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Abstract11

Reliable chronologies are essential for most Quaternary/geological studies, but12

little is known about how age-depth model choice as well as dating density and13

quality affect the precision and accuracy of chronologies. A meta-analysis14

suggests that most existing late-Quaternary studies contain fewer than one15

date per millennium, and thus provide millennial-scale precision at best. We16

use simulations to estimate what dating density and quality are required to17

obtain accurate chronologies at a certain precision. For many studies, a18

doubling in dating density would significantly improve chronologies and thus19

their value for reconstructing and interpreting past environmental changes.20

Commonly used basic age-depth models stop becoming more precise after a21

certain dating density is reached, but Bayesian age-depth models, which take22

advantage of chronological ordering, keep on improving with more dates.23

Moreover, Bayesian models produce more realistic errors for cores with few24

dates, and can reach multi-decadal precision at high resolution. Bayesian25

age-depth models are also much more robust against dating scatter and26

outliers. Our simulations show that basic age-depth models underestimate27

uncertainty and are inaccurate at low dating densities, and perform poorly at28

high dating densities. Bayesian age-depth models outperform basic ones at all29

tested dating densities, qualities and time-scales. We recommend that30
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chronologies should be based on a minimum of 2 dpm wherever realistically31

possible.32

Keywords: age-depth model, radiocarbon dates, chronological uncertainties,33

Bayesian statistics34

INTRODUCTION35

Whenever an additional level of a sedimentary site, core or event is dated, our36

knowledge of its chronology increases (Bennett, 1994; Bennett and Fuller,37

2002). However, dating is expensive and time-consuming, and it can prove38

challenging to collect sufficient reliable material for dating. A single39

radiocarbon (14C) date often costs several hundred dollars, and waiting times40

can amount to months, or even years if several iterations of dating are41

required. Moreover, radiocarbon and other scientific dates have laboratory42

errors, the size of which reflects measurement uncertainties as well as the43

nature of laboratory sample treatment. Sites extending further back in time44

generally have larger absolute dating errors and thus lower precision age-depth45

models. Typical relative 14C dating errors hover around 1% (0.5% for modern46

AMS systems), however lower sample sizes can result in larger errors although47

higher-precision dates can be obtained with longer counting times. Given the48

many ways through which 14C or other absolute dates can be offset from their49

actual age, some degree of scatter is unavoidable in sequences of dates.50

Repeated measurements of single samples within and between laboratories51

sometimes show more scatter than can be accounted for by reported errors52

(Bronk Ramsey et al., 2004; Christen and Pérez E., 2009; Scott, 2013),53

perhaps owing to inhomogeneous sampling or laboratory-introduced offsets.54

At times high-resolution 14C dating can reveal unexpectedly large scatter for55

some core sections (e.g. Lohne et al., 2013; Groot et al., 2014).56

Data in the Neotoma Palaeoecology Database (neotomadb.org) show that57

since the 1960s the majority of late Quaternary sites have been dated using58

just a few 14C dates (median 5 dates per core), equivalent to ca 1 date every59
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1400 years or 0.72 dates per millennium (dpm) (Figure 1). Only a very few60

sites reach much higher dating densities of ca 10–30 dpm (e.g. Kilian et al.,61

1995; Gulliksen et al., 1998; Lohne et al., 2013; Mauquoy et al., 2002; Blaauw62

et al., 2004; Southon et al., 2012). For the last 15 years, mean dating density63

is slightly higher, at 1.3 dpm. Only 14% of the sites have > 2 dpm; 2% have64

> 4 dpm.65

Here we investigate: (i) whether current typical dating densities are sufficient;66

(ii) the degree to which higher dating densities enhance chronologies; (iii)67

whether certain types of age-depth models provide more realistic estimates of68

precision and accuracy (Telford et al., 2004; Parnell et al., 2011; Trachsel and69

Telford, 2017); and (iv) the extent to which chronologies are affected by dating70

error, scatter and outliers. Our analysis of existing cores enables estimates of71

chronological precision, but not accuracy because the ‘true’ sedimentation72

histories of the sites are unknown. Therefore we also use a three-staged73

simulation approach of (i) modelling the accumulation over time of a site74

(simacc); (ii) producing a range of basic and Bayesian age-depth models75

(simage) and comparing them to the true simacc timeline; and (iii)76

sequentially adding single dates (simdat) using a sampling strategy after77

Christen and Sansó (2011), followed by re-running the age-depth models78

(simage), repeating as necessary. To test the chronological impact of dating79

quality, we simulated a range of values for dating error and scatter, as well as80

outlying dates. Most simulated cores spanned several metres, but some were81

shorter, high-resolution sections.82

METHODS83

We used a three-step process on cores with both low and high dating density84

cores for our analysis. First the accumulation rate (simacc) was simulated to85

obtain an estimated calendar date for each core (θd). Then we assigned a86

radiocarbon date based on the IntCal13 calibration curve with random87

variation within in assigned limits. Finally we used a variety of age-depth88
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models and calculated the difference between the model age and our assigned89

age to quantify which model worked better for the different data density cores.90

Data91

Age-depth models were applied to two datasets:92

1. Cores from the entire Neotoma Palaeoecology Database93

(neotomadb.org). We analysed the dating density of all cores with at94

least two 14C dates and spanning at least 500 yr.95

2. The sequence at Kr̊akenes (western Norway, 61.48◦N, 5.7◦E: Gulliksen96

et al., 1998; Lohne et al., 2013), which has 118 accelerator mass97

spectrometry 14C ages over the interval ca 14–8 kyr BP (so ca 20 dpm).98

In order to estimate the effect of changing dating density, we removed all99

but the topmost and bottommost dates, and then sequentially added100

single dates (using the method outlined below) until reaching 20 dpm.101

Sedimentary sequences (simacc)102

Besides real data sets, we also simulated hypothetical cores. Sedimentation103

was simulated by modelling the deposition time represented within each depth104

section dsi = di − di−1 of a core (default every cm between 0 and 500 cm).105

Unless stated otherwise, the deposition time at the topmost section was106

sampled from a gamma distribution as in Blaauw and Christen (2011) with107

acc1 ∼ Gamma(acc.shape, acc.shape/acc.mean), defaults 50 yr cm−1 and 1.1108

for mean and shape, respectively. Its top age, θ0, was set as 0 cal BP by109

default. The deposition rate of each section dsi was modelled to deviate from110

the preceding section dsi−1 by a random value sampled from a uniform111

distribution with width 2 acc.var (default 3.0), where deposition times could112

not go below acc.min (default 5.0 yr cm−1);113

acct ∼ max(acc.min, acct−1 +Unif(−acc.var, acc.var)). These simulated114

deposition histories then provided the ‘true’ calendar age for each depth of the115

simulated cores, θd.116
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We then simulated the initial and sequential (see later) dating of these117

artificial cores, simdat. For the simulations here, calibrated 14C dates were118

modelled, but other types of dates could also be used. For each depth to be119

dated (see below), its ‘true’ calendar age θd was known from the simulated120

deposition history simacc. Uncertainty in having sampled contemporaneous121

material was then simulated by adding random variation xscat (default 10 yr)122

from a normal distribution θ′ ∼ N(θ, xscat
2). Additionally, with a probability123

pout (default 5%), the calendar date was treated as an outlier and shifted by124

up to xshift (default 1000) years:125

θ′′ =

Unif(θ′ − xshift, θ
′ + xshift) pout

θ′ 1− pout

(1)

Then we used the IntCal13 14C calibration curve (Reimer et al., 2013), which126

provides estimates of the 14C age µθ for each calendar age θ. We simulated a127

14C date with some scatter by taking the IntCal13 14C age of θ′′, µθ′′ , and128

adding some scatter yθ′′ ∼ N(µθ′′ , σ2) where the laboratory error129

σ = max(σmin, yscat × ε× µθ′′), with σmin the minimum error (default 20 14C130

yr), yscat an error multiplier (default 1.5) and ε the analytical uncertainty131

(default 1%)132

The simacc simulations presented here aim to model what we consider to be133

realistic accumulation histories of commonly used sites such as Holocene lakes134

or bogs. We did not invoke more chronologically disruptive features such as135

hiatuses, extremely variable accumulation rates, large sections without datable136

material or systematic 14C age offsets, but this could be investigated.137

However, the approach we present can be applied to individual sections of138

sequences, as well as to whole sequences.139

Age-depth modelling (simage)140

We applied four types of age-depth models, which produced thousands to141

millions of random iterations to provide many calendar age estimates for each142

core depth. We first used the popular basic model of linear interpolation as143
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implemented in psimpoll (Bennett, 2007) and clam (Blaauw, 2010), which144

assumes that accumulation rates were constant between neighbouring dated145

depths and changed, potentially abruptly, exactly at the dated depths146

(Bennett, 1994). We then applied a basic model that varies more smoothly147

over time (smooth spline in clam). Since ages further down a core must be148

older, even if the dates or models suggest otherwise, software implementing149

the above approaches can be instructed to remove any iterations with150

age-depth model reversals after modelling. Finally, we tested two Bayesian151

piecewise linear models that use gamma distributions as prior information in152

order to ensure chronological ordering of each iteration. Bchron (Haslett and153

Parnell, 2008) simulates steps in time and depth sampled from gamma154

distributions, whereas Bacon (Blaauw and Christen, 2011) models the155

accumulation rates of many equally spaced depth sections based on a gamma156

distribution (here set at mean 50 and shape 1.1 to allow for many157

accumulation rates), and a beta distribution to invoke a degree of dependence158

in accumulation rate between neighbouring depths. Both Bchron and Bacon159

have routines to handle outliers, whereas for basic age-depth models outliers160

need to be removed manually. OxCal’s P Sequence (Bronk Ramsey, 2008) was161

also tried but individual runs and analyses interpolated to 500 1-cm intervals162

took days instead of minutes, rending it less suitable for these intensive163

simulation exercises. R code (R Core Team, 2017) is available on Figshare164

(doi:10.6084/m9.figshare.3808311).165

All age-depth models were produced as outlined above. Each age-depth model166

simage was then compared to the known simulated simacc age θd for each167

depth d, calculating its accuracy as standardized offset, zd = |x̄d − θd|/σd,168

where x̄d and σd are the mean and standard deviation, respectively, of the169

modelled ages. Standardizing ensures that offsets can be compared between170

core depths modelled at different precisions. Then the minimum, maximum171

and mean z over all depths was taken as the age-depth model’s accuracy,172

whereas its precision was calculated as the minimum, maximum and mean of173

the modelled 95% confidence intervals. In this context, precision refers to the174
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degree of uncertainty in an estimate and accuracy refers to the actual error or175

offset of the estimate to its true value.176

Sequential dating (simdat)177

After each age-depth model simage was run, we used that age-depth model to178

determine which depth to date next. This has been investigated by Buck and179

Christen (1998) and Christen and Buck (1998) using simulations that were180

computationally extremely time-consuming. Here we adopt a much faster181

sampling design score developed by Christen and Sansó (2011), which predicts182

which next data point among all available candidates is likely to provide the183

most new information. Only one candidate depth is selected at a time,184

although this not a realistic scenario for real-life 14C dating. In future work we185

therefore plan to enable selecting multiple depths.186

Let s1, s2, . . . , sM be the depths at which we may take a sample to be dated187

(by radiocarbon or otherwise). Let d1, d2, ..., dm (a subset of the si) be the188

depths at which we already have dates ym = (y1 ± σ1, y2 ± σ2, . . . , ym ± σm).189

Let cov(di, dj) be the covariance of depths di and dj calculated from the joint190

posterior distribution of the age-depth model using the currently dated depths,191

that is G(d|ym). This covariance structure may be approximated using the192

Monte Carlo output to estimate the chronology (Blaauw, 2010; Haslett and193

Parnell, 2008; Blaauw and Christen, 2011). For all iterations t = 1, 2, . . . , T ,194

we calculate the covariance of the corresponding ages G(si|θ(t), x(t)) and195

G(sj |θ(t), x(t)). Let also V (si) = cov(si, si) be the variance at depth si. The196

score A for a new candidate depth dm+1 to be dated is (Christen and Sansó,197

2011):198

A(dm+1) = (1− ‖r(dm+1)‖)
1

M

M∑
j=1

cov(sj , dm+1)
2

V (sj)V (dm+1)
,

where199

‖r(dm+1)‖ =

√√√√ m∑
k=1

cov(dk, dm+1)
2

V (dk)V (dm+1)
.
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The score has a formal justification in terms of maximizing the reduction in200

predictive variance of the new sample point dm+1, specifically it is an201

approximated and computationally simple version of the sequential Active202

Learning Cohn strategy used in robotics (Christen and Sansó, 2011).203

Intuitively, the score chooses a new sample point that is correlated with other204

locations given the term205

1

M

M∑
j=1

cov(sj , dm+1)
2

V (sj)V (dm+1)
,

and consequently favours depths with high variance in their age estimates206

(large uncertainties), as well as depths which inform us much about the ages of207

other depths in the sequence (high covariance). However, the term208

1− ‖r(dm+1)‖ penalizes depths correlated with locations already sampled,209

thus separating the dated depths (see Christen and Sansó, 2011, for further210

intuitive and technical justifications of the score and some examples showing211

its performance).212

The same methods and results apply to the dating density of entire cores or of213

specific sections of cores. We note that it often makes scientific and financial214

sense to only apply higher dating resolutions, and thus reach higher215

chronological precision, for specific core sections of interest (e.g. the 1-m long216

sections discussed further below).217

RESULTS218

Depending on their dating density and the chosen age-depth model type,219

chronologies for cores from the Neotoma database reach millennial to220

centennial-scale precision (Figure 1). At first sight, basic age-depth models221

based on linear interpolation or smooth splines (Bennett, 2007; Blaauw, 2010)222

appear to produce more precise chronologies than do Bayesian models (Haslett223

and Parnell, 2008; Blaauw and Christen, 2011). At below average dating224

densities, adding dates enhances the precision of basic age-depth models, but225

this effect levels off at average and higher dating densities. This precision, even226
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with low dating densities, is due to the implicit assumption that the age-depth227

model chosen is the true one, so the model has zero error for the choice of228

age-depth model. Adding in error for age-depth model choice substantially229

reduces the total precision (Bennett, 1994; Blaauw and Heegaard, 2012).230

Bayesian age-depth models on the other hand consistently become more231

precise as dating density increases. The same patterns appear when all but the232

top and bottom dates are removed from the Kr̊akenes sequence, followed by233

re-adding its dates one by one until reaching 20 dpm (Figure 2).234

At the initial, lowest dating densities, most age-depth models fail,235

unsurprisingly, to capture the long-term shapes of the simulated age-depth236

trajectories (Telford et al., 2004; Trachsel and Telford, 2017) even though the237

95% error ranges of the Bayesian models mostly overlap with the ‘true’ ages.238

As a few more strategically chosen dates are added, all models improve to239

follow a site’s main features. More complicated histories require more dates240

(Figures 3–4, Supplementary information animations 1–4). However what241

happens at higher dating densities depends largely on the chosen age-depth242

model type.243

Our simulations reveal several important implications of different approaches244

to age-depth modelling. As with the analyses of cores from the Neotoma245

database and Kr̊akenes, different model types produce very different precision246

estimates (Figure 4a, b, e, f). The commonly used basic models of linear247

interpolation and smooth spline appear at first sight to be pleasingly precise248

(average 95% ranges mostly under ca 500 yr), due to the implicit zero error for249

choice of age-depth model (see above), but the Bayesian age-depth models are250

more realistic, reconstructing much larger uncertainties especially at low to251

average dating densities (up to 1 dpm). However, the supposedly higher252

precision of basic age-depth models comes at a severe cost; they are inaccurate253

especially at low to average dating densities. Indeed, at those dating densities254

basic age-depth models are offset from the ‘true’ ages by many standard255

deviations; Figure 4b, d). The Bayesian models on the other hand are256

consistently accurate and produce realistic estimates of precision, the true ages257
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lying well within two standard deviations (95%) at most depths and dating258

densities (Figure 4f, h). Even so, in all of our simulations (basic and Bayesian)259

and at almost all dating densities, the 95% age ranges of some depths lie260

outside their ‘true’ ages (envelopes extending above the 2 sd limit in Figure 4).261

Above ca 1 dpm, linear interpolation age-depth models do not become more262

precise at increasing dating densities, whereas the smooth-spline models show263

some improvement after reaching ca 5 dpm. However, the Bayesian models264

keep on improving. This is because Bayesian models take advantage of265

chronological ordering, causing ever-increasing precision (yet remaining266

accurate) as more and more dates start to overlap. At dating densities high267

enough to match the multi-decadal wiggles in the 14C calibration curve (Kilian268

et al., 1995; Gulliksen et al., 1998; Lohne et al., 2013; Mauquoy et al., 2002;269

Blaauw et al., 2004; Southon et al., 2012) (Figure 5), some sections of270

Bayesian models calculated with Bacon can reach multi-decadal precision.271

Above 30 dpm even basic models gain precision again as repeated dating of272

individual depths enhances their age estimates.273

The curves relating dating density to model precision and, especially, accuracy274

are not entirely smooth. Sometimes adding a few extra dates will provide an275

extra piece of information that suddenly results in much more precise and, or,276

accurate chronologies. However the opposite can also happen when, for277

example, adding an extra date causes an age reversal with basic age-depth278

models, or an outlying date produces a less accurate model (particularly for279

linear interpolation, which is very sensitive to outliers). Bayesian models280

calculated with Bchron seem to consistently lose accuracy at higher dating281

densities (Figure 4h).282

Our simulations show a clear impact of error size on model precision but not283

accuracy (Figure 6). Dating scatter (Christen and Pérez E., 2009; Scott, 2013)284

on the other hand appears to have little impact on age-depth model precision285

(no impact for linear interpolation and a minor one for Bacon), but it severely286

impacts accuracy. Model offsets increase along with increasing scatter,287

although Bacon’s offsets are always considerably lower than those of linear288
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interpolation. Similarly to dating scatter, outliers have little to no impact on289

model precision while severely affecting accuracy (Figure 6i–l). Most basic290

age-depth models are offset by two or more standard deviations once more291

than 20% of the dates are outlying, while Bacon, remarkably, remains reliable292

until over 50% of dates are outlying.293

IMPLICATIONS294

In the early, pre-AMS, days of 14C dating, dating density of cores was295

necessarily low because slices covering many centimetres or even decimetres296

(and thus centuries of sedimentation) had to be submitted to obtain sufficient297

datable 14C for the conventional decay counting method (e.g. Bennett et al.,298

1992; Haberle and Lumley, 1998). With the advent of AMS dating in the 1990s299

this limitation has largely been lifted, and prices of single dates have come300

down in real terms. However median dating density remains below 1 dpm301

(Figure 1), perhaps because the research community still considers 1 date per302

millennium to be a reasonable rule-of-thumb in order to establish chronologies,303

or because funding for chronologies has not increased (with the exception of304

special cases where chronology is the emphasis of the study). Our simulations305

show, however, that current typical dating densities are insufficient.306

Commonly used basic age-depth models may fail to capture the main features307

of a site’s accumulation history and produce highly over-optimistic precision308

estimates (Figure 3). Increasing the dating density to ca 2 dpm, and using309

Bayesian methods, produces age-depth models that give reasonable confidence310

for centennial-scale precision estimates. If sub-centennial chronological311

precision is needed (at least for selected core sections; Figure 5), dating312

densities over 50 dpm are required, together with age-depth models that take313

advantage of chronological ordering. Thus, chronologies should be built314

starting with a skeleton chronology of, say, 1 date every 2 millennia (0.5 dpm),315

after which small batches of strategically sampled depths should be dated316

sequentially until reaching ca 2 dpm, even though this is time-consuming.317

11



Basic age-depth modelling approaches such as linear interpolation remain318

widely accepted and used within the community of past319

climate/environmental research. For example, Shurtliff et al. (2017) argue for320

‘linear interpolation to be as good an approach as any’, since ‘all age-depth321

models contain considerable uncertainty that is difficult to fully quantify’.322

However, as a community we should ask ourselves whether these basic323

approaches remain suited to their task (Bennett, 1994; Telford et al., 2004;324

Trachsel and Telford, 2017). The method of linear interpolation suggests325

higher precision in-between dated depths, and becomes more precise with326

larger gaps between dated depths (Bennett, 1994). This unintuitive result327

arises because this model implicitly assumes (i) that this is the true model,328

although we know that it is not; and (ii) that ages between dated points lie329

along a straight line, which is rarely, if ever, going to be true. Relaxing the330

assumption (e.g., with Bayesian methods such as Bacon) produces the more331

intuitive result that sections with fewer dates have higher uncertainties.332

Bayesian models excel since they simulate many different alternative ‘routes’333

by which a site could have accumulated in-between dated depths, diverging334

more from the linearly-interpolated relationship if less ‘guidance’ is present.335

Thus at low to average dating densities, Bayesian models such as Bchron or336

Bacon are preferable to basic models, since their model assumptions produce337

more realistic reconstructions and confidence intervals. At higher dating338

densities, the dates start to steer the models more directly and the accuracy of339

basic and Bayesian models is comparable — though Bayesian models that340

enforce chronological ordering can become much more precise.341

Dating scatter seems more disruptive to age-depth model accuracy than error342

size (Figure 6), so it makes more sense to re-date single depths (e.g. to assess343

the reliability of dating different components) or date multiple depths344

(constraining the ages of individually dated depths through enforcing345

chronological ordering), rather than obtaining single high-precision dates.346

Over past decades, the palaeoenvironmental community has repeatedly been347

warned to take uncertainties into account (Maher, 1972; Bennett, 1994;348
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Blaauw et al., 2007; Blaauw, 2010; Jackson, 2012). Dating uncertainties349

should not be abused by uncritically linking events between sites (Blaauw,350

2012), nor camouflaged by plotting fossil-based reconstructions against351

calendar time as single curves without any error visualisation. Basic age-depth352

models, especially those based on the hugely popular linear interpolation, are353

highly sensitive to outliers and severely overestimate precision at low to354

average dating densities. Moreover, because they do not improve beyond ca355

1–2 dpm, they under-perform at above-average dating densities. In contrast,356

Bayesian approaches provide the most accurate age-depth models, with357

reliable precision estimates throughout an impressive range of dating density358

and quality, continually improving as dating density improves. We strongly359

recommend aiming for dating densities ≥ 2 dpm (e.g. 20 or more dates along a360

Holocene sequence) with realistic and stated error estimates. If this is not361

realistically achievable for an entire sequence, it should be achieved for any362

shorter sections where the most precise chronology is needed to meet the363

objectives of the investigation. This will require a modest increase in funds for364

dating and higher usage of available Bayesian age-depth models, but will365

provide the accuracy and precision needed to interpret and correlate366

chronologies at the level required for most palaeoenvironmental questions.367
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Figure 1: Dating density (dates per millennium) and age-depth model precision (95% error

ranges) of all 356 14C-dated cores spanning at least 500 yr and having at least 2 14C dates,

extracted from the Neotoma Database using R code (Goring et al., 2015). Vertical lines and

symbols indicate the minimum to maximum mean age-depth model precision of each core.

Red shows basic age-depth models (diamonds linear interpolation, crosses smooth spline),

blue Bayesian (diamonds Bacon, crosses Bchron). Note logarithmic axes.
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Figure 2: Dating density (dates per millennium) and age-depth model precision (95% error

ranges) of the high-resolution dated Kr̊akenes record (Gulliksen et al., 1998; Lohne et al.,

2013). Shaded envelopes and dashed curves show minimum to maximum resp mean age-depth

model precision upon sequential re-sampling of the record (red smooth spline (smspl), blue

Bacon). Note logarithmic axes.
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Figure 3: The three-stage simulation of sedimentation, sequential dating, and age-depth mod-

elling. The upper panel shows seven simacc simulations using a range of random seeds (1:

5113, 2: 2995, 3: 5993, 4: 6993), a smooth spline (smspl) through the “Example” core pro-

vided with clam (Blaauw, 2010) (orange), simulation 11136 (Younger Dryas) and simulation

1102 (at 3 kcal BP Hallstatt Plateau). The lower panel shows the sequential process of se-

lecting which depth to date next, producing the resulting age-depth model, and comparing

the model to the known ages. In this example, so far four depths have been dated (blue

silhouettes; simdat) from the simulated core (red curve; simacc). A smooth-spline age-depth

model is drawn through these dates (grey envelope and dashed black line; simage). Its age

estimates can be compared to the ‘true’ history (red). From the sample spacing and the

age-depth model’s variance and covariance at each depth a sampling score is calculated (green

distribution). The depth of 1 m has the highest score (dashed green line) and will thus be

dated next.
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Figure 4: Impact of dating density on chronological precision and accuracy using basic (a-b,

linear interpolation; c-d, smooth spline) and Bayesian (e-f, Bacon (Blaauw and Christen,

2011); g-h, Bchron (Haslett and Parnell, 2008)) age-depth models. For each of 5 simulated

cores (see Figure 3 for key to colours), simacc, dates were added sequentially (simdat, up to 150

dates) and age-depth models constructed (simage). Curves show mean values and envelopes

show minimum to maximum values for age-depth model precision (95% error ranges, left

panels) and accuracy (standardized offset from ‘true’ ages, right panels; dashed curve shows

2 standard deviation offset). Note logarithmic axes.
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Figure 5: Impact on model reliability of high dating densities at periods with major wiggles in

the IntCal13 14C calibration curve (Reimer et al., 2013) for a range of age-depth model types

(a-b linear interpolation, c-d smooth spline, e-f Bacon, g-h Bchron). Red curves indicates

simulation 11136 (see Figure 2) focusing on the Younger Dryas Period; blue curves shows

simulation 1102 around the 3 kcal BP Hallstatt Plateau. Precision and accuracy are shown

in left and right panels, respectively. At high dating densities, single depths are dated several

times, causing conflicting age estimates and resulting in unsuccessful Bchron runs for the YD

simulation. Note logarithmic axes.
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Figure 6: Impact of laboratory error (a-d), dating scatter (e-h) and outliers (i-l) on model

reliability. Left panels show linear interpolation, right panels Bacon. Curves show mean

precision and accuracy at a range of dpm (see legend in panel a). Given the time-consuming

nature of these simulations, results are available only for linear interpolation and Bacon.
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