distributions. This can account for trial history effects. Second, a noise parameter eta 

models additional variability in the redundant distribution compared to the independent race model. 

This can account for violations of context invariance, and therefore violations of Miller’s bound. To fit 

the model, the best-fitting LATER model parameters for each unisensory distribution were first 

determined. This is equivalent to fitting an independent race model. Next, the two additional 

parameters of the context variant race model (rho, eta) were determined. Average fit values for all 6 

model parameters (muA, muv, sigmaA, sigmaV, rho, eta) across conditions are found in the appendices.   

 

Figure 3.6 Quantifying processing interactions 
a, b) History effect and history index across conditions.  
c) Violation of Miller’s bound across conditions. All bars show the mean of 20 participants (±1 SEM). 
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Analysing the rho parameter (Figure 3.7a), a 2×2 ANOVA revealed a significant intercept, F(1, 

19)=7.722, p=0.012, ηp2=0.289. Thus, there was an overall negative correlation modelled between 

unisensory rate distributions (-0.178 ±0.064). However, there were no significant main or interaction 

effects (all F≤1.240, p≥0.279, ηp2≤0.061). Overall, therefore, the results for rho closely follow those 

observed for the history effect and history index.  

Analysing the eta parameters (Figure 3.7b), a 2×2 ANOVA also revealed a significant intercept, 

F(1, 19)=176.056, p<0.001, ηp2=0.903. Thus, additional variability was added to unisensory rate 

distributions to account for variability in the redundant rate distribution (0.156 ±0.012 s-1). There was 

also a main effect of stimulus construction, F(1, 19)=44.616, p<0.001, ηp2=0.701. The eta parameter 

was larger for simple conditions (0.222 ±0.019 s-1) than for complex conditions (0.089 ±0.010 s-1). 

 

Figure 3.7 Fitting the context variant race model 
a,b) Best fitting rho and eta values across conditions. All bars show the mean of 20 participants (±1 
SEM). 
c) Empirical benefit as a function of model-fit benefit. Each point represents data from one 
participant in one of the four conditions (80 data points total). Large symbols show the group mean. 
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However, there were no further significant main or interaction effects (all F≤0.145, p≥0.708, 

ηp2≤0.008). Overall therefore, the results of eta closely follow those observed for violations of Miller’s 

bound.  

To assess model fit, benefit was calculated using the model-fit redundant RT distribution in 

place of the empirical redundant RT distribution. To obtain equivalent quantile points for comparison, 

the model-fit distribution was down-sampled using linear interpolation (Section 2.3.1). First, model-

fit and empirical benefits were correlated as in Step 1. All 4 values were strongly positive and highly 

significant (Table 3.2). Second, differences between predicted and empirical benefits were assessed. 

Benefit was averaged across conditions and compared with a paired-samples t-test. Mean model-fit 

benefit (0.045 ±0.003s) was smaller than mean empirical benefit (0.047 ±0.003 s), t(19)=6.190, 

p<0.001, two-tailed. To assess whether this difference was consistent across conditions, empirical 

benefit was subtracted from model-fit benefit for each condition. A 2×2 ANOVA revealed no significant 

main or interaction effects (all F≤1.097, p≥0.308, ηp2≤0.055). Thus, the difference between model-fit 

and empirical benefit (0.002 ±0.0003 s) was consistent across conditions. 

Overall, applying the context variant race model provided a clear account of multisensory RTs. 

Interactions beyond the race model were accounted for by the model’s parameters, which also closely 

followed interactions in terms of main effects. Further, as shown in Figure 3.7c, benefits were almost 

perfectly accounted for by taking account of interactions.  

 Discussion   

The overall aim of this experiment was to test the comparative approach as a tool for understanding 

sources of benefits and interactions. To this end, two factors were introduced. First, different signal 

types which mimic the diverse signals employed across the RSP literature were presented (stimulus 

construction, with levels simple and complex). It was found that complex stimuli, which resulted in 

more variable RTs, produced larger benefits than simple stimuli (which gave rise to less variable RTs). 

Second, a potential source of history effects was tested by manipulating signal features (with levels 

consistent and alternating). Counter to the experimental hypothesis, history effects were not smaller 

Table 3.2 Pearson correlation coefficients (and p values) comparing model-fit and empirical 
benefits 

Stimulus construction  Model-fit vs empirical 

  Signal features 

  Consistent  Alternating 

Simple  0.995 (p<0.001)  0.992 (p<0.001) 

Complex  0.996 (p<0.001)  0.986 (p<0.001) 
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for alternating conditions compared to consistent conditions. Rather, history effects were constant 

across conditions.  

 It was expected that the factors in the design would elicit differences in overall unisensory 

RTs. Though there was no main effect of signal features, the factor stimulus construction has a 

substantial effect on unisensory RTs, with simple stimuli eliciting faster and less variable RTs than 

complex stimuli.  Further, the auditory and visual stimuli presented here were designed (based on 

pilot studies) to elicit roughly similar RT distributions, as benefits are maximised when unisensory RT 

distributions are similar (Section 1.6.1.1). Accordingly, no main effect of signal modality was found for 

median or MAD of RT, suggesting signals successfully elicited similar unisensory distributions.  

 The first step of the comparative approach focused on multisensory benefits (i.e. the RSE) 

across the factors of the design. This was first predicted using a simple race model then calculated 

empirically. In both cases, a main effect of stimulus construction was found, whereby simple stimuli 

elicited smaller benefits than complex stimuli. This supports the variability rule (Section 1.6.1.2); as 

complex stimuli elicited more variable unisensory RTs than simple stimuli, larger benefits were 

expected. This suggests that stimulus qualities contribute to overall multisensory benefits.  In addition, 

not only were the main effects predicted by the simple race model, but a general correspondence was 

shown on the level of individual subjects. As seen in Table 3.1, positive correlations between the size 

of predicted benefits and empirical benefits were significant in 3 of 4 conditions. Notably, empirical 

benefit was consistently larger than predicted benefit (around 0.008 s across conditions). Overall, as 

a benchmark comparison, the race model accounts well (but not completely) for changes in benefits 

across conditions and on the level of individual participants.   

 The second step of the comparative approach focused on interactions (i.e. history effects and 

violation of Miller’s bound). Considering trial history effects, there was a modality switch cost (0.034 

s) across all factors. This is broadly in agreement with previous studies which have quantified these 

effects (e.g. Gondan et al., 2004; Miller, 1982; Otto & Mamassian, 2012). Following a similar reasoning 

to the literature of repetition priming, it was expected that alternating low-level stimulus features 

between unisensory trials would reduce history effects, as the RT benefits of signal repetition wold be 

diminished. Contrary to this expectation, no changes in history effects were found across conditions. 

This therefore suggests that history effects cannot be targeted by low-level signal features. History 

effects may therefore have a basis in higher-level processes, and be more similar to costs observed in 

attentional (Spence et al., 2001) and task-switching (Kiesel et al., 2010; Monsell, 2003) paradigms. One 

previous fMRI study of task switching showed that costs of switching between face and word 

processing (which activate distinct processing pathways) are related to the level of residual activity in 

the pathway associated with the switched behaviour (Yeung, Nystrom, Aronson, & Cohen, 2006). 
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History effects may work in a similar way, whereby general activation of the auditory and visual 

pathways is important, rather than the specific properties of the stimulus presented. The fact that 

both simple and complex stimuli, which have very different properties, elicit essentially the same size 

history effect would seem to support this proposal.    

 Considering violation of Miller’s bound, significant violations (around 0.008 s) were observed 

across all conditions. This corresponds approximately to the difference between empirical benefits 

and those predicted by the simple race model (which by definition cannot violate Miller’s bound). 

Further, a significant effect of stimulus construction was observed, whereby simple stimuli elicited 

larger violations than complex stimuli. One possible explanation for this effect is the sudden onset 

element of the simple stimuli. Previous reports have suggested that onset transients have an 

important role in multisensory processing (Jaekl et al., 2014; Van der Burg et al., 2010; Werner & 

Noppeney, 2011). The sudden onset of a signal also likely produces a greater change in context 

between unisensory and redundant conditions. In simple redundant trials, two processing pathways 

become suddenly activated compared to just one on unisensory trials. In contrast, during complex 

conditions, both processing pathways are active during all trial types because of background noise. 

The onsets, therefore, cause a smaller change in context. Similar changes to context are explored in 

Chapter 4.  

Alternatively, previous papers have reported similar effects on violation by manipulation of 

signal strength (or ‘salience’): larger violations are produced by stronger stimuli (Minakata & Gondan, 

2018). It is possible the effects here also reflect a difference in signal strength. Typically, however, 

signal strength is manipulated by changes to single property of the signal, e.g. volume (auditory) or 

contrast (visual), whereas the differences in the stimuli presented here are multifaceted. Nonetheless, 

given that RTs in the present experiment were overall slower for more complex stimuli, a difference 

in signal strength between simple and complex stimuli is a distinct possibility. A more direct 

manipulation of signal strength is explored in Chapter 5.   

 The third step of the comparative approach was to apply a model to account for benefits and 

interactions, namely the context variant race model. First, benefit was accounted for much more 

precisely than the simple race model prediction, evidenced by much stronger positive correlations 

(Table 3.2) and a reduction in the overall difference between model-fit and empirical benefit (0.002 s, 

compared to the 0.008 s difference between predicted and empirical benefit). Further, the main 

effects observed in rho (corresponding to history effects) and eta (corresponding to violations) are the 

same, suggesting that the model is overall able to account for them. Most interesting here is the large 

reduction in eta modelled in complex conditions compared to simple conditions. This suggests that 

for complex stimuli, comparatively less noise is introduced as a result of both decision-units 
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accumulating evidence (redundant trials). This supports the idea that complex signals produced 

smaller changes in context variance between unisensory and redundant trials with complex stimuli.  

 Overall, the current data provide a validation of the comparative approach, and provide novel 

insights into multisensory behaviour. One instance of a novel insight from the present data comes 

from the relationship between multisensory benefits and violations of Miller’s bound. Under the 

approach detailed here, both benefit and violation are distinct (though related) effects. In current 

practice, however, these two effects are considered somewhat interchangeable measures of 

‘multisensory integration’ (e.g. Stevenson et al., 2014). In contrast to this assumption, a dissociation 

is observed here on the group level analyses; benefits increase from simple to complex stimuli, 

whereas violations decrease correspondingly. The interpretation of experimental results, therefore, 

could be very different depending on which measure is chosen as a measure of multisensory 

integration. This should be considered carefully in future RSP experiments.          
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4. Experiment 2: Signal Duration vs. Task-Irrelevant Stimulation  

 Introduction  

The previous chapter demonstrated that the novel comparative approach based on the race model 

framework is an effective investigative tool for studying benefits and interactions in the RSP. By 

applying the approach across different experimental factors, it was possible to make effective 

predictions for changes in benefits (based on race model principles), observe changes in interactions, 

and provide an overall account of multisensory RTs by applying an extended model. This has provided 

a clearer understanding of the overall RSE. What remains to be understood, however, are sources of 

interactions. This is particularly true for history effects, which are frequently neglected within RSP 

studies. The overall goal of this chapter, therefore, is to again apply the comparative approach with a 

2×2 within-subjects design, with each factor designed to target a particular interaction.  

4.1.1. Factor 1: Signal Duration  

As a first factor, I consider signal duration as a method of manipulating history effects. The motivation 

for this factor comes from an examination of the few RSP studies which have explicitly quantified 

modality switch costs. In Miller’s classic study, for instance (Miller, 1982; their Table 4), the modality 

switch cost for AV signals was as large as 0.074 s for detection tasks and 0.118 s for a discrimination 

task. Similarly, Gondan et al. (2004) reported history effects of up to 0.069 s for AT signals. In more 

recent work by Otto, however, the modality switch costs reported have been more variable, ranging 

from around 0.050 s (Otto & Mamassian, 2012) to 0.020-0.030 s (Otto & D'Souza, 2015) for AV signals 

(see also Harrar et al. (2014), who recorded a cost of around 0.025 s). These latter results are more 

comparable to the history effects observed in this thesis (e.g. 0.034 s in Section 3.3.4). Interestingly, 

the studies which report using short signals report the largest history effects: for instance, signal 

durations of 0.02 s (Gondan et al., 2004) and 0.15 s (Miller, 1982). In keeping with this, studies which 

present longer signals (essentially until the participant responds) on average report smaller history 

effects: signal durations of 0.34 s (Harrar et al., 2014), 0.5 s (Otto & Mamassian, 2012), 1 s (Otto & 

D'Souza, 2015), or up to 1.5 s (see Chapter 3). 

One potential explanation of why signal duration would change the size of the history effect 

is provided by attentional mechanisms, which have been investigated in similar multisensory 

paradigms (e.g. Spence et al., 2001). To understand this effect, first consider the sequential sampling 

framework (Forstmann et al., 2016; Gold & Shadlen, 2007; Smith & Ratcliff, 2004), where RTs are 

explained by accumulation of a decision variable to threshold. The decision variable takes account of 

sensory evidence, but it can also include other factors; importantly, this decision variable can 

accumulate based on a physical stimulus, as well as the memory trace of one (Gold & Shadlen, 2007). 
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Now, consider how signal duration and attention might interact to impact accumulation. First, assume 

a signal is long (i.e. presented until a response is made, as in Chapter 3). If the current trial is a 

unisensory switch (e.g. audition to vision), the observer experiences a time-cost of switching attention 

from one modality to another. Once this switch is made, however, accumulation can continue 

unaffected, as the signal is still physically present. Next, consider a short signal duration (e.g. 0.05 s, 

as in Spence et al., 2001). Here, the observer experiences the same time-cost of switching attention 

between modalities. However, in addition, the signal will likely have been offset by the time attention 

has moved between modalities. Accumulation of the decision variable must therefore proceed on a 

memory trace, rather than activity directly linked to the physical signal. Assuming that the memory 

trace of the stimulus can only be less reliable, it is expected that the corresponding accumulation will 

also be less reliable, with additional time-costs of retrieving the signal from sensory memory. 

Following this reasoning, it would be expected that short signals elicit a greater overall cost of 

switching between modalities.  

 

Figure 4.1 Signal duration 
a) Illustrating manipulations to signal duration. Audiovisual signals (left) were identical to the 
simple-consistent stimuli in Chapter 3 (Figure 3.3, top left quadrant). The green lines illustrate the 
signal onset/offset for a given trial. In short signal conditions, the signal lasted for 0.05 s. In long 
signal conditions, the signal lasted until the participant responded, or until the maximum valid 
response time allowed by the response window (1.5 s). 
b, c) History effect and history index from a pilot study. All bars show the mean of 5 participants (±1 
SEM). 
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Unfortunately, as few studies have explicitly reported modality switch costs in the RSP, it is 

difficult to say whether this is more than just speculation. To further investigate the possible role of 

signal duration therefore, and to provide a clear motivation for including this factor, I conducted a 

small pilot study (N=5; Figure 4.1). Here I used the simple signals from Chapter 3 (see Figure 3.3; top 

left). Both the history effect (Figure 4.1b) and history index (Figure 4.1c) were observed to be larger 

with short signals (max. duration: 0.05 s) than long signals (max. duration: 1.5 s). Signal duration, 

therefore, was included as a factor which was expected to manipulate history effects.  

4.1.2. Factor 2: Task-Irrelevant Stimulation 

A second interaction to target is context variance. In the RSP, context variance is imposed because 

there is always a difference in stimulation between unisensory and redundant trials. In unisensory 

trials, only one decision-unit accumulates alone. On redundant trials, however, both decision-units 

accumulate, each alongside the other. This change in context likely affects the accumulation process 

related to each unisensory signal component; one possibility is that accumulation by one decision-unit 

decreases the reliability of the other (i.e. introduces more noise into accumulation on redundant 

trials). Following a race model framework, a measure of context variance is provided by violations of 

Miller’s bound; this is the upper limit to race models assuming context invariance. Larger violations, 

therefore, suggest larger context variance between unisensory and redundant trials. Accordingly, any 

factor which reduces context variance between unisensory and redundant trials (i.e. makes 

stimulation more similar over all trials) should reduce violations of Miller’s bound.  

As a second factor, I consider task-irrelevant stimulation as a potential manipulation of context 

variance. The motivation here is that an additional task-irrelevant stimulus will make trials more 

similar overall. For instance, in Chapter 3, this was achieved by adding background stimulation on all 

trials; signals with background stimulation (complex) were associated with smaller violations than 

signals without background stimulation (simple). In this experiment, however, I present task-irrelevant 

stimulation in a third modality. To demonstrate how this might work, recall the typical RSP (Section 

1.3.1) with AV signals. Four trial types are presented throughout: two unisensory (A, V), redundant 

(AV), and catch (no signal). The change in stimulation between redundant and unisensory trials (i.e. 

the ratio of stimulus onsets) is 2:1. Now, consider what happens when a task-irrelevant stimulus in a 

third modality is added across conditions (tactile; T). Again, four trial types are presented throughout: 

two unisensory (A+T, V+T), redundant (AV+T), and catch (T). There is no change in the number of task-

relevant signals; the presence of A or V determines whether a participant responds, whereas the 

presence of T does not (Figure 4.2a). However, the change in stimulation between redundant and 

unisensory trials (i.e. the ratio of stimulus onsets) is now 3:2 (Figure 4.2b). Overall, therefore, with the 
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same number of task-relevant signals, stimulation is more similar across trials. Additional task-

irrelevant stimulation, therefore, should reduce the size of violations by reducing context variance.  

Additionally, it might also be expected that history effects change according to task-irrelevant 

stimulation. For instance, a similar manipulation was introduced by Gondan, Vorberg, and Greenlee 

(2007) to remove modality switch effects seen in neuroelectrophysiological recordings. Drawing also 

on the attention literature, previous research has shown non-relevant auditory cues can facilitate 

attention-switching within a visual task (Doyle & Snowden, 2001); the original authors hypothesise 

that additional stimulation acts to ‘reset’ attentional biases, which allows for quicker attention-

switching within one modality. If such effects extend to switching between modalities, then history 

effects may be smaller when task-irrelevant stimulation is present compared to absent. 

4.1.3. Experimental Hypotheses  

I began with the following hypotheses. Regarding the first factor, signal duration, it was hypothesised 

based on the pilot data (Figure 4.1) that history effects should be larger for short signals compared to 

long signals. Regarding the second factor, task-irrelevant stimulation, it was hypothesised that (if a 

 

Figure 4.2 Task-irrelevant stimulation 
a) Task demands. In the left column (absent), typical RSP trials are presented. The participant 
responds so long as either A or V is present, and witholds responses when neither is present. In the 
right column, the same trials are presented with an additional tactile stimulus (T). As in the left 
column, participants respond only when A or V is present and withold responses when neither is 
present. The tactile stimulus is thus irrelevant to correctly complete the task.  
b) Trial similarity. When stimulation is absent, there is a larger dissimilarity, and thus a larger context 
variance, between multisensory and unisensory trials than when stimulation is present (as shown 
by the larger onset ratio).   
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task-irrelevant stimulus reduces context variance) violations of Miller’s bound would be smaller when 

task-irrelevant stimulation was present compared to absent. To further test whether any results 

confirming these hypotheses were reliable, I conducted two versions of the same experiment. In the 

first instance (Part 1) I used audio-visual (AV) signals with a tactile (T) task-irrelevant stimulus, as 

described in the introduction. In the second instance (Part 2) I switched the stimulation to produce 

tactile-visual (TV) signals with an auditory (A) task-irrelevant stimulus.  

 Methods (Part 1)  

4.2.1. Participants  

In contrast to Chapter 3, a miss rate exclusion criterion (>10% missed trials in any condition) was also 

implemented. This was to further ensure the ceiling performance assumption was met for each 

participant included in the analysis. 21 participants were initially recruited at the University of St. 

Andrews. Of these participants, one met the miss rate exclusion criterion. The data from 20 

participants (15 female) were thus analysed. The age of these participants ranged from 19-38 years. 

All were naïve as to the aims of the experiment. Normal hearing and normal/corrected-to-normal 

vision was reported in all cases. Reimbursement was £10.  

4.2.2. Stimulus Design  

Stimuli were constructed according to a 2×2 design (Figure 4.3) with factors signal duration (short, 

long) and task-irrelevant stimulation (absent, present). Signals were identical to those presented in 

Chapter 3 (simple-consistent condition). Simple signals were used as they previously elicited the 

largest interactions overall. For signal duration, short signals were presented for 0.05 s, whereas long 

signals were presented until a response was recorded (maximum duration: 1.5 s). For task-irrelevant 

stimulation, absent conditions included no additional stimulation (i.e. standard RSP), whereas present 

conditions also included a task-irrelevant tactile signal on all trials (always 0.05 s).  

Tactile stimulation was delivered via the C-2 Tactor (Engineering Acoustics, Inc.). This device 

delivers stimulation through vibration of a central contactor which is placed in proximity to the skin. 

The device is optimised to deliver stimuli between 200-300 Hz, therefore stimulation was set to 250 

Hz. Unfortunately, a precise measure of amplitude for stimulation could not be determined using an 

oscilloscope, due to artefacts created by the amplifier. This device was secured to the participant’s 

wrist (Figure 4.4). The device was always placed on the opposite wrist to the hand which provided 

responses. As the tactile device was driven by the same soundcard as the auditory stimulus, the same 

auditory delay was applied to all tactile stimulation to achieve synchrony (see Section 2.1.4). To 

remove the possibility that participants responded to sounds made by the vibration of the tactor, 

background noise with edge frequencies covering the stimulation range (200-300 Hz; 2nd order 
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Butterworth filter applied) was played continuously throughout trials. The volume of the background 

noise was 45 dB SPL.  

4.2.3. Procedure  

Each trial began by presenting the green fixation point, followed by a random foreperiod. Duration of 

the foreperiod was determined by two components: a fixed duration (1.9 s) and a random component 

drawn from an exponential distribution (mean: 0.25 s). In contrast to Chapter 3, the fixed component 

here was larger and the exponential component was smaller. This was introduced to allow participants 

more time between responses within a 2 hour experiment run-time. On signal trials, one of the three 

signals (A, V, AV) was then presented until the participant responded (maximum duration: 1.5 s). On 

catch trials, no signal was presented but the trial continued for the maximum signal duration (1.5 s). 

To indicate the end of a trial, the fixation point turned to red and all stimulation was halted for 0.1 s. 

The next trial was then initiated.  

In contrast to Chapter 3, the first 1 s of the foreperiod was considered a ‘grace period’ in which 

a response by the participant would not trigger a false alarm and end the trial. This was introduced as 

it was noted that participants in the previous experiment sometimes erroneously responded to the 

onset of the end-of-trial feedback (i.e. the fixation point colour change). As the feedback duration was 

very brief, these responses were actually executed very early into the foreperiod of the following trial. 

 

Figure 4.3 Stimulus design for Chapter 4 (Part 1) 
In each plot, bars indicate the onset/offset of signals (A, V) and the task-irrelevant stimulus (T). 
Illustrations depict a redundant signal trial. 
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This meant that these responses were recorded as genuine false alarms. Though the number of these 

feedback responses was assumed to be very small (given the low number of false alarms in Chapter 

3), they may still have inflated the overall percentage of false alarms. By introducing this grace period, 

therefore, the error response was still recorded (and thus could be analysed separately) but the 

participant was allowed to continue the trial. As expected, the average number of these responses for 

each participant (11.70 ± 1.89) was very low in comparison to the 1600 RSP trials presented overall 

(i.e. < 1% of all trials). Further, the average time of these presses was consistent (0.250 ± 0.016 s into 

the foreperiod) and very early into the trial. As these responses occurred so early, and with little 

variability between participants, this indicated that they were likely erroneous responses to the 

fixation feedback. Further, because they occurred so early into the trial, there was still a considerable 

foreperiod duration remaining until the next possible signal onset, so any RTs on these trials are 

unlikely to be affected. As such, these responses were not any considered further in this thesis.  

Responses recorded within 1.5 s of a signal onset were initially considered valid. If the 

response was in error, a feedback screen was then presented for 2 s which informed the participant 

of the error. Responses recorded within the foreperiod (or at any point during catch trials) were 

considered false alarms. Signal trials in which no response was recorded within the valid response 

window were considered misses.  

Trials were randomly presented in blocks with 100 trials each (25 trials per signal type, 25 

catch trials). A dummy trial (AV) was also inserted at the start of each block. Trials in which a miss was 

recorded were replaced within the trial order, which was reshuffled after every error. A dummy trial 

was also inserted before experimental trials following a miss. In contrast to Chapter 3, these were 

drawn randomly from each of the 4 trial types (with equal probability). The proportion of different 

 

Figure 4.4 Placement of the tactor 
Participants wore the C-2 tactor on their wrist secured via a velcro strap. The tactor was placed with 
the central contactor face down (towards the skin) between two layers of the wrist strap fabric, as 
shown above. 
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trials in the experiment, therefore, was now constant. Dummy trials were not included in analyses. As 

described in Chapter 3, a small pointer (attached to fixation) denoted progress through a block. Each 

block lasted for around 5-6 minutes.  

The entire experiment consisted of 16 blocks (4 blocks for each of the 4 experimental 

conditions). Block order was randomised (intermixing all conditions) for each participant according to 

a Latin square procedure. Breaks were given between blocks as required. The whole experimental 

session lasted for around 120 minutes.  

 Results (Part 1)  

For all repeated-measures ANOVAs presented in this section, I adhere to the following ordering of 

factors: signal duration (short, long) × task-irrelevant stimulation (absent, present). In some cases an 

additional third factor was included: signal modality (A, V, [AV]).   

4.3.1. General Performance 

The performance of participants was assessed before RT analysis to ensure the ceiling performance 

assumption was met. This was also used to provide an indication of whether participants’ responses 

were affected by the additional task-irrelevant stimulation. First, the percentage of false alarms was 

calculated for signal and catch trials. The percentage of false alarms was averaged across all 3 signal 

trials (A, V, AV). This was because, by definition, false alarms on signals trials occur in the foreperiod 

(i.e. before the onset of any stimulation). For signal trials, false alarms occurred on only 0.070% 

(±0.023%) of trials. A 2×2 ANOVA revealed no significant main or interaction effects (all F≤1.479, 

p≥0.239, ηp2≤0.072). For catch trials, false alarms occurred slightly more often, on 1.843% (±0.449%) 

of trials. A 2×2 ANOVA revealed a significant main effect of task-irrelevant stimulation, F(1, 

19)=14.464, p=0.001, ηp2=0.432. The percentage of false alarms was smaller for absent conditions 

(0.173% ±0.065%) than present conditions (3.513% ±0.886%). No other main effects were significant 

(all F≤3.382, p≥0.082, ηp2≤0.151). Overall, therefore, participants made more false alarms on catch 

trials when task-irrelevant stimulation was present. These false alarms are likely erroneous responses 

to the task-irrelevant stimulus onset.   

Second, misses were evaluated. The percentage of missed trials averaged across signal 

modalities was only 0.392% (±0.131%). A 2×2×3 ANOVA revealed a significant main effect of signal 

duration, F(1, 19)=10.176, p=0.005, ηp2=0.349. The percentage of misses was larger for short 

conditions (0.684 ±0.221%) than long conditions (0.099 ±0.047%). This is likely because the signal was 

presented for less time, therefore it was easier for participants to miss (e.g. by blinking, for visual 

signals). There was also a significant main effect of signal modality, F(1.184, 22.497)=7.823, p=0.008, 

ηp2=0.292. Pairwise comparisons revealed that the percentage of misses on visual trials (0.814 

±0.273%) was larger than on auditory trials (0.323 ±0.125%, p=0.041) and on redundant trials (0.038 
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±0.021%, p=0.010). The percentage of misses on auditory trials however was not significantly different 

to redundant trials (p>0.05). One possibility is that participants were more likely to miss visual signals 

by blinking (particularly in short signal conditions). Finally, there was a significant interaction between 

signal duration and signal modality, F(1.408, 26.745)=7.070, p=0.007, ηp2=0.271. For short conditions, 

there was a larger difference between the percentage of misses on auditory trials (0.621 ±0.250%) 

and visual trials (1.382 ±0.445%), both of which were larger than redundant trials (0.050 ±0.034%). 

For long conditions, there was a smaller difference between the percentage of misses on auditory 

trials (0.025 ±0.025%) and visual trials (0.245 ±0.115%), both of which were much closer to the 

percentage of misses on redundant trials (0.025 ±0.025%). No other main or interaction effects were 

significant (all F≤2.628, p≥0.085, ηp2≤0.121). Overall, the redundant condition consistently showed a 

low percentage of misses regardless of signal duration; given that two signals were always presented 

on these trials, it is likely that longer durations did not help participants much in terms of improving 

detection as performance was already so close to ceiling. On unisensory trials however, where there 

is only one signal, the larger percentage of misses for short signals compared to long would be 

expected, as a longer duration would make the signals harder to miss (e.g. if attention was initially 

directed to the wrong modality). 

Third, the number of outliers was calculated according to the ±3 × 1.4826 MAD criterion (see 

Section 2.2.2). This was done on the 1/RT transformed data, to which a modelling approach is later 

applied. On average, fast outliers occurred on 0.39% (±0.05%) of RTs, whereas slow outliers occurred 

on 0.55% (±0.10%) of RTs. The overall percentage of outliers (~0.94%), therefore, is only slightly larger 

than what would be expected if the 1/RT data followed a typical normal distribution (0.27%). Across 

all participants, 23664 valid RTs were included in the main analyses, with a mean of 98.6 (±0.17) valid 

RTs per participant for each condition (of a possible maximum of 100 RTs).  

Overall, though there were small differences in false alarms and misses across conditions, the 

data indicate close to ceiling performance in all conditions. Further, the number of valid trials included 

in the analysis was close to maximum. In general, therefore, accuracy was not further considered. One 

exception to this is the observation that task-irrelevant stimulation leads to more false alarms as 

measured in catch trials, which will be reconsidered in a later section (see Section 4.8).  

4.3.2. Unisensory RTs  

Prior to applying the comparative approach, unisensory RTs were analysed to give an indication of 

how the experimental factors affected RTs. This was also used to give an indication of possible changes 

in benefits. According to the race model principles (see Section 1.6.1), benefits should increase if 

unisensory RTs have similar distributions (equal effectiveness). This was assessed by comparing the 

central tendency (median) and variability (MAD) of unisensory RTs. Further, race model principles 
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state that benefits should increase as RT variability increases (variability rule). This was assessed by 

examining the MAD of unisensory RTs.  

For median RT (Figure 4.5a), a 2×2×2 ANOVA revealed a significant main effect of signal 

modality, F(1, 19)=8.153, p=0.010, ηp2=0.300. Median RT was larger for auditory trials (0.357 ±0.018 

s) compared to visual trials (0.332 ±0.016 s). Next, there was a significant interaction between signal 

duration and signal modality, F(1, 19)=15.280, p=0.001, ηp2=0.446. For short conditions, there was a 

larger difference in the median RT for auditory (0.368 ±0.020 s) and visual (0.332 ±0.018 s) trials. For 

long conditions, however, the median RT for auditory (0.347 ±0.017 s) and visual (0.332 ±0.014 s) trials 

was more similar. There was also a significant interaction between task-irrelevant stimulation and 

signal modality, F(1, 19)=6.608, p=0.019, ηp2=0.258. For auditory conditions, there was a difference in 

median RT between absent (0.353 ±0.017 s) and present (0.361 ±0.020 s) trials. For visual conditions, 

however, median RT for absent (0.333 ±0.015 s) and present (0.331 ±0.016 s) was similar. There were 

no further significant main or interaction effects (all F≤3.492, p≥0.077, ηp2≤0.155). Overall, as there is 

a main effect of signal modality, this suggests that unisensory performance is not equally effective. 

There was also no main effect for either of the two experimental manipulations, which suggests the 

pattern of unisensory RTs was broadly similar across conditions. However, as auditory and visual trials 

had a similar median in conditions where task-irrelevant stimulation was present, the corresponding 

predicted benefit for this condition might also be larger.  

For MAD of RT (Figure 4.5b), a 2×2×2 ANOVA revealed a significant main effect of signal 

duration, F(1, 19)=11.238, p=0.003, ηp2=0.372. MAD of RT was larger in short conditions (0.052 ±0.004 

s) compared to long conditions (0.045 ±0.003 s). There was also a significant main effect of task-

irrelevant stimulation, F(1, 19)=10.959, p=0.004, ηp2=0.366. MAD of RT was smaller in absent 

conditions (0.047 ±0.004 s) compared to present conditions (0.051 ±0.004 s). There was also a 

significant main effect of signal modality, F(1, 19)=11.746, p=0.003, ηp2=0.382. MAD of RT was larger 

for auditory trials (0.054 ±0.004 s) compared to visual trials (0.043 ±0.004 s). Next, there was a 

significant interaction between signal duration and signal modality, F(1, 19)=4.440, p=0.049, 

ηp2=0.189. In short conditions, MAD of RT for auditory (0.060 ±0.005 s) and visual (0.045 ±0.005 s) 

trials was quite different. Considering long conditions, however, MAD of RT for auditory (0.048 ±0.004 

s) and visual (0.042 ±0.003 s) trials was more similar. There was also a significant interaction between 

task-irrelevant stimulation and signal modality, F(1, 19)=7.672, p=0.012, ηp2=0.288. Considering 

auditory conditions, MAD of RT for absent (0.050 ±0.004 s) and present (0.058 ±0.004 s) conditions 

were slightly different. Considering visual conditions, however, MAD of RT for absent (0.043 ±0.004 s) 

and present (0.044 ±0.004 s) conditions was more similar. No other main or interaction effects were 

significant (all F≤0.553, p≥0.466, ηp2≤0.028). Overall, as for median RT, there were differences in the 
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MAD of RT between unisensory conditions, suggesting that performance is not equally effective. As 

MAD was overall larger for short conditions and present conditions, however, it may be that these 

conditions show corresponding increases in benefit.  

 Overall, as there are interactions between factors for unisensory RTs, it is difficult to make 

straightforward directional predictions for benefits at a glance. In addition, for median RT, there was 

a main effect of signal modality. Unisensory performance was therefore not equally effective in 

general; auditory RTs were slower and more variable than visual trials. According to a race model 

framework, this means that changes in benefits could be small.  

4.3.3. Comparative Approach Step 1: Multisensory Benefits 

Following the analysis of unisensory RTs, the first step of the comparative approach is to understand 

multisensory RTs. So far, consideration of unisensory RTs in relation to the race model principles has 

not suggested a clear directional prediction for benefits. To obtain a straightforward quantitative 

 

Figure 4.5 Unisensory RT analysis (Part 1) 
a, b) Median RT and MAD of RT across conditions. The left column shows auditory RTs and the right 
column shows visual RTs. All bars shown the mean of 20 participants (±1 SEM).  
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prediction, I applied the simple race model, which accounts for both principles in a single, parameter-

free estimate of benefit. I then calculated the empirical benefit, and compared this to the simple race 

model prediction.  

First, benefits were predicted (Figure 4.6a) according to the simple race model (see Section 

2.3.2.2). A 2×2 ANOVA revealed no main or interaction effects (all F≤1.325, p≥0.264, ηp2≤0.065). 

Therefore, benefit was predicted not to change across conditions. This is broadly in line with the lack 

of equal effectiveness seen in unisensory RTs.  

Next, benefits were measured empirically (see Section 2.3.2.1) to see if the results followed 

the pattern predicted by the simple race model (Figure 4.6b). A 2×2 ANOVA revealed no main or 

interaction effects (all F≤1.271, p≥0.274, ηp2≤0.063). Therefore, in line with the predictions of the 

simple race model, empirical benefits did not change across conditions. 

 

Figure 4.6 Predicting and measuring multisensory benefits (Part 1) 
a, b) Predicted and empirical benefits across conditions. All bars show the mean of 20 participants 
(±1 SEM). 
c) Empirical benefit as a function of predicted benefit. Each point represents data from one 
participant in one of the four conditions (80 data points total). Large symbols show the group mean.  
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Following the previous chapter (Chapter 3), I then applied additional analyses to further 

investigate predicted and empirical benefits. First, the correspondence between predicted and 

empirical benefits was evaluated on each participant’s data. To do this, predicted and empirical 

benefits were correlated for each condition of the 2×2 design. All correlation values were positive, and 

3 of 4 were highly significant (Table 4.1). Second, differences between predicted and empirical benefit 

were assessed for each participant. For an initial coarse understanding of the difference, predicted 

and empirical benefits were each averaged across conditions and compared with a paired-samples t-

test. The mean predicted benefit (0.030 ±0.003s) was overall smaller than the mean empirical benefit 

(0.038 ±0.004 s), t(19)=2.898, p=0.009, two-tailed. To assess if this difference varied across conditions, 

predicted benefits were then subtracted from empirical benefits for each condition. Interestingly, a 

2×2 ANOVA revealed a significant main effect of task-irrelevant stimulation, F(1, 19)=14.309, p=0.001, 

ηp2=0.430. The difference between empirical and predicted benefit was larger for absent conditions 

(0.011 ±0.003s) compared to present conditions (0.006 ±0.003s). There were no further main or 

interaction effects (all F≤3.182, p≥0.090, ηp2≤0.143).  

Overall, this analysis has shown that the simple race model predicts empirical benefits well. 

However, it has also shown that predicted benefits fall short of empirical benefits. An important 

finding, however, is that the presence of task-irrelevant stimulation appears to result in benefits which 

more closely follow the simple race model prediction. This can be understood in more detail by 

considering changes in interactions.   

4.3.4. Comparative Approach Step 2: Quantifying Interactions 

The second step of the comparative approach is to quantify interactions. These cannot be accounted 

for by the basic race model architecture, therefore changes in interactions may eventually suggest a 

reason for any discrepancy between predicted and empirical benefit. The overall aim of this chapter 

was to target both interactions. The first factor, signal duration, was introduced to manipulate history 

effects. The second factor, task-irrelevant stimulation, was introduced to manipulate context variance 

(as measured by violations of Miller’s bound).  

Table 4.1 Pearson correlation coefficients (and p values) comparing predicted and empirical 
benefits (Part 1) 

Signal duration  Predicted vs empirical 

  Task-irrelevant stimulation  

  Absent  Present 

Short  0.790 (p<0.001)  0.739 (p<0.001) 

Long  0.274 (p=0.243)  0.725 (p<0.001) 
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First, history effects (Figure 4.7a) were calculated (see Section 2.3.3.1). A 2×2 ANOVA revealed 

a significant intercept, F(1, 19)=140.644, p<0.001, ηp2=0.881. Thus, the overall history effect (0.040 

±0.003 s) was significantly greater than 0, and must be accounted for. As expected, there was a 

significant main effect of signal duration, F(1, 19)=8.345, p=0.009, ηp2=0.305. As hypothesised, and as 

found in the pilot study (Figure 4.1), the history effect was larger in short conditions (0.049 ±0.006 s) 

compared to long conditions (0.031 ±0.003 s). Further, there was also a marginal (i.e. p=0.05) main 

effect of task-irrelevant stimulation, F(1, 19)=4.374, p=0.050, ηp2=0.187. The history effect was larger 

in absent conditions (0.044 ±0.005 s) compared to present conditions (0.036 ±0.003 s). There were no 

further significant main or interaction effects (all F≤0.160, p≥0.694, ηp2≤0.008).  

As a further evaluation, the history index (Figure 4.7b) was calculated (see Section 2.3.3.1). 

As a brief reminder, the history index normalises the history effect by the variance of unisensory RTs. 

This measures how much the history effect contributed to RT variability (and thus overall benefit) in 

each condition. As for the history effect, there was also a significant main effect of signal duration, 

F(1, 19)=5.973, p=0.024, ηp2=0.239. As expected from the pilot study (Figure 4.1), the history index 

was larger in short conditions (0.355 ±0.040) compared to long conditions (0.264 ±0.044). In short 

conditions, therefore, the history effect contributed more to overall variability than long conditions. 

There was also a significant main effect of task-irrelevant stimulation, F(1, 19)=15.568, p=0.001, 

ηp2=0.450. The history index was larger in absent conditions (0.403 ±0.056) compared to present 

conditions (0.217 ±0.029). The history effect, therefore, contributed to overall variability more in 

absent compared to present conditions. There were no further significant main or interaction effects 

(all F≤1.574, p≥0.225, ηp2≤0.077).  

Second, violations of Miller’s bound (2.3.3.2) were considered (Figure 4.7c). A 2×2 ANOVA 

revealed a significant intercept, F(1, 19)=56.206, p<0.001, ηp2=0.747. Thus, the overall violation area 

(0.008 ±0.001 s) was significantly greater than 0, and must be accounted for. As expected, there was 

a significant main effect of task-irrelevant stimulation, F(1, 19)=8.020, p=0.011, ηp2=0.297. As 

hypothesised, violation was larger for absent conditions (0.009 ±0.001s) than for present conditions 

(0.007 ±0001s). There were no further significant main or interaction effects (all F≤0.637, p≥0.435, 

ηp2≤0.032).   

Overall, this analysis revealed the presence of both interactions. As hypothesised, history 

effects were reduced by making signals longer, and violations of Miller’s bound were reduced by 

introducing task-irrelevant stimulation. Interestingly, an effect of task-irrelevant stimulation occurred 

for both history effects and violation; both of which were weaker when task-irrelevant stimulation 

was present compared to absent. As these two interactions contribute to benefits beyond the basic 
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race mechanism, this explains why empirical benefits also come closer to predicted benefits when 

task-irrelevant stimulation is present.  

4.3.5. Comparative Approach Step 3: Applying the Context Variant Race Model  

For the third step of the comparative approach, I applied the context variant race model to account 

for changes in benefits and interactions. This includes two interaction parameters: rho (which 

accounts for history effects) and eta (which accounts for violations of Miller’s bound). Broadly, 

therefore, it is expected that the changes in interactions are also observed in the corresponding model 

parameters. 

Analysing the rho parameters (Figure 4.8a), a 2×2 ANOVA did not reveal a significant intercept, 

F(1, 19)=3.309, p=0.085, ηp2=0.148. Thus, the overall correlation modelled between unisensory rate 

distributions (-0.155 ±0.085) was not significantly different to 0. However, there was a significant main 

effect of task-irrelevant stimulation, F(1, 19)=14.412, p=0.001, ηp2=0.431. The correlation was more 

 

Figure 4.7 Quantifying interactions (Part 1) 
a, b) History effect and history index across conditions. 
c) Violation of Miller’s bound across conditions. All bars show the mean of 20 participants (±1 SEM). 
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negative in absent conditions (-0.223 ±0.082) than present conditions (-0.087 ±0.091). Interestingly, 

there was no significant main effect of signal duration as seen for history effect. There were also no 

further interactions (all F≤3.777, p≥0.067, ηp2≤0.166). Overall, the main effects observed for rho do 

not fully correspond to those seen for the history effect or the history index. Notably, however, the 

overall pattern in rho (Figure 4.8a) follows that of the history index (Figure 4.7b) as expected; a 

stronger negative correlation is found in conditions with a larger history index.  

Analysing the eta parameters (Figure 4.8b), a 2×2 ANOVA revealed a significant intercept, F(1, 

19)=128.152, p<0.001, ηp2=0.871. Thus, additional variability was added to unisensory rate 

distributions to account for the variability of redundant rate distributions (0.178 ±0.016 s-1). There was 

also a main effect of task-irrelevant stimulation, F(1, 19)=9.004, p=0.007, ηp2=0.322. The eta 

 

Figure 4.8 Fitting the context variant race model (Part 1) 
a, b) Best fitting rho and eta values across conditions. All bars show the mean of 20 participants (±1 
SEM). 
c) Empirical benefit as a function of model-fit benefit. Each point represents data from one 
participant in one of the four conditions (80 data points total). Large symbols show the group mean. 
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parameter was larger for absent conditions (0.200 ±0.019 s-1) than for present conditions (0.156 

±0.015 s-1). There were no further significant main or interaction effects (all F≤0.850, p≥0.368, 

ηp2≤0.043). Overall, the main effects observed for eta are equivalent to those seen for violations of 

Miller’s bound.  

Following the model-fit assessment in Chapter 3, benefit was calculated using the 

interpolated model-fit distribution in place of the empirical redundant RT distribution (Figure 4.8c). 

First, model-fit and empirical benefits were correlated. All 4 correlation values were positive 

correlated and highly significant (see Table 4.2). Second, differences between predicted and empirical 

benefit were assessed. Benefit was averaged across conditions and compared with a paired-samples 

t-test. The mean model-fit benefit (0.036 ±0.004s) was smaller than the mean empirical benefit (0.038 

±0.004 s), t(19)=3.194, p=0.005, two-tailed. To assess whether this difference was consistent across 

conditions, empirical benefit was subtracted from model-fit benefit for each condition. A 2×2 ANOVA 

revealed no significant main or interaction effects (all F≤2.789, p≥0.111, ηp2≤0.128). Thus, the 

difference between model-fit and empirical benefit (0.002 ±0.001 s) was consistent across conditions. 

Overall, the context variant race model came much closer to approximating the empirical 

benefit by accounting for interactions. Concerning the model parameters, the correspondence 

between eta and violation was evident on the level of main effects, but the correspondence between 

rho and history measures was only observed in general trends.  

 Interim Summary (Part 1) 

The comparative approach was first applied to AV signals. For Step 1, predicted benefits followed 

empirical benefits well on the individual participant level, further suggesting that the race model is a 

strong predictor of the empirical effect. However, no main or interaction effects were significant for 

either predicted or empirical benefit. For Step 2, the sensory interactions quantified were significant. 

For trial history effects, in line with the experimental hypothesis, there was a main effect of signal 

duration, whereby short signals elicited a larger history effect than long signals. Interestingly, a main 

effect of task-irrelevant stimulation was also observed for history effects, which were larger when 

task-irrelevant stimulation was absent compared to present. For violations of Miller’s bound, in line 

Table 4.2 Pearson correlation coefficients (and p values) comparing model-fit and empirical 
benefits (Part 1) 

Signal duration  Model-fit vs empirical 

  Task-irrelevant stimulation  

  Absent  Present 

Short  0.992 (p<0.001)  0.989 (p<0.001) 

Long  0.989 (p<0.001)  0.994 (p<0.001) 
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with the hypothesis, there was a main effect of task-irrelevant stimulation, whereby violation was 

larger in absent compared to present conditions. For Step 3, the context variant race model was 

applied. This approximated the empirical benefit much more closely, and (though not always 

producing identical main effects) there was overall a good correspondence between the interactions 

and the corresponding model parameters. Overall, the results of this experiment closely follow the 

hypotheses made at the start of this chapter. To ensure that the results observed here for the 

interactions were reliable and generalised across the senses, a second experiment was conducted. 

This was essentially the same as described in Section 4.2, but with 1) a different participant sample 

and 2) different modalities allocated to signals and task-irrelevant stimulation.  

 Methods (Part 2)  

The overall experimental procedure was virtually identical to Part 1 (Section 4.2). The only difference 

was that auditory and tactile stimulus vectors were switched (Figure 4.9). This experiment, therefore, 

used tactile-visual (TV) signals and the task-irrelevant stimulation was auditory (A).  

4.5.1. Participants  

This part of the experiment was carried out with a different sample of participants. 29 participants 

were initially recruited at the University of St. Andrews. Of these, there was one drop-out during 

 

Figure 4.9 Stimulus design for Chapter 4 (Part 2) 
In each plot, the lines indicate the onset/offset of signals (T, V) and the task-irrelevant stimulus 
(V). Illustrations depict a redundant signal trial. 
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testing, and eight met the miss rate exclusion criterion. Notably, all excluded participants met the miss 

rate criterion in the short-absent condition with tactile signals. This indicates that it was relatively 

difficult to detect the tactile stimulus in this condition. The data from 20 participants (15 female) were 

therefore analysed. Age of these participants ranged from 18-55 years. All were naïve as to the aims 

of the experiment. Normal hearing and normal/corrected-to-normal vision was reported in all cases. 

Reimbursement was £10.  

 Results (Part 2)  

For all repeated-measures ANOVAs presented in this section, factors adhere to the following ordering: 

signal duration (short, long) × task-irrelevant stimulation (absent, present). In some analyses, an 

additional factor was added: signal modality (T, V, [TV]).   

4.6.1. General Performance 

Participant performance was assessed before RT analysis to ensure ceiling performance. The 

percentage of false alarms for signal trials was averaged across the three trial types (T, V, TV). For 

signal trials, false alarms occurred on only 0.045% (±0.018%) of trials. A 2×2 ANOVA, however, 

revealed a significant interaction between signal duration and task-irrelevant stimulation, F(1, 

19)=6.234, p=0.022, ηp2=0.247. For short signal trials, false alarms occurred on 0.082% (±0.040%) of 

trials when task-irrelevant stimulation was absent, and on 0% of trials when task-irrelevant stimulation 

was present. For long signals, false alarms occurred on 0.049% (±0.036%) of trials when task-irrelevant 

stimulation was absent, and on 0.050% (±0.027%) of trials when task-irrelevant stimulation was 

present. The interaction therefore seems to be caused by the larger difference between the number 

of false alarms in short-absent and short-present conditions. However, false alarms are very rare in 

each condition. There were no other significant main or interaction effects (all F≤0.991, p≥0.332, 

ηp2≤0.050).  

For catch trials, false alarms occurred on 2.978% (±0.361%) of trials. A 2×2 ANOVA revealed a 

marginal (i.e. p=0.05) main effect of signal duration, F(1, 19)=4.361, p=0.050, ηp2=0.187. The 

percentage of false alarms was larger for short conditions (3.388% ±0.411%) than long conditions 

(2.567% ±0.411%). This may be expected if the short signals were slightly harder to detect, as 

participants might have been unsure if a signal was presented or not. There was also a significant main 

effect of task-irrelevant stimulation, F(1, 19)=82.524, p<0.001, ηp2=0.813. The percentage of false 

alarms was smaller for absent conditions (0.466% ±0.130%) than present conditions (5.489% 

±0.630%). There was also a significant interaction between signal duration and task-irrelevant 

stimulation, F(1, 19)=4.783, p=0.041, ηp2=0.201. For short signal trials, false alarms occurred on 

0.491% (±0.151%) of trials when task-irrelevant stimulation was absent, and on 6.284% (±0.760%) of 

trials when task-irrelevant stimulation was present. For long signals, false alarms occurred on 0.441% 
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(±0.180%) of trials when task-irrelevant stimulation was absent, and on 4.694% (±0.688%) of trials 

when task-irrelevant stimulation was present. The interaction therefore seems to come from a larger 

difference between short-absent and short-present conditions than between long-absent and long-

present conditions.  

Second, the percentage of misses averaged across signal modalities was only 0.708% 

(±0.093%). A 2×2×3 ANOVA revealed a significant main effect of signal duration, F(1, 19)=46.438, 

p<0.001, ηp2=0.710. The percentage of misses was larger for short conditions (1.268 ±0.166%) than 

long conditions (0.149 ±0.058%). There was also a significant main effect of task-irrelevant stimulation, 

F(1, 19)=32.992, p<0.001, ηp2=0.635. The percentage of misses was larger for absent conditions (1.010 

±0.129%) than present conditions (0.407 ±0.079%). There was also a significant main effect of signal 

modality, F(1.312, 24.921)=18.438, p<0.001, ηp2=0.492. Pairwise comparisons revealed that the 

percentage of misses on tactile trials (1.522 ±0.260%) was larger than on visual trials (0.580 ±0.141%, 

p=0.022) and on redundant trials (0.024 ±0.024%, p<0.001). Visual and redundant trials were also 

significantly different (p=0.003). As almost all further interactions of this analysis were significant, the 

remaining results are reported in the appendices (Section 9.5). To summarise, as seen in Table 4.3, 

these interactions likely arise because there was a disproportionately large number of misses for 

tactile signals in the short-absent condition. This corresponds to the large number of participants 

excluded from this analysis based on a high percentage of misses in this condition. 

Finally, the number of outliers was calculated based on the 1/RT transformed data (see 

Section 2.2.2). On average, fast outliers occurred on 0.31% (±0.05%) of RTs, whereas slow outliers 

occurred on 0.51% (±0.11%) of RTs. The overall percentage of outliers (~0.82%), therefore, was small 

and only slightly larger than would be expected if the 1/RT data followed a normal distribution (0.27%). 

Across all participants, 23623 valid RTs were included in the main analyses, with a mean of 98.4 (±0.16) 

valid RTs per participant for each condition (of a possible maximum of 100 RTs).  

Overall, as for Part 1, there were small differences in errors across conditions but the data 

indicate close to ceiling performance. One exception to this is performance in the short-absent 

Table 4.3 Percentage of misses (± SEM) for each condition by signal modality 

Condition Misses (%)  

 Signal Modality 

 Tactile (T) Visual (V) Redundant (TV) 

Short / Absent 4.145 (0.663) 1.125 (0.257) 0.094 (0.094) 

Short / Present 1.596 (0.372) 0.647 (0.324) 0.000 (0.000) 

Long / Absent 0.297 (0.146) 0.396 (0.168) 0.000 (0.000) 

Long / Present 0.050 (0.082) 0.151 (0.050) 0.000 (0.000) 
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condition for tactile trials. Here, there was a slightly larger number of misses, indicating that the signal 

was harder to detect. Even in this condition, however, the average number of included trials was still 

fairly close to maximum, with 94.6 (±0.93) of a possible 100 trials included. As such, accuracy was not 

formally considered. Importantly, as for Part 1, task-irrelevant stimulation leads to more false alarms 

as measured in catch trials in this experiment as well. This is considered later (Section 4.8).  

4.6.2. Unisensory RTs  

Prior to applying the comparative approach, unisensory RTs were analysed to indicate the general 

effect of experimental factors and to indicate potential changes in benefit. For median RT (Figure 

4.10a), a 2×2×2 ANOVA revealed a significant main effect of task-irrelevant stimulation, F(1, 

19)=18.413, p<0.001, ηp2=0.492. Median RT was larger for absent trials (0.330 ±0.010 s) compared to 

present trials (0.314 ±0.011 s). This might be explained by the task-irrelevant stimulus providing 

information about when a signal may or may not have been presented (which may have aided 

detection, particularly for short tactile trials). There was also a significant main effect of signal 

modality, F(1, 19)=29.892, p<0.001, ηp2=0.611. Median RT was larger for tactile trials (0.337 ±0.012 s) 

compared to visual trials (0.308 ±0.010 s). No other main or interaction effects were significant (all 

F≤3.207, p≥0.089, ηp2≤0.144). Overall, as there was a significant main effect of modality, this indicates 

that unisensory signals were not equally effective.  

For MAD of RT (Figure 4.10b), a 2×2×2 ANOVA revealed a significant main effect of signal 

duration, F(1, 19)=8.465, p=0.009, ηp2=0.308. MAD of RT was larger in short conditions (0.052 ±0.003 

s) compared to long conditions (0.047 ±0.003 s). There was also a significant main effect of signal 

modality, F(1, 19)=23.807, p<0.001, ηp2=0.556. MAD of RT was larger in tactile conditions (0.053 

±0.003 s) compared to visual conditions (0.045 ±0.003 s). There was a significant interaction between 

signal duration and signal modality, F(1, 19)=5.165, p=0.035, ηp2=0.214. For short conditions, there 

was a difference between tactile (0.058 ±0.003 s) and visual (0.046 ±0.003 s) MAD. For long conditions, 

however, tactile (0.049 ±0.003 s) and visual (0.045 ±0.004 s) MAD was more similar. This is in line with 

the performance analysis, which suggested short tactile signals were more difficult to detect. No other 

main or interaction effects were significant (all F≤4.359, p≥0.051, ηp2≤0.187). 

Overall, as there are interactions between factors for unisensory RTs it is difficult to make 

straightforward directional predictions for benefits. However for both median and MAD of RT, there 

is a main effect of signal modality. This means (as for Part 1) that signals were not equally effective; 

tactile RTs were slower and more variable than visual RTs. This means that changes in predicted 

benefits may be small.  
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4.6.3. Comparative Approach Step 1: Multisensory Benefits 

As for Part 1, the analysis of unisensory RTs does not provide a straightforward overall indication of 

how benefits should change. To obtain a straightforward quantitative prediction, I applied the simple 

race model. Empirical benefits are then measured and compared to the predicted benefit.  

First, benefits were predicted (Figure 4.11a) according to the simple race model (see Section 

2.3.2.2). A 2×2 ANOVA revealed no main or interaction effects (all F≤1.676, p≥0.211, ηp2≤0.081). 

Therefore, benefit was predicted not to change across conditions. This was in line with the lack of 

equal effectiveness observed in the unisensory RT analysis.  

Next, benefits were measured empirically (see Section 2.3.2.1) to see if the results followed 

the pattern predicted by the simple race model (Figure 4.11b). Interestingly, a 2×2 ANOVA revealed a 

significant main effect of task-irrelevant stimulation, F(1, 19)=4.806, p=0.041, ηp2=0.202. Benefits 

were larger in absent conditions (0.049 ±0.005 s) compared to present conditions (0.042 ±0.004 s). No 

 

Figure 4.10 Unisensory RT analysis (Part 2) 
a, b) Median RT and MAD of RT across conditions. The left column shows tactile RTs and the right 
column shows visual RTs. All bars show the mean of 20 participants (±1 SEM). 
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other main or interaction effects were significant (all F≤0.623, p≥0.440, ηp2≤0.032). Therefore, in 

contrast to the predictions of the simple race model, empirical benefits changed across conditions. 

This is considered in detail later.  

To further investigate the predictive power of the simple race model, additional analytical 

steps were applied. First, the correspondence between predicted and empirical benefits was 

evaluated for each participant for each condition of the 2×2 design. All 4 correlation values were 

positive and highly significant (see Table 4.4). Second, differences between predicted and empirical 

benefit were assessed. Benefit was averaged across conditions and compared with a paired-samples 

t-test. Mean predicted benefit (0.033 ±0.003s) was smaller than mean empirical benefit (0.046 ±0.004 

s), t(19)=7.348, p<0.001, two-tailed. To assess if this difference varied across conditions, predicted 

benefit was subtracted from empirical benefit for each condition. A 2×2 ANOVA revealed a significant 

main effect of task-irrelevant stimulation, F(1, 19)=21.156, p<0.001, ηp2=0.527. The difference 

 

Figure 4.11 Predicting and measuring multisensory benefits (Part 2) 
a, b) Predicted and empirical benefits across conditions.  All bars show the mean of 20 participants 
(±1 SEM).  
c) Empirical benefit as a function of predicted benefit. Each point represents data from one 
participant in one of the four conditions (80 data points total). Large symbols show the group mean.  
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between empirical and predicted benefit was larger for absent conditions (0.018 ±0.002s) compared 

to present conditions (0.008 ±0.002s). There were no further main or interaction effects (all F≤1.751, 

p≥0.201, ηp2≤0.084). As for Part 1, therefore, the presence of task-irrelevant stimulation results in 

benefits which are closer to the simple race model prediction.  

Overall, the results of Step 1 of the comparative approach show a good correspondence 

between predicted and empirical benefits across individual participants. However, empirical benefits 

showed a main effect of task-irrelevant stimulation which was not found in the predicted benefits: 

empirical benefits were larger when stimulation was absent compared to present. Further, the 

difference between empirical and predicted benefits was larger when stimulation was absent 

compared to present. These effects can be understood by considering the interactions, which go 

beyond the simple race model prediction. This is done in the next step. 

4.6.4. Comparative Approach Step 2: Quantifying Interactions 

The second step of the comparative approach is to quantify interactions which are not accounted for 

by the basic race model architecture. Based on experimental hypotheses (and the results of Part 1), 

the following main effects were expected to replicate. For history effects, a main effect of signal 

duration was expected, whereby short signals elicit larger history effects than long signals. For 

violations of Miller’s bound, a main effect of task-irrelevant stimulation was expected, whereby 

violation is larger when stimulation is absent compared to present.  

For history effects (Figure 4.12a), a 2×2 ANOVA revealed a significant intercept, F(1, 

19)=20.101, p<0.001, ηp2=0.514. Thus, the overall history effect (0.023 ±0.005 s) was significantly 

greater than 0, and must be accounted for. There was also a significant main effect of task-irrelevant 

stimulation, F(1, 19)=4.682, p=0.043, ηp2=0.198. The history effect was larger in absent conditions 

(0.028 ±0.006 s) compared to present conditions (0.018 ±0.006 s). This replicated a similar result found 

in Part 1. However, contrary to the experimental hypothesis and results of Part 1, the expected main 

effect of signal duration was not significant, as there were no further significant main or interaction 

effects (all F≤0.840, p≥0.371, ηp2≤0.042). As a further evaluation of trial history effects, the history 

index (Figure 4.12b) was calculated (see Section 2.3.3.1). Here, there was also a significant main effect 

of task-irrelevant stimulation, F(1, 19)=5.090, p=0.036, ηp2=0.211. The history index was larger in 

absent conditions (0.240 ±0.045) compared to present conditions (0.143 ±0.026). As for Part 1, the 

history effect therefore contributed to overall variability more in absent compared to present 

conditions. Again, however, there was no effect of signal duration, and no further interactions (all 

F≤0.345, p≥0.564, ηp2≤0.018).  
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For violations of Miller’s bound (Figure 4.12c), a 2×2 ANOVA revealed a significant intercept, 

F(1, 19)=140.010, p<0.001, ηp2=0.881. Thus, the overall violation area (0.009 ±0.001 s) was 

significantly greater than 0, and must be accounted for. As expected, there was a significant main 

effect of task-irrelevant stimulation, F(1, 19)=41.972, p<0.001, ηp2=0.688. Following the experimental 

hypothesis and results of Part 1, violation was larger for absent conditions (0.012 ±0.001 s) than for 

Table 4.4 Pearson correlation coefficients (and p values) comparing predicted and empirical 
benefits (Part 2) 

Signal duration  Predicted vs empirical 

  Task-irrelevant stimulation  

  Absent  Present 

Short  0.857 (p<0.001)  0.842 (p<0.001) 

Long  0.902 (p<0.001)  0.850 (p<0.001) 

 

Figure 4.12 Quantifying interactions (Part 2) 
a, b) History effect and history index across conditions.  
c) Violation of Miller’s bound across conditions. All bars show the mean of 20 participants (±1 
SEM). 
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present conditions (0.005 ±0001 s). There were no further significant main or interaction effects (all 

F≤1.630, p≥0.217, ηp2≤0.079).  

 Overall, both interactions were again significantly present in the data. The main effect of signal 

duration on the history effect found with AV signals was not replicated with TV signals, however a 

main effect of task-irrelevant stimulation did replicate; the history effect was larger for absent 

compared to present conditions. The expected main effect of task-irrelevant stimulation on violation 

also replicated; violation was again larger when stimulation was absent compared to present. This can 

directly account for why empirical benefit was closer to predicted benefit when task-irrelevant 

stimulation is present.  

4.6.5. Comparative Approach Step 3: Applying the Context Variant Race Model  

As a third step, I applied the context variant race model to explain benefits and interactions. As such, 

it is expected that the changes observed for interactions in the previous section are also observed in 

the corresponding model parameters.  

Analysing the rho parameters (Figure 4.13a), a 2×2 ANOVA revealed a significant intercept, 

F(1, 19)=37.975, p<0.001, ηp2=0.667. Thus, the overall correlation modelled between unisensory rate 

distributions (-0.295 ±0.048) was significantly different to 0. There was also a significant main effect 

of task-irrelevant stimulation, F(1, 19)=9.753, p=0.006, ηp2=0.339. The correlation was more negative 

in absent conditions (-0.399 ±0.061) than present conditions (-0.191 ±0.056). There were no significant 

main or interaction effects (all F≤1.675, p≥0.211, ηp2≤0.081). Overall, the analysis of rho corresponds 

to the main effects seen in the history effect and the history index. 

Analysing the eta parameters (Figure 4.13b), a 2×2 ANOVA revealed a significant intercept, 

F(1, 19)=153.472, p<0.001, ηp2=0.890. Thus, additional variability was added to unisensory rate 

distributions to account for the variability of redundant rate distributions (0.175 ±0.014 s-1). 

Interestingly, there was also a main effect of signal duration, F(1, 19)=7.975, p=0.011, ηp2=0.296. The 

eta parameter was smaller for short conditions (0.153 ±0.016 s-1) than for long conditions (0.198 

±0.016 s-1). There was also a main effect of task-irrelevant stimulation, F(1, 19)=33.951, p<0.001, 

ηp2=0.641. The eta parameter was larger for absent conditions (0.238 ±0.020 s-1) than for present 

conditions (0.113 ±0.015 s-1). There were no further significant main or interaction effects (all F≤0.395, 

p≥0.537, ηp2≤0.020). Overall, the analysis of eta shows the expected main effect of task-irrelevant 

stimulation found in violations of Miller’s bound. However, an additional effect of signal duration was 

also present. This suggests that more noise was introduced when two long signals were accumulated 

in parallel compared to two short signals.  
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Model fit was assessed by calculating benefit from the best-fitting model distribution and 

comparing it to empirical benefit (Figure 4.13c). For correlations values, all 4 were strongly positive 

and highly significant (see Table 4.5). Second, differences between predicted and empirical benefits 

were assessed. Benefit was averaged across conditions and compared with a paired-samples t-test. 

The mean model-fit benefit (0.043 ±0.004 s) was smaller than the mean empirical benefit (0.046 

±0.004 s), t(19)=6.160, p<0.001, two-tailed. To assess whether this difference was consistent across 

conditions, empirical benefit was subtracted from model-fit benefit for each condition. A 2×2 ANOVA 

revealed a significant main effect of task-irrelevant stimulation, F(1, 19)=4.953, p<0.038, ηp2=0.207. 

The difference between model fit and empirical benefit was larger in absent conditions (0.003 ±0.001 

s) compared to present conditions (0.002 ±0.0004 s). There was also a significant interaction between 

 

Figure 4.13 Fitting the context variant race model (Part 2) 
a,b) Best fitting rho and eta values across conditions. All bars show the mean of 20 participants (±1 
SEM). 
c) Empirical benefit as a function of model-fit benefit. Each point represents data from one 
participant in one of the four conditions (80 data points total). Large symbols show the group mean. 
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signal duration and task-irrelevant stimulation, F(1, 19)=5.127, p<0.035, ηp2=0.212. The difference 

between model fit and empirical benefit was similar for short-absent, short-present and long-absent 

conditions (0.003 ±0.001 s), but was smaller for long-present conditions (0.002 ±0.0004 s). There were 

no further significant main or interaction effects (all F≤0.307, p≥0.586, ηp2≤0.016).  

Overall, therefore, the context variant race model estimated the benefit well. Though there 

was still some difference between model-fit and empirical benefit, this was reduced in conditions 

where task-irrelevant stimulation was present, and was smallest in the long-present condition. 

Further, the model parameters generally followed effects observed in interactions.    

 Interim Summary (Part 2) 

Following the AV version of the experiment in Part 1, the comparative approach was applied again 

here with TV signals with the overall goal of replicating the effects observed. In Step 1, predicted and 

empirical benefits were strongly correlated on the individual subject level. However, empirical 

benefits were larger when task-irrelevant stimulation (A) was absent compared to present. There was 

no corresponding main effect in predicted benefits. In Step 2, significant interactions were observed. 

As for Part 2, it was expected that history effects would show a main effect of signal duration. 

However, no effect of signal duration was observed. Interestingly, however, the main effect of task-

irrelevant stimulation observed in Part 1 was replicated. It was also expected that for violations, there 

would be a main effect of task-irrelevant stimulation. This was replicated, as the violation area was 

larger for absent conditions compared to present conditions. In Step 3, the context variant race model 

provided a close account of benefits, and the model parameters closely followed the main effects seen 

in the interactions. Beyond this, eta demonstrated a main effect of signal duration; less noise was 

required in short conditions compared to long conditions. 

 Can Increased False Alarms Account For Reductions in Violation? 

In Parts 1 & 2, a reduction in violation was observed when task-irrelevant stimulation is present. This 

was interpreted, in line with experimental hypothesis, as evidence of a reduction in context variance 

by adding a third modality task-irrelevant stimulus. An alternative explanation, however, is that the 

reduction is a result of increases in anticipatory responses (as suggested by the larger number of false 

Table 4.5 Pearson correlation coefficients (and p values) comparing model-fit and empirical 
benefits (Part 2) 

Signal duration  Model-fit vs empirical 

  Task-irrelevant stimulation  

  Absent  Present 

Short  0.993 (p<0.001)  0.993 (p<0.001) 

Long  0.993 (p<0.001)  0.998 (p<0.001) 
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alarms on catch trials). Across both experiments in this chapter, false alarms on catch trials were 

higher when task-irrelevant stimulation was present compared to absent. If anticipatory false alarms 

contaminate signal RT distributions, we would expect violations to be smaller merely as an artefact 

(e.g. Gondan & Minakata, 2016; Miller & Lopes, 1991).  To rule out this possibility, therefore, an 

additional simulation was run. First, RTs on catch trials were calculated for each individual for both of 

the conditions where task-irrelevant stimulation was present (short-present, long-present). Second, 

these catch trial RTs were inserted into signal RT distributions for both conditions where task-

irrelevant stimulation was absent (long-absent, long-present). Following a Monte Carlo procedure, a 

random selection of valid RTs in each signal trial RT distribution was randomly replaced with the catch 

trial RTs. This simulation therefore should provide an estimate of how much we would expect violation 

to decrease based on the increased false alarm contamination alone.  

This simulation was run for each participant for both levels of signal duration. To estimate 95% 

confidence intervals (Figure 4.14), the simulation was repeated 1000 times (randomly replacing 

different signal RTs each time). Violation was calculated as in the experiment, such that the results for 

each participant (N=20) were averaged across each of the 1000 replications. This created 1000 

estimations of the mean violation area with increased false alarms. For Part 1 (AV signals) the mean 

empirical violation area for short-present conditions did not fall within the 95% confidence intervals, 

whereas the mean empirical violation area for long-present conditions was close to the edge of the 

 

Figure 4.14 Simulating the effect of false alarms on violation area 
The bars show the empirical violation data from Figure 4.7c (Part 1) and Figure 4.12c (Part 2). The 
red line indicates the 95% confidence intervals calculated from 1000 simulation values. The solid 
red dot shows the average violation calculated from the simulation results. Overall, the simulated 
values represent where the violation values for the present conditions (dark bars) should lie based 
on false alarms alone. If the dark bars are smaller than these expected values (shown in red), then 
false alarms cannot account for the reduction in violation.  
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confidence intervals. For Part 2 (TV signals) the mean empirical violation area was well outside the 

95% confidence intervals in both conditions which were simulated. This suggests that, while false 

alarms do indeed contribute to a reduction in violation area, they cannot account for the reduction in 

violation when task-irrelevant stimulation is present.  

 Discussion  

The overall aim of this chapter was to apply the comparative approach to identify sources of 

interactions. Two factors were introduced in a 2×2 design, each aiming to target a specific interaction. 

First, history effects were targeted by signal duration (short, long). It was hypothesised that short 

signals would elicit larger history effects than long signals. This result was found in Part 1 (AV signals) 

but not Part 2 (TV signals). Second, context variance (measured by violations of Miller’s bound) was 

targeted by task-irrelevant stimulation (absent, present). It was hypothesised that task-irrelevant 

stimulation would reduce context variance (and thus violations of Miller’s bound) when present 

compared to absent. This result was found in both Part 1 (AV signals) and Part 2 (TV signals). Overall, 

therefore, both interactions were successfully manipulated in at least one version of the experiment.  

Regarding trial history effects, it is interesting that for TV signals the main effect of signal 

duration did not replicate. There are several factors which may have contributed to this null result. 

First, though it is difficult to compare results between experiments with different samples, the overall 

history effect is larger for AV (Part 1) than TV (Part 2) signals. This has also been found in a previous 

experiment which tested combinations of A, V, and T signals (Gondan et al., 2004). Second, the tactile 

signal was generally weaker and elicited slightly poorer performance, particularly in the short-absent 

condition. This may have somehow interfered with the size of the history effect in this condition. As 

further evidence of this, individual history effects for each modality are shown in Section 9.6 of the 

appendices. Observing trends across conditions for both experiments, tactile signals are the only 

signals which fail to show a larger history effect in short-absent conditions than long-absent 

conditions. It might be therefore that if the tactile signal was delivered at a higher amplitude (to elicit 

stronger activation and overall more accurate performance) there may have been an overall main 

effect of signal duration. However, the goal here was to maintain the same level of stimulation for 

each modality across both parts of the experiment, to allow for comparisons between both parts. Thus 

the amplitude of the tactile stimulus was not altered from Part 1, and the problem was not observed 

until data collection for Part 2 had begun.  

 Continuing with the history effect, an interesting observation which replicated across both 

experiments was a main effect of task-irrelevant stimulation: history effects were larger when task-

irrelevant stimulation was absent as compared to present. Here, task-irrelevant stimulation was 

primarily introduced to target context variance and thus manipulate the violation area. However, 
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previous work has introduced similar manipulations to remove modality switching artefacts from 

neurophysiological data (Gondan et al., 2007). Thus, the observed effect of task-irrelevant stimulation 

on history effects within the present data is somewhat expected. Further, this effect fits with previous 

behavioural observations. First, history effects are typically not observed following redundant trials; 

one reason for this would seem to be that both modalities are engaged, and as such there is less of a 

switch cost to the following unisensory trial. Following a similar logic, if an additional third-modality 

stimulus is always present, it may somehow help participants divide attention between modalities 

such that there is a smaller cost of switching between them. Second, effects of irrelevant stimulation 

have been observed previously in attention experiments. For instance, Doyle and Snowden (2001) 

reported that an irrelevant auditory tone (i.e. one which is non-informative for the spatial location of 

a visual target) nonetheless seems to reduce invalid visual cueing costs. The authors explain this effect 

by proposing that the irrelevant stimulation helps observers disengage attention, making it easier to 

shift to the task-relevant location. It is possible that similar attentional mechanisms may therefore 

contribute to history effects.    

 Regarding violations, a task-irrelevant stimulus in a third modality reduced the overall 

violation area. The logic behind including this factor was that an irrelevant stimulus creates a greater 

similarity of stimulation across trials (i.e. reduced context variance, and correspondingly, violations of 

Miller’s bound). This main effect replicated over Parts 1 & 2. Further, an alternative explanation, which 

suggests that this may be due to an increase in false alarms associated with the task-irrelevant 

stimulus, was ruled out in a simulated experiment. The main effect of task-irrelevant stimulation was 

also mirrored in the eta parameter of the context variant race model. Overall, this is direct evidence 

to suggest that context variance introduces noise into the evidence accumulation process; when both 

decision-units are active simultaneously (as in redundant conditions), accumulation is less reliable 

than when only one is active (as in unisensory conditions). Overall, this suggests that context variance 

is an explanation for violations of Miller’s bound, which (following Miller, 1982) has typically been 

interpreted as evidence in favour of the alternative pooling model architecture.  

 Regarding the model parameters, it was anticipated that there would be a good 

correspondence between the main effects for rho and history effects. Overall, this appeared to be the 

case according to comparisons of trends by condition. Interestingly, however, this was not always the 

case for main effects observed in the ANOVA results; for example, in Part 1 (AV signals) there was a 

main effect of signal duration in the history effect, which was not found in rho. Importantly, however, 

though we expect a broad correspondence there may be differences in main effects between these 

measures as they are calculated on different trials. The trials which are used to calculate history 

effects, for example, account for only a small portion of the overall unisensory distributions, whereas 
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rho is modelled based on entire unisensory distributions. As such, the rho parameter may be sensitive 

to other effects which can influence correlations between unisensory distributions; one example may 

be any positive dependencies introduced between all RTs, such as by practice and fatigue effects. 

Similarly for eta, we generally expected that main effects would map onto those for the violation area. 

However, violation area is usually only observed across a small percentage of the overall distribution 

(i.e. at the fast tail), whereas eta is modelled across the whole distribution. It is possible, therefore, 

that additional effects reflected in eta (as seen in Part 2) are reflecting this additional sensitivity. The 

correspondence between interactions and model parameters is evaluated in detail in Chapter 6.  

Though not the main focus of the present manipulations, the comparative approach again 

shows that race models provide a useful framework for predicting and explaining benefits, with a 

strong correlation between predicted and empirical benefits across Parts 1 & 2. No main effects were 

predicted in benefits across Parts 1 & 2, as neither experimental factor strongly influenced unisensory 

RT performance. One additional reason for the lack of effects may be that unisensory signals were not 

equally effective in either Parts 1 or 2 (particularly for short signals). Changes in predicted benefits 

across these factors may have been found if signals for both modalities were calibrated to elicit similar 

performance.  

With TV signals, a main effect of task-irrelevant stimulation was also observed for empirical, 

but not predicted benefits. The comparative approach allows for a simple explanation of this 

discrepancy – for TV signals, there was a stronger main effect of task-irrelevant stimulation on 

violation. Violation contributes to empirical benefits, and is by definition unaccounted for in the simple 

race model prediction. Generally, changes in violation (though significant) are somewhat small. For 

example, the main effect of stimulus construction in Chapter 3 caused a reduction in violation of 

around 0.003 s, whereas the main effect of task-irrelevant stimulation in Part 1 of this chapter caused 

a reduction of around 0.002 s. These small changes may not have been reflected as significant changes 

in overall benefit. However, the reduction observed in Part 2 was around 0.007 s (substantially larger 

than Chapter 3, or in Part 1 of this chapter). This larger reduction in violation possibly arose because 

the auditory (A) task-irrelevant stimulation in Part 2 was stronger than the tactile (T) task-irrelevant 

stimulation in Part 1. Note, for instance, that the task-irrelevant T stimulation (0.05 s) in Part 1 was 

identical to the short T signal in Part 2 (with the latter signal condition demonstrating relatively high 

percentage of misses). This large reduction in violation following the use of a stronger task-irrelevant 

stimulus likely contributed to the main effect observed for empirical benefit. This highlights that there 

is an important relationship between benefits and interactions, which can be understood by 

quantifying both in a comparative analysis.  
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5. Experiment 3: Signal Strength vs. Response Effector  

 Introduction  

Application of the comparative approach in Chapters 3 and 4 has suggested that race models are a 

convincing candidate for explaining the benefits and interactions observed across experiments. In this 

chapter, I examine whether this approach is able to shed light on which underlying processing stages 

contribute to the benefits observed. Previous research in the RSP has long been interested in the 

underlying ‘locus’ of the RSE, proposing relatively discrete stages of processing at which benefits could 

potentially arise (e.g. Cavina-Pratesi, Bricolo, Prior, & Marzi, 2001; Diederich & Colonius, 1987; Giray 

& Ulrich, 1993; Miller, 1982; Minakata & Gondan, 2018; Savazzi & Marzi, 2008). Typically, these 

include stages for sensory processing and evidence accumulation (which I refer to the pre-decision 

stage), and a stage for executing the response when the decision is made (which I refer to the post-

decision stage). As previously demonstrated (Section 1.6.1), the race model already offers guiding 

principles for predicting and explaining changes in benefits based on properties of unisensory RTs. In 

particular, the race model implicates sources of RT variability as the underlying driving force behind 

benefit (the variability rule). In addition, however, examination of the race model architecture (Figure 

5.1) is also able to provide hypotheses for which sources of variability should contribute to benefit, 

and which should not. In this chapter, I introduce factors which target pre-decisional and post-

decisional variability within a 2×2 within-subjects design. This allows for an examination of the impact 

on benefit in relation to hypotheses made by the race model architecture (Figure 5.1).  

 

 

Figure 5.1 Pre-decisional and post-decisional stages in the race model architecture 
The race model explains the RSE by a race between two parallel decision-units, which produces 
statistical facilitation. Variability which contributes to pre-decisional race processes (green area) 
should therefore contribute strongly to benefits. Post-decisional variability (red area) however 
occurs after statistical facilitation of decision times, and so should not strongly contribute to 
benefits.   



 

123 
Experiment 3: Signal Strength vs. Response Effector   

5.1.1. Factor 1: Signal Strength  

The first factor, signal strength, aimed to target pre-decisional RT variability by varying the overall 

strength of evidence for both signal components. Previous authors (Otto et al., 2013; Otto & 

Mamassian, 2017) have noted that signal strength is a useful manipulation, as weakening the strength 

of signals leads to slower and more variable RTs (Wagenmakers & Brown, 2007). This allows the 

principles of race models to be tested. Previous studies have found conflicting results as to whether 

weaker signal strength decreases or increases benefits (e.g. Chandrasekaran, Lemus, Trubanova, 

Gondan, & Ghazanfar, 2011; Diederich & Colonius, 2004; Senkowski, Saint-Amour, Hofle, & Foxe, 

2011). Importantly, the race model offers the caveat that weaker signals should reliably produce larger 

benefit, but only if unisensory signals elicit similar performance (Otto et al., 2013). Based on the race 

model architecture (Figure 5.1), it is possible to derive a clear prediction for how this occurs and how 

it affects benefit. Here, the RSE is explained by a race process between two decision-units; benefits 

arise for redundant trials as a result of taking the faster of two decision times. Thus, in order for any 

variability source to contribute to benefit, it must impact this race process, which terminates when a 

decision is made. As signal strength affects the speed and variability of the accumulation process pre-

decision (Figure 5.2), changes in benefit are expected according to race models (provided there are 

not substantially large differences in unisensory RT distributions). In line with the variability rule, larger 

benefits should be seen for weak signals, as these give rise to slower and more variable unisensory 

RTs.    

Turning now to interactions, however, it is more difficult to have firm hypotheses. This is 

because previous research on signal strength has rarely quantified them (especially history effects). In 

the first experiment (Chapter 3), it was found that history effects were not manipulated by a change 

in stimulus construction, despite this factor eliciting large changes in the average and variability of 

unisensory RTs. These changes could be evidence of a change in signal strength, thus for the present 

experiment we might also expect no change. Alternatively, if previous unisensory trial acts to direct 

attention to a particular modality, it might be expected that the history effect is larger for weak signals. 

The idea here is that if attention is directed to the wrong modality, it may take longer to detect a signal 

and begin accumulation. This time-cost is likely to be larger if it is already more difficult to detect the 

signal. Regarding violations of Miller’s bound, recent research has indicated that weaker signals 

produce smaller violations of Miller’s bound (Minakata & Gondan, 2018). In addition, in the first 

experiment (Chapter 3), the size of violation was manipulated by stimulus construction, with complex 

signals producing smaller violations than simple signals. As above, if this result is interpreted as an 

effect of signal strength, smaller violations might be expected for weaker signals in this experiment. 
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5.1.2. Factor 2: Response Effector 

The second factor, response effector, aimed to target post-decisional components of RT by changing 

the way participants responded. Different effectors are associated with different time courses for 

responses within the same task, as they rely on different pathways through the brain and body. 

Saccadic responses made with the eye, for example, are typically much faster than manual responses 

(Bompas, Hedge, & Sumner, 2017). Similarly, manual responses are slower than pedal responses 

(Pfister et al., 2014; Wiggett & Tipper, 2015). Though studies rarely present data on intra-individual 

RT variability (as analysed here by MAD, for instance), we might also expect slower effectors to be 

more variable as well. Speeded responses by foot, for example, are likely to be more variable than 

speeded responses by hand, because individuals are usually much more practiced at making manual 

responses. A promising method for manipulating post-decisional variability, therefore, would be to 

simply change the effector the participant uses with a block of trials, from hand to foot. 

 Based on the race model architecture (Figure 5.1), a very different prediction is made for how 

variability in the post-decision effector stage would affect benefit. In contrast to signal strength 

 

Figure 5.2 Signal strength 
Considering complex stimuli (Section 2.1.2), auditory signals can be made weaker by reducing the 
volume, whereas visual signals can be made weaker by reducing the percentage of signal dots which 
rotate coherently. The right column shows a simplification of the evidence accumulation process. 
The shaded area shows the spread of a linear accumulation process (as in the LATER model, for 
example). The dashed line indicates threshold for decision. Overall, for each weak signal there is 
less evidence available at each time point. This leads to a shallower rise-to-thresold and thus longer 
and more variable decision times (shown by the larger spead of accumulation traces at the 
threshold).  
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(affecting pre-decisional variability), a change in response effector manipulates post-decisional (or 

non-decisional) variability. As this comes after the termination of the race process, all variability is 

ultimately common to signal trial RTs (both unisensory and redundant). As such, no substantial effect 

on benefits is expected according to race models (Figure 5.3). Furthermore, there is no clear reason 

to expect changes in interactions, as from a race model perspective (and following observations from 

Chapters 3 and 4) these are expected to have a largely pre-decisional locus.  

5.1.3. Experimental Hypotheses  

Overall it was expected that both main factors would significantly manipulate unisensory RTs to allow 

for an evaluation of the race model principles. For the first factor, signal strength, RTs were expected 

to be slower and more variable when the signal was weak, compared to strong. For the second factor, 

response effector, RTs were expected to be slower (and eventually more variable) when made with 

the foot, compared to the hand. Two contrasting experimental hypotheses were made for benefits, 

based on the race model architecture. For signal strength, the assumption was that pre-decisional RT 

variability would strongly contribute to benefits. Therefore, it was hypothesised that there would be 

a main effect of signal strength on benefit, with larger benefits in weak conditions compared to strong 

conditions. For the second factor, response effector, the assumption was that post-decisional 

components of RT do not contribute strongly to benefits. Therefore, no main effect of response 

effector for benefit was expected; benefits should be similar for hand and foot conditions.  

 

Figure 5.3 Response effector 
A pedal response component is predicted to be slower and more variable than the manual response 
component. However, as this variability is post-decisional, any change in variability on this 
component should have only a small impact on benefits. To demontrate this, RTs for all 3 signal 
conditions (100 trials, shown downsampled to 50) were simulated using an independent race model 
(left panel). To these same trials, an additional ‘motor component’ delay was randomly added from 
a normal distribution, to simulate slower and more variable responses made with the foot (right 
panel). Despite the overall changes in RTs, the benefit is ultimately similar in both conditions. This 
suggests that post-decisional components of RT should not contribute strongly to benefits.  
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 Methods 

5.2.1. Participants 

25 participants were initially recruited at the University of St. Andrews. Of these, there was one drop-

out during testing, and a further four participants met the miss rate exclusion criterion (>10% missed 

trials in any condition). The data from 20 participants (17 female) were thus analysed. Of these, age 

ranged from 18-24 years. All were naïve as to the aims of the experiment. Normal hearing and 

normal/corrected-to-normal vision was reported in all cases. Reimbursement was £10.  

5.2.2. Stimulus Design  

Stimuli were constructed according to a 2×2 design with factors signal strength (strong, weak) and 

response effector (hand, foot). Stimuli (Figure 5.4) were essentially the same as complex-consistent 

signals in Chapter 3 (Figure 3.3, bottom left) with the exceptions noted in the following sections.  

 

Figure 5.4 Stimulus design for Chapter 5 
Large rectangles depict the redundant signal pairings. Signal strength is indicated by colour, with 
strong signals shown in white and weak signals shown in grey. Small squares indicate the response 
effector used throughout trials within each condition.  
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5.2.2.1. Auditory Stimuli 

The auditory signal was a noise sound. This was presented within background stimulation (50 dB SPL, 

edge frequencies 0.5/2.4 kHz). Edge frequencies for the signal were 1.0/1.2 kHz. In strong 

conditions, the signal was presented at 48 dB SPL. In weak conditions, the signal was presented at 42 

dB SPL. All noise stimuli were filtered with a 2nd order Butterworth filter.   

5.2.2.2. Visual Stimuli  

The visual signal in all conditions was the coherent clockwise rotation of dots within random linear dot 

motion. In strong conditions, 50% of the dots rotated, whereas in weak conditions, 25% of the dots 

rotated.    

5.2.3. Procedure 

Each trial began by presenting the fixation point (green). The audio-visual background was also 

presented in complex conditions. Duration of the foreperiod was determined by two components: a 

fixed duration (1.9 s) and a random component drawn from an exponential distribution (mean: 0.25 

s). On signal trials, one of the three signals (A, V, or AV) was then presented until the participant 

responded (maximum duration: 1.5 s). On catch trials, no signal was presented and the audio-visual 

background continued for the maximum signal duration (1.5 s). To indicate the end of a trial, the 

fixation point turned red and all stimulation was halted for 0.1 s. The next trial was then initiated. 

 Similarly to Chapter 4, the first 0.5 s of the foreperiod was considered a ‘grace period’ in which 

responses would not trigger the end of a trial. This was because responses during this period were 

assumed to be erroneous responses to the onset of the end-of-trial feedback, rather than genuine 

false alarms. The duration was shortened from 1 s to 0.5 s based on the consistent timing of these 

error responses in Chapter 4 (see Section 4.2.3). If a response was made after this 0.5 s grace period, 

the fixation point changed from green to red. This indicated that the response had been recorded and 

the next trial would soon be initiated. All stimulation was halted for 0.1 s before initiating the next 

trial. Responses recorded within 1.5 s of a signal onset were initially considered valid. If the response 

was in error, a feedback screen was then presented for 2 s which informed the participant of the error. 

Responses recorded within the foreperiod (or at any point during catch trials) were considered false 

alarms. Signal trials in which no response was recorded within the maximum duration were considered 

misses.  

The whole experiment consisted of 16 blocks (4 blocks for each of the 4 experimental 

conditions). The order of these blocks was randomised for each participant according to a Latin square 

(all conditions intermixed). Breaks were given between blocks as required by the participant. The 

whole experiment lasted around 120 minutes.  
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 Results 

For all repeated-measures ANOVAs presented in this section, factors adhere to the following ordering: 

signal strength (strong, weak) × response effector (hand, foot). In some analyses, an additional factor 

was added: signal modality (A, V, [AV]).   

5.3.1. General Performance  

Prior to assessing RT, general performance was considered to ensure that the ceiling performance 

assumption was met. First, false alarms were considered. The percentage of false alarms was averaged 

across all three signal types (A, V, AV); this is because on false alarm trials, no signal is presented (as 

the response occurs in the foreperiod). For signal trials, false alarms occurred on 0.42% (±0.11%) of 

trials. A 2×2 ANOVA revealed a significant main effect of signal strength, F(1, 19)=5.849, p=0.026, 

ηp2=0.235. False alarms occurred less frequently in strong conditions (0.252 ±0.079%) compared to 

weak conditions (0.582 ±0.159%). This is expected as weaker signals are more similar to the 

background noise. Thus, participants are more likely to have mistaken the random background for a 

signal. There was also a significant interaction between signal strength and response effector, F(1, 

19)=8.788, p=0.008, ηp2=0.316. For hand conditions, the percentage of false alarms increased from 

strong (0.190 ±0.078%) to weak (0.734 ±0.211%) conditions. This was also true of foot conditions, but 

the increase from strong (0.314 ±0.091%) to weak (0.431 ±0.123%) conditions was smaller. No other 

main effects were significant (all F≤1.436, p≥0.246, ηp2≤0.070). For catch trials, false alarms occurred 

on 3.531% (±0.744%) of trials. The larger percentage of false alarms on catch trials compared to signal 

trials is explained by the fact that on catch trials, false alarms can occur over a longer time window (an 

additional 1.5 s, equivalent to the maximum signal duration). A 2×2 ANOVA revealed a significant main 

effect of signal strength, F(1, 19)=16.780, p=0.001, ηp2=0.469. False alarms were occurred less 

frequently in strong conditions (1.705 ±0.382%) compared to weak conditions (5.358 ±1.166%). This 

is also expected, as if signals are consistently strong it would be more difficult to confuse them with 

noise. No other main effects were significant (all F≤3.481, p≥0.078, ηp2≤0.155).  

Second, misses were considered. The percentage of misses averaged across signal modalities 

was only 0.873% (±0.142%). A 2×2×3 ANOVA revealed a significant main effect of signal strength, F(1, 

19)=47.028, p<0.001, ηp2=0.712. The percentage of misses was smaller for strong conditions (0.216 

±0.087%) than weak conditions (1.530 ±0.226%), as expected. There was also a significant main effect 

of signal modality, F(2, 38)=15.041, p<0.001, ηp2=0.442. Pairwise comparisons revealed that the 

percentage of misses on auditory trials (1.505 ±0.268%) was larger than on redundant trials (0.137 

±0.046%), p<0.001. The percentage of misses on visual trials (0.977 ±0.223%) was also larger than on 

redundant trials, p=0.003. The percentage of misses on auditory trials was not significantly different 

to visual trials (p>0.05). This is also expected, as redundant trials present two signals (and thus increase 
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the chances of detection in at least one modality). There was also a significant interaction between 

signal strength and signal modality, F(2, 38)=13.886, p<0.001, ηp2=0.422. For strong conditions, the 

percentage of misses was largest for auditory trials (0.325 ±0.137%), followed by visual trials (0.249 

±0.137%) then redundant trials (0.075 ±0.055%). For weak conditions, percentage of misses was also 

largest for auditory trials (2.686 ±0.446%), followed by visual trials (1.705 ±0.389%) then redundant 

trials (0.199 ±0.056%). Thus, the interaction likely comes from a larger difference in unisensory misses 

between strong and weak conditions. This may indicate that weak auditory signals were slightly more 

difficult to detect than visual signals. No other main or interaction effects were significant (all F≤3.283, 

p≥0.086, ηp2≤0.147). 

Third, all signal RTs were filtered for outliers according to the MAD criterion (Section 2.2.2). 

On average, fast outliers occurred on 0.69% (±0.11%) of RTs, whereas slow outliers occurred on 0.69% 

(±0.10%) of RTs. Thus, the overall percentage of outliers (~1.38%) is low, though slightly larger than 

would be expected if the 1/RT data followed a typical normal distribution (0.27%). As this experiment 

included weak signals, however, it is possible that slightly more false alarms fell in the early RT window, 

creating fast outliers. Similarly, participants were likely less practiced in the use of a foot pedal 

compared to a push button controller, which may have led to more frequent slow outliers. Across all 

participants, 23360 valid RTs were included in the main analyses, with a mean of 97.3 (±0.3) valid RTs 

per participant for each condition (of a possible maximum of 100 RTs).  

Overall, though there were small differences in false alarms and misses between conditions, 

largely owing to signal strength, performance was close to ceiling. Additionally, very few trials were 

removed as outliers, and so the number of trials in each condition was close to maximum. For these 

reasons, accuracy was not considered further in the analyses.   

5.3.2. Unisensory RTs 

Prior to applying the comparative approach, the effect of experimental factors on unisensory RT were 

analysed. It was expected that each factor would have a significant effect on unisensory RT 

distributions, both in terms of central tendency (evaluated by median) and variability (evaluated by 

MAD). These changes can then be interpreted in terms of the race model principles (Section 1.6.1) to 

make directional predictions for benefits. According to these principles, benefits should be larger 

when unisensory distributions are more similar (equal effectiveness principle) and more variable 

(variability rule). This gives an indication of the benefits that can be expected prior to applying the 

comparative approach.  

For median RT (Figure 5.5a), a 2×2×2 ANOVA revealed a significant main effect of signal 

strength, F(1, 19)=213.287, p≤0.001, ηp2=0.918. As expected, median RT was smaller in strong 

conditions (0.408 ±0.013 s) compared to weak conditions (0.532 ±0.018 s). There was also a significant 
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main effect of response effector, F(1, 19)=141.633, p≤0.001, ηp2=0.882. As expected, median RT was 

smaller in hand conditions (0.429 ±0.014 s) compared to foot conditions (0.511 ±0.017 s). There was 

also a significant interaction between signal strength and signal modality, F(1, 19)=11.551, p=0.003, 

ηp2=0.378. For strong conditions, median RT for auditory signals (0.389 ±0.014 s) was smaller than 

median RT for visual signals (0.427 ±0.012 s). For weak conditions, median RT for auditory signals 

(0.534 ±0.019 s) was slightly larger than median RT for visual signals (0.530 ±0.021 s), but overall these 

weak signals elicited basically the same performance. No other main or interaction effects were 

significant (all F≤2.185, p≥0.156, ηp2≤0.103). Overall, auditory and visual signals elicited more 

dissimilar performance for strong conditions. This may suggest, according to the equal effectiveness 

principle, that there will be smaller benefits for strong conditions. Most importantly, however, both 

factors were successful in strongly manipulating median RT, with a difference between the strong-

hand and weak-foot conditions of around 0.2 s. 

 

Figure 5.5 Unisensory RT analysis 
a,b) Median RT and MAD of RT across conditions. The left column shows auditory RTs and the right 
column shows visual RTs. All bars show the mean of 20 participants (±1 SEM). 
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Second, variability was evaluated by MAD of RT (Figure 5.5b). A 2×2×2 ANOVA revealed a 

significant main effect of signal strength, F(1, 19)=218.046, p≤0.001, ηp2=0.920. As expected, MAD of 

RT was smaller in strong conditions (0.046 ±0.003 s) compared to weak conditions (0.088 ±0.005 s). 

There was also a significant main effect of response effector, F(1, 19)=6.810, p=0.017, ηp2=0.264. MAD 

of RT was smaller in hand conditions (0.064 ±0.003 s) compared to foot conditions (0.070 ±0.004 s). 

Notably, this change in variability is much smaller (around 0.007 s) than the change elicited by signal 

strength (around 0.042 s). There was also a significant interaction between signal strength and signal 

modality, F(1, 19)=10.203, p=0.005, ηp2=0.349. For strong signals, MAD of RT for auditory signals 

(0.044 ±0.003 s) was smaller than MAD of RT for visual signals (0.048 ±0.003 s). For weak signals, MAD 

of RT for auditory signals (0.097 ±0.006 s) was larger than MAD of RT for visual signals (0.079 ±0.006 

s). There were no other significant main or interaction effects (all F≤3.371, p≥0.082, ηp2≤0.151). Thus, 

both factors were also successful in manipulating RT variability. In particular, signal strength had the 

largest effect, almost doubling the RT variability from strong to weak conditions.   

Overall, analysis of unisensory RTs indicated that both factors were successful in significantly 

manipulating unisensory RT distributions. Both measures showed a significant effect of signal 

strength: unisensory RT was slower and more variable for weak signals compared to strong signals. 

Further, both measures showed a significant effect of response effector: unisensory RT was slower 

and more variable for foot responses compared to hand responses. Following the directional 

predictions given by race model principles (particularly the variability rule) it is expected that benefits 

should generally follow the increases in variability across these factors. However, according to the 

race model architecture, the variability introduced by changes in signal strength should largely impact 

benefits, whereas variability introduced by changes in response effector should not impact benefits.  

5.3.3. Comparative Approach Step 1: Multisensory Benefits 

Having shown that each factor significantly manipulated unisensory RTs, the first step of the 

comparative approach looks to evaluate how these factors impacted multisensory RTs. First, the 

simple race model was applied to give a quantitative prediction for empirical benefit (see Section 

2.3.2.1 and Section 2.3.2.2). Second, empirical benefit was calculated. Finally, predicted and empirical 

benefits were compared.  

For predicted benefits (Figure 5.6a), a 2×2 ANOVA revealed a significant main effect of signal 

strength, F(1, 19)=52.728, p≤0.001, ηp2=0.735. The simple race model predicted that benefits would 

be smaller in strong conditions (0.026 ±0.003 s) compared to weak conditions (0.056 ±0.004 s). There 

were no other significant main or interaction effects (all F≤0.930, p≥0.347, ηp2≤0.047).  

For empirical benefits (Figure 5.6b), a 2×2 ANOVA revealed a significant main effect of signal 

strength, F(1, 19)=32.491, p≤0.001, ηp2=0.631. Empirical benefits were smaller in strong conditions 
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(0.036 ±0.004 s) compared to weak conditions (0.064 ±0.005 s). There were no other significant main 

or interaction effects (all F≤0.585, p≥0.454, ηp2≤0.030). Overall, therefore, empirical benefits matched 

predicted benefits. In addition, the lack of a main effect of response effector supports the hypothesis 

made based on the race model architecture.  

Predicted and empirical benefits were further compared to evaluate their overall 

correspondence (Figure 5.6c). First, predicted and empirical benefits were correlated for each 

condition of the 2×2 design. Of these correlation values, 4 of 4 were positive and highly significant (see 

Table 5.1). Second, differences between predicted and empirical benefit were assessed. Benefit was 

averaged across conditions and compared with a paired-samples t-test. The mean predicted benefit 

(0.041 ±0.003s) was smaller than the mean empirical benefit (0.050 ±0.004 s), t(19)=3.697, p=0.002, 

two-tailed. To assess whether this difference was consistent across conditions, predicted benefit was 

 

Figure 5.6 Predicting and measuring multisensory benefits 
a, b) Predicted and empirical benefits across conditions. All bars show the mean of 20 participants 
(±1 SEM). 
c) Empirical benefit as a function of predicted benefit. Each point represents data from one 
participant in one of the four conditions (80 data points total). Large symbols show the group mean.  
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subtracted from empirical benefit for each condition. A 2×2 ANOVA revealed no significant main or 

interaction effects (all F≤0.486, p≥0.494, ηp2≤0.025). Thus, the difference between predicted and 

empirical benefit (0.009 ±0.002 s) was consistent across conditions.  

Overall, therefore, there is a strong correspondence between predicted and empirical benefits 

on both the group and individual levels. However, as also seen in Chapters 3 and 4, the simple race 

model consistently underestimates empirical benefit. This is because the simple race model does not 

consider interactions, which can also contribute to benefits.  

5.3.4. Comparative Approach Step 2: Quantifying Interactions 

The second step of the comparative approach is to quantify two interactions which are not accounted 

for by the basic race model architecture. First, the history effect (Figure 5.7a) was quantified (see 

Section 2.3.3.1). A 2×2 ANOVA revealed a significant intercept, F(1, 19)=111.178, p<0.001, ηp2=0.854. 

Thus, the overall history effect (0.035 ±0.003 s) was greater than 0, and must be accounted for. There 

was also a significant main effect of signal strength, F(1, 19)=13.048, p=0.002, ηp2=0.407. The history 

effect was smaller for strong conditions (0.022 ±0.003 s) than weak conditions (0.049 ±0.006 s). There 

were no further significant main or interaction effects (all F≤0.227, p≥0.639, ηp2≤0.012). As a further 

evaluation of trial history effects, the history index (Figure 5.7b) was quantified (see Section 2.3.3.1). 

This provides a measure of how much the history effect contributed to overall unisensory RT 

variability, and therefore to benefits. Interestingly, a 2×2 ANOVA revealed no significant main or 

interaction effects (all F≤0.160, p≥0.694, ηp2≤0.008). Therefore, though weak signals elicit a larger 

history effect, the relative contribution of the history effect to variability of unisensory RTs is 

proportional for both strong and weak signals.   

Second, violation of Miller’s bound (Figure 5.7c) were quantified (see Section 2.3.3.2). A 2×2 

ANOVA revealed a significant intercept, F(1, 19)=73.836, p<0.001, ηp2=0.795. Thus, the overall 

violation area (0.008 ±0.001 s) was greater than 0, and must be accounted for. However, there were 

no significant main or interaction effects (all F≤0.328, p≥0.574, ηp2≤0.017).  

 Overall, both interactions were significantly present in the data. The history effect was larger 

when signal strength was larger, but the overall contribution to benefit (over experimental factors) 

did not change according to the history effect. The average violation (0.008 s) also roughly corresponds 

Table 5.1 Pearson correlation coefficients (and p values) for predicted and empirical benefits 

Signal strength  Predicted vs empirical 

  Response effector 

  Hand  Foot 

Strong  0.746 (p<0.001)  0.890 (p<0.001) 

Weak  0.671 (p=0.001)  0.693 (p=0.001) 
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to the difference observed between predicted and empirical benefits (0.009 s); however, violations 

did not change according to either experimental factor.  

 

5.3.5. Comparative Approach Step 3: Applying the Context Variant Race Model  

A third step of the comparative approach was to account for benefits and interactions by fitting the 

context variant race model (see Section 2.4.4.2). Broadly, the model parameters were expected to 

exhibit similar changes across conditions as the corresponding interactions. Therefore, rho (based on 

history index) and eta (based on violation) were not expected to change substantially across 

conditions.  

Analysing the rho parameters (Figure 5.8c), a 2×2 ANOVA revealed a significant intercept, F(1, 

19)=5.625, p=0.028, ηp2=0.228. Thus, the overall correlation modelled between unisensory rate 

distributions (-0.154 ±0.065) was significantly different to 0. However, there were no significant main 

 

Figure 5.7 Quantifying interactions 
a, b) History effect and history index across conditions. 
c) Violation of Miller’s bound across conditions. All bars show the mean of 20 participants (±1 SEM). 
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or interaction effects (all F≤1.213, p≥0.284, ηp2≤0.060). Thus, rho (much like the corresponding history 

index) did not change across conditions.  

Analysing the eta parameters (Figure 5.8d), a 2×2 ANOVA revealed a significant intercept, F(1, 

19)=59.001, p<0.001, ηp2=0.756. Thus, additional variability was added to unisensory rate 

distributions to account for the variability of redundant rate distributions (0.080 ±0.010 s-1). However, 

contrary to the analysis of violation, there was also a main effect of signal strength, F(1, 19)=5.797, 

p=0.026, ηp2=0.234. The eta parameter was larger for strong conditions (0.098 ±0.013 s-1) than for 

weak conditions (0.061 ±0.013 s-1). There was also a main effect of response effector, F(1, 19)=7.011, 

p=0.016, ηp2=0.270. The eta parameter was larger for hand conditions (0.100 ±0.016 s-1) than for foot 

conditions (0.060 ±0.009 s-1). There were no further significant main or interaction effects (all F≤0.431, 

 

Figure 5.8 Fitting the context variant race model 
a,b) Best fitting rho and eta values across conditions. All bars show the mean of 20 participants (±1 
SEM). 
c) Empirical benefit as a function of model-fit benefit. Each point represents data from one 
participant in one of the four conditions (80 data points total). Large symbols show the group mean. 
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p≥0.519, ηp2≤0.022). Interestingly, therefore, eta showed changes across both factors, which were 

not found in violations.  

As an assessment of model fit, benefit was calculated using the interpolated model-fit 

redundant RT distribution in place of the empirical redundant RT distribution. First, model-fit and 

empirical benefits were correlated as in Step 1. Of these correlations, all 4 were strongly positively 

correlated and highly significant (see Table 5.2). Second, differences between predicted and empirical 

benefit were assessed. Benefit was averaged across conditions and compared with a paired-samples 

t-test. Mean model-fit benefit (0.048 ±0.004 s) was smaller than mean empirical benefit (0.050 ±0.004 

s), t(19)=5.435, p<0.001, two-tailed. To assess whether this difference was consistent across 

conditions, empirical benefit was subtracted from model-fit benefit for each condition. A 2×2 ANOVA 

revealed no significant main or interaction effects (all F≤0.593, p≥0.451, ηp2≤0.030). Thus, the 

difference between model-fit and empirical benefit (0.002 ±0.0003 s) was consistent across 

conditions. 

Overall, the context variant race model provided a good fit, allowing for a much better account 

of the benefit. Further, the lack of changes in rho correspond well to the history index results. For eta 

however, there were main effects not observed in the corresponding violation analysis. Possible 

reasons for this are discussed in the next section.  

 Discussion  

In this chapter, I applied the comparative approach to test the effects of variability in two processing 

stages on multisensory benefit. Both factors (signal strength and response effector) were successful 

in significantly manipulating unisensory RTs in terms of both average (median) and variability (MAD). 

However, based on observations of the race model architecture (Figure 5.1) very different hypotheses 

were made for the ultimate effect these manipulations would have on benefits. For the first factor, 

signal strength, a main effect was expected on the analysis of benefits, whereby weak stimuli elicit 

larger benefits than strong stimuli. This was observed in both predicted and empirical benefit. 

However for the second factor, response effector, no main effect was expected in the analysis of 

benefit, as hand and foot conditions should give equivalent benefits. Correspondingly, there was no 

Table 5.2 Pearson correlation coefficients (and p values) comparing model-fit and empirical 
benefits 

Signal strength  Model-fit vs empirical 

  Response effector 

  Hand  Foot 

Strong  0.993 (p<0.001)  0.997 (p<0.001) 

Weak  0.997 (p<0.001)  0.993 (p<0.001) 
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change in predicted or empirical benefits for this condition. Overall, therefore, the results on benefits 

are in line with predictions made based on the race model architecture. 

An important consideration for the above is that, although the race model architecture 

predicts that response variability should not contribute to benefits, the simple race model (as a 

predictive tool) is blind to the source of variability. A more convincing result, therefore, might have 

been to observe a main effect of response effector in predicted benefits, but not empirical benefits. 

The fact that this main effect in predicted benefits was not observed may alternatively suggest that 

the size of the variability added by changing from hand to foot responses was simply not strong 

enough to influence the size of the benefit, regardless of whether the source was pre-decisional or 

post-decisional. Indeed, the change in unisensory MAD between hand and foot (though significant) 

was actually relatively small (~ 0.007 s). Nonetheless, because this change in variability is so small (in 

comparison to substantial changes in median RT), this suggests that (in contrast to previous pooling 

approaches which have posited a response stage locus of the RSE) targeting the response component 

is ultimately not useful for manipulating the size of the RSE.   

The present experiment corroborates previous research that suggests that signal strength 

significantly contributes to multisensory benefits (e.g. Diederich & Colonius, 2004). Previously, this 

effect has been explained in terms of the neurophysiological principles (e.g. Stein & Stanford, 2008; 

Stein et al., 2014), which suppose that benefits should increase when signal strength decreases 

(discussed further in Section 7.1.2). However, previous research has shown that this broad rule can 

fail (Chandrasekaran et al., 2011; Juan et al., 2017; Otto et al., 2013). As an alternative, the race model 

principles of equal effectiveness and the variability rule have been shown to explain this effect in terms 

of response time distributions; weak signals elicit more variable RTs. Further to this, the 

correspondence between race-model predicted benefit and empirical benefit was shown to extend to 

the individual participant level.  

Regarding interactions, it is interesting to note that violation was not affected by either factor. 

This would seem to contrast with a previous study which observed that violation was manipulated by 

signal strength, with weaker signals eliciting smaller violations (Minakata & Gondan, 2018). There are 

however experimental differences between these two studies which may account for this result. For 

instance, these authors intermixed strong and weak signals in a go/no-go task, such that in some 

blocks participants only responded to strong signals and ignored weak signals (and vice versa). In 

addition, these authors computed the difference on the group level rather than the individual level. 

An alternative possible explanation of this discrepancy, however, concerns the role of context 

explored in Chapters 3 and 4. In the present experiment, we presented continuous background noise, 

which was equivalent in strong and weak conditions. Thus, there was little change in the context 
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between unisensory and redundant trials depending on signal strength. In Minakata and Gondan’s 

study, however, signals were sudden-onset without background stimulation. In this case, the sudden 

onset of two strong signals compared to one (as for redundant compared to unisensory trials) is a 

larger change in context, whereas the onset of two weak signals compared to one is a smaller change 

in context.    

Regarding the model parameters, a general correspondence with the interactions was 

expected. In line with this, there was no change in rho across factors (which was in accordance with 

the lack of main effects for the history index). For eta however, main effects of signal strength and 

response effector were observed, whereas violation did not change across conditions. Regarding 

signal strength, it is possible that stronger signals elicit more noise than weaker signals (as shown in 

Chapter 3 for sudden-onset stimuli) as eta is simply more sensitive to such effects than violation. 

Regarding the main effect or response effector, however, there is no clear reason that noise should 

be smaller for foot responses than hand responses. In fact, this likely points to problems in the 

assumptions made by the context variant race model. The context variant race model builds the 

interaction parameters on top of LATER units (see Section 2.4.4.1), which are fitted to unisensory 

distributions. The LATER model is a fairly simplistic model of RT, which assumes that all of the RT is 

decision time. As such, it does not explicitly model any non-decision components of RT, such as delays 

coming from the response component. Though this simplification likely causes little issue when 

comparing across responses made with the same effector, it may cause issues when comparing 

different effectors (e.g. hand and foot). This is because, as we have seen, large delays of around 0.082 

s were added by responding with the foot compared to the hand. While we can safely attribute this 

to non-decisional processing, the LATER model can only interpret this change as a change in decisional 

processing, (i.e. slower evidence accumulation). As such, less noise will be required to produce the 

same interference simply because of changes in the LATER parameters (Figure 5.9).  

In order to further investigate this possibility, I ran a simulation using the context variant race 

model (see Section 9.7 in the appendix for full details). I simulated 100 RTs from the context variant 

race model, and repeated the simulation 1000 times to obtain different samples of RTs. Next, I added 

an additional motor component (0.1 s) to all simulated sets of RTs. Fitting the context variant race 

model back to this data revealed a reduction in the recovered values for both mu and sigma. Further, 

the recovered eta parameter was essentially halved (0.051 s-1) compared the value used to initialise 

the simulation (0.100 s-1). Thus, the reduction in eta observed from hand to foot responses likely arises 

from an issue in fitting the LATER model across conditions with large changes in non-decisional 

components, rather than a genuine effect in decisional processes.   



 

139 
Experiment 3: Signal Strength vs. Response Effector   

One solution to this issue would be to include a non-decision component into the model, 

which explicitly models the post-decisional response element of RT. The pre-decisional component 

(modelled by the existing 6 parameters of the model) is expected to be the same for hand and foot 

conditions, and should change only between strong and weak conditions. Conversely, the post-

decisional component is expected to be the same for strong and weak conditions, and change only 

between strong and weak conditions. The overall model parameters could be fit to the data for all 

conditions in the design simultaneously, according to these assumptions. Though it was not possible 

to implement such a model using current fitting procedures (and is thus unfortunately beyond the 

scope of the present thesis), developments towards this goal would allow firmer interpretation on the 

underlying changes in processing between these factors.    

 

Figure 5.9 Problems modelling changes in non-decisional RT components with LATER models 
In this experiment, the factor response effector produced a large change in median RT, which can 
safely be attributed to changes in non-decisional components of RT (i.e. the post-decisional 
response stage). Ideally, such non-decisional RT components would be modelled separately from 
decisional components when fitting the RT distribution (top panel). The LATER model however, as 
a simple approximation of the sequential sampling framework, has only two parameters (mu, 
sigma), which both reflect changes in decisional components. As such, the increased delay with foot 
responses will be interpreted as a change in decision time, and thus will be fitted by different mu 
and sigma values (bottom panel). Compared to hand responses, mu values for foot responses 
became smaller to account for the increase in median (see Section 9.8 for average model parameter 
values by condition). Similarly, sigma values for foot responses were smaller because, as mu 
becomes smaller, less trial-to-trial variability in rate values is needed to capture the same degree of 
variability in RT (vertical arrows). This is due to the geometry of how rates project on the threshold.  
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6. Examining Trends in Experimental Data  

Across the experimental chapters presented in this thesis, four complete redundant signal 

experiments have been reported. Together, these experiments provide a substantial body of data, 

with 95367 valid RTs collected in total. In addition, each of these four experiments followed the same 

2×2 within-subjects design and applied the same three analytical steps according to the comparative 

approach (see Figure 1.19 for a review). Therefore, each experimental dataset (20 participants, 4 

conditions) provides 80 unique values for each benefit and interaction measure, as well as each model 

parameter fitted. As a final exploratory step, therefore, these data values (320 in total) were evaluated 

together to reveal overall trends. 

 Race Model Principles and Empirical Benefits  

One of the overarching goals of this thesis was to evaluate the power of the race model architecture 

to predict multisensory benefits. Given that the race model is typically rejected, following the standard 

interpretation of the seminal paper by Miller (1982), there has been little work on evaluating the 

model’s predictive principles. These principles were only recently highlighted by Otto et al. (2013). To 

date, only a small body of work has evaluated the two principles (Section 1.6.1), however this has 

been largely supportive of their propositions. For instance, Harrar et al. (2017) tested different 

stimulus onset asynchronies, and found that benefits were largest when the resulting unisensory RT 

distributions were most similar. This supports the principle of equal effectiveness. Otto et al. (2013; 

see their Figure 6) also noted that, across signal strength conditions, empirical benefits follow 

predicted benefits on the level of group (i.e. Vincent averaged) RT distributions. To contribute to this 

growing body of work, I evaluated the predictions of the race model (and the individual principles) 

over the individual RT distributions collected here.  

In the previous experimental chapters, the race model’s predictive power has been assessed 

by measuring the correlation between individuals’ empirical benefits and the benefits predicted by 

the simple race model. In the majority of conditions, these correlations were positive and significant 

(14/16 conditions). This suggests that the simple race model is a robust and effective tool for 

estimating empirical benefit for individual participants. To further highlight this here, I collated all 

values of predicted and empirical benefit from the previous experimental chapters (Figure 6.1). 

Overall, despite very different experimental manipulations across these experiments, empirical 

benefits clearly follow the simple race model prediction. This suggests that, if nothing else, the simple 

race model is an easy-to-implement, parameter-free ‘rule of thumb’ for estimating empirical benefit. 

More importantly, this strongly suggests that the race model may provide the basic combination rule 

for responses to multiple signals.  
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What drives the simple race model’s prediction (and, assuming the framework is correct, the 

empirical benefit)? As noted in the introduction (Section 1.6.1), two principles determine the overall 

quantitative prediction (Otto et al., 2013). For each principle, a corresponding measure can be 

computed and evaluated. The first principle, equal effectiveness, states that benefit increases as the 

difference between unisensory RT distributions decreases. Thus, a negative relationship is expected 

between empirical benefit and the difference between unisensory distributions. To assess this 

principle, one straightforward evaluation would be to compute the difference between the averages 

for unisensory RTs. As a simple measure, the absolute difference between medians of unisensory RTs 

was calculated as 

𝑚𝑒𝑑𝑖𝑎𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  |�̃� − �̃�|, (29) 

where 𝑋 and 𝑌 are the unisensory RT distributions.  

 

Figure 6.1 Evaluating the quantitative predictions of the simple race model 
Empirical benefit shown as a function of the benefit predicted by the simple race model. Each data 
point represents a participant. Each experiment (colour-coded) contained 20 participants, and 
consisted of 4 within-subjects experimental conditions (individual conditions not colour coded). The 
overall plot therefore shows 320 measures of benefit across 80 participants.  
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The second principle, the variability rule, states that benefit increases as unisensory RT 

variability also increases. Specifically, benefit is determined by the unisensory distribution with the 

smallest variability; as shown by Otto et al. (2013) in RT simulations (reproduced here in Figure 1.14), 

further increasing the variability of the most-variable unisensory distribution does not add to benefits. 

Thus, a positive relationship is expected between the empirical benefit and the smaller of the two 

unisensory RT variabilities. To assess this, one straightforward method is to simply select the smallest 

unisensory variability. As a simple measure, the minimum unisensory MAD was calculated as 

 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑀𝐴𝐷 = 𝑚𝑖𝑛(𝑀𝐴𝐷(𝑋), 𝑀𝐴𝐷(𝑌)). 
 
(30) 

 

 

Before exploring the relationship between these predictive measures and empirical benefits 

(Figure 6.2), it is worth highlighting again how each principle works to increase benefit. According to 

the race mechanism, the benefit is determined by the size of the overlap in unisensory RTs; it is only 

where unisensory RTs overlap that a race mechanism can produce statistical facilitation. Benefits 

become larger, therefore, as the overlapping area between unisensory RT distributions increases. 

Conversely, if there is very little to no overlap in unisensory RTs, then no benefit is expected. Each 

principle suggests the extent of this overlap in a different way. First, consider equal effectiveness. If 

both distributions are completely equally effective, then there is a perfect overlap between them; 

thus, benefits should be maximised for those particular signals. Second, consider the variability rule. 

If both unisensory RT distributions are very variable, then the area of overlap can potentially be large 

because both distributions are wide. Notably, variability has the larger potential to increase benefits. 

For instance, consider two distributions demonstrating equal effectiveness. If both distributions are 

not very variable, then there will be only a small benefit of a race mechanism. This is because even 

though there is complete overlap, the area of this overlap is small. However, if both distributions are 

very variable, there will be a large benefit of a race mechanism as the overlapping area is much larger 

(as a demonstration of this, compare the top and bottom panels of Figure 1.14). Further, even in cases 

where equal effectiveness does not hold entirely (i.e. RT distributions have differences in their 

medians), then there may still be a substantial overlap if distributions are sufficiently variable. Overall, 

therefore, the variability rule is the main driver of benefit according to race models principles.  

Having reviewed how the race model principles work, the relationships shown in Figure 6.2 

become clear. Considering the median difference (Figure 6.2a), there appears to be a negative 

relationship overall as expected; however, this relationship is rather weak. One reason for the weak 

relationship is that in the majority of cases, the median difference is actually quite small (i.e. <0.05 s). 

This is expected given that the signals used in these experiments were designed to elicit roughly similar 
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unisensory performance. A second reason is that, with small differences in median performance, large 

differences in benefits can be observed as the RT variability more strongly determines the area of 

overlap. Considering the minimum MAD (Figure 6.2b), a strong positive relationship is shown, as 

expected. This demonstrates, in line with the evaluation of median difference, that unisensory RT 

variability is a much stronger determinant of benefits. Ultimately, therefore, the equal effectiveness 

principle can be understood as a prediction for maximising benefits given two predetermined signals. 

Variability, however, is a much better indicator for the size of the benefit provided unisensory RTs 

show roughly similar performance.   

Overall, this evaluation strongly supports the race model principles as an explanation of 

overall changes in benefits. This adds to previous studies (Harrar et al., 2017; Otto et al., 2013) which 

have evaluated these principles in some way. In particular, this analysis has provided strong support 

for the variability rule with a large scale analysis on the level of individual participants. Given that 

unisensory performance was not strictly calibrated here, further experiments may wish to add to this 

evaluation by investigating the equal effectiveness principle in detail. By following similar signal onset 

manipulations to the authors above (Harrar et al., 2017; Otto et al., 2013), for instance, experiments 

could evaluate the extent to which calibrating signal timing for each individual (to produce maximally 

overlapping RT distributions) maximises the overall multisensory benefit observed.  

 

Figure 6.2 Evaluating the race model principles 
a, b) Empirical benefit as a function of the median difference (Equation 29) and minimum MAD 
(Equation 30) of unisensory RTs.  Each data point represents a participant. Each experiment (colour-
coded) contained 20 participants, and consisted of 4 within-subjects experimental conditions 
(individual conditions not colour coded). The overall plot therefore shows 320 estimates across 80 
participants.       
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 Modelling Empirical Benefits and Interactions  

The previous section demonstrated that the most basic race model provides a strong account of 

changes in benefit, suggesting a basic combination rule for multiple signals. However, it is important 

to note that this is not a complete account. For instance, in Figure 6.1, the simple race model 

consistently underestimates the empirical benefit. This is because the race model does not account 

for additional processing interactions which are observed empirically. This thesis has attempted to 

provide a more complete account of the RSE observed in each experiment by quantifying these 

interactions and subsequently accounting for them in the race model. In this section, I evaluate the 

effectiveness of this model’s account.  

As a reminder, both interactions contribute to multisensory benefits beyond the basic race 

mechanism. First, trial history effects contribute to benefits by increasing the variability of unisensory 

RTs. When a unisensory trial is repeated, RTs are typically fast, and when a unisensory signal is 

switched, RTs are typically slow (Section 1.7.1). This is an additional source of variability, which 

contributes to benefits according to the variability rule (Section 1.6.1.2). This interaction therefore 

violates the assumption of statistical independence (Section 1.4.1) in the basic race model. Second, 

violations of Miller’s bound represent the area of multisensory benefit which is not accounted for by 

the basic race mechanism (Section 1.7.2). Under the race framework, this interaction suggests context 

variance (the processing of each unisensory component signal is different between unisensory and 

redundant trials). This interaction also violates the assumption of context invariance (Section 1.4.2) in 

the basic race model. Ultimately, both interactions can be incorporated into the race model 

framework, as demonstrated by the context variant race model (Otto & Mamassian, 2012). To account 

for history effects, a correlation parameter rho is included which allows statistical dependencies. To 

account for violations, the noise parameter eta is added to the variability of each decision-unit on 

redundant trials, which allows context variance.  

 First, I consider the context variant race model’s ability to account for individual benefits. In 

experimental chapters, this was done by computing the correlation between model-fit and empirical 

benefits. It was expected that if interactions were successfully accounted for, then the model would 

be able to capture the empirical benefit much more effectively than the simple race model alone. In 

support of this, correlations in all 16 conditions were strongly positive and highly significant. This 

suggests that the context variant race model is able to account for empirical benefit across very 

different experimental manipulations. To further highlight this here, I collated all values of model-fit 

and empirical benefit from experimental chapters (Figure 6.3). All values closely follow the identity 

line, which suggests that the context variant race model provides a near-perfect explanation of the 

empirical benefit on the individual level.  
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Second, I consider the context variant race model’s ability to account for interactions. In experimental 

chapters, this has been more broadly evaluated by the correspondence in the main effects observed 

in ANOVAs, and the general trends in group means. The consideration here is that if the model 

parameter properly accounts for the corresponding interaction, then both should change between 

experimental conditions in corresponding ways. In contrast to benefits, comparison on the group level 

here allows for greater clarity; this is because interactions are based on fewer trials than benefits. The 

history effects, for instance, takes only a small number of unisensory trials (in which repetitions or 

switches occurred) into account. Similarly, violations typically occur over a smaller area of the whole 

distribution than benefits (i.e. the fast tail). The larger variability in these measures, therefore, makes 

it difficult to evaluate overall trends on the individual level. In the following sections, therefore, I have 

computed the group average for each interaction and each model parameter (Figure 6.4).  

First, the relationship between trial history effects and rho was considered (Figure 6.4a). 

Because trial history effects typically result in negative correlations, it is expected that there will be a 

negative relationship between these measures (i.e. a larger trial history measure corresponds to a 

 

Figure 6.3 Evaluating the context variant race model account of benefits 
Empirical benefit shown as a function of the model-fit benefit.  Each data point represents a 
participant. Each experiment (colour-coded) contained 20 participants, and consisted of 4 within-
subjects experimental conditions (individual conditions not colour coded). The overall plot 
therefore shows 320 measures of benefit across 80 participants. 
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more negative rho value). In particular, it is useful to compare history index and rho, as both are 

indicative of contributions to overall benefit. Indeed, observing the overall trend (Figure 6.4a), though 

there is some variability, there appears to be a weak negative relationship, as expected. This suggests 

that rho broadly captures empirical trial history effects in the data.   

Second, the relationship between violations of Miller’s bound and eta was considered (Figure 

6.4b). Violations, under a race model framework, are indicative of greater context variance. One 

possible manifestation of this, as proposed by the context variant race model, is that each decision-

unit is corrupted by additional noise (eta) when another signal component is also present. Therefore, 

a positive relationship is expected between violation and eta, as greater context invariance would 

produce more noise. Observing the trend between these measures (Figure 6.4), the relationship 

appears to be positive, as expected. This suggests that eta captures the violation area well. Further, 

this supports the context variant race model’s explanation of this violation i.e. context variance arising 

from increased noise in redundant conditions. 

 Overall, this section suggests that race models can provide a complete account of the RSE by 

considering processing interactions (statistical dependencies, context variance) which impact benefits 

beyond the basic combination rule (statistical facilitation). Furthermore, the effectiveness of the 

context variant race model to account for both benefits and interactions is demonstrated; this model 

captures effects observed in interactions, and provides a clear explanatory framework for how such 

interactions arise. By employing this model, the RSE can be accounted for near perfectly (Figure 6.3).  

It is important to be aware, however, that more complex models always have the potential to 

offer better explanations, because adding more parameters almost always improves fitting. For this 

 

Figure 6.4 Relating interactions to model parameters  
a) History index as a function of the rho parameter. 
b) Violation as a function of the eta parameter. In both plots, each point shows the average of 20 
participants. 
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reason, the parsimony of models is also important (Burnham & Anderson, 2002; Palminteri et al., 

2017). In the following model-based section, therefore, I evaluate the context variant race model 

fitting in more detail.      

 Evaluating the Context Variant Race Model  

In the previous section, I noted the context variant race model’s ability to provide an excellent account 

of benefits and interactions. This suggests that a clear framework for the RSE is in fact possible using 

race models. In this section, I evaluate the specific formulation of the context variant race model 

proposed by Otto and Mamassian (2012). In a first evaluation, I examine an alternative fitting 

procedure. This allows for a test of whether different fitting procedures produce essentially the same 

results. The alternative fitting procedure also provides a basis for further model selection. In a second 

evaluation, I compare nested versions of the context variant race model using model selection tools 

(Section 2.4.3). This allows for a test of whether the additional interaction parameters are useful for 

explaining behaviour, and broadly suggests whether the context variant race model is a parsimonious 

account of the RSE. As a final evaluation, I examine small discrepancies between the context variant 

race model fit and benefits. This suggests room for further improvement in modelling studies beyond 

the present thesis.    

6.3.1. Comparing Fitting Procedures 

An important consideration for the context variant race model is whether the precise fitting procedure 

is important. Since Miller (1982), common practice in evaluating the race model has followed two 

steps. First, the unisensory RT distributions are used to define a comparison model. Second, this model 

is evaluated in light of the redundant RT distribution. This is also implicit in Otto & Mamassian’s (2012) 

original fitting procedure. First, two LATER models (with parameters muX, muY, sigmaX, sigmaY) are 

used to describe the two unisensory distributions and provide a basic (i.e. independent) race model. 

Second, two additional parameters (rho, eta) are added onto this basic model to provide a fit to the 

redundant distribution. Though this two-step fitting procedure has evidently been effective (see 

Section 6.2), alternative fitting procedures, in which all modelling in completed in one step, are often 

desirable. To engage in model comparison, for instance, a single log-likelihood value must be returned 

for all data which goes into fitting the model. This essentially means that a two-step fitting procedure 

is not valid for model comparison; a one-step fitting procedure, which fits unisensory and redundant 

RTs simultaneously, must be used.  
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To evaluate whether the one-step fitting procedure returns equivalent results for the present 

data, I used a novel version of context variant race model where all 6 parameters (muX, muY, sigmaX, 

sigmaY, rho, eta) were fit simultaneously. As an initial quality check, I evaluated whether the 

established two-step fit method (applied in all experiments here) and the novel one-step fit method 

produced equivalent results. Overall, there was no difference in the main or interaction effects in the 

experimental chapters when the analyses were re-run using the one-step fitted rho and eta values. 

 

Figure 6.5 Comparing fitting procedures for the context variant race model 
Each plot shows one of the 6 context variant race model parameters. The two-step fitting 
procedure value is plotted as a function of the one-step procedure value (dashed line indicates 
identity). Each point shows a single participant (N=80) in one of four within-subjects experimental 
condition (320 points total).  
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This indicates a broad equivalence in the fitting procedures, and a general stability in model fitting 

(see Section 9.8 in the appendix for average fit values for all parameters according to both 

procedures). To further demonstrate this, I compared each individual parameter fit value using the 

two-step fitting procedure with the equivalent parameter from the one-step fitting procedure (Figure 

6.5). The vast majority of points fall on the identity line, indicating the two methods are basically 

equivalent. In summary, this suggests that the one-step fitting procedure is a useful method for future 

modelling work, and also a platform for further model comparisons.  

6.3.2. Nested Model Comparison 

The previous section established the one-step fitting procedure as an equivalent method of applying 

the context variant race model. Next, I used the likelihood values returned from the one-step fitting 

procedure in a nested model comparison. For the first time, this will allow for a model comparison of 

context variant race models, and an evaluation of the model’s overall parsimony.    

As reviewed earlier (Section 2.4.3), nested models (e.g. restricted versions of the context 

variant race model) can be compared in various ways. The simplest way would be to use the LRT 

(Section 2.4.3.1). The limit to this test, however, is that it only allows two nested models to be 

compared at once. To compare multiple models across the 320 datasets here would thus require a 

large number of tests, and it would be difficult to establish a clear impression of how each performs 

relative to the others. Similar methods such as AIC (Section 2.4.3.2) and BIC (Section 2.4.3.3), 

however, allow multiple candidate models (nested or non-nested) to be compared at once. Such 

procedures also declare one overall ‘winning’ model (i.e. the most parsimonious model). The latter 

tools have been used by Zehetleitner et al. (2015), one of the few recent papers to fit a formal pooling 

model to RSP data. Here, these authors compared nested pooling models using the BIC as their model 

selection criterion. For these reasons, I use AIC and BIC to conduct the following nested model 

comparison.  

 To conduct the model comparison, I established three limited versions of the context variant 

race model (see Table 6.1 for the parameters in each model). For the purposes of simplification, I will 

call the full context variant race model the Full model in the following section. The three limited 

versions were created by eliminating one or both of the interaction parameters of the Full model. This 

can be done by fixing the parameter value to zero: a rho of 0 indicates statistical independence, and 

an eta of 0 indicates context invariance. The three limited versions thus included: a version where the 

eta parameter was excluded (the Rho model), a version where the rho parameter was excluded (the 

Eta model), and finally a version in which both rho and eta were excluded. This latter model includes 

only the LATER model fits to the unisensory RT distributions, and is thus equivalent to an Independent 

Race Model (IRM).  
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6.3.2.1. Model Selection Using Minimum AIC & BIC  

As an initial step, I quantified the overall percentage that each model won (i.e. returned the minimum 

criterion value) according to both AIC and BIC. This was evaluated across all 80 participants tested in 

4 conditions (for 320 comparisons total). As a reminder, AIC penalises by the number of model 

parameters as a means to select the most parsimonious model. BIC penalises not only by model 

parameters but the number of data points. In the present datasets for each individual, there are 

approximately 300 RTs, with 100 RTs in each signal condition (X, Y, XY). Relatedly, a correction for AIC 

is generally recommended when the number of data points divided by the number of parameters is 

small (i.e. < 40; Burnham & Anderson, 2002; Wagenmakers & Farrell, 2004). However, as the most 

complex model here (Table 6.1) has only 6 parameters (300/6 = 50), no AIC correction was necessary. 

AIC and BIC were therefore calculated as described in a previous section (Section 2.4.3). 

First, I considered the AIC criterion (Figure 6.6). According to this comparison, the Full model 

was selected the most frequently, followed closely by the Eta model, the IRM model, and finally the 

Rho model. Thus, while the model which includes both parameters is overall the most frequently 

selected model, a limited model which includes only the eta parameter also performs well. Further, 

the independent race model which includes no interaction parameters outperformed a limited model 

which included only the correlation parameter rho. Overall, therefore, it would seem that while both 

parameters can be important, eta alone is generally a more useful parameter than rho. This result is 

in some sense expected, given that only eta can capture violations of Miller’s bound, which is a large 

deviation from the basic race model seen in the vast majority of individual participants.  

Second, I considered the BIC criterion (Figure 6.7). With this criterion, which applies a harsher 

penalty, the results are strikingly different. According to this comparison, the most selected model is 

the IRM, which does not model any interaction parameters (and is effectively the most basic race 

model). This is followed by the Eta model, the Rho model and finally the Full model. That the Full 

model is least selected links directly to the increased penalty for more complex models with BIC. 

However, this comparison corroborates the finding of the AIC comparison that the eta parameter is 

the more useful interaction parameter of the two. Further, it is interesting that by following this 

criterion, it is not considered necessary to model interactions at all. This highlights the explanatory 

power of even the basic race model architecture alone.  

Table 6.1 Nested models included in the comparison (and corresponding parameters) 

Model Parameters Included  

Full muX muY sigmaX sigmaY rho  eta 

Rho muX muY sigmaX sigmaY rho  - 

Eta muX muY sigmaX sigmaY - eta 

IRM muX muY sigmaX sigmaY - - 
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Figure 6.6 Nested model comparison using AIC 
Each of the four plots represents a model included in the comparison (see Table 6.1 for the 
parameters included in each model). Each cell represents a participant in one of the four 
experimental conditions (80 participants, for 320 comparisons in total). A black cell indicates that 
the model had the lowest AIC value (i.e. was the winner of the comparison). The summary statistics 
below indicate the frequency (and overall percentage) that the model won according to the AIC 
criterion. Note that in this comparison, as there is only one winner selected from all 4 models, all 
percentages sum to 100% across plots. Factor levels (factor 1 level, factor 2 level) can be used in 
conjunction with the participant number to determine the experiment the data came from. Each 
experiment contained 20 participants, which were entered in order. For instance, Participant 61 
(Condition Label 2, 1) is the first participant for Chapter 5 (in the Weak-Hand condition). 
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Figure 6.7 Nested model comparison using BIC 
Each of the four plots represents a model included in the comparison (see Table 6.1 for the 
parameters included in each model). Each cell represents a participant in one of the four 
experimental conditions (80 participants, for 320 comparisons in total). A black cell indicates that 
the model had the lowest BIC value (i.e. was the winner of the comparison). The summary statistics 
below indicate the frequency (and overall percentage) that the model won according to the BIC 
criterion. Note that in this comparison, as there is only one winner selected from all 4 models, all 
percentages sum to 100% across plots. Factor levels (factor 1 level, factor 2 level) can be used in 
conjunction with the participant number to determine the experiment the data came from. Each 
experiment contained 20 participants, which were entered in order. For instance, Participant 61 
(Condition Label 2, 1) is the first participant for Chapter 5 (in the Weak-Hand condition). 
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In summary, initial comparison with minimum AIC and BIC reveals an interesting discord. AIC 

most often selected the context variant model (which models both interactions) whereas BIC selected 

an independent race model (which models neither interaction). The BIC, however, employs a harsher 

penalty for complex models. This latter result is interesting, as one of the few nested pooling model 

comparisons (Zehetleitner et al., 2015) utilised BIC for comparisons. Further research may wish to 

work towards a non-nested comparison of race and pooling models. As the pooling models used by 

Zehetleitner (5-9 parameters) were more complex than the independent race model used here (4 

parameters), it may be that in many cases BIC would also select simple race models over simple 

pooling models. 

The choice between AIC and BIC for model comparison is not straightforward. Both are valued 

for different reasons, and a review of these reasons is far beyond the scope of this small section. For 

this reason, both were presented for a complete initial overview. For more detailed evaluation, 

however, I evaluated just one method (AIC) in particular. One reason for this, as noted by Burnham 

and Anderson (2002, p. 33), is that BIC “[tends] in realistic situations, to select models that are too 

simple (i.e. underfitted).” This would certainly fit with the empirical observation of processing 

interactions in the majority of participant datasets, which are mostly ignored in the BIC comparison. I 

therefore follow Burnham & Anderson’s approach and further investigate models using the AIC.   

6.3.2.2. AIC Difference  

To further explore the effectiveness of the different models, it is useful to consider not just the 

minimum AIC value, but the relative difference between this minimum value and all other values. 

Burnham and Anderson (2002; p. 72) explain the value of this with an analogy to racing: here, it is 

important to know the overall winner out of all competitors, but it is also useful to know how close 

the competition is. If the competition is very close, then on this particular occasion there may be a 

role of extraneous factors (e.g. weather) in which competitor edged out overall. Consider this example 

now in relation to the RT data here. It may be that one model (e.g. Eta) has the minimum AIC for an 

individual comparison. However, if the competition between models is close (e.g. the Full model was 

close to the minimum AIC) then it is important to be aware of this, as it indicates the models are both 

good explanations of this participant’s data. Further, if this participant was re-tested, it may be that 

changes in extraneous factors (e.g. fluctuations in attention, or fatigue) would cause the Full model to 

edge out over the Eta model. Using the relative difference scores, therefore, gives an indication of 

how likely it is that the result could change with a different sample of RTs. If two (or more) models 

provide AIC values within a certain range, then each provides a compelling account of the data.  
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To evaluate the relative difference between models with AIC, I computed the AIC difference 

score.  Following Burnham and Anderson (2002, p.71) this is calculated as  

  

𝐴𝐼𝐶 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖 = 𝐴𝐼𝐶𝑖 − min(𝐴𝐼𝐶), 
 
(31) 
 

 

where 𝐴𝐼𝐶 is the set of AIC values being compared and 𝑖 is the index for the model. I then followed 

Burnham & Anderson’s (2002, p. 70) ‘rules of thumb’ for nested models. According to these criteria, 

any model with an AIC difference score between 0-2 is considered to have “substantial” empirical 

support. Instead of the overall percentage of times each model ‘won’, therefore, I computed the 

number of times each model received an AIC difference score between 0-2 (Figure 6.8).  

Observing the results of the AIC comparison, the Full model was substantially supported 

across almost all participants in all conditions. This was followed by the Eta model, the Rho model, 

and finally the IRM. From this plot, a number of conclusions can be drawn. First, models which include 

interaction parameters received more support than the basic race model. This is in line with empirical 

observations of interactions across experiments. Second, as in previous comparisons, models 

including eta are generally more supported than models including rho. The fact that rho is quite weak 

(i.e. fairly close to 0) across the experiments presented here likely explains why this parameter is not 

often selected in comparisons. In contrast to the initial AIC comparison however, there is a substantial 

increase in the number of times each model was selected when computing the difference rather than 

the lowest AIC. This suggests that the competition between models was generally quite close, as in 

many cases different versions of the race model receive substantial support. Further, as it was selected 

in almost all cases, the AIC differences suggest that the context variant race model offers a 

parsimonious account of the RSE in the vast majority of cases. For future modelling work, this supports 

the idea that the context variant race model can be applied on the individual participant level, with 

little concern regarding overfitting.  

6.3.3. Limitations and Future Directions  

Over all experiments, it has been shown that the context variant race model provides an excellent 

account of empirical benefit size on the individual subject level (Figure 6.3) It is important to note 

however that there are small, consistent deviations; specifically, empirical benefit is usually slightly 

larger than the benefit calculated on model-fit. In experimental chapters, this difference ranged from 

0.001 s (Chapter 5) to 0.003 s (Chapter 4). Although this deviation is very small, it is interesting that it 

is so systematic. This can indicate potential biases in model fitting procedures. For this reason, it would 

be useful to evaluate the source of these model deviations.    
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Figure 6.8 Nested model comparison using AIC difference score 
Each of the four plots represents a model included in the comparison (see Table 6.1 for the 
parameters included in each model). Each cell represents a participant in one of the four 
experimental conditions (80 participants, for 320 model comparisons in total). A black cell indicates 
that the model had an AIC difference score between 0-2 (i.e. denoting “substantial empirical 
support”). The summary statistics below indicate the frequency (and overall percentage) that the 
model was supported accoring to the AIC difference score. Note that in this comparison, as there 
can be multiple models evaluated as equally supported, these do not sum to 100% as before. Factor 
levels (factor 1 level, factor 2 level) can be used in conjunction with the participant number to 
determine the experiment the data came from. Each experiment contained 20 participants, which 
were entered in order. For instance, Participant 61 (Condition Label 2, 1) is the first participant for 
Chapter 5 (in the Weak-Hand condition).  
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To determine the source of this deviation, I computed the residual (i.e. the difference between 

the two-step model-fit distribution and the empirical redundant distribution) over 50 cumulative 

probability points (Figure 6.9). As shown averaged over all 320 participants, these residuals show a 

systematic misfit. At the extremes of the distribution, the best-fitting model overestimates the 

empirical benefit. Across the majority of cumulative probability points however, the best-fitting model 

underestimates the empirical redundant distribution. The average of these residual values (around 

0.002 s) is roughly equivalent to the difference between model-fit and empirical benefit overall 

(between 0.001 to 0.003 s). Thus, this deviation in the model-fit is likely the source of the consistent 

difference between model-fit benefits and empirical benefits.   

One explanation of this misfit is that it is a result of error propagation starting with the LATER 

model fitting. Comparing the LATER model fit to its corresponding unisensory distribution (Figure 6.9), 

 

Figure 6.9 Evaluating model residuals 
Plots show the difference between the empirical RT data and the model-fit RT data for 50 
cumulative probability points. As can be seen for the race model (top panel), there are consistent 
deviations in which the best-fitting model is slower than the empirical redundant distribution. This 
is likely an error which propogates from LATER model fitting (bottom panel) which shows a similar 
deviation from the corresponding unisensory distribution. As 2 LATER model fits are required to fit 
the race model (one for each unisensory condition), double the amount of fits were included in the 
average shown.     
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a similar trend in the average residual is observed. LATER model fits are generally useful as with just 

two parameters they quite effectively describe the entire RT distribution. However, as discussed in 

Chapter 5, LATER is a fairly simplistic model which equates RT with decision time (i.e. it does not 

explicitly model non-decision components of RT). Thus, while it may provide an effective fit to a 

particular RT distribution, a simplistic model such as LATER may not provide the most robust basis for 

additional modelling beyond this simple description. Consider here, for instance, that the context 

variant race model uses two LATER models, both of which will contain some degree of error (as shown 

in Figure 6.9). In future work, therefore, it may be useful to explore other models of unisensory RTs, 

such as the ex-Gaussian (e.g. Luce, 1986; Whelan, 2008) or ex-Wald (e.g. W. Schwarz, 2001). This 

however, would also require developing alternative implementations of the interaction parameters. 

As such differences are rather consistent and fairly small in relation to empirical benefit, however, 

they could possibly be neglected for most experimental purposes.  

Overall, despite the minor limitations highlighted in this section, the context variant race 

model has been shown to offer a robust and effective fit to explain behaviour in the RSP. Depending 

on the modelling work and level of precision required, it may be useful to develop more complex and 

refined versions of the model, which even more precisely account for the benefit. However, given that 

the application of formal models is typically overlooked in most RSP studies (Gondan & Minakata, 

2016), the abilities of the context variant race model are far beyond what is done in current practice.  
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7. General Discussion  

 Race Models Offer a Common RSP Framework  

Despite over 100 years of investigation (beginning with Todd, 1912), a common explanatory 

framework for multisensory RT benefits in the RSP has not emerged. This is because there has been a 

lack of clarity on the fundamental combination rule which explains how two redundant sensory signals 

are processed to produce a single response. Two main model classes, each suggesting a different 

combination rule, have so far been tested. The first candidate class, race models, suggests that two 

decision-units (one for each signal) accumulate evidence in parallel, and the faster of these units 

triggers the response. This model class, however, has not provided a common framework. The reason 

for this is that empirical benefits are larger than the upper limit to the basic race model’s combination 

rule, which has been used as evidence to reject the entire model class (Miller, 1982). The second 

candidate class (pooling models), has since become the dominant candidate, as it can potentially 

explain larger benefits than race models. However, pooling has so far failed to account for benefits 

across experiments (Gondan & Minakata, 2016). Importantly, recent research has clearly shown that 

the previous rejection of the entire race model class can no longer be considered valid (Otto & 

Mamassian, 2017; C. T. Yang et al., 2018). As such, the potential for more race models to offer a 

comparative framework has not been adequately explored. The overall goal of this thesis was to 

explore the potential of the neglected race model class to offer a common framework to analyse 

redundant signal experiments.   

To explore the potential of race models, a comparative approach to experimental design and 

analysis was developed. This was applied across 3 experimental chapters. The goal of this approach 

was to develop manipulations, based on the race model and perceptual decision-making frameworks, 

and compare changes in RT across these manipulations. The application of the approach’s three 

analytical steps (see Figure 1.19) resulted in three corresponding conclusions. First, across all 

experiments, race models offered a powerful predictive and explanatory framework for multisensory 

benefits. The basic combination rule of the race model (Figure 1.9), therefore, offers a convincing 

general explanation of benefits. Second, empirical effects in RT previously thought to be beyond the 

explanation of race models can actually be interpreted effectively as additional processing interactions 

between different senses. Rather than support for the alternative pooling architecture, therefore, 

these can be effectively incorporated into the race model architecture. Third, benefits were near-

perfectly explained by using a formal race model allowing processing interactions (Otto & Mamassian, 

2012). As a formal description of the underlying combination rules and processing interactions, such 

a model offers a necessary intermediate stage between behaviour and brain processes (e.g. 
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Forstmann, Wagenmakers, Eichele, Brown, & Serences, 2011; Mulder et al., 2014), which is a 

fundamental step for the development of further research.  Overall, in stark contrast to the current 

rejection, the race model here has been shown to be a strong candidate for a common RSP framework.  

7.1.1. Variability is the Source of Multisensory Benefits  

In the absence of a common framework, previous attempts to understand the sources of multisensory 

benefits have had limited success. Here, by considering benefits in relation to race model principles, 

and using this framework to develop manipulations, a clear common thread has emerged across 

experiments: factors which influence the variability of unisensory RTs influence the overall 

multisensory benefit. In Chapter 3, the variability of unisensory RTs was manipulated by changing 

stimulus construction: random (complex) signals elicited more variable RTs than non-random (simple) 

signals. Correspondingly, complex signals elicited larger multisensory benefits than simple signals. In 

Chapter 5, variability of unisensory RTs was manipulated by changing signal strength: weaker signals 

elicited more variable RTs than stronger signals. Correspondingly, weak signals also resulted in larger 

multisensory benefits than strong signals. Importantly, the race model framework is able to suggest 

which sources of variability will be important. Generally, as the benefit arises from statistical 

facilitation of decision times, post-decisional variability should not affect benefits (as one example of 

 

Figure 7.1 The race model as the combination rule for multisensory response time benefits 
This thesis began by considering the combination rule the brain employs to determine simple 
responses to redundant signals. The way the brain combines two signals (e.g. a flash and beep from 
a smartphone) to make a single response (e.g. answer a call) cannot be directly observed. One 
approach, as adopted in the experimental work presented here, is to model particular combination 
rules for similar tasks, and observe how the model’s performance matches empirical behaviour. 
Overall, the results of this thesis suggest that for redundant signal tasks, the brain employs a 
combination rule similar to a race model, in which the faster of two decision processes ultimately 
triggers the response.  
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an exception to this broad variability rule). In Chapter 5, post-decisional variability was introduced by 

changing the response effector. Foot responses produced more variable RTs than hand responses. 

However, in line with the suppositions of the race model architecture, this did not produce an overall 

change in multisensory benefit. Overall these experiments suggest that changes in benefits can be 

understood largely in relation to changes in the variability of RTs. As highlighted in Chapter 6, this 

appears to hold true across experiments, which suggests a general principle for understanding 

behaviour in the RSP.   

7.1.2. Race Model Principles as a Guiding Framework for Multisensory Research  

The results of this thesis contribute to a wider understanding of how benefits can be elicited and 

manipulated. Previously, in accordance with the dominance of pooling models, explanatory 

frameworks for multisensory RT benefits have utilised principles derived from neuronal responses (for 

reviews, see Stein & Stanford, 2008; Stein et al., 2014). These principles, derived from the study of 

superior colliculus neurons in cats, suggest three guiding rules for multisensory responses; stronger 

multisensory responses should be observed when component unisensory signals are spatially aligned 

(the spatial rule), temporally aligned (the temporal rule), and when the individual unisensory signals 

elicit weak responses (the principle of inverse effectiveness). In the absence of a common framework, 

these principles have been assumed to apply to RT behaviour as well. This has led many authors to 

assume that larger multisensory RT benefits should occur with weak signals, aligned in space and in 

time.  

The guiding principles of neuronal responses have been used to reflect on changes in 

multisensory benefits (e.g. Chandrasekaran et al., 2011; Juan et al., 2017; Minakata & Gondan, 2018). 

They are even discussed as motivating factors in the design of multisensory signals for behaviour (e.g. 

Ho et al., 2007; Pomper et al., 2014; van Erp et al., 2015). As noted by Otto et al. (2013), however, 

behavioural benefits do not necessarily follow these principles in the RSP literature. Consider the 

results of the experimental chapters of this thesis: no effort was made to align signals in space (in fact, 

in Chapter 4 (Part 2), there is a very clear misalignment of tactile and visual signals). Despite this, clear 

benefits are observed throughout, suggesting spatial alignment is not strictly necessary. Further, 

temporal alignment of signals is not necessary; in fact, larger benefits occur with temporally-

misaligned signals which elicit similar unisensory RTs (Harrar et al., 2017; Otto et al., 2013). Finally, 

the prediction of the inverse effectiveness principle, i.e. that weaker signals should elicit larger 

benefits, has been shown to fail. In fact, some experiment reporting larger benefits for strong signals 

compared to weak signals (Chandrasekaran et al., 2011; Juan et al., 2017). Using a neurophysiological 

framework for explaining behavioural benefits across conditions, therefore, is unsatisfactory, and in 

some cases predicts effects which are not observed in the behavioural data.  
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The experimental work in this thesis suggests that the race model’s predictive principles (see 

Section 1.6.1) offer a clearer and more appropriate guiding framework for understanding behavioural 

benefits. These principles effectively make similar predictions to the three principles of multisensory 

integration, but with additional and important caveats linked to the race model mechanism. For 

instance, temporal correspondence is also important for race models. The distinction here, however, 

is that the correspondence of RTs (equal effectiveness) is most important, rather than precise 

synchrony of physical signals (e.g. Harrar et al., 2017; Otto et al., 2013). Further, the prediction of the 

inverse effectiveness principle (that weaker signals should elicit larger benefits) is also made by the 

variability rule of the race model principles; weaker signals should produce slower and more variable 

RTs, and thus elicit larger benefits. This was demonstrated clearly in Chapter 5. The caveat here, 

however, is that signals must be equally effective. If there are very large deviations in average RT 

which are introduced by making signals weaker, then there will be a reduced potential for a race 

mechanism to produce facilitation; this would actually lead to smaller benefits for weak signals. 

Indeed, in cases where the principle of inverse effectiveness was challenged (Chandrasekaran et al., 

2011; Juan et al., 2017), weak stimuli demonstrated a large difference in average unisensory RTs (i.e. 

a lack of equal effectiveness). As shown by Otto et al. (2013), when both principles are taken into 

account in their group (Vincent averaged) RT data, the effect of weakening stimuli on benefit can be 

effectively predicted. Beyond this previous work, this thesis has demonstrated that this behavioural 

framework is also effective to understand benefits on the level of individual behaviour.    

In addition to understanding benefits, these principles also suggest how to manipulate 

benefits, by calibrating unisensory performance. This will prove useful for designing stimuli for 

experimental purposes e.g. investigating the effects of signal strength. For example, it is difficult to 

say whether two signals in different modalities (a noise sound and coherent rotation of dots, for 

instance) are equally ‘weak’ according to inverse effectiveness, because signal strength for each 

stimulus is measured in different units. The strength of the noise, for instance, is measured in dB SPL, 

whereas the motion coherence is measured by the percentage of dots which rotate. In comparison, it 

is much more straightforward to say whether a participant’s performance to the signals is similar 

(following equal effectiveness) and more variable (following the variability rule), as these require only 

a simple evaluation of RTs. Effectively therefore, maximally beneficial stimuli could be determined on 

the individual participant level by properly calibrating unisensory stimuli to elicit similar performance. 

In addition to experimental uses, such application of these principles potentially also has wider-

ranging implications for designing maximally effective signalling procedures, such as those used by 

smartphones (Figure 7.1) or by multisensory warning and guidance systems (e.g. Biondi et al., 2017; 

Ho et al., 2007; Spence & Ho, 2008; van Erp et al., 2015). 
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 Understanding Sources of Processing Interactions 

In addition to the basic combination rule posed by the race model, there are at least two empirical 

processing interactions observed in RSP experiments: trial history effects and violations of Miller’s 

bound. In all of the experiments presented here, these processing interactions were significantly 

present. Importantly, these processing interactions contribute to benefits beyond what the basic 

combination rule of the race model can account for, so a complete account of the RSE relies on 

understanding them. However, it is more difficult to generate a clear overall impression of the factors 

which give rise to interactions. This is because, unlike the race model framework which exists for 

benefits, there is no clear candidate framework for interactions. This may be because quantification 

and modelling of processing interactions is still at a relatively early stage, and further work may 

eventually provide a clear framework for interactions. At this early juncture, however, significant 

insights can still be made into common sources of each interaction. Here I review common sources of 

interactions based on the results of the present experiments.   

7.2.1. Higher-Level Processing is Important for Trial History Effects 

The experimental work presented in this thesis adds to a small body of research which has quantified 

trial history effects in the RSP previously (e.g. Gondan et al., 2004; Harrar et al., 2014; Juan et al., 2017; 

Miller, 1982, 1986; Otto & D'Souza, 2015; Otto & Mamassian, 2012). As this body of evidence is still 

quite limited, much more work is needed before a compressive understanding will emerge on a level 

equivalent to our understanding of benefits. However, the experiments here suggest that certain 

interpretations can be ruled out. One hypothesis, following repetition priming experiments in visual 

search (Kristjansson & Campana, 2010), was that history effects arise from repetition of low-level 

features. Following Chapter 3, however, it is clear that history effects are not strongly rooted in signal 

features. Indeed, by introducing alternating signal features within a block, there was no reduction in 

the history effect compared to when signal features were consistent. This suggests that repetition of 

low-level signal features (and the underlying activity of the corresponding neurons) is not causally 

related to history effects. Further, across very different examples of stimulus construction, the history 

effect also remained relatively constant. Consider also in Chapter 3 that non-random, sudden onset 

stimuli (simple signals) elicited a comparable history effect as randomised stimuli with background 

noise (complex signals). One possible exception was observed in Chapter 5, as history effects were 

larger when signal strength was weak compared to strong. However, the overall contribution of 

history effects to benefit was constant across signal strength conditions. This would suggesting that 

history effects in this case were in proportion to unisensory RT variability generally. Broadly, therefore, 

studies attempting to target history effects in the RSP are unlikely to find causal mechanisms in low-

level signal properties.  
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In light of the above, an alternative approach considered that history effects were linked to 

higher-level mechanisms more similar to attention (Spence et al., 2001) and task-switching (Kiesel et 

al., 2010; Monsell, 2003). These experiments show that higher-level explanations of history effects are 

more promising. For instance, in Chapter 4, it was expected that, if history effects arise from a similar 

mechanism to attention-switching between modalities, the history effect should be modulated by 

signal duration. Indeed, it was shown that for AV signal pairs, a larger history effect occurred for short 

signals than for long signals. Though this effect was not observed in a replication with TV signals, this 

null result may actually be linked to the low intensity of the short tactile signal in this particular version 

of the experiment. More reliably (across both AV and TV signal pairs), history effects were manipulated 

by task-irrelevant stimulation; history effects were reduced when an irrelevant third modality stimulus 

was present on all trials, compared to absent. This result also supports a higher-level explanation. 

Under an attentional framework, for example, this effect might be explained by the task-irrelevant 

stimulus causing the observer to divide attention between modalities, ‘resetting’ attentional biases 

that would otherwise be caused by unisensory stimuli. This would be in line with similar results 

observed in visual attentional with non-relevant auditory stimuli (Doyle & Snowden, 2001). Broadly, 

these factors are in line with the classic conceptualisation of the RSP as a form of divided attention 

task (e.g. Miller, 1982). As a template for further research, therefore, these higher-level manipulations 

are most likely to reveal the mechanisms of history effects.       

It should be noted that the history effects observed in the present work were rather small in 

comparison to previous work. The overall mean history effects, ranging from 0.023 s in Chapter 4 (Part 

1) to 0.040 s in Chapter 4 (Part 2), are smaller than the 0.074 s history effect observed by Miller (1982), 

for instance. Similarly, the corresponding mean rho parameters are only weakly negative, from -0.155 

in Chapter 4 (Part 1) to -0.295 in Chapter 4 (Part 2); this is much smaller than the rho of -0.70 reported 

by Otto and Mamassian (2012) on their group data. This may be due to experimental differences (e.g. 

inclusion of catch trials in the present work). More direct manipulations to trial sequences, therefore, 

will undoubtedly be useful to understand these differences across studies. Alternatively, as these 

effects are smaller than previously reported, further work may try to remove history effects altogether 

(and thus the corresponding rho parameter could be removed from the model). One manipulation 

which may achieve this would be to build upon the result of task-irrelevant stimulation observed here. 

The difference would be to employ the third modality stimulus as an ‘intermediate’ unisensory signal 

between all trials, which is not analysed (see Figure 7.2). This would help to remove history effects by 

effectively engaging the same ‘neutral’ modality before each experimental trial; thus, all signal trials 

analysed would be affected equally by the preceding trial. A similar task was originally trialled by Otto 

and D'Souza (2015), who did not find an influence of intermediate signals. Crucially, however, these 
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researchers used AV intermediate signals within an experiment with AV signal pairs. Given the 

promising role of third-modality stimuli here, it would be expected that such modifications would be 

more effective.    

7.2.2. Context is Crucial for Violations of Miller’s Bound 

Following the currently-dominant approach to the RSE, violations of Miller’s bound have been 

interpreted as benefit which exceeds the limits of the race model architecture, and thus justifies an 

alternative pooling model approach. Importantly however, Miller’s bound assumes context invariance 

(i.e. assumes that the processing of one unisensory decision-unit unaffected by the processing of the 

other). Therefore, pooling is just one interpretation of violations of Miller’s bound. An equally valid 

alternative, following the previously-rejected race model approach, is that the violations of Miller’s 

bound actually represent context variance (i.e. the processing of one unisensory decision-unit makes 

the accumulation of the other faster or more variable). The latter approach has not fully been explored 

given the previous rejection of race models.  

In the experiments presented in this thesis, I have provided empirical support for the context 

variance interpretation. Under this interpretation, context variance (and thus violation of Miller’s 

 

Figure 7.2 Adding third modality intermediate signals to remove history effects 
In the typical RSP history effects arise between unisensory trials as a consequence of the 
randomisation of trials. All signal trials are analysed, an each individual trial is affected diffferently 
by the previous trial. One possible method to remove these history effects would be to add an 
additional third modality signal as an intermediate between all trials. These intermediate trials 
would be discarded from analyses. Adding this intermediate third modaily signal (Z) would mean 
that all unisensory trials analysed (X, Y) were preceded by the same signal, and thus the effect of 
the previous trial would be more similar for all RTs.  
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bound) arises because of the difference between stimulation on redundant trials compared to 

unisensory trials. Thus, any factor which increases the similarity of stimulation across trials should 

reduce context variance, and correspondingly the violations observed. In Chapter 3, stimuli were 

made more similar by changing stimulus construction. By introducing continuous AV background 

stimulation (complex signals), the overall level of stimulation was more similar across trials than when 

signals were sudden onset (simple signals). Correspondingly, there was a reduction in violation for 

complex signals compared to simple signals. In Chapter 4, stimuli were made more similar across trials 

by introducing task-irrelevant stimulation. By having a third modality task-irrelevant stimulus present 

on all trials, the onset of task-relevant signals became more similar for redundant and unisensory trials 

than when the third modality stimulus was absent (i.e. the classic RSP). Correspondingly, there was a 

reduction in violation when the task-irrelevant stimulus was present compared to absent. This effect 

was consistent across AV and TV signal pairings, suggesting that such mechanisms apply generally 

across the different senses. In these experiments, there appears to be a role of strong signal onset 

transients in creating context variance, and thus violations of Miller’s bound. As changes in violations 

generally followed changes in the additional noise parameter (eta), one explanation might be that 

sudden onsets in one modality disrupt accumulation in the other modality (i.e. make the accumulation 

process more variable). Overall, by following manipulations suggested by the context variance 

assumption, violations of Miller’s bound were reliably manipulated according to predictions. This 

suggests a useful framework to understand violations of Miller’s bound.  

These results support a novel, parsimonious interpretation of the literature on violation. 

Previously, the race model has been implemented as a “nullmodel” (W. Schwarz, 1989), with the 

dominant pooling models employed in most cases following violations. However, this approach 

implicitly assumes that two different combination rules are actually used for the RSP (race, pooling) in 

different contexts. Further, it does not offer much in the way of a guiding framework for suggesting 

why a race (statistical facilitation) would be used in one context and pooling (integration) in another 

when the task demands of the RSP are always the same. Under the race model framework, however, 

only one combination rule is employed in all contexts. However, different forms of signals can elicit 

different degrees of violation by changing the context variance between unisensory and redundant 

trials. By understanding violations as evidence of the context variance processing interaction, and not 

evidence of a change in combination rule, it is much clearer to understand how such effects arise, and 

how they can be manipulated.   

 Application and Development of Models in the RSP 

Despite the lack of effective models in multisensory RT research, there appears to be a resistance to 

acknowledging and applying context variance race models as a candidate to explain the RSE. One 
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reason for this, given the previous rejection of the basic race model, is that the entire model class is 

considered ineffective. It is worth, therefore, considering how candidate models are defined. 

McClelland (2009), for instance, states the following: “Models become candidates for further 

exploration (and criticism) when they account for a newsworthy amount of data (i.e., more data than 

it was previously thought they could account for, or data that another approach cannot account for)…” 

(p. 23, emphasis added). As noted in the introduction (Section 1.3.4), the pooling model has so far 

failed to demonstrate a consistent account of benefits and interactions across different studies with 

different signals. Race models however, at least in this thesis, were able to near-perfectly explain 

multisensory benefits and account for empirical interactions across a wide range of experimental 

conditions. Therefore, this thesis contributes to establishing race models (and the specific 

implementation of the context variant race model) as one of the most promising candidates for a 

model of the RSP.   

Another concern, however, is that context variant race models are sometimes thought to be 

unfalsifiable (e.g. Miller, 2016). This is certainly true in the sense that Miller’s bound cannot be used 

as a valid rejection of the entire race model class (Otto & Mamassian, 2017; C. T. Yang et al., 2018). 

However, this does not mean that there is no way to determine which model class (race or pooling) is 

able to explain the RSE most effectively. As explored in Chapter 6, tools are available which allow 

researchers to determine which model is most effective at offering a parsimonious explanation of RTs. 

Race models, therefore, can be directly compared with pooling models in future work to evaluate their 

relative explanatory power. Further, specific model implementations can be falsified if they fail to 

capture empirical behavioural effects (Palminteri et al., 2017). By following a formal modelling 

approach in RSP studies, the success or failure of models in different conditions should ultimately 

guide research towards a dominant model class. In the experiments presented here, the context 

variant race model has provided a clear account of the behaviour observed. Regarding interactions, 

for instance, trial history effects were captured via changes in the rho parameter and violations of 

Miller’s bound were captured via changes in the eta parameter (see Figure 6.4). By holding race or 

pooling models to such standards of evaluation as in the comparative approach presented here, 

progress towards a clear model understanding should be facilitated.  

It is important to note, in McClelland’s definition above, the crucial role of criticism in 

candidate model development. In this thesis, limitations to the context variant race model have been 

revealed, which can be addressed in further study. For instance, while changes in trial history effects 

broadly correspond to the rho parameter, this relationship is somewhat weak on the level of individual 

participants (and even on the level of the group average). This in part may represent a level of 

‘uncertainty’ in the fitting of the rho parameter with the number of trials (~100) collected here (see 



 

167 
General Discussion   

the confidence intervals estimated in Section 9.7, for instance). In addition, a clear limitation of the 

model was shown when comparing interactions across different effectors (Chapter 5, see also Section 

9.7 of the appendices). This shows that by not including explicit post-decisional components in models 

of RT, the eta parameter can reveal effects which are (most likely) not genuine. These are two clear 

areas for model improvement beyond this thesis.  

Overall, this thesis highlights that the application of formal models is always a fruitful exercise. 

Ultimately, models are judged by their ability to predict and explain data, and the success or failure of 

specific models will always inform future directions for multisensory research. To most effectively 

facilitate RSP research, therefore, the application of models (race or pooling) should rather become 

the rule. By applying models in a consistent comparative framework, it should be possible to achieve 

a “desired constant interaction” (Lewandowsky, 1993, p. 236), whereby clear model theory suggests 

predictions for experimental data, and in turn experimental data suggests methods for refining formal 

models (Figure 7.3).  

 Experimental Applications of the Comparative Approach  

The novel comparative approach developed here has provided an effective explanation of benefits 

and interactions across a range of different stimuli and contexts. For instance, while the majority of 

signals investigated were AV, the comparative approach generalised to TV (Chapter 4, Part 2) without 

issue. It should be highlighted, however, that the stimuli and contexts explored in this thesis are just 

a small selection of those tested in the broader literature (see Section 1.3.1 in the introduction for an 

 

Figure 7.3 Interaction between behavioural and formal modelling approaches 
Empirical effects observed in the RSP (multisensory benefits and interactions) can be explained by 
modelling approaches. In turn, models can generate novel predictions for future behavioural 
studies. Applying and refining a modelling approach based on behavioural results advances our 
understanding much more rapidly than studying behaviour in isolation.     
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overview). In this section, I hope to demonstrate that the comparative approach is sufficiently broad 

to be readily applied to a number of additional research contexts.  

An immediate and simple extension to the present work would be to further explore 

alternative sensory pairings. Indeed, the RSP has also been observed with AT signals (e.g. Gondan et 

al., 2004; Marinovic et al., 2015; Nava et al., 2014), in addition to the AV and TV signal pairings 

evaluated here. A comparative analysis may help to highlight similarities and differences between 

sensory systems. In particular, the comparative approach may be especially beneficial in situations 

where the existing literature is less substantial. One example of this is visual-olfactory pairings (e.g. 

Amsellem et al., 2018; Hochenberger, Busch, & Ohla, 2015). In such investigations, researchers have 

found little evidence of interactions (particularly, a lack of violations), and thus have concluded that 

the basic race model alone is sufficient to explain the data. Applying the comparative race model 

approach here would likely help elaborate on why interactions are not observed, and suggest 

manipulations which might elicit them. For instance, in both visual-olfactory studies cited, RTs for 

vision were on average much faster than those for olfaction. According to the race model principles, 

therefore, these stimuli did not demonstrate equal effectiveness. As such, the signals simply may not 

have been maximised for proper investigation of benefits and interactions. This could be addressed in 

further research by calibrating signals for equivalent performance in RT. A comparative approach 

would then be more informative and reveal novel sources of benefit and interactions for sensory 

pairings beyond the typical A, V and T pairings. 

7.4.1. Beyond Bisensory Pairings 

In addition to the substantial literature on bisensory pairings, the RSP has also been applied in 

experiments where different numbers of modalities are activated. However, the comparative 

approach (and the race model framework it builds on) can easily be extended to accommodate such 

designs. In the following section, I consider some examples of how this may be done.   

7.4.1.1. Unisensory Designs 

Though the RSP is often conducted with two signals in different modalities (multisensory designs), 

there is also a substantial literature in which redundant signals are presented in the same modality 

(unisensory designs). A large body of research has demonstrated the RSE occurs when two signals are 

presented in vision (e.g. Corballis, 2002; Mishler & Neider, 2018; Mittelstadt & Miller, 2018; Moradi 

et al., 2016; Mordkoff & Danek, 2011; Ridgway et al., 2008; Ritchie et al., 2014; Savazzi & Marzi, 2008; 

Vrancken et al., 2018). There have also been reports of the RSE in audition (e.g. Schröter, Ulrich, & 

Miller, 2007). The race model easily accommodates unisensory designs, as it does not specify that the 

two decision-units must be in different modalities. As such, it is already common practice to evaluate 

the race model in unisensory designs in the same way as for multisensory research. Though it has not 
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been explicitly reported in any published study, it would therefore also be expected that the predictive 

race model principles explored here would extend to unisensory designs. If this is the case, the 

framework would also provide a consistent account of the unisensory RSE. Beyond accounting for 

benefits, it would also be informative to explore how interactions change when signals are presented 

within the same modality. As violations of Miller’s bound have been observed with unisensory 

stimulation, for instance, it would be interesting to see if the manipulating factors identified here (i.e. 

signal onset transients, task-irrelevant stimulation) have similar effects.   

7.4.1.2. Trisensory Designs  

In addition to bisensory signals, the RSE has been observed with trisensory stimulation (since Todd, 

1912), for example AVT stimulation (e.g. Couth et al., 2018; Hagmann & Russo, 2016; Pomper et al., 

2014). Typically, a further speedup (i.e. beyond bisensory RSE) is observed in these cases (Diederich & 

Colonius, 2004). Again, however, the basic race model framework is easily extended by simply 

assuming that the minimum decision time is taken from three parallel decision-units rather than two. 

This would predict faster and less variable RTs than both unisensory and bisensory components. In 

addition, the simple race model is able to make multiple predictions for benefits from unisensory and 

bisensory RT distributions. For example, individual RT distributions for A, V and T can be combined for 

an prediction of AVT benefit, but equivalently AV and T distributions can also provide an prediction of 

AVT benefit. As recently demonstrated by Otto (2018), these trisensory predictions offer similar 

predictive power to those shown in present experimental chapters. Further, recent efforts have shown 

how the limits of the race model (Miller, 1982) can be extended to trisensory stimulation, which would 

allow for a similar quantification of interactions (Colonius et al., 2017). One possible limitation here is 

that there is no race or pooling model which can also account for trisensory interactions on the level 

of distributions. This would therefore be a clear area for model development. However, quantification 

of benefits and interactions (following Steps 1 and 2 of the comparative approach) may already 

substantially improve our understanding of this more complex multisensory situation.   

7.4.2. Between-Subjects Comparisons  

Rather than testing different signal properties in the same participant group, the comparative 

approach can be extended to test the effects of the same signals on different participant groups. This 

would give a clear idea of how multisensory processing changes across different individuals. Here, I 

highlight a few examples in the current literature which may benefit from a detailed analysis via the 

comparative approach.  

7.4.2.1. Lifespan and Ageing  

The RSP has often been used in comparisons of age groups to understand how redundant sensory 

processing changes across the lifespan (e.g. Couth et al., 2018; Downing et al., 2014; Mahoney & 
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Verghese, 2018; Murray, Eardley, et al., 2018; Peiffer et al., 2007; Ren et al., 2017; Wang et al., 2018; 

W. Yang & Ren, 2018). A common interpretation of these studies is that multisensory processing is in 

some way enhanced in older adults, as they typically demonstrate larger benefits (see also Linnet & 

Roser, 2012 for a unisensory example). It is not clear why multisensory processing should improve 

with age, given that cognitive functions typically tend to decline in older age. One explanation of this 

effect, however, is that it is evidence of  a “compensatory strategy” (Laurienti, Burdette, Maldjian, & 

Wallace, 2006). The idea here is that multisensory processing counteracts degraded unisensory 

abilities (e.g. poorer visual acuity) which come with old age (Dumas, Holtzer, & Mahoney, 2016).  

Interestingly, these results might be directly understood by the race model framework and by 

applying the comparative approach. This framework would state that, rather than counteracting 

degrading unisensory performance, it is precisely because unisensory performance degrades that 

benefits increase with age. If older participants’ unisensory performance is less reliable (i.e. responses 

are more variable), then according to the variability rule, larger multisensory benefits are clearly 

expected. It is difficult to properly assess race model principles based on previous results because 

intra-individual RT variability (SD or MAD, as assessed here) is rarely reported. However, there has 

been previous indication that most measures of RT variability increase with age (e.g. Hultsch, 

MacDonald, & Dixon, 2002). This may also help to disentangle conflicts within the existing literature. 

For instance, some research on ageing has noted a lack of benefits for participants in which one RT 

distribution is faster overall (Mahoney, Holtzer, & Verghese, 2014). This, as established, would be 

directly understood by the equal effectiveness principle. Further, in some studies violations are also 

observed to change with age (Couth et al., 2018). Quantifying violation on the level of individual 

subjects (and fitting the corresponding eta) may allow us to disentangle these conflicting findings.  

7.4.2.2. Clinical Investigations  

The RSP is a simple, easily-administered task to assess multisensory processing. As such, it has a 

number of clinical applications, allowing researchers to investigate how multisensory processing is 

affected by clinical conditions. The RSP has already been applied in the study of schizophrenia 

(Williams et al., 2010; Wynn et al., 2014) and Parkinson’s disease (Plat et al., 2000; Ren et al., 2018). 

Interestingly, as an illustration of the wide-ranging applications of the task, it has also been employed 

in comparatively less common clinical conditions, including Prader-Willi syndrome (Salles et al., 2016), 

Niemann-Pick Type C Disease (Andrade et al., 2014), and Cerebellar Agenesis (Ronconi et al., 2017). 

While such studies alone are clearly valuable, they could also benefit from a comparative approach 

building on a clear common framework. This would provide insight into the sources of any processing 

differences between clinical groups.  
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One promising area of study, building on the race model principles, would be clinical 

conditions in which increased variability of RTs is established, such as Attention Deficit Hyperactivity 

Disorder (Castellanos & Tannock, 2002) and bipolar disorder (Adleman et al., 2014). Assuming this 

comes from variability in pre-decisional processes, the race model may uncover larger multisensory 

benefits in these populations. Further, as both disorders are associated with attentional differences, 

application of the comparative approach may reveal differences in processing interactions (and 

corresponding model parameters). Interestingly, the context variant race model has previously been 

applied in such clinical investigations to reveal differences in processing interactions. For instance 

Harrar et al. (2014) find evidence of weaker negative correlations for individuals with dyslexia, 

interpreted in relation to attentional shifting. A recent investigation by Crosse, Foxe, and Molholm 

(2019) also applied the context variant race model approach in an investigation of individuals with 

autism. More consistent application of these analytical steps, therefore, could provide a more solid 

platform for understanding individual differences.  

7.4.3. Involving Cognitive Neuroscience Techniques  

One of the advantages of model-based approaches is that they provide a link between brain processes 

and behaviour (Mulder et al., 2014). Given that benefits and interactions can be successfully targeted 

with a comparative approach, therefore, an important further step will be to attempt to relate these 

interactions (and corresponding model parameters) back to brain processes. The RSP has already been 

applied in neuroimaging (e.g. Martuzzi et al., 2007) and neuroelectrophysiological (e.g. Molholm et 

al., 2002; Murray, Thelen, et al., 2018; Wang et al., 2018; Wynn et al., 2014) contexts. Such studies 

could benefit from a clear behavioural analysis offered by the comparative approach. Further, a formal 

modelling approach, which is rarely applied in RSP research (Gondan & Minakata, 2016), is also useful 

to link this behaviour to specific brain processes. One potentially fruitful line of enquiry, for example, 

could be to explore the link demonstrated here between increased context variance (demonstrated 

by violations of Miller’s bound) and increased noise in accumulation (demonstrated by the eta 

parameter). A clear avenue here would be to use neurostimulation techniques, such as transcranial 

magnetic stimulation (e.g. Bolognini et al., 2009; Romei et al., 2007 for examples in the RSP). This 

technique has the capability to causally manipulate neural noise in targeted brain regions (Pascual-

Leone, Walsh, & Rothwell, 2000; Walsh & Cowey, 2000). By explicitly fitting the context variant race 

model to different stimulation conditions, this could help provide further conceptual links between 

noise in decision-making models and noise in the brain.  
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 Beyond the RSE: Implications for Multisensory Research  

7.5.1. Is The Race Model Part of a Wider Set of Combination Rules?  

The overarching message of this thesis is the race model offers an effective explanation for an example 

of RT behaviour which is part of everyday life (Figure 1.1). However, it should be considered what the 

results of this thesis tell us about behaviour for different tasks. As noted by Colonius and Diederich 

(2017), one of the restrictive factors of most multisensory models is that they only really explain 

behaviour in one paradigm, and may not be equipped to offer a general account of multisensory 

behaviour. Certainly, the race model alone does not provide a complete account of all multisensory 

behaviour. What I hope to have highlighted in this thesis, however, is that by applying similarly 

thorough approaches to different tasks, it will be possible to develop a clear understanding of different 

behaviours, and eventually identify commonalities between them.  

 Useful guidance for this is provided in the wider computational modelling literature. Marr 

(2010), for instance, classically distinguished between different levels of understanding for behaviours 

of interest. The first key level is to understand the demands of the behavioural task (i.e. the 

computation necessary to perform the behaviour). This then informs how we construct models (or 

algorithms) of the behaviour. These models then allow us to understand the link between behaviour 

and the underlying brain processes (or the implementation). Each stage is important, as developing a 

clear understanding of one stage informs the others (Krakauer, Ghazanfar, Gomez-Marin, MacIver, & 

Poeppel, 2017). Such stages can also be thought of as corresponding to the levels of investigation, 

with a modelling approach forming a link between behaviour and brain processes (e.g. Forstmann et 

al., 2011; Mulder et al., 2014). In this thesis, the race model was explored as the potential combination 

rule for redundant signal tasks. One of the main reasons this combination rule is appealing, and 

possibly why it has been observed to be successful here, is that it corresponds directly to the task 

demands (see Section 1.3.1 in the General Introduction). A clear approach for further study, following 

this guidance, would be to first clearly identify combination rules which suit task demands.   

The idea that combination rules may follow task demands was explored by Otto and 

Mamassian (2012). These authors examined participants’ RTs to the same signals used in an RSP; 

however, in an additional experiment, they gave their participants a different task instruction, 

requiring a different combination rule. Specifically, participants had to respond only if both unisensory 

signals were present (i.e. only on multisensory trials). In contrast to the task demands of a classic RSP 

(Figure 1.8b in the introduction) which correspond to a logical disjunction (OR-gate), the alternative 

task-demands followed a logical conjunction (AND-gate). Similarly, instead of being determined by the 

minimum decision time (as in the RSP), RTs here would have been determined by the maximum 

unisensory decision time. The corresponding model, therefore, predicted slower RTs in multisensory 
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conditions. In much the same way that a basic race model accounts well for multisensory benefits, the 

corresponding combination rule for this alternative task effectively reproduced the empirical 

distribution of multisensory RTs. This suggests that combination rules may be flexibly implemented by 

the brain to suit different demands on decision-making. More so, these authors noted that the model 

was further improved by fitting the same interaction parameters (rho and eta) as used in context 

variant race model. If combination rules are employed to match the behavioural task, then this latter 

result may suggest that processing interactions (e.g. trial history effects, noise exchanged between 

decision-units) are more general effects across different multisensory tasks. Further research, 

therefore, may wish to evaluate the extent to which combination rules and processing interactions 

are distinct.    

7.5.2. Linking Frameworks for Response Times and Accuracy  

In the experiments presented here, my goal was to evaluate multisensory benefits in RTs. As noted in 

the introduction to the unisensory framework (Section 1.2), however, RT is known to trade-off with 

accuracy. Typically, as RTs are made faster, there is a corresponding decline in accuracy (e.g. Luce, 

1986; Smith & Ratcliff, 2004). To study RTs in isolation, therefore, a common approach adopted in 

many studies (and in this thesis) is to ensure ceiling performance (i.e. close to 100% accuracy in all 

conditions; see Section 2.2.1). The rationale is that if accuracy is always at ceiling, it is not changing 

across conditions, and thus does not need to be considered in any detail. While this is a useful 

simplification for experimental and modelling purposes, it is unfortunately not able to provide a 

complete understanding of multisensory behaviour in everyday life. In many cases, individuals are 

required to detect unclear signals, in noisy environments, at a performance level far from ceiling. A 

complete understanding of multisensory behaviour (following the unisensory framework) should 

therefore account for accuracy as well as RT.  

 As noted in the introduction (Section 1.1), paradigms for accuracy already exist in 

multisensory research. There are also successful model accounts for how multiple estimates of 

stimulus properties from different modalities can be combined; for instance, the successful maximum 

likelihood estimation framework (Ernst & Banks, 2002) suggests that estimates are combined by 

weighting each estimate according to its reliability. It is possible that there are commonalities between 

such accuracy frameworks and RT frameworks (provided here by race models). Otto et al. (2013) have 

already noted similarities between race model principles (Section 1.6.1) and maximum likelihood 

estimation. Maximum likelihood estimation, for instance, also finds that benefits are related to the 

similarity of unisensory components (relating to equal effectiveness) and to the degree of uncertainty 

(relating to the variability rule). While these are promising commonalities, however, an explicit 

approach which links RT and accuracy frameworks for multisensory behaviour is still to be developed. 
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This is unsurprising because a common framework for multisensory RTs in isolation is not yet fully 

established. As the race model here provides a very successful candidate, however, further research 

towards a complete approach should now be explored. This should allow for similar advances in 

multisensory decision-making as seen in the established unisensory decision-making framework (e.g. 

Forstmann et al., 2016; Gold & Shadlen, 2007; Smith & Ratcliff, 2004).   

7.5.3. Towards Conceptual Clarity in Multisensory Research  

The ultimate goal of multisensory research will be to work towards a complete understanding of 

multisensory behaviour. One of the key steps towards this goal will be to establish clear definitions of 

empirical effects, which are consistent regardless of paradigm or level of investigation. One attempt 

to achieve this in recent years, which can be considered in light of present results, is in the definition 

of “multisensory integration”. Recognising such a need for clarity in research, a large cohort of authors 

(Stein et al., 2010) attempted to provide a broad definition which would apply to both neuronal 

responses (where the term originated) and behavioural effects. Specifically, the authors defined 

integration as “a response (neural or behavioural) that is significantly different from the responses 

evoked by the modality component stimuli” (p. 1719).  

 Such attempts at clear definitions are important as they improve communications between 

different fields and levels of investigation. The issue here is that even with such statements, definitions 

can remain so broad that many different behavioural measures qualify as evidence for the same 

general term. In the RSP, the multisensory benefit (i.e. RSE) immediately seems to fit such a definition 

of multisensory integration, as the redundant RT distribution is significantly faster than the component 

unisensory RT distributions. Alternatively, however, the violation area would also meet such a 

definition, as it represents an area of facilitation which is significantly larger than the prediction based 

only on unisensory responses. Indeed, following the dominant pooling approach, parallels have been 

drawn between the summation of evidence in the model and the integration of unisensory 

information by multisensory neurons (see also the dominant use of neuronal principles as a guiding 

framework, as discussed in Section 7.1.2). This is perhaps why violation is sometimes considered a 

“benchmark for integrative processing” (Martuzzi et al., 2007, p. 1674). It is not immediately clear, 

therefore, which of these behavioural measures (benefit or violation) best fits the definition put 

forward by Stein et al. (2010).  

 Unfortunately, despite attempts towards clear definitions, there remains a lack of clarity in 

the RSP. Implicitly or otherwise, there appears to be an assumption that benefits and violations are 

equivalent measures of integration. For instance, Stevenson et al. (2014) list both the RSE (i.e. benefit) 

and violations of Miller’s bound as RT measures of integration, amongst other measures in alternative 

areas of investigation (e.g. neuroimaging). To further highlight this, consider also a few examples of 
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definitions from papers in the 2018 literature review earlier (Section 1.3.4.2, see also Section 9.2). 

Amsellem et al. (2018) state that a violation of Miller’s bound “provides evidence for information 

pooling across channels, or multimodal integration” (p. 330). W. Yang and Ren (2018), however, 

describe “audiovisual integration” as the effect by which “bimodal stimuli can be discriminated or 

detected more rapidly and accurately than unimodal visual or auditory stimuli presented alone” (p. 

41). The former rather highlights the link between violation and integration, while the latter is more 

consistent with benefits as a measure of integration. Note however that under the suggested 

definition of multisensory integration, both interpretations appear to be valid.  

 The assumed equivalence between these measures, however, is in direct contrast to empirical 

observations in the experiments of this thesis. This is because benefits and violations often produced 

different main effects across experimental factors. In some cases, main effects are elicited in benefits 

where no changes occur in violations (Chapter 5). Conversely, main effects in violations were elicited 

where no corresponding changes in benefits occurred (Chapter 4, Part 1). Crucially, the main effects 

of benefits and violations were even observed to dissociate across factors (Chapter 3). In stark contrast 

to current assumptions of multisensory research, therefore, the choice between benefits and 

violations is not arbitrary. In fact, the pattern of behavioural results (and thus the interpretation for 

multisensory processing) may be very different depending on which is adopted as evidence of 

integration. Despite a movement towards clarity, therefore, this thesis has highlighted a conceptual 

confusion in the RSP literature at present. It is possible that such confusion, arising from assumed 

equivalence between measures, has contributed to the overall lack of development of a common 

approach to analysing the RSE. In contrast, under a race model framework, both benefits and 

violations have reason to be defined, quantified and examined in their own right. As I hope to have 

demonstrated, this offers a much-needed step towards conceptual clarity in multisensory research.   

Having observed this conceptual confusion within a single paradigm, it is worrying to consider 

whether different measures of multisensory integration used between paradigms (such as those 

reviewed by Stevenson et al., 2014) show a similar lack of correspondence. Incorrect interpretations 

of results may easily propagate from one field of research to another if assumed equivalencies do not 

stand up to scrutiny. Ultimately, this will impede the ability to draw links between levels of 

understanding, rather than facilitate it. For multisensory research going forward, therefore, it will be 

important to work under clear definitions which apply to all levels of understanding, as crucially 

suggested by Stein et al. (2010). Further, proper scientific validation of relationships between variables 

should always be determined as a first step. By applying clear investigative frameworks, such as the 

novel comparative approach developed here, links between multiple levels will be validated more 

effectively.   
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9. Appendices 

 Illustrating the Basic Race Model Mechanism  

As the race model is key to understanding much of the work done both in previous decades and the 

current thesis, it is worth highlighting how the basic mechanism works. A useful metaphor is to 

consider running times (e.g. Miller, 2016). Assume, as in Figure 9.1, that we have two runners, which 

we label X and Y. For each runner, we want to know how quickly they can run a particular circuit, and 

so measure them separately over 5 laps. We might find that both perform about equally well, with a 

similar mean lap time. Now, suppose that we want to evaluate, on laps 1 to 5, what the winning time 

would have been had the two runners been racing against each other. To do this, we would take the 

minimum time of both X and Y for each lap. In doing so, it would be found that these ‘winning’ times 

are faster and more reliable than either individual runner. By being able to take the smaller of two 

outcomes, therefore, a purely statistical outcome is that the resulting minimum array has a smaller 

average and is less variable overall. This is the core of the race model explanation of the RSE; by having 

two decision-units working in parallel and always letting the faster (minimum) decision time trigger 

the response, RTs are faster and less variable across multisensory trials.  

 

 

Figure 9.1 Statistical facilitation with runners’ lap times 
The table shows hypothetical lap times for different runners (X and Y). Over five laps, these two 
runners produce similar average times. By taking the minimum time on each lap, however, the 
resulting ‘winning’ times are on average faster and less variable than either individual runner. This 
effect is known as statistical facilitation; by taking the smaller of two random numbers, the resulting 
distribution will be smaller and less variable than either component. The runner icons used are 
modified from a public domain vector image, which is free to use under the Creative Commons 
licence Public Domain Dedication (CC0 1.0). The images were downloaded from www.svgsilh.com.   

 

 

 
 

http://www.svgsilh.com/
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  Literature Review of RSE Studies  

To identify candidate articles, I followed the same search procedure as Gondan & Minakata (2016), 

i.e. papers citing Miller (1982) from Google Scholar and Web of Knowledge, which were published by 

a journal in the year 2018. This search returned 55 papers, to which following inclusion criterion were 

applied:  

 The paper must be empirical (i.e. reviews and theoretical papers excluded)  

 The paper must include analysis of human RTs 

 The paper must evaluate the race model in some way (e.g. compute Miller’s bound)  

This left 22 papers which were analysed for their use of a formal RT model.  

 

First Author (Journal)  Race Model Evaluation Used Formal RT Model? 

Amsellum, S. Miller’s bound / Capacity No 

Bailey, H. D.  Miller’s bound No 

Cheng, X. J.  Capacity  Yes 

Couth, S. Miller’s bound  No 

Farid, B.  Independent race  No 

Fitousi, D.  Capacity  No 

Freeman, L. A. C.  Unclear (No equation / description) No  

Mahoney, J. R.  Miller’s bound  No 

Minakata, K.  Miller’s bound  No 

Mishler, A. D.  Miller’s bound No  

Mittelstadt, V.  Miller’s bound No 

Morey, S. A. (CR:PI) Capacity  No 

Morey, S. A. (PotHFaRSAM) Capacity No 

Murray, M. M.  Independent race No 

Noel, J. –P.  Miller’s Bound  No 

Ren, Y.  Independent race No 

Surig, R.  Miller’s bound No 

Vrancken, L.  Miller’s bound  No 

Wang, B.  Independent race No 

Yamani, Y.  Capacity  No 

Yang, C. –T.  Capacity  Yes 

Yang, W.  Independent race No 

 
 



 

188 
Appendices 

 Simulation Parameters for Validation of Down-Sampled Benefit Procedure   

Note that the unit for each parameter is s-1 (except for correlation, rho)  

Parameters  

muX muY sigmaX sigmaY rho 

N(2.5, 0.25) N(2.5, 0.25) N(0.4, 0.04) N(0.4, 0.04) U(-1, 1) 

 

 Equations for the Context Variant Race Model 

The context variant race equation is described by Otto and Mamassian (2012; Supplemental 

Information). Consider two unisensory signals (X and Y) and the redundant signal (XY). Drift rates 

elicited by the unisensory signals are modelled as two normal distributions, 𝐷𝑋 and 𝐷𝑌. Each are 

defined by their corresponding mu (𝜇) and sigma (𝜎) parameters, such that 

𝐷𝑋 ~ 𝑁(𝜇𝑋 , 𝜎𝑋
2), (A1) 

and 

𝐷𝑌 ~ 𝑁(𝜇𝑌 , 𝜎𝑌
2). (A2) 

The next step is to calculate the redundant drift rate distribution. According to the race model, 

the redundant decision time is determined by the minimum of the two unisensory decision time 

distributions (see Section 1.3.3.3). As smaller drift rates correspond to larger decision times, this 

corresponds to the maximum of the two drift rate distributions. The maximum function of two 

Gaussian distributions, including a correlation coefficient, is provided by Nadarajah and Kotz (2008). 

First, a bivariate Gaussian random vector (𝐷𝑋 , 𝐷𝑌) is defined using the mu (𝜇𝑋 , 𝜇𝑌) and sigma (𝜎𝑋 , 𝜎𝑌) 

parameters of the unisensory drift rate distribution, including a correlation (rho) parameter 𝜌. The 

probability density function (PDF) of the maximum distribution 𝐷𝑋𝑌 = 𝑚𝑎𝑥(𝐷𝑋 , 𝐷𝑌) is given by the 

function 𝑓(𝑥) = 𝑓𝑋(−𝑥) + 𝑓𝑌(−𝑥). The functions 𝑓𝑋(𝑥) and 𝑓𝑌(𝑥) are defined as  

𝑓𝑋(𝑥) =
1

𝜎𝑋
𝜑 (

𝑥 +  𝜇𝑋

𝜎𝑋
) × Φ (

𝑝(𝑥 + 𝜇𝑋)

𝜎𝑋√1 − 𝜌2
−

𝑥 + 𝜇𝑌

𝜎𝑌√1 − 𝜌2
) (A3) 

and 

𝑓𝑌(𝑥) =
1

𝜎𝑌
𝜑 (

𝑥 +  𝜇𝑌

𝜎𝑌
) × Φ (

𝑝(𝑥 + 𝜇𝑌)

𝜎𝑌√1 − 𝜌2
−

𝑥 + 𝜇𝑋

𝜎𝑋√1 − 𝜌2
) (A4) 
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respectively, where 𝜑 represents the standard normal distribution PDF and Φ represents the standard 

normal distribution CDF.   

Following the above equations allows for the implementation of a race model with a 

correlation parameter, rho (𝜌). To add the noise parameter, eta (𝜂), a constant is added to the sigma 

values of the unisensory drift rate distributions. Thus, in redundant conditions, the drift rates are 

defined as:  

𝐷𝑋 ~ 𝑁(𝜇𝑋 , (𝜎𝑋 + 𝜂)2), (A5) 

and 

𝐷𝑌 ~ 𝑁(𝜇𝑌 , (𝜎𝑌 + 𝜂)2). (A6) 

In practice, unisensory drift rates were modelled by fitting a LATER model (see Section 2.4.4.1) 

to each unisensory 1/RT distribution. To find the best fitting rho and eta parameters, an optimisation 

algorithm (see Section 2.4.1.2) was used, and Maximum Likelihood Estimation (see Section 2.4.2.2) 

was used to evaluate the fit.  

 Analysis of Misses for Chapter 4 (Part 2)  

In addition to the main effects reported in the main chapter (Section 4.6.1), the following interactions 

were observed.  

There was a significant interaction between signal duration and task-irrelevant stimulation, 

F(1, 19)=20.374, p=0.001, ηp2=0.445. For short signals, the percentage of misses was 1.788% 

(±0.228%) when task-irrelevant stimulation was absent and 0.748% (±0.154%) when present. For long 

signals, the percentage of misses was 0.231% (±0.094%) when task-irrelevant stimulation was absent 

and 0.067% (±0.031%) when present.  

There was a significant interaction between signal duration and signal modality, F(1.278, 

24.285)=20.374, p<0.001, ηp2=0.517. In short conditions, tactile signals by far had the highest 

percentage of misses (2.871 ±0.487%), followed by visual (0.886 ±0.236%) and redundant (0.047 

±0.047%). In long conditions, however, visual signals had the highest percentage of misses (0.273 

±0.099%), followed by tactile (0.174 ±0.090%) and redundant (0%).  

There was also a significant interaction between task-irrelevant stimulation and signal 

modality, F(1.491, 28.324)=19.781, p<0.001, ηp2=0.510. In absent conditions, tactile signals by far had 

the highest percentage of misses (2.221 ±0.354%), followed by visual (0.761 ±0.161%) and redundant 

(0.047 ±0.047%). In present conditions, tactile signals also had the highest percentage of misses (0.823 
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±0.196%), followed by visual (0.399 ±0.163%) and redundant (0%). However the difference between 

tactile and other signals was much smaller in present conditions.  

There was also a significant three-way interaction between signal duration, task-irrelevant 

stimulation, and signal modality F(1.551, 29.466)=10.956, p=0.001, ηp2=0.366. Misses for each 

condition are shown in Table 4.3. In short-absent conditions, tactile signals by far had the highest 

percentage of misses, followed by visual and redundant. In short-present conditions, tactile signals 

also had the highest percentage of misses, followed by visual and redundant. In long-absent 

conditions, however, visual signals had the highest percentage of misses, followed by tactile and 

redundant. In long-present conditions, visual signals also had the highest percentage of misses, 

followed by tactile and redundant. Overall, as discussed in the main chapter, these interactions can 

be understood by the large percentage of misses for tactile signals in the short-absent condition.  

 History Effects for Each Modality   

All values reported here are in seconds (s).  

Chapter 3 

 Auditory   Visual   

 Consistent Alternating  Consistent Alternating 

Simple 0.049 (0.010) 0.056 (0.008)  0.010 (0.006) 0.022 (0.006) 

Complex 0.042 (0.009) 0.048 (0.011)  0.016 (0.010) 0.032 (0.012) 

 

Chapter 4 (Part 1) 

 Auditory    Visual   

 Absent  Present   Absent  Present 

Short 0.060 (0.011) 0.057 (0.009)  0.047 (0.006) 0.031 (0.005) 

Long 0.042 (0.007) 0.032 (0.006)  0.027 (0.005) 0.024 (0.006) 

 

Chapter 4 (Part 2) 

 Tactile   Visual   

 Absent  Present   Absent  Present 

Short 0.019 (0.009) 0.022 (0.009)  0.036 (0.007) 0.022 (0.008) 

Long  0.029 (0.009) 0.013 (0.009)  0.027 (0.007) 0.015 (0.006) 

 

Chapter 5  

 Auditory    Visual   

 Hand Foot  Hand Foot  

Strong  0.024 (0.006) 0.019 (0.007)  0.018 (0.006) 0.027 (0.005) 

Weak  0.071 (0.011) 0.067 (0.016)  0.031 (0.011) 0.025 (0.012) 
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 Simulating the Effect of Non-Decisional Components on Model Fitting  

In Chapter 5, a main effect of response effector (hand, foot) was found for the eta parameter of the 

context variant race model. The additional noise added by eta was smaller for foot responses than for 

hand responses. This effect may have arisen from the simplicity of the LATER model, which is used to 

fit the unisensory RT distributions, rather than genuinely reflecting changes in decision-making. A large 

change in median RT which arises from non-decisional components (such as the change in response 

effector) can only be modelled by LATER as a change in decisional components (i.e. the mu and sigma 

parameters, which describe the evidence accumulation process across trials). As such, the fitting of 

the interaction parameters (which build on these LATER fits) may also be influenced by this issue when 

comparing across different effectors with different median RTs.  

 To demonstrate this, I simulated RTs by using the context variant race model (see Section 

2.5.3). The parameter values used to initialise the model are shown in the top row of Table 9.1. 100 

RTs for all three signal types (X, Y, XY) were sampled from the model over 1000 repetitions. As a first 

step, for an initial check, the context variant race model was fit back to these RTs. Overall, the average 

recovered parameter values shown in Table 9.1 (RT) match the parameters of the model very well, as 

expected. Second, I simulated an additional non-decisional component of RT, similar to the delay 

introduced by moving from responding by hand to by foot. As a simple procedure, this additional 

motor delay was simulated by adding a constant delay to all RTs (0.1 s). Importantly, this does not 

change the variability of RTs, but only shifts them in time. The context variant race model was then fit 

again to these RT data (RT + Motor). Overall, the additional motor delay was modelled by changes in 

the decision parameters, as seen in Table 9.1 (RT + Motor). The mu parameters decreased, to account 

for the slower median RT following the addition of the motor component. Similarly, the sigma 

parameters decreased; this is because less variability in the rate values is needed to model the same 

variability in RTs (as measured by MAD, for instance) if the median becomes slower. This comes from 

the model geometry (see Figure 1.6b). Concerning rho, the correlation was not largely affected. 

Concerning eta, however, the additional noise added was smaller when the constant motor delay was 

added. In relation to the results of Chapter 5, therefore, this suggests that the main effect of response 

effector comes from the simplicity of the LATER model. As non-decisional components of RT can only 

Table 9.1 Model and average recovered parameter values (±SEM) for the motor component 
simulation (all values in s-1 except rho) 

 
Parameters  

Model values muX muY sigmaX sigmaY rho  eta 

  2.5 2.5 0.4 0.4 -0.2 -0.1 

Fit values muX muY sigmaX sigmaY rho  eta 

RT 2.501 (0.001) 2.499 (0.001) 0.399 (0.001) 0.399 (0.001) -0.191 (0.007) 0.099 (0.001) 

RT + Motor  1.992 (0.001) 1.991 (0.001) 0.256 (0.001) 0.256 (0.001) -0.184 (0.007) 0.051 (0.001) 
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be modelled here by changes in decision components, erroneous effects can arise when comparing 

responses made by different effectors with different associated time-courses for the non-decisional 

response component.  

Notably, on the straightforward model recovery (RT), there was a larger variability in the value 

of rho than all other parameters. As an additional assessment of the fitting of interaction parameters, 

therefore, I computed 95% confidence intervals for the recovery of both rho and eta in this simulation. 

For rho, there was a large variability around the mean (-0.191), 95% CI [-0.582, 0.302]. For eta, 

recovery was more reliable around the mean (0.099 s-1), 95% CI [0.013, 0.184]. Overall, this indicates 

that with the number of trials used in experiments here (N=100 in each condition), there is some 

degree of uncertainty in the recovery of interaction parameters, particularly rho.  
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 Average Model Parameters for Experimental Chapters  

Note that the unit for each parameter is s-1 (except for correlation, rho)  

9.8.1. Two-Step Fitting Procedure 

Chapter 3  

 muA muV sigmaA sigmaV rho eta 

Sim / Con 3.278 (0.106) 3.163 (0.081) 0.736 (0.033) 0.649 (0.021) -0.240 (0.085) 0.226 (0.032) 

Sim / Alt 3.243 (0.108) 3.169 (0.085) 0.709 (0.035) 0.624 (0.025) -0.215 (0.101) 0.219 (0.017) 

Com / Con 2.420 (0.090) 2.321 (0.090) 0.576 (0.022) 0.493 (0.017) -0.108 (0.081) 0.092 (0.014) 

Com / Alt 2.382 (0.086) 2.285 (0.076) 0.532 (0.018) 0.506 (0.018) -0.151 (0.080) 0.085 (0.013) 

 

Chapter 4 (Part 1)  

 muA muV sigmaA sigmaV rho eta 

Short / Abs 2.885 (0.134) 3.131 (0.116) 0.639 (0.033) 0.609 (0.028) -0.286 (0.082) 0.206 (0.022) 

Short / Pres 2.829 (0.140) 3.150 (0.133) 0.716 (0.042) 0.653 (0.036) -0.154 (0.097) 0.141 (0.021) 

Long / Abs 3.054 (0.129) 3.069 (0.114) 0.595 (0.027) 0.586 (0.028) -0.159 (0.103) 0.194 (0.026) 

Long / Pres 2.961 (0.137) 3.115 (0.121) 0.665 (0.028) 0.598 (0.035) -0.020 (0.110) 0.172 (0.019) 

 

Chapter 4 (Part 2)  

 muT muV sigmaT sigmaV rho eta 

Short / Abs 2.897 (0.094) 3.215 (0.105) 0.733 (0.028) 0.676 (0.016) -0.369 (0.079) 0.224 (0.026) 

Short / Pres 3.105 (0.114) 3.378 (0.119) 0.772 (0.035) 0.771 (0.039) -0.226 (0.072) 0.083 (0.019) 

Long / Abs 2.954 (0.088) 3.227 (0.114) 0.622 (0.033) 0.645 (0.020) -0.430 (0.060) 0.253 (0.025) 

Long / Pres 3.143 (0.117) 3.388 (0.108) 0.708 (0.038) 0.734 (0.034) -0.155 (0.080) 0.142 (0.021) 

 

Chapter 5  

 muA muV sigmaA sigmaV rho eta 

Strong / Hand 2.918 (0.093) 2.601 (0.075) 0.543 (0.024) 0.457 (0.019) -0.189 (0.089) 0.123 (0.020) 

Strong / Foot 2.384 (0.080) 2.154 (0.057) 0.400 (0.019) 0.363 (0.018) -0.204 (0.092) 0.074 (0.009) 

Weak / Hand 2.087 (0.060) 2.097 (0.074) 0.580 (0.027) 0.487 (0.019) -0.145 (0.075) 0.078 (0.020) 

Weak / Foot  1.769 (0.055) 1.779 (0.053) 0.459 (0.018) 0.375 (0.012) -0.077 (0.076) 0.045 (0.013) 
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9.8.2. One-Step Fitting Procedure  

Chapter 3  

 muA muV sigmaA sigmaV rho eta 

Short / Abs 3.291 (0.106) 3.176 (0.082) 0.727 (0.031) 0.649 (0.020) -0.218 (0.084) 0.220 (0.032) 

Short / Pres 3.256 (0.109) 3.184 (0.087) 0.699 (0.034) 0.626 (0.025) -0.191 (0.099) 0.211 (0.017) 

Long / Abs 2.427 (0.091) 2.330 (0.091) 0.571 (0.021) 0.493 (0.017) -0.081 (0.081) 0.088 (0.015) 

Long / Pres 2.392 (0.086) 2.295 (0.077) 0.527 (0.017) 0.506 (0.018) -0.120 (0.078) 0.080 (0.013) 

 

Chapter 4 (Part 1)  

 muA muV sigmaA sigmaV rho eta 

Short / Abs 2.901 (0.136) 3.151 (0.117) 0.638 (0.033) 0.605 (0.028) -0.229 (0.096) 0.192 (0.022) 

Short / Pres 2.849 (0.142) 3.171 (0.135) 0.715 (0.042) 0.648 (0.036) -0.129 (0.094) 0.128 (0.019) 

Long / Abs 3.068 (0.131) 3.084 (0.115) 0.592 (0.027) 0.584 (0.028) -0.134 (0.101) 0.186 (0.025) 

Long / Pres 2.971 (0.138) 3.126 (0.122) 0.660 (0.028) 0.596 (0.034)  0.005 (0.109) 0.167 (0.018) 

 

Chapter 4 (Part 2)  

 muT muV sigmaT sigmaV rho eta 

Short / Abs 2.922 (0.096) 3.242 (0.105) 0.733 (0.027) 0.671 (0.017) -0.334 (0.076) 0.206 (0.026) 

Short / Pres 3.128 (0.116) 3.409 (0.121) 0.772 (0.034) 0.763 (0.038) -0.153 (0.085) 0.060 (0.023) 

Long / Abs 2.975 (0.088) 3.255 (0.118) 0.625 (0.032) 0.636 (0.020) -0.386 (0.055) 0.233 (0.028) 

Long / Pres 3.158 (0.118) 3.406 (0.108) 0.707 (0.037) 0.727 (0.033) -0.121 (0.079) 0.135 (0.021) 

 

Chapter 5  

 muA muV sigmaA sigmaV rho eta 

Strong / Hand 2.931 (0.094) 2.611 (0.076) 0.534 (0.023) 0.459 (0.019) -0.155 (0.086) 0.117 (0.020) 

Strong / Foot 2.391 (0.080) 2.159 (0.057) 0.395 (0.018) 0.364 (0.018) -0.180 (0.090) 0.072 (0.009) 

Weak / Hand 2.091 (0.060) 2.101 (0.075) 0.579 (0.027) 0.483 (0.019) -0.127 (0.078) 0.075 (0.020) 

Weak / Foot  1.776 (0.054) 1.786 (0.053) 0.456 (0.017) 0.374 (0.012) -0.015 (0.091) 0.039 (0.014) 
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10. Abbreviations 

Abbreviation Term   

AIC Akaike’s Information Criterion (Section 2.4.3.2) 

AT Auditory-Tactile  

AV Auditory-Visual  

BIC Bayesian Information Criterion (Section 2.4.3.3) 

CDF Cumulative Distribution Function (Section 1.2.2) 

CI Confidence Interval 

CP Cumulative Probability (Section 1.2.2) 

DDM Diffusion Decision Model 

IRM Independent Race Model (Section 1.4.1)  

LATER Linear Approach to Threshold with Ergodic Rate (Section 1.2.3.1) 

LBA Linear Ballistic Accumulator 

LRT Likelihood Ratio Test (Section 2.4.3.1) 

MAD Median Absolute Deviation  

MLE Maximum Likelihood Estimation (Section 2.4.2.2) 

MVUE Minimum Variance Unbiased Estimator  

PDF Probability Density Function  

RT Response Time  

RMSE Root Mean Squared Error (Section 2.4.2.1) 

RSE Redundant Signal Effect (Section 1.3.2) 

RSP Redundant Signal Paradigm (Section 1.3.1) 

TV Tactile-Visual 
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A comparative analysis of response 
times shows that multisensory 
benefits and interactions are not 
equivalent
Bobby R. Innes   & thomas U. otto  

Multisensory signals allow faster responses than the unisensory components. While this redundant 
signals effect (RSE) has been studied widely with diverse signals, no modelling approach explored the 
RSE systematically across studies. For a comparative analysis, here, we propose three steps: The first 
quantifies the RSE compared to a simple, parameter-free race model. The second quantifies processing 
interactions beyond the race mechanism: history effects and so-called violations of Miller’s bound. The 
third models the RSE on the level of response time distributions using a context-variant race model with 
two free parameters that account for the interactions. Mimicking the diversity of studies, we tested 
different audio-visual signals that target the interactions using a 2 × 2 design. We show that the simple 
race model provides overall a strong prediction of the RSE. Regarding interactions, we found that 
history effects do not depend on low-level feature repetition. Furthermore, violations of Miller’s bound 
seem linked to transient signal onsets. Critically, the latter dissociates from the RSE, demonstrating 
that multisensory interactions and multisensory benefits are not equivalent. Overall, we argue that our 
approach, as a blueprint, provides both a general framework and the precision needed to understand 
the RSE when studied across diverse signals and participant groups.

Everyday life requires processing of multiple signals coming from different sensory modalities like audition and 
vision. An incoming phone call, for example, can be signalled either in one modality only (e.g. a ringtone as a 
unisensory signal) or in multiple modalities simultaneously (e.g. a ringtone and a flashing screen as redundant 
signals). As observed in the redundant signal paradigm (Fig. 1a), the benefit of redundant signals is that indi-
viduals respond faster compared to the unisensory components, which is the redundant signals effect (RSE) as 
described in classic experiments1–3.

Given the broad scope of multisensory benefits, the RSE has been investigated for over 100 years with dif-
ferent research questions and diverse signal sets. Basically all sensory modalities have been tested, including 
audio-tactile4, visual-tactile5, and gustatory-olfactory pairings6. The largest body of research has focused on 
audio-visual pairings, but even within this domain, stimuli have varied considerably across studies. Some have 
used abstract signals, such as pure tones or noise sounds that were paired with flashes, letters, or simple geometric 
shapes7–9. Others have used real-world signals, such as animal sounds and images10 or signals with emotional con-
tent11. In most experiments, signals have had sudden-onsets and were presented briefly with little variation across 
trials, but the RSE was also observed when signals were randomly generated on each trial and presented within a 
continuous audio-visual background12,13. While the basic RSE has reliably replicated, the diverse studies differ in 
several aspects including overall mean RTs and the exact size of the RSE. Due to these differences, a recent review 
argued that a common modelling framework for the RSE is unlikely to be found14. In this view, a comparative 
approach between studies is difficult and a complete understanding of the RSE is lacking.

To develop a common framework, it is a good starting point to build upon models of unisensory 
decision-making, which typically assume some key processing steps e.g.15–17. Sensory evidence for a signal is 
available from the environment, and is sampled by neurons with corresponding receptive fields. Due to fluctua-
tions in neuronal activity, the evidence is subject to noise. To minimise the influence of noise on signal detection, 
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the evidence is accumulated over time until a threshold level is reached and a response is triggered. To extend 
the framework to the RSE, some sort of combination rule is needed that specifies how evidence from two senses 
is processed to trigger a single response. Broadly, there are two main model architectures with fundamentally 
different combination rules. Firstly, so-called race models suggest that evidence for each signal is accumulated 
separately by parallel decision units (e.g. one for audition and one for vision) and that the first unit to reach its 
threshold triggers a response. Secondly, pooling models propose that evidence for both signals is summed in a 
single decision unit and that a response is triggered when the combined evidence reaches a threshold level. Both 
architectures could in principle explain the RSE.

The race model architecture was first proposed by Raab18. The idea is that selecting the faster of two stochas-
tic decision processes results on average in faster and less variable RTs with redundant compared to unisensory 
signals. Thus, race models explain the RSE mainly by statistical facilitation. Miller8, however, argued that if race 
models were correct, an upper bound for the RSE can be computed on the level of RT distributions, which is 
named Miller’s bound. As this bound is typically violated in experiments, Miller8 and many follow-up studies 
concluded that race models cannot explain the RSE, which has led to the dominance of pooling models. However, 
to the best of our knowledge and in agreement with the recent review14, no pooling model has been shown to 
account for the RSE across studies. Hence, the lack of a common framework is in essence a failure of the dominat-
ing class of pooling models. The possibility that race models provide a common framework remained unexplored 
due to the general rejection.

This omission becomes critical as the general rejection of race models is not a valid argument19. The issue is 
the untested and mostly neglected context invariance assumption, which states that the processing of one signal 
is not affected by another20,21. As Miller’s bound implicitly assumes context invariance, a violation of the bound 
does not necessarily show that the basic race model architecture is wrong. Alternatively, the context invariance 
assumption may be wrong, which would show that some sort of interaction has taken place between the parallel 
decision units. If the context invariance assumption is dropped, we demonstrated that context variant race models 
can explain the RSE, including violations of Miller’s bound12,13. These considerations show that the parallel archi-
tecture of race models could in fact provide a common framework for RSE studies.

To study the RSE with diverse signal sets, here, we develop a comparative approach based on race models. In a 
first of three steps, we test the ability of the framework to predict multisensory benefits. Following Raab’s model18, 
directional predictions of the RSE for different sets of signals can be readily made according to the principles 
of multisensory behaviour12. Firstly, the principle of equal effectiveness states that benefits should increase when 
unisensory RTs become more similar. Secondly, the variability rule states that the variability of RTs is the key 
driving force of multisensory benefits, which should increase when unisensory RTs become more variable. In 
addition, following Raab’s model18, a parameter-free prediction can be made of the exact size of the RSE based on 
the unisensory RT distributions and probability summation. The first step thus provides a simple tool to analyse 
the RSE if diverse signal sets yield different RTs.

The second step quantifies two processing interactions with multisensory signals that are not covered by Raab’s 
model. The first interaction concerns history effects that describe the influence of previous trials on current-trial 
processing4,8,13. Typically, RTs to unisensory signals are faster if a modality is repeated (e.g. audition following 
audition) compared to a switch (e.g. audition following vision). This interaction challenges the statistical inde-
pendence assumption that is made by the parameter-free prediction using probability summation19. The second 
interaction is observed by violations of Miller’s bound, which shows that processing of one signal must affect 
processing of the other signal in some way if the parallel processing architecture is correct. This second interac-
tion challenges the context invariance assumption made by the parameter-free prediction based on probability 

Figure 1. Experimental design. (a) Redundant signals paradigm. Participants respond to trials with auditory 
(A), visual (V), and combined signals (AV), but not on catch trials. Signals were presented in a random order 
within a block of trials. (b) Following a 2 × 2 design, we tested four signal sets in separate blocks. Stimulus 
construction was either simple (e.g. a pure tone, in audition) or complex (e.g. a noise tone). The sequence of 
signal features was either consistent (e.g. one frequency) or alternating (e.g. randomly one of two frequencies).
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summation19. By quantifying the two interactions, it becomes clear that Raab’s basic model needs to be extended. 
Moreover, the interactions need to be critically considered to understand how multisensory interactions are even-
tually changed with diverse signals.

The third step is to account for the RSE on the level of entire RT distributions with a modelling approach. 
Specifically, we use here the context variant race model that includes two free parameters to account for the inter-
actions12,13,19. Regarding history effects, the model includes the correlation Rho, which is used in the probability 
summation rule given that the assumption of statistical independence does not hold. Regarding violations of 
Miller’s bound, the model includes the noise Eta, which models increased noise within the accumulation process 
for redundant compared to unisensory conditions. This increased noise may come, for instance, from a disruptive 
interaction between parallel decision units (i.e. having both accumulate evidence at the same time decreases their 
reliability). This second parameter is motivated by findings showing that empirical RT distributions with redun-
dant signals are not faster but more variable than the best-fitting race model with only Rho as a free parameter13. 
A key advantage of considering entire RT distributions is that these provide a more detailed view compared to an 
approach that is based only on a subset of particularly fast RTs as in Miller’s test. Such a detailed view is critically 
needed given that present understanding of multisensory interactions is still far from complete. For example, the 
source of additional noise is not yet known and subject to speculation19. Thus, it will be particularly important to 
identify experimental manipulations that specifically target one or the other interaction so that the underlying 
sources can be determined. In the end, we are convinced that such a comparative approach will lead to a better 
understanding of multisensory processing.

Following the comparative approach, we developed stimuli to mimic some of the diversity across RSE stud-
ies. Using a 2 × 2 design, we manipulated stimulus construction and signal features in each modality (Fig. 1b). 
Regarding the first factor, the construction of auditory and visual stimuli was either simple (identical across trials; 
without background stimulation) or complex (randomly generated; with background stimulation). One aspect of 
this manipulation is that simple stimuli had strong onset transients, which were masked in complex conditions 
by the background. As onset transients have been considered relevant to multisensory processing22,23, we aim to 
evaluate whether processing interactions, as revealed by the modelling approach, change according this factor. 
Regarding the second factor, signal features were either consistent (one variant per modality) or alternating (one 
of two variants per modality). With this factor, we aimed to understand the origins of history effects. One possi-
bility is that history effects arise simply because of the repetition of low-level features (e.g. the specific frequency 
of a tone). If true, introducing alternating signals within each modality would reduce history effects. Alternatively, 
if no changes in history effects occur, this would suggest a basis in higher-level processes.

Methods
participants. 20 healthy adults (18–29 years; 14 females) were recruited via the University of St Andrews. All 
were naïve regarding the experiment’s purposes and reported normal hearing and normal/corrected-to-normal 
vision. Informed consent was obtained from all participants. Participants were reimbursed with £9. All pro-
cedures were approved by the University of St. Andrews’ University Teaching and Research Ethics Committee 
(UTREC, approval code: PS12181) and were performed in accordance with the Code of Human Research Ethics 
(British Psychological Society, 2014).

Apparatus. The experiment was controlled by a Dell computer (Optiplex XE2) equipped with Matlab and the 
Psychophysics Toolbox extensions24–26. Visual stimuli were presented on a Dell UltraSharp U2713HM monitor 
(resolution: 1,920 × 1,080 pixel; refresh: 60 Hz). Viewing distance was 57 cm. Auditory stimuli were presented via 
over-ear headphones (Sennheiser HD 280 Pro) at a 44.1 kHz sample frequency. The volume was calibrated using 
a Brüel and Kjær sound level meter (Type 2250) attached to an artificial ear (Type 4153). Participants responded 
by pressing a custom-built handheld button connected to an RTbox V527. Prior to data collection, the RTbox 
was also used to calibrate audio-visual timing. As a test, audio-visual signal onsets were presented in 1000 trials. 
Calibrated stimuli were synchronous and onset jitter was reliably below 1 ms.

task. We used the redundant signals paradigm (Fig. 1a). On signal trials (75%), we presented either an audi-
tory (A), a visual (V), or redundant signals (both auditory and visual together, AV). Participants pressed a button 
as quickly as possible after detecting any signal. On catch trials (25%), no signal was presented and participants 
were asked to withhold a response.

stimuli. Auditory Stimuli. We manipulated stimulus construction and signal features following a 2 × 2 design 
(Fig. 1b). In simple conditions, signals were pure tones. In the consistent condition, the signal was always a 440 Hz 
tone. In the alternating condition, the signal was either a 440 or 660 Hz tone. Tones were presented at 45 dB SPL. 
In complex conditions, signals were noise sounds. To generate a new sound on each trial, Gaussian noise (i.e., a 
sequence of normally-distributed random numbers) was filtered with a 2nd order Butterworth bandpass filter. In 
the consistent condition, we always used edge frequencies of 1.0/1.1 kHz. In the alternating condition, we used 
edge frequencies of either 1.0/1.1 kHz or 1.1/1.2 kHz. Noise sounds were presented at 45 dB SPL. Noise sounds 
were presented within background noise (1st order Butterworth bandpass filter, edge frequencies: 0.5/2.4 kHz, 
50 dB SPL). Auditory signals had a ramp onset of 10 ms.

Visual Stimuli. Signals covered the area of a notional annulus with an inner/outer radius of 1°/4° (visual angle) 
around central fixation. In simple conditions, signals were composed of 3 concentric rings (1° increments, alter-
nating black-to-white; Fig. 1b). In the consistent condition, the ring pattern always started on black. In the alter-
nating condition, the ring pattern started either on black or white. In complex conditions, 1000 dots (1 pixel; 
black or white) were uniformly-distributed within the annulus as visual background stimulation. Each dot moved 
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linearly in a random direction and speed (mean: 1°/s, SD: 0.2°/s). Dots were randomly replaced within the annu-
lus when moving outside the annulus, or when the lifetime of 0.1 s had passed. For the signal, 50% of the dots 
started coherent rotation (mean: 0.67 rad/s, SD: 0.067 rad/s). In the consistent condition, the direction was always 
clockwise. In the alternating condition, the direction was either clockwise or anticlockwise. All visual stimuli were 
presented on a grey screen.

Procedures. Each trial started with a central, green fixation point (0.27°). In complex conditions, both the 
auditory and visual background were presented as well. The foreperiod duration consisted of a fixed component 
(1 s) and an exponentially-distributed random component (mean: 0.75 s). Then, a signal was presented for a max. 
duration of 1.5 s. On catch trials, no signal was presented and stimulation as during the foreperiod continued 
for 1.5 s. After a response, or at the end of the max. duration, the fixation point changed from green to red to 
indicate that the trial ended. Following false alarms and misses, a feedback screen indicated the mistake for 2 s. 
Stimulation, including the background in complex conditions, stopped for 0.25 s before the next trial started.

Stimuli were presented in blocks of 104 trials (26 trials per modality, 26 catch trials). The trial sequence was 
randomised, but always started with an additional dummy trial (presenting redundant signals). After a false alarm 
or miss, a corresponding trial was repeated, the trial sequence was reshuffled, and stimulation continued with 
another dummy trial. Dummy trials were not analysed. The experiment included 16 blocks (2 × 2 within-subjects 
design with 4 blocks per condition). Conditions were intermixed in the randomisation of block order, which was 
done for each participant using a Latin square. A block lasted approx. 4 min (a small pointer on fixation denoted 
progress). The entire experiment lasted around 105 min with breaks.

Data analysis. Any response within 1.5 s after signal onset was recorded as valid. Responses were false alarms 
when given during the foreperiod or at any time during catch trials. Signal trials with no response were misses. 
Before the main analysis, we performed an outlier correction. For this, we transformed the RTs of each condition 
into rates (1/RT). We excluded data points that deviated by more than 3 × 1.4826 × median absolute deviations 
(MADs) from the median28, corresponding to 3 SDs if data are normally distributed. Fast outliers occurred on 
0.4% (±0.1) of trials and slow outliers on 0.5% (±0.1) of trials. A total of 24,720 valid RTs (approx. 103 per con-
dition and participant) remained.

The main analysis focused on the speed-up of RTs with redundant signals compared to the unisensory compo-
nents, which is the RSE. As defined previously, this multisensory benefit is best measured by the area between the 
cumulative distribution function (CDF) in the multisensory condition and the faster of the unisensory CDFs12. 
As a simple procedure, if the number of measured RTs is the same in all three conditions, the size of the area can 
be estimated:

= ∑ −benefit min A V AV
N

( , )
(1)

i i i

Ai, Vi, and AVi are quantiles of the empirical CDFs, where the index i indicates the rank ranging from 1 (the fast-
est) to N (the slowest RT).

This simple computation requires equal numbers of RTs in each condition to allow for equal quantile points. 
However, following outlier correction, the numbers of RTs are often unequal. As a solution, we used linear inter-
polation29 to down-sample the collected RTs to a common sample size (we used 50 quantile points; the procedure 
was shown to be unbiased using Monte Carlo simulations). We computed empirical benefits for each participant 
and each condition of the 2 × 2 design.

To obtain quantitative predictions of the RSE, we used Raab’s model18. Based on the CDFs in the unisensory 
conditions, a parameter-free prediction of the CDF in the multisensory condition can be obtained using proba-
bility summation:

P t P t P t P t P t( ) ( ) ( ) ( ) ( ) (2)AV A V A V= + − ×

PA and PV are the empirical CDFs in the unisensory conditions (we used linear interpolation to obtain continuous 
CDFs). PAV is here the predicted CDF for multisensory condition. We then extracted 50 quantile RTs from the 
predicted CDF and calculated expected benefits analogous to the calculation of empirical benefits (Equation (1)).

Next, we quantified two processing interactions that go beyond Raab’s model. First, RTs on a given trial can 
depend on previously presented signals. To quantify this history effect, we computed the RT difference between 
trials in which modalities were repeated, and trials in which modalities were switched:

history effect RT RT (3)Switch Repetition= −

We computed the history effect for auditory and visual RTs separately and averaged these values to obtain a 
single measure. Second, we computed violations of Miller’s bound8, which is given by the sum of the CDFs in the 
unisensory conditions:

= +P t min P t P t( ) [ ( ) ( ), 1] (4)Miller A V

The CDF in the redundant signals condition has to fall below Miller’s bound if both the race model and con-
text invariance hold19. To quantify violations, we first used linear interpolation to obtain 50 quantiles for Miller’s 
bound (Milleri). Then, similar to a previously detailed method30, we computed the size of the area between the 
CDF in the redundant condition and Miller’s bound, where the redundant condition exceeded the bound:
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violation max Miller AV
N

( , 0)
(5)

i i= ∑ −

AVi are the 50 quantile RTs from the empirical CDF in the redundant condition as used in the computation of 
benefits.

Finally, we applied the context variant race model12,13. All modelling was performed in the rate space (1/
RT). As a first step, we fitted a LATER model31,32 to each of the unisensory conditions. As the LATER model 
assumes that rates are normally distributed, we used the Matlab function normfit to obtain best-fitting values of 
the mean (Mu) and the standard deviation (Sigma) using the Minimum-Variance Unbiased Estimator (MVUE). 
As a second step, we fitted the context variant race model in the redundant condition. Using a race mechanism, 
the model assumes that a response on a given trial with redundant signals is triggered by the unisensory signal 
with the higher rate. Hence, the resulting rate distribution can be computed using the maximum distribution 
of two Gaussian random numbers33, which are given by the LATER fits in the unisensory conditions. The exact 
distribution depends on the correlation (Rho), which we kept as a free parameter to account for history effects. 
As a second free parameter, the additional noise (Eta) increases the variability of rates (i.e. the Sigma parameter) 
in both LATER units additively. This free parameter manifests a violation of the context invariance assumption, 
which allows for violations of Miller’s bound. We used the Matlab function mle to obtain maximum likelihood 
estimates (MLEs) of Rho and Eta individually for each participant and each condition of the 2 × 2 design.

Statistical analyses were performed in IBM SPSS Statistics 22. For main analyses, we used 2 × 2 
repeated-measures ANOVAs, which always tested the factors stimulus construction (simple, complex) and sig-
nal features (consistent, alternating). For initial analysis of median RTs, we used 2 × 2 × 3 repeated-measures 
ANOVAs, including the additional factor signal modality (A, V, and AV). We used a Greenhouse-Geisser correc-
tion where sphericity was violated. The alpha level for statistical testing was 0.05.

Results
General performance. To assess data quality, we first checked performance (false alarms, misses). In signal 
trials, the false alarm rate during the foreperiod was 1.04% (±0.19%, SEM). In catch trials, the false alarm rate 
was 1.53% (±0.25%). The miss rate was 0.46% (±0.19%). As performance was close to perfect, it is not further 
considered in the RT analysis (for a detailed analysis of false alarm and miss rates, see Supplementary Analysis 1).

To assess whether the experimental manipulations mimicked the diversity of RSE studies, we next tested 
median RTs (Table S1). A 2 × 2 × 3 repeated-measures ANOVA showed a significant main effect of stimulus 
construction, F(1, 19) = 154.59, p < 0.001, ηp2 = 0.89. RTs were faster with simple (0.300 ± 0.010 s) than with 
complex stimuli (0.416 ± 0.015 s). Hence, the experimental factor stimulus construction successfully manipulated 
RTs. There was neither a main effect of signal features nor any interaction (all F ≤ 2.04, p ≥ 0.165, ηp2 ≤ 0.10). 
Expectedly, there was a main effect of signal modality, F(1.39, 26.37) = 53.32, p < 0.001, ηp2 = 0.74. Pairwise com-
parisons revealed that redundant RTs (0.321 ± 0.011 s) were faster than both auditory (0.371 ± 0.014 s) and visual 
RTs (0.382 ± 0.012 s), both p < 0.001. Auditory and visual RTs were not significantly different, p = 0.626. This 
multisensory benefit is the RSE, which we investigate in full detail using our comparative approach.

Additionally, we also examined effects on variability of RTs, as measured by the Median Absolute Deviation 
(MAD) of RTs. A 2 × 2 × 3 repeated-measures ANOVA showed a main effect of stimulus construction, F(1, 
19) = 58.851, p < 0.001, ηp2 = 0.76. MAD of RTs was smaller with simple (0.040 ± 0.003 s) compared to complex 
(0.060 ± 0.004 s) stimuli. There was also a main effect of signal modality, F(1, 19) = 35.306, p < 0.001, ηp2 = 0.65. 
As expected from probability summation, redundant RTs were less variable (0.040 ± 0.003 s) than auditory 
(0.057 ± 0.004 s) and visual (0.054 ± 0.004 s) RTs, both p < 0.001. MAD of auditory and visual RTs was not signif-
icantly different, p = 0.822. Finally, there was a significant interaction between stimulus construction and signal 
modality, F(2, 38) = 5.230, p < 0.010, ηp2 = 0.22. Paired-samples were conducted for MAD (pooled across signal 
features) for each modality. This analysis found larger MAD values for complex conditions compared to simple 
conditions for all three modalities, all p < 0.001. The interaction is explained by the difference between simple 
and complex MAD values being larger for auditory (0.021 s) and visual (0.024 s) signals than it is for redundant 
signals (0.013 s).

Step 1: Multisensory Benefits. As first step, we tested the ability of the race model framework to pre-
dict multisensory benefits, which are best measured based on RT distributions (Equation (1); for an illustration, 
see Fig. 2a). According to Raab’s model, a parameter-free prediction of the RT distribution with redundant sig-
nals can be obtained using probability summation (Equation (2)), which allows calculation of predicted bene-
fits analogous to empirical benefits. For predicted benefits (Supplementary Fig. S1), a 2 × 2 repeated-measures 
ANOVA showed a main effect of stimulus construction, F(1, 19) = 41.54, p < 0.001, ηp2 = 0.69. Predicted benefits 
were larger for complex (0.046 ± 0.004 s) compared to simple stimuli (0.032 ± 0.003 s). No other effects were 
significant (all F ≤ 0.80, p ≥ 0.383, ηp2 ≤ 0.04). Hence, this simple analysis based on the unisensory RTs predicts 
larger benefits for complex compared to simple stimuli (which is here basically driven by the variability rule, see 
Supplementary Analysis 2).

We tested next if the RSE followed the prediction. For empirical benefits (Supplementary Fig. S1), a 2 × 2 
repeated-measures ANOVA showed a main effect of stimulus construction, F(1, 19) = 5.87, p < 0.026, ηp2 = 0.24. 
Empirical benefits were larger for complex (0.052 ± 0.003 s) compared to simple stimuli (0.041 ± 0.004 s). No 
other effects were significant (all F ≤ 0.41, p ≥ 0.528, ηp2 ≤ 0.02). Hence, empirical benefits were consistent with 
the prediction.

To assess the explanatory power, we correlated predicted and empirical benefits (Fig. 2b). All correlation 
coefficients were positive, and significant in 3 of 4 conditions (Table S2). One notable observation is that mean 
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empirical benefits for each participant over all conditions (0.047 ± 0.003 s) was larger than mean predicted ben-
efits (0.039 ± 0.003 s). This was confirmed by a paired-samples t-test, t(19) = 3.07, p = 0.006. Thus, while Raab’s 
parameter-free model broadly predicts the RSE, it does not provide a complete account.

Step 2: Empirical Interactions. As second step, we focus on two processing interactions that are not cov-
ered by Raab’s model. Firstly, we measured history effects by analysing RTs as a function of previously presented 
signals (Equation (3)). Expectedly, a 2 × 2 repeated-measures ANOVA showed a significant intercept of 0.034 s 
(±0.004 s), F(1, 19) = 75.62, p < 0.001, ηp2 = 0.80 (Fig. S3). Hence, unisensory RTs following a modality switch 
were slower compared to a repetition. If history effects arise simply due to the repetition of low-level signal fea-
tures (e.g. the specific frequency of a tone), introducing alternating features within each modality should reduce 
history effects compared to consistent features. However, no effects were significant (all F ≤ 4.13, p ≥ 0.056, 
ηp2 ≤ 0.179). Hence, while clearly present and thus to be considered by any model of the RSE, the history effect 
did not change across conditions here (for additional tests, see Supplementary Analysis 3).

Secondly, we measured violations of Miller’s bound (Equations (4) and (5); for an illustration, see Fig. 3a). A 2 × 2 
repeated-measures ANOVA showed a significant intercept of 0.008 s (±0.001 s), F(1, 19) = 130.70, p < 0.001, ηp2 = 0.87 
(Fig. 3b). Hence, in agreement with most RSE studies using audio-visual signals, Miller’s bound was violated. In addi-
tion, there was a significant effect of stimulus construction F(1, 19) = 4.56, p < 0.046, ηp2 = 0.19. The violation area for 
simple stimuli (0.009 ± 0.001 s) was larger than for complex stimuli (0.006 ± 0.001 s). No other effects were significant 
(all F ≤ 0.05, p ≥ 0.819, ηp2 < 0.01). Thus, violations are clearly present and therefore must be considered by race models.

Figure 2. Analysing multisensory benefits. (a) Empirical benefits are measured by the area between the 
cumulative RT distributions in the multisensory (AV) condition and the faster of the unisensory conditions (A, 
V; Equation (1)). Data from an example participant in the complex-alternating condition. (b) Empirical benefits 
as a function of benefits predicted by Raab’s model (Equation (2)). Each point represents a participant in one of 
the four conditions. Large symbols represent the group mean.

Figure 3. Measuring empirical interactions. (a) Violations of Miller’s bound are measured by the area between 
the cumulative RT distributions in the multisensory (AV) and the sum of the unisensory conditions (Equations 
(4) and (5)). Example data as in Fig. 2a. (b) Violations of Miller’s bound across conditions. Mean and SEM of 20 
participants.
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Step 3: Modelling Approach. As final step, we followed a modelling approach that accounts for the empirical 
interactions. We used the context variant race model12,13, which includes the correlation Rho and the noise Eta as 
free parameters to account for history effects and violations of Miller’s bound, respectively. We fitted the model on 
the level of RT distributions (for an illustration, see Fig. 4a). To assess if the best-fitting model fully explained the 
RSE, we computed benefits according to the model-fit analogous to empirical benefits (Equation (1)). As with the 
parameter-free predictions, we correlated model-fit and empirical benefits (Fig. 4b). The model explained the empir-
ical benefits almost perfectly as all correlation coefficients were positive and highly significant (see Supplementary 
Table S2). Hence, the context variant race model provides a viable explanation for the RSE across conditions.

We next inspected the best-fitting model parameters with respect to the empirical interactions. Regarding the first 
parameter Rho, a 2 × 2 repeated-measures ANOVA showed a significant intercept of −0.178 (±0.064), F(1, 19) = 7.72, 
p = 0.012, ηp2 = 0.29 (Fig. 4c). Hence, there was overall a negative correlation between unisensory RTs. There were 
no further significant effects (all F ≤ 1.24, p ≥ 0.279, ηp2 ≤ 0.06). This finding is in agreement with the above finding 
that history effects did not differ across conditions. Regarding the second parameter Eta, a 2 × 2 repeated-measures 
ANOVA showed a significant intercept of 0.156 s−1 (±0.012 s−1), F(1, 19) = 176.06, p < 0.001, ηp2 = 0.90 (Fig. 4d). The 
parameter manifests a violation of the context invariance assumption, which allows for violations of Miller’s bound. 
We neither found a main effect of signal features nor an interaction (all F ≤ 0.15, p ≥ 0.708, ηp2 ≤ 0.01). Interestingly, 
there was a main effect of stimulus construction, F(1, 19) = 44.62, p < 0.001, ηp2 = 0.70. Eta was larger with simple 
(0.222 ± 0.019 s−1) compared to complex stimuli (0.089 ± 0.010 s−1). In agreement with the above finding that the vio-
lation of Miller’s bound is larger for simple compared to complex stimuli, more noise was required to account for the 
redundant RT distributions with simple compared to complex stimuli according to the model. The analysis of Eta thus 
points to a striking dissociation between the processing interactions revealed here (Fig. 4d) and multisensory benefits, 
which in contrast were larger with complex compared to simple signals (Supplementary Fig. S1).

Figure 4. Model fitting. (a) Best-fitting context variant race model (solid line). The model is constrained by 
the fits of the LATER model in the unisensory conditions (dashed lines) and has the correlation Rho and the 
additional noise Eta as free parameters. Example data as in Fig. 2a. (b) Empirical benefits as a function of 
benefits calculated from the best-fitting context variant race model. Each point represents a participant in one 
of the four conditions. Large symbols represent the group mean. (c,d) Best fitting values of Rho and Eta across 
conditions. Mean and SEM of 20 participants.
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Discussion
To mimic the diversity of RSE studies, we used a factorial design to create distinct audio-visual stimulus sets. 
With our sets, RTs were faster for simple compared to complex stimuli (with a rather substantial RT difference 
of 0.116 s). The comparative approach outlined in this paper, therefore, can be considered a blueprint to system-
atically analyse the RSE with distinct stimulus sets or different participant groups, which we think is critically 
needed to gain complete understanding of the RSE.

As a first step to this approach, we focused on multisensory benefits as given by the size of the RSE. Initially, we 
made a quantitative prediction of the RSE based on Raab’s model18. At this point, we would like to highlight that 
this basic race model is fully constrained by the empirical RT distributions in the unisensory conditions, and does 
not contain free parameters. The quantitative prediction is simply computed based on probability summation 
(Equation (2)). Despite its simplicity, the model correctly predicted the increased RSE as observed for complex 
rather than simple stimuli (Fig. 2) and accounts considerably for the variation across participants (Table S2). To 
the best of our knowledge, no such straightforward predictions are provided by any published pooling model, 
which makes it difficult to understand why this alternative model class is favoured in RSE research e.g.34. In con-
trast, we argue that race models are a very promising candidate for a common framework for the diversity of RSE 
studies. At least, Raab’s model provides a simple tool for analysing the RSE when distinct signal sets or different 
participant groups yield different RTs.

As second and third step, we analysed two empirical interactions not accounted for by Raab’s model, and 
applied consequently the context variant race model, which is an extended race model including two free param-
eters to cover the interactions12,13. The first interaction concerns history effects, which challenges statistical inde-
pendence (as assumed in Equation (2)). In agreement with previous studies4,8,13, we found significant history 
effects across conditions, which thus must be accounted for by any model of the RSE. In the race model, we 
dropped the statistical independence assumption and included instead the correlation Rho as a free parameter. 
As history effects are opposite for vision and audition (e.g. after presentation of a visual signal on the previous 
trial, fast visual and slow auditory RTs are expected), the best-fitting Rho value covered the effect by assuming a 
negative correlation (Fig. 4c).

One simple hypothesis, which we began with, is that history effects may arise due to the repetition of low-level 
signal features. For example, history effects may arise in auditory trials because tones with identical frequencies 
repeatedly stimulate the same population of sensory neurons. If this repeated stimulation is causally-linked, the 
history effect should be reduced when tones with different frequencies stimulate different populations of sensory 
neurons. Following this simple explanation, we expected to observe a main effect of signal features, whereby 
alternating signals would reduce history effects compared to consistent signals. However, such changes occurred 
neither for the measured history effect nor for the corresponding model parameter Rho. This suggests rather 
a basis in higher-level processes. For instance, in the field of task-switching35, costs are observed by switching 
between two tasks in the same modality. History effects may be the result of similar mechanisms (i.e. switch-
ing between auditory and visual detection tasks). Alternatively, in the attention literature, RT costs have been 
observed between targets in different modalities36. History effects may also arise from attentional mechanisms, 
whereby the previous unisensory trial directs attention to one modality at the expense of the other. Future inves-
tigations should develop manipulations to target such higher-level processes.

The second interaction concerns violations of Miller’s Bound, which challenges the context invariance 
assumption19. In agreement with most audio-visual RSE studies e.g.4,5,8,9,13, we found significant violations of 
Miller’s bound across conditions (Fig. 3b), which thus must be accounted for by race models. In the context 
variant race model12,13, we dropped the context invariance assumption and included instead the additional noise 
Eta as a second free parameter. Critically, for violations of Miller’s bound we found a main effect of stimulus 
construction, with increased violations occurring with simple compared to complex stimuli. The best-fitting Eta 
value covered the effect by assuming further increased noise in the evidence accumulation process for simple 
compared to complex conditions (Fig. 4d).

Previously, we have only speculated about potential sources of this additional noise19. Here, however, one 
aspect of the experimental factor of stimulus construction is that simple stimuli are expected to trigger strong 
onset transients, which are masked by the background stimulation in complex conditions. As onset transients 
have been considered relevant for multisensory processing22,23, one possibility is that the additional noise inter-
action is linked to an interference caused by these transients. Although our behavioural data does not allow us 
to identify exact sources, one interpretation could be that strong neuronal activity linked to sudden signal onsets 
leaks as noise across sensory modalities and otherwise separate parallel processes.

As a more general outcome of our comparative approach, the systematic analysis of the RSE calls for a clari-
fication of the rather vague term “multisensory integration”. On the one hand, the term has been defined opera-
tionally as “as a multisensory response (neural or behavioural) that is significantly different from the responses 
evoked by the modality-specific component stimuli”37. Following this definition, we found that the multisen-
sory benefit, and hence integration, was larger with complex compared to simple signals. On the other hand, in 
research on multisensory RTs, multisensory integration is often said to occur only if Miller’s bound is violated 
(which is even considered “a psychometric benchmark of integrative processing”38). Regarding this definition, we 
found the opposite. Violations of Miller’s bound (and consistently the best-fitting Eta value) were larger with sim-
ple compared to complex signals. Hence, the two variables clearly dissociate and should not be described using 
the same term or share the same concept.

The vagueness of definitions may have contributed to the lack of a common framework for the RSE across 
studies. In contrast, our comparative approach, which is based on Raab’s original race model18, provides con-
ceptual clarity. The basic model architecture, which consists of parallel decision units coupled by a logic OR 
operator, is convincing as it perfectly matches the task demands as imposed by the redundant signals paradigm19. 
Moreover, it provides a strong, parameter-free predictor of multisensory benefits12. As such, the combination rule 

https://doi.org/10.1038/s41598-019-39924-6


9Scientific RepoRts |          (2019) 9:2921  | https://doi.org/10.1038/s41598-019-39924-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

for redundantly defined signals (or the multisensory integration mechanism, under an alternative conception) is 
clearly defined. Beyond this basic mechanism, at least two very specific processing interactions emerge and can 
be precisely quantified by explicit parameters in a model-based approach.

The approach is general enough to be applied to various experimental setups and research questions. This 
includes not only experiments comparing different sensory modalities, such as audio-tactile4 or visual-tactile 
stimulation5, but also studies that investigate unisensory RSE39,40 or processing differences between uni- and mul-
tisensory versions of the redundant signals paradigms41. The approach is also suitable to shed light on processing 
differences between participant groups. For instance, studies on ageing typically show larger multisensory bene-
fits for older compared to younger participants9. Such findings may be directly understood if older participants’ 
RT distributions are more variable, as unisensory RT variability is the driving force behind multisensory benefits 
according to race models12. Finally, since the framework has successfully been used to study dyslexia42, it could 
of course also be applied to study other clinical populations, such as those with Schizophrenia43 or Parkinson’s 
Disease44. In the aggregate, we believe that our comparative approach provides both a general account and the 
precision needed to target and understand processing differences across diverse studies, which are key features 
for a common explicatory framework of the RSE.

Beyond the RSE, we believe this work contributes to a broader effort to achieve clarity of definitions in mul-
tisensory research37. In the wider literature, there are many instances of behavioural paradigms and associated 
measures assumed to reflect ‘multisensory integration’ equivalently. As shown here within one paradigm, how-
ever, this assumption can be incorrect. We hope therefore to demonstrate for multisensory researchers the impor-
tance of defining measures in detail and verifying their proposed relationships experimentally. Failing to do so 
may result in similar confusion when comparing results between paradigms.

Data Availability
The research data supporting this publication can be accessed at https://doi.org/10.17630/c8cbd7b7-e2b3-4e62-
bb3d-66fce081ff5945. The data analysis and model-fitting tools are also freely available online via the RSE-box46: 
https://github.com/tomotto/RSE-box.
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