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ABSTRACT

We design and experimentally demonstrate an optical free-standing and low-loss metamaterial showing a vanishing effective permittivity.
The material consists of a stack of subwavelength polymer and silver nanolayers. We show that the material can withstand large mechanical
deformations preserving its own optical properties with high reversibility and repeatability and that it can conform to targets with irregu-
lar surfaces, with a radius of curvature of the order of few microns. This material can be used to create an artificial metamaterial skin for
nonflat materials and devices that cannot be processed directly for practical applications in field enhancement, wavefront shaping, all-optical

modulation, and optical sensing.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5098038

. INTRODUCTION

During the last decade, media showing very small dielectric
permittivity, also known as epsilon-near-zero (ENZ) metamateri-
als, have stimulated an intense research effort. © ENZ media with
vanishing optical losses support a regime where the refractive index
approaches zero so that the optical wavelength is stretched inside
the material and the electromagnetic field is spatially slowly varying
over an extended region. This basic mechanism underpins differ-
ent effects and applications, including, e.g., optical microscopy with
a subdiffraction resolution,” wavefront engineering,” optical activ-
ity enhancement,” and asymmetric transmission.”'’ Several dis-
persive materials exhibit the ENZ condition at different frequency
ranges. For example, the real part of the permittivity of transpar-
ent conductive oxides'' ' crosses zero at near-infrared frequencies,
whereas silver (Ag), sodium, and some topological insulators (such
as Bi;5SbosTersSer)'® have vanishing permittivity in the ultravi-
olet range. On the other hand, by using a metamaterial approach,
the ENZ condition can be achieved at the desired wavelength,'”'®
for example, periodically stacking subwavelength metal and dielec-
tric layers.”' " In this case, the effective permittivity perpendicular
to the stacking direction is e,y = (tmem + taea)/(tm + tg), where &

APL Photon. 4, 056107 (2019); doi: 10.1063/1.5098038
© Author(s) 2019

and ¢; (i = m, d) are the relative permittivities and the thicknesses
of the metallic (m) and dielectric (d) layers, respectively. Generally,
optical ENZ metamaterials are fabricated by exploiting nanofab-
rication techniques requiring flat and typically rigid substrates,'”
such as spin coating and electron-beam evaporation or sputter-
ing. On the other hand, some ENZ material based applications,
such as invisibility cloaking,'®"” superlensing,”””" and optical sens-
ing,”*’ could benefit from mechanical flexibility.”" Flexible meta-
materials can be tuned after fabrication, and they can conform to
targets with arbitrary shapes, decoupling the fabrication constraints
of the form factor of the targets.z3 In visible, infrared, terahertz,
and microwave regimes, flexible metamaterials exhibit great poten-
tial in imaging,"“”‘U optical, chemical, and biological sensing, and the
realization of practically flexible optoelectronic devices.”’ "

In this paper, we design and experimentally realize a low-loss,
flexible, and free-standing ENZ metamaterial in the visible range.
By using a sacrificial layer-assisted transfer method, we integrate the
fabricated metamaterial with a flexible substrate, and we show that
it preserves its own optical properties after 10000 bending cycles.
Furthermore, we experimentally prove that the metamaterial is able
to conform on surfaces with a radius of curvature of the order of few
microns.

4,056107-1
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This paper is organized as follows. In Sec. 11, we report the fabri-
cation method, whereas in Sec. I11, we investigate the optical proper-
ties of the ENZ metamaterial. In Sec. [V, we discuss our results about
the flexible ENZ metamaterials. Finally, we draw our conclusions in
Sec. V.

Il. FABRICATION

Our ENZ metamaterial is a metal-dielectric multilayer, where
the unit cell consists of three layers made of electron-beam evapo-
rated Ag, germanium (Ge), and a spin coated, epoxy-based polymer
(SU-8, Microchem), respectively. In the optical frequency range,
Ag exhibits lower loss than most other noble metals,” and SU-8
shows high flexibility, good thermal stability, and high transparency
in the full visible spectrum.’””* Additionally, SU-8 is commercially
available in different formulations to produce films of thickness that
ranges from a few tens of nanometers to several tens of microns.

The fabrication process is shown in Fig. 1. A sacrificial layer
(Omnicoat, Microchem) is deposited on a rigid substrate through
spin-coating and baked for 1 min at 230 °C. Next, a 3-um thick layer
of SU-8 is spin coated on the sample and baked at 100 °C for 5 min,
followed by ultraviolet light (UV) exposure for 3 min and postexpo-
sure baking at 100 °C for 2 min [Fig. 1(a)] to promote the permanent
cross-linking of the polymer. This layer facilitates the mechanical
handling of the final device, but it does not contribute meaningfully
to its optical properties and, if required, can be completely elimi-
nated. To obtain the ENZ condition in the visible range, we chose
a unit cell with a total thickness of 100 nm, with a 15:85 metal to
dielectric ratio. The individual layers of SU-8 with thickness 85 nm
were obtained via spin coating and then baked, exposed, and post-
exposure baked with the same parameters used for the thick support
layer. The 15 nm thick metallic (Ag) layers were deposited via elec-
tron beam evaporation. In order to obtain continuous ultrathin Ag
layers, Ge layers (0.7 nm) were predeposited before the deposition
of Ag films. Using this technique, it is possible to obtain smooth
and continuous Ag layers with a percolation limit below 5 nm.””*'
Here, we show results with devices made of up to 5 bilayers, which is
sufficient to homogenize the response of the multilayer. The final
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layers deposition

Metal layer
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-—‘

(€)) ()
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Membrane transferred release
to coverirregular \\
object §
® ©
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fabrication step is the removal of the sacrificial layer by immer-
sion in a tetramethylammonium hydroxide (TMAH) based solution
to release the ENZ membrane, which can be transferred onto the
intended target.

I1l. CHARACTERIZATION

We characterized the optical properties of the fabricated
devices using a 6.8 mW collimated beam with a diameter of 5 mm,
generated by a tungsten halogen light source, at normal incidence to
the sample. The optical fluence is very well below the damage thresh-
old for metal-dielectric stacks, which is in the range of several tens
of GW/cm? for a 100 fs pulsed laser."' The transmitted and reflected
signals were collected and analyzed with two optical spectrometers.
To this extent, we used a standard retrieval approach,5 which uses
Fresnel’s equations™ to extract the complex permittivity £ = (1 + ik)*
of a thin film of an unknown material, which gives the measured
transmission and reflection spectra. We estimated the uncertainty
on the retrieved refractive index within 1%, which applied to all the
measurements in this work.

In Fig. 2(a), we report n and k of the SU-8, suitably spin coated
on the glass substrate, in both the formulations used for the thick
and thin layers. From the measurements, we obtained effectively
constant refractive indices of 1.64 and 1.66. All the characterized
samples showed no measurable absorption within the experimental
accuracy.

In Fig. 2(b), we report scanning-electron-microscope (SEM)
images of a 15-nm Ag layer with and without a Ge wetting layer,
respectively, which qualitatively indicate that the Ge seeding layer
improves the Ag layer smoothness. This is quantitatively confirmed
by the retrieved optical parameters, shown in Fig. 2(c), which show
that the film behaves like bulk Ag, with values reported in the liter-
ature.”’ To check for consistency of the measured data, in Fig. 2(d),
we show the measured transmission (Tm), reflection (Rm), and
absorption (Am) spectra for a 5-bilayer ENZ metamaterial, com-
pared to the respective spectra Tc, Rc, and Ac, calculated by using
Fresnel’s equations and the values of n and k of Ag reported in
Figs. 2(a) and 2(c).
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— FIG. 1. Fabrication process. (a) A sac-
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FIG. 2. (a) The measured n and k of the SU-8 layers. (b) Scanning-electron-
microscope (SEM) images of 15-nm Ag layers with and without a Ge wetting
layer, respectively. (c) The retrieved n and k (n-meas and k-meas, respectively)
of a Ag layer (on a Ge wetting layer), compared with literature reference val-
ues (n-ref and k-ref).”’ (d) The measured transmission (Tm), reflection (Rm),
and absorption (Am) spectra of a 5-bilayer Ag/SU-8(1:2) structure compared with
those calculated by using Fresnel's equations (Tc, Rc, and Ac). The calculation
uses the measured n and k of SU-8(1:2) and Ag displayed in panels (a) and (c),
respectively.

To verify the validity of the effective medium theory (EMT) for
our samples, we fabricated 3-, 4-, and 5-bilayer ENZ metamateri-
als on glass substrates. We measured the transmission and reflection

(a) (b)
—Rigid - 3 bilayers 0.6
0.2 —Rigid - 4 bilayers
g —Rigid - 5 bilayers
= Flexible - 5 bilayers £ ///f"w
2z 204
£0.1 g
= \ 0.2 —Rigid - 3 bilayers
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0 —Rigid - 5 bilayers
Flexible - 5 bilayers

spectra of the samples before their release from the rigid carriers and
that of the free standing 5-bilayer sample.

Panels (a) and (b) of Fig. 3 show the measured transmission
and reflection spectra, whereas panels (c) and (d) show the retrieved
real and imaginary part of effective permittivities of rigid and free-
standing ENZ samples, respectively. The retrieval of the permittivity
of the rigid sample was completed taking into account the role of the
substrate, which had measured refractive index n = 1.48 and negligi-
ble losses. As the layer number increases, the permittivity values tend
to converge toward the theoretical curve, obtained using the EMT
with the retrieved values of the permittivity of the individual layers
[Fig. 3(c)]. It should be noted that the imaginary part of the retrieved
permittivity for the flexible case appears to be much higher than the
rigid case. We attribute this difference to the change in reflectivity
[see panel (b) of the same figure], caused by a not perfectly planar
surface after the membrane release.

IV. FLEXIBLE ENZ METAMATERIAL

To verify the ability of the flexible ENZ membrane to with-
stand deformations without compromising its optical properties, we
transferred the free-standing 5-bilayer sample onto a flexible plas-
tic frame, as shown in Fig. 4(a). The sheet was then fixed onto a

Plastic
sheet

FIG. 4. A photograph (a) and a sketch (b) of the 5-bilayer flexible ENZ sample fixed

on a motorized translation stage.
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FIG. 3. Optical characterization of rigid 3-, 4-, and 5-bilayer and flexible 5-bilayer
ENZ samples. [(a) and (b)] Transmission and reflection of different ENZ sam-
ples. (c) Real effective permittivities retrieved for different ENZ samples and the
calculated real permittivity of the Ag/SU-8(1:2) structure based on the EMT. (d)
Imaginary effective permittivities retrieved for each of the ENZ samples.
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FIG. 5. [(a) and (b)] The measured transmission and reflection spectra of the 5-
bilayer flexible ENZ sample after different BCs. [(c) and (d)] Effective permittivities
retrieved by using the measured transmission and reflection spectra shown in (a)
and (b).
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motorized translation stage and subject to up to 10000 bending
cycles (BCs) with optical measurements performed at the end of
various cycles. The curved sheet had arc length L = 4 cm, and the
cord distance D varied from 1.5 to 3 cm via the moving translation
stage. Correspondingly, the curvature (defined as the reciprocal of
the radius) of the free-standing ENZ metamaterial was changed from
0.5t00.2cm™".

In Fig. 5, we report the transmission (a) and reflection (b) spec-
tra along with the effective permittivity dispersion [(c) and (d)] after
10, 100, 1000, and 10000 BCs, using the optical characterization
setup described in Sec. I11. The results for the different number of
BCs remain essentially unchanged, proving that our flexible ENZ
metamaterial can withstand large mechanical deformations while
preserving its optical properties with a very high level of reversibility
and repeatability.

Finally, to test the compliance of the membrane, we transferred
the sample onto a Si substrate containing sulfate latex microspheres
with a diameter of 6 ym (a curvature of 6000 cm™"). The images
of the flexible ENZ sample covered microspheres clearly showed
Newton-ring patterns [Fig. 6(a)]. The high curvature is also recog-
nizable in top-view SEM images of the coated spheres, as shown in
Fig. 6(b). To better investigate the coverage of the microspheres, we
cut through a metamaterial coated sphere using focused ion beam
(FIB) milling. In order to protect the top SU-8 layer, we deposited
a protective platinum (Pt) thin layer before the FIB process via
electron beam induced deposition.44 Figures 6(c) and 6(d) show
the cross-sectional SEM images of the interface between the sphere
and the ENZ metamaterial. As visible in Fig. 6(c), the cut sphere
appeared deformed. At this stage, we were not able to ascertain with
absolute certainty weather this was due to the weight of the mem-
brane or the FIB processing. In any case, this effect would have
to be considered where the application requires coating delicate or
deformable samples.

V. CONCLUSION

We designed and fabricated a flexible free-standing ENZ meta-
material consisting of Ag/SU-8 multilayers. We showed that the
optical properties of the flexible ENZ metamaterial do not signifi-
cantly change after repeated, macroscopic, and sustained mechan-
ical deformations (up to 10 000 cycles). The free-standing ENZ
metamaterial can also fit surfaces with a radius of curvature of the
order of few microns. We believe that our results could enable novel

(©

(d)

ARTICLE scitation.org/journal/app

Pt

SU-8 (3:1) FIG. 6. Images of the flexible ENZ sam-

ple covering sulfate latex spheres. (a)
Optical microscope image of the curved
flexible ENZ metamaterial over micro-
spheres and showing Newton-Ring pat-
terns. [(b) and (c)] Top-view and cross-
sectional SEM images of flexible ENZ
metamaterial covering microspheres. (d)
SEM image showing the Ag/SU-8(1:2)
multilayer ENZ region marked in (c) with
ared dashed frame.
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SU-8(1:2)
—_—
200 nm

tunable nano-optical components for achieving ENZ-based appli-
cations such as field enhancement, wavefront shaping, all-optical
modulation, and optical sensing.
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