
A Reflective Approach to Providing Flexibility in Application Distribution

Álvaro J. Reb´on Portillo, Scott M. Walker, Graham N. C. Kirby, Alan Dearle
School of Computer Science, University of St Andrews,

St Andrews, Fife, KY16 9SS, Scotland, UK.
rafda@dcs.st-and.ac.uk www-systems.dcs.st-and.ac.uk/rafda

Abstract

Current middleware systems suffer from drawbacks. Often one is forced to make decisions early in the design pro-
cess about which classes may participate in inter-machine communication. Further, application level and middleware
specific semantics cannot be separated, forcing an unnatural design. The RAFDA project proposes to address these
deficiencies by creating an adaptive, reflective framework that enables the transformation of non-distributed applica-
tions into semantically equivalent applications whose distribution architecture is flexible. This paper describes the
code transformation techniques that have been developed as part of the project. The system enables the distribution
of a program according to a flexible configuration without user intervention. Remote and non-remote versions of
an object become interchangeable. The distributed program can adapt to its environment by dynamically altering its
distribution boundaries.

1 Introduction

Current middleware systems [1, 2, 3, 4, 5] suffer from
drawbacks. Often one is forced to make decisions early
in the design process about which classes may partici-
pate in inter-machine communication. Further, applica-
tion level and middleware specific semantics cannot be
separated, forcing an unnatural design.

The Reflective Architecture Framework for Distributed
Applications (RAFDA) project addresses these deficien-
cies by creating an adaptive, reflective framework that
enables the transformation of non-distributed applica-
tions into semantically equivalent applications (modulo
network failure) whose distribution boundaries are flex-
ible.

One approach to providing flexibility of distribution
boundaries requires the ability to substitute an object
with a proxy to a remote instance. Achieving this re-
quires research in the areas of code transformation, type
systems, reflection and distributed systems.

This paper discusses the code transformation techniques
that have been developed as part of the project. The sys-
tem described identifies points of substitutability and ex-
tracts an interface for each substitutable class. Every ref-
erence to a substitutable class must then be transformed
to use the extracted interface. Various proxies imple-

menting the interface for a class provide alternative re-
mote versions, e.g. SOAP-based, RMI-based, CORBA-
based, etc. The use of interfaces makes non-remote and
remote versions of a class interchangeable. The result-
ing distributed program can adapt to its environment by
dynamically altering its distribution boundaries. Policy
dictates which classes are substitutable and which proxy
implementations are used.

Figure 1 shows a typical distribution scenario. Objects
of classA and classB hold references to a shared in-
stance of classC. The application is transformed so that
the instance ofC is remote to its reference holders. The
local instance ofC is replaced with a proxy,Cp, to the
remote implementation,C’.

B

C

A’

B’

Cp C’

A

Figure 1: Typical re-distribution scenario.

A reliance on the availability of source code limits the
set of applications that can be transformed by a system.



For this reason the transformation process operates at the
bytecode level. Java [6, 7] and the Byte Code Engineer-
ing Library (BCEL) [8] were chosen for the implemen-
tation, but the approach described is not specific to these
technologies.

The rest of the paper has been arranged into three sec-
tions: Section 2 describes and justifies the transforma-
tions performed. It also explains decisions and restric-
tions resultant from using Java. Section 3 explores re-
lated work. Section 4 concludes the paper by describing
the extent of the work completed and future work.

2 Approach

The overall approach is to extract an interface from each
substitutable class in the original application, capturing
the functionality of that class. Multiple implementations
of the extracted interfaces are then generated in order to
provide the various distributed versions of the original
classes. The generated code uses only interface types so
that substitution of implementations can be made eas-
ily, leaving object creation as the only implementation-
aware operation. More specifically, for each classA in
the original application, the following are generated:

� an interface,A O Int, capturing the functionality of
A’s instance members, together with a set of imple-
menting classes:A O Local provides the non-remote
version while various proxy classes communicate
with remote objects using different protocols, e.g.
A O Proxy SOAP would provide an implementation
using SOAP as the transport layer;

� an interface,A C Int, capturing the functionality of its
static members, together with a set of implementing
classes,fA C Local, A C Proxy RMI, . . .g;

� an object factory class,A O Factory, providing the
necessary methods for object creation and initiali-
sation; the object creation method contains the pol-
icy determining which of the classes implementing
A O Int will be used; and,

� aclass factory class,A C Factory, providing the meth-
ods for class (static members) implementation discov-
ery and initialisation.

Figure 2 shows a sample application class that will be
used in the subsequent sections to illustrate the trans-
formations. Although the transformations take place at
bytecode level, Java has been used for clarity.

public class X f
private Y y;
public X(Y y) f this.y = y; g
protected int m(long j) f return y.n(j); g
static final Z z = new Z(Y.K);
static int p(int i) f return z.q(i); g

g

Figure 2: Sample application classX.

2.1 Instance Members

This section describes the construction ofA O Int and its
associated implementations. The approach involves the
interception of all operations on an object and choosing
how each operation should be satisfied using an appro-
priate implementation. This is not possible for direct
field access. The first step of the transformation is there-
fore to turn every attribute into a property by generating
get andset methods for each attribute.

Interfaces are assumed to contain only public members.
Since all members will be accessed via an interface they
must be made public. This process is safe as the trans-
formations are performed on code that has already been
verified by a standard compiler.

A default, parameter-less constructor is added to the
class to perform initialisation routines particular to the
implementation. All the original constructor functional-
ity is moved to the factories.

Finally, implementations for the methods in the trans-
formed class are provided. Affected type signatures and
method calls must be adapted to use the interfaces.

Figure 3 illustrates the result of these transformations for
the sample application classX of Figure 2.

2.2 Static Members

Because interfaces cannot capture the static functionality
of a class, static members are made non-static in order
that they can be transformed as described for instance
members. The uniqueness semantics of the static mem-
bers is guaranteed by requiring that all generated imple-
mentations be singletons.

Figure 4 illustrates the result of these transformations,
again for the sample application classX of Figure 2.



public interface X O Int f
Y O Int get y();
void set y(Y O Int y);
int m(long j);

g

public class X O Local implements X O Int f
private Y O Int y;
public X O Local() f g
public Y O Int get y() f return y; g
public void set y(Y O Int y) f this.y = y; g
// get y() and n(j) below are interface calls
public int m(long j) f return get y().n(j); g

g

public class X O Proxy SOAP implements X O Int f
public X O Proxy SOAP() f

// SOAP-specific initialisation
g
// these methods perform SOAP calls
// on the real remote object
public Y O Int get y() f � � � g
public void set y(Y O Int y) f � � � g
public int m(long j) f � � � g

g

public class X O Proxy RMI implements X O Int f
...

g

Figure 3: Result of instance members transformation for
sample classX.

2.3 Factories

It is assumed that factory classes are available locally
on all participating nodes. It is also assumed that any
implementation class required by a factory is available
to it.

An object creation method,make, selects which of the
implementations is to be used based on some policy.

All access to static members of a class is performed via
the singleton implementing these members. A class dis-
covery method,discover, is used to obtain that imple-
mentation.

The object creation and class discovery methods are
the only potentially implementation-aware methods, and
therefore the only ones that could be affected if a new
remote implementation is added to or removed from the
system.

public interface X C Int f
Z O Int get z();
int p(int i);

g

public class X C Local implements X C Int f
private Z O Int z;
public X C Local() f g
public Z O Int get z() f return z; g
public int p(int i) f return get z().q(i); g
// singleton declarations
private static X C Int me = new X C Local();
public static X C Int get me() f return me; g

g

public class X C Proxy RMI implements X C Int f
public X C Proxy RMI() f

// RMI-specific initialisation
g
// these methods perform RMI calls
// on the real remote object
public Z O Int get z() f � � � g
public int p(int i) f � � � g

g

public class X C Proxy SOAP implements X C Int f
...

g

Figure 4: Result of static members transformation for
sample classX.

For every constructor in the original class a matching
initialisation method,init, is added to the object fac-
tory. The class initialisation method,clinit, matches the
static initialiser in the original class. These methods are
adapted to take the object or class to be initialised as an
extra parameter.

Figure 5 illustrates the result of these transformations,
once more for the sample application classX of Figure 2.

2.4 Language Specific Issues

There are a number of issues that are not part of the gen-
eral approach but specific to the use of Java as the target
language, in particular, user-defined interfaces, arrays
and exception handling. Solutions to all these problems
are available but beyond the scope of this paper. Other
languages may present different issues but these are rep-
resentative of the problems of implementing a real sys-
tem.



public class X O Factory f
public static X O Int make() f � � � g
public static void init(X O Int that, Y O Int y) f

that.set y(y);
g

g

public class X C Factory f
public static X C Int discover() f � � � g
public static void clinit(X C Int that) f

Z O Int t = Z O Factory.make();
Z O Factory.init(t, Y C Factory.discover().get K());
that.set z(t);

g
g

Figure 5: Factories for sample classX.

It is not practical to inspect or transform code in na-
tive methods. Also, some system classes and interfaces
have special semantics in the JVM, e.g. to throw an ob-
ject requires that it extends, directly or indirectly, the
java.lang.Throwable class. As a consequence, these spe-
cial classes and interfaces are not transformed.

A non-transformable class that extends a transform-
ed one would have to inherit from both the instance
and static members implementations of its transformed
super-class. This would require a multiple inheritance
mechanism not available in Java. For this reason, the
super-class of a non-transformable class cannot be trans-
formed.

References in a non-transformable class cannot be al-
tered and thus classes and interfaces it refers to should
remain available in their original forms. This prevents
transformation of classes and interfaces referenced by a
non-transformable class.

A class that cannot be transformed cannot be substi-
tutable. About 40% of the 8,200 classes and interfaces
in JDK 1.4.1 cannot be transformed. This percentage
would increase if the user code contains native methods
which refer to a JDK class.

3 Related Work

An alternative approach to this problem is to generate
wrappers for every class, as opposed to directly trans-
forming code as described here. Wrappers act as prox-
ies to local objects, by encapsulating an object and in-
tercepting all access requests to that object. There is a

wrapper per instantiated object and all references to that
object are altered to refer to the wrapper.

Although much simpler in terms of implementation, this
introduces significantly greater overhead and does not
offer solutions to any of the current limitations.

A hybrid of the described approach and the wrapper ap-
proach was investigated. This presented problems with
dynamic inheritance that made it not feasible as a solu-
tion to the problem.

Similar code transformations are used in Orthogonally
Persistent Java [9]. The goal of persistence presents a
different problem space to that of flexible distribution
and object migration but the core approaches are com-
parable. In the RAFDA project the static component of
a class must be handled in a more complex fashion as in-
stances of a class may be spread across multiple address
spaces.

ProActive PDC [10] is a Java library that offers dynamic
object distribution and migration. It uses bytecode trans-
formation to generate remotely accessible code from that
written without distribution in mind. The programmer
still must determine statically which objects are to be re-
motely accessible. The ProActive architecture is similar
to the wrapper generation approach that was also inves-
tigated.

JavaParty [11] has a similar purpose to the RAFDA
project. A new keyword is added to Java identifying re-
mote objects. JavaParty code is preprocessed into stan-
dard Java and RMI based code. JavaParty’s transfor-
mations take place at a source level and, in contrast to
RAFDA, the programmer must determine which objects
may be remote at design time.

4 Conclusions

The transformations described in this paper act on a non-
distributed Java program to produce a componentised,
semantically equivalent version. This transformed ver-
sion can be extended while retaining program seman-
tics in order to provide requirements such as distribution
or persistence. This approach has been implemented al-
lowing the creation of a local version of the transformed
application that executes within a single address space
—the first step in creating a fully distributed version.

Changing applications to span address space boundaries
may introduce network failure problems. This makes



it impossible to guarantee full preservation of the origi-
nal application semantics. Although potentially a major
problem, this is not critical when restricted to a local area
network and the behaviour of practical applications will
be investigated.

The next stage in our research will see the implemen-
tation of adaptable distribution in the deployed applica-
tion. A series of techniques for enabling communication
between remote objects has been devised and is to be in-
tegrated with the transformation techniques to produce
a complete mechanism for dynamic distribution recon-
figuration. In the longer term it is hoped to develop a
complete system for deciding and capturing distribution
policy.

References

[1] D. Lievens. An Investigation into the Mechanisms
Provided by CORBA to Preserve Strong Typing.
Master’s thesis, University of Glasgow, 2001.

[2] Object Management Group (OMG). The Common
Object Request Broker: Architecture and Specifi-
cation, Revision 2.3.1.www.omg.org, 1999.

[3] Microsoft Corporation. DCOM Technical Over-
view. msdn.microsoft.com, 1996.

[4] T.L. Thai and H. Lam. .NET Framework Essen-
tials. O’Reilly, June 2001.

[5] Sun Microsystems. Java Remote Method Invoca-
tion Specification.java.sun.com, 2002.

[6] J. Gosling, B. Joy, G. Steele, and G. Bracha.
The Java Language Specification, Second Edition.
Addison-Wesley, 2000.

[7] T. Lindholm and F. Yellin. The Java Virtual Ma-
chine Specification, Second Edition. Addison-
Wesley, 1999.

[8] M. Dahm. Byte Code Engineering with the BCEL
API. Technical Report B-17-98, Freie Universit¨at
Berlin, Institut für Informatik, April 2001.

[9] A. Márquez, S.M. Blackburn, G. Mercer, and J.N.
Zigman. Implementing Orthogonally Persistent
Java. InPersistent Object Systems, 9th Interna-
tional Workshop, POS-9, Lillehammer, Norway,
September 2000.

[10] D. Caromel, W. Klauser, and J. Vayssiere. To-
wards Seamless Computing and Metacomputing

in Java. Concurrency: Practice and Experience,
10(11–13):1043–1061, 1998.

[11] Michael Philippsen and Matthias Zenger. Java-
Party — transparent remote objects in Java.Con-
currency: Practice and Experience, 9(11):1225–
1242, 1997.


