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Abstract

The isolation of graphene in 2004 and the subsequent characterisation of its many remarkable

properties marked the start of an intense and ongoing research effort into other systems hosting

so-called Dirac cones within their electronic band structures.

This thesis focuses on two classes of Dirac materials in particular. Dirac semimetals are essen-

tially three-dimensional analogues of graphene, hosting spin-degenerate Dirac cones within

their bulk band structure. Topological insulators are characterised by ‘topological surface

states’ which are spin-polarised, surface-localised Dirac cones, essentially enclosing an oth-

erwise insulating material in a highly conductive outer shell.

In both cases, the formation of the Dirac cone requires the crossing of bands within the bulk

electronic band structure. In the vast majority of experimental realisations to date, these two

bands derive from different atomic and orbital manifolds. Through spin- and angle-resolved

photoemission, we establish that Dirac cones arising instead from a single-orbital manifold are

both commonplace and advantageous. A mechanism allowing for the simultaneous formation

of bulk Dirac cones and topological surface states is introduced, requiring only a discrepancy

in bandwidths of a single, crystal field-split orbital manifold along a rotationally-symmetric

axis.

Unlike in the conventional cases, the Dirac cones populating the resulting ‘topological ladders’

are not easily destroyed by changes to the relative energetics of orbital manifolds, caused by

deformations to a lattice, for example. Instead, lattice deformations can be used to tune the

position along the rotationally-symmetric axis where the crossings occur, but the states them-

selves are extremely robust. Indeed, we demonstrate that topological ladders of a common

origin exist in six transition metal dichalcogenide (TMD) compounds, despite their disparate

bulk properties and ground states. Moreover, the underlying mechanism driving the formation

of topological ladders is expected to be applicable to many other compound classes, suggesting

that single-orbital manifold topological phenomena is prevalent in nature.





ix

Acknowledgements
This work would not have been possible without the guidance and support from Phil King

and the other members of the King group, both past and present. I thank Lewis Bawden in

particular, who invested a lot of effort in my early months integrating me into the group and

the town, and then a lot more effort derailing anything resembling productivity after that. I

also thank Federico Mazzola for helping me both to rationalise frequent work-related anxiety,

and to develop a severe caffeine dependency.

I also acknowledge numerous collaborations: M. Saeed Bahramy (RIKEN & Uo Tokyo) con-

tributed a large amount to the original research presented within this thesis in the form of

DFT calculations and scientific discussions, and for that I am thankful. I additionally thank T.

Sasagawa (Tokyo Institute of Tech.) for a large quantity of the samples used in this work, and

Matt Neat (Wahl group, St Andrews) for his expertise in both STM and brew-making.

Finally I thank Rebecca Mekler, for reminding me that there is more to life than physics.

This work was supported by the EPSRC [Grant No. EP/K503162/1].

Research data underpinning this thesis are available at:

https://doi.org/10.17630/eed8dad8-836b-40e7-8e57-89c8dabed070





xi

for Phil and Julie Clark





xiii

Contents

Abstract vii

Acknowledgements ix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Scientific Background 5

2.1 Electronic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Crystal field splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Calculating the electronic band structure . . . . . . . . . . . . . . . . . . . . 7

The tight-binding model (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Two-dimensional Dirac cones in graphene . . . . . . . . . . . . . . . . . . . 11

2.1.4 Surface states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.5 Spin-orbit coupling and the Rashba effect . . . . . . . . . . . . . . . . . . . 15

Rashba spin-splitting in quasi-2DEGS . . . . . . . . . . . . . . . . . . . . . . 18

Rashba spin splitting at the surfaces of bulk compounds . . . . . . . . . . . 20

Rashba spin splitting of bulk band structures . . . . . . . . . . . . . . . . . . 20

2.2 Dirac cones and non-trivial band topology . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Dirac cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Two-dimensional Dirac cones without topological protection . . . . . . . . 21

Critical three-dimensional (bulk) Dirac cones . . . . . . . . . . . . . . . . . 21

Lattice symmetry protected bulk Dirac cones . . . . . . . . . . . . . . . . . . 22

2.2.2 Topological surface states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2D Dirac cones with topological protection . . . . . . . . . . . . . . . . . . . 24

Topological protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Generating topological surface states . . . . . . . . . . . . . . . . . . . . . . 26

Properties and uses of topological surface states . . . . . . . . . . . . . . . . 29

2.2.3 Hexagonal warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.4 Fermi arcs between Dirac and Weyl points . . . . . . . . . . . . . . . . . . . 32

2.2.5 Topological superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Methods 37

3.1 Angle-resolved photoemission spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 37



xiv

3.1.1 Principles of photoemission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.2 The three-step model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 The one-particle spectral function . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.4 The problem with kz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 ARPES Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Synchrotrons and beamlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Synchrotron Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 ARPES endstation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Energy and momentum resolution . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Spin-resolved ARPES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.4 Surface sensitivity and need for ultra-high vacuum . . . . . . . . . . . . . . 51

3.3 Density Functional Theory (DFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Moving away from the tight binding model . . . . . . . . . . . . . . . . . . 53

3.3.2 Hohenberg-Kohn theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3 Kohn-Sham Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.4 LDA approximation and the self consistency problem . . . . . . . . . . . . 55

3.3.5 Choosing a basis and solving . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.6 Surface-slab calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Topological ladders in the transition metal dichalcogenides 59

4.1 Transition-metal dichalcogenides (TMDs) . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Comparison with graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.2 Diversity across the TMDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 General mechanism for topological phenomena within a single-orbital manifold 65

4.3 1T-PdTe2: A model system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Type-II bulk Dirac point in PdTe2 . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.2 Topological surface states and resonances in PdTe2 . . . . . . . . . . . . . . 74

4.4 2H-WSe2: Doubling the unit cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Changes to BDP-TSS pair forming mechanism . . . . . . . . . . . . . . . . . 78

4.4.2 Type-I and type-II BDPs and TSSs in WSe2 . . . . . . . . . . . . . . . . . . . 80

4.5 Outlook: TMDs with structural distortions . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.1 1T-IrTe2: Removing C3v symmetry . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.2 Charge density wave phases in TaSe2 and NbSe2 . . . . . . . . . . . . . . . 84

5 Tunability of topological phases in group-X transition metal dichalcogenides 89

5.1 Tunability through altering hopping strengths . . . . . . . . . . . . . . . . . . . . . . 90

5.1.1 Strain engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 1T-PtSe2: Changing the effective crystal field and spin orbit splitting . . . . . . . 93

5.2.1 Type-II BDP and two TSSs in 1T-PtSe2 . . . . . . . . . . . . . . . . . . . . . . 93

5.2.2 Fermiology of PdTe2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Surface superconductivity of topologically non-trivial PdTe2 . . . . . . . . . . . . . 104

5.4 Further implications of small kz-projected band gaps . . . . . . . . . . . . . . . . . 106



xv

6 Rb dosed 1T-PtSe2: A model gated semimetal 115

6.1 Gated Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1.1 Solution to Poisson’s equation for a single charge carrier type . . . . . . . 115

6.1.2 Applications from gated semiconductors . . . . . . . . . . . . . . . . . . . . 117

6.2 Rb dosed PtSe2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.1 The semimetallic ground state of PtSe2 . . . . . . . . . . . . . . . . . . . . . 119

6.2.2 Stabilising a 2DEG at the surface of 1T-PtSe2 . . . . . . . . . . . . . . . . . 120

Extracting the 2DEG carrier density . . . . . . . . . . . . . . . . . . . . . . . 123

Large spin anisotropy from orbital character . . . . . . . . . . . . . . . . . . 124

Anomaly in the Rashba coefficient . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.3 Outlook: PtSe2 devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2.4 Outlook: Plasmonic signatures in PtSe2 . . . . . . . . . . . . . . . . . . . . . 129

6.2.5 Outlook: Changes to the valence band structure . . . . . . . . . . . . . . . 130

7 Conclusions and Outlook 133

7.1 p-orbital manifold topological ladders away from the TMDs . . . . . . . . . . . . . 134

7.1.1 Type-II bulk Dirac cones and giant Fermi arcs in SnTe . . . . . . . . . . . . 136

7.1.2 Further instances of topological ladders in rock-salt compounds . . . . . . 140

7.2 d-orbital manifold topological ladders in the Fe-based superconductors . . . . . . 141

7.3 Novel Weyl phases through removing global lattice symmetries . . . . . . . . . . . 142

7.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Bibliography 147





xvii

List of Abbreviations

2DEG Two-Dimensional Electron Gas

ARPES Angle-Resolved Photoemission Spectroscopy

B/AB or BA Bonding/Anti-Bonding

BDP Bulk Dirac Point

CDW Charge Density Wave

CFS Crystal Field Splitting

CL Circular Left (polarised)

CR Circular Reft (polarised)

(C)CW (Counter) Clockwise

CBM Conduction Band Minimum

DFT Density Functional Theory

DSM Dirac Semimetal

EDC Energy Distribution Curve

GGA Generalised Gradient Approximations

IBG Inverted Band Gap

IS Inversion Symmetry

LDA Local-Density Approximation

MDC Momentum Distribution Curve

QHE Quantum Hall Effect

QSR Quantised Surface Resonance

QSS Quantised Surface State

SOC Spin-Orbit Coupling

SS Surface State

STM Scanning Tunnelling Microscopy

STS Scanning Tunnelling Spectroscopy

TBG Trivial Band Gap

TBM Tight Binding Model

TI Topological Insulator

TMD Transition Metal Dichalcogenide

TRIM Time-Reversal Invariant Momenta

TRS Time-Reversal Symmetry

TSS Topological Surface State

UHV Ultra-High Vacuum

VBM Valence Band Maximum

WSM Weyl Semimetal



xviii



1

Chapter 1

Introduction

1.1 Motivation

Silicon-based electronic devices have almost reached their limits. For decades, Moore’s law,

stating that the number of transistors on an integrated circuit chip doubles approximately every

two years, has held true, commensurate with the ever growing demand for smaller, faster and

more capable electronics (Fig. 1.1). There are now close to 20 billion transistors on a standard

chip in a typical device, with their separation on the order of a few nanometers.

In order to sustain the current rates of advancement in device functionality, there must be a

major upheaval in the operational principles behind how subsequent devices will work as well

as the materials that will form them. The origin of this fast approaching limitation is two-fold.

Firstly, with increasing transistor density, the management of the heat-load from thermal losses

becomes both more crucial and more difficult [1], effectively imposing a maximum density to a

conventional transistor array. Secondly, as the size of the transistors themselves approach the

quantum limit, tunnelling effects become significant causing them to fail. ‘Next-generation’

electronics need therefore to exploit quantum mechanical effects, rather than trying to cir-

cumvent them.

One approach to bypass these heat loss limitations is to build devices with operational prin-

ciples capable of exploiting new materials which are better conductors of electronic charge.

Superconductors, which develop zero resistivity below some transition temperature, are of

course excellent candidates. However, since the discovery of the first superconducting phase

in 1911 [3], the record transition temperature achieved is only 203 K in sulphur hydride (H2S)

when under pressures in excess of 200 GPa [4], with a Ba-Ca-Cu-O system holding the current

maximum transition temperature (133 K) at atmospheric pressure [5]. The lack of a super-

conductor with a transition temperature close to room temperature, and the risk of "nearly

instant death" [6] when exposed to the current record holder, suggests that superconductors

are unlikely the solution needed to prevent the stagnation of device development.

Two-dimensional systems such as graphene are arguably more likely candidates. Graphene,

an allotrope of carbon successfully isolated in 2004 [7], possesses so-called Dirac cones within

its electronic structure. The electronic structure is essentially a rule-book for how electrons

can behave within a given solid, and electrons described by these Dirac cones are analogous
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FIGURE 1.1: Demonstration of Moore’s law. Graphic is adapted from [2].

to massless Dirac fermions theorised in high-energy physics; possessing extremely high mobil-

ities and therefore providing graphene with a lower resistivity at room temperature than any

elemental metal [8–10].

The work in this thesis focusses predominantly on two subsequent classes of Dirac materials

that have been discovered within the last decade. The first of these is ‘Dirac semimetals’,

essentially three-dimensional analogues of graphene [11], with ‘bulk’ Dirac cones potentially

permitting electrons to move with high mobilities in three dimensions rather than two.

The second is the class of ‘topological insulators’. Determining the topology of an object simply

requires counting the number of holes. A mug and a ball are topologically distinct owing to the

handle of the former. A mug and a donut however, are the same. Whilst this sounds like little

more than needless characterisation, finding a compound with an electronic structure which

is topologically distinct from that of the vacuum enforces electrons localised to the surface of

this material to behave as massless Dirac fermions, essentially forming a highly conductive

shell around an otherwise insulating bulk material [12]. These ‘topological surface states’ also

present an opportunity to develop devices not requiring charge transfer at all. At the surfaces

of topological insulators (and equivalently at the surfaces of ‘Rashba’-compounds), electrons

with spin ‘up’ and spin ‘down’ can behave differently under an external stimulus [13], opening

routes to use spin as the information carrier, rather than charge.

The study of Dirac materials beyond graphene is only a decade old, but forms one of the most

prominent research areas in condensed matter physics. Many compounds hosting Dirac cones

of some form have been found to exist, but for the most part they are scattered, seemingly

random subsets of only a few material families. Both topologically ‘non-trivial’ phases and
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Dirac semimetal phases, collectively referred to as topological phenomena in this thesis, re-

quire crossings between two or more electronic bands. When these two bands originate from

different constituent atoms, as is true for the majority of realisations to date, any slight pertur-

bation to the crystal structure can alter the relative energetics of these bands, often destroying

the electronic state of interest. Not only is this the origin of the apparent randomness in host

materials, but it also greatly confines the design and development of any potential device util-

ising them. Only a few suitable candidates can be used, and the scope for tuning the behaviour

of the topological phase itself is extremely limited.

This work instead searches for instances of both bulk and surface-localised Dirac cones formed

within a single orbital manifold, originating from a single constituent atomic species of the unit

cell. This thesis will show, that with a very minimal set of starting prerequisites concerning the

rotational symmetry of the crystal structure and the delocalisation of electrons across the unit

cell, it is possible to stabilise arrays of coexisting bulk Dirac cones and topological surface states

within a single compound. More importantly, once a compound is found to host single-orbital

manifold topological phenomena, the entire material family to which it belongs is likely host to

the same physics. The states formed by this novel mechanism can be expected to be robust to

extremely large perturbations, therefore lending themselves to a rich parameter space in which

their energetic positions and fine-details can be tuned. The underlying mechanism behind

this work therefore greatly bolsters the arsenal of potential candidates for next-generation

electronic and spintronic devices, and creates new mechanisms by which potential devices

may operate.

This will be demonstrated via spin- and angle-resolved photoemission studies predominantly

into the transition-metal dichalcogenide family, a materials system already in the spotlight for

its diverse properties in both bulk and single-layer forms.

1.2 Outline of Thesis

Chapter 2 begins with a theoretical overview of the bulk and surface electronic structures of a

solid. Spin-orbit coupling and other relativistic effects are introduced from the Dirac equation.

The importance of global lattice symmetries is emphasised with a discussion of spin-polarised

electronic states which may only exist when inversion and/or time-reversal symmetries are

lifted. Dirac materials and non-trivial band topology are introduced starting from a simplified

tight-binding model of graphene. A discussion of how to protect three-dimensional Dirac cones

from spin-orbit coupling and other perturbations is given, before discussing how topological

surface states can occur in the cases where the crossing points are not protected.

Angle-resolved photoemission spectroscopy (ARPES) is the main experimental tool used for all

work within this thesis. The underpinning theory as well as some practical considerations are

discussed in Chapter 3. The basic operational principles behind spin-resolved ARPES are also

provided. The experimental Chapters in this thesis (Chapters 4, 5 and 6) each include com-

plementary density functional theory (DFT) based calculations provided by collaborators. As
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such, a working understanding of the main underlying principles behind DFT is demonstrated

here.

Chapter 4 begins with an overview of the properties of transition-metal dichalcogenides (TMDs).

A mechanism by which kz-mediated topological surface states and bulk Dirac cones can be si-

multaneously formed is discussed. A ‘topological ladder’ of this origin is demonstrated to exist

within the group-X superconducting TMD, 1T-PdTe2, as well as the ‘strongly spin-orbit cou-

pled’ semiconductor, 2H-WSe2, despite the different symmetries, ground states and properties

of these two compounds.

Chapter 5 concentrates primarily on the tunability of topological ladders formed within the

TMDs, as well as their practical potential. The possibility of altering both the number and

types of topological band crossings is discussed in part through a detailed comparison of the

group-X TMDs PdTe2 and PtSe2. A brief overview of a scanning-tunnelling microscopy study

into the possible role of topological surface states in the surface superconductivity of PdTe2 is

also given.

Chapter 6 continues to show the potential of the relatively understudied group-X TMDs. It

is shown how, by Rb dosing the surface of PtSe2, a two-dimensional electron gas (2DEG)

can be stabilised which exhibits an ‘enhanced’ Rashba-splitting relative to what is typically

achieved in 2DEGs with semiconducting systems as the basis. The Chapter shows how the

2DEG is confined by an unusual ‘dual’ form of a band bending potential, enhancing Rashba

spin splitting, and likely generic to semimetallic systems.

Concluding remarks are given in Chapter 7 along with a discussion of the validity of the under-

lying mechanism driving the formation of topological phases to systems outside of the TMD

family, and on the additional properties that could arise as a result. Specifically, single-orbital

manifold topology in systems with different crystal structures, rotational lattice symmetries

and ground state properties are overviewed, with a focus primarily on ferroelectric SnTe.
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Chapter 2

Scientific Background

2.1 Electronic structure

The electronic structure is a strict rulebook for the behaviour of electrons within a solid. Its

basis is an intertwined band network, the electronic band structure. Each band is populated

by electrons, setting their energy-momentum relationship within the solid. The shape taken

by the full electronic structure, also encompassing charge, spin and quasiparticle correlations,

informs many physical properties of a solid, from charge carrier mobilities to magnetic struc-

ture. Understanding the fine details of the electronic structures of novel materials is a crucial

prerequisite to the development of next-generation devices harnessing their properties.

An isolated atom has a set of discrete, well-defined electronic energy levels described by the

set of quantum numbers (n, l, ml , ms). The relative energetics of electrons occupying a given

energy level is described by n, and their real space probability distribution is set by the orbital

type (l, ml) with each orbital able to contain two electrons with opposite spin, ms. When

forming the unit cell of a solid, atomic orbitals overlap to produce bonding and anti-bonding

sets of molecular energy levels, E0,i , where the corresponding molecular orbitals are indexed by

i. The periodic potential associated with bringing many of these unit cells together transforms

each of these energy levels into quasi-continuous k-dependent bands, Ei(k) = E0,i + fi(k),

where k is a position in momentum space and i now the band index.

The extent of the k-dependence of a band, or equivalently its bandwidth, is determined by the

localisation of the occupying electrons to a given lattice site. In general, the most tightly bound

electrons of the constituent atoms (lowest n) retain their atomic-like k-independent descrip-

tions even within the solid. In contrast, the most loosely bound valence electrons lie in orbitals

which can overlap across lattice sites. The extent of relative orbital overlaps within a unit cell,

or equivalently the hopping strengths, directly determine the relative dispersions of bands of a

particular orbital character. The final result is a spaghetti like network of interlocking bands.

The crystal structure is therefore ultimately responsible for shaping the electronic structure.

Not only is its periodicity directly adopted by the electronic structure, but the geometric ar-

rangement of orbitals within the unit cell sets both the initial energetics, E0,i , of bands, as well

as the relative orbital overlaps that determine the details of their k-dependence, fi(k).
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2.1.1 Crystal field splitting

Solids are held together by the bonding of electrons across atomic sites. One or more pairs of

electrons may be ‘shared’ across sites (covalent bonding), or electrons can be fully transferred

between sites creating strong Coulombic forces between the resulting ions (ionic bonding)1.

In either case, the shape of the unit cell is set such that the chemical bonds required to hold

the solid together are formed, whilst the overall Coulomb repulsion of all ions and electrons,

both bonding and non-bonding, in the system is minimised. Depending on the symmetry of

the resultant unit cell, subsets of orbitals belonging to a given orbital manifold (s, p, d or f

for l = 0, 1,2 or 3) can experience disparate degrees of orbital overlap, lifting degeneracies

within. This is crystal field splitting.

FIGURE 2.1: Crystal field splitting (CFS) in the chalcogen p-orbitals of an
octahedral crystal structure. (a) Schematic illustration of the p-orbitals at
the chalcogen sites of an octahedron collapsed onto a two dimensional plane.
(b) Energetic degeneracy lifting of the px ,y,z orbitals when forming a unit cell

(bonding/anti-bonding (B/AB)), and with the CFS.

This thesis will focus largely on transition metal containing compounds. These systems are

held together predominantly by covalent bonds formed between the d-orbitals of the transition

metal (M) and the p-orbitals of a chalcogen (X={O, S, Se, Te}) [14]. An octahedral unit cell

often results in order to minimise the Coulomb repulsion between these p- and d-orbitals [15].

The metal is positioned at the centre of the octahedron, with repulsive electron clouds from

the chalcogen atoms positioned at each corner.

In this geometry, both the d- and p-orbital manifolds experience a crystal field splitting. A

schematic of the unit cell as viewed along the c-axis (‖ z) is shown schematically in Fig. 2.1(a),

with the valence p-orbitals of the chalcogen included. This demonstrates how there is a greater

orbital overlap of px ,y orbitals than pz orbitals, therefore raising the energy of the former set

(A1) relative to the latter (E).

1Further intermolecular forces also contribute. Dipoles deriving from an uneven distribution of charge across
a chemical bond can interact with other dipoles and ions. These interactions can involve ‘permanent’ dipoles (e.g.
dipole-dipole interactions, hydrogen bonding) or ‘instantaneous’ dipoles induced by charge fluctuations (e.g. van
der Waals forces).
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Since all valence d-orbitals within the system are localised to a single atomic site here, the crys-

tal field splitting for the metal d-orbital manifold is set by relative overlaps with the chalco-

gen p-orbitals: d-orbitals which maximally avoid the p-orbital lobes at the corners (t2g =

{dx y , dyz , dxz}) are lowered in energy, whilst those with significant overlap (eg = {dx2−y2 , dz2})
are raised in energy.

2.1.2 Calculating the electronic band structure

Fortunately, it is not required to consider the interactions of every electron with every other

electron on each atomic site within the lattice to obtain a good approximation of the electronic

structure, at least for simple systems. Instead, by assuming that electron dynamics are much

faster than lattice dynamics, one can effectively combine the interaction of each electron with

the lattice into a single potential, V (r ) [16, 17]. That is, any motion of the nuclei will be

accompanied by an almost instantaneous shift of the electrons without any energy cost. The

interaction of an electron with all the other electrons can also be included within this same

term by assuming that the main contribution of electron-electron interactions is to screen the

nuclear charge from the atom. V (r ) is therefore the potential felt by a single electron from

electronically screened nuclear charges [16, 17].

The Hamiltonian of interest is then the time independent Schrödinger equation with a periodic

potential:

Ĥ(r ) = −
~2

2m
∇2 + V (r ); V (r ) = V (r + r n), (2.1)

where m is the electron mass and r n is some linear combination of the basis lattice vectors for

the relevant crystal structure. The eigenfunctions for this problem also must contain informa-

tion about the underlying lattice. In particular, they must satisfy the Bloch condition, which

enforces periodicity:

Ψ(r + r n) = eikr nΨ(r ). (2.2)

Typically one of two approaches are used to find the corresponding eigenstates. Either the

potential, V (r ), is treated as a small perturbation as in the nearly-free electron model, or one

can do the opposite, as will be discussed below.

The tight-binding model (TBM)

Within the tight-binding model, electrons are assumed to be sufficiently tightly bound to the

lattice that the single particle Hamiltonian of a crystal is the same for that of the isolated atom,
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but with an extra periodic potential, V (r ):

Ĥatom + V (r ) = Ĥcrystal. (2.3)

The contribution to V (r ) from an atom at site n is a maximum exactly at that lattice site, i.e

on top of that atom, and zero a real space distance r n = r1 away at site n+ 1, where r 1 is a

nearest-neighbour lattice spacing. V (r ) is therefore at a minimum midway between atomic

sites.

The atomic wavefunctions |φi〉 are eigenstates of Ĥatom,

Ĥatom|φi〉= εi|φi〉, (2.4)

where εi is the ith energy level. When transitioning to an ordered crystal, atomic wavefunc-

tions, |φi〉, overlap, meaning that they are no longer eigenstates of the atomic Hamiltonian.

In order to satisfy the Bloch condition, it is necessary to construct linear combinations of these

starting atomic wavefunctions,

Ψi =
∑

n

ci,n|φn,i〉, (2.5)

where the summation is over the lattice sites, n, each a lattice vector r n apart. The subscript,

i, is now a band label. The more atomic orbitals included in the problem, the more solutions

to the Schrödinger equation (Eqn. 2.1) and the more accurately the band structure will be

captured. To get a good qualitative approximation, however, it is usually sufficient to include

only the least-bound orbitals which contribute bands to the electronic structure near EF , the

Fermi level. In the most simple cases, it is possible to go simpler still and enforce that orbitals

on each site are orthogonal such that 〈φn,i|φm,i〉= δn,m
2.

Considering only one orbital, inserting these wavefunctions into the Schrödinger equation and

multiplying from the left by 〈φn| produces the following set of simultaneous equations for each

n:

∑

m

Hnmcm = Ecn; Hnm = 〈φn|Ĥ|φm〉; cm =
eikr m

p
N

. (2.6)

The eigenvalues, E(k), then provide the electronic band structure.

In order to highlight general key features of band dispersions in real materials, the 2D honey-

comb carbon allotrope, graphene, will be considered as a simple example.

2This assumption is not true in general. It is possible to construct Wannier orbitals however, which are centred
on lattice sites and are orthogonal across sites by definition. See Chapter 3.3.
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2.1.3 Graphene

The crystal structure of graphene is shown in Fig. 2.2. Its unit cell is composed of two in-

equivalent carbon atoms, producing a global ‘honeycomb’ lattice structure. The honeycomb

structure shown here is not a Bravais lattice however, since the vector connecting an A site to

a B site is not a lattice translation vector. It is therefore necessary to consider this structure

as two intersecting triangular sub-lattices composed of A and B lattice sites, respectively. The

bonding in graphene is predominantly σ-type, deriving from the in-plane 2px ,y orbitals. The

band nearest the Fermi level is then pz derived. Considering only the pz orbitals therefore, the

trial wavefunction is

cmφm =
1
p

N

�

cAeik(dA+r m)ρA
m + cBeik(dB−r m)ρB

m

�

, (2.7)

where cA,B are complex coefficients setting the size of the wavefunction at each lattice site on

each the A and B sub-lattices. dA = −dB is a vector connecting the A site to the origin, taken to

be midway between an A and B lattice site (see Fig. 2.2). r m is the set of linear combinations

of a1,2,3 which map, for example, a lattice point on the A sub-lattice, to the surrounding lattice

points on the B sub-lattice (i.e RA,B
m = ±r m + dA,B are vectors mapping the origin to a lattice

point). ρA,B
m are the wavefunctions for a given lattice site, m, on the A and B sub-lattices.

b

A
0

0

B

a

FIGURE 2.2: Crystal structure of graphene. The honeycomb lattice structure
of graphene is shown, with the A and B sub-lattices labelled. Relevant vectors

for the discussion are drawn and displayed.

Considering only nearest neighbour hopping (r m ∈ {0, a1, a2, a3}) and assuming that wave-

functions on neighbouring sites are orthogonal:

〈ρA
n|ρ

B
m〉= 0; 〈ρA

n|ρ
A
m〉= δnm, (2.8)

one can insert wavefunctions of the form of that in Eqn. 2.7 into the Schrödinger equation to

obtain the following:
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3
∑

m=0

1
p

N

�

cAeik(dA+am)Ĥ|ρA
m〉+ cBeik(dB−am)Ĥ|ρB

m〉
�

= E(k)
3
∑

m=0

1
p

N

�

cAeik(dA+am)|ρA
m〉+ cBeik(dB−am)|ρB

m〉
�

. (2.9)

By defining both the hopping strength between pz orbitals on neighbouring sites as

〈ρA
n|Ĥ|ρ

B
m〉=







−tpz
|RA

n −RB
m|=

ap
3

0 otherwise

and the on-site energy for the A and B sub-lattice as

〈ρ{A,B}
n |Ĥ|ρ{A,B}

m 〉=







E{A,B} n= m

0, otherwise

one can multiply Eqn. 2.9 from the left by 〈ρA,B
0 | to obtain an eigenvalue relation from which

one can extract the dispersion relation E(k):

Ĥ

�

cA

cB

�

=

�

EA tpz
f (k)

tpz
f (k)∗ EB

��

cA

cB

�

= E(k)

�

cA

cB

�

;

E(k) =
EA+ EB

2
±

√

√� EA− EB

2

�2
+ t2

pz
| f (k)|2, (2.10)

where

f (k) = 1+ exp(ik(−a2 + a1)) + exp(ik(−a3 + a1))

= 1+ 2 exp
� iaky

p
3

2

�

cos
�akx

2

�

. (2.11)

Figure 2.3 shows the resultant band dispersion of graphene, where EA = EB. The bandwidth,

dependent on the degree of overlap between neighbouring orbitals and therefore on the prob-

ability of hopping t = tpz
, is also indicated along with the shape of the Brillouin zone.

Here, the band structure, E(k), has only two bands, simply because only two inequivalent

atoms per unit cell with one orbital each were included in the problem. The higher energy band

(EΓ = E0+3t) at the Γ point is the anti-bonding solution, and the lower one (EΓ = E0−3t) the

bonding solution. This simple one-orbital approximation in a 2D system captures the near-EF

π bands of graphene well, but more sophisticated approaches are required for more complex
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(a) (b) (c)

FIGURE 2.3: Electronic structure of graphene. (a) Bandwidth of the pz-
derived bands in graphene as a function of hopping strength, where t = 0
corresponds to infinitely separated atoms (a =∞). (b) Electronic structure of
the π bands along a Γ -K-M-Γ path in momentum space. (c) Brillouin zone with

high symmetry points and directions indicated.

multi-orbital and higher dimensional systems [18]. Despite this, some properties of this band

structure are true in general, at least in the non-interacting limit.

1. The band structure is symmetric in k about the time-reversal invariant momenta (TRIM),

here Γ and M, to ensure periodicity across Brillouin zones.

2. The bandwidth of a band derived from a given orbital character is dependent solely

on the size of the hopping strength, t, for that orbital. If this was extended to three

dimensions, the resulting dispersion relation, E(kx , ky , kz), has a dependence on kx , ky

and kz , where the dispersion along each of these directions would be set by hopping

strengths along the corresponding axis in real space.

3. The band minimum or maximum around the zone centre is usually approximately parabolic:

E(k)∝ cos(k)≈ 1− 1
2 k2.

Two-dimensional Dirac cones in graphene

The band structure obtained from the simple two-orbital tight binding model, shown in Fig. 2.3,

exhibits linear crossing points at the K points. These linearly dispersing bands together form

a two-dimensional Dirac cone, with the crossing point a Dirac point. These Dirac cones are

almost solely responsible for the surge in interest of graphene in recent years, and the subse-

quent interest in so-called Dirac semimetals and topological insulators, discussed in Section 2.2

and relevant to the work in this thesis.

In the vicinity of the K points (±4π
3a , 0) where the Dirac cones reside, f (k) can be rewritten as
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f (k ′ = k − Kζ) = 1+ 2exp

�

iaky
p

3

2

�

cos

�

a(kx − Kζ)

2

�

≈
p

3a
2
(ζkx − iky) =

p
3a

2~
(ζpx − ipy), (2.12)

where p = ~k and ζ= ±1 defines the valley index, describing electrons at K or−K. Keeping the

onsite energies inequivalent for generality (EA 6= EB), the Hamiltonian in Eqn. 2.10 becomes

Ĥ =

 

EA −
p

3tpz a
2~ (ζpx − ipy)p

3tpz a
2~ (ζpx + ipy) EB

!

= ν(ζpxσx + pyσy) +mσz ,

(2.13)

where ν=
p

3atpz
2~ is the Fermi velocity, and EA = −EB = m.

When written in this form, the Hamiltonian demonstrates the presence of a spin-like quan-

tity, allowing it to be rewritten in terms of the Pauli matrixes, σx ,y,z . The band structure of

graphene is spin degenerate, however. Instead, the pseudospin quantity here describes the

coupling between the A and B sub-lattices [19]. The corresponding dispersion relation is dis-

played in Eqn. 2.14.

E(k ′) =







±
q

m2 + ν2(p2
x + p2

y) EA = −EB = m

±
q

ν2(p2
x + p2

y) EA = EB

(2.14)

The case for graphene (EA = EB) can be compared directly to the eigenvalues for plane-wave

solutions of the Dirac Hamiltonian (Eqn. 2.15). The Dirac Hamiltonian, discussed further in

Section 2.1.5, describes relativistic spin-1
2 fermions, with its eigenvalues therefore providing

their total relativistic energy.

E(p) = ±
q

m2
0c4 + p2c2 (2.15)

For zero rest mass (m0 = 0), Eqn. 2.15 produces a linear dispersion in momentum. The linear

crossing points in the band structure of graphene are therefore considered to be condensed

matter realisations of massless Dirac fermions in high energy physics. Whilst this is in itself

provides routes to study analogues of massless Dirac fermions in a laboratory environment,

their presence in graphene and any other compounds in which they are found has extremely

useful implications for devices made from those materials. Dirac cones are naturally associated

with extremely high mobility carriers and low resistivity. Indeed, electron and hole mobilities
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in graphene are found to be higher than InSb, the previous record holder for carrier mobilities

[20], on the order of 105 cm2V−1s−1 [9], corresponding to a resistivity of≈ 10−6 Ω cm, smaller

than all elemental metals at room temperature [10]. This, coupled with extremely high ther-

mal conductivities [21], makes graphene one particularly attractive candidate material for

efficient next-generation electronics devices, which are currently limited in size by thermal

dissipation [1]. Graphene also possesses an unconventional integer quantum Hall effect as a

direct consequence of its Dirac cones [22, 23], and its two-dimensional atomically thin nature

opens up potential for applications requiring flexible and/or transparent conductors, in solar

cells for example [24].

This array of remarkable properties in graphene can be attributed as a direct consequence of

the simplicity of its crystal structure. More specifically, sub-lattice symmetry is crucial for the

formation of Dirac points. By referring back to Eqn. 2.14, it is clear that the Dirac cones do

not exist when EA 6= EB. As an example, hexagonal boron nitride (BN) shares a near-identical

crystal structure to graphene, but since B and N occupy the A and B sub-lattices respectively,

there are no Dirac points within its electronic structure [25]. The asymmetry of atomic species

on neighbouring lattice sites is just one inhibitor to Dirac cone formation in graphene-like 2D

materials. Another is spin-orbit coupling (SOC), which will be overviewed below in the context

of symmetry breaking at the surface of a solid.

2.1.4 Surface states

The above provides an origin and simple description of the bulk electronic band structure of

a material. In those discussions, the k-dependence of a given electronic band is defined by

the periodicity of the potential, V (r ). At the surface of a solid, this periodicity is lost, and

therefore the surface electronic structure need not be equivalent to that of the bulk.

The Bloch plane wave solutions to the Schrödinger equation possess a real k-vector, extending

infinitely into the bulk (z < 0). At the surface the periodicity of V (r ) is lost, instead changing

discontinuously to match the constant vacuum potential, V (r )z>0 = Vvac. Bulk solutions must

obey the following boundary conditions which relate their wavefunctions inside (i) the crystal

to the wavefunctions outside (o), into the vacuum [26, 27]:

ψo(z = 0) =ψi(z = 0);
dψo

dz
|z=0 =

dψi

dz
|z=0. (2.16)

The wavefunction in vacuum must take the following form,

ψo∝ exp[−

√

√2m
~2
(Vvac − E)z]; E < Vvac, (2.17)

found simply by solving the Schrödinger equation (Eqn. 2.1) for V (r ) = Vvac [26]. Every bulk

solution to the Schrödinger equation is matched onto an exponential tail of this form. The

lack of an imaginary component here requires that both incident and reflected plane waves
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0

Crystal Vacuum
(a) (d)

(b)

(c)

FIGURE 2.4: Electronic wavefunctions at a sample surface. (a-c) Electronic
wavefunctions for a bulk band (a), a surface resonance (b) and a surface state
(c). z < 0 corresponds to a crystal, z > 0 is the vacuum. (d) Schematic illustra-
tion of bulk-surface wavefunction overlap in a three dimensional band struc-
ture, adapted from [26]. Shaded areas along the k‖ axis indicate the k⊥ = kz
projected bulk band structure. Surface solutions which do not become degen-
erate with this area for all k‖ are surface states (bottom), otherwise they are

surface resonances (top and middle).

must be considered on the crystal side of the potential barrier to ensure that the continuity

conditions can be fulfilled [26, 27].

These continuity conditions could also be satisfied for a single plane wave with a complex

wavevector, such that the wavefunction inside the crystal∝ exp(ikzz) is also real. Solutions of

this form are surface state solutions, which correspond to additional real eigenvalues. Surface

states possess Bloch-like wavefunctions parallel to the sample surface (in the x-y plane), but

with exponentially decaying amplitudes in the z direction, both into the crystal and into the

vacuum.

Their complex wave vector prohibits degeneracies with bulk solutions which have strictly real

k-vectors, and as such, surface states exist within bulk band gaps. A band dispersion, E(k), can

only share the dimensionality of the underlying system. Surface states, localised to the two-

dimensional surface plane, therefore do not disperse in kz . However, whilst surface states are

enforced to exist in local bulk band gaps, they are insensitive to kz and therefore can become

resonant with bulk bands at some kz . The result is a surface resonance which possesses a

wavefunction that is more spatially delocalised than that of a ‘true’ surface state existing within

a kz-projected bulk band gap [26]. Figure 2.4 illustrates wavefunction localisation for a bulk

state, a surface resonance and a surface state, as well as schematic surface-derived solutions

within a three-dimensional band structure.

In a tight-binding picture, every distinct orbital involved in the chemical bonding can give rise

to one surface state. c-axis hopping for the topmost layer of a crystal is only possible with

the layer directly below, and so the energy contribution from a near-surface layer is smaller

than an otherwise equivalent layer deeper in the bulk. To first order, the surface electronic
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structure therefore mimics the k‖-dependence of the bulk solutions, tracing the bulk manifold

along the full Brillouin zone, but with an energetic separation between the bulk and surface

solutions set by the strength of the perturbation caused by the surface itself. This is maximised

in, for example, ‘rock-salt’-type crystals wherein significant bonding along the c-axis results

in prominent surface states associated with the left over ‘dangling bonds’ [26]. Conversely,

in van der Waals bonded layered systems, where there is neither strong bonding along the

c-axis (tc � ta,b) or the possibility of surface charge build up, surface state solutions are not

common, or at least, they are indistinguishable from the bulk band structure along which they

trace.

2.1.5 Spin-orbit coupling and the Rashba effect

The previous Sections underline the origins of both the bulk and surface electronic structures

of a solid. This is not a complete picture, however, as the Schrödinger equation does not

capture relativistic effects. The spin-orbit interaction is one such effect missed, and although it

offers only small energetic corrections, it underpins the entirety of the work within this thesis,

and a significant proportion of modern day research in condensed matter systems.

Spin-orbit coupling can be considered as an internal Zeeman effect. The Zeeman effect is the

energetic splitting of an electron system in a magnetic field by an amount ±µ ·B depending on

the electron spin, where µ is the magnetic moment and B is the magnetic field. This analogy

becomes intuitive when considering the oversimplified quasi-classical picture of an electron

orbiting a nucleus. The electron has velocity v = p/m, and experiences an electric field, E(r ),

from the positive Coulomb potential of the nucleus. In the rest frame of the orbiting electron,

the Lorentz transformation of E(r ) is the effective field experienced. Hence, the electron

experiences a magnetic field of the form B = −v × E(r )
c2 , and its Zeeman-like energy shift is

−µ · B = −
~e

m2c2
σ · (E × p), (2.18)

where σ is the set of Pauli matrices. Although oversimplified, this picture is sufficient to see

that spin-orbit coupling will readily produce a k-dependent spin mixed term when operating

on a two component (for spin) plane wave wavefunction. Its strength is dependent both on

the electron mass, m, and on the size of the electric field within a solid.

More formally, the Dirac Hamiltonian provides a complete relativistic description of quantum

mechanics, containing spin-orbit coupling and other relativistic effects intrinsically:

ĤDirac = cα̃ · p + β̃mc2 + V (r ), (2.19)

where



16 Chapter 2. Scientific Background

αi =

�

0 σ̃i

σ̃i 0

�

; β̃ =

�

Ĩ2 0

0 − Ĩ2

�

,

and i ∈ {x , y, z}. By taking the non-relativistic limit of this (mc2 → m0c2), by the method

outlined by Foldy and Wouthuysen in [28], one reobtains the Schrödinger equation complete

with relativistic corrections.

ĤFW =
p2

2m0
+ V (r ) +

e~
2m0

σ · B−
e~σ · p × E

4m2
0c2

−
e~2

8m2
0c2
∇ · E +O

� 1

m3
0c2

�

(2.20)

Here, B and E are the applied magnetic and electric fields respectively. The first two terms

on the right hand side are the kinetic energy and potential term of the Schrödinger equation,

the third term is the Zeeman energy correction and the fourth term is the spin-orbit coupling

correction seen in Eqn. 2.18 with an amended coefficient from Thomas Precession3 [29]. The

remaining terms are the Darwin correction, describing changes in electron-nucleus interac-

tions due to quantum oscillations of the electrons, and higher order corrections to kinetic and

Zeeman terms.

More insight into the effect of the spin-orbit interaction is gained when considering the case

of a spherically symmetric electric field, E(r ) = 1
ε

1
r
∂ V
∂ r r̂, applicable for a hydrogen-like atom,

for example. The fourth term on the right hand side of Eqn. 2.20 then becomes [30]:

ĤSOC =
µB

~meec2

1
r
∂ V (r )
∂ r

L · S; L · S =
~2

2
( j( j + 1)− l(l + 1)− s(s+ 1)), (2.21)

where S = 1
2~σ. Writing in terms of the spin and angular momentum operators in this way

explicitly shows the coupling of spin and orbital angular momentum quantum numbers. Spin-

orbit coupling therefore promotes orbital character mixing and the lifting of spin degeneracy.

In addition to the atomic spin-orbit coupling approximated in Eqn. 2.21, any further intrinsic

or extrinsic electric fields in a real solid will contribute a further spin-orbit correction. Inde-

pendent of the exact form of E(r ), some key features always hold true.

1. In general, the valence electrons of heavier atoms experience larger spin-orbit correc-

tions. The potential, V (r ), in this atomic picture goes as Z4, for example [30].

2. The larger l, the larger the spin orbit correction, meaning that bands derived from d-

and p-orbitals can experience larger spin orbit corrections than s-orbitals, for example.

3. Degeneracies of electrons with ms = ±
1
2 can be lifted, if permitted by global lattice

symmetries.

Following on from the final point, there must also be a breaking of either inversion symmetry

(IS) or time-reversal symmetry (TRS) in order to lift spin degeneracy.

3The discrepancy in the coefficient between equations 2.18 and 2.20 originates from the failure to consider
the temporal component of the electromagnetic field 4-vector when switching frames in the semi-classical deriva-
tion [29].
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symmetry is lost along the z-axis (Rashba-type SOC).

In systems with IS, there exists a centre of inversion about which the system is unchanged

following the transformation −r → r where r is some real space position in the crystal. The

effect of IS on the electronic structure, E(k), is as follows:

r →−r : E(k,↑) = E(−k,↑). (2.22)

i.e. IS enforces that the band structure is symmetric about k = 0, and therefore that the spin

polarisation of a band at k is the same as the band at −k. This constraint only permits spin

splittings of a Zeeman type, where a spin degeneracy is lifted by offsetting the spin ‘up’ and spin

‘down’ electrons in energy (Fig. 2.5), seen in the electronic structures of magnetic materials.

In that case, a spin degeneracy lifting is permitted since the magnetic field violates TRS.

TRS can be written as follows:

t →−t : E(k,↑) = E(−k,↓). (2.23)

A band within a time-reversal symmetric electronic structure is enforced to switch sign of spin

polarisation from +k to −k, and thus the net spin polarisation at k = 0 must be zero.

By combining equations 2.22 and 2.23, it becomes apparent that spin-orbit coupling is un-

able to create a spin splitting within environments that are simultaneously time-reversal and

inversion symmetric. An electric field, and therefore spin-orbit coupling, cannot break TRS.
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This thesis will focus entirely on non-magnetic (and hence time-reversal symmetric) materi-

als, and therefore any spin-splittings shown are derived from a breaking of inversion symmetry

alone. When E(r ) is such that inversion symmetry is broken, spin-orbit coupling offsets two

spin species in momentum, in accordance with TRS. A schematic of one possible resulting

spin texture from SOC-derived spin degeneracy lifting is shown in Fig. 2.5. This Rashba-type

spin-splitting, named after its discoverer [31], will be explored in some detail below.

Rashba spin-splitting in quasi-2DEGS

Consider a two-dimensional electron gas; a sea of free electrons not subjected to the periodic

potential of any underlying lattice, in the x-y plane. The appropriate wavefunction describes

a free electron in the x-y plane, but with confined motion in z and with two components

allowing for spin. This has the form of Eqn. 2.24:

ψ= A

�

a

b

�

exp (i(kx x + ky y)) sin (kzz). (2.24)

Such a wavefunction is applicable when an external or internal electric field, E(r ), is applied

to a free electron gas, orientated ‖ ẑ, acting to confine electron motion to a two-dimensional

plane. The applied electric field breaks inversion symmetry along the z-axis. Eqn. 2.20, with

E(r ) = E0 ẑ and B = 0 reduces to

ĤR =
−~2

2m
∇2 +αR(σ × p) · ẑ =

−~2

2m
∇2 +αR(pxσy − pyσx); αR =

E0e~2

4m2c2
. (2.25)

Inserting Eqn. 2.24 into Eqn. 2.25 produces the following dispersion relation:

E =
~2k2

‖

2m
+
~2k2

z

2m
±αRk‖. (2.26)

Here, k‖ =
q

k2
x + k2

y . The third term on the right hand side is the Rashba term. Although

the exact form of the Rashba coefficient, αR, will vary in a real system, the direct proportion-

ality with the applied electric field strength in this example suggests a route to directly tune

of the magnitude of Rashba spin-splitting. This tunability is key to the functionality of many

proposed and realised spintronic devices, including the ‘Datta-Das’-style spin field effect tran-

sistor [32–34], and underpins the interest in compounds hosting spin-orbit coupling mediated

spin degeneracy lifting. The second term in Eqn. 2.25 enforces that the momentum is locked

perpendicular to the spin, producing entirely in-plane chiral spin textures for the case where

E ‖ ẑ, depicted in Fig. 2.54.

4In general, spin degeneracy is only lifted in the dimensions perpendicular to the direction of the applied electric
field. For the case of the 2DEG confined in z, applying an in-plane electric field E(r ) = E0 x̂ , produces a Rashba
splitting∝ αRky , i.e. a case where there is full spin degeneracy when ky = 0, with Rashba spin-splitting developing
only for ky 6= 0. This is predicted in the ferroelectric monolayer SnTe, for example [35].
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Eqn. 2.26 also has a term in kz . However, the electronic structure must match the dimension-

ality of the system. For a quasi-2D system with dimensions Lx , L y � Lz ,

kz ∝
nz

Lz
� kx ,y ∝

nx ,y

Lx ,y
. (2.27)

Therefore, the term in kz does not provide continuous array of E(kz), like for the in-plane mo-

menta, but it is instead discrete, providing multiple copies of the in-plane electronic structure

stacked in energy. In the limit Lz → 0 where the system is entirely two dimensional (such as a

sample surface), the energy required to transition from nz = i to nz = i + 1 is infinite, and so

the electronic structure is entirely two-dimensional.

(a) (b) (c)
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FIGURE 2.6: Rashba splitting in real systems. (a) Schematic quantised sub-
bands originating from charge accumulation. (b) Experimental realisation of
multiple Rashba split quantum confined 2DEGs, from [36]. (c) Experimen-
tal realisation of Rashba splitting in the surface state of Au(111), adapted

from [37].

There are experimental conditions in which the near-surface electronic structure is only quasi-

two dimensional however. Near-surface band bending effects, caused by charge accumulation

in the sub-surface layers of a solid, can act as effective quantum wells capable of quantum

confining sub-band copies of the electronic structure. There is some depth, z, to the potential

well, and so two or more copies of the electronic structure corresponding to multiple nz values

can be realised. Experimentally, quantised sub-band states are often found in systems with

residual surface charge [36, 38–41], at the interface between two materials (e.g. between

ABO3-type perovskite oxides) [42, 43], or on gated charge-neutral systems such as van der

Waals bonded layered compounds [44, 45]. In each case, there is near-surface charge accu-

mulation to screen the surface charge. A schematic of sub-bands within a quantum well, and

the experimental realisation of multiple Rashba-split sub-band states deriving from the near-

surface layers of Bi2Se3, is shown in Fig. 2.6(a-b) [36]. The quantum confinement of 2DEGs

will be revisited in Chapter 6 for the case of the gated semimetal, PtSe2.
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Rashba spin splitting at the surfaces of bulk compounds

The confined two-dimensional electron gases discussed above are Rashba split even when the

underlying crystal structure is inversion symmetric. The effective electrostatic potential normal

to the surface naturally provides the loss of inversion symmetry required by Rashba-type spin-

orbit coupling. The band structures of these confined sub-bands therefore mimic the bulk, but

they can do so without the constraints imposed by inversion symmetry. Of course, a similar

picture is true for surface-localised states in all compounds, not just those with accumulated

surface charge. Inversion symmetry is naturally broken at the surface of a compound, and so

anything with a surface could exhibit Rashba spin-splitting in its surface electronic structure.

In 1996, a Rashba-type spin splitting of the surface state of inversion symmetric Au(111) was

demonstrated by angle-resolved photoemission (ARPES) [37], the result of which is shown

in Fig. 2.6(c). Subsequently, similar Rashba type spin-splittings have been observed on the

surfaces of other noble metals including silver and copper [46, 47], with the magnitude of

spin-splitting correlating with the reducing atomic mass.

Rashba spin splitting of bulk band structures

Rashba-type spin-orbit coupling can also lift bulk spin degeneracies in compounds lacking

inversion symmetry within their crystal structure. A clear example of this can be seen in bands

belonging to the bulk electronic structure of BiTeI [41, 48–50] which exhibit a large spin-

momentum locked, in-plane spin polarisation oweing to an intrinsic electric dipole orientated

along the out-of-plane c-axis. Similarly, monolayer transition metal dichalcogenides, such

as 1H-WSe2 and 1H-MoS2, exhibit an out-of-plane spin splitting due to an effective in-plane

dipole within a single layer of their van der Waals-bonded crystal structures [51, 52].

Bulk systems lacking an inversion centre can also exhibit Dresselhaus-type spin-splitting [53].

Like Rashba-type SOC, Dresselhaus-type SOC will transform a single free-electron like parabola

into a spin-polarised pair offset from one-another in momentum in accordance with TRS. Here

though, the spin is not locked perpendicular to the momentum (〈k ·S〉= 0). Instead, the form

of the effective E(r ) results in a spin texture satisfying 〈k · S〉 = ±1 [54]. Dresselhaus-type

SOC is most often associated with ‘zinc-blende’ type crystal structures [53].

2.2 Dirac cones and non-trivial band topology

The previous Section demonstrates the tendency of spin-orbit coupling to lift degeneracies,

naturally preventing gapless crossing points between spin-degenerate bands in the electronic

structure of a compound. This Section focusses on the desirable physics that arise with main-

taining gapless crossings within the electronic structure, and describes how to protect them

against spin-orbit coupling.



2.2. Dirac cones and non-trivial band topology 21

2.2.1 Dirac cones

Two-dimensional Dirac cones without topological protection

The tight-binding result for the electronic structure of the π bands of graphene discussed in

Section 2.1.3 produces two-dimensional Dirac cones at the K points. The presence of Dirac

fermions in a band structure as simple as this may suggest that Dirac cones are prevalent in

nature. In reality, although band crossings are extremely common, spin-orbit coupling removes

the vast majority of would-be Dirac points by overlapping wavefunctions, therefore hybridising

band crossings to make band gaps. Indeed, whilst the Dirac cones in graphene are responsible

for many of its remarkable properties, they are not truly gapless, despite the apparent sub-

lattice symmetry inherent to graphene’s crystal structure.

The presence of both the σx and σy Pauli matrices in the graphene Hamiltonian presented in

Eqn. 2.13 (m = 0) means that any perturbation containing those operators can be compen-

sated for, and the gapless crossing can be retained. However, a perturbation proportional to

the third Pauli matrix will break the sub-lattice symmetry protecting graphene’s Dirac cones.

Spin-orbit coupling is one such perturbation. Indeed, when incorporating L · S type spin-orbit

coupling, a term proportional to λζσzsz is added to the Hamiltonian in Eqn. 2.13 [52, 55],

where λ is the spin-orbit coupling strength and sz the z-component spin operator. This inclu-

sion essentially replaces m with m+mSOC in the dispersion relation in Eqn. 2.14, and therefore

generates a spin-orbit induced band gap on the order of 10−3 meV at the K points of graphene’s

Brillouin zone [56]. This gap is small, owing to the small atomic spin orbit coupling strength of

carbon 2p-orbitals and so the properties bestowed on graphene by its Dirac cones are therefore

unaffected.

Graphene has other limitations, however. The sub-lattice symmetry of graphene is only pos-

sessed within a single monolayer (neglecting SOC), with Dirac cones absent in bilayer and

few layer graphene [57]. Even in the limit of a monolayer, substrate interactions play a crucial

role, including limiting electron mobilities [8, 9]. Devices exploiting properties relying on a

true freestanding monolayer are inherently fragile, motivating the search for instances of Dirac

materials in higher dimensions.

Critical three-dimensional (bulk) Dirac cones

One route to achieving truly gapless Dirac cones is to increase the dimensionality by one, such

that there is already a σz term in the Hamiltonian. Consider a three dimensional analogue to

the Dirac cones at the K points in graphene described by the Hamiltonian in Eqn. 2.13. Now,

as well as having linear dispersions in kx and ky , there is also a linear dispersion in kz . We

can rewrite the Hamiltonian in the vicinity of this hypothetical Dirac point as [11]:

Ĥ(k) = vi jkiσ j; det[vi j] 6= 0. (2.28)
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Since all Pauli matrices are present in the ungapped Hamiltonian, this in principle could de-

scribe truly gapless Dirac points in three dimensional systems. However, to realise this, there

must be some mechanism by which these crossings do not naturally hybridise.

So-called critical 3D Dirac fermions exploit the high symmetry behaviour of the time-reversal

invariant momenta (TRIM-points). The TRIM points are necessarily spin degenerate in the

absence of magnetism, and are subject to more symmetries possessed by the crystal structure

than any other point in momentum space. A critical Dirac semimetal phase can be invoked

at a TRIM point by finely tuning the mass parameters such that spin-orbit coupling is only

sufficient to exactly compensate for any real mass term within the dispersion relation.

Consider a generalised solution to Eqn. 2.28, describing a three-dimensional electronic band

dispersion in the vicinity of an appropriate TRIM point, consisting of a conduction and valence

band separated by a small5 band gap, either side of the Fermi level (EF = 0):

E(kx , ky , kz) = ±
Ç

(m+mSOC)2 + ~2ν2(k2
x + k2

y + k2
z ), (2.29)

where ki are referenced to the TRIM point in question, and m′ = m+mSOC contains the ‘real’

mass and the mass term contributed by spin-orbit coupling. Upon reducing m′, the gap shrinks

eventually reaching a gapless Dirac semimetal phase at m′ = 0. Although this produces a true

bulk Dirac crossing, there is no mechanism by which the mass term is enforced to be zero.

Achieving this requires fine tuning [58, 59], and any small change in the effective mass, via

e.g. strain, would reopen a gap. This critical Dirac semimetal phase is therefore not stable

[60].

Lattice symmetry protected bulk Dirac cones

All experimental realisations of stable Dirac semimetals do not rely on the fine-tuning of a

mass term to zero. Instead, they rely on offsetting all mass-like terms with a real momentum,

and employ an intrinsic lattice symmetry to protect the band crossing along that momentum

direction.

Again with reference Eqn. 2.29, consider a bulk Dirac point (BDP) formed between two bands

at a position (kx , ky , kz) = (0, 0, m′
~ν) in a system where hybridisation of those two bands is

forbidden along the kz-axis. This hypothetical crossing produces a three-dimensional Dirac

cone, with linearly dispersing bands in all three momentum directions away from the position

of the Dirac point, protected against any perturbation, including spin orbit coupling. Any

change to the mass terms can change the position in momentum space where the Dirac point

occurs, but a gap cannot be opened.

5Although the single-orbital tight binding model in Section 2.1.2 suggested that extrema at TRIM points ought
to be approximately parabolic, in real systems inter-orbital mixing contributes a k · p term to the Hamiltonian.
This adds a linear term to the dispersion relation which can become dominant over the parabolic term when the
separation of the conduction and valence bands becomes small [36].
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FIGURE 2.7: Realisation of lattice symmetry protected BDPs. (a) Predicted
BDPs at the X points of rock-salt structured BiO2, from [11]. The unit cell and
Brillioun zone are shown in the inset. (b) Experimental realisation of a lattice

symmetry protected BDP in Cd2As3, from [61].

Rotational lattice symmetries can provide this protection. The rotational symmetry operators,

Ĉn (n ∈ {2, 3,4, 6}), preserve the information contained within a wavefunction, |ψ〉, upon

rotation. They are therefore unitary operators and so their eigenvectors are necessarily or-

thogonal. Therefore, if wavefunctions |ψ1〉 and |ψ2〉 describe bands 1 and 2 respectively, and

they give different eigenvalues under the operation of Ĉn, then they are orthogonal and the

hybridisation matrix element between them is equal to zero:

〈ψ1|ψ2〉= 0; 〈ψ1|Ĥ|ψ2〉= 0. (2.30)

Any crossing points between bands 1 and 2 along an axis where Ĉn is applicable will therefore

remain gapless, not susceptible to a change in the mass term in Ĥ. These crossing points are

bulk Dirac points protected by the Cn lattice symmetry.

The careful consideration of all possible realisations of a Dirac semimetal phase for all space

groups is beyond the scope of this thesis, but is presented in [60] for systems possessing both

time-reversal and inversion symmetries. For n = 2,4, 6, a single BDP can be realised at any

TRIM point other than Γ . For n = 3, 4,6, pairs of BDPs can be produced, symmetric about

Γ along any axis adhering to Ĉn rotational symmetry. Despite this relatively broad series of

alternate prerequisites for realising robust BDPs, experimental realisations are still relatively

sparse. The first predicted example was in BiO2 [11]which has BDPs protected by Ĉ4-symmetry

at the X points of its rock-salt type Brillouin zone. Since then, Cd2As3 and Na3Bi have been

experimentally shown to host symmetric BDPs along their respective kz axes, protected by Ĉ4

and Ĉ3 symmetries respectively [61–64].
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2.2.2 Topological surface states

2D Dirac cones with topological protection

The final case of protected Dirac crossings that will be discussed here are those of topolog-

ical surface states. Although two-dimensional, these are fundamentally different to the two-

dimensional Dirac cones in graphene. They are a product of the bulk material, and as such can

only exist on the surface of a three-dimensional system6. Unlike in graphene, the two branches

of the Dirac cone are not spin degenerate, but instead possess chiral spin textures, with the

direction of the spin locked in-plane and perpendicular to momentum (Fig. 2.8(b)). In the

absence of magnetism, the Dirac point of a topological surface state is a Kramers degeneracy,

completely protected against hybridisation by time-reversal symmetry.

This framework shares similarities to that for Rashba-split surface states. Rashba surface states

too possess a Kramers degeneracy, and have a chiral spin texture (Fig. 2.8(a)). However, unlike

Rashba spin-split bands, which are isolated within a band gap, topological surface states form

connections between otherwise disconnected bulk bands across a band gap. Whilst a Rashba

surface state may be destroyed by the passivation of a dangling bond, for example, topological

surface states are product of the bulk crystal, and as such have some level of resilience against

damage to a material surface. This is a consequence of their topological protection.

Topological protection

In geometry, the field of topology can be reduced to essentially counting the number of holes

within an object. The classic example compares a sphere (an object with no holes), to a donut

or a mug (which both have one hole). A mug and a sphere are topologically distinct, because

one object cannot be smoothly moulded into the other without removing or cutting holes,

whereas a mug and a donut are topologically equivalent. The topological nature of an object

is characterised by the topological invariant, an integer quantity counting these holes. Objects

are topologically distinct if the evaluation of their topological invariant yields different results.

In the context of electronic structure, the Chern number is a topological invariant of a two-

dimensional electron system [12, 65]. The Chern number and the discussion of topology as

a whole draws close parallels to that of classical magnetism. An electron populating a band

described by a Bloch wavefunction experiences spatial variations within a unit cell and hence

experiences an effective vector potential in k-space, Ak = 〈ψk| − i∇k|ψk〉 [66]. The Berry

curvature, given by ∇k × Ak, can therefore be interpreted as a magnetic field in k space [66].

The Chern number, nm, is then given as follows

nm =
1

2π

∫

BZ
(∇k × 〈ψk| − i∇k|ψk〉)m d2k, (2.31)

6In analogy to the following discussions, one-dimensional topological edge states can exist at the edges of a
two-dimensional material.
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FIGURE 2.8: Topological inequivalence of systems hosting Rashba and topo-
logical surface states. (a-b) Spin-momentum locked in-plane spin texture of
a Rashba (a) and topological (b) surface state. (c) Schematic demonstration
that band structures containing Rashba and topological surface states are topo-
logically distinct. From right to left, a band structure with a single Dirac cone
bridging between bulk bands cannot be continuously deformed into the atomic
limit, and as such is topologically district from it. This is not the case for a two
such Dirac cones (left to right). An analogous statement can be made for a loop

of paper with no twists and a a Möbius strip.

where the integrand is the Berry curvature and ψk is the wavefunction for band m, where

the integration is taken over the Brillouin zone. The Chern number therefore characterises

the curvature of an object in k-space. This same index characterises the quantum Hall effect,

where discrete, k-independent ‘Landau’ energy levels of a 2DEG are created when a magnetic

field is applied normal to its axis, with an energy spectrum given by En = ~ωc(n+
1
2) [12]7.

In three dimensions, there are four such topological invariants, belonging to the group Z2 and

therefore each taking a value of 0 or 1.

Although this description is complex, whether or not a system is topologically ‘non-trivial’

is defined by whether or not it is topologically distinct from the ‘trivial’ case of the atomic

limit. Therefore the topological invariants can be inferred by evaluating if it is possible to

7Indeed, in analogy to edge and surface states on two and three dimensional topological insulators respectively,
a quantum Hall state for n 6= 0 is associated with chiral ‘skipping’ modes localised to the edge of the system.
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continuously deform an electronic structure back to the k-independent atomic limit. Below,

it will be argued that a surface Dirac cone is a hallmark of a topologically non-trivial band

structure, before discussing exactly how the surface Dirac cones themselves are formed.

Fig. 2.8(c) shows schematic E(k‖) dispersions for surface Dirac cones existing within a three-

dimensional band structure. Two (or any even number of) spin-polarised surface Dirac cones

spanning across a band gap can always be transformed through hybridisation into electron-

and hole-like Rashba-split surface states separated by a band gap, and so the band structure

can be continuously deformed back into the atomic limit without ‘cutting’ holes within the

band structure. For a single (or any odd number of) spin-polarised surface Dirac cones, an

analogous argument cannot be made. A spin-polarised Dirac cone can be interpreted as a pair

of oppositely spin-polarised electrons each forming counter-rotating spin-polarised currents

around the perimeter of a system. A ‘hybridised Dirac cone’ in a time-reversal symmetric

environment therefore describes a pair of half-electrons forming counter rotating spin currents.

This is unphysical, and so the Dirac point of a topological surface state is protected by time-

reversal symmetry, preventing a smooth deformation to the atomic limit.

More generally, it is therefore possible to determine whether or not a system is topologically

non-trivial by counting the number of bands one intersects if a straight line is drawn from

the surface Brillouin zone centre to a neighbouring TRIM point, at the edge of the surface

Brillouin zone. If the number is odd, then the compound is topologically non trivial, and if

even, topologically trivial. In order to generate topological surface states, one must change to

the topology of the bulk system via a topological phase transition.

Generating topological surface states

A topological phase transition requires inverting the band ordering relative to the atomic limit.

This can be seen explicitly by again tuning the mass term in the prototypical Dirac dispersion

relation, displayed again below.

E(kx , ky , kz) = ±
Ç

(m+mSOC)2 + ν2(p2
x + p2

y + p2
z ) (2.32)

m′ = m + mSOC again contains all mass-like terms. As in the previous discussions, reducing

this mass term from a finite positive value, by for example, offsetting a real mass with spin-

orbit coupling, can create a critical 3D Dirac semimetal phase. The mass term can continue

to shrink, however. Fig 2.9 illustrates the transition from a two-band system with a band gap

(m′ > 0) through to a regime of negative mass m′ < 0, via a critical bulk Dirac semimetal

phase (m′ = 0).

For the negative mass regime, the band gap is inverted (IBG). A finite band gap exists, but

the conduction and valence bands now possess regions of the other band’s character. If the

two bands have the same parity eigenstate (top row in Fig 2.9), then the inverted band gap

is topologically trivial. If the two bands have opposite parity (bottom row), then the sign
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FIGURE 2.9: Topological phase transition via a critical DSM phase. Top:
Topological phase transition for the case where |ψ1〉 and |ψ2〉 have the same
parity eigenvalue. Bottom: Equivalent transition for the case where |ψ1〉 have
opposite parity eigenvalues. In both cases a critical Dirac semimetal is formed

at m′ = 0.

switching of m′ is a topological phase transition: The host system is now topologically non-

trivial.

The presence of a topological non-trivial inverted band gap (NT-IBG) within a material is

sufficient to generate a topological surface state when interfaced with another medium which is

topologically distinct. Without the gap-closing interface state, continuity across the boundary

is not possible. Equivalently, one cannot smoothly deform a mug into a sphere without closing

the hole in the mug. The ‘hole closing’ is provided by the topological surface state which exists

at the interface between the two materials.

The significance of the band parity when forming a topologically non-trivial inverted band

gap is as follows: If both bands are described by even or both by odd wavefunctions (i.e. they

have the same parity), then it is still possible to write down non-zero continuous wavefunctions

obeying boundary conditions at the interface between the band inverted system and a trivial

medium. If the two bands have a parity switch, then this is not possible and a topological

surface state is required.

Indeed, in systems hosting both time-reversal and inversion symmetry, the four Z2 topological

invariants,ν0; (ν1,ν2,ν3), can be directly calculated if the parity eigenvalues of each band in

the bulk electronic structure are known [67]. At each TRIM point, Γi , a quantity, δi , is defined

from which the invariants can be calculated.

δi =
N
∏

m=1

P2m(Γi) (2.33)

P2m(Γi) is the parity eigenstate of the 2mth occupied band at Γi . The product is over the N

occupied bands which are not related by the combination of time reversal and inversion sym-

metry (half of the total bands). The four invariants are then calculated from the product of δi

over a subset of the eight Γi in the bulk Brillouin zone.
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(a)

(b)

FIGURE 2.10: Weak vs strong topological insulators. Adapted from [67].
(a) δi at the eight Γi of the bulk Brillouin zone (only the first octant of a cu-
bic Brillouin zone is shown) for various combinations of topological indices,
ν0; (ν1,ν2,ν3). (b) The surface Brillouin zone is shown. Filled and open cir-
cles indicate even and odd δi for the surface TRIM points, calculated by the
product of δi along kz . Possible Fermi surfaces of topological surface states
are shown. Only in the ‘strong’ case is there an odd number of surface bands

between all pairs of neighbouring surface TRIM points.

An odd number of surface bands are only intersected when drawing a line between two neigh-

bouring TRIM points with different δi on the surface Brillouin zone, determined by the product

of δi for the two Γi which kz-project onto the same point in the surface zone.

Of the four topological indices, three (ν1,2,3) are calculated from the product of δi over four

neighbouring Γi which define a 2D plane within the 3D Brillouin zone. A non-trivial result

for any or all three of these indices characterises only a weak topological insulator, as the

number of Dirac crossings between any two surface TRIM points is dependent both on the

experimental ‘cleavage’ plane on which the surface structure is defined, as well as the pair of

surface TRIM points being considered. Any resultant surface Dirac cones are not considered

to be topologically protected. This is illustrated in Fig. 2.10 for a cubic Brillouin zone.

The fourth topological invariant, ν0, however characterises a strong topological phase. ν0 is

calculated considering all TRIM points of the three-dimensional Brillouin zone.

(−1)ν0 =
∏

i

δi (2.34)

Here, the product runs over all eight Γi . For ν0 = 1, topological surface states are enforced

to exist at all surfaces, and an odd number of crossing points is intersected between any two

neighbouring surface TRIM points.

It should be noted that the result of the procedures outlined above are only strictly applicable

to ‘true’ topological insulators, wherein the Fermi level lies within the parity inverted band

gap. Topological surface states are enforced to exist in any band gap with a parity inversion

across it, regardless of the energetic position within the electronic structure. The topological
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nature of a band gap below EF can be evaluated by considering only electronic bands below

the band gap in the calculation of δi .

Topologically protected two-dimensional Dirac cones exist at the interface between two topo-

logically distinct systems. The vacuum can be considered as infinitely separated atoms, and

therefore it is topologically equivalent to the atomic limit. Therefore, as implied above, topo-

logical surface states must additionally exist at the surface of any single compound containing

a parity inverted band gap, with the topological surface state falling energetically within.

Properties and uses of topological surface states

Perhaps the most well-known instance of a topological insulator is Bi2Se3, hosting a ‘prototyp-

ical’ topological surface state at the Γ point of its surface Brillouin zone. Here, the topological

phase transition is mediated by the spin-orbit coupling strength. The formation of this state is

schematised in Fig. 2.11(a). Under the influence of the crystal field, both the Bi and Se-derived

p-orbital manifolds undergo a degeneracy lifting. For the Bi (Se) p-orbital manifold, the pz

derived band is lifted to a lower (higher) energy than the still-degenerate px ,y pair. Spin-orbit

coupling further modifies this picture by lifting the remaining degeneracy (neglecting spin) of

the px ,y pair, whilst modifying the energetic positions of the pz-derived bands. Now, the Se

and Bi pz derived bands are inverted. Since the Bi and Se p-orbital manifolds have opposite

parities, this inverted band gap is topologically non-trivial, and so a topological surface state is

enforced to exist at the surface of Bi2Se3, energetically located within this inverted band gap.

This topological surface state shows clear signatures in angle-resolved photoemission (ARPES)

experiments sensitive to the surface electronic structure (Fig. 2.11(b), [68]). When the spin-

orbit coupling strength is reduced, the pz-derived bands can unwind. This is clearly seen in

sister compound Sb2Se3, wherein spin-orbit coupling is insufficient to drive a band inversion,

rendering bulk band structure topologically trivial and therefore without topological surface

states (Fig. 2.11(c-d)).

Topologically protected Dirac cones on the surfaces of three dimensional materials can be

expected to exhibit many of the same properties as graphene. Indeed, Bi2Se3 has extremely

high surface electron mobilities and an associated anomalous quantum Hall effect [70], not

unlike graphene. In practise, this means that a highly conductive shell is formed around an

otherwise insulating bulk band insulator, and their topological protection permits high surface

mobilities even when exposed to atmospheric conditions, or in non ideal bulk crystals [71–74].

The purview of topological surface states is potentially much larger than that of graphene,

however. Firstly, their Dirac crossings cannot be gapped, as the branches of topological sur-

face states need be fully spin polarised, and their Dirac crossing is protected by time-reversal

symmetry. This opens up potential for the exploitation of topological surface states in spintron-

ics applications which require non degenerate band structures [75]. Their conic chiral spin

texture is resistant to back scattering, as this always requires a spin flip [76] (unlike Rashba

states where scattering vectors linking the inner and outer branches are allowed) opening the
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FIGURE 2.11: Topological surface states (TSS) in the Bi2Se3 family. (a) Mod-
ification of the Bi and Se derived p-orbital manifolds under the influence of the
crystal field and spin orbit splitting. A band inversion is realised between the
pz derived bands. (b) Experimental realisation of a TSS in Bi2Se3 by angle-
resolved photoemission (ARPES), from [68] (c-d) adapted from [69], shows
density functional theory based slab calculation predicting a topological sur-

face state in Bi2Se3 (b), but not sister compound Sb2Se3 (c).

potential for their use in quantum computing and in devices requiring coherent spin trans-

port [34, 77]. Moreover, topological phase transitions can be traversed via chemical doping

and strain, for example. For instance, the ‘giant Rashba’ semiconductor BiTeI becomes topo-

logically non trivial if pressure is applied, via a critical Dirac semimetal phase [48, 49], opening

routes for a binary switch for surface electron mobility in real devices.

2.2.3 Hexagonal warping

The framework in which both Rashba and topological surface states are introduced above

permits only that these states form circular Fermi surfaces. In many cases this is not true.

Even the prototypical topological surface state in Bi2Se3 has significant hexagonal warping,

reflecting the global crystalline symmetries of the underlying bulk system [36, 78]. To see

this, further higher order corrections to the Hamiltonians [36, 78–80] are required. Inserting
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a Bloch wavefunction ∝ exp(ik · r )uk, where uk is a two component spinor, into the Foldy-

Wouthuysen Hamiltonian (Eqn. 2.20, B = 0) returns the following eigenvalue equation [81]:

�

p2

2m
+ V (r ) +

~
4m2c2

σ · (∇V × p) +
~
m

k · p +
~2

4m2c2
σ · (∇V × k)

�

uk = E(k)uk. (2.35)

The first two terms on the left hand side are the kinetic and potential energy terms respectively.

The third and fifth terms are the atomic orbital and crystal momentum derived spin-orbit

coupling terms respectively [82]. At k = 0, the fourth term,∝ k · p, vanishes. As k becomes

larger, this k · p term can be treated as a perturbation. Work by Fu [36, 78] shows how

the Hamiltonian to third order for a system with C3 rotational symmetry can be rewritten as

follows:

H = E0(k) + ν
′(kxσy − kyσx) +

λ

2
(k3
+ + k3

−)σz; k± = kx ± iky . (2.36)

E0(k) describes band dispersion in the absence of spin degeneracy lifting, modified away from

a free electron description by higher order k ·p terms [36]. The second term on the right hand

side is the Rashba term allowing for spin-polarised Dirac and Rashba surface states with an

in-plane spin-momentum locking, as discussed in the previous sections. However, its prefactor,

ν′∝ ν(1+ k2), includes a higher order term [78]. The third, cubic term in Eqn. 2.36 is the

higher order k · p correction to the Rashba Hamiltonian. Unlike the previous terms, this term

is only three-fold rotational symmetric and therefore is solely responsible for the warping of

otherwise circular Fermi surfaces away from circular geometry. λ characterises the strength of

warping. This has the following eigenstates [78]:

E±(k) = E0(k)±
Æ

ν2k2 +λ2k6 cos2 3α, (2.37)

where α is the azimuthal angle defined as being zero for a line intersecting Γ and K, where Γ

is the centre of rotation. This Hamiltonian acts to leave the Γ -M directions unaltered, whilst

causing a curving effect in-between, evolving a circular constant energy contour into one with

a ‘snowflake’-like appearance’ as λ increases in size. λ very often found to be non-zero in

Rashba surface state and TSS containing systems [36, 48, 78, 80, 83], with some examples

shown in Fig. 2.12 [80].

Eqn. 2.36 also suggests that the higher order k · p corrections permit small deviations from a

fully in-plane and momentum-locked spin texture. Consider an amended Rashba Hamiltonian

of HR = αk+βk2+γk3+δk4+εk5... in a C3-symmetric system. TRS enforces β = δ = 0, but a

combination of C3 and time-reversal symmetries allow a non-zero out of plane spin component

along the Γ -K directions on the now-hexagonal Fermi surfaces. However, the out-of-plane spin

component, 〈Sz〉, is odd with respect to the Γ -M mirror line and therefore must remain zero

exactly along the Γ -M direction. The out-of-plane ‘spin canting’ described here opens further
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FIGURE 2.12: Hexagonally warped surface states. Adapted from [80].

scattering channels of topological and Rashba systems, potentially complicating the search

for ideal materials for use in devices with functional properties relying on low-scatter spin-

transport.

2.2.4 Fermi arcs between Dirac and Weyl points

Topological surface states of the form introduced above are not the only types of surface states

in Dirac systems. Lattice symmetry protected Dirac cones are often associated with their own

surface states. For the cases where bulk Dirac points are formed partway along the rotationally

symmetric axis, as discussed in Section 2.2.1 and [60], the band crossing is often between two

bands with different parity eigenvalues. In those cases, the system undergoes a topological

phase transition as a function of a momentum, e.g. kz . Therefore, exactly one of the time-

reversal symmetric planes defined by kz = 0 and kz =
π
c have within them a parity inverted

band gap and possess a non-trivial Chern number. Two Fermi arc surface states then form a

closed loop between Dirac points, observable on a surface plane parallel to the rotationally

symmetric axis [60]. This is schematised in Fig. 2.13(b). The presence of these surface states

has been experimentally verified in all Dirac semimetal systems mentioned above [61–63].

However, since the protection of bulk Dirac points is governed by bulk lattice symmetries which

are not shared by all possible choices of the surface Brillouin zone, surface localised Fermi arcs

between bulk Dirac points, like topological surface states in weak topological insulators, are

not considered to be topologically protected [84].

A bulk Dirac point is a four-fold degenerate point at the crossing of two spin-degenerate pairs of

bands. It can therefore be transformed via the breaking time-reversal or inversion symmetry

into two momentum separated, spin-polarised Weyl cones. The Weyl points at the crossing

points of the Weyl cones no longer require a protective lattice symmetry, owing to their spin

polarisation.
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FIGURE 2.13: Surface states in topological insulators (TI), Dirac semimet-
als (DSM), and Weyl semimetals (WSM). Schematic representations of bulk
(orange) and surface (blue) states of, from left to right, TI, DSM and WSM.
The top panels shows the band dispersion E(kx , ky), the bottom panels show

schematised kx − ky contours.

Weyl cones are of fundamental interest because the Weyl points themselves behave as magnetic

monopoles in momentum space [85], similar to the emergent quasiparticles in frustrated ‘spin

ice’ systems [86, 87]. A contour integral of the Berry curvature enclosing one single Weyl point

produces a non-zero chiral charge equal to χ = ±1. This is shown in the following equation:

1
2π

∮

FS
F(k) · dS(k) = χ, (2.38)

where F(k) is the Berry curvature [66]. The above equation is analogous to Gauss’ law in

classical electromagnetism, requiring the total chiral charge, χ of a system to be zero. Weyl

nodes are therefore enforced to strictly live in pairs with the two halves of a pair of Weyl points

having opposite chiral charges, with one Weyl point acting as a source of Berry curvature, and

the other as a drain. In the case of Weyl nodes, their chiral charge and their Chern number

are proportional [66]. A pair of Weyl points are therefore topologically distinct from each

other. A Weyl semimetal is therefore always associated with topologically protected Fermi

arcs originating and terminating between the Weyl points ([85] and Fig. 2.13(c)). TaAs and

TaP were amongst the first Weyl semimetals experimentally verified, with Fermi arcs resolved

clearly with electronic probes sensitive to the surface electronic structure [88–90]8.

8The persistence of Fermi arcs even in the presence of TRS and IS becomes intuitive when considering a lattice
symmetry protected Dirac point as a superposition of two Weyl fermions. Therefore a pair of Fermi arcs can be
expected to bridge between any pair of momentum separated Dirac cones in the surface Brillouin zone.
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2.2.5 Topological superconductivity

A third emergent quasiparticle, the Majorana fermion, can be realised in so-called topological

superconductors [91]. For certain choices of α̃ and β̃ , the Dirac equation in Eqn. 2.19 is real,

giving two coupled solutions describing spin 1
2 neutral particles [92]. These permitted real so-

lutions to the Dirac equation (Eqn. 2.19) do not distinguish between particle and antiparticle.

These are Majorana fermions.

Superconductivity is the pairing of electrons to form Cooper pairs, creating a gap in the density

of states, centred at the Fermi level. The symmetry of the superconducting gap is determined

by the orbital component, χ of the Cooper pair wavefunction |ΨCP〉 ∝ χ|σ1,σ2〉, which needs

to be overall antisymmetric under the exchange of electrons forming the pair. In ‘conventional’

superconductors, the pairing mechanism combines electrons with opposite spins to create an

antisymmetric spin component of the wavefunction (e.g. |↑↓〉− |↓↑〉). The orbital component

is then necessarily even. For l = 0, so-called s-wave superconductors have a symmetric, k-

independent superconducting gap [93].

In p-wave, or equivalently topological, superconductors, the spin component of the wavefunc-

tion must be symmetric (|↓↓〉, |↑↓〉+ |↓↑〉 or |↑↑〉) [93]. In this case the bulk system is topo-

logically non-trivial [94] and the Majorana fermions which result benefit from a topological

protection against decoherence, with potential applications in quantum computing [92].

E

0

0 kII

(a)

(b)

FIGURE 2.14: Majorana fermions from spin-polarised surface states. (a)
Superconducting pairing of a 1D chain of spinless fermions, adapted from [95]
(b) Evolution of a Rashba surface when a magnetic field, B, is applied normal

to the sample surface.

The possibility of realising Majorana fermions is easily seen, in one-dimension at least, by

considering a chain of spin-polarised fermions with p-wave superconducting pairing [92, 96]

depicted in Fig. 2.14. Simply, the idea is that by describing each fermion as two superimposed

Majorana fermions, the superconducting pairing mechanism always leaves behind unpaired
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Majorana fermions at each end of the chain, which remain as zero-energy modes within the

superconducting gap [92, 95, 96].

This scenario is applicable to superconducting systems with spin-polarised surface states at

the Fermi level [91, 94, 97–100]. Spin-orbit coupling, necessary for the formation of spin-

polarised surface states without magnetism, promotes the mixing of orbital and spin degrees

of freedom therefore providing the possibility for odd-parity pairing mechanisms. For example,

applying a magnetic field normal to an s-wave superconductor with Rashba surface states at its

Fermi level well approximates the toy-model. The magnetic field lifts the Kramers degeneracy

such that the Fermi level only intersects a single Rashba branch at ±k (Fig. 2.14(b)). An

overall odd-parity pairing is possible between electrons populating the Rashba split band to

create topological superconductivity [92, 94]. Similarly, inducing superconducting pairing

between branches of a topological surface state produces the same result, without the need

for magnetism. In each case, Majorana fermions are bound within vortex cores [94].

Experimental probes of the surface density of states, such as scanning tunnelling spectroscopy

(STS), can in principle observe Majorana zero modes, although this has proven to be con-

troversial endeavour. In ‘one-dimensional’ systems, zero bias peaks were observed in strongly

spin-orbit coupled InSb wires when interfaced with a s-wave superconductor and when a mag-

netic field is applied [101], although the effects of disorder have been shown to give indistin-

guishable results [102]. In higher-dimensions, there have been attempts to induce pairing

between the branches of a topological surface state by interfacing a topological insulator with

a conventional superconductor with some success [103–107] . Similarly, doping Cu into the

topological insulator Bi2Se3 drives the formation of a superconducting phase, but the studies

into the realisation of Majorana fermions are inconclusive, with groups obtaining incompatible

results [108–110].

This search is hindered by the small number of compounds which are both intrinsic supercon-

ductors in their pristine form, and possess topological surface states crossing the Fermi level.

In Chapter 5, the transition-metal dichalcogenide PdTe2 will be shown to be one such example,

with the possibility of Majorana fermions in that system explored.

More generally, research into the details of the surface electronic structures of compounds

requires a surface sensitive probe. In the following chapter, angle-resolved photoemission

spectroscopy (ARPES) will be overviewed, a direct probe of electronic structure.
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Chapter 3

Methods

3.1 Angle-resolved photoemission spectroscopy

This Chapter provides an overview of the main experimental technique employed for the re-

sults presented in this thesis, angle-resolved photoemission spectroscopy (ARPES). In each of

Chapters 4, 5 and 6, density functional theory (DFT) calculations are provided by collaborator

M. S. Bahramy (RIKEN & University of Tokyo) for complementary insight to that provided by

the experimental data. As such, a brief discussion of the underlying principles behind DFT will

also be given in this Chapter.

3.1.1 Principles of photoemission

Although the tight-binding model introduced in Chapter 2 was able to give an accurate overview

of graphene, even when neglecting relativistic effects, it is an independent particle picture not

appropriate for even modestly correlated systems. In contrast, ARPES is a direct experimen-

tal probe of the electronic structure of a solid, and so naturally captures many-body effects.

ARPES can provide information on the electronic band structure of a solid, as well as ad-

ditional information including coupling to bosons, photohole lifetimes and orbital character.

This Section draws heavily from [111].

The underlying principle behind photoemission is the photoelectric effect: The maximum kinetic

energy for a photoelectron is given by Ekin, max = hν−ϕ f , and, more completely

Ekin = hν−ϕ f − |EB|, (3.1)

where EB is the binding energy of the electron in the solid, before excitation. ϕ f is the work-

function, the minimum energy required to overcome the energy barrier at the crystal surface

to excite the most loosely bound electrons into the vacuum. In the context of ARPES, ϕ f is the

minimum energy required for a photoelectron to travel from the sample surface to a detector,

on the order of 4.5 eV. It therefore changes slightly between laboratories utilising different

analysers but not often between samples.
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FIGURE 3.1: Kinematics of photoemission. (a) A photon of energy hν is in-
cident on a sample with a surface lying in the x-y plane. A photoelectron is
emitted at a polar angle, θ , to the out-of-plane z-direction and an azimuthal
angle, α, to an in-plane (here x) direction. (b) Tight binding band structure of
the Γ -M direction of graphene, with a Fermi level shifted down corresponding
to an electron deficient sample. Energies and momenta defined in the text are
shown. (c) The relation between the density of states N(E), N(Ekin) in a sample

and an ARPES spectrum is shown. Similar Figures can be found in [111].

This is a very simple basis, but the understanding of exactly how ARPES works and the pre-

cise information encoded in an ARPES dataset is more complex. A complete description of

ARPES, described by the one-step model, must treat photon absorption, electron removal and

electron detection as a single coherent process. The transition probabilities between an ini-

tial state many-body wavefunction and one of many possible final state wavefunctions, where

each is boundary matched to an appropriate solution in vacuum, requires the simultaneous

consideration of the bulk crystal along with both its surface and the vacuum.

In practice, many assumptions are made to simplify this problem substantially, separating the

process into several independent parts. In either case, the conservation of energy and momen-

tum, shown in Eqn. 3.2, provide the basis of any model describing ARPES.

EN
f − EN

i = hν; kN
f − kN

i = khν ≈ 0 (3.2)

Here, EN
i, f and kN

i, f are the energies and momenta for the initial and final states of the N electron

system encompassing the electron undergoing excitation as well as the N − 1 electrons which

do not. The initial and final state energies are separated by exactly the photon energy, hν, and

the initial and final state momenta by the photon momentum, khν. The first simplification is

to assume the photon momentum is negligible. This is a reasonable approximation for photon

energies below 100 eV, but is generally used even for much higher photon energies.
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An ARPES spectrum can provide information only on the properties of the detected photoelec-

trons. Photoelectrons in vacuum are described in terms of their kinetic energies (Ekin) and

momenta (K = p/~). The momentum can be separated into its three spatial components,

where the sample surface lies in the x-y plane (see Fig. 3.1(a)):

Kx =
1
~
p

2mEkin sinθ cosα; Ky =
1
~
p

2mEkin sinθ sinα; Kz =
1
~
p

2mEkin cosθ . (3.3)

Here, θ is the polar angle, and α the azimuthal angle, depicted schematically in Fig. 3.1(a).

In order to recreate the band structure of the crystal from the detected photoelectrons, it is

necessary to relate Ekin to EB and K to the momentum inside the crystal, k, before excitation.

This former relation is given already by the photoelectric effect in Eqn. 3.1.

Whilst the photon provides an electron with all the energy required to get from the initial state

to a final state, in the limit of khν = 0, the crystal potential, V (r ), is the only available source

of momentum for electrons making the transition. V (r ) supplies momentum only in multiples

of the reciprocal lattice vector, G, mapping equivalent points in k-space across Brillouin zones.

Therefore, for K to k mapping in the extended zone scheme, the momentum of the excited

electron inside the crystal, k f , must be related to the initial electron momentum, ki , by a

multiple of G. That is, k f − ki = nG, allowing only ‘vertical’ transitions (i.e. the position in

the Brillouin zone of the excited electron must be equivalent to its position before excitation,

Fig. 3.1(b)).

The sample surface is conserving of translational symmetry and therefore the component of

momentum parallel to the x-y plane is conserved during the photoemission process. Therefore

K‖ = k‖, and a direct relation between the in-plane component of momentum inside a solid,

k‖, and the polar angle, θ , can be written:

K‖ = k‖ =

p

2mEkin

~
sinθ , (3.4)

where m is the electron mass. Here, k‖ =
q

k2
x + k2

y is defined within the extended zone

scheme. If a sample is rotated in the θ -axis sufficiently to pass the Brillouin zone boundary

of the first zone, the second zone will be probed directly. The band structure probed between

zones is equivalent other than a linear offset in k‖ of some multiple of the crystal momentum,

G. Photoemission matrix elements can vary across Brillouin zones, however.

For the perpendicular component of momentum, k⊥ = kz , translational symmetry is not con-

served due to the presence of the sample surface1, and so an assumption needs to be made

1For a free-electron gas where there is no crystal potential defining a zone boundary (V (r ) =0), there are no
available transitions to final states possible that conserve momentum in the limit khν = 0. Increasing energy must
be accompanied by an increase in momentum (E(k)∝ k2) and so no photoelectrons are created from the bulk.
However, since momentum is not conserved perpendicular to the surface, the momentum required can be delivered
by the surface itself, highlighting the crucial role of the sample surface in photoemission experiments.
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regarding the final state in order to relate Kz to kz . By assuming that the photoelectron final

state has a nearly-free electron description,

E f (k) =
~2k2

2m
− |E0|=

~2(k2
‖ + k2

z )

2m
− |E0|, (3.5)

where E0 is the valence band bottom and E f = Ekin + ϕ f is the final state energy before

photoemission, referenced to the Fermi level, EF (Ekin is referenced to the vacuum energy Ev ,

see Fig. 3.1(c)). In conjunction with Eqn. 3.4, the following approximation for kz is obtained:

kz =
1
~
Æ

2m(Ekin cos2 θ + V0); V0 = |E0|+ϕ f , (3.6)

where V0 is the inner potential. This approximation is most valid when the final state wave-

function, with energy E f , describes a band that is sufficiently high energy that any electrons

occupying it are essentially ‘free’, with the periodic crystal potential only a very weak perturba-

tion. Higher energy photons allow for transitions to higher energy final states, and therefore

the validity of Eqn. 3.6 is improved. This approximation complicates the interpretation of

experimentally obtained dispersions along the kz direction, but is just one contributor to the

large intrinsic uncertainties in kz , discussed further in Section 3.6.

Now it is possible to relate the properties of photoelectrons in vacuum to the electronic struc-

ture of the crystal being measured. In order to give meaning to the band linewidths, positions

and intensities in an ARPES spectrum, a formal description of photoemission is required.

3.1.2 The three-step model

The one-step model outlined earlier is a difficult problem to implement in practice, and so the

three-step model is often invoked in order to interpret ARPES data. Although it requires many

further approximations, it functions very well as a formal description of ARPES. Instead of

treating the photoemission event as one coherent process, the three-step model divides it into

three independent steps, with the total photoemission intensity simply given by the product

of the probabilities associated with each step:

1. Excitation between the initial and final bulk Bloch eigenstates. i.e. the probability of a

given transition between an initial and final state within the bulk. All the details of the

electronic structure are considered here.

2. Travel of the excited electron to the surface. The finite mean free path of an electron in

a solid, λ, must be considered.

3. Escape of electron into the vacuum after transmission through the surface potential bar-

rier. i.e. matching the Bloch eigenstates of the final state inside the sample to free-

electron like plane waves in vacuum.
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The sudden approximation must also be introduced at this point, which assumes that any re-

laxation of remaining N − 1 electron system happens after the photoelectron has become de-

coupled from the system. In other words, the properties of the photoelectron in vacuum are

not altered by further interactions with the system. This approximation is most suited to high

Ekin photoelectrons which move away from the surface with a higher velocity, reducing the

interaction time between the photoelectron and the N − 1 electron system2. By invoking this

approximation, the transition probability, w f i , of making an optical transition between the N

electron initial ground state, ψN
i , and some available final state, ψN

f , can be approximated

with Fermi’s golden rule.

w f i =
2π
~
|〈ψN

f |Ĥint|ψN
i 〉|

2δ(EN
f − EN

i − hν) (3.7)

Here, the delta function enforces energy conservation, and both the initial and final state

energies, EN
i and EN

f , can be written as the sums of the initial or final state energies of the

N − 1 electrons which do not undergo excitation, and the one electron that does:

EN
i = EN−1

i − Ek
B; EN

f = EN−1
f + Ekin +ϕ f . (3.8)

An electron with binding energy EB and momentum k is excited to a final state energy Ek
f and

overcomes the workfunction, ϕ f , to become a photoelectron in vacuum with energy Ekin. An

N − 1 electron system is left behind, with energy EN−1
f . The interaction Hamiltonian, Ĥint in

Eqn. 3.7 describes the dipole interaction with the photon, and has the following form

Ĥint =
e

2mc
(A · p + p · A) =

e
mc

A · p; [p, A] = −i~∇ · A= 0, (3.9)

where p is the electron momentum and A is the electromagnetic vector potential of the electro-

magnetic field from the photon. Here, the dipole approximation has been used, that ∇ ·A= 0.

This is not a good approximation in systems where there is a strong spatial dependence of the

electromagnetic field, including at the surface, for example3.

The final state wavefunction of the N electron system can also be separated into the product

of the photoelectron wavefunction, φk
f , and the N − 1 electron wavefunction, ψN−1

f :

ψN
f = Pφk

fψ
N−1
f , (3.10)

2Experimental photoemission studies utilising low energy light sources have suggested that photoelectrons are
still within the sudden limit for kinetic energies as low as 2 eV [112]. Indeed, the time-scale of the photoemission
process is thought to be on the timescale of 100s of attoseconds [113, 114] whereas, for few Kelvin temperature
scales, the N − 1 system can be expected to relax on time scales on the order of several 100s of femtoseconds,
verified experimentally [115, 116].

3Note that in the limit [ p2

2m + V, p] = i~∇V and ∇ · A = 0, for a free electron gas, the matrix elements ∝
〈ψN

f |A ·∇V |ψN
i 〉 are all equal to zero, since ∇V = 0. This again shows that it is only possible to satisfy momentum

conservation for electrons photoemitted from the surface, where dV/dz 6= 0. This is the surface photoelectric
effect, and can result in asymmetric line shapes in ARPES spectra [111].
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where P is an operator anti-symmetrising the N electron wavefunction such that the Pauli

exclusion principle is satisfied [111]. ψN−1
f is one of the possible excited states, ψN−1

m with

energy EN−1
m . A similar factorisation can be done for the initial state wavefunction:

ψN
i = Pφk

i ψ
N−1
i . (3.11)

Then, the integral in Eqn. 3.7 can be reformulated as follows

〈ψN
f |Ĥint|ψN

i 〉m =

M k
f ,i

︷ ︸︸ ︷

〈φk
f |Ĥint|φk

i 〉

|cm,i |
︷ ︸︸ ︷

〈ψN−1
m |ψN−1

i 〉 .

M k
f ,i is defined as the one electron dipole matrix element, with |cm,i| the probability that the

removal of an electron from the initial state leaves the N − 1 system in the excited state m.

In the limit of zero electron interactions, EN−1
i = EN−1

f and the final N − 1 system is as it was

with the photoemitted electron included, and the photohole lifetime is infinite. In general,

the more strongly interacting the system, the higher the number of possibilities to annihilate

the photohole, and hence the more excited states. The total photoemission intensity can be

written over the sum of all m:

I(k, Ekin) =
∑

f ,i

|M k
f ,i|

2
∑

m

|cm,i|2δ(Ekin + EN−1
m − EN

i +ϕ f − hν). (3.12)

This relation demonstrates that an ARPES spectrum does not simply reflect the electronic struc-

ture of the independent particle picture (often referred to as the ‘bare band’, εk). Instead, each

band has an intrinsic linewidth corresponding to the probabilities of the possible final states of

the N −1 electron system. This intrinsic linewidth is related to the lifetime of the photohole in

the final state [111], which can be extracted from experiment in systems without significant

additional linewidth broadening from kz , a point that will be expanded upon in Section 3.1.4.

Moreover, each band can have a k-dependent renormalisation by an amount corresponding to

the kinetic energy cost/gain of exciting the N − 1 electron system from EN−1
i to EN−1

m . Band

renormalisations and lifetimes can be related to other lattice properties. For example where

there is a strong coupling of electrons to the vibrational modes of the underlying lattice, the

band renormalisation will reflect the increase in the effective mass of the phonon-coupled

electrons over an energy range related to the relevant phonon energy. Linewidths of bands

below the phonon energy will reflect the enhanced scattering rate and therefore the shorter

photohole lifetime. Details of electron-phonon coupling and coupling to other bosonic modes

can therefore be extracted directly from the deviation of a band from the bare-band solution

in an ARPES spectrum.
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3.1.3 The one-particle spectral function

The one-particle spectral function encapsulates the above description and can be compared di-

rectly to an ARPES spectrum. It is obtained from a Green’s function approach. The propagation

of a single electron in a many body system can be described by a time-ordered one electron

Green’s function, describing the probability that an electron added to a lattice at position r at

time t will still be in the initial state after a time t − t ′.

Taking the Fourier transform, and considering only the cases where electrons are removed

from the system (an opposite but analogous discussion to the one below can be used to de-

scribe inverse-photoemission), the one electron removal Greens function at temperature T = 0

is obtained:

G−(k,ω) =
∑

m

|〈ψN−1
m |c−k |ψ

N
i 〉|

2

ω− EN−1
m + EN

i − iη
, (3.13)

where c−k = ckσ annihilates an electron with energy ω, momentum k and spin σ from the N

particle initial state ψN
i . The sum is again over all possible final states of the N − 1 electron

system, ψN−1
m with eigenvalues EN−1

m and η is a positive infinitesimal.

The associated one-electron removal spectral function can be written as [111]

A−(k,ω) =
∑

m

|〈ψN−1
m |c−k |ψ

N
i 〉|

2δ(ω− EN−1
m + EN

i ), (3.14)

where c−kψ
N
i = ψ

N−1
i . This describes |cm,i| from previous discussions and enforces energy

conservation. By comparing this to Eqn. 3.12 and allowing only for excitations from occupied

bands through the inclusion of the Fermi-Dirac distribution, f (ω, T ), the total photoemission

intensity can be rewritten as

I(k,ω) = I0(k,ν, A) f (ω)A(k,ω); I0∝ |M f ,i|2; f (ω) =
�

exp
� ω

kB T

�

+ 1
�−1

. (3.15)

Lifetime and correlation effects characterised by the relative probabilities of possible N − 1

electron final states in the above discussions are described by the self-energy, Σ = Σ′ + iΣ′′.

The final full one-particle spectral function for photoemission can then be written as

A(k,ω) = −
1
π

Σ′′(k,ω)
[ω− εk −Σ′(k,ω)]2 + [Σ′′(k,ω)]2

. (3.16)

In the absence of correlations, A(k,ω) has non-zero spectral weight only when ω matches

the bare band energy εk and so an ‘image’ of the band structure is produced. The imaginary

part of the self energy, Σ′′, acts to increase the linewidths of bands in A(k,ω), and the real

part, Σ′, renormalises the band positions, in accordance with the previous discussions. For
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systems wherein the kz dispersion of bands is modest, Eqn. 3.15 shares the same properties

as an ARPES spectrum, other than extrinsic backgrounds and the effects of experimental reso-

lutions. Extracting the linewidths and peak positions of the bands in an ARPES spectrum can

then provide information on photohole lifetimes and electron correlations. For more three-

dimensional systems, however, the effect of kz broadening needs to be considered.

3.1.4 The problem with kz

Eqn. 3.6 shows that the effective kz probed can be chosen with photon energy. Of course, this

is not the only effect of changing the photon energy. Details of the photoelectron final state,

experimental energy resolutions and matrix elements also change, acting to complicate the

final experimental kz dispersion. Additionally, the breaking of translational symmetry along

the z axis required that this relation was derived under the assumption that all photoelectron

final states are free electron like, unlikely to be exactly true in practice, leading to errors when

mapping from photon energy to kz .

More crucially, though, the intrinsic linewidth for the out-of-plane dispersion relation E(kz)

of a three-dimensional electron system does not only reflect the photohole and photoelectron

lifetimes, but also the finite probing depth of photoemission.
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FIGURE 3.2: Effect of kz broadening in photoemission. (a) Electronic mean
free path in a solid as a function of kinetic energy [111]. The kinetic energy
range relevant to this work is indicated. (b) Envelope of kz integration (L(kz))
for various mean free paths (λ). The zone boundary of a typical 1T-structured
transition metal dichalcogenide is indicated (c ≈ 5.1Å). (c) Effect of kz integra-
tion (blue shaded area) on an energy distribution curve taken at kz = 0. For
the more three-dimensional band (top), the additional broadening is signifi-
cant. For a more two-dimensional band (bottom), the effects of kz integration

are less significant.

Step two of the three-step model describes the travel of a photoelectron occupying a final state

to the surface. Only electrons originating a distance into the bulk material comparable to, or

less than, the electron mean-free path can escape into the vacuum and be detected. Therefore,
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although initial states are infinitely delocalised, the localisation in z of experimentally acces-

sible final state electrons corresponds to a significant wavefunction delocalisation in kz , thus

greatly enhancing the intrinsic uncertainty in kz
4.

To illustrate this, consider the wavefunction for a photoelectron occupying a final state inside

the bulk (z < 0). This has the following form [117]:

ψ(z) =
1
p
λ

exp(ikz0z)exp(
z

2λ
). (3.17)

The wavefunction amplitude decays exponentially into the bulk on a scale characterised by

the electron mean free path, λ. kz0 is the nominal kz-value for a chosen photon energy. The

Fourier transform of this is given by

φ(kz) =
1

i(kz − kz,0)− 1/2λ
, (3.18)

and hence the envelope of kz integration, centred at kz0, is given by

|φ(kz)|2∝ L(kz) =
1

2πλ
1

(kz − kz,0)2 + (1/2λ)2
. (3.19)

The one-particle spectral function, A(ω, k), has is linewidths limited by Σ′′ in the case of 2D

systems. For three-dimensional systems, an ARPES spectrum for kz = kz,0 can be described

by the sum of one-particle spectral functions for all kz , with a maximum contribution arising

from kz = kz,0 and the width of integration set by the Lorentzian function L(kz), which has a

FWHM given by the inverse of the mean free path. That is:

A′(ω, kx , ky , kz,0) =

∫ ∞

−∞
L(kz)A(ω, kx , ky , kz)dkz . (3.20)

Fig. 3.2(a) shows the empirically determined electronic mean free path as a function of elec-

tron kinetic energy. From this, the following empirical formula is determined [118]:

λ=
1430

E2
kin

+ 0.54
p

Ekin [Å], (3.21)

where Ekin is the electron kinetic energy in eV. The kinetic energies corresponding to the core

photon energy range used within this work (24-107 eV) is indicated in Fig. 3.2(a), giving a

mean free path on the order of 5 Å. Fig. 3.2(b) shows the shape of the L(kz) for various λ.

The Brillouin zone size for a typical trigonally structured (1T) transition-metal dichalcogenide

is indicated, demonstrating that kz integration is significant, with the central 50%, 90% and

4Similarly, in the one-step model, an electron is excited from a periodic Bloch initial state wavefunction extend-
ing infinitely into the bulk, to a final state described by an infinitely propagating plane wave in vacuum decaying
exponentially into the bulk. Transitions to the final state are therefore only possible for a finite range of z, increasing
the intrinsic uncertainty in kz .
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99% of spectral weight distributed over 0.2, 1.1 and 11.6 Brillouin zones in kz respectively

for λ = 4.47 Å. This is of course only a problem for three-dimensional systems. If a band

structure is entirely two-dimensional then the uncertainty in kz is inconsequential and the

intrinsic linewidths once again becomes limited by the photohole lifetimes. This is schematised

in Fig. 3.2(c), the more dispersive a band within the kz integration window, the larger the

energy broadening in the measured spectral function. As a result, surface states are typically

much sharper in energy than three-dimensional bands, limited only by Σ′′, and not by L(kz).

3.2 ARPES Experiments

3.2.1 Synchrotrons and beamlines

An ARPES experiment requires a source of monochromatic light. This is typically provided

by one of three sources. Gas discharge lamps using the characteristic emission lines of He,

Xe or Ne are common place in laboratory environments, providing a well defined source of

light, albeit at only a few discrete photon energies. More recently, laser-ARPES systems have

gained prominence, typically providing photons at one or more energies between 5 and 11 eV

depending on the laser type. Typically, laser sources are significantly more intense and the

light spot size incident on the sample is much smaller than lamp sources (tens µm vs. few

mm), vastly improving ARPES data quality, particularly for small, non-uniform samples. Laser

sources are most suited for the cases where the electronic bands of interest are close to k‖ =

0, however. Eqn. 3.4 is maximal for θ = 90 degrees, demonstrating an intrinsic limit on the k-

space available at low photon energies. The third light source is that of synchrotron radiation,

as will be discussed below.

Synchrotron Radiation

In this thesis, all of the data collected is from synchrotron sources at one of four beamlines.

Spin-integrated data was taken either at the i05 beamline of Diamond Light Source (Oxford-

shire) or at the CASSIOPEE beamline of SOLEIL (Paris). Spin-resolved data (discussed in Sec-

tion 3.2.3) is collected from either the APE beamline of Elettra (Trieste) or the BL9A beamline

of HiSOR (Hiroshima).

Synchrotrons offer significant advantages over lamp and laser based light sources. Although

the light spot available is larger than a well focussed laser source, the photon energy is vari-

able over a large continuous energy range (~18 eV to >150 eV) with significantly more flux

available in the ‘core’ operating energy range than is typical for a lamp source. This increases

the rate at which data can be collected, useful when typically only five days are awarded for a

particular ‘beamtime’.

The bremsstrahlung radiation emitted from the electrons accelerated by the ‘bending’ magnets

within the synchrotron ring itself does not have a tunable emission peak, and contributes only
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to energy losses. These energy losses are inversely proportional to the radius of the ring, and

so modern synchrotrons are usually extremely large with diameters up to 180 m for the case

of Diamond Light Source. Whilst this gain in efficiency is associated with extremely large

commissioning and operating costs, limiting the number of synchrotrons worldwide, the large

ring diameter allows for many beamlines which form linear tangents to the synchrotron ring,

allowing many experiments using synchrotron radiation to run in parallel.

The emission peak of the radiation of the electrons around the ring is set entirely by the radius

of the ring and the strength of the magnetic fields in the bending magnets. The radiation used

by experiments is produced in an undulator located at the synchrotron end of each beamline.

Undulators allow both for the selection of the beam energy as well as its polarisation. Un-

dulators consist of a pair of parallel arrays of fixed dipole magnets separated by a gap. Each

successive pair of magnets applies an alternating transverse force to the electron beam, re-

sulting in a sinusoidally oscillating electron path, emitting radiation of wavelength, λu, equal

to the wavelength of the electron beam oscillations. The undulator simultaneously acts as a

diffraction grating, with each pair of dipole magnets adding coherently to the peak intensity

at λu, with higher harmonics also produced.

The electrons are retained in the synchrotron ring, leaving only the emitted photons usable for

experiments to continue down the beamline axis. The photons have a modified wavelength

from λu due to the relativistic speed of electrons and the associated Doppler effect [119].

λ= λu

�1+ γ2θ2

2γ2

�

+λ3
u

� eB
4γπmc

�2
(3.22)

Here, γ is the Lorentz factor, B is the magnetic field strength and θ is the angle at which the

emitted light cone is centred relative to the beamline axis. The desired photon energy can be

selected by changing the gap separation between the parallel magnet arrays, effectively chang-

ing the magnetic field strength applied to the electron beam. The desired light polarisation

can also be set by the undulator by introducing a phase shift of the two magnet arrays along

the axis of the beamline5.

Whilst centred at the desired photon energy, the bandwidth of light from the undulator is very

broad, requiring a monochromator to discard the unwanted wavelengths. The monochromator

consists of a diffraction grating with physical orientation chosen such that photons of the

desired wavelength are centred along the axis of the beamline. Unwanted photons are filtered

out using a variable ‘exit slit’ further down the beamline, wherein photon flux can be traded for

a better defined photon energy. The photon beam is then focussed onto the sample with a final

spot size typically between 1 mm and 1 µm depending on the optical path and experimental

requirements. A schematic of the 50 m long beamline of the ‘high-resolution’ branch of the i05

5Light polarisation dependent ARPES has the ability to inform of band orbital character. The one particle
matrix element, M k

f ,i = 〈φ
k
f |A · p|φ

k
i 〉 is only non-zero when the integrand is an even function, giving well defined

selection rules for the excitation of odd or even parity initial states for even (free-electron like) final states. For
example, Fig. 3.3(c) depicts light travelling in the y-z plane with wavefronts perpendicular to the sample surface
(p-polarised). This corresponds to an even A · p term with respect to the scattering plane and therefore only even
initial states will contribute to spectral weight (here py and pz orbitals, but not px ) [41, 111].
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FIGURE 3.3: Typical (spin-)ARPES beamline and endstation. (a) The i05
beamline of Diamond Light Source is schematised [120]. Each component is
labelled and the distance from the undulator indicated. (b) Momentum res-
olution, ∆k‖ is given as a function of in-plane emission angle for key photon
energies used in this work, with ∆θ =0.1◦. (c) Typical sample and experimen-
tal geometry for an analyser capable of spin-resolved studies. The Fe(001) spin
target is selectively magnetised by pairs of Helmholtz coils positioned along the
horizontal and vertical axes of the target. A typical pair of spin-resolved EDCs

is shown.

beamline at Diamond Light Source, used for the majority of the spin-integrated ARPES results

in this work, is shown in Fig. 3.3(a) [120].

3.2.2 ARPES endstation

The final two elements of any ARPES beamline are the sample and the electron analyser. The

analyser is made of three key components. A multi-element, electrostatic input lens accelerates

or decelerates, as well as focusses photoelectrons into the entrance slit of the analyser, with

the position of electron incidence along the entrance slit determined by the in-plane emission

angle, θ , from the sample surface. The bulk of the analyser is made up of two concentric

hemispheres of radii R1,2 with a potential difference ∆V applied across them. Photoelectrons

follow curved trajectories around the analyser, with the radius of curvature set by their kinetic

energy after the transfer lens section. Only electrons in a narrow energy range will reach the

detector without colliding with the analyser walls, centred at the pass energy, Epass, defined as

follows:

Epass =
e∆V

R1
R2
− R2

R1

. (3.23)
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The electrostatic lens voltages are tunable, allowing to choose the Ekin range which is accel-

erated sufficiently such that they fall into the acceptance window defined by the pass energy.

If the kinetic energy region of interest is larger than is available for a given pass energy, then

the input lens voltages need be ‘swept’ to build up a full dataset. The electrons, now sorted by

their kinetic energy, are incident on a position sensitive two-dimensional detector, consisting of

multichannel plates (MCP) and a phosphor screen, with a CCD camera providing a live image

of the electronic structure.

Energy and momentum resolution

The theoretical energy resolution of an ARPES acquisition is given by [111, 121]

∆E =
Ç

∆2
hν + E2

analyser; ∆hν =
hν
Rm

; Eanalyser = Epass

� w
1
2(R1 + R2)

+
α2

4

�

. (3.24)

There are contributions from both the analyser, Eanalyser, and the monochromator,∆hν. Eanalyser,

is set largely by the pass energy. Higher pass energies allow electrons over a wider kinetic en-

ergy to range to reach the detector simultaneously, but with an associated energy resolution

penalty related to the finite number of detector channels. In the case of ‘swept’ scans, the

energy information contained within the image is most often binned digitally into a smaller

number of pixels corresponding to the step size chosen. In this case, the effective analyser

energy resolution is often limited by the energy step size chosen. Data acquisitions for a fixed

lens voltage are therefore preferable when interested in the smallest binding energy windows.

Other contributing factors to Eanalyser are the width of the analyser entrance slit, w, and the

acceptance angle, α. The latter derives from the fact that only electrons travelling entirely

within the scattering plane (y-z plane in Fig. 3.3(c)) will follow the nominal electron trajec-

tories intended for a chosen ∆V .

The component ∆2
hν is determined by the ‘resolving power’, Rm, of the monochromator, set

largely by the width of the beamline exit slit. The wider the photon energy range incident

on the sample surface, the larger the uncertainty in the kinetic energy. In the case of i05, the

resolving power, Rm is typically on the order of 3000 for the photon energy range 50-200 eV,

and can surpass 20000 for lower photon energies. This therefore gives a contribution to ∆E

as low as 1 meV [120].

The momentum resolution also is limited by the resolving power of the monochromator, but

with a larger contributing term given by the differentiation of Eqn. 3.4. Together, the k‖ reso-

lution can be written as follows [121]:

∆k‖
k‖
=
q

(∆θ cot(θ ))2 + R−2
m . (3.25)

Here, ∆θ is the angular resolution, typically on the order of 0.1◦ [120]. Fig. 3.3(b) displays

the momentum resolution obtained for key photon energies used in this thesis. The higher θ ,
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the better the momentum resolution, providing some incentive to measure outside of the first

Brillouin zone. For modern ARPES end stations, the resolution limitations are extremely small,

with ARPES even a viable technique to measure sub-meV wide features such as superconduct-

ing gaps [122, 123]. The theoretical momentum resolutions for the core photon energy range

used in this work are shown in Fig. 3.3(b).

3.2.3 Spin-resolved ARPES

In spin-resolved ARPES systems, the description for ARPES above is largely unchanged from

the synchrotron to the detector of the analyser, although light flux is often favoured over

absolute resolution. In addition to the photoelectrons collected at the 2D detector, a subset

of electrons are taken through an aperture of finite size situated above or below the detector,

through a further transfer lens section and reflected off a target. The target is chosen such that

there is a spin-dependent scattering asymmetry of the incident photoelectrons.

The spin-resolved ARPES endstations used for the work in this thesis employ a very low energy

electron diffraction (VLEED) principle [124, 125], where the scattering asymmetry is derived

from the exchange interaction. A ferromagnetic target, typically oxygen-passivated Fe(001)

on a MgO(001) substrate, is selectively magnetised with Helmholtz coils. An imbalance of spin

up and spin down density of states within the target then creates a spin-dependent asymmetry

in elastic scattering events [126]. Repeating the procedure with the opposite magnetisation

provides a pair of spin-resolved intensity profiles as a function of either kinetic energy or θ

depending on whether it is the ARPES lens voltages or the sample position that is varied,

with the difference in peak heights informing of the spin-polarisation of the corresponding

electronic band in the spin-integrated 2D dataset. A simplified schematic example of this,

along with such a dataset, is shown in Fig. 3.3(c).

The spin-resolved intensity profiles, I↑,↓i , for a given spin component, i ∈ {x , y, z}, are given

by

I↑,↓i =
I tot
i (1± Pi)

2
. (3.26)

I tot
i = I+i + I−i , where I±i is the measured intensity for a chosen detector magnetisation, of-

ten corrected with a relative efficiency calibration determined from the measurement regions

corresponding to unpolarised, diffuse background intensity. The spin polarisation, Pi , is deter-

mined according to

Pi =
I+i − I−i
SI tot

i
, (3.27)

where S is the detector Sherman function, a measure of the spin asymmetry in elastic scat-

tering events, determined by spin-resolved measurements of a electronic state with a known

spin-polarisation, often the Rashba surface state of Au(111). For the work in this thesis, the
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Sherman functions vary between S = 0.2 and S = 0.43, with a larger Sherman function

thought to correspond to a flatter, cleaner and more ordered target [124]. More reliably,

spin-polarisations of a given band can be determined by fitting the uncorrected intensity pro-

files to Gaussian-Broadened Lorentzians, incorporating a Shirley background6 as well as the

Fermi-Dirac distribution where required. The extracted peak areas can then be inputted into

Eqn. 3.27 as an alternative to the raw intensity profiles.

The component of spin that a VLEED detector is sensitive to is determined by the geometry of

the experimental set up. In practice, twin VLEED chambers, each with their own target and

detector, are positioned orthogonal to each-other, such that each can be sensitive to the out-

of-plane spin component and opposite in-plane spin-components. Standard VLEED systems

only provide a single point in Ekin(θ ), requiring either the lens voltages or sample position

to be varied to produce one-dimensional distribution curves. Additional contributions to the

experimental energy and momentum resolutions are derived largely from the finite aperture

size, with the typical energy resolution between 10-100 meV [124].

Both the Sherman function and reflectivity of VLEED targets require low energy incident elec-

trons (few eV). ‘Mini-Mott’ systems are an earlier developed alternative to VLEED, instead

operating at extremely high kinetic energies (keV) using a high Z target (typically gold) with

the spin dependent scattering asymmetry derived from the large spin-orbit coupling term. Both

Mott and VLEED based spin-systems are very inefficient compared to spin-integrated ARPES.

VLEED systems are approximately 100 times more efficient than Mott-based systems [124],

owing in part to the smaller Sherman function of the latter (S =0.17 is typical) as well as

considerably poorer reflectivity. A high quality sample provides a pair of EDCs similar to those

shown in Fig. 3.3 in approximately 30 minutes.

3.2.4 Surface sensitivity and need for ultra-high vacuum

The mean free path of electrons through a solid is on the order of only 5 Å for the photon

energy range used within this work, and so it is vital that the top most layers of a sample stay

clean during an experiment. Whilst some level of vacuum is clearly needed in order permit

a collision-free journey of a photoelectron from sample to detector, the need for ultra-high

vacuum (UHV) only becomes apparent when considering the build up of adsorbates on the

sample surface.

The rate, R, of particles arriving at a sample surface can be approximated by [27]

R≈ 4× 1022 pScp
M T
[cm−2s−1], (3.28)

where p is the pressure in mbar, M is the molecular mass, T is the temperature in Kelvin, and

0< Sc < 1 is the ‘sticking constant’.

6The Shirley background, first described in [127], accounts for inelastic scattering and other energy loss events
of electrons within the sample. The background at some binding energy is proportional to the occupied density of
states at shallower binding energies.



52 Chapter 3. Methods

Even for a pressure as low as p = 10−9 mbar, it takes only ten minutes for a monolayer7 of

nitrogen (M = 28) to cover the sample surface at measurement temperatures of T = 15 K

and assuming a sticking constant Sc =0.5. This is not enough time to align a sample with the

desired azimuthal orientation before data collection. A pressure of 3×10−11 mbar extends this

time period to approximately 6 hours however, sufficient for most ARPES experiments.

sample plate
sample 'stub'

sample (<2 mm wide)

silver epoxy

'top post'
(a) (b)

FIGURE 3.4: Sample cleaving. (a-b) Cartoon (not to scale) of a ‘top-posted’
sample before (a) and after (b) the cleave in UHV conditions.

This also requires that the measurement sample surface has not already been exposed to at-

mosphere before it was loaded into the system. This is achieved by sample cleaving: A ceramic

or metallic ‘top post’ is glued to a sample surface with silver epoxy, which is then knocked off

at the measurement temperature and pressure. The sample will cleave at the weakest point

in the structure, intended to be within the sample itself. The full sample surface is coated

in epoxy to ensure that a partial layer is not left after cleaving. This procedure, outlined in

Fig. 3.4, works best for van der Waals-bonded, layered structures.

It is not possible to go from atmospheric pressure down to UHV with a single chamber without

performing a ‘bake-out’, where the temperature of the full chamber is greatly increased for a

period of days to desorb all molecules from chamber walls. All ARPES end stations are there-

fore composed of multiple vacuum chambers. In general, the ‘loadlock’, into which samples

are installed, is the only vacuum chamber that is routinely exposed to atmospheric pressure,

usually in the form of dry nitrogen. After samples are installed, the loadlock is pumped down

to ‘rough vacuum’ (≈ 10−2 mbar) by a scroll pump before being taken down to ‘high vacuum’

(≈ 10−8 mbar) by a turbomolecular pump. The measurement chambers, which often have ad-

ditional pumping in the form of ion pumps, sublimation pumps and/or non-evaporable getters,

are therefore never exposed to higher pressures than the minimum of the loadlock, helping

to preserve their pressure to UHV levels. There are usually intermediate chambers acting as

further buffer regions between UHV and vacuum, also allowing for processes such as ion sput-

tering, alkali metal deposition and sample annealing, protecting the measurement chamber

from pressure spikes associated with those procedures.

71ML ≈ 6 × 1014 particles cm−2 [27].
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3.3 Density Functional Theory (DFT)

Chapters 4, 5 and 6 will each contain density functional theory (DFT) calculations to comple-

ment the ARPES experimental data. A brief overview of the main principles behind DFT will

be given below. This section draws heavily from [18].

3.3.1 Moving away from the tight binding model

Exactly solving for the band structure of a N + ZN particle system (where N is the number of

nuclei and Z the proton number of the atom involved) requires solving the following many-

body Hamiltonian.

Ĥ = −
~2

2

∑

i

∇Ri
2

mi
−
~2

2

∑

i

∇ri
2

me
−

1
4πε0

∑

i j

e2Zi

|Ri − r j|
+

1
8πε0

∑

i 6= j

e2

|r i − r j|
+

1
8πε0

∑

i 6= j

e2Zi Z j

|Ri −R j|
(3.29)

Ri and r i are the positions of a nucleus and electron with masses mi and me respectively.

The first and second terms on the right hand side describe the kinetic energies of the nuclei

and electrons respectively, and the last three describe the Coulomb-derived potential felt from

nucleus-electron, electron-electron and nucleus-nucleus interactions. To solve this, some as-

sumptions are needed.

The first of these is the Born-Oppenheimer approximation, made also in the prelude to discus-

sion of the tight-binding model in Chapter 2. This assumes that the motion of the heavy nuclei

is slower than that of the electrons, with the electrons finding a instantaneous equilibrium. It

is approximated, therefore, that the nuclei do not move, providing only a source of static pos-

itive charge. This sets the first term on the right hand side of Eqn. 3.29 to zero, and simplifies

the fifth by approximating it to a variational constant.

This Hamiltonian can be decomposed into a sum of other operators

Ĥ = T̂ + V̂ + V̂ext, (3.30)

where T̂ and V̂ correspond to the kinetic potential energies of a system of interacting electrons,

with specific properties of the periodic crystal structure contained entirely in V̂ext.

This equation is still too difficult to solve. In the discussion of the tight-binding model (and

equivalently for the nearly-free-electron model), at this point the problem was simplified by

approximating electron-electron interactions as simply a screening of the nuclear charge, in-

corporating them into the periodic potential, V (r ). Whilst this reasonable for some simple

systems, the many assumptions which followed in that discussion mean that the tight-binding

approach is simply not sufficient to provide any novel insight into the electronic structures of

complex systems which have non-zero electron-electron interactions.
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3.3.2 Hohenberg-Kohn theorems

Modern day DFT calculations avoid making the oversimplification of electron-electron inter-

actions through the exploitation of two theorems by Hohenberg and Kohn [128]. Firstly, their

work establishes a one-to-one correspondence between the exact ground state electron density,

ρ(r ), of a many electron system, and the expectation value of any physical observable.

〈Ψ|Ô|Ψ〉= O[ρ] (3.31)

This means that, in principle, all information about the system can be obtained with only

knowledge of the ground state electron density, ρ, as long as the form of the functional that

maps the electron density to the expectation value for the operator of interest is known. The

second theorem by Hohenberg and Kohn considers the case Ô = Ĥ, and on the form of the

functionals mapping the electron density to the energy expectation value, the electronic struc-

ture.

EVext
[ρ] = 〈Ψ|Ĥ|Ψ〉

= 〈Ψ|T̂ + V̂ |Ψ〉+ 〈Ψ|V̂ext|Ψ〉

= FHK[ρ] +

∫

ρ(r )Vext(r )dr (3.32)

Here, FHK[ρ] is the ‘Hohenberg-Kohn density functional’ defined as above, and Vext(r ) is the

form of system specific potential, for example the spatially varying periodic potential of a

lattice. Like the first two terms in Eqn. 3.30, FHK[ρ] is entirely separate from system specific

properties, and so, in principle, there is an expression for FHK[ρ] that exactly maps the electron

density of any system to the expectation values of T̂+ V̂ . Eqn. 3.32 also provides the functional

required to relate the ground state electron density to the energy contribution from V̂ext.

This is already sufficient to demonstrate that full ground state electronic structure given by

Eqn. 3.32 can be exactly solved, other than the application of the Born-Oppenheimer approx-

imation. By inputting every possible form of ρ(r ) into Eqn. 3.32, the one that minimizes EVext

is the one that corresponds to energy contribution of the actual potential Vext(r ) and gives the

exact ground state energy of an arbitrarily complicated electronic system.

In practice this is of course not possible. Not only is the form of FHK[ρ] not known, but there

are infinite possibilities for the formulation of electron densities. Subsequent work by Kohn

and Sham [129] outlines a method by which ρ can be exactly calculated, whist removing the

need for an explicit form of FHK[ρ].



3.3. Density Functional Theory (DFT) 55

3.3.3 Kohn-Sham Hamiltonian

By reformulating Eqn. 3.32 such that FHK[ρ] can be written as the sum of other functionals;

T0[ρ], the kinetic energy contribution of a non-interacting electron gas, VH[ρ], the ‘Hartree’

contribution giving the universal potential energy contribution, and Vxc[ρ], the exchange and

correlation functional, it is possible to rewrite the ground state energy functional as a non-

interacting electron gas subject to two external potentials describing the underlying ionic lat-

tice and the exchange and correlation effects, with functionals Vext[ρ] and Vxc[ρ] respectively.

The corresponding Hamiltonian to this reformulated ground state energy functional is the

Kohn-Sham Hamiltonian, written as follows [18, 129]:

ĤKS = −
~2

2me
∇2

i +
e2

4πε0

∫

ρ(r ′)
|r − r ′|

dr ′ + Vxc + Vext, (3.33)

where the first and second terms on the right hand side are the contributions from T0 and

VH , respectively. Solving for the electronic structure is then returned to a matter of solving a

seemingly simple eigenvalue problem:

ĤKSψi(r ) = εiψi(r ), (3.34)

where the eigenvectors, ψi , are single particle wavefunctions, of which the N lowest energy

wavefunctions can be used directly to exactly formulate the ground state electron density.

ρ(r ) =
N
∑

i=1

ψi(r )
∗ψi(r ) (3.35)

The work by Kohn and Sham therefore reformulated the functional approach such that the

problem can be treated simply as a non-interacting system with a Schrödinger like Hamil-

tonian, without any further approximations. The complication is now contained within the

wavefunctions, ψi . Whilst they can be used to find the exact electron density, individually

they are purely mathematical objects which do not have physical meaning. These ‘Kohn-Sham’

orbitals can be transformed into atomic site localised Wannier functions however, which are

orthogonal across atomic sites and describe the real space electron probability distribution,

centred at a fixed point in real space, usually chosen to be an atomic site. Wannier functions

are useful for advanced tight binding models [130].

3.3.4 LDA approximation and the self consistency problem

This is still not sufficient to find the band structure, as the form of the electron exchange-

correlation operator V̂xc is not known. The second approximation used by DFT is the local-

density approximation (LDA), or some variation thereof, where the functional relating the
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electron density to the expectation value of V̂xc , by the Hohenberg-Kohn theorems, can be

written as follows:

Vxc[ρ]≈ E LDA
xc =

∫

ρ(r )εxc(ρ(r ))dr ; V̂xc =
δVxc[ρ]
δρ

, (3.36)

where εxc(ρ(r )) describes a homogeneous electron gas within a volume, V , which is com-

pletely isotropic with density ρ(r ) = N/V . Each infinitesimally small spatial region with con-

stant density contributes to the total Exc by equal amounts. This approximation is most valid

for systems with slowly varying potentials. The generalised gradient approximation (GGA) is

one variation of this, accounting for the gradient of the density by considering electron density

in neighbouring volumes.

This leads to the ‘self-consistency’ problem. In order to approximate Vxc which allows for the

determination of ĤKS and the Kohn-Sham wavefunctions, ψi , the electron density, ρ, already

needs to be known, which requiresψi to already be known. This is circumvented by estimating

a starting density ρn to find a corresponding Vxc,n and VH,n allowing to solve for the single

particle wavefunctions ψn and hence obtain a ρn+1. The result is fed iteratively through this

system until the electron density converges: ρn = ρn+1. The eigenvalues can then be found.

3.3.5 Choosing a basis and solving

The Hamiltonian for a many-body electron system in Eqn. 3.29 is now simplified to a series

of single particle eigenvalue problems (Eqn. 3.34) with i = (n, k) and the Hamiltonian the

Kohn-Sham Hamiltonian in Eqn. 3.33 but with an LDA approximation for Vxc .

Like for the tight binding model, the form of the single particle wavefunctions,ψi , needs to be

chosen such that the Bloch condition is satisfied. This can be done by writing each as a linear

combination of plane waves,

ψi =
P
∑

p=1

c i
pφp. (3.37)

Then, in close analogy to the procedure outlined for the tight binding model in Section 2.1.2,

by substituting into Eqn. 3.34, premultiplying by 〈φp| and diagonalising, one can deduce the

form of the p coefficients cm
p , and the ground state energy of a given i = (n, k) can be extracted.

The form of the Kohn-Sham orbitals is complicated, and to construct them exactly requires

basis set of plane waves of infinite size. It is therefore necessary to find a basis set that is

simultaneously accurate enough to provide a good approximation to the electronic structure,

whilst being small enough such that it can be run without excessive computational effort.

To do this, a Kmax, or equivalently a cut off energy, is first chosen to limit the region of E(k)

space of interest to make P finite. Even then, approximately 108 periodic plane waves are

required in order to accurately model the potential which evolves over extremely small spatial
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scales [18]. In practice, this is simplified further by adapting muffin-tin potentials, which divide

space into two regions separated by a characteristic muffin-tin radius, Rmt . The near-nuclear

region is approximated to atomic wavefunctions, which are then matched strictly at Rmt to

freely propagating plane waves. There are many variations of this procedure (APW/LAPW

etc.), each requiring iterative procedures to find self-consistent eigenvalues and eigenfunc-

tions. This procedure can be further modified by applying ‘local orbital’ approximations, which

either neglect the tightly bound orbitals not involved in bonding, or use a combination of al-

ternative computational methods depending on the orbital type.

This procedure can provide extremely accurate bulk electronic structure calculations for com-

plex correlated electron systems, although band gaps are often underestimated (an artefact

of the LDA approximation [131, 132]). For all DFT calculations within this thesis, the cut off

momentum, Kmax, is chosen such that its product with the radius of the muffin-tin potential is

exactly 7. Direct comparison with ARPES experiments require that DFT is also sensitive to the

surface electronic structure, however.

3.3.6 Surface-slab calculations

In order to calculate the surface electronic structure, a hypothetical periodic system is con-

structed which simultaneously mimics the bulk structure of the compound of interest as well

as the truncation of periodicity at the surface of the real semi-infinite crystal.

A ‘slab’ of some thickness is taken, where its crystal structure exactly matches the bulk crystal

structure of the compound of interest, but is truncated along the vertical axis. These slabs are

stacked periodically with regions of vacuum separating each slab to form an infinite, periodic

array of slab and vacuum regions. A band structure calculation is then run for this hypothetical

compound, producing layer-resolved full electronic structure calculations which include the

surface.

In constructing the slab, both the slab and vacuum regions have to be sufficiently thick that the

surface behaves as it would in a semi-infinite crystal. It is also necessary to limit the interaction

between the simulated surface of interest, and the ‘bottom’ surface of a single slab. This is

achieved by artificially ‘passivating’ any dangling bonds with hydrogen, and fixing the atomic

positions a few layers down from the top surface to their known bulk values, preventing any

relaxation near the bottom surface. In general, the more slabs, the more accurately the surface

electronic structure will be captured, but the more computationally expensive it will be. The

bulk band structure can be bench marked against DFT calculations for real infinite crystals

to determine validity, and the resolution can be set by with the density of the ‘k-mesh’. The

surface slab calculations presented in this work are obtained through tight-binding calculations

of a 100-unit supercell, using localised Wannier orbitals obtained from bulk DFT calculations.





59

Chapter 4

Topological ladders in the transition

metal dichalcogenides

The original research contained within this thesis focusses almost entirely on new realisations

of compounds hosting topological phenomena within their electronic structures. The introduc-

tion of Dirac cones and non-trivial band topology in Chapter 2 already highlighted the relative

abundance of topological phases, as well as the many forms in which they take. Naively, the

benefits to finding more instances of essentially the same underlying physics can seem evasive.

However, unlike those introduced in Chapter 2, the bulk Dirac cones and topological surface

states that will be discussed in this Chapter are formed entirely within a single-orbital man-

ifold, i.e. the band crossings that generate the Dirac cones have the same orbital character.

This transition to a single-orbital manifold origin is not just a novelty. Chapter 2 showed that,

although the topological surface states in e.g. Bi2Se3 do have a topological protection, they are

susceptible to small changes in the underlying crystal and electronic structures. This is most

readily seen by comparing Bi2Se3 with sister compound Sb2Se3 [69] where the band inversion

and therefore the topological surface state do not survive the reduction in the spin-orbit cou-

pling strength between the two compounds. In stark contrast, any topological phases realised

within a single-orbital manifold have an enhanced level of protection, as a relative shift of the

energetics of two orbital manifolds following some small perturbation becomes inconsequen-

tial. This in turn means that topological phases of this form could be general properties of full

material classes rather than isolated compounds.

The purpose of this Chapter is to demonstrate these points in the context of the transition

metal dichalcogenide family, a diverse compound class known for its extremely wide array of

electronic phases and bulk properties.

4.1 Transition-metal dichalcogenides (TMDs)

The transition-metal dicalcogenides (TMDs) are a class of layered compounds with chemical

formula MX2, where X ∈ {S,Se,Te} and M is almost any transition metal in groups IV through X

of the Periodic Table. They are quasi-two dimensional, exhibiting highly anisotropic thermal,

chemical and electronic properties arising as a result of the van der Waals gaps separating the
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FIGURE 4.1: Comparison of the crystal structure of graphene with that
of the TMD family. (a) top-view (c-axis projection) structures of graphene,
2H-WSe2 and 1T-PdTe2 from left to right. (b) side-view (b-axis projection) of
the same three compounds. The number of layers shown indicates one full

repeating unit along the c-axis.

predominantly covalently bonded layers [14, 133]. The ‘distorted’ 1T’-structured TMDs, 1T’-

WTe2 and 1T’-MoTe2 were among the first experimental realisations of Weyl semimetals [134–

137], with Fermi arcs in their surface electronic structures. However, the 1T-, 2H- and 3R-

structured TMDs (where the number denotes how many layers form one repeating block along

the c-axis, and T, H and R indicate the trigonal, hexagonal and rhombohedral structures re-

spectively (see Fig. 4.1)) are not known for their topological phases, but nonetheless have

been a cornerstone of condensed-matter physics research for over a decade.

4.1.1 Comparison with graphene

The transition metal dichalcogenides have been studied as early as the 1940s for their appli-

cations as machine lubricants [138, 139], but the modern resurgence of interest comes as a

direct consequence of the isolation of graphene in 2004 [7, 22]. Graphene, as introduced in

Chapter 2, is a single layer of carbon in a honeycomb lattice structure, and is host to Dirac

fermions at the K points of its electronic structure. These massless fermions are largely re-

sponsible for many of the remarkable properties possessed by graphene, from extremely high

electron mobilities [7] to an anomalous integer quantum Hall effect [22].

The Dirac cones in graphene are also an indication of its inherent limitations. The lack of a

band gap1 due to A-B sub-lattice symmetry, coupled with the structure adhering to both time-

reversal and inversion symmetries means that controlling charge carriers in any useful way for

spintronic applications is extremely difficult.

1Since graphene is an inversion symmetric two-dimensional material, the Dirac cones here are two dimensional
and spin degenerate. The crossing points are therefore unprotected against spin-orbit coupling, which opens small
gaps on the order of 10−3 meV [56], although this is eclipsed by thermal fluctuations at temperatures above 10−2 K.
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Figure 4.1 demonstrates how the crystal structures of 2H-structured TMDs (D3h transition

metal coordination) share a stark resemblance to graphene, but with some of these symme-

try constraints relaxed. Indeed, the electronic structure in the vicinity of the K points of the

single-layer variants of the 2H structured TMDs (1H-structure) are well described by the ef-

fective Hamiltonian introduced for graphene in Chapter 2.1.3 [52]. Eqn. 4.1 again shows

the Hamiltonian derived for the band structure of graphene in the vicinity of the K points,

with an additional L · S-derived term to approximate the effects of spin-orbit coupling in the

1H-structured TMDs [52].

Ĥ = at(ζσx px +σy py) +mσz −λζ
σz − 1

2
sz (4.1)

Here, a and t are the lattice spacing and the hopping parameters respectively, with their prod-

uct proportional to the Fermi velocity. ζ = ±1 is again the valley index. λ is the spin-orbit

coupling strength, providing a valence band spin splitting of 2λ, and m is the difference in

onsite energies for the A and B sub-lattices. The set of Pauli matrices, σi , describe electron

densities on the A and B sub-lattices.

In graphene, λ ≈ 0 and m = 0, leaving only the linear Dirac-like dispersion at the K and

K’ points. In contrast, the monolayer 1H-structured TMDs do not have an A-B sub-lattice

symmetry (m 6= 0) and so finite band gaps exist. Moreover, electrons originating form e.g. 6d-

orbitals in W experience a much larger spin-orbit coupling than the electrons deriving from

carbon 2p-orbitals. This acts to simultaneously enhance the size of the band gaps whilst also

lifting the spin degeneracy of the valence band maximum (VBM), as permitted by the inversion

asymmetric nature of the 1H-structure.

The end result is d-orbital derived conduction and valence bands well described as massive

Dirac fermions with strong spin-orbit coupling [14, 52]. There are two copies of the quasi-

parabolic valence bands at the K and K’ points, offset in energy (Fig. 4.2(b)). The large separa-

tion of these valleys in momentum space ensures a robustness against scattering, and therefore

the valley index becomes a potentially good information carrier, so long as a process can be

identified in which valley carriers respond differently to some external stimulus [52, 140].

Note that the formulation of the spin-orbit coupling term in Eqn. 4.1 indicates a coupling be-

tween the spin and valley degrees of freedom. The spin polarisation of the valence bands in

monolayer group-VI TMDs is entirely out-of-plane (as indicated by the out-of-plane spin op-

erator, sz), arising from an effective in-plane electrical dipole inherent to each X-M-X tri-layer

block of the crystal structure (see e.g. Fig. 4.1(b)). Time-reversal symmetry relates the valence

bands at the K (ζ= 1) and K’ (ζ= −1) points, enforcing that the spin-splitting has opposite or-

dering within each [52]. Much of the resurged interest into transition metal dichalcogenides,

especially the monolayer variants of the group-VI semiconducting TMDs, focussed on exploit-

ing this spin-valley locking for manipulation of valley carriers.

Several optical absorption and photoluminescence experiments [51, 52, 140, 142, 143] have

successfully demonstrated that circularly polarised optical fields can be used to selectively
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(a) (b) (c) (d)
Graphene ML 2H-WSe2 Bulk 2H-WSe2

FIGURE 4.2: Spin-valley locking in group-VI TMDs. (a) Simplified band struc-
ture of graphene. The combination of time-reversal and inversion symmetry
(IS) render the band structure spin-degenerate. Sub-lattice symmetry and small
spin-orbit coupling results in ungapped crossings at its K points. (b) Simplified
band structure for monolayer WSe2. Inversion and sub-lattice symmetries are
lost, resulting in a finite band gap with a spin-split VBM. The possible excita-
tions at the K and K’ points are indicated. For example, illuminating the sample
with fixed energy hν = ω1 circularly-right polarised light (σ+) will populate
the conduction bands at K’ with spin-down electrons, with no excitations at K.
For σ−, hν = ω1 photons, the opposite is true. The spin-picture is reversed
for hν=ω2. (c) Bulk band structure of 2H-WSe2 as obtained with ARPES and
kz dependent DFT. (d), despite regaining IS, a bulk band polarisation can be

observed for the valence band tops at K and K’. (c-d) adapted from [141].

excite only electrons of a single spin species. The matrix elements for an optical transition via

the absorption of right (+) or left (−) handed circularly polarised light can be approximated

as |P±|2 ≈ A(1± ζ)2, where A is a constant [52].

Fig. 4.2(b) illustrates the consequences of this. For a circularly polarised photons with an en-

ergy corresponding to the energetic separation between the deepest binding energy spin-split

valence band and the conduction band (ω1), a choice of right or left hand circular polarisation

populates either the conduction band at K with spin up electrons, or the conduction band at K’

with spin down electrons. The opposite is true for a photon energy corresponding to the band

gap between the top-most valence band and the conduction band (ω2).

The work in this thesis will focus entirely on bulk transition metal dichalcogenides. For the

group-VI family members, their electronic structures stay approximately the same qualitatively

when transitioning from monolayer to bulk, with only two notable changes. The valence

band maximum is shifted from the K points to the Γ point, giving bulk group-VI TMDs an

indirect band gap [51]. The increase in dimensionality in real space also allows for non-zero

kz dispersions in the bulk electronic band structure. The latter change is especially evident near

the dz2-orbital derived VBM at the Γ point in, for example, WSe2 (Fig. 4.2(c)). The interlayer

hopping along the c-axis is significant for these orbitals, resulting in a large kz dispersion of

the corresponding bands in the shallow regions of the valence band structure [14, 83, 141,

144].

More crucially though, the transition from the truncated 1H-structure to the 2H-structures of
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the bulk compounds restores global inversion symmetry. Surprisingly, the spin-valley locking of

their single-layer counterparts partially survives the transition, with spin-sensitive k-resolved

probes of electronic structure, such as spin-ARPES, still observing bulk spin polarisations within

the valence bands at the K and K’ points (Fig. 4.2(d)) [141, 145]. This is possible due to

the combination of the extreme surface sensitivity of the experimental probe (discussed in

Chapter 3.1.4) and the lack of c-axis hopping between the in-plane d-orbitals from which the

bands at the K points are derived from. The electronic wavefunctions in the solid are therefore

sufficiently localised that only the local inversion asymmetry of a single X-M-X unit along the

c-axis is sampled [146]. Analogous physics has been observed in the metallic TMD NbSe2,

[147] and even in chalcogen-derived bands of 1T-TMDs [148, 149].

Modern real world applications for the TMDs are wide ranging. Unlike graphene, they are

not chemically inert, making them suitable catalysts for hydrogen production, and their van

der Waals gaps are accommodating to alkali metal ions, useful for energy storage devices

[14]. Similarly, the ‘hidden’ spin-valley physics outlined above is just one of many of the bulk

electronic properties possessed by this remarkably diverse material family.

4.1.2 Diversity across the TMDs

The TMDs collectively possess a rich array of bulk properties. For example, many TMDs possess

charge-density wave (CDW) phases [133, 150–155], wherein a small, but long-range, periodic

distortion of one or more constituent atoms occurs in reaction to a periodic modulation of the

charge density. This enlarges the unit cell, resulting in ‘back-folded’ copies of bands appearing

in the new reduced Brillouin zone, with hybridisation gaps opening in the vicinity of the new

zone boundary [156]. These CDW phases are in some cases precursors to superconductivity,

intrinsically possessed by a large subset of TMDs.

The disparity in the ground states and properties possessed by the TMDs can be understood

only when considering the chemical makeup of these compounds. Although disparate, these

properties correlate with both the group of the transition metal and the thermodynamically

favoured structural phase [14, 157]. The basic details of the electronic structures of TMDs are

the same: In general, the metal d-orbital manifold falls between the anti-bonding and bonding

chalogen p-orbital manifolds. Unlike elemental transition metals, the nd-shell is always filled

before the (n+1)s-shell due to the energetic drop of d-orbital sub-shells in a crystal field [14].

The differences in the compounds then start to arise with progressive filling of the non bonding

d-sub shells. Group-VI transition metal dichalcogenides such as TiSe2, have the metal in the d0

configuration (since the oxidation state of the chalcogen is preferably 2-, leaving the transition

metal as 4+), and are hence semiconducting [158]. Naively though, the group-V (d1) through

to group-X TMDs (d6), should then be metallic.

The deviations from the predictions of this simplified argument can be understood by addi-

tionally considering the different structural phases that can be adopted by the TMDs, and,

in-particular, the effect of the crystal field on the d-orbital manifold. In the 2H- and 3R- struc-

tured TMDs which both possess a trigonal prismatic metallic coordination (D3h), the d-orbital
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FIGURE 4.3: Simplified electronic structures of transition-metal dichalco-
genides. Adapted from [14]. Density of states diagrams with the relevant
transition metal group and coordination indicated above. Example real com-
pounds and their bulk properties are given in each case. σ and σ∗ indicate the

bonding and anti-bonding p-orbital manifolds respectively.

manifold is split into a1 (composed of dz2), e (dx2−y2 , dx y) and e′ (dxz , dyz) orbital subsets

from low energy to high. These sub-manifolds can remain energetically separated owing to

the M-M bond lengths being up to 25% larger than their elemental counterparts, acting to

limit overall orbital overlap in the unit cell [14]. The compounds preferring this structural

phase, primarily group-V (d1) and VI (d2) TMDs, are therefore metallic and semiconducting

respectively. The 1T structured TMDs in the D3d octahedral phase, preferred by group-IV (d0)

and X (d6) TMDs, have their d-orbital manifold split into two; the higher energy eg manifold

composed of dz2 and dx2−y2 orbitals, and the lower lying t2g manifold composed of dyz,xz,x y

orbitals. The group-X TMDs have an additional complication. By the arguments presented

here they should be semiconducting or semimetallic depending on the band gap between eg

and t2g manifolds. In practice however, the group-X (and group-IX) transition metal does not

contribute effectively to M-X bonds, instead preferentially forming strong M-M bonds. The

electron deficiency of the chalcogen p-orbitals is then partially compensated for by the forma-

tion of interlayer and intralayer covalent bonds between pz and px ,y orbitals respectively [83].

Therefore, both the eg and t2g manifolds are filled with the chalcogen p-derived anti-bonding

manifold only partially filled. (Pt,Pd)Te2 for example, are therefore metallic with the chemical

potential lying in the anti-bonding p-orbital manifold [159]. The group-VII TMDs also have a

D3d octahedral phase, although these tend to be distorted into a 1T’-structure, leaving them

semiconducting with highly anisotropic band structures [160–163].

The above is summarised in Fig. 4.3, where simplified density of states diagrams are presented

for several groups of TMDs. For each group, some example bulk compounds are listed with

their bulk properties indicated [133, 141, 145, 151–153, 158, 161, 162, 164–168]. Clear

parallels can be drawn between TMDs within the same group, or at least across neighbouring

groups. Note that whilst this Figure suggests a lack of overlap between chalcogen p-orbital
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manifolds with the metal d-orbital manifold, this is not true in general. The size of the chalco-

gen determines the extent of overlap between metal and chalcogen derived bands.

The wide array of emergent phases in these compounds begin to fall into place. For example,

the d0 compound 1T-TiS2 is a small band gap semiconductor owing to the smallest possible

choice of both metal and chalcogen [158, 169]. Increasing the degree of overlap of the chalco-

gen p-orbitals by replacing S with Se results in a smaller indirect-band gap semiconductor,

TiSe2. This compound hosts a charge density wave phase, but the hybridisation is extremely

kz dependent owing to the three-dimensional nature of the d-derived conduction bands, un-

usually resulting in a decrease in the band gap size when cooling through the transition [164].

The group-V, d1 compounds 1T-VSe2, 2H-NbSe2 and 2H-TaSe2 also have small band gaps or

band overlaps between the d-orbital derived conduction and p-orbital derived valence bands.

These compounds are metallic, however, with the chemical potential lying towards the min-

imum of the d-orbital derived conduction bands. This is often a sufficient prerequisite for

charge-density wave formation more generally, and indeed the latter two compounds provide

very clear CDW signatures in ARPES in the form of large hybridisation gaps between back-

folded bands [133, 150–155].

In summary, it is almost solely the role of the transition metal determining the overall structures

and properties of the TMDs, while the choice of chalcogen leads only to a decrease (from S

to Te) in the band gaps as the larger chalcogen leads, in general, to increased orbital overlap.

For the work in this thesis, the roles are somewhat reversed. The focus is on physics derived

predominantly from the p-orbital manifold, with the d-orbital manifold playing only a minor,

non-crucial, role.

4.2 General mechanism for topological phenomena within a single-

orbital manifold

In this Section, a mechanism underpinning the possibility of a simultaneous formation of topo-

logical surface states and bulk Dirac cones within the TMDs with undistorted (1T or 2H) struc-

tural phases will be overviewed. This mechanism need not be applicable only to the TMDs,

although it will be discussed within that context. The toy-model presented in this Section, as

well as all density functional theory (DFT) calculations throughout this Chapter were provided

by collaborator Dr. M. S. Bahramy at RIKEN and the University of Tokyo.

The unit cell of a 1T-structured TMD (Fig. 4.4(a)) takes the form of an MX6 octahedron. This

contains a transition metal in a D3d coordination, and two inequivalent chalcogen atoms, X1

and X2. This unit cell has three sub-layers. The central sub-layer is populated solely by the

transition metal, M, sitting exactly at the inversion centre (r = 0) of the unit cell. The six

chalcogen atoms are divided equally between the two sublayers either side, forming triangular

planes. These two chalcogen planes have a relative 180◦ rotation between them, such that a

chalcogen X1 can be mapped onto X2 by the translation −r → r , through the inversion centre.
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FIGURE 4.4: Band inversions from p-orbital manifold in the presence of a
trigonal crystal field. (a) Octahedral unit cell of a 1T-TMD. Hopping paths t1
to t4 are indicated. The transition metal is neglected. (b) Three-dimensional
Brillouin zone of the TMDs without a structural distortion. (c) Three stage de-
generacy lifting of six-fold degenerate p-orbital levels from two isolated chalco-
gen atoms (X1 and X2). BA: Formation of bonding and anti-bonding manifolds
when bringing two chalcogen atoms (X1 and X2) together to form the unit
cell. CFS: Trigonal crystal field, C3v separates px ,y and pz derived bands. SOC:
Spin-orbit coupling lifts the remaining degeneracies (neglecting spin). (d) kz
dispersion of the anti-bonding p-orbital manifold in the limit t4σ� t4π = 0, ne-
glecting the effect of hybridisation. (e) Hybridisation is additionally considered

to the picture in (d).

For the remainder of this Section, the role of the transition metal will be neglected entirely to

focus on the p-orbitals of the chalcogen atoms.

The 1T- (D3d) and 2H-(D3h) structured TMDs both possess a C3 rotational lattice symmetry and

three mirror (σv) symmetries. Fig. 4.4(c) shows how this combined C3v rotational symmetry,

relevant for the p-orbitals, transforms a bonding (B) and anti-bonding (AB) set of triply degen-

erate (neglecting spin) px , py and pz orbitals into A1 (containing pz) and E (containing px ,y)

symmetry subsets. Focussing on the AB manifold, the A1 subset is at a higher energy than the

E subset. Spin-orbit coupling (SOC) lifts the remaining degeneracy of the E subset to produce

bands R+5,6 and R+4′ , where the superscript ± indicates the parity eigenvalue and the subscript

indicates the band symmetry in C3v-space. Additionally, the energy of pz-derived A1 is slightly

altered and the band is relabelled to R−4 . This provides the initial relative energy scales for

the AB p-orbital manifold. An equivalent picture is formed for the bonding set, although the

ordering of A1 and E is reversed following the application of the crystal-field splitting.
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There are two important points to note at this stage. Firstly, the presence of both ± parity

eigenvalues here is not necessarily intuitive. Atomic p-orbitals are described always by odd

parity wavefunctions. Indeed, if the chalcogen atoms in Fig. 4.4(a) were instead positioned

at a centre of inversion symmetry, then all p-orbital derived bands would have negative parity

eigenvalues. Instead, the parity eigenvalues are opposite for pz and px ,y -derived bands within

the bonding p-orbital manifold, and each band has an opposite parity to its anti-bonding coun-

terpart. This satisfies the requirement for an odd parity total wavefunction for each pair of

p-orbitals within the unit cell. It is also clear that, in principle, this parity ordering permits the

formation of topologically non-trivial inverted band gaps from crossings of bands both within

a single B/AB p-orbital manifold, as well as from the overlap of bands belonging to opposite

p-orbital manifolds.

However, there is no change to the relative ordering of these six levels following the inclusion

of spin-orbit coupling. This is in contrast to ‘conventional’ topological insulator phases like

that of Bi2Se3, wherein band schematics like the one presented here (although also including

Bi p-derived bands, see Fig. 2.11) are already sufficient to see that a band inversion between

Bi pz and and Se pz-orbitals exists at the Γ point of the electronic structure, mediated by spin-

orbit coupling [69]. Therefore, any bulk Dirac points and/or topological surface states that

form within the chalcogen p-orbital manifolds outlined above must derive from a different

mechanism.

The basic details of the band structure of this toy model can be determined by considering the

relative hopping strengths within the model unit cell (labeled t1-t4 in Fig. 4.4(a)), solely re-

sponsible for how each band disperses in the electronic band structure (Chapter 2.1.3). Along

the a- and b-axes, intra-layer hopping between X1 and X2 in the same a-b plane, labelled

t1,2, will be higher for px and py orbitals (π-type hopping) than for pz orbitals (σ-type hop-

ping), as the extended spatial distribution of the former along the x- and y-axes results in a

higher degree of orbital overlap. Conversely, inter-layer hopping can be expected to be larger

for pz-orbitals (t4σ) than for px ,y orbitals (t4π), since the wavefunction describing pz orbitals

extends much further into the van der Waals gap than that of the px ,y orbitals.

The bandwidth of pz-derived bands then ought to be larger than that of the px ,y -derived bands

along the kz direction (here the Γ -A line, see Fig. 4.4(b)), with the opposite true for the in-

plane k‖ directions. If the difference in kz bandwidths of pz and px ,y derived bands, owing

to the disparity in t4σ and t4π respectively, is larger than the total energetic separation of

p-orbitals imposed by the combination of CFS and SOC, than a pair of crossings between pz

and px ,y -derived bands will occur partway along Γ -A in each the B and AB p-orbital manifolds.

Fig. 4.4(d) shows the resulting band crossings within the anti-bonding p-orbital manifold when

considering kz dispersion2. Note that the simplified model in Fig. 4.4 considers the limit of

t4π = 0, and so px ,y -derived bands are completely dispersionless along the kz direction.

2Similarly, along the k‖ directions, the px ,y bands can cross through the relatively non-dispersive pz derived
bands. For these crossings however, there is no underlying crystal symmetry that can act to protect them as the
band crossings will not occur along the rotational axis of the crystal.
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The only remaining consideration is possible hybridisations at these crossing points along kz .

The Γ -A line (kx = ky = 0, changing kz) is an inclusive set of k-points abiding by the Ĉ3v

rotational lattice symmetry. Following the arguments presented in Chapter 2.2.1, there is

therefore a possibility of realising protected crossings (bulk Dirac points) if the wavefunctions

describing the crossing bands are orthogonal. Consider the resultant eigenvalues from the

operation of the Ĉ3v rotational symmetry operator on the wavefunctions describing R4′ , R4

and R5,6, shown in Eqns. 4.2, 4.3 and 4.4 respectively.

Ĉ3v|R±4′〉= e
2πi
3 m j |R±4′〉= e

πi
3 |R±4′〉 (4.2)

Ĉ3v|R±4 〉= e
2πi
3 m j |R±4 〉= e

πi
3 |R±4 〉 (4.3)

Ĉ3v|R±5,6〉= e
2πi
3 m j |R±5,6〉= −|R

±
5,6〉 (4.4)

Ĉ3v is a unitary operator as it does not change the magnitude or angle of a vector upon appli-

cation. Its basis is therefore composed of entirely orthogonal and linearly independent wave-

functions. Wavefunctions which give different eigenvalues under the application of Ĉ3v must

therefore be orthogonal, and the hybridisation matrix between them, 〈ψ1|Ĥ|ψ2〉= E〈ψ1|ψ2〉,
must necessarily be zero. Conversely, the eigenfunctions which give the same eigenvalue must

be linearly dependent on each other, and therefore the hybridisation matrix element between

them non-zero. Table 4.1 can therefore be produced.

〈 | 〉 R±4 R±4′ R±5,6
R±4 6= 0 6= 0 = 0
R±4′ 6= 0 6= 0 = 0
R±5,6 = 0 = 0 6= 0

TABLE 4.1: Hybridisation matrix elements for the crossings of the chalcogen
p-derived bands along the kz direction.

This demonstrates how hybridisation is forbidden for the top crossing point in Fig. 4.4(d),
between R4 and R5,6, due to the lack of wavefunction overlap. This crossing point therefore
produces a bulk Dirac cone protected by the C3v lattice symmetry. In the cases where the
overlap integral is non-zero, such as for the second crossing point in Fig. 4.4(d) between R4
and R4′ , a band gap is opened [170]. Although not shown explicitly in Fig. 4.4, a protected
crossing and an anti-crossing can also be expected to form within the bonding set of p-derived
bands along the kz axis.

Focussing first on the protected crossings, the enforced degeneracies can be described as three

dimensional Dirac fermions, or bulk Dirac points (BDPs). However, unlike the 2D analogues

in graphene or the BDPs in, for example, Cd3As2 [61, 64], the Dirac cone is tilted along the

kz axis; the magnitudes of group velocities of the two branches making up the Dirac cone are

inequivalent along kz . Tilted Dirac fermions cannot exist in high energy physics as they break

Lorentz invariance, and are therefore also known as Lorentz violating Dirac fermions. If the

tilt is so severe that the two branches have the same sign of group velocity, then the BDP is
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referred to as type-II, and in all other cases the BDP is type-I. This is in analogy to the type-II

Weyl fermions found to exist in the inversion asymmetric TMDs 1T’-MoTe2 and 1T’-WTe2 [134–

137]. In the simple model presented in Fig. 4.4, t4π = 0, and so the resultant Dirac cone is

the at boundary between type-I and type-II. In a real system, the sign of the finite t4π will set

the type of bulk Dirac cone formed.

Now consider the crossing points between the non-orthogonal R4 and R4′ bands where the hy-

bridisation matrix element is non-zero and so a finite gap can be opened by spin-orbit coupling.

For both the bonding and anti-bonding manifolds, these two bands have opposite parities. The

resultant anti-crossings therefore have an inversion of parity across them. In a real crystal with

a surface, these gaps are required to be populated by topological surface states (Chapter 2.2.2).

In summary, for a given bonding or anti-bonding chalcogen p-orbital manifold in a trigonal

crystal field, a bulk Dirac point (BDP), of type-I or type-II, and a parity inverted band gap (IBG)

can be simultaneously formed partway along the axis of rotation (here kz). The topological

states will be offset from one another both in energy and kz . There are only two prerequi-

sites of such a kz-mediated ‘topological ladder’. Firstly, there must be a significant disparity

in the hopping strengths, t4σ and t4π, such that the difference in kz bandwidths of pz and

px ,y -derived bands is larger than the combined influence of the crystal-field and spin-orbit

coupling strengths. Secondly, C3v rotational symmetry must be present to protect a subset of

the subsequent crossing points along kz .

In the remainder of this Chapter, a combined spin- and angle-resolved photoemission (ARPES)

and density functional theory (DFT) study into numerous transition metal dichalcogenides will

be presented to assess the validity of model presented above in real systems.

4.3 1T-PdTe2: A model system
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5% Cu-intercalated PdTe2 from [166].
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The model described in the previous Section entirely neglects the role of the transition metal.

The presence of a transition metal atom separating the triangular chalcogen planes is of course

an added complexity, and so an ideal testbed is a TMD member wherein the chalcogen p- and

transition metal d-orbital manifolds are isolated from one another energetically. As discussed

briefly in Section 4.1.2, the group-X TMD PdTe2 fits this description well, as both the t2g and eg

manifolds are filled leaving the AB chalcogen p-derived states electron deficient at the Fermi

level. Moreover, the strengthening of interlayer and intralayer bonds between pz and px ,y

bonds respectively acts to enhance the disparity in p-orbital hopping strengths, required for

the formation of the BDP and IBG in the toy model presented in Fig. 4.4. PdTe2 also has a

large Te-derived spin-orbit coupling strength, which will act to enhance the size of any anti-

crossings relative to those in its S and Se containing sister compounds. If the model presented

above holds true, then the bulk Dirac points and topological surface states formed should be

as apparent in this compound as any other.

PdTe2 is a relatively understudied TMD, even when compared to other metallic TMDs. The

group-V metallic TMDs, for example, are well known to exhibit charge-density wave phases

[133, 150–153, 165] with an additional superconducting phase emerging at 7.2 K in NbSe2

[157, 171]. PdTe2 does not have a CDW phase but does possess a conventional s-wave super-

conducting phase with a TC of 1.7 K [167]. This has been found to be tunable as high as 2.6 K

when intercalating Cu between the PdTe2 layers ([166] and Fig. 4.5).
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FIGURE 4.6: Realisation of topological ladders in 1T-PdTe2. (a) Orbitally
projected density functional theory calculations, show the full bulk band struc-
ture of PdTe2. (b) Photon energy dependent ARPES (hν=80-132 eV) simulates
a kz dispersion in good agreement with the Γ -A line of the bulk DFT, overlaid
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directions at hν=27 eV (24 eV for inset). (d) DFT-based slab calculation cov-
ering an equivalent E(k) space as (c) is shown. (e-f), spin-resolved energy dis-
tribution curves (EDCs) and the corresponding spin-polarisations (hν=27 eV)

are shown for the chiral spin-component 〈Sx〉 at positions indicated in (c).

Fig. 4.6 serves as an overview of the realisation of the model in this compound, and as a

summary of this Section. Orbitally projected density functional theory calculations of the full

three-dimensional electronic structure are displayed in Fig. 4.6(a). The chalcogen p-derived
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B/AB label Γ A # crossings
AB R4 − − 5
AB R5,6 + + 1
AB R4′ + + 1
B R5,6 − − 1
B R4′ − + 2
B R4 + − 2

TABLE 4.2: Band parities, at the Γ and A high symmetry points for the chalcogen
p-derived bands in PdTe2, ordered by their binding energy at the Γ point. The
number of band crossings that each band is involved inalong the Γ -A line is

indicated.

bands, in cyan and red (see colour scale), almost exclusively make up the electronic band

structure between E − EF = +3 and −2 eV, with the lower lying metal d-derived bands (in

greens and dark blue) gaining dominance only at higher binding energies.

Along the Γ -A line (kx = ky = 0, changing kz), the cyan anti-bonding pz derived band (AB-

R4) forms the conduction band top at the Γ point. It has a significant kz dispersion, crossing

through both the anti-bonding and bonding sets of px ,y -derived bands. Focussing on the first

two crossings (above EF ), clear parallels can be drawn with the model presented in the pre-

vious Section. The first crossing point, with AB-R5,6, is ungapped (E − EF ≈ +1.25 eV), and

the second, with AB-R4′ , avoided (E − EF ≈ +1 eV) consistent with the prediction for an

anti-bonding pz derived state crossing through an anti-bonding px ,y pair (Fig. 4.4(d)). The

px ,y -derived bands here also show significant kz dispersion, however, pointing to significant

t4π in PdTe2. The group velocity of the AB-px ,y -derived bands is opposite and almost equal

in magnitude to that of the AB pz-derived band, producing a minimally tilted type-I BDP at

their crossing point, protected by the underlying C3v lattice symmetry. The gap opened by

the anti-crossing of AB-R4 with the lowest of the anti-bonding px ,y derived states (AB-R4′)

does have a parity inversion across it, as can be deduced from the parity eigenvalues of each

band calculated for the Γ and A points in Table 4.2. A topological surface state (TSS) should

therefore populate the gap.

The situation below the Fermi level is more complex. The total bandwidth of AB-R4 is suffi-

ciently large that it additionally crosses the bonding set of px ,y -derived bands below the Fermi

level. The crossing with the highest energy bonding px ,y derived state (B-R5,6) (E − EF ≈
−0.6 eV) is again protected by the C3v lattice symmetry to give a second BDP, this time of

type-II character. Two further inverted band gaps are formed below this. The gap at deeper

binding energies is formed from the anti-crossing of the bonding pz derived state (B-R4), orig-

inating at E − EF ≈ −2.5 eV at Γ and dispersing to shallower binding energies to cross the

lowest lying bonding px ,y derived state (B-R4′). This anti-crossing is large and centred at

E − EF ≈ −1.7 eV. The remaining anti-crossing, centred at E − EF ≈ −1 eV, is an interaction

between three bands: A small kink develops in B-R4′ towards the A point due to the previously

discussed anti-crossing with B-R4. B-R4′ , now possessing opposite parity, anti-crosses the AB-

R4 band which approaches from shallower binding energies creating the second inverted band

gap below the Fermi level.
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In total, therefore, the disparity in bandwidth of pz and px ,y -derived bands is such that the

the anti-bonding pz derived state crosses through all five of the other p-derived bands in this

system. The number of bands that a given band crosses through is indicated in Table 4.2.

In summary, a type-I BDP and an inverted band gap are formed above EF , with a type-II BDP

and two further inverted band gaps formed below EF . Experimentally, probing unoccupied

states above the Fermi level is not achievable with conventional spin- and angle-resolved pho-

toemission, and so the type-I BDP and IBG above EF will be not be verified experimentally in

this Chapter. They will, however, be revisited in Chapter 5. First, the type-II BDP will be dis-

cussed in full, before moving onto the pair of inverted band gaps below EF and their associated

topological surface states.

4.3.1 Type-II bulk Dirac point in PdTe2

The samples of PdTe2 were grown by chemical vapour transport by the Sasagawa group (Tokyo

University of Technology) and cleaved in situ at low temperatures. Fig. 4.6(b) displays a E(kz)

dispersion for k‖ = 0, obtained from photon energy dependent ARPES. An inner potential, V0,

of 16 eV best reproduces the periodicity observed within photon energy dependent datasets

(see for example Fig. 5.7 in Chapter 5). Despite significant kz broadening effects, there is

general good agreement between the spectral weight and the overlaid DFT calculations when

duplicated from Fig. 4.6(a) and rescaled by a factor of 1.08 in energy. Each bulk band within

the DFT calculations has a clear companion in the experimental data. Two symmetric BDPs

are therefore visible along the A-Γ -A line at a binding energy of E − EF = −0.65 eV in exper-

iment. Note that if Fermi arcs exist between these bulk Dirac points, they would not naively

be expected to show signatures in the surface Brillouin zone for the natural (001) cleavage

plane, as the two BDPs along A-Γ -A project onto the same point (Γ ). However, there is a seem-

ingly non-dispersive state which is pinned to the energy of the bulk Dirac point in Fig. 4.6(b),

consistent with a surface localised state dispersing through the BDP. This state will be revisited

below.

The tilt of the Lorentz violating type-II bulk Dirac cones along kz is observed in Fig. 4.6(b),

but along in-plane directions, type-I and type-II bulk Dirac cones are indistinguishable. This

is demonstrated in Fig 4.7, which shows DFT calculations along a direction parallel to the

M-Γ -K path for a series of kz . At kz = 0.854πc = kz,D, the Dirac point is formed, symmetric

about the Γ point. The distinguishability between the two types comes only when tracking

the BDP-forming bands when moving away from kz = kz,D. Away from this kz , the two bands

which form this crossing (labelled with *) disperse together to shallower (deeper) binding

energies for more positive (negative) kz . For a type-I BDP formed at the same kz,D, the in-

plane DFT calculations would look identical at kz = kz,D, but the two branches would disperse

in opposite directions away from this, giving a point-like kx , ky , kz constant energy contour,

unlike the connected electron and hole pockets observed for this system in Fig. 4.7(e).
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FIGURE 4.7: Bulk DFT calculations of the type-II Dirac point in PdTe2. (a-d)
in-plane DFT calculations of the bulk Dirac point and neighbouring bulk bands
for a series of kz . The bulk Dirac point is formed in (c). (e) Three-dimensional
constant energy contour, at the binding energy of the BDP formation. The type-

II BDP is labeled.

The evidence from calculations that this crossing is protected and gives rise to a type-II BDP

is compelling, but intrinsic kz broadening in ARPES means that experimental evidence of pro-

tected crossings along kz is less clear. Indeed, here only the top half of Dirac cone is clearly

resolvable (Fig. 4.6(c) inset and Fig. 4.8), partly due to the presence of additional surface

surface states, but also due to the more rapidly kz-dispersing bulk band that forms the lower

branch of the Dirac cone relative to the band which forms the upper branch of the Dirac cone

(seen by comparing Fig. 4.7(c) and Fig. 4.7(d), for example). Sample dependent factors such

as an in-plane uniaxial strain, which would act to break the C3v symmetry and gap these

crossing points, would be missed by calculations. These possibilities can be dismissed by con-

sidering the resulting form of the bulk Dirac cone following the opening of a hybridisation gap.

As when transitioning from Dirac cones in graphene to the CBM and VBM at the K-points of

1H-TMDs, the bands forming Dirac points should lose their linear dispersion, instead adopting

a more parabolic description.

The top branch of a bulk Dirac cone, with radius at the Fermi level, kR, and band minimum,

Emin, should disperse linearly in accordance with the Dirac equation:

(E − EF )Dirac =

√

√

√

� Eminky

kR

�2
+
� Eminkx

kR

�2
− Emin, (4.5)

where the kx and ky directions are again taken to be along the Γ -K and Γ -M directions respec-

tively. In contrast, an electron-like band with an equal Fermi level radius and band minimum,

will disperse more similarly to that of a paraboloid,

(E − EF )Parabola =
Emink2

y

k2
R

+
Emink2

x

k2
R

− Emin. (4.6)
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case.

Fig. 4.8 displays in-plane dispersions, (E − EF (ky)), at a series of kx as probed by ARPES.

Both equations 4.5 and 4.6 are overlaid. It is clear that the former much better matches the

observed spectral weight than the latter, validating the Dirac dispersion of the bulk Dirac cone.

Together, these observations provide strong experimental evidence for the presence of type-II

bulk Dirac points in 1T-PdTe2. Outside of PdTe2 and the other group-X TMDs PtSe2 and PtTe2

(Chapter 5, [83, 172–177]), very few compounds have been experimentally verified to host

type-II Dirac fermions, making these compounds apparently rare platforms in which to study

such fermions which cannot exist in high-energy physics.

4.3.2 Topological surface states and resonances in PdTe2

Referring back to the kz dispersion in Fig. 4.6(b), non-dispersive regions of spectral weight

can be seen within the band gaps of the bulk DFT calculations. Most prominent is the two

dimensional spectral weight at E − EF = −1.74 eV. This is centred in the larger of the two in-

verted band gaps formed below the Fermi level, formed from the anti-crossing of the bonding

pz-derived state (B-R4) and the lowest bonding px ,y -derived band (B-R4′). The lack of dis-

persion of this band along kz , and its absence in the bulk DFT calculations, together provide

strong evidence that it is surface derived. Moreover, its location within the inverted band gap

strongly suggests a topological origin for this surface state. Indeed, when performing ARPES

dispersions along the in-plane directions in which surface states are permitted to disperse, the

state exhibits a Dirac dispersion with its Dirac point at at E − EF = −1.74 eV. Fig. 4.9 demon-

strates the full conical dispersion of the topological surface state through a series of constant

energy kx − ky contours over the energy region covered by the TSS. This state, referred to

as TSS2 for the rest of this thesis, is captured well by DFT-based slab calculations presented
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in Fig. 4.6(d), again showing a clear Dirac cone dispersion. Altogether, this verifies both the

topological nature of the surface state and the topologically non-trivial nature of the highest

binding energy inverted band gap. This TSS has been previously identified in [178], although

its kz mediated origin not explored.

Fig. 4.9 also highlights a prominent hexagonal warping of TSS2. Below the Dirac point, this

is entirely consistent with that predicted from a higher order k · p-derived Rashba Hamilto-

nian [78], as described in Chapter 2.2.3. The warping is minimal close to the Dirac point, but

clear vertices are developed along the Γ -M (here ky) direction. Above the Dirac point, the

hexagonal warping develops over a much smaller energy range, consistent with the reduced

group velocity of the bands above the Dirac point. Surprisingly though, the direction of warp-

ing has switched, with the vertices instead aligned along the Γ -K (here kx) direction. A switch

of hexagonal warping across a Dirac point cannot be explained by a warping model of the

type discussed in Section 2.2.3. Instead, this is a consequence of small kz projected bandgaps,

a subject that will be returned to in detail in Chapter 5.

The topological surface state residing in the shallowest of the two inverted band gaps below

EF , henceforth referred to as TSS1, is much more subtle. Again referring to the bulk DFT

calculations along the Γ -A direction in Fig. 4.6(a, b), this band gap does not survive the kz

projection to the two dimensional surface Brillouin zone. This means that any topological state

residing in this gap will be energy degenerate with bulk bands. It is hence better described

as a topological surface resonance (Chapter 2.1.4). Consequently, this state will have a more
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FIGURE 4.10: Layer-dependent orbitally projected DFT-based surface slab
calculations for PdTe2. The surface state TSS2 is completely absent by layer

5-6 whereas the surface resonance, TSS1, is not.

spatially extended wavefunction than that of a true surface state. Fig. 4.10 demonstrates this

explicitly through the presentation of layer-dependent, orbitally-projected DFT-based surface

slab calculations. TSS2 has lost almost all intensity by layers 3-4 (Fig. 4.10(b)), but signatures

of TSS1 persist through layers 5-6 (Fig. 4.10(c)).

Experimentally, although TSS1 should still be two-dimensional and present for all kz , its spec-

tral weight can be expected to be at a maximum when the kz integration has the largest contri-

bution from a kz value corresponding to the local band gap. For example, at a photon energy

hν =27 eV, as in Fig. 4.6(c), the state is clearly resolved, but for hν = 24 eV (Fig. 4.9), only

diffuse bulk bands are visible in its place. Despite this added complexity, both experiment and

calculations clearly demonstrate a Dirac like dispersion with the Dirac point centred at the

energy of the shallowest energy inverted band gap below the Fermi level.

Chapter 2.2.2 showed how topologically protected surface states need necessarily to carry

a chiral spin polarisation, switching both above and below the Dirac point, and with -k to

k in accordance with time-reversal symmetry. Spin-resolved ARPES therefore has the capa-

bility to provide an additional conformation for the topological nature of TSS1 and TSS2.

Fig. 4.6(e,f) present spin-resolved energy distribution curves (EDCs) for the k-points indicated

in Fig. 4.6(c), each cutting through two legs of both TSS1 and TSS2. Here, the 〈Sx〉 (chiral)

component of spin is parallel to the Γ −K direction, as determined by the experimental geom-

etry. Starting at low binding energies and working towards EF (left to right in Fig. 4.6(e,f)),

there is a clear relative up-down-down-up ordering of the four legs of the two topological

surface states. TSS2 has a counter-clockwise (CCW) chirality below its Dirac point, switching

to clockwise (CW) above. The opposite is true for TSS1. Fitting these EDCs with Gaussian

broadened Lorentzian functions to account for experimental resolution, and incorporating a

Shirley background, returns magnitudes of 92±14 % and 73±16 % for the chiral-polarisation

of the upper and lower legs of TSS2 respectively.
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Fig. 4.11 shows more completely the dominant chirality of these spin textures. Three com-

ponent spin-EDCs performed at a position (kΓ−K, kΓ−M) = (0,−0.094πa ), again shows a clear

non-zero chiral spin component, 〈Sx〉, as well as additionally demonstrating that the radial

(here 〈Sy〉, parallel to the Γ −M) and out-of-plane, 〈Sz〉, components are equal to zero. Note

that both the radial and out-of-plane components are enforced to be zero for kΓ−K = 0 in ac-

cordance with the mirror line defined by the Γ -M direction, consistent with the observation

here.

Repeating the measurements for a position (kΓ−K, kΓ−M) = (0.094πa , 0), however, shows that

whilst the chiral spin-component (now 〈Sy〉) still dominates, there additionally exists a rela-

tively small out-of-plane spin canting along the Γ − K direction. As outlined in Chapter 2.2.3,

this is consistent with the hexagonal warping of these surface states (see for example Fig. 4.9).

The absolute chiralities of these spin textures are consistent with that obtained by calculations.

Fig. 4.11(c) for example demonstrates a CCW chirality of the lower legs of TSS2. Together

these observations verify the predominantly in-plane momentum-locked chiral spin textures

of TSS1 and TSS2. The seemingly non dispersive state at the energy of the BDP mentioned

earlier also shows a dominant, CCW chiral spin polarisation in EDCs presented in Fig. 4.6 and

Fig. 4.11 at E− EF ≈ −0.6 eV. The detailed origin and band dispersion of this surface state will

be discussed in Chapter 5.

This work therefore establishes that 1T-PdTe2 is an excellent framework in which to experi-

mentally realise the model presented in the previous Section, containing extremely rich bulk

and surface electronic structures owing to a series of kz mediated band dispersions within its
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Te p-orbital manifold. In this compound, the ‘topological ladder’ centred at Γ and composed

of the type-II BDP, TSS1 and TSS2 is aided by the strong spin-orbit coupling strength of Te

and the relative isolation of chalcogen and transition metal-derived orbital manifolds. In the

remainder of this Chapter, it will be made clear that the removal of either or both of these fac-

tors does not prevent the formation of the topological ladder, although its signatures become

more subtle.

In the introduction to this Chapter it was stated that topological phases formed within a single-

orbital manifold should persist across entire material families, owing to the added level of

protection against changes in the relative energetic separations of orbital manifolds. Indeed,

concurrent works have shown that the bulk Dirac cone and two topological surface states

below EF shown above are also present in the group-X TMDs PtSe2 (Chapter 5 and [83, 173,

174]) and PtTe2 [172], despite the changes to the transition metal and/or a reduction of spin-

orbit coupling strength. The focus shifts now to TMDs with varied crystal structures, and

in-particular to a deviation away from the D3h metallic coordination of both the 1T-TMDs and

the toy model presented in Section 4.2. Firstly, the transition to a 2H crystal structure will be

discussed.

4.4 2H-WSe2: Doubling the unit cell

The mechanism outlined at the start of this Chapter uses a single octahedral unit cell as its basis,

only appropriate for the 1T-structured TMDs. Evaluating whether or not topological ladders

can also exist in the 2H-TMDs first requires the consideration of the changes to mechanism

driving the kz-mediated band inversions imposed by the expansion of the unit cell and the

altered transition-metal coordination.

4.4.1 Changes to BDP-TSS pair forming mechanism

The crystal structures of a 1T- and 2H- TMD are compared in Fig. 4.1. The unit cell of a 1T-TMD

contains two inequivalent chalcogen atoms which each provide three p-derived bands, giving

a total of six chalcogen p-derived bands across the bonding and anti-bonding manifolds. A

single unit cell of a 2H-TMD is constructed from similar X-M-X tri-layer blocks, but there are

now two such trilayers within the unit cell. Unlike in the 1T-TMDs, there is no relative rotation

of the three-fold symmetric chalcogen sub-layers either side of the central transition metal

plane within a single X-M-X unit. Instead, the second X-M-X unit has both of its chalcogen

planes 180◦ rotated relative to the chalcogen planes in the first X-M-X unit. The total unit cell

is therefore still inversion symmetric, but there are now four inequivalent chalcogen atoms

contained within.

In analogy to the discussion of charge density wave phases in Section 4.1.2, a change of the

unit cell from 1T to 2H doubles the periodicity of the system along the c-axis, halving the size

of the Brillouin zone along kz . Each of the chalcogen-derived bands can therefore be expected
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to be effectively back-folded along kz direction, with respect to a 1T-structure. Although the

transition metal in this 2H-structure now has a D6h coordination, the C3v lattice symmetry

is retained. The orthogonality relations outlined in Table 4.1 still hold true, and so one can

simply expect twice as many inverted band gaps and bulk Dirac cones for sufficiently dispersive

pz-derived bands.

BDP

IBG

BDP

IBG

FIGURE 4.12: Schematic illustration of BDP and IBG formation in a
2H-TMD. Illustrated band dispersions are presented for both a 1T- and 2H-
structured TMD in the limit t4π = 0. In the 1T case, a BDP-IBG pair is produced
from the anti-bonding chalcogen p-manifold. In the 2H-case, the doubling of

R5,6 and R4′ results in twice as many band crossings.

To see this visually, the schematic diagram in Fig. 4.12 illustrates the kz dispersion of an anti-

bonding set of chalcogen p-bands for both a 1T- and 2H-structured compound. Both R5,6 and

R4′ are back-folded about the A point in the case of the 2H-structure. In the case where the

interlayer hopping of pz-orbitals is larger than that of the px ,y -orbitals (t4σ > t4π = 0), and

the pz-derived band has a bandwidth along kz larger than the combined crystal field and spin-

orbit derived degeneracy lifting, band crossings will occur. In a 2H-structure, therefore, there

are two crossings of R4 with R5,6 to produce two closely spaced bulk Dirac cones. Recall that

in the 1T-case the type of BDPs formed was set by the sign of the interlayer hopping between

px ,y orbitals (t4π). Here, the two closely spaced BDPs here are strictly fixed to be of opposite

types due to the requirement of degeneracy of the back-folded bands at the A point: The two

bands forming the R5,6 pair have opposite group velocities, and so the ordering of BDP types

is left dependent on the group-velocity of the R4 band.

Similarly, the R4′ band is duplicated, and two closely spaced inverted band gaps should be

created from the crossing of R4 with the R4′ pair, and each should be populated with its own

topological surface state. A second major challenge to the model is that, unlike the group-IX

and X TMDs, all of the 2H-TMDs have significant d- and p-band overlap (Section 4.1.2 and

[14]). This acts to further reduce t4π, giving the px ,y derived bands a much flatter dispersion

along the kz axis, reducing the size of any band gaps produced. These two complications

together provide a test for the robustness of the BDP-TSS forming mechanism outlined in

Section 4.2.
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4.4.2 Type-I and type-II BDPs and TSSs in WSe2
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FIGURE 4.13: Realisation of two BDPs and two IBGs in 2H-WSe2. (a) Or-
bitally projected DFT calculations for the Γ -A direction in WSe2. The band
crossings producing BDPs and IBGs are reshown in insets. (b) Surface slab cal-
culations along the Γ -K direction. (c) ARPES (hν =49 eV, CL+CR pol.) disper-
sion over an equivalent range. Inset shows the same data with altered colour

contrast only. (d) Curvature analysis of the data shown in (c).

The strongly spin-orbit coupled semiconductor, 2H-WSe2, is chosen as the basis for the study

of potential kz-mediated topological ladders in 2H-structured TMDs. Orbitally projected DFT

calculations for the Γ -A line of 2H-WSe2 are shown in Fig. 4.13. Consistent with the simplified

TMD electronic structures presented in Fig. 4.3 and [14], the valence band top is composed

almost entirely of W dz2 character bands. These persist down to a binding energy of E − EF =

−1 eV. The band directly below this, originating at E − EVBM ≈ −1.2 eV at the Γ point, is

a chalcogen pz-derived band (R4). This disperses steeply downwards to cross through two

pairs of pink-coloured bands, centred at E − EF ≈ −1.4 eV and −1.9 eV. These are the px ,y

derived bands, R5,6 and R4′ respectively, each back-folded along the Γ -A line due to the effective

doubling of the unit cell relative to the 1T-structured TMDs. Unlike in PdTe2, they are almost

entirely dispersionless, consistent with the significant orbital character contribution from dxz+

dyz orbitals. Despite this, the first pair of crossings between R4 and R5,6 produces two closely

spaced BDPs of type-II (type-I) character for the upper (lower) protected crossing. Fig. 4.13(b-

d) shows both DFT based slab calculations and ARPES dispersions along the Γ -K direction. The

close spacing of the two BDPs means that only the linear dispersion forming the lower branch

of the type-I Dirac cone is clearly resolvable experimentally.

The second crossing pair in Fig. 4.13(a) produces closely spaced inverted band gaps. The lack

of dispersion of the R4′ bands means the band gaps are extremely small, with the shallower

binding energy anticrossing on the order of 1 meV. The higher binding energy anti-crossing

gives a larger gap tens of meV wide, however, centred at E− EVBM ≈ −1.9 eV and focussed on

below.

Whilst the px ,y -derived bands are almost entirely dispersionless along the kz direction, they

have large bandwidths along k‖, dispersing steeply to higher binding energies away from Γ .
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FIGURE 4.14: Circular dichroism and spin-resolved ARPES of a TSS in
WSe2. ARPES dispersions performed with circularly left (CL, a) and circularly
right (CR, c) polarised light (hν =49 eV). The resultant dichroism (CR-CL) is
shown in panel (b). Insets show the region occupied by the largest TSS. (d)
Spin-resolved MDCs for the chiral spin component, over the energy range indi-

cated in the inset.

Therefore, although the inverted band gap is small at Γ , the resultant TSS can bridge the two

parity inverted bands at much higher binding energies. The result of this is a TSS with Dirac

point centred within the energy of the inverted band gap formed along Γ -A, but with legs

that follow the rapid in-plane dispersion of the surrounding bulk bands. Together, this TSS,

clearly resolved in DFT based slab calculations and in experiment (Fig. 4.13(b) and Fig. 4.13(c)

respectively) appears almost Rashba-like in appearance. Fig. 4.13(d) shows the result of cur-

vature analysis3 of the data in (c) to improve visibility. The unconventional dispersion here

of the TSS is another consequence of the small kz projected band gaps that inevitably arise

in compounds hosting kz mediated topological ladders. Since surface states typically avoid

becoming resonant with bulk bands where possible, the legs of the surface state here instead

follow the small kz projected paths down to higher binding energies.

Experimentally, the spectroscopic signatures of the TSS dwelling in the larger IBG can be en-

hanced by using circularly polarised light. Fig. 4.14 shows energy dispersions performed with

circularly left (CL) and circularly right (CR) polarised light in panels (a) and (c) respectively.

This allows for the selective excitation of just one branch of the surface Dirac cone, resulting

in strong dichroic signatures when the difference (CR-CL) is taken, shown in Fig. 4.14(b). Cir-

cular dichroism is often linked to both the spin- and orbital- angular momentum of electrons,

although deducing the exact relation between these and the matrix elements for photoemis-

sion is not a trivial problem [180, 181]. Nevertheless, the surface state is clearly resolved, and

3A slight modification of a two-dimensional second derivative [179].
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a clear switch of sign for each branch of the surface state provides supporting evidence for its

topological origin, and for its chiral spin texture [180].

The latter can be verified explicitly with spin-polarised momentum distribution curves (spin-

MDCs) for the chiral component (here 〈Sy〉). Spin-MDCs are shown in Fig. 4.14(d) at a series

of binding energies in the vicinity of the TSS, indicated in the inset. For the highest bind-

ing energies, the spin-MDCs exhibit four clear peaks from the TSS, with a down-up-down-up

relative ordering from low momentum to high. When moving to shallower binding energies

these signals become clearer, until a degeneracy is reached at the the Dirac point. Above this,

the sign is switched. All of this is consistent with a topological surface state with a confined

Rashba-like dispersion.

The presence of BDPs and TSSs from the same mechanism in both PdTe2 and WSe2 is a strong

indicator that this physics is indeed a generic property of the transition metal dichalcogenides.

Building on the insights developed here, the rest of this Chapter details predictions for TMDs

with structural instabilities which can be accessed with temperature. If the C3v symmetry is

lost through the reconstruction, then temperature could be potentially used as a switch for any

BDPs. If it is not, then the potential for studying the topological phenomena across structural

phase transitions is unlocked. Both cases will be overviewed below.

4.5 Outlook: TMDs with structural distortions

The only prerequisites for the formation of bulk Dirac cones and topological surface states

in the TMD compounds is a disparity in the bandwidths of the p-orbital derived bands large

enough to eclipse crystal field and spin-orbit splittings, and the presence of the C3v symmetry

to protect a subset of the subsequent crossings along kz . 1T-IrTe2 is TMD with an octahedral

crystal structure. It too possesses the above prerequisites, and like in PdTe2, it benefits from

a large separation of metal and chalcogen derived bands. It has a tunable superconducting

phase with Pt doping, with a maximum TC of 1.7 K for Ir0.9Pt0.1Te2 [182]. Realising a kz

mediated topological ladder in this compound would provide IrTe2 with a greater functionality

for practical applications than PdTe2, however. The potential of this compound becomes clear

when identifying the bulk Dirac point and two topological surface states that this compound

develops from the kz dispersion of its p-orbital manifold.

4.5.1 1T-IrTe2: Removing C3v symmetry

Fig. 4.15(a) shows the kz dispersion in the energy window E−EF =+1 eV to−2 eV. The pz char-

acter band which originates midway between the Γ and A points at the top of this energy win-

dow is the anti-bonding R4 band. Its first crossing, centred at approximately E−EF =200 meV

is with B-R5,6, producing a strongly tilted type-II bulk Dirac cone. The band gaps centred at

E − EF = −300 meV and −800 meV are parity inverted band gaps populated by a topological

surface resonance and a topological surface state respectively (Fig. 4.15(b)). As in PdTe2, the
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FIGURE 4.15: Topological ladder in the high-temperature phase of 1T-IrTe2.
(a) Orbitally-projected DFT calculation of the Γ -A line in IrTe2. Insets show the
regions in which the type-II BDP and highest-energy inverted band gap are
formed. (b) Surface slab calculation demonstrating the formation of a BDP

and two topological surface states.

B/AB label Γ A # crossings
AB R5,6 + + 0
AB R4′ + + 0
AB R4 − − 3
B R5,6 − − 1
B R4′ − + 2
B R4 + − 2

TABLE 4.3: Predicted band parities at Γ and A for the chalcogen p-derived
bands in IrTe2, ordered by their binding energy at the Γ point.

lowest lying of these band gaps is an anti-crossing between B-R4, dispersing towards shallower

binding energies, and B-R4′ , the highest binding energy bonding px ,y derived state. The shal-

lowest binding energy of the two band gaps is produced from the crossing and subsequent

hybridisation of B-R4, AB-R4 and B-R5,6. A parity table, although not supported by explicit

calculations, is presented in Table 4.3.

This compound adopts the same crystal structure as 1T-PdTe2 and has the same peculiarity

of the transition metal not donating effectively to M-X bonds. Ir has one less electron than

Pd however. The shallowest portions of band structure (chalcogen p-derived) are therefore

almost identical to that in PdTe2, but the Fermi level falls lower. The type-II BDP in this

compound is therefore located within 200 meV of the Fermi level, and the bands forming

it should contribute to transport in this system. Subsequently to this work, Pt dopants in

Ir1−xPtxTe2 have been shown to increase the Fermi level, with x = 0.3 pining the Fermi level

almost exactly to the energy of the BDP [182]. Ir0.7Pt0.3Te2 retains the superconducting phase
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of the pristine compound, albeit with a greatly reduced TC [182].

Pristine IrTe2 additionally undergoes a structural phase transition with decreasing temperature

(TC = 240 K [183]). The origin of this is not well understood. The structural transition itself

emerges as a suppression of the IrTe6 octahedra, mainly along the c-axis [183]. Early reports

predicted mechanisms including a CDW origin driven by Fermi surface nesting [184], a Peierls

transition [185] or an energetic incentive derived from a modified crystal field splitting which

acts to decrease the size of the Fermi surface by changing the details of the chalcogen p-

orbital manifold splitting [183]. More recently, the formation of Ir dimers through the phase

transition have been found to play an important role [186]. Regardless of the mechanism, the

C3v symmetry crucial for the protection of any kz-formed BDPs is lost through this transition.

Fig. 4.16(a,b) shows DFT band structure calculations for both the high temperature octahedral

phase and the low temperature phase. These demonstrate the transition from a bulk Dirac

point to a band gap through the transition. Whether or not the resultant band gap between

the otherwise BDP forming bands is parity inverted is unknown, but if it is then this compound

presents a unique opportunity to study the transition from protected crossing to an avoided

one with temperature. i.e. a compound which has high mobility massless bulk electrons

that can be effectively tuned with temperature such that the conductive electrons reside only

at the surface following the transition. Additionally, the ability to pin this band gap to the

Fermi level through Pt dopants discussed above presents the opportunity to study the interplay

of topological surfaces with bulk superconductivity, possibly resulting in emergent Majorana

fermions [182].

4.5.2 Charge density wave phases in TaSe2 and NbSe2

As outlined in the introductory Sections, many bulk transition metal dichalcogenides undergo

charge density wave (CDW) transitions with reducing temperature. This is another type of

structural instability, but, unlike in IrTe2, rotational lattice symmetries are retained through
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the transition, with only the size of the unit cell changing. 2H-TaSe2 and 2H-NbSe2 are par-

ticularly notable examples of CDW compounds. Like all 2H-TMDs, they possess a D3h metallic

coordination, and so their d1 filling renders both compounds metallic. The charge density

wave instability derives from the small d-band occupation, as the opening of gaps in such a

scenario can often lower the overall energy of the system.
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FIGURE 4.17: Overview of CDW phases in NbSe2 and TaSe2. (a-b) Nor-
mal phase Fermi surface maps for (a) 2H-NbSe2 and (b) 2H-TaSe2. The re-
constructed Brillouin zone following the onset of the charge density wave is
overlaid, adapted from [151]. (c) Fermi surface map in the CDW phase of 2H-
TaSe2, demonstrating the opening of clearly resolved hybridisation gaps from

back-folded bands, adapted from [187].

Indeed, prominent band gaps are opened by the hybridisation of bands at the boundaries of

the CDW reconstructed Brillouin zone [133, 151–155, 188]. Fig 4.17 shows experimentally

obtained Fermi surfaces of both 2H-NbSe2 and 2H-TaSe2 in their normal state (T >33 K and

T >90 K respectively [151, 189]). The surface Brillouin zones before and after reconstruction

are overlaid. For TaSe2, an experimentally obtained Fermi surface within the CDW phase is

also shown, demonstrating the formation of clear hybridisation gaps at the Fermi level.

The kz dispersion of the chalcogen p-orbital manifold in the normal phases of each of these

compounds is much the same as in 2H-WSe2, with two BDPs and two IBGs formed below

EF . Fig 4.18 details the DFT prediction for the formation of the topological ladder in each

compound. In NbSe2, the type-II and type-I BDPs are centred at E − EF ≈ −0.8 eV, increasing

to≈ −0.75 eV in TaSe2. In both cases the BDPs are formed from the C3v protected crossing with

a pz derived band (R4) dispersing down and crossing through both back-folded pairs of px ,y

derived R5,6 bands. Inverted band gaps are again formed from the subsequent anti-crossings

of R4 with the back folded R4′ pair, centred at E − EF = −1.0 eV and −1.05 eV for NbSe2

and TaSe2 respectively. Like in WSe2 the deeper binding energy IBG is the larger of the pair.

The significant d-orbital mixing into R4′ means that the size of the inverted band gaps here

is sensitive to the change in the transition metal spin-orbit coupling strength. The inverted

band gaps are therefore larger in TaSe2 (5d-orbitals) than NbSe2 (4d-orbitals), resulting in a

harder-to-resolve TSS in surface slab calculations for the latter.
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The charge density wave transition retains all rotational symmetries. Experimentally obtained

ARPES dispersions for TaSe2 within the charge density wave phase, presented in Fig. 4.19,

are consistent with the persistence of these BDPs and TSSs through the transition. Although

there is an overall energy discrepancy on the order of 200 meV between these experimental

observations and the calculations in Fig 4.18(c-d), clear signatures of a bulk Dirac cone and a

topological surface state are observed. Fig. 4.19(c) shows how the left and right branches of

the observed TSS give opposite circular dichroic signatures, like the equivalent TSS in WSe2.

In summary, kz mediated topological ladders, entirely contained within the chalcogen p-orbital

manifold, exist within several transition metal dichalcogenide compounds. The choice of tran-

sition metal changes only the fine details of the ever-present topological surface states and bulk

Dirac cones. The small number of prerequisites for this, which many compounds naturally ful-

fil, suggests that topological states of this new origin are likely to be extremely commonly

occurring, despite having being almost completely overlooked prior to this work.

Moreover, the persistence of a kz-mediated topological ladder through the charge density wave

transition of 2H-TaSe2 provides a proof of principle that the study of the interplay between

features belonging to a kz-mediated topological ladder and compound specific bulk properties

may be possible. Chapter 2.2.5 showed how topological superconductivity could be one such

consequence, for example. However, a ‘meaningful coexistence’ requires that the two prop-

erties exist on the same energy scales. The next Chapter therefore examines the purview for

tuning the position and composition of the topological ladders in the TMDs.
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Chapter 5

Tunability of topological phases in

group-X transition metal

dichalcogenides

By comparing the five transition metal dichalcogenides (TMDs) shown to host single-orbital

manifold topological phases in Chapter 4, it is clear that, although the mechanism inducing

these topological states is constant throughout, the final appearance of the states themselves is

strongly dependent on finer details of a compound’s specific electronic structure. This strongly

suggests an element of tunability to the topological phenomena found in the TMDs. The possi-

bility of tuning between topological phases in IrTe2 by relying on a structural phase transition

was already discussed, potentially allowing for the transformation of a bulk Dirac point (BDP)

to an inverted band gap (IBG).

Finding a non-binary control parameter for the topological states within the TMDs is impor-

tant. Whilst surface and bulk Dirac cones are often associated with desirable properties such as

high electron mobilities, each of the experimentally verified Dirac cones in the previous Chap-

ter are located energetically far from the Fermi level, meaning that they do not contribute to

the transport properties of the TMDs. Moreover, a tuneable parameter allowing for the ma-

nipulation of the position of Dirac cones in the electronic band structures could be exploited

to engineer an interplay between topological phenomena and properties that affect only the

near-EF density of states, such as superconductivity.

In this Chapter, two related routes for tunability will be discussed; altering inter-layer hoping,

and altering the details of p-orbital degeneracy lifting due to the crystal field splitting and

spin-orbit coupling (SOC) strength. This Chapter will also further discuss the effect of small

kz-mediated band gaps on the topologically non-trivial surface electronic structures in the

TMDs.
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5.1 Tunability through altering hopping strengths

The toy model for the kz dispersion of p-orbital manifold in the presence of a trigonal crystal

field in Section 4.2 relies on the disparity of p-derived bandwidths along a rotationally symmet-

ric axis in order to generate the requisite band crossings for bulk Dirac cones and topological

surface states. Those bandwidths are set solely by the inter- and intra-layer hopping param-

eters t1−4, as introduced in Fig. 4.4(a). It follows that by manipulating the relative strengths

of these hopping parameters, one can modify the kz dispersion of the p-orbital derived bands

and therefore alter the position of the resultant BDPs and TSSs in the electronic structure.
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FIGURE 5.1: Modifying the hopping parameters in the toy model for the
chalcogen atoms in a 1T-TMD. (a) The phase space available by changing the
inter-layer pz hopping term (t4σ) and the out-of-plane intra-layer px ,y hopping
terms (t3π) (b) Additional phase space opened by tuning the inter-layer hop-
ping of px ,y orbitals (t4π) (c) Calculated kz band dispersions for various the

combinations of hopping parameters indicated in (a-b).

Fig. 5.1 shows the phase space available by tuning relative hopping strengths within the toy

model presented in Chapter 4.2. The large number of different phases in these diagrams

demonstrates that there are numerous ways in which kz-mediated topological ladders can be

altered. Experimentally, this rich phase diagram can be traversed by applying c-axis uniaxial
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strain, carrier-doping or altering dimensionality, all of which can act to change the relative

hopping strengths of p-orbitals without removing the rotational lattice symmetry.

The bulk Dirac points (BDPs) and topological surface states (TSSs) that populate topological

ladders in the 1T-TMDs are formed from the crossing points of highly dispersive chalcogen

pz-derived bands with px ,y -derived bands along the kz-axis. This difference in kz bandwidths

is achieved naturally from the disparity in c-axis hopping for pz and px ,y -orbitals. It follows

that upon reducing t4σ (the inter-layer hopping from pz-orbitals) in Fig. 5.1, the number of

crossings between pz and px ,y type bands reduces sequentially, until only a topologically trivial

Γ -A dispersion is left, corresponding to almost completely decoupled monolayers.

Fig. 5.1(b) additionally demonstrates that the type of the BDP can be switched by altering the

interplay between inter-layer and intra-layer hopping strengths along the c-axis of px ,y orbitals

(t4π and t3π respectively). Increasing t3π for a zero t4π (as in Fig. 5.1(a)) acts to increase the

bandwidth of the px ,y derived states along kz , therefore enhancing the tilt of the Dirac cone.

This will always produce type-II BDPs. However, a non-zero t4π acts to tilt the px ,y derived

states in the opposite sense. In principle, this competition between px ,y hopping terms can

be exploited to set the type of BDP formed. Changes of this form could be experimentally

achieved by altering the van der Waals spacing between layers, whilst leaving the size of the

unit cell itself approximately constant. As well as altering the type of a bulk Dirac cone, the

unstable intermediate phase at the transition could be realised with fine tuning. These “type-

III” Dirac fermions, although inherently unstable, have recently been argued to be a condensed

matter analogue of a ‘black-hole horizon’ [190].

Perturbations of this form would likely be coupled to a change in the pz derived inter-layer

hopping, t4σ. Increasing t4σ will always eventually additionally induce an IBG, regardless of

the type of BDP formed by the first crossing. Maximally increasing t4σ such that there is an

overlap between bonding and anti-bonding manifolds, as in PdTe2, will produce a type-II BDP

within the bonding manifold, even for large −t4π. Schematic kz dispersions are provided in

Fig. 5.1(c) for each of these cases.

Note that the rich phase diagram presented in Fig. 5.1 for the TMDs is in stark contrast

to an equivalent phase diagram for a more conventional topological insulator (TI) or Dirac

semimetal (DSM) phase of a two-orbital manifold origin. For a TI phase like in Bi2Se3, the

band inversion is realised at a high symmetry point rather than a high symmetry line. The

scope for altering the position of the inverted band gap is therefore less naturally available.

Instead, perturbing the crystal structure enough to alter the band structure is likely to simply

destroy the state of interest by undoing the corresponding band inversion.

5.1.1 Strain engineering

Experimentally, reducing the van der Waals gap (increasing t4) to either transform a type-II

BDP into a type-I BDP, or induce IBGs or further BDPs, could be achieved via applying uni-

axial strain along the c-axis [174]. If surface states are induced, then in principle it could
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be exploited as a switch for surface localised, high mobility charge carriers. Otherwise, the

energetic positions of topological phenomena could be altered, possibly providing routes to

move Dirac ones into the vicinity of the Fermi level or to induce a meaningful coexistence of

properties in the TMDs. The toy model on which the discussions in the previous Section are

based neglects the role of the transition metal. However, recent studies using real crystal and

electronic structures of group-X TMDs PdTe2 [191] and PtSe2 [174] verify the potential for

strain engineering in the 1T-structured TMDs.

(a)

(c)(b)

FIGURE 5.2: Strain engineering in PdTe2. Adapted from [191]. (a) Evolution
of the near-EF Γ -A dispersion in PdTe2 with applied pressure along the c-axis.
(b) The energy shifts of the two bands of interest at both Γ and A with applied
pressure are indicated. (c) Energetic shifts of AB-R4 and B-R5,6 (top) and the
formed BDPs (middle) are shown as a function of applied pressure. The kz

position where the BDPs are formed is indicated in the bottom panel.

A recent DFT based study by Xiao et al. [191] artificially strains PdTe2 to uncover how the

bulk Dirac points evolve. Consistent with the phase diagrams above, Fig. 5.2 demonstrates

how the type-II BDP formed from the protected crossing of the anti-bonding pz-derived band,

AB-R4, with the bonding px ,y -derived band, B-R5,6, along the Γ -A direction below EF is shifted

to lower binding energies with increased applied pressure along the c-axis. Increasing the

pressure to >5 GPa unwinds the band crossings forming the type-II BDP and the IBG below

it. Surprisingly, however, a new BDP of type-I character is formed close to Γ approximately

300 meV above EF with continued applied pressure. This demonstrates how both the type
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and the energetic positioning of BDPs can be changed with applied pressure, with even a

small regime existing where both types of BDPs are simultaneously formed from the same two

bands along kz . Similar studies for the same band crossing, but in sister compound PtSe2,

show how the BDP formed in the pristine compound can be tuned to much shallower binding

energies by increasing the van der Waals spacing, effectively reducing t4σ within the context

of the model introduced above. The high mobility electrons forming the bulk Dirac cone in

PtSe2 can then contribute directly to transport [174].

The pressures required to modify the band structure of PdTe2 are likely too high for this to

form the operational principles of a device. However, studies of this form verify both the

robustness of topological phenomena formed from a single orbital manifold in the TMDs, as

well as the potential offered by tuning hopping parameters in real systems containing kz-

mediated topological ladders.

5.2 1T-PtSe2: Changing the effective crystal field and spin orbit

splitting

The above shows that the details of a kz mediated topological ladder can be altered with

changes to the unit cell. This Section furthers that discussion by comparing the ‘model’ system

1T-PdTe2 with a sixth transition-metal dichalcogenide compound, 1T-PtSe2. All DFT calcula-

tions in this Chapter are performed by M. S. Bahramy at RIKEN and the University of Tokyo,

as part of the publications [83], [173] and [192].

5.2.1 Type-II BDP and two TSSs in 1T-PtSe2

Like in PdTe2 and IrTe2, the transition metal in PtSe2 takes a non-bonding role, placing the

Fermi level within the chalcogen AB p-orbital manifold. The ground state of this compound

is semimetallic, however, owing to a smaller energetic overlap of chalcogen derived bonding

and anti-bonding p-orbital manifolds [193].

When considering the formation of the kz-mediated topological ladder in this compound, sev-

eral differences to the ‘model’ system 1T-PdTe2 should be noted. Firstly the atomic spin-orbit

coupling strength of the 4p-orbitals in selenium is weaker than that of the 5p-orbitals of tel-

lurium. As a result, PtSe2 will have a smaller energetic separation of the px ,y -derived R5,6

and R4′ bands than in PdTe2, and any hybridisation gaps opened at band crossings between

p-derived bands will be of a reduced size, owing to the smaller L ·S terms. The smaller atomic

size of selenium relative to tellurium will also result in reduced p-orbital overlap within the

crystal structure (which stays approximately the same size owing to the larger metal atom)

altering relative hopping strengths in line with the discussion above. Together, these changes

can be expected to reduce the total energetic extent of any topological ladder formed within

the p-orbital manifold.
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FIGURE 5.3: Topological ladders below EF in both PdTe2 and PtSe2. (a)
Orbitally projected DFT calculations along the Γ -A direction. BDPs and IBGs are
indicated. (b) DFT based slab calculation of the Γ -K dispersions over the same
energy range as in (a). Equivalent ARPES dispersions obtained with hν=27 eV

(24 eV for inset) in PdTe2, and 64 eV in PtSe2.

Despite these changes, a topological ladder does indeed exist in this compound. Fig. 5.3 com-

pares orbitally projected DFT calculations for the Γ -A directions of both PtSe2 and PdTe2 below

the Fermi level. A type-II BDP is formed in PtSe2, again from the protected crossing of the

antibonding pz-derived band (AB-R4) and the shallower energy bonding px ,y derived band

(B-R5,6). The BDP is formed at a much deeper binding energy (E − EF ≈ − 1.5 eV) than in

PdTe2, however. This Dirac cone is clearly observed in both the DFT based surface slab calcula-

tions (Fig. 5.3(b)) and E(k‖) dispersions obtained via angle-resolved photoemission (ARPES)

(Fig. 5.3(c)). Fig. 5.3(b-c) additionally show that this Dirac cone is strongly modified away

from k‖, turning over towards EF to ensure compensation of electron and hole carriers at the

Fermi level, as required by the semi-metallic ground state [168, 193].

As with PdTe2, significant kz broadening again prohibits irrefutable experimental verification

of the ungapped nature of the BDP forming crossing points. However, artificially kz broadened

DFT calculations can be compared directly to experiment. Following the arguments outlined

in Chapter 3.1.4 and [117], kz-dependent DFT calculations at 41 discrete, evenly-spaced kz,0

between 0 and π/c were used to produce spectral functions each incorporating a kz integra-

tion over approximately kz,0 ± 3πc in line with Eqn. 3.19 (λ =4.47 Å), where each successive

addition would contribute less than 0.5% of the intensity for kz = kz,0. A small imaginary

component of the self energy, Σ′′, was included to approximate a continuous kz dispersion
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from the 41 discrete steps.
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FIGURE 5.4: Photon energy dependence of the type-II BDP in PtSe2. (a)
ARPES dispersions along the Γ -M directions for the photon energies indicated.
(b) The data in (a) are reproduced, with overlaid bulk DFT calculations. (c-d)
Artificially broadened bulk DFT calculations following the procedure outlined
in this section with (c) and without (d) the overlaid unbroadened DFT. An
energy offset of −0.1 eV and and an energy scaling of 1.05 is applied to all

calculations in (b-d).

Fig. 5.4 displays the end result of this analysis for various kz,0 compared to nominally equiv-

alent dispersions from photon energy dependent ARPES dispersions (c =5.09 Å and V0 =

16 eV). Although the presence of additional surface states in the experimentally obtained dis-

persions slightly clouds this picture, good agreement is observed between ARPES (Fig. 5.4

(a-b)) and kz broadened bulk DFT calculations (Fig. 5.4 (c-d)). Like in PdTe2, the bottom

branch of the type-II BDP is not clearly observed experimentally, owing to its rapid dispersion

in kz . This is verified here by the apparent absence of this band even in the broadened DFT

calculations for kz,BDP = 0.682π
c , whilst the crossing is clearly formed in the un-broadened

calculations (red traces in Fig. 5.4 (b,c)). This experimentally verifies the presence of type-II

Dirac fermions in PtSe2, first predicted in [174], originating from the same mechanism as in

PdTe2, WSe2 et al. in the previous Chapter.

The topological surface states, TSS1 and TSS2, are also shared by both PdTe2 and PtSe2, with

a slightly altered appearance between the two compounds owing to the differing constraints

imposed by the corresponding crystal structures. With reference to Fig. 5.3, TSS1 in PtSe2
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resides in an almost vanishingly small local band gap formed along Γ -A in this material. This

is most clearly seen in the inset of Figure 5.3(b), where a very small Dirac like surface state

can be seen bridging the bulk manifolds. Although ARPES cannot clearly resolve the band

gap, the surface resonance itself is still clearly resolved (Fig. 5.3(c)), energetically degenerate

with the surrounding kz projected bulk bands. This suggests that the topological surface states

formed via the mechanism presented in Chapter 4 are able to survive the reduction of the size

of spin-orbit gaps to arbitrarily small values, demonstrating the robustness of these states1.

It is worth noting once more at this stage that an equivalent reduction in spin orbit strength

from Bi2Se3 to Sb2Se3, like the case here from PdTe2 to PtSe2, renders the latter topologically

trivial [69]. In Bi2Se3, the band inversions themselves are driven by spin-orbit coupling. Here,

spin-orbit coupling, along with the crystal field splitting, merely set the starting energy scales of

the p-orbital bands, with the out-of-plane wavevector kz mediating the band crossings. Small

changes to the spin-orbit coupling strength in the TMDs therefore can change the position

along kz where the inverted band gap forms, but cannot destroy the state entirely.

The appearance of TSS2 is also strongly modified from that in PdTe2. Again with reference

to Fig. 5.3(b-c), the dispersion below the Dirac point is much the same in between the two

compounds, but above the Dirac point the upper legs of TSS2 in PtSe2 rapidly turn over to

adopt a more Rashba-like appearance. In analogy to the discussion of the experimentally

resolved TSS in WSe2 (Chapter 4.4), this is a consequence of the surrounding kz projected

bulk bands. The in-plane dispersion of the bulk manifold is larger in PtSe2 than in PdTe2, so

TSS2 needs to adopt a more Rashba-like appearance in order to maximise the momentum-

space region in which it avoids becoming resonant with the bulk manifold.

This Section establishes the presence of topological ladders in a sixth TMD compound, PtSe2,

and again shows that by changing the details of the unit cell, the appearance of the topological

surface states and bulk Dirac cones have their appearance modified. This, given the previous

Chapter, is not a surprising result. However, whilst the surface band structures are similar

below EF for the two compounds, there are profound consequences above EF to the change in

the unit cell.

Full kz band dispersions of PdTe2 and PtSe2 are shown in Fig. 5.5. t4σ is sufficient in size

to enforce a crossing of the anti-bonding pz derived band (AB-R4) with the bonding px ,y (B-

R5,6, B-R4′) below the Fermi level in PtSe2 as discussed above and shown again in Fig. 5.5(e).

However, AB-R4 originates at Γ at a deeper binding energy than the anti-bonding px ,y derived

states, and so there are no band crossings within the anti-bonding chalcogen manifold. The

type-I BDP and inverted band gap above EF in PdTe2 (Fig. 5.5(a)) are therefore absent in

PtSe2. In other words, the changes to the unit cell when transitioning from PdTe2 to PtSe2

modify the relative hopping strengths between p-orbitals sufficiently to reverse the effective

1However small, the spin-orbit coupling strength needs still to be finite to generate inverted band gaps. Other-
wise critical bulk Dirac fermions are formed in their place. See for example Chapter 2.2.1.
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FIGURE 5.5: Comparing the fermiology of the group-X TMDs. (a) Fermi
surface of PdTe2 (hν =107 eV probing close to an A plane) (b) Full Γ -M dis-
persion (hν= 24 eV, probing close to an A plane) of PdTe2. (c) Equivalent DFT
based slab calculation to data shown in (b) over an extended energy range.
(d) Orbitally projected DFT calculations along the Γ -A direction for the equiv-
alent energy range. (e-h) Equivalent calculations and datasets for PtSe2 (hν=

107 eV). IBGs, TSSs and BDPs are indicated.

crystal field splitting of the anti-bonding p-orbital manifold. Equivalently, an extra BDP-TSS

pair is effectively induced in PdTe2 by altering details of the unit cell [192]2.

The next Section shows how this extra TSS above the Fermi level in PdTe2, coupled with small

kz projected band gaps, results in a Fermi surface composed in part of topological surface

states. This result is significant, as PdTe2 is an intrinsic superconductor.

5.2.2 Fermiology of PdTe2

Exactly how this situation arises is shown in the DFT-based slab calculations along the Γ -M

direction in Fig. 5.5(c). The Dirac point of this third topological surface state, referred to as

TSS0 from now on, has a Dirac point at Γ , energetically positioned within the inverted band

gap at E − EF ≈ +1 eV. Away from Γ , the in-plane bandwidths of the surrounding chalcogen

px ,y -derived bands are extremely large. Therefore, similar to the above discussion for TSS2 in

PtSe2, both branches of TSS0 turn over and adopt significant downward dispersion to avoid

becoming resonant with the bulk bands.

In fact, the two branches follow the narrow channels left within the kz-projected bulk band

structure down below the Fermi level. TSS0 crosses EF approximately midway along the Γ -M

direction. The dispersion of this state into the occupied region of the band structure allows

2Note that this is an effective CFS reversal only. The ordering of E and A1 sub-manifolds following the inclusion
of CFS is likely unchanged between the two compounds. Rather, the interference of chalcogen wavefunctions,
ψX (r ), is altered such that the relative B/AB splittings of pz and px ,y orbitals result in a reversed final ordering of
bands in the AB manifold relative to PdTe2 [192].
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it to be probed experimentally (Fig. 5.5(b)). The upper branch of this surface state, labelled

α in the inset in Fig. 5.5(b) is barely occupied, with a band minimum of <20 meV. The lower

band, β , has a band minimum of approximately −130 meV, and becomes resonant with the

bulk manifold at high momentum. These two branches together form TSS0.

This topologically non-trivial surface state at the Fermi level of PdTe2 is consistent a recent

de Haas van Alphen study of PdTe2 [176], wherein a signature of a band of non-trivial Berry

phase was found at the Fermi level. Fig. 5.5(a), shows the full fermiology of PdTe2, including

TSS0.
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FIGURE 5.6: Photon energy dependence for TSS0 in PdTe2. (a) hν =24 eV
band dispersion along the Γ -M direction of PdTe2. An EDC is indicated, with a
kz dispersion spanning multiple Brillouin zones shown in (b). (c-d) Equivalent
datasets for PtSe2 (hν =107 eV for the dispersion in (c)) The inner potential,

V0, was taken to be 16 eV for both compounds.

The absence of the inverted band gap above EF in PtSe2 can be used to help verify the topologi-

cally non-trivial nature of TSS0 in PdTe2. Indeed, TSS0 is absent in equivalent band dispersions

for PtSe2 shown in Fig. 5.5(f,h). In contrast to the rich multi-valley Fermi surface of PdTe2,

the Fermi surface of 1T-PtSe2, shown in Fig. 5.5(h), hosts only diffuse bulk electron and hole

pockets. Although there are bulk electron pockets in approximately the same place within the

surface Brillouin zone as the topological surface states in PdTe2, the two are unrelated.

Fig. 5.6 compares photon energy dependent energy-distribution curves performed through

approximately the band minima of TSS0 in PdTe2, and of the electron pocket midway along

the Γ -M direction in PtSe2. Both the α and β branch of TSS0 have zero kz dispersion, consistent
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with their assignment as branches of a surface state. This is in contrast to the three-dimensional

bulk bands at deeper binding energies in PdTe2, and to the electron pockets in PtSe2, which

both show clear dispersion in kz . This contrast provides additional evidence for the lack of any

surface derived bands at the equivalent k-point in PtSe2 and further supports the topological

origin of TSS0 in PdTe2.

Fig. 5.6(b) additionally shows how TSS0 has periodic intensity variations over the range of kz

shown. The spectral weight is generally higher at A planes (odd integer multiples of π/c) than

Γ planes (even integer multiples of π/c). These same kz-dependent matrix elements can be

seen more explicitly when probing the full three-dimensional Fermi surface through a series

of kx -ky Fermi surface slices for various kz . The result of these measurements is shown in

Fig. 5.7. Close to an A plane (hν =107 eV), TSS0 has a larger spectral weight at negative

kΓ−M than positive kΓ−M for kΓ−K = 0. This asymmetry persists in a three-fold rotationally

symmetric fashion around the Fermi surface, with the relative ordering maintained in the

neighbouring Brillouin zones. At a Γ plane, however (e.g. hν =78 eV), although portions of

the TSS become resonant with the bulk bands, this threefold rotational symmetry is clearly

reversed. The maximum asymmetry of TSS0 at ±kΓ−M is found at intermediate kz planes, for

example at hν=97.5 eV and hν=123.5 eV.

Although the surface Brillouin zone is six-fold symmetric, these measurements show how the

matrix elements of TSS0 reflect the three-fold rotation symmetry of the bulk band structure.

The IBG that forms TSS0 occurs at Γ , but the kz projected bulk band gap in which it is observed
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is located partway along the Γ -M direction. Since the regions of E(k) related by (k‖,±kz) are

not equivalent for k‖ 6= 0, TSS0 has maximum spectral weight along either ±k‖ for a given kz .

The fermiology of TSS0, shown in Fig. 5.7 and Fig. 5.5(a), is clearly far removed from the

quasi-circular appearance of TSS1 and TSS2 in the constant energy contours presented previ-

ously. Although severe, this warping away from circular geometry can be well explained by

considering the details of the small kz projected band gaps in the surface Brillouin zone. The

relationship between the kz projected band gaps and the dispersion of TSS0 is demonstrated in

Fig. 5.8, which directly compares the detailed experimental band dispersion of TSS0 to bulk,

kz-resolved DFT calculations.
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FIGURE 5.8: Detailed band dispersion of TSS0. (a-b) Experimental band
dispersions (hν=24 eV) parallel to the Γ -K direction for various kΓ−M indicated
in the inset (top). kz resolved bulk DFT calculations are overlaid in (a) with
an energy scaling of 1.08 applied. (c) Equivalent dispersions from DFT based

surface slab calculations.

The topmost panel in Fig. 5.8 shows the region of the Fermi surface occupied by TSS0, probed

at a photon energy corresponding approximately to an A plane. The orange lines indicate
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the positions of experimentally obtained E(kΓ−K) dispersions shown in Fig. 5.8(a-b). On the

low momentum side of the Γ -M line (kΓ−M = −0.4 Å−1), there is no kz projected band gap

and so the branches of TSS0 remain above EF . Upon moving to higher momenta, small pro-

jected band gaps begin to open and the surface state disperses down below EF to occupy them

(kΓ−M = −0.46 Å−1). The ‘wing’-like features that exist just off the Γ -M line in the Fermi sur-

face maps (Figs. 5.5, 5.7 and 5.8) can be understood within this framework. The E(kΓ−K) band

dispersions at higher momenta (kΓ−M = −0.52 to −0.64 Å−1) reveal how the band minimum

of the shallowest branch, α, as viewed along the Γ -M direction is only a local minimum. The

state finds a much deeper band minimum at non-zero kΓ−K, taking an overall W-like shape.

By doing this, TSS0 avoids becoming resonant with the bulk-derived hole band maximum at

(kΓ−K, kΓ−M)= (0, −0.64) Å−1. In summary, by adopting this band dispersion, TSS0 can stay

non-resonant with the bulk until very high momenta (kΓ−M = −0.7 Å−1). DFT based surface

slab calculations, shown in Fig. 5.8(c) are in excellent agreement with these experimental

observations.

As outlined in Chapter 2, even a modest hexagonal warping of a TSS allows for an out-of-plane

component to the spin texture. Here, TSS0 can be considered as an extreme case of warping

away from circular geometry, and so the complexity of its spin texture can be expected to be

commensurate to that of the band dispersion outlined above. Fig. 5.9 provides a summary

of the spin texture of TSS0 through three-component spin-resolved constant energy kx -ky

contours at EF .

The spin-resolved measurements in Fig. 5.9(a) are displayed on a two-dimensional colour

scale. On one axis, the spin polarisation is shown, determined in the usual way according

to Eqn. 3.27. The other axis corresponds to the total intensity, I tot
i , defined in Eqn. 3.26 and

overlaid as a transparency filter to suppress large spurious polarisation occurring due to the

low background intensity.

Regions corresponding to α and β branches have a clear opposite chiral component of spin

polarisation, here 〈Sx〉 (parallel to Γ -K), consistent with the expected opposing in-plane mo-

mentum locked branches of a conventional TSS.

Their unusual dispersion additionally permits a significant radial component, 〈Sy〉 (parallel to

Γ -M), however. This radial spin component switches sign about the Γ -M line in accordance

with the Γ -M mirror symmetry. The out-of-plane component 〈Sz〉 remains small in comparison

to the in-plane components. The clarity of this complex spin texture is improved by extracting

an in-plane vector schematic directly from the 〈Sx〉 and 〈Sy〉 resolved Fermi surface maps in

Fig. 5.9(a).

This is shown in Fig. 5.9(d), compiled using the following procedure. Arrows are centred at k-

points corresponding to the positions of bands from spin-integrated ARPES. Their magnitudes

are determined according to

I tot
x

Ç

P2
x + P2

y , (5.1)
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created following the procedure in the text.

and their directions determined according to

tan−1
Py

Px
or π+ tan−1

Py

Px
, (5.2)

for positive and negative signs of Px respectively.

Fig. 5.9(d) demonstrates an opposite, fully momentum-locked, spin texture along the Γ -M di-

rection of the α and β branches. Radial warping is developed only for non-zero kΓ−K. The spin

vector winds up along α′ for negative momenta, through α and back down α′ for positive mo-

menta. Whilst complex, the schematised global spin texture shown in Fig. 5.9(c) is still clearly

reminiscent of a topological or a Rashba surface state, with counter rotating, predominantly

in-plane and momentum-locked branches.

Fig. 5.9(b) additionally provides details of the band dispersion of TSS0 at deeper binding en-

ergies. Both the central, approximately circular α band, and its associated ‘wing’ features,

α′, shrink in size with binding energy, consistent with their electron-like nature. The former

is quickly lost owing to its small band minimum along the Γ -M direction. The β band ener-

getically below it along the Γ -M direction, behaves as a hole band however, growing in size.
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FIGURE 5.10: Spin texture of TSS0 below the Fermi level. (a-b) Three com-
ponent spin-resolved Fermi surface maps (hν=24 eV, APE beamline of Elettra,
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constant energy contour for the appropriate binding energy.

Fig. 5.10 demonstrates how the growth of the β band is associated with an enhancement of the

〈Sy〉 component, as well as a development of a non-zero 〈Sz〉 spin polarisation at the deepest

binding energies probed (E−EF = −180 meV). The opposite chirality of the α and β branches

is retained throughout this range of binding energy.

The above description of the spin texture can be substantiated with a more conventional,

quantitative approach. Performing three-component spin-resolved energy-distribution curves,

shown in Fig. 5.11 at the k-points indicated in Fig. 5.11(a), again clearly demonstrate the

opposing chirality of α and β . Fig. 5.11(b) shows how the spin-polarisation of the β band,

still present at the largest momentum probed (−k5), becomes suppressed as the state merges

into the bulk manifold. Fig. 5.11(b) additionally establishes that time-reversal symmetry is

obeyed by these states with the EDCs in Fig. 5.11(b) performed at the opposite side of the

Brillouin zone to the spin-resolved constant energy contours in Fig. 5.9(a) and Fig. 5.10, as

well as the EDCs in Fig. 5.11(c). EDCs in Fig. 5.11(c) verify the switch in sign of the radial

spin component at ±kΓ−K, as well as demonstrating the negligible 〈Sz〉 component.

Fitting the EDC corresponding to the 〈Sx〉 (chiral) spin component at position k = k7 (Fig. 5.11)
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to Gaussian broadened Lorentizians with a Shirley background, returns spin polarisation mag-

nitudes of 73% and −72% for the α and β branches respectively. k7 is close the mirror-line de-

fined by kΓ−K =0, and so 〈Sy〉 and 〈Sz〉, odd under this mirror operator, must be near zero. The

spin polarisation magnitude of TSS0 is therefore comparable to that of TSS2 (Chapter 4.3.2).

TSS0 in PdTe2 is the first experimentally verified topological surface state in this work to cross

the Fermi level. PdTe2 is known to be an s-wave bulk superconductor, affecting the density

of states in the immediate vicinity of EF . It is possible, therefore, that the superconducting

surface of this compound is host to Majorana zero modes [94].

5.3 Surface superconductivity of topologically non-trivial PdTe2

This Section will provide an overview of scanning-tunnelling microscopy/spectroscopy

(STM/STS) measurements on the surface of PdTe2, motivated by the work presented in the

previous Section and performed entirely by collaborator M. J. Neat in the group of P. Wahl at

the University of St Andrews [173].

A summary of the results and conclusions is presented in Fig. 5.12. Fig. 5.12(a) shows a

surface topography with atomic resolution, demonstrating the high quality samples of the

crystal grown by the group of T. Sasagawa at the Tokyo Institute of Technology. The spin- and

angle-resolved photoemission results in the previous Sections are performed above the super-

conducting critical temperature of 1.7 K [166, 167], limited by the boiling point of Helium

in conventional liquid Helium cryostats. The home-built ultra-low vibration laboratories in St

Andrews can achieve a base temperature of 10 mK using a dilution refrigerator, however [194].

It is therefore important to first verify that the topological surface states do indeed survive the

superconducting transition. Fig. 5.12(b) shows an angle-integrated (±M) dispersion, provided

by ARPES measurements, above TC . The two peaks, corresponding to the α and β branches
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of TSS0, are well recaptured by the STS tunnelling spectrum at 8 K. Upon cooling down to

40 mK, the two peaks persist, demonstrating a true coexistence of topological surface states

and superconductivity. The change in the background between the 8 K and 40 mK spectra is

an artefact of the measurement tip only, and is not indicative of a real physical change [173].

0.0

0.4

0.8

1.2

0.0
0.0-0.8

-200 -100 0 100

-0.4 0.4 0.8

0.5
1.0
1.5
2.0
2.5
3.0

NS

SSN
or
m
al
is
ed

dI
/d
V

dI
/d
V,
In
te
ns
ity

(a
rb
.u
.)

Bias (mV)

(b)

(c)

(d)

(e)

N
or
m
al
is
ed

ZB
C

0.08

0.06

0.04

0.02

0.1
0.3
0.5

B
ia
s
(m
V
)

E-EF (meV), Bias (mV) R (nm)

0.0

-0.4

-0.8

0.4

0 50

22
5n
m

0.10

100 150 200

0.0

2.0

1.0

ARPES
5K

STM
8K

STM
40mK

(nm)

(pm)

0
0

2

4

6

8

2 4 6 8

(a)

0
-60

60

αβTSS:

FIGURE 5.12: STM/STS study of PdTe2. (a) Surface topography of PdTe2
measured at T =8 K. (b) ARPES spectra (top; T = 5 K, hν = 24 eV, integrated
along the Γ -M direction of the Brillouin zone) and differential conductance
spectra measured using STM at T = 8 K (middle) and T = 40 mK (bottom). (c)
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and superconducting (S, bottom) tip, normalised to the conductance at 0.6 mV.
The dashed lines show the result of BSC-Dynes fits [173]. (d) Radially averaged
decay of zero bias conductance (ZBC) with distance (R) from the centre of a
vortex core, measured with a superconducting tip in a magnetic field of 7±2
mT. The inset shows the real-space image of the vortex via its enhanced ZBC. (e)
The radial dependence of the full superconducting gap structure with distance

from the centre of the vortex core.

Experimentally probed superconducting gap functions are displayed in Fig. 5.12(c) for both

a normal tip (NS junction) and a ‘superconducting tip’ (SS-junction), the latter achieved by

making brief direct contact to the sample surface, coating the tip in a finite amount of the su-

perconducting bulk material. PdTe2 is known to be a bulk s-wave superconductor. However,

as discussed in Chapter 2.2.5, superconducting pairing at the surface of 3D topological insu-

lators provides the possibility of a odd-parity pairing mechanism between the spin-polarised

branches of a topological surface state [91], which in turn enforces Majorana zero modes to

exist in vortex cores. However, the conductance spectra shown in Fig. 5.12(c) unambiguously

indicates surface s-wave surface superconductivity with both spectra well fit to a BCS-Dynes



106 Chapter 5. Tunability of topological phases in group-X transition metal dichalcogenides

models (dashed lines) [173]. Note also that there are no features at zero bias, again indicating

nodeless, conventional superconductivity. This finding clearly demonstrates that the existence

of topological surface states at the Fermi level of an intrinsic superconductor is not a sufficient

criterion to realise topological superconductivity.

Moreover, a vortex was found on the sample surface in an applied magnetic field at ≈7 mT,

shown in Fig. 5.12(d). Vortices occur at the surface of type-II BCS superconductors under non-

zero applied magnetic field strengths, and can be described as regions of the sample surface

which are not in a superconducting state; they do not expel all magnetic flux but instead

each contain exactly one flux quantum. Consistent with the findings of the bias spectra in

Fig. 5.12(c), additional spectra taken with a superconducting tip as a function of distance (R)

away from the vortex core show no in-gap states, strongly indicating the absence of Majorana

zero modes.

Note that there are mechanisms whereby Majorana zero modes could be missed in dI/dV

curves. In the tunnelling-limit, dI/dV curves can exhibit a dip at zero bias, even in the presence

of zero-bias modes [91]. However, given the quality of BCS-Dynes fits to each spectrum,

this is an unlikely explanation here. In fact, the presence of vortices at all is puzzling. The

bulk superconducting phase of PdTe2 has been shown to be be type-I [195]. A type-I bulk

superconductor with type-II surface superconductivity has not been previously found, nor is

the coexistence of the two types easily understood. This requires further study.

5.4 Further implications of small kz-projected band gaps

At several points within Chapters 4 and 5, unusual appearances of topological surface states

within the surface electronic structures of various compounds were explained in terms of small

kz-projected band gaps. These include, TSS2 in PtSe2 and the experimentally observed TSS

in WSe2, wherein each case the upper legs of the surface state turn over away from k‖ = 0 to

avoid becoming degenerate with the surrounding kz-projected bulk manifold.

The discussion of TSS0 in Section 5.2.2 also clearly fits this description. Although the Dirac

point of TSS0 is centred at k‖ = 0 and approximately 1 eV above EF , both the upper and lower

legs follow narrow kz-projected band below the Fermi level, experimentally observable only

approximately midway along the Γ -M direction. When probed at high k‖, the state is severely

modified away from circular geometry, instead forming complex multi-valley pockets in the

Fermi surface with significant radial spin canting. This is most easily seen with reference to

Fig. 5.8, wherein TSS0 closely mimics the shape of the kz-projected band gaps. TSS1 and TSS2

an be expected to become similarly increasingly warped with distance from Γ , moulded by the

surrounding kz-projected band gaps.

These small kz projected band gaps are a natural consequence of forming kz-mediated topo-

logical ladders. The formation of the band inversions and protected crossings along the kz

direction occurs when the bandwidth of pz-derived bands is much greater than px ,y -derived
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bands (since, in principle, t4σ � t4π). In practice, although the px ,y -derived bands are rela-

tively non-dispersive when compared to the pz-derived band, Fig. 5.5(d,e) shows how they still

have significant kz dispersion, at least in PdTe2 and PtSe2. In addition to this, bandwidths of

px ,y -derived bands are generally larger than pz-derived bands along k‖ (since t1,2σ � t1,2π).

The inherent three-dimensionality of the chalcogen p-orbital manifold then results in only very

small channels in E(k‖) left unexplored by the kz-projected bulk manifold. Topological surface

states necessarily must thread through these small channels in order to connect between TRIM

points [67] (here Γ , A, L, M), greatly confining the paths that these surface states can take.

This Section will provide an overview of other features within the experimentally probed sur-

face electronic structures of the group-X TMDs. Three more surface states, either created from

additional band crossings between the px ,y and pz derived bands away from the Γ -A line, or

simply remnant signatures of TSS0-2 at higher momenta, will be overviewed.
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Fig. 5.13 provides a complete overview of the electronic band structures of PdTe2 and PtSe2

through ARPES measurements using photon energies corresponding to A planes. Surface

states along with the type-II BDP are indicated. As well as the topological ladder, composed of

the BDP, TSS1 and TSS2 in each case, there are several common surface states (SS) at non-zero

k‖ with unusual band band dispersions.

These are labelled 2b, 3 and 4 in Fig. 5.13. TSS2b is a continuation of TSS2 as it disperses

through the bulk manifold. This is most obvious in PdTe2, although the spin-resolved data

presented below will demonstrate that this also the case in PtSe2. SS3 has a more complex dis-

persion. In PdTe2, its two branches have a turning point part-way along the Γ -K direction, but

monotonic downward dispersions along Γ -M. Together, this produces a strongly hexagonaly

warped, interlocking constant energy contour (Fig. 5.13(c ii.)), evolving to arc like-features

when probing below the band minima along Γ -K (Fig. 5.13(c iii)).

SS4 is the seemingly single-branch state dispersing exactly through the bulk Dirac point, men-

tioned previously in Chapter 4.3.1, present in both compounds. In PdTe2, its signatures are

clearest along the Γ -K direction where its dispersion can be traced almost to K. It appears

to hybridise with TSS2b, forming a pronounced anticrossing gap. Along Γ -M SS4 is less pro-

nounced, apparently crossing with TSS2b. Fig. 5.13(c iv) shows a constant energy contour for

a binding energy between the band maximum of TSS2b along the Γ -K and Γ -M directions. This

shows how TSS2b and SS4 together make an almost 12-fold symmetric pattern, again high-

lighting the complexity in band dispersions of surface states populating the narrow projected

band gaps here.

In PtSe2, each of surface states 2b, 3 and 4 have qualitative differences to their appearance

in PdTe2. In particular, each has a shallower band dispersion than in PdTe2 (Fig. 5.13). This

can again be attributed to the details of the kz projected bulk manifolds. Whilst the c-axis

lattice constants of the two compounds are similar (5.13 vs 5.08 Å for PdTe2 and PtSe2 respec-

tively [196, 197]), Pt is more electronegative than Pd, and Se is physically smaller than Te. This

combination can be expected to modify relative hopping strengths of in- and out-of-plane p-

orbitals whilst also changing the degree of absolute band-overlap between the two compounds.

Therefore, whilst these states still show significant hexagonal warping in PtSe2(Fig. 5.13(d)),

they are different. Specifically, they do not exhibit local band minima like SS3 in PdTe2.

Like TSS2b, SS3 and SS4 are not necessarily distinct from TSS1 and TSS2. In the case of SS4,

its apparent relationship with the BDP, dispersing exactly through it, prompts the consideration

of a Fermi arc origin. Whilst Fermi arcs commonly occur between BDPs separated in k‖, the

pair of BDPs formed along the kz axis in the TMDs project onto the same k‖ point in the surface

Brillouin zone. Despite this, some credence can be given to a Fermi arc interpretation through

a series of surface slab calculations of PdTe2 where strain fields of various sizes are applied

along the crystallographic c-axis. These are presented in Fig. 5.14.

Although discrepancies in the details of the surface electronic structure between experiment

and calculations makes a direct comparison difficult, as shown in Section 5.1.1 applying strain

to PdTe2 leads to the creation and annihilation of bulk Dirac points. By tracking the evolution
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of the overall surface electronic structure with strain, one can infer the origin of the experi-

mentally observed surface state, SS4.

Fig. 5.14(a-d) show calculations where a strain field is applied in compression, i.e. where the

Pd-Te bond lengths remain unchanged but the interlayer gap decreases in size. The increased

inter-layer hopping in this case enhances the size of the B-AB separation of a given pair of

p-orbitals. This leads to a shifting of the AB-pz derived band to lower binding energies, and

hence an opposite shifting of the B-px ,y derived bands is required in order to maintain charge

neutrality of the system. Accordingly, for the case of a 3% strain (Fig. 5.14(a-b)), the type-II

BDP formed from the crossing of AB-R4 and B-R5,6 is lost. With continued applied strain in

compression (10%) (Fig. 5.14(c-d)), the picture changes substantially. The band inversion

forming TSS1 is lost, but a new IBG (IBG5) as well as two additional BDPs are created, each

centred at Γ . The new IBG, positioned at E−EF ≈−1.2 eV, produces a further TSS (here TSS5)

in Fig. 5.14(d), formed from the anticrossing of the B and AB pz-derived R4 bands.

The type-I bulk Dirac point labelled BDP2 in Fig. 5.14(d) is formed from the crossing of AB-R4′

and B-R5,6, both of which have px ,y orbital character. BDP2 is located within 250 meV of EF .

BDP3, again of type-I, is formed from the pz-derived B-R4 with the px ,y -derived B-R5,6. Whilst

these observed changes to the bulk band structure are largely consistent with those of Xiao

et al in [191] and Fig. 5.2, the surface slab calculations additionally reveal how new sharp
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surface states unambiguously disperse through both BDP2 and BDP3. This can be interpreted

as evidence that SS4, observed clearly only in experiment, is indeed likely connected to the

type-II BDP below EF in the unstrained compound.

Similarly, Fig. 5.14(e-h) show the case where the strain is applied in expansion. Here, the

AB-pz derived band shifts to a higher binding energies with the B-px ,y derived bands moving

to lower binding energies. Whilst AB-R4 still anticrosses B-R4′ , the anticrossing between B-R4

and B-R4′ no longer occurs. There is therefore no longer a parity exchange across the resultant

band gap, and so TSS1 is lost. Surface states likely corresponding to SS3 in these calculations

seem to be largely unaffected by this change, again suggesting a distinct origin of SS3 and SS4

to the topological states populating the Γ -centred topological ladder discussed in Chapter 4.

More generally, the calculations in Fig. 5.14 are again an indication of the extreme resilience

of topological surface states formed from kz-mediated band inversions within a single-orbital

manifold. TSS0 and TSS2 each survive both 10% compression and expansion, and whilst the

type-II BDP and TSS1 can be destroyed, further BDPs and TSSs are produced in their place

with continued perturbation.
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FIGURE 5.15: Spin-polarisations of surface states 2b, 3 and 4 in PdTe2. (a)
ARPES dispersion along the Γ -K direction (hν =29 eV). (b) The dispersion
in (a) is duplicated, with a spin-resolved dispersion (hν =29 eV) overlaid for
the chiral spin component (〈Sy〉). This spin-resolved dispersion utilises a 2D
colour scale (see text). (c-d) Spin-resolved constant energy-distribution curves
(EDCs) (hν =27 eV) at the position indicated in (b) for the chiral (〈Sy〉) (c)

and out-of-plane (〈Sz〉) (d) spin components.

Returning to the experimental observations of the pristine compounds, the complexity of the

spin textures of these states can be expected to be significant, in-line with the band dispersions

presented above. Fig. 5.15 shows spin-integrated (a) and spin-resolved (b) Γ -K dispersions of

PdTe2, with the surface states again indicated. The spin-dispersion shows the ‘chiral’ compo-

nent (here 〈Sy〉), expected to be dominant for topological and Rashba surface states. Like in

the spin-resolved constant energy contours shown in Section 5.2.2, this dispersion utilises a

2D colour scale: The total intensity, I tot
i is included as a transparency filter over the determined
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ARPES dispersion along the Γ -K direction (hν =29 eV) overlaid with a spin-
resolved dispersion (hν=29 eV) overlaid for the chiral spin component (〈Sy〉).
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the Γ -M direction (hν =29 eV). (d) Spin-resolved EDCs (hν =29 eV) for the
radial (y), chiral (x) and out-of-plane (z) spin components, for the position

indicated in (c).

spin-polarisation, Pi , to suppress spurious polarisation arising from low background spectral

weight intensity.

This reveals how the clockwise chirality of TSS2 is inherited by TSS2b, with the spin-polarisation

non-zero even over the region of k‖ where the state becomes resonant with the bulk manifold.

SS4, the seemingly single branch state (Fig. 5.13(a)), finds a CCW chirality which persists over

the full momentum range shown. The chiral spin polarisation of SS3 is small in comparison.

Each of these surface states exhibit a switch of spin-polarisation from −k to +k, in accordance

with time-reversal symmetry.

In line with the discussions above, spin-resolved energy distribution curves shown in Fig. 5.15(c-

d) demonstrate that each of these surface states has non-zero out-of-plane spin polarisation.
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For TSS2b and SS4, which disperse monotonically along both in-plane high symmetry direc-

tions, this out-of-plane spin component is much smaller in magnitude than the chiral compo-

nent. For SS3 however, the out-of-plane component of SS3 is significant, with a Zeeman-like

ordering of the local band minima formed partway along the Γ -K direction. Although not

shown explicitly here, there is negligible radial (here 〈Sx〉) warping in PdTe2 for any of the

surface states discussed in this Section.

Fig. 5.16 details the spin textures of each of these states in PtSe2. Whilst the relative chiralities

of each of these surface states is retained from that in PdTe2, the details of the warping paths

are altered. Consistent with with their monotonic dispersions, the chiral component, 〈Sy〉
(〈Sx〉) for Fig. 5.16(a) (Fig. 5.16(b)), is dominant for all surface states, with even an opposite

ordering of the two branches of SS3 being resolvable here. There is still spin canting of each of

these states, however, with both a non-zero radial (〈Sx〉 in Fig. 5.16(a)) and out-of-plane (〈Sz〉)
component observed along the Γ -K direction. Along the Γ -M direction, both the radial and

out-of-plane components are symmetry enforced to be zero, consistent with the experimental

observations here.

Table 5.1 summarises the chiral components of each surface state discussed in this section

in each of these compounds. In summary, the chiralities of all surface states discussed here

have the same sign between compounds, and in general the total deviation from a chiral spin

texture is higher for PdTe2 than PtSe2, likely linked to the stronger deviation from linear band

dispersions. The warping in PtSe2 tends to be predominantly radial for these states, whereas

the warping in PdTe2 is entirely out-of-plane.

TABLE 5.1: Chiral components of spin for surface states in PtSe2 and PdTe2.
(U)pper and (L)ower correspond to shallow and high binding energies respec-

tively.

SS TSS2L TSS2U TSS2b SS4 SS3L SS3U

〈Schiral〉 CCW CW CW CCW CCW CW

It is important to note that this warping is not a natural result of higher order terms to the

k · p Rashba Hamiltonian discussed in Chapter 2.2.3 [78]. Instead, the warping here is due to

the shape of the underlying kz-projected band manifold, and in fact an inherent competition

exists between these two warping mechanisms.

By focussing once more on TSS2 in PdTe2, this point can be well illustrated. Below the Dirac

point of TSS2 where the lower branch populates a large kz-projected band gap, constant-

energy contours shown in Fig. 5.17 grow increasingly hexagonally warped with distance from

the Dirac point, with hexagon corners positioned along the Γ -M directions. As noted previously

in Chapter 4.3.2, this is entirely consistent with a Fu type model [78] derived from higher order

k · p terms to the Rashba Hamiltonian, commonplace in topological insulators and systems

with Rashba surface states [80]. However, above the Dirac point where the momentum-space

extent of the kz-projected band gap becomes smaller, the sign of the warping switches, with

apexes now formed along the Γ -K direction.
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This switch of warping is inconsistent with a Fu Hamiltonian for a C3 system, but can again

be explained in terms of the small kz-projected band gaps. TSS2b has its warping direction

set by the relative energetics of the local band gap in which it disperses into along the two

azimuthal directions (Γ -K or Γ -M). With reference to Fig. 5.13(a), TSS2b disperses into a

band gap which is at a shallower binding energy when viewed along the Γ -M direction than

along the Γ -K direction. Resultantly, the direction of warping of TSS2b ought to be such that

its apexes are orientated along the Γ -K direction. TSS2 follows suit to ensure good continuity

to TSS2b.

In PtSe2 a switch of warping across the Dirac point of TSS2 does likely not occur, although the

small energy range over which the upper legs of TSS2 turn over make this difficult to verify. In

PdTe2, TSS2b is approximately dispersionless along Γ -K, and has positive group velocity along

Γ -M. However, in PtSe2 the state is dispersionless along Γ -M and has negative velocity along

Γ -K. This results in an opposite warping direction to TSS2b in PdTe2, with apexes now formed

along the Γ -M direction Fig. 5.13(diii.-iv.)). There is therefore no incentive for a switch in the

warping direction of TSS2 in PtSe2.

Overall, this Section illustrates that Γ centred topological ladders are likely not the only generic

property of systems hosting a series of band inversions along a rotationally symmetric axis

within a single orbital manifold. Small kz projected band gaps have a significant influence

over both the band dispersions and spin textures of the surface electronic structures. The

group-X TMDs, relatively understudied relative to the group-VI semiconductors for example,

therefore host as many as five topologically non-trivial surface states and two bulk Dirac cones

within their electronic structures. The next Chapter does not focus on kz-mediated topological

phenomena, but instead further establishes the potential of these compounds by demonstrating
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several unusual properties possessed by two-dimensional electron gases induced at the surface

of PtSe2.
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Chapter 6

Rb dosed 1T-PtSe2: A model gated

semimetal

Chapter 5 demonstrated how a discrepancy in the interlayer hopping and spin-orbit coupling

strengths between PdTe2 and PtSe2 is sufficient to drive an effective crystal field sign reversal

in the anti-bonding p-orbital manifold. As a result, the Fermi surface of PdTe2 is composed in

part of topological surface states but the Fermi surface of PtSe2 is entirely bulk derived. This

Chapter focusses on the latter, and in particularly how its multi-valley composition can sup-

port an unconventional two-dimensional electron gas (2DEG) when electronically gated. This

result provides insight into the added potential of semimetallic systems as hosts for induced

2DEGs relative to their more traditional semiconducting counterparts. The Chapter will begin

with an brief overview of electrical gating in semiconducting systems.

6.1 Gated Semiconductors

6.1.1 Solution to Poisson’s equation for a single charge carrier type

Chapter 2 provided a simple argument for how the application of an electrostatic potential

normal to a completely lattice-decoupled quasi two-dimensional electron gas (2DEG), pro-

duces a band structure of the form E(k)∝ k2
‖ + k2

z + αRk‖. The term in kz ∝ nz/Lz , where

Lz � Lx , L y , demonstrates the possibility of realising an energetic ladder of sub-bands, one for

each accessible nz . Each sub-band mimics the bulk in-plane band structure E(k‖), but without

the constraints imposed by inversion symmetry. In that simplified discussion, the 2DEGs were

confined by an effective quantum well imposed by the applied electric field E(r ) = E0 ẑ.

In a real system, the form of any band banding potential acting to quantum confine subbands

has to obey Poisson’s equation [198]:

∇2V (z) = −
1
εbε0

ρ(z); ρ = e0[ρe(z)−ρe,bulk −ρh(z) +ρh,bulk], (6.1)

where V (z) is the potential describing electronic band bending near the surface and εb is the

static permeability of the crystal relative to the vacuum permeability, ε0. ρ(z) describes the
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space charge profile as function of depth into a sample surface, and is the sum the hole (h)

and electron (e) charge densities, ρe(z) and ρh(z), and the total number of bulk ions, ρe,bulk

and ρh,bulk.
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FIGURE 6.1: Adding electrons to electron and hole systems. (a) Schematic
of chemical potential shift (∆EF ) and formation of a quantised surface localised
state (QSS) following the addition of electrons. (b) Corresponding schematic
of the potential V (z) for the case outlined in (a). (c-d) Equivalent diagrams
for the case of a hole system, where any quantised sub bands would be better

described as a surface resonances (QSR).

A non-trivial solution requires a deviation of ρe,h(z) from the bulk values in the near surface

region, either achieved naturally on, e.g. a cleaved compound with residual surface charge,

or induced from an extrinsic electrical gating. In ARPES experiments the latter is mimicked

through the deposition of a dilute concentration of an electropositive alkali metal, which read-

ily donates electrons to the sample surface.

The following boundary conditions must be met:

V (z→∞) = 0;
dV (z = 0)

dz
=

eNSS

εbε0
. (6.2)

For a charge neutral system, the total space charge in the bulk, ρ(z→∞) must become zero,

enforcing the former condition presented in Eqn. 6.2. The latter requires that the divergence

of the potential at the surface (z = 0), is equal to the deposited total charge, given by eNSS.

The potential typically finds a solution of the form V (z)∝−[exp(−z/rT F )]/z, where rT F ∝
1/kF is the Thomas-Fermi screening length [198]. This sets the spatial extent of the quantum

well, and hence the delocalisation of any confined sub-bands within. The larger kF , the shal-

lower the potential well and so the higher the zero point energy. Metallic systems which have a

large kF are therefore typically incapable of hosting quantised 2DEGs, whereas semiconductors

provide an ideal platform on which to stabilise 2DEGs.

Fig. 6.1 shows schematic band structures and V (z) profiles the case where electrons are added

to the system and there there is only a single bulk conduction or valence band near EF . For

both an electron (Fig. 6.1(a-b)) and hole (Fig. 6.1(c-d)) system, the Fermi level is shifted

upwards with the addition of electrons, and therefore the charge profile, ρ(z), is in both cases

more electron rich at the surface than in the bulk. The potential, V (z), necessarily finds a

monotonic downward band bending as its solution, driven in both cases by the negative space
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charge build up in the sub-surface layers, screening the positive surface ions. This downwards

band bending provides the effective quantum well required for confining quantised versions

of the bulk electron pockets within the electronic structure. Note, however, that this form of

band-bending is only confining for electron bands. If a quantised two-dimensional hole gas

was to form here from electron deposition, then it would necessarily become resonant with the

three-dimensional bulk hole band and adopt a wavefunction delocalised over a spatial scale

exceeding rT F .

6.1.2 Applications from gated semiconductors

Band bending in semiconducting systems has been exploited for decades, and forms the basis

of all modern day electronics [199]. Many potential ‘next-generation’ applications additionally

require the formation of 2DEGs within the band-bending potential, occurring naturally both

at the interface between certain oxide materials (e.g. between ABO3-type perovskite oxides)

[42, 43], or in systems developing residual surface charge, either naturally upon cleaving, or

by developing vacancies with air exposure [36, 38–41].

Source Drain Ionic
Liquid

2DEG

SC1

SC2
SC

(a) (c)

(b) (d)

FIGURE 6.2: Controlling spin with electric fields. (a-b) Operational principal
of a Datta-Das style spin FET [32]. When VG = 0, there is a negligible Rashba
effect in the 2DEG at the interface of the two semiconductors (SC) and so the
measured spin orientation at the drain is the same as injected at the source.
(b) When VG 6= 0, spin degeneracy in the 2DEG is lifted enforcing a spin pre-
cession across the 2D sheet. (c-d) Inducing ferromagnetism with ionic liquid
gating [200]. A non-zero VG creates layer of single-charge ions, inducing fer-

romagnetism in TiO2.

A sample surface or interface is inherently inversion asymmetric and so, as introduced in Chap-

ter 2, the band structure of the 2DEG induced by any of the mechanisms listed above needs

not be spin degenerate. Low-dimensional electron systems are therefore potentially useful for

‘spintronic’ based applications. Any functional spintronic device would require a tuning pa-

rameter for the size of the spin-splitting within the 2DEG, however. Inducing and controlling

2DEGs on charge-neutral systems by electrical gating is therefore of current interest [44, 45].

In these systems, tuning the applied gate voltage provides direct control over the shape and
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depth of the confining potential profile, changing the scale of inversion symmetry breaking

and hence directly altering the degree of spin-splitting in the 2DEG [36, 38–40, 45].

‘Datta-Das’ style spin-FETs, mentioned briefly in Chapters 2 and 4 operate using this mecha-

nism [32–34]. A 2DEG is realised at the interface of two zinc-blende structured metal pnic-

tides, (Al, Ga, In)(As, Sb). As illustrated in Fig. 6.2(a-b), a gate voltage is applied normal to

the 2DEG plane to control the coefficient of the spin-splitting term, αR. A ‘source’ ferromagnet

is placed at one end of the 2DEG, acting to proximity polarise electrons within. In the presence

of the Rashba effect, the spins must naturally precess across the 2DEG; the rate of precession

measured by a ‘drain’ ferromagnet at the other side [32, 34]. The rate of spin precession can

be written as

∆θ =∆kF L =
2m∗αR(VG)L

~2
, (6.3)

where ∆θ is the change in spin orientation across the 2DEG , L is the length of the 2DEG, m∗

is the effective mass, and ∆kF is the momentum separation of the spin-split pair at the Fermi

level [32, 34], controlled by the applied potential VG . When VG is zero, the degree of inversion

asymmetry is minimal with the Rashba coefficient, αR, near zero and so the spin precession is

negligible.

More recently, similar operational principles have been used to create electrically controlled

room-temperature ferromagnetism in TiO2/LaAsO3 interfaces using ionic liquid gating [200].

Fig. 6.2(c-d) demonstrates the general principle [201, 202]: A liquid electrolyte forms a con-

tact between the gate electrode and the compound. When the gate voltage is non-zero, ions of

a single-charge species form a ≈ 1 nm thick charge carrier sheet, forming an effective electric

field normal to the system on the order of 10 MVcm−1. This mediates a ferromagnetic cou-

pling in that case [200]. Similar manipulation of magnetic order in two dimensions has been

demonstrated on Gd-doped GaN [203] and in the LaTiO3/SrTiO3 interface [204].

The transition metal dichalcogenide (TMD) family is also known to produce novel low- di-

mensional properties when electrically gated. As discussed in Chapter 4, although globally

inversion symmetric, the group-VI semiconducting TMDs have an intrinsic spin-valley lock-

ing which, when layer degeneracy is lifted, enforces a strong out-of-plane (Zeeman-like) spin

splitting at the K point valence bands due to the layer-localised in-plane electric dipole [142,

205]. Electrically gating these compounds lifts the layer degeneracy whilst providing a tuning

paremeter for the degree of the resultant Zeeman-like spin splitting [44, 143]. The additional

carriers are sufficient to create a superconducting state, also accessed via pressure [206], here

manifesting as ‘Zeeman-protected’ two-dimensional Ising superconductivity [207–209].

Despite the long-lasting, intense research effort into quantum confined quasi-2DEGs, studies

almost exclusively use semiconducting material systems as their basis, warranting analogous

studies in systems with other ground state structures and properties.
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6.2 Rb dosed PtSe2

The Ising superconducting state realised in 2H-MoS2 discussed above is a direct consequence

of symmetry breaking in a TMD. By electrically gating, a competition between the in-plane

electrical dipole inherent to the 2H-structure, and the effective out-of-plane dipole provided

by the quantum well itself is created, producing a complex spin-texture of the confined 2DEG

and permitting the formation of the aforementioned two-dimensional superconducting state.

Symmetry breaking in 1T-PtSe2 can also be expected to give rise to emergent low-dimensional

physics. Although inversion symmetry is maintained down to single monolayer in a 1T struc-

ture, there is a local inversion asymmetry within each chalcogen (X) sublayer of the X-M-X for-

mula unit along the c-axis. Here, though, the effective sublayer-locked dipole is out-of-plane,

providing the potential for unlocking an in-plane spin-splitting, if the electronic wavefunctions

are sufficiently localised. Indeed, in analogy to the ‘hidden’ out-of-plane spin polarisation ob-

served in spin-resolved ARPES measurements of bulk 2H-MoS2 [145], 2H-WSe2 [141] and

2H-NbSe2 [147], an in-plane spin signal has been obtained in monolayer PtSe2, despite global

inversion symmetry [148]. Therefore, in contrast to the 2H-TMDs, the intrinsic local inversion

asymmetry to the topmost Se layer can act to enhance the magnitude of a Rashba-like spin

splitting in any confined 2DEGs stabilised on the surface of the bulk compound.

PtSe2 is not semiconducting, however. The shorter Thomas-Fermi screening length is an added

complication when attempting to confine a 2DEG at the surface of its semimetallic bulk. This

semimetallic ground state will be overviewed next. Once again, all DFT calculations within

this Chapter are provided by M. S. Bahramy at RIKEN and the University of Tokyo.

6.2.1 The semimetallic ground state of PtSe2

The near-EF three dimensional band structure of PtSe2 is overviewed in Fig. 6.3. There are

three separate bands contributing to transport in this system [193]. Firstly, there is a hole

band centred at Γ . This is the chalcogen pz derived valence band which plays a role in the

formation of the type-II bulk Dirac point and an inverted band gap below the Fermi level,

as discussed in Chapter 5. Its diffuse appearance in ARPES measurements is consistent with

its three-dimensional nature, necessary for the formation of the topological states. The other

two pockets are electron-like bands. These are similarly three-dimensional with each pocket

localised to only a small kz region (see e.g. Fig. 6.3(a)).

One set of electron pockets are situated approximately midway along the Γ -M directions of the

surface Brillouin zone (henceforth referred to as the S points). The constant energy kx -ky cuts

in Fig. 6.3(a) (corresponding to kz ≈ ±0.6π/c) show how there are three such pockets each

side of the Γ plane in kz , with their triangular coordination switching about kz = 0, reminiscent

of the chalcogen sublayers in the real-space crystal structure (e.g. Fig. 4.4). There is excellent

agreement between theory and experiment, although the kz broadening here is sufficiently

large (Chapter 5 and [173]) that signatures of the Γ centred hole bands are also present in the

experimentally obtained constant energy contours in Fig. 6.3(a).
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FIGURE 6.3: Semimetallic ground state of 1T-PtSe2. (a) Three-dimensional
Fermi surface (middle) provided by bulk DFT calculations, with insets at≈ ±0.6
π
c from ARPES (left, hν =99 eV (left, top) and 120 eV (left, bottom), EF±
30 meV) and DFT (right). (b) M-K-Γ -M ARPES dispersions (hν =53 eV). (c)

Corresponding kz resolved bulk DFT calculations.

The second set of electron pockets are situated exactly at the K points of the bulk Brillouin

zone, apparent in electronic dispersions shown in Fig. 6.3(b). These are barely occupied,

with only a tail of spectral weight falling below the Fermi level experimentally. Fig. 6.3(c)

additionally shows kz projected bulk DFT calculations of the pristine compound, which can be

used to verify that the electron and hole carriers in the bulk of PtSe2 are exactly compensated,

verifying the semimetallic ground state.

Despite this, this multi-band Fermi surface has a kF sufficiently small that the Thomas-Fermi

screening length, rT F , remains modest in size and small enough that a bend bending potential

can still confine quasi two-dimensional electron gases, as will be demonstrated below.

6.2.2 Stabilising a 2DEG at the surface of 1T-PtSe2

Electrical gating of PtSe2 was simulated in ARPES by the deposition of Rb atoms from a well-

degassed SAES getter operated at 5.6 A for 8 minutes, immediately following the sample

cleave.

Fig. 6.4 provides an overview of the changes to the near-EF electronic structure following

Rb deposition. A schematic representation of the surface charge accumulation is provided

in Fig. 6.4(a). Rb is highly electropositive and therefore readily donates its electrons to the

near-surface layers of PtSe2. There is a build up of negative charge in the near surface region,
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FIGURE 6.4: Fermiology of Rb dosed PtSe2. (a) Schematic diagram of Rb
deposition onto PtSe2. (b) Fermi surface map (EF±12 meV, hν =37 eV) as
obtained by APRES following Rb deposition. (c) Equivalent Fermi surface map

as provided by DFT based surface slab calculations.

acting to screen the positive charge of the Rb ions. This creates a band bending effect, acting to

push all electronic bands to a higher binding energy, whilst being sufficiently deep to quantum

confine a copy of the bulk electronic structure, as shown below.

Fig. 6.4(b) shows the Fermi surface of PtSe2 following Rb deposition. The shift of chemical

potential leads to an increase in size of both the S and K pockets relative to the Fermi surface

maps shown in Fig. 6.3. In addition, Fig. 6.4(b) clearly shows how sharp regions of spectral

weight develop around the perimeter of the bulk S pockets. This sharpening signifies a de-

viation from the three-dimensional nature of the bulk electronic structure and as such, these

intense rims can be attributed as quantum confined sub-bands of the underlying bulk electron

pockets, still visible as a shading within the area enclosed by the new sharp spectral weight.

The two-dimensionality of the new sharp spectral weight at S can be verified through photon

energy dependent ARPES measurements, shown in Fig. 6.5(b). In contrast to equivalent mea-

surements on the pristine sample, shown in Fig. 5.6(a) and the previous Chapter (Fig. 5.6),

the bands at S do not disperse in momentum over more than two full Brillouin zones in kz ,

unlike the bulk valence bands at deeper binding energies.

Fig. 6.4(c) shows an equivalent Fermi surface map to that presented in Fig. 6.4(b), as provided

by DFT-based slab calculations with an additional on-site band bending potential, solved self-

consistently in line with Eqn. 6.1. The S point pockets are again shown to take on a near-

rectangular appearance, in excellent agreement to experiment. Both this and the experimental

equivalent in Fig. 6.4(b) clearly show a band splitting on the low momentum side of this

pocket, suggesting the presence of either multiple sub-bands or a spin-splitting within a single

subband. However, the DFT calculations also predict quantum confined versions of the bulk K

pockets, again with an apparent band splitting, maximum along the Γ -K direction. This band

splitting is not clearly resolved in experiment, with the pocket at K remaining diffuse, taking

on a triangular appearance with extended regions of spectral weight along the Γ -K directions.

A more detailed electronic structure in the vicinity of the K points following deposition is

outlined in Fig 6.6. Along the M-K directions, the pockets are relatively sharp, but along Γ -K,

there is an additional intense region of spectral weight that develops, with a sudden increase
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grated within an energy window of 24 meV, centred at EF and -0.3 eV.

in effective mass in the band dispersion approximately 10 meV below EF . The reduced band

gradient towards the Γ point results in the extended tail towards the zone centre as seen in the

Fermi surface maps in Fig. 6.4(b) and Fig. 6.6(a). At the time of writing, the band dispersion

in the vicinity of K is not well understood. It is possible that a second, heavier, electron pocket

does exist at K, but lies just above the Fermi level in DFT, but below EF in experiment. This

could sufficiently complicate the experimental picture such that the band splitting predicted

by DFT at K is not resolved.
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(hν =37 eV, EF±12 meV, p-pol) and (b) Γ -K-M dispersion (hν =37 eV, p-pol +

s-pol) of Rb dosed PtSe2.
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Extracting the 2DEG carrier density

For the DFT-based calculations shown in Fig. 6.4, two free parameters needed to be fixed in

order to recreate the experimental condition. These are the dielectric constant of the solid,

required for the static permeability in Eqn. 6.1, and the total amount of band bending. The

former is taken form first-principles calculations presented in [210]. The latter can be varied

until the experimentally realised surface sheet carrier density is obtained. The carrier density

can be extracted directly from the Fermi surface map presented in Fig. 6.4(b).

Luttinger’s theorem states that the number of charge carriers obeys the following condition [211],

n= g

∫

dDk
(2π)D

, (6.4)

where n is the number of charge carriers, D is the dimensionality of the system, and g is the

spin and valley degeneracy, characterising how many equivalent bands exist within the first

Brillouin zone. Only the deposited carriers which populate the surface localised 2DEG are of

interest, and therefore D =2.

A good estimate of the pocket areas can be obtained by transforming the Fermi surface map

from kx − ky coordinates to kr -α, where kr is the radial k‖-point and α is the azimuthal angle.

The Fermi surface can be approximated as slices each of area ∆α2ππk2
r , where ∆α is a chosen

azimuthal resolution. The sum over such slices over the region of the Brillouin zone which a

pocket occupies provides an approximation to the area of the pocket. This procedure is shown

schematically in Fig 6.7.

0.0
0

20

40

60

80

100

120

140

160

180

0.5-0.5-1.0 1.0

kr (Å
-1)

az
im
ut
ha
la
ng
le
(d
eg
)

FIGURE 6.7: Extracting the surface sheet carrier density. The Fermi surface
map in Fig. 6.4(b) is transformed into a polar coordinate system. A schematic
diagram showing the extraction of pocket areas is shown in the inset (the pocket
refered to as AS,↑ in the text is used here as an example). kh and kl are the high
and low momentum sides of a pocket for at a given azimuthal angle. ∆α is the

chosen step size for the summation over α.



124 Chapter 6. Rb dosed 1T-PtSe2: A model gated semimetal

Assuming that there is negligible change to the hole pockets at Γ , the surface sheet density

is made up of the S and K point pockets, of which there are six and two per Brillouin zone

respectively. The spin degeneracy of the K point pockets is assumed to be 2, since there is no

band splitting resolvable in Fig. 6.6 and Fig. 6.4(b). The spin degeneracy of the S pockets was

assumed to be 1, with the two separated rims of spectral weight assigned as two halves of an

oppositely spin-polarised Rashba-split single sub-band. Note that this assumption is not robust

at this stage, but it will be justified below. The electron count can then be expressed as areas

in k-space of each pocket type, AS,K :

n=
6

(2π)2
(AS,↑ + AS,↓) +

4
(2π)2

(AK). (6.5)

From this, a surface carrier concentration of approximately n= 1014 cm−2 is obtained, similar

in magnitude to what is typically induced in heavily dosed semiconducting systems via alkali-

metal deposition [44]. Using this sheet carrier density, the resultant Fermi surface presented

in Fig. 6.4(c) is produced, with excellent agreement to experiment.

Large spin anisotropy from orbital character

A spin-splitting of the quantised S pocket is just one possible origin for the observed band-

splitting. Although all quantised 2DEG states should exhibit Rashba-type spin splitting (for

non-zero L·S), this is often much less than the resolution of experiment (see for example [39]).

Instead, the two branches surrounding the S pocket could be explained as two spin degenerate

sub-bands with different nz values. In addition, the Fermi surface maps in Fig. 6.4 demonstrate

a significant anisotropy in the magnitude of band splitting. Whilst a large splitting is observed

on the low momentum side of the quantised S pocket, the splitting reduces to near degeneracy

on the high momentum side.

Fig. 6.8(a) shows experimentally obtained band dispersions of pristine and Rb-dosed PtSe2

along the Γ -M direction. Once again, the anisotropy of band splitting on the low and high

momentum sides of the pocket following Rb deposition is clear, with the splitting resolvable

down to the band minimum. Orbitally-resolved surface slab-based calculations are shown

over the same region of E(k) in Fig. 6.8(b). In addition, spin-resolved calculations projected

onto the chiral component are shown in the inset of Fig. 6.8(b). This verifies that that the

band splitting discussed above is indeed a spin splitting of the Rashba-type, rather than two

near-degenerate discrete sub band copies.

The anisotropy in the size of the spin splitting can be understood as a natural consequence

of an orbital character switch across the underlying bulk S pocket. The orbitally projected

DFT calculations for the pristine compound in Fig. 6.8(b) show how the low momentum side

of the pocket has mixed p-character with a significant px ,y contribution, whereas the high

momentum side of the pocket is almost entirely of pz character. The L · S contribution for a

predominantly pz-derived band can be expected to be small (lz = ml~; ml = 0), growing in

magnitude only with significant orbital mixing. The 2DEG inherits the orbital character of
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the underlying bulk band structure, and hence the spin-splitting within is found to be non-

negligible only on the low momentum side of the pocket where there is significant px ,y -orbital

character contribution.

The origin of the orbital character switch is made clear by Fig. 6.8(c), demonstrating how the

bulk S point pocket is formed from the hybridisation of a hole-like and electron-like band,

with px ,y and pz characters respectively. Such a spin anisotropy can therefore expected to be

common place in strongly hybridised multi-band semimetallic systems.

Anomaly in the Rashba coefficient

Although highly anisotropic, the size of the maximum magnitude of the spin splitting here is

very large compared to 2DEGs in other systems. Along the Γ -M direction, the spin-splitting on

the low momentum side of the S pocket is ∆kF = 25± 1 mÅ−1. To put this into context, one

can extract the same measure of splitting from the InAs 2DEGs induced in the first operational
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spin-FETs of the Datta-Das type [34] using Eqn. 6.3. In that case, the effective mass, m∗ =

0.05m0 [34] and the largest Rashba coefficient recorded is αR,max = 13 × 10−12 eVm [34].

This gives a maximum ∆kF = 1.7 mÅ−1, fifteen times smaller than the observation in PtSe2

here.

TABLE 6.1: Approximate spin splitting magnitudes at the Fermi level (∆kF )
extracted from the literature.

Compound ∆kF (mÅ−1) Reference

InAs 1.7 [32, 34]
Cu(111) 6 [212]
Ag(111) <10 [213]
CO dosed Bi2Se3 15 [45]
KTaO3 <20 [39]
Au(111) 23 [37, 213]
Rb dosed PtSe2 25 [168], here
Rb dosed Bi2Se3 37 [45]
BiTeI 130 [48]
PtCoO2 130 [214]
Bi/Ag alloy 130 [215]
PtRhO2 160 [214]

Estimates for ∆kF values in other systems hosting Rashba-split bands at the Fermi level are

shown in Table 6.1. It should be noted that the ‘delafossite oxides’ are the current record

holders for Rashba splittings, with their AO2 (A= Co, Rh, Cr) derived surface electronic struc-

tures limited only by atomic spin-orbit coupling strength, rather than the degree of inversion

asymmetry [214].

The Rashba-split bands in PtSe2 have a larger splitting than the p- and d- derived Rashba

surface state of Au(111) [216]. Gold has an very large atomic mass in comparison to Se, and

therefore the L · S term is large. This suggests that the spin-splitting seen here for the Se p-

derived bands is anomalously large. Indeed, from the dispersion in Fig. 6.8(a) an energetic

splitting of approximately 40 meV near the Fermi level can be extracted. This is ≈20% of

the atomic spin-orbit coupling strength of Se (0.22 eV [217]). This can be compared to an

equivalent value in the ‘giant Rashba system’ BiTeI, in which the Rashba splitting of the Bi

character quantum well states is ≈0.3 eV, 24% of the atomic spin-orbit coupling (Bi ASOC:

1.25 eV [48, 217]).

The spin-splitting in BiTeI is not limited by the degree of inversion asymmetry imposed by the

surface potential, but is instead possessed intrinsically within its bulk structure. To have a

comparable spitting in PtSe2 strongly suggests an enhancement of inversion symmetry break-

ing from an anomalously steep quantum well relative to what is typically achieved in gated

systems. Some insight is provided by considering the resultant quantum well profile, V (z),

obtained from the self consistent solution to Poisson’s equation and applied in the DFT-based

slab calculations presented above. This will be discussed next, in the broader context of the

potential of semimetallic systems for the basis for two-dimensional spin transport in devices.
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6.2.3 Outlook: PtSe2 devices

Fig. 6.9(a) shows the resultant potential profile, V (z), obtained in conjunction with the DFT

calculations shown in this Chapter. Unusually, this potential is non-monotonic, exhibiting a

hole accumulation region (V (z)> 0) in the sub-surface layers beneath the more conventional

electron accumulation layer (V (z) < 0). V (z) can only deviate from a monotonic form for an

electron doped system if at some z there is a sign reversal in the space charge density, ρ(z).

Fig. 6.9(b) shows how that is achieved here. The hole-space charge function, ρh(z), is peaked

at approximately 25 Å where it simultaneously becomes larger in magnitude than its bulk

value as well as ρe(z). This requires an undamped exchange of electron and hole-like carriers

in the near surface region, not possible in a single carrier system.
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cm−2. (c-d) Schematic diagrams of potential profiles, charge density profiles,
and surface electronic structures for the case where the quantum confinement
is ‘conventional’ (c) (as in Fig. 6.1) and when charge pumping is allowed, ‘dual

confinement’ (d).

Section 6.1.1 demonstrated that quantised hole bands from electron deposition typically do

not form, as they would necessarily adopt wavefunctions spatially delocalised over a region

exceeding rTF due to becoming resonant with the bulk bands. In the case where there is a
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coexistence of both electron and hole pockets at the Fermi level, a quantised sub-band copy

of either pocket cannot form in isolation. Instead, the 2DEG electronic structure must include

quantised versions of both the electron and hole bands, and so this energetically unfavourable

scenario, displayed again schematically in Fig. 6.9(c), must be circumvented if a quantised

two-dimensional electron gas is to form.

This can be achieved by pumping charge between two spatially separated regions, forming a

hole accumulation layer. This acts to significantly reduce the depth over which the potential

first recovers to its bulk value, minimising the effect of band bending on the hole bands at the

cost of steepening the electron accumulation region. This scenario, schematised in Fig. 6.9(d)

and verified by calculations for PtSe2 in Fig. 6.9(a-b), is inherently coupled to an increase

of inversion symmetry breaking in the immediate sub-surface region, helping to explain the

anomaly in the sign of the Rashba spin-splitting discussed in the previous Section.

This ‘dual’ form of quantum confinement can also explain the presence of only a single sub-

band state. The steepening of the electron accumulation region results in a 2DEG which has

a smaller spatial extent in the bulk, then it would have done otherwise. Lz is thus sufficiently

small as per the discussions in Section 6.1.1 that only a single nz can be accessed energetically.

In other words, the potential profile in the immediate surface region becomes more akin to

the case of the surface potential step following the formation of the hole accumulation layer.

Similarly, there is no evidence of any hole bands quantised by the hole accumulation regions

in the sub-surface layers.

The findings here should be generic to semimetallic systems capable of hosting 2DEGs. The

steepening of the potential profile gives semimetallic hosts of 2DEGs potential advantages over

their semiconducting counterparts in the design and functionality of spintronic devices. Not

only is the Rashba-splitting enhanced, but the hole accumulation region increases the spatial

separation between the quasi-2DEG and the bulk charge carriers. This could be exploited as an

‘surface-bulk barrier’, screening the spin-polarised charge carriers of the 2DEG from the spin-

degenerate bulk carriers. In principle, barriers of this form could provide an intrinsic protection

against spin decoherence events, for example. Moreover, this crossover from multi-type to

single-type carriers at the surface could be exploited as a new form of rectification [168].

It should be noted that the enhanced degree of inversion symmetry breaking in PtSe2 could

be additionally aided by the local inversion asymmetry of the Se sub-layers. As discussed in

Section 6.2, the Se sub-layers possess an effective out-of-plane electrical dipole, contributing

to an in-plane ‘hidden’ spin-polarisation in PtSe2 monolayers [148]. The electron accumula-

tion region in Fig. 6.9(c) is only 10 Å deep, less than two 1T formula units along the c-axis,

and so the top-most Se-layer could contribute to the anomalously large Rashba spin-splittings

observed here.
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6.2.4 Outlook: Plasmonic signatures in PtSe2

The presence of a two-dimensional electron gas at the surface of PtSe2 means that signatures of

electron-plasmon coupling could be present within an ARPES spectrum. Plasmons are collective

oscillations of electron gas density bound to light oscillations, with signatures of electronic

coupling in ARPES manifesting as broadened copies of a valence band, renormalised in binding

energy by the Plasmon energy [218]. Plasmonic materials can be used to ‘trap’ light and

transmit it into the bulk structure. They are therefore of potential interest for sensing and

solar cell applications [219].

Fig. 6.10(a) shows that PtSe2 hosts plasmonic-like signatures even in its pristine form. Band

dispersions along the Γ -M direction for a pristine compound and two stages of Rb deposition
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are shown. Significantly over-saturating these datasets, as in Fig. 6.10(b), exposes a region of

spectral weight directly below the S point pockets, apparently decoupled from all other bands.

Angle-integrated energy distribution curves in Fig. 6.10(c) show a clear peak of spectral weight

below the main conduction band.

The energy of a plasmon is approximated by the following equation [220]:

Ep = ~ωp = ~
√

√4πne2

mε0
, (6.6)

where ωp is the plasma frequency. In order to verify that these enhanced regions of spec-

tral weight are indeed plasmonic signatures, the dependence on the carrier density, n, can be

verified by extracting the plasmon position relative to the bulk conduction band for multiple

deposited Rb concentrations. This procedure is complicated both by the extremely weak in-

tensity of the candidate plasmonic signature, and by the diffuse nature of the bulk electron

pocket, limiting the ability to extract peak positions reliably from distribution curves. Be-

tween the dispersions for the pristine compound and following 3 minutes of Rb deposition

(5.6A, SAES getter), a shift of ≈ 6 meV is found for the separation of the plasmon mode rela-

tive to the leading edge midpoint of the S point pocket. Whilst this shift is consistent with the

plasmon assignment, it is within the experimental uncertainties here.

To verify this conclusively, one could utilise high resolution electron energy loss spectroscopy,

or ‘HREELS’, in which a low energy electron beam is scattered from a sample target. The

resultant ‘energy loss’ spectrum can inform of vibrational modes, substrate interactions and,

importantly, plasmonic response [221, 222]. Very recently, HREELS has been used to find

three plasmonic signatures in the group-X TMD PtTe2 [223], of which one corresponds to a

three-dimensional ‘Dirac plasmon’ originating from the bands forming the type-II Dirac cone

in that compound. This supports the tentative assignment of plasmon coupling in PtSe2, and

it is possible that the more metallic Te-derived equivalent of the bulk S pockets here could

contribute to the plasmonic signatures in that study.

6.2.5 Outlook: Changes to the valence band structure

Chapters 4 and 5 show how the group-X TMDs each exhibit at least two topological surface

states below the Fermi level, and so it is natural to ask the question of how this surface elec-

tronic structure is modified following such a strong surface perturbation offered by Rb depo-

sition.

Figure 6.11(a) again provides an overview of the surface states present in the pristine com-

pound. TSS1 and TSS2 are formed from the anti-crossing of the bonding and anti-bonding

chalcogen pz derived bands with the bonding px ,y derived bands, as discussed extensively in

Chapters 4 and 5. The origin of SS3 and SS4 is not exactly known. As discussed in Chapter 5,

they are likely distinct from TSS1 and TSS2 and topological in nature, as trivial surface states

can not naively expected to occur in van der Waals systems. TSS2b is an extension of TSS2,
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apparently disconnected form the main state due to the significant in-plane bandwidth of the

surrounding bulk bands.

Following Rb deposition, this picture changes significantly. TSS2 is shifted to a higher bind-

ing energy by approximately 420 meV, almost merging into the bulk band on which it sits.

Whilst this energy shift is consistent with the depth of the quantum well found in calculations

(Fig. 6.9(a)), TSS2 becomes significantly broader, developing spectral weight which can be

traced out to ky ≈ 0.5 Å−1. Its Dirac point is no longer well resolved, although there is some

connection between the two ∩-shaped bands centred just below E − EF = −3 eV.

It is possible that the topological interface shifts further into the bulk, with the Rb deposited

topmost layers topologically trivial and the bulk topologically non-trivial. The TSS would

then exist on a 2D plane further into the bulk, explaining its diffuse nature in ARPES spectra.

Consistent with this, TSS2b also becomes broader, losing significant intensity following Rb

deposition. However, this would require the unwinding the kz-mediated inverted band gaps

in the near-surface region. Whilst intercalating alkali atoms within a crystal structure is in

general able to decouple the topmost layers of the structure and remove the kz dispersion, the

large size of Rb and the low deposition and measurement temperatures (<14 K) make this an

unlikely scenario.

The changes to TSS1 are complex. Whilst it appears that it becomes more pronounced, the

underlying bulk band structure on which this surface state sits is not easily distinguishable from

the topological surface state (see for example, Fig. 5.4). SS3 and SS4 become much weaker,

becoming almost unresolvable in the former case. This could be taken an argument for a

topologically trivial nature, since the surface states are apparently destroyed by the surface
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perturbation caused by Rb deposition here. Further datasets with improved statistics and

resolution for sequential Rb depositions could shed light on the origin of the changes seen

here.
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Chapter 7

Conclusions and Outlook

In this thesis, a mechanism for stabilising arrays of type-I and type-II bulk Dirac points (BDPs),

multiple topological surface states (TSS) and topological surface resonances was identified

and verified in multiple transition-metal dichalcogenides (TMDs). The group-X TMDs, 1T-

PtSe2 and 1T-PdTe2 were the focus, each hosting a type-II bulk Dirac cone and at least two

topological surface states below the Fermi level. kz mediated topological ladders were found

to persist through the effective doubling of the unit cell to the 2H-structured TMDs, with

the ‘strong spin-orbit coupled’ semiconductor WSe2 found to host two bulk Dirac points of

opposite types, and two topological surface states below the Fermi level. Density functional

theory calculations predicted topological ladders in a further three TMDs; 2H-TaSe2, 2H-NbSe2

and 1T-IrTe2, which all undergo structural transitions with cooling temperature. The former

two have charge density wave transitions leaving the C3v-protected BDPs in tact, but the latter

undergoes a transition to a C2-symmetric system, wherein the lattice protection of the bulk

Dirac points is lost.

The ubiquitous nature of the topological phenomena within the transition metal dichalco-

genide material class is largely due to the single-orbital manifold origin. Simply, each TMD

member contains a chalcogen p-orbital manifold subject to the same rotational lattice sym-

metries, and so the topological ladder formed within is retained across the family. Moreover,

this same robustness allows broad possibilities for tuning these states. By altering interlayer

hopping strengths [83], for example by strain [191] or by chemical substitutions [182, 224],

the number, types, and energetic positions of bulk and surface Dirac cones can be altered.

This was demonstrated in part by the detailed comparison of the group-X TMDs PtSe2 and

PdTe2 wherein slight changes of the unit cell dimensions modifies relative hopping strengths

sufficiently to switch the sign of the effective crystal field for the anti-bonding p-orbital man-

ifold, effectively resulting in an extra induced BDP-TSS pair in PdTe2. The additional TSS

in PdTe2 is the only topological surface state identified in any of the six TMDs to cross the

Fermi level. PdTe2 possesses a bulk superconducting phase intrinsically, and as such this iden-

tification provided an opportunity to study the interplay of bulk superconductivity with the

topologically non-trivial surface electronic structure. This, along with the possibility of in-

ducing a two-dimensional electron gas in PtSe2 confined by an unconventional band bending

profile and exhibiting an enhanced spin-splitting, demonstrates the versatility and promise of

the relatively understudied 1T-structured group-X TMDs.
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The number of prerequisites for the formation of the topological ladders discussed in this the-

sis is minimal, and each is commonly occurring. Firstly, the crystal structure must be such

that there is a natural disparity in bandwidths along a direction in the Brillouin zone adhering

to the rotational symmetry of the lattice. Secondly, this bandwidth disparity must be larger

than the energetic separation of these bands imposed by the combination of the crystal field

splitting (CFS) and the spin-orbit interaction. The combination of these two factors ensures

multiple band crossings occur along a rotationally symmetric axis, wherein bulk Dirac points,

protected by the rotational lattice symmetry, and parity inverted band gaps can be produced

simultaneously. As a final discussion within this thesis, the question of whether or not analo-

gous physics can occur in systems outside of the TMD family will be addressed, and if so, of

the additional properties that such systems may possess.

7.1 p-orbital manifold topological ladders away from the TMDs

The simplicity of the underlying model presented in Chapter 4 makes finding instances of

topological ladders outside the TMD family relatively simple. If a band crossing in a bulk band

structure calculation can be described in the following way, then k mediated bulk Dirac cones

and inverted band gaps are likely commonplace within the corresponding compound family:

1. In the absence of spin-orbit coupling (SOC), there is a (usually asymmetric) band cross-

ing at a low-symmetry k-point.

2. Both branches are (usually) derived from the same orbital character.

3. When SOC is included, one of the two branches becomes doubled.

4. One of the doubled branches retains a gapless crossing, whereas the other produces an

anticrossing.

Fig. 7.1 provides two examples of band structure calculations from the literature which show

the above signatures. A recent DFT study into the bulk band structure of β-CuI (D3d) pre-

dicted the presence of a parity inverted band gap formed at Γ , as well as a type-I BDP at the

Fermi level formed along the Γ -Z direction [225]. Calculations of this system (Fig. 7.1(a-b)),

however, reveal a second type-I BDP and an anti-crossing gap is formed along this same axis

approximately 1 eV below EF . This latter pair of crossings can be understood as a consequence

of the same mechanism as outlined in Chapter 4: The crystal field lifts the degeneracy of the

iodine p-orbital manifold. The inclusion of spin-orbit coupling lifts the remaining degeneracy

of the px ,y -derived states (seen explicitly by comparing Fig. 7.1(a) and Fig. 7.1(b)), and a

natural bandwidth disparity along the C3-symmetric Γ -Z direction of iodine-derived p-bands

produces the symmetry protected crossing and an hybridisation gap, exactly as for the mech-

anism introduced for the TMDs. It is not clear from these calculations whether or not the kz

mediated anti-crossing is topologically non-trivial, however.

Fig. 7.1(c-d) show how a similar situation unfolds in band structure calculations of Zn2In2S5.

Recently verified in [190], this compound hosts kz (Γ -A) mediated bulk Dirac cones and an
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FIGURE 7.1: DFT calculations of trigonal systems hosting kz-mediated BDPs
and/or TSSs. (a-b) β-CuI (D3d) with (b) and without (a) SOC [225]. (c-d)
Zn2In2S5 in the R3m (c) and P63mc (d) space groups, with insets enhancing
the regions of BDP formation [190]. The regions of interest are indicated with

a purple box.

inverted band gap in both its R3m and P63mc forms. Like in the transition from the 1T- to

the 2H-structured TMDs, each band becomes effectively back-folded along kz with this change

of structure, transforming each BDP into two closely spaced BDPs, and similarly for the band

gaps. Intriguingly, the DFT for this system predicts that the bulk Dirac cones in the R3m phase

are exactly on the border between type-I and type-II bulk Dirac cones (coined type-III in [190]),

although this is unlikely to hold in any real system. In both these examples, the C3v symmetry

is again ultimately responsible for protecting the bulk Dirac points.



136 Chapter 7. Conclusions and Outlook

7.1.1 Type-II bulk Dirac cones and giant Fermi arcs in SnTe

One compound that will be discussed in some detail is SnTe, a carbon group monocalchogenide.

Sn and Pb monocalcogenides are most well known for their ferroelectric and topological crys-

talline insulator phases [226–228]1. Unlike the TMDs and the examples mentioned above,

these compounds do not possess C3v symmetry, but instead have cubic crystal structures. In

addition, finding kz mediated bulk Dirac cones in their ‘rock-salt’ type Brillouin zones may

allow for the experimental detection of Fermi arc surface states for the natural cleavage plane.
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FIGURE 7.2: Fermi arcs from a single orbital manifold. (a-b) Bulk and sur-
face Brillouin zones for a hexagonal (a) and cubic (b) system. In both cases,
BDPs are indicated in green, demonstrating that BDPs formed along the kz di-
rection in the hexagonal systems do not remain separated in the surface zone.
The four-fold symmetry of the rock-salt zone in (b) requires BDPs formed along
kz to also exist along kx and ky , producing three pairs of BDPs in the surface
zone, two of which remain separated. (c) Surface slab calculations for a con-
stant energy contour (above, energy indicated by dashed line below) and a Γ -A
dispersion (below) for IrTe2 cleaved along the unnatural (100) direction. Bulk

Dirac points and Fermi arcs are indicated. (c) is adapted from [83].

To illustrate this, Fig. 7.2(a-b) presents the bulk and surface Brillouin zones for a TMD (Fig.

7.2(a)) and for a rock-salt compound (Fig. 7.2(b)). In the former, the bulk Dirac points formed

symmetrically along A-Γ -A both project onto Γ in the surface Brillouin zone. A pair of BDPs

formed along the kz axis in a rock-salt Brillouin zone also project onto Γ , but here each of the

kx ,y,z directions are symmetrically equivalent. The pairs of BDPs formed along the kx and ky

directions therefore do remain separated in k‖, with Fermi arcs possibly connecting them. As a

verification that Fermi arcs can indeed exist between BDPs formed formed via the mechanism

outlined in Chapter 4, Fig. 7.2(c) shows a DFT-based surface slab calculation of IrTe2 ‘cleaved’

along the unnatural (100) plane, with Fermi arcs clearly resolved connecting the BDPs formed

along A-Γ -A. An ongoing experimental study into possible Fermi arcs between kz-mediated

type-II BDPs in a rock-salt structured system will be presented below.

1A topological crystalline insulator exhibits a band inversion at a high symmetry point of the lattice, stabilised by
the combination of TRS and a lattice symmetry. The resulting surface states are not considered to be topologically
protected [229].
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FIGURE 7.3: Type-II BDPs in SnTe. (a) Schematic representation of the Te
p-orbital manifold under the influence of the crystal field and spin-orbit cou-
pling (left), and a schematic dispersion along a C4v axis shown in the limit of
dispersionless px ,y -derived bands (right). (b-c) Bulk DFT calculations, from
[230] without (b) and with (c) spin-orbit coupling (SOC) included. (d) ARPES
dispersion (hν=135 eV, probing close to a Γ plane) of SnTe, obtained from the

CASSIOPEE beamline of SOLEIL.

Fig. 7.3(a) schematises the BDP-IBG forming mechanism in the context of SnTe. The, now-

cubic, crystal field lifts the degeneracy of the px ,y and pz derived bands, with spin-orbit cou-

pling again lifting the remaining band degeneracy between the px ,y -derived pair. As with the

TMDs, this alone is not sufficient to drive the formation of bulk Dirac points or hybridised

band gaps. Instead, their formation is again mediated by band dispersions along the rotation-

ally symmetric axes. The band crossing of the Te pz derived band with the pair of Te px ,y

derived states should create a bulk Dirac point, protected by C4v-symmetry, and a hybridised

band gap.

Bulk-DFT calculations from the literature [230] are entirely consistent with this mechanism.

In the absence of SOC (Fig. 7.3(b)), there is a single crossing between a likely-pz derived band

and a degenerate px ,y pair along the bulk Γ -X direction. When SOC is included (Fig. 7.3(c)),
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the degeneracy of the latter is lifted, to produce one crossing which stays protected, and one

that does not. Note that since Te and Sn each lie on an inversion centre within the unit cell,

each p-derived band is enforced to hold an odd parity eigenvalue. Indeed, explicit parity

calculations do not predict that the hybridised crossing is an inverted band gap, but instead

that it is trivial, as indicated in Fig. 7.3(c).

High quality single crystals were grown by C. O’Niell in the group of A. Huxley at the University

of Edinburgh by sealing equal molar weights of Sn and Te in Mo foil and heating [227]. As

is typical in SnTe single crystals, these crystals are Te rich, acting to slightly hole dope the

system [227].

An ARPES dispersion performed with photon energy nominally probing kz = 0 (for k‖ = 0)

is shown in Fig. 7.3(d). Along the in-plane directions, these measurements are in excellent

agreement with the DFT calculations, with a type-II bulk Dirac point formed at approximately

E − EF = −2.9 eV. The added benefit of the in-plane formation is that the crossing is not ob-

scured by uncertainties associated with photon energy to kz mapping, placing this observation

firmly among the best-resolved type-II bulk Dirac cones in any compound. Small discrepancies

between the band dispersions in the first and second Brillouin zone here can be explained by

a changing effective kz with increasing emission angle (k‖), seen explicitly in e.g. Eqn. 3.6.
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FIGURE 7.4: Bulk Dirac points along the x− and z− directions in SnTe. (a-b)
Dispersions at the coordinates indicated at a photon energy probing close to a Γ
plane (hν=135 eV). (c) Dispersion at photon energy nominally corresponding
to a kz-point where a BDP is formed (hν =83 eV). (d) Dispersion at a photon
energy corresponding to an X plane. The approximate binding energies of the
bulk Dirac points is indicated with a dashed line. A free-electron final state
assumption, with inner potential V0 = 2 eV, was employed for the photon energy

mapping here.

In line with the discussions above, there should also be bulk Dirac points formed along the

ky and kz axes. Fig. 7.4(a-b) reshows the type-II BDP formed along the kx direction, cutting

perpendicular ((kx ,ky)=(kBDP, ky)) and parallel ((kx ,ky)=(kx , 0)) to the k-point where the

BDP is formed, respectively. The shallowest, almost-linear cone feature in Fig. 7.4(b) centred

at Γ is the band which will disperse downwards with changing kz to form the BDPs centred

at k‖ =0. Indeed, by changing the photon energy to approach the low symmetry plane where
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this BDP is formed (at a point kz = kBDP), the electron like band at Γ disperses down to

form a point at approximately E − EF = −2.9 eV, with a linearly dispersing band rising from

below to complete the bulk Dirac cone. Upon moving to a photon energy probing a bulk X

plane (kz = 2π/a), the three p-orbital derived sates are at their minimum. In addition to the

BDPs, there are clear pronounced regions of spectral weight centred at Γ at binding energies

of approximately −1.7 eV and −2.6 eV. These are present in each of panels Fig. 7.4(b-d),

suggesting a surface derived origin of these states. These surface states are likely topologically

trivial, common in systems with strong three-axial bonding (Chapter 2.1.4).
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(b). Four BDPs should be observable outside of the first zone. (b) hν = 98 eV
constant energy contour at the binding energy of the BDP formation (E− EF =
−2.9 ±15 eV). Approximate positions of BDPs are indicated. Candidate Fermi

arcs are indicated.

The experimental data is consistent with the presence of type-II BDPs formed along the three

equivalent bulk Γ -X lines within the rock salt Brillouin zone, and therefore Fermi arcs should

in principle be observable for this (or any) cleavage plane, originating and terminating at the

bulk Dirac nodes. Fig. 7.5(a) shows three pairs of BDPs drawn schematically within the rock-

salt Brillouin zone of SnTe. For a photon energy probing close to an X plane (red shaded area),

the four BDPs formed along the kx and ky directions should be probed directly in the second

Brillouin zone. Fig. 7.5(b) shows such a constant energy contour at the binding energy of the

BDP formation. Approximate positions of the BDPs are shown with green markers.

There are regions of spectral weight which connect the BDPs across equivalent Brillouin zones.

However, they are sufficiently diffuse that it becomes difficult to conclude definitively that

these are indeed Fermi arc surface states, and not simply quasi two-dimensional bulk states

appearing sharp relative to the background of dispersive, kz-broadened intensity. This, with

the likely presence of topologically trivial surface states in this system means that further ex-

perimental evidence is required to verify their assignment as Fermi arcs.
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This system has the added complication of a ferroelectric phase at low temperature (TC =75 K)

[226, 227], wherein the unit cell is distorted such that an effective electric dipole along the

[111] direction is created. Such a dipole will lift the degeneracies of all six type-II BDPs here,

as C4 symmetry is not retained along any axis. Whilst this could prove an effective way in

practice to switch on and off spin-polarised surface states with temperature or pressure by

destroying the bulk Dirac cones which they bridge, it should be noted that the data presented

in this Section were collected at temperatures below this ferroelectric transition, and so the

protection of the BDPs should already have been lost, possibly explaining the lack of obvious

Fermi arc candidates. A more limited dataset obtained at high temperature (not shown) does

not show any qualitative change to this picture however. Nevertheless, the presence of BDPs

in a naturally occurring rock-salt is strong evidence for topological phenomena from a single

orbital manifold being prevalent in nature.

7.1.2 Further instances of topological ladders in rock-salt compounds
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FIGURE 7.6: DFT calculations of rock-salt systems hosting kz-mediated
BDPs and/or TSSs. (a-b) YPd2Sn (Oh) with (b) and without (a) SOC [231].
(c-d) TaC (Oh) with (d) and without (c) SOC [232]. The region of interest is

indicated with a purple box.

Fig. 7.6 shows two more examples of rock-salt compounds which host BDPs and anti-crossings

from within a single-orbital manifold. The ‘Heusler’ alloys (Oh) ({Y, Sc,}Pd2Sn), ({Zr, Hf,}Pd2Al)

and ({Zr, Hf,}Ni2Al), have been recently verified to host type-II bulk Dirac cones at the Fermi

level [231]. At higher energies (approximately 1 eV below the Fermi level in YPd2Sn), however,

calculations (Fig. 7.6(a-b)) again reveal an additional topological ladder, in this case forming

an almost maximally-tilted type-I bulk Dirac cone and a gapped band crossing forming along

the Γ -X direction. Again, the px ,y -derived bands are degenerate in the absence of spin-orbit
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coupling [231]. As in SnTe, explicit parity calculations do not predict the formation of in-

verted band gaps due to the location of the p-orbitals within the unit cell. Nevertheless, these

BDP-gap pairs in rock-salt systems can be considered to be cubic analogues to the topological

ladders within the TMDs, β-CuI and Zn2In2S5.

7.2 d-orbital manifold topological ladders in the Fe-based super-

conductors

In all of the compounds discussed in this thesis so far, the kz-mediated topological ladders were

formed within the chalcogen p-orbital manifold. Indeed, the model outlined in Chapter 4

for the 1T-TMDs completely neglects the role of transition metal d-bands. In the group-X

TMDs, there is a large energetic separation of d- and p-derived bands, and so this omission

is inconsequential for the understanding of the underlying physics. However, it was shown

in Chapter 4.4 that the formation of topological ladders is not limited to isolated p-orbital

manifolds. Each 2H-structured TMD considered in this work contains two bulk Dirac points

(one of type-I, the other of type-II), and two inverted band gaps below the Fermi level along

the Γ -A direction, despite significant dxz,yz-orbital character mixing into the otherwise px ,y -

character bands [83]. Not only, though, does the mixing of d- and p-orbital character not

hinder BDP-TSS formation, but analogous physics can be realised from bands with ‘pure’ d-

orbital character. Below it will be shown how the recent experimental realization of bulk

Dirac points and topological surface states in the iron based superconductors [224, 233] fits

this description.

E
-E

F
(e
V
)

0

1

-2

-1

0.4

0.0

-0.4

a b

FIGURE 7.7: DFT calculations of Fe-based superconductors hosting kz-
mediated BDPs and TSSs. (a) LiFeAs (D4h) with SOC [233]. (b) FeSe0.5Te0.5

(D4h) with SOC [233]. Inset shows BDP-IBG formation.

FeSexTe1−x forms part of the iron-based superconductor classification, recently verified to host

BDPs and parity inverted band gaps [224, 233]. These compounds have a highly tuneable

superconducting phase, as low as 8 K in bulk single-crystals of FeSe, but increasing above 40 K

when under pressure [234]. Moreover, FeSe has a ‘nematic’ phase wherein the C4 rotational

symmetry is lost, but translational symmetry is preserved [235, 236]. Therefore, with reducing
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temperature, a regime wherein the lattice symmetry protection of BDPs is altered is passed en

route to a regime where topological surface states coexist with, and possibly interplay with,

superconductivity. As a result, Majorana zero modes are predicted to exist at the surfaces of

these compounds when the TSSs are tuned to EF [224]. Although the topological surface

states and bulk Dirac point have been discussed in several publications [224, 233, 237], their

kz-mediated origin and its significance has been largely overlooked.

Fig. 7.7(b) outlines the formation of a topological ladders in FeSe0.5Te0.5. As with the TMDs,

the combination of crystal field splitting and the spin-orbit interaction alone is insufficient to

drive the requisite band inversions, instead additionally requiring disparate bandwidths along

the kz direction. The inset in Fig. 7.7(b) shows how a chalcogen pz-derived band forms C4ν

protected bulk Dirac points from the crossing points of the highest energy Fe d-derived bands,

of predominantly dx y and dyz character (top most and middle bands in the inset of Fig. 7.7(b)

respectively) [224]. A non-trivial inverted band gap is then formed with the bottom-most,

predominantly dxz-character, band.

More widely, the crystal structure of the iron-based superconductors is such that the pz band

always has a bandwidth large enough to cross through the entirety of the Fe t2g d-orbital sub-

manifold, regardless of its atomic origin. These same states therefore exist even in the simi-

larly structured Fe-based superconductors which do not contain a chalcogen, such as LiFeAs,

LaOFeAs and BaFe2As2. Fig. 7.7(a) shows the realisation of bulk Dirac points and an inverted

band gap in LiFeAs. Here the electronic structure is very similar, with the pz band now deriving

from As rather than a chalcogen.

The additional systems presented in this Chapter show that k-mediated topological ladders,

ubiquitous across a material family, can arise along one or multiple Cn-symmetric axes from

the crossing of bands which may or may not derive from the same orbital manifold. Whilst

this greatly diversifies the catalogue of classes to which the underlying mechanism outlined in

Chapter 4 has shown to be applicable for, all of compounds considered thus far possess both

inversion and time-reversal symmetries in their bulk. As a final discussion, the possibility of

realising k-mediated topological ladders in systems which do not host both of these symmetries

will be briefly discussed.

7.3 Novel Weyl phases through removing global lattice symme-

tries

A bulk Dirac cone can be considered as the superposition of two spin-polarised Weyl cones with

opposite chiralities, with the degeneracy deriving from the combination of time-reversal and

inversion symmetries. Each of the six TMDs considered in this thesis are inversion symmetric in

their bulk band structure and so only surface derived states are permitted to be spin-polarised.

The Janus TMDs are variants of the TMD family where one chalcogen sub-layer in the X-M-X

formula unit is switched for another. These compounds retain the C3v symmetry relevant for

the chalcogen layers, but they do not posses inversion symmetry in their bulk [238]. Naively,
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a Janus TMDs should naturally contain the same kz-mediated topological ladders as in the

TMDs, but without the restriction of four-fold Dirac point degeneracies imposed by an inver-

sion symmetric environment.
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which shows that spin degeneracy is maintained along kz despite the global
inversion asymmetry. Rashba-like splittings are found for non-zero kx ,y . DFT

calculations adapted from [83].

Fig. 7.8 compares the crystal structures of PdTe2 and the Janus TMD PdSeTe. In the latter, one

tellurium sub-layer is replaced with a selenium sub-layer, breaking bulk inversion symmetry

and therefore reducing the global point group symmetry from D3h to C3v [170]. Strikingly,

spin-sensitive DFT calculations presented in Fig. 7.8 suggest that the degeneracy of bulk Dirac

points, formed along the Γ -A line, centred at ≈ +1.5 and −0.5 eV, are retained, with spin

degeneracy lifting only along the in-plane directions. This implies that C3v can take on the

responsibility of enforcing spin degeneracy along the axis where it applies.

A more recent DFT-study [170] demonstrates the persistence of the BDP-TSS forming mech-

anism in the other group-X Janus TMDs, PtSeTe and PtSTe, as well as the PdSeTe compound

presented here. They, however, do report a small energetic splitting of the R5,6 bands along the

Γ -A line on the order of 1 meV, but Weyl points are still not formed. Instead, each bulk Dirac

point is transformed into a triply degenerate point (TDP), midway between the two-fold and

four-fold degeneracies of Weyl and Dirac points respectively. Fermions of this sort, like type-II

Dirac and Weyl points, break Lorentz invariance and are therefore not permitted solutions of
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the Dirac equation. This again shows the potential to study of emergent fermions which can

only exist in crystalline systems.

Whilst some single-layers of select Janus TMDs have been successfully synthesised [238, 247],

only single crystal alloys of bulk group-X TMDs (for example PtSe2−xTex) have been synthe-

sised successfully [248]. In their few-layer forms the TDP formed along the kz direction will

not exist. These single-orbital manifold triple points may also exist in other systems, however.

DFT calculations of bulk, inversion asymmetric, PbTaSe2 presented in [246] show a remark-

ably similar Γ -A dispersion to that presented above, providing a route to study TDPs and their

associated surface states in a bulk system which can be more easily synthesised. Moreover, the

‘cone’ running into the triple point in PdTeSe in Fig. 7.8 exhibits a band splitting along the A-L

direction at the band maximum. This is not dissimilar to the appearance of the type-II BDP in

PtSe2 following Rb deposition at the end of the previous Chapter (Fig. 6.11) possibly hinting

that an inversion asymmetric near-surface potential well is sufficient to create near-surface

localised TDPs in these systems.

The scope for studying the evolution of bulk Dirac points, topological surface states and even

Fermi arcs with time-reversal symmetry breaking is presented in Fig. 7.9 for the rock-salt struc-

tured transition metal carbides and nitrides (formula MX). The transition metal carbides, {Nb,

Ta, V, Cr}C (Oh), have been recently verified to host kz mediated bulk Dirac cones within

their metal d-orbital manifolds (note that the restriction of odd parity eigenstates in rock-salt

systems discussed above does not hold for d-orbitals) [232], with the case of TaC shown in

Fig. 7.1(c-d). Whilst these are all non-magnetic, analogous physics can be expected to occur

in the similarly structured transition metal nitride compounds, {Sc, Ti, V, Cr, Zr, Nb}N. These

share remarkably similar band structures to the carbides [239], but CrN has a ferromagnetic

ground state. To illustrate this potential, Fig. 7.9 compares the band structures of NbC, NbN

and CrN without spin-orbit coupling. For the case of NbC, the crossing verified to separate into

a protected crossing/anticrossing pair when spin-orbit coupling is included is indicated [232].

DFT calculations of NbN shown in Fig. 7.9(b) [239] are qualitatively very similar. It follows

that the indicated band crossing in NbN would also produce a k-mediated topological lad-

der when spin-orbit coupling is considered. Whilst these two compounds are non-magnetic,

CrN shown in Fig. 7.9(c) is not. As a result d-derived band structure is effectively doubled
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TABLE 7.1: Systems wherein lattice protected BDPs and anti-crossings are si-
multaneously formed along a rotationally symmetric axis. Sections separate
the trigonal, cubic, tetragonal and hexagonal lattice symmetries. Citations ei-
ther correspond to bulk DFT calculations which closely resemble the framework
outlined in Chapter 4 or works in which the single-orbital manifold has been
explicitly verified. The sections separate trigonal, cubic, tetragonal and hexag-
onal systems. An * indicates that relevant crossing points are between bands

originating from two orbital-manifolds.

Compound Point group Reference
PdSeTe, PtSSe, PtSeTe C3v Chapter 7([83]), [170]
Zn2In2S5 C3v [190]
(Ni, Pd, Pt)Te2 D3d Chapter 4 ([83, 173]), [172, 174, 175, 178, 240]
PtSe2 D3d Chapter 5 ([83]), [174]
Ptx Ir1−xTe2, IrTe2 D3d Chapter 4 ([83]), [182]
PtBi2 D3d [174, 241]
β-CuI D3d [225]

(Ge, Sn)Te Oh Chapter 7, [230]
(Ge, Sn, Pb)Se Oh [242]
PbPo Oh [243]
(Sc, Ti, V, Cr, Zr, Nb)N Oh [232, 239]
(Cr, Ta, Nb, V)C Oh [232]
(Y, Sn) Pd2Sn Oh [231]
(Zr, Hf) Pd2Al Oh [231]
(Zr, Hf) Ni2Sn Oh [231]
Cu(F, Cl, Br, I) Td [244]
Cu(Li, Na, K, Rb)O Td [244]

VAl3, NbAl3, TaAl3 C4v [177]
FeSexTe1−x* D4h [224, 233]
LiFeAs, LaOFeAs, BaFe2As2* D4h [233]

Zn2In2S5 C6v [190]
MoP D3h [245]
PbTaSe2 D3h [246]
WSe2 D6h Chapter 4 ([83])
(Nb, Ta)Se2 D6h Chapter 4 ([83])

with respect to that of NbN. CrN could therefore be host to novel type-II Weyl or triple points

stabilised within a time-reversal asymmetric environment, or an intrinsic ‘topological magne-

toelectric effect’ could be observed, wherein the Kramer’s degeneracy of topological surface

states is lifted [249].

As a summary, Table 7.1 consolidates more than fifty compounds hosting kz-mediated topolog-

ical phenonema across nine different point group symmetries. These compounds either satisfy

the criteria outlined in the opening discussion to this Chapter based on bulk DFT calculations

available in the literature, or they have been verified explicitly by theory and/or experiment.
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7.4 Outlook

The ubiquitous nature of highly-tunable, kz-mediated topological phenomena provides many

opportunities to study the interplay of non-trivial topology with other properties. For exam-

ple, the effort towards robust realisations of Majorana fermions is aided by expansion of the

number of verified intrinsic superconductors hosting topological surface states at the Fermi

level. PdTe2 (Chapter 5 and [173]) and FeSe0.45Te0.55 [237] are two such examples, with

their topological surface states arising as a direct consequence of the general mechanism out-

lined in Chapter 4. This motivated analogous STM/STS studies into these two compounds

despite their otherwise disparate crystal and electronic structures. Similarly, the coexistence

of single-orbital manifold topological phenomena with magnetism, possible in CrN [239], is

yet to be explored.

2008 saw the first prediction and experimental verification of a three-dimensional topological

insulator [250, 251], demonstrating that topologically protected spin-polarised Dirac cones

can exist at the surfaces of compounds. A decade on, the intensity of the research effort

into these systems still continues to grow. The number of articles per year with the word

“topological” in the title uploaded to the condensed matter section of arXiv has increased ten-

fold since 2007, with over one thousand such articles uploaded in each of 2017 and 2018.

By demonstrating explicitly that the same physics persists across the diverse family of transi-

tion metal dichalcogenides simply because each of them contain a chalcogen and a layered

rotationally-symmetric structure, the works in this thesis are very suggestive that non-trivial

band topology is likely just a generic feature of the electronic structures of solids. Although it

is genuinely potentially very useful for electronic and spintronic devices, it is not special.

Indeed, a very recent data-mining project [252] into all possible electronic structures predicts

that one quarter of existing solids have within them a topological band inversion. The focus

now must shift towards the development of the operational principles by which devices can

exploit non-trivial band topology, rather then simply adding to the hundreds of compounds

that could form their basis.
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