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Abstract	
Crackling	 noise	 of	 ferroelectric	 lead	 zirconate	 titanate	 (PZT)	 samples	 during	 ferroelectric	

switching	 is	demonstrated	 to	be	 compatible	with	 avalanche	 statistics.	The	peaks	of	 the	 slew-rate	

(time	derivative	of	current	dI/dt	squared),	defined	as	“jerks”,	were	statistically	analyzed	and	shown	

to	 obey	 power-laws.	 The	 critical	 exponent	 obtained	 is	 1.64±0.15,	 in	 agreement	with	 predictions	

from	 avalanche	 theory.	 The	 exponent	 is	 independent	 of	 temperature	 within	 experimental	 error	

margins.	

I.	 INTRODUCTION	

A	 complete	 analysis	 of	 the	 dynamic	 properties	 of	 ferroelectric	 domain	 switching	 [1]	

showed	 that	 the	 statistical	 switching	 variables	 (switching	 amplitudes,	 energy,	 and	 inter-

event	 times)	 in	BaTiO3	follow	avalanche	statistics.	The	switching	exponents	are	universal	

and	close	to	values	of	the	field	integrated	mean	field	model,	which	predicts	that	the	stress-

integrated	

distribution	of	pulse	energies	scales	as	

	 𝑝 𝐸 ~𝐸!!/! = 𝐸!!.!" 	 (1)	

[2].	The	experimental	approach	in	[1]	was	to	measure	the	acoustic	emission,	AE,	generated	

by	moving	90-degree	boundaries	in	BaTiO3.	Such	AE	distributions	have	been	observed	

previously	 during	 ferroelastic	 phase	 transitions	 [2–5]	 and	 their	 origin	 was	 identified	 as	

moving	domains	 [6].	Here	we	 show	 that	 the	 same	 criticality	 is	 seen	by	purely	 electronic	
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measurements	 in	 the	most	 common	 ferroelectric	material	 (lead	 zirconate	 titanate,	 PZT).	

Small	 jumps	 in	 the	 ferroelectric	 hysteresis	 curve	 are	 identified	 as	 being	 due	 to	 moving	

domains.	These	jumps	occur	at	the	steepest	region	of	the	polarization	hysteresis	curve	[7,	

8].	When	electric	 fields	 are	 applied,	 the	domains	 initially	 aligned	 antiparallel	 to	 the	 field	

will	 reverse	creating	 interfaces,	domain	walls	[9,	10],	extending	 through	space.	When	 the	

domain	walls	move,	they	may	come	across	regions	near	defects	and	become	pinned	[7,	8].	

As	 the	 magnitude	 of	 the	 field	 increases,	 the	 domain	 walls	 will	 eventually	 gain	 enough	

energy	to	overcome	the	pinning	and	move	forward,	causing	an	increase	in	polarization	[7,	

8].	The	rapid	nucleation	of	new	domain	walls	and	their	‘jerky’	movements	are	responsible	

for	the	temporal	changes	

in	polarization.	

Barkhausen	noise	 and	many	other	 crepitations	 are	 statistically	 similar:	 they	 resemble	

avalanches	 and	 the	 size	 distribution	 of	 these	 crackling	 noises	 obeys	 a	 power-law	 with	

characteristic	exponents	[6,	11–14].	Due	to	universality,	 these	exponents	allow	avalanche	

systems	 to	 be	 compared	 with	 one	 another,	 leading	 to	 a	 lot	 of	 interesting	 physics	 being	

unveiled	 [6,	 11,	 12].	 For	 example,	 Dahmen	 and	 Ben-Zion	 (2009)	 in	 [12]	 showed	 that	

Barkhausen	 noise	 and	 earthquake	 events	 share	many	 statistical	 similarities.	 Meanwhile,	

Barό	 et	 al.	 (2013)	 in	 [15]	 demonstrated	 that	 earthquakes	 and	 compressions	 of	 porous	

materials	are	statistically	alike	too.	Performing	these	experiments	under	the	safety	of	 the	

laboratory	 allows	 researchers	 to	 learn	more	 about	 seismology	 and	 improve	 earthquake	

risk	assessments	[6,	16,	17].	

The	investigation	of	purely	electrical	noise	 is	a	very	important	problem	in	 low	electric	

fields	 for	PZT	 (lead	zirconate	 titanate)	 for	medical	MRI	 imaging	 [18]	and	 in	high	electric	

fields	 [19]	 for	 switching	 devices	 such	 as	 ferroelectric	memory	 cards	 ($100	million/year	

product	last	year	for	subway	fare	cards,	etc.,	in	Japan	and	the	USA).	However,	most	reviews	

are	limited	to	the	low-field	situation	[20].	Two	commercial	PZT	ceramics,	PIC	151	and	PIC	

255,	 from	 PI	 Ceramic	 Lederhose,	 Germany	 [21]	 were	 categorized	 using	 a	 conventional	

hysteresis	apparatus	and	the	jerky	changes	in	the	polarization	switching	current	responses	

were	shown	to	obey	power-laws	(critical	exponents	 listed	 in	Table	 I	below).	 If	 treated	as	

proxies	 for	energy	exponents,	our	results	are	 in	agreement	with	predictions	of	avalanche	

theory	 [6,	 14,	 22–25].	 The	 actual	 compositions	 of	 both	 samples	 are	 proprietary	 and	
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therefore	undisclosed;	but	from	the	product	brochure	[21],	PIC	255	was	designed	to	have	a	

higher	coercive	field	Ec	compared	to	PIC	151.	

In	addition	to	the	basic	critical	exponent	measurement,	we	have	explored	temperature	

dependence	of	 the	crackling	noise.	We	 find	 that	as	 temperature	 is	 increased	 towards	 the	

Curie	temperature	Tc,	there	is	a	non-monotonic	evolution	of	a	second	exponent,	reaching	a	

peak	 at	 ca.	 1.90	 at	 T	 =	 413	K.	 This	 effect	may	 be	 related	 to	 the	 dynamical	 behaviour	 of	

dislocations.	PZT	has	a	 large	number	[26–28]	of	 threading	dislocations	(1013	cm−2	at	best,	

about	 an	 order	 of	 magnitude	 greater	 than	 in	 BaTiO3),	 and	 empirical	 evidence	 from	

avalanche	in	other	systems	(such	as	porous	metals)	suggests	that	exponents	near	1.9	−	2.0	

are	due	to	such	dislocations	[29].	

II.	 EXPERIMENT	DETAILS	AND	PROCEDURES	

The	measurements	were	conducted	using	an	aixACCT	TF	Analyzer	2000	[30,	31]	with	a	

high	 voltage	 set-up	 that	 allows	 voltage	 pulses	 ranging	 from	 200	 V	 to	 40	 kV	 [31]	 to	 be	

applied	to	the	sample	via	the	probes.	

In	 our	 experiments,	 triangular	 electric	 field/voltage	 pulses	 were	 designed	 using	 a	

manual	waveform	generator	from	the	TF	Analyzer	2000	software	by	providing	the	target	

voltage	values	at	specific	time-stamps.	As	the	coercive	field	Ec	of	ferroelectrics	changes	with	

the	 voltage	 ramp-rate	 [32,	 33],	 the	 time	 taken	 for	 different	 maximum	 voltages	 were	

calculated	

and	specified	to	keep	the	ramp	rate	constant.	The	ramp	rate	was	40	Vs−1	for	PIC	151	and	60	

Vs−1	 for	 PIC	 255.	 A	 down-switching-pulse	 was	 applied	 through	 a	 sample	 via	 the	 probes	

followed	by	an	equal	and	opposite	up-switching-pulse	.	The	current-time	response	during	

the	 linear	 ramping	 region	 of	 the	 up-switching-pulse	 was	 then	 acquired.	 Due	 to	 the	

limitations	of	the	apparatus,	the	highest	achievable	sampling	rate	was	40	Hz	(1000	points	

25	seconds).		
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Figure	1.	(color	online)	A	single	measurement	from	PIC	151.	The	smooth	looking	current	I	curve	(black	
dashed)	was	jerky,	as	shown	after	taking	the	square	of	its	time	derivative,	(dI/dt)2	and	removing	the	
baseline	(blue).	The	peaks	(red	labeled)	were	used	for	statistical	analysis.	The	baseline	removed	graph	is	
conventionally	called	the	jerk	spectrum.	

Figure	 1	 shows	 the	 current	 I	 response	 (black	 dashed)	 of	 PIC	 151	 against	 time.	 The	

measured	current	is	not	smooth	but	consists	of	small	jumps	called	jerks	and	may	indicate	

very	small	events	[6].	Procedures	for	extracting	the	jerks	from	the	measured	current	I	were	

as	follows:	

1. The	first	time	derivative	dI/dt	is	taken	and	squared,	revealing	the	jerky	nature	of	the	

current	response	with	peaks	superposed	onto	a	smooth	baseline.	

2. The	 minima	 were	 then	 fitted	 using	 the	 Piecewise	 Cubic	 Hermite	 Interpolating	

Polynomial	(PCHIP)	function	from	Matlab	R.	

3. The	fitted	line	was	subtracted,	leaving	(dI/dt)2	with	its	baseline	removed	(blue	solid	

in	Figure	1).	This	is	conventionally	called	the	jerk	spectrum	[6].	

4. The	peaks	in	the	jerk	spectrum	(red	labels	in	Figure	1)	are	defined	as	jerks	J	and	are	

subjected	to	statistical	analyses.	

In	avalanche	studies,	jerks	can	be	defined	in	multiple	ways	[6,	23,	34].	In	He	et	al.	(2016)	

[34]	 ferroelastic	 switching	 simulations,	 the	 jerks	 were	 defined	 as	 the	 total	 change	 in	

potential	 energy,	 the	 energy	 drop	 and	 the	 shear	 stress	 drop.	 In	 crystal	 plasticity	
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experiments,	 the	 jerks	 were	 defined	 as	 the	 square	 of	 the	 velocity	 v	 of	 slip	 avalanches	

squared,	(dv/dt)2,	which	took	the	form	of	an	energy	[6,	14,	22,	25].	

In	our	case,	 the	 jerks	are	defined	as	peaks	of	 the	square	of	 the	slew-rate	[35],	(dI/dt)2.	

The	slew-rate	dI/dt	is	a	term	commonly	found	in	electronics	to	describe	how	fast	an	input	

waveform	can	change	when	it	passes	through	an	op-amp	before	the	signal	is	distorted	[36].	

The	slew-rate	is	usually	defined	as	the	time	derivative	of	voltage	dV/dt	[36]	but	it	can	also	

be	defined	as	dI/dt	[35].	Taking	 the	 square	of	 the	 slew-rate	 allows	 the	peaks	 in	our	 jerk	

spectrum	to	closely	represent	the	jerks	defined	in	crystal	plasticity	and	acoustic	emission	

experiments,	which	is	(dv/dt)2	as	mentioned.	In	this	study,	we	successfully	show	that	J	

extracted	from	the	slew-rate	obeys	a	power-law	[6,	11,	12]:	

	 𝑃 𝐽 = !!!
!min

!
!min

!!
	 (2)	

where	ε	is	an	exponent	and	Jmin	is	the	lower-bound	normalization	condition	[37,	38].	

III.	 RESULTS	AND	DISCUSSION	

A	 total	 of	 five	 measurements	 were	 taken	 for	 both	 PIC	 151	 and	 PIC	 255.	 For	 each	 sample	

individually,	the	jerk	peaks	were	extracted,	normalized	by	the	mean	and	combined	for	statistical	

evaluation.	A	total	of	1261	peaks	were	retrieved	for	PIC	151	and	1468	peaks	for	PIC	255.	

The	 peaks	 for	 both	 samples	 were	 logarithmically	 binned	 and	 the	 distributions	 were	

fitted	with	 two	straight	 lines	(Figure	2).	The	slope	yields	−1.59	 for	PIC	151	(blue	circles)	

and	−1.50	for	PIC	255	(red	squares).	

Following	 [37],	 high	 coefficient	 of	 determination	 R2	 value	 of	 the	 linear	 fit	 cannot	 be	

trusted.	Non-power-law	distributed	histograms	can	resemble	a	power-law	distribution	over	

many	orders	of	magnitude,	thus	providing	a	large	R2	value.	Also,	the	jerk	data	a	priori	could	

involve	two	exponents	or	more	(or	a	whole	Gaussian	distribution	of	exponents).	Fitting	a	

straight-line	could	 lead	to	a	 false	slope	 that	was	due	 to	 the	averaging	effect	of	exponents	

[38].	And	 lastly,	 the	starting	and	ending	 limits	of	 the	 fitted	data	should	be	 independently	

justified.	The	data	in	Figure	2	clearly	demonstrate	a	straight-line	behavior.	Nevertheless,	it	

is	desirable	to	show	that	this	is	robust,	and	that	the	apparent	power	law	distribution	

corresponds	to	a	single	exponent	[37,	38].	
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To	accomplish	these	buttressing	arguments	we	utilize	the	Maximum	Likelihood	(ML)	

method.	This	is	a	statistically	reliable	way	of	demonstrating	a	single	exponent	in	ε	power	

law	 dependence.	 The	 procedure	 is	 sketched	 below	 and	 provided	 in	 complete	 detail	

elsewhere	

[38].	

	

	

Figure	2.	(color	online)	The	log-log	probability	distribution	P(Jnorm)	of	normalized	jerks	Jnorm	from	PIC	151	
(blue	circles)	and	PIC	255	(red	squares)	shows	a	straight-line	behavior.	The	slope	is	linearly	fitted	at	region	
ln(Jnorm)	>	−2	for	PIC	151	is	−1.59	and	for	PIC	255	is	−1.50.	

ML	estimates	how	likely	a	scaling	parameter,	the	exponent	ε	from	the	power-law	model,	

had	generated	an	experimental	jerk	spectrum	[37,	39].	The	estimated	exponent	derived	[37]	

from	maximizing	the	likelihood	function	with	respect	to	an	exponent	ε	is:	

	 	 (3)	
where	𝜀	is	the	convention	used	to	denote	that	the	exponent	is	an	estimate	[37–39].	The	

standard	error	of	𝜀	is:	

	 Standard	error,	𝜎 = !!!
!

 + higher-order	terms	 (4)	

	

where	the	higher-order	terms	are	positive	[37].	

Not	 all	 data	 points	 are	 power-law	 distributed	 in	 experimental	 settings.	 Due	 to	 the	

limitations	 of	 the	 apparatus,	 low	 signals	may	be	under-counted	due	 to	 saturation	 effects	

[38]	which	leads	to	an	unknown	lower	bound	Jmin	in	eq.	(3)	[37,	38].	By	guessing	the	value	

of	Jmin	and	discarding	any	jerk	data	J	less	than	Jmin,	one	runs	the	risk	of	[37]:	
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1. Underestimating	Jmin,	performing	a	power-law	ML	estimate	to	non-power-law	J	data.	

2. Overestimating	Jmin,	discarding	valid	data	points	and	increasing	the	statistical	error	

of	𝜀.	
Thus	to	fully	utilize	the	ML	estimation,	a	computational	algorithm	of	eq.	(3)	is	 iterated	

on	the	jerk	data	by	a	series	of	cut-off	values	J0	(that	replaces	Jmin)	[37,	38].	For	each	J0	value,	

data	points	less	than	J0	are	discarded	and	an	estimated	exponent	𝜀	is	computed.	This	results	

in	an	array	of	𝜀	which	 is	plotted	against	 the	natural-log	transformed	 ln(J0)	(see	Figure	3).	

This	 method	 is	 called	 lower-bound	 estimation	 [37]	 but	 is	 conventionally	 understood	 as	

performing	the	Maximum	Likelihood	Estimation/Method/Fit	[6,	16,	38,	40].	The	end	result	

is	a	graph	that	has	a	broad	plateau	at	the	most-likely	exponent,	which	starts	with	a	kink	at	

the	correct	J0	=	Jmin	value	and	extends	for	a	range	of	J0	[37,	38].	The	plateau	then	fluctuates	

at	 large	 J0	values	 and	 the	 error	 bar	 increases	 due	 to	 a	 lack	 of	 statistically	 relevant	 data	

points	[38].	If	there	is	no	plateau,	the	assumption	of	a	single-exponent	power	

law	is	invalid.	

In	 experimental	 settings,	 ML	 curves	 and	 log-log	 binning	 plots	 are	 the	 keys	 to	

understanding	an	avalanche	system.	Many	subtleties	of	a	system	can	be	uncovered	using	

ML	analysis,	which	is	described	in	[38].	

	

Figure	3.	(color	online)	Maximum-likelihood	(ML)	fit	of	PIC	151	(blue	solid)	and	PIC	255	(red	dashed).	PIC	
151	displays	a	plateau	of	two	decades	at	−2.0	≤	ln(J0)	≤	0.0	with	an	average	estimated	exponent	𝜀	of	1.73.	
PIC	255	shows	a	plateau	of	three	decades	at	−3.0	≤	ln(J0)	≤	0.0	with	𝜀	of	1.61.	Both	averaged	exponents	have	
a	standard	deviation	σ	of	±0.04.	The	lack	of	definitive	kinks	at	J0	=	Jmin	for	both	ML	curves	was	due	to	lower	
cut-off	effects	that	arose	from	saturation	effects	in	the	measurement	apparatus	[38].	

The	jerk	peaks	J	for	PIC	151	and	PIC	255	were	subjected	to	ML	analyses	(see	Figure	3).	

PIC	151	(blue	solid	curve)	exhibits	a	plateau	of	two	decades	at	−2.0	≤	ln(J0)	≤	0.0	and	the	
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averaged	 exponent	𝜀	at	 this	 region	 yields	 1.73.	 The	 plateau	 for	 PIC	 255	 (red	 dashed)	

extends	 for	 three	decades	at	−3.0	≤	 ln(J0)	≤	0.0	with	an	averaged	exponent	𝜀	of	1.61.	The	

standard	deviations	σ	for	both	averaged	exponents	are	±0.04.	

The	values	for	both	𝜀	and	σ	for	each	ML	analysis	depended	highly	on	where	the	plateaus	

were	defined	and	would	be	biased.	Unlike	ideal	power-laws,	there	were	no	definitive	kinks	

to	determine	the	value	of	Jmin	and	where	the	plateau	started	due	to	the	lower	cut-off	effect	

[38].	The	lower	cut-off	effect	is	also	observed	in	the	two	jerk	distributions	in	Figure	2.	The	

straight-line	behavior	extended	until	ln(Jnorm)	≈−2	and	followed	by	a	smooth	cut-off	due	

to	saturation	effects	[38].	

An	 additional	 PIC	 151	 sample	 (151b)	 was	 studied	 and	 a	 total	 of	 2722	 peaks	 were	

extracted.	The	jerk	spectrum	exhibits	intense	peaks	that	are	at	least	one	magnitude	larger	

than	 the	 usual	 jerk	 peaks	 seen	 in	 the	 former	 two	 samples	 and	may	 represent	 spanning	

avalanches	[34].	As	mentioned	by	He	et	al.	(2016)	in	[34],	these	peaks	do	not	play	a	role	in	

avalanche	statistics	and	41	peaks	above	an	arbitrarily	set	cut-off	value	were	removed.	The	

ML	estimate	over	the	remaining	2681	jerk	data	yields	an	exponent	𝜀	of	1.64	with	σ	=	0.04	

when	averaged	over	a	plateau	at	region	−2.7	≤	ln(J0)	≤	0.0.	

Statistical	noise	from	electronic	systems	will	influence	the	ML	curve,	causing	an	increase	

in	 the	 measured	 exponent.	 Thus,	 based	 on	 both	 the	 linear	 fit	 of	 the	 log-log	 power	 law	

distribution	and	the	ML	curve,	we	estimated	that	the	exponent	should	be	1.64	±	0.15	to	

take	the	random	electrical	noise	effects	into	account.	

Systems	 PIC	151	 PIC	255	 PIC	151b	 Field-driven	MFT	

ε	 1.73	±	0.04	 1.61	±	0.04	 1.64	±	0.04	 1.67	

Table	I.	Summarized	critical	exponents	ε	of	PIC	151,	PIC	255	and	PIC	151b	from	this	study	and	field-

driven	energy	exponent	from	mean	field	theory	(MFT)	[6].	

Existing	 avalanche	 theory	 makes	 no	 direct	 prediction	 about	 the	 temperature	

dependence	of	Barkhausen	pulse	dynamics	besides	the	invariance	of	the	mean	field	results.	

However,	 we	 may	 expect	 that	 these	 dynamics	 change	 at	 ultra-low	 temperatures	 where	

creep	freezes	out	and	is	replaced	by	quantum	tunneling	of	domain	walls	[41];	and	at	high	
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temperatures	near	Tc	the	wall	mobility	 increases	dramatically	and	domain	sizes	decrease	

which	may	potentially	lead	to	deviations	from	the	mean	field	behavior.		

	

Figure	4.	(color	online)	P(J)	versus	J	for	three	different	temperatures,	showing	power-law	mixing	at	temperatures	near	413	K	
(140	°C).	An	attempt	to	fit	these	distributions	with	a	straight-line	will	lead	to	an	averaging	effect	of	two	exponents	[38].	

	

Figure	5.	Maximum	likelihood	graphs	at	three	different	temperatures,	verifying	the	power-law	mixing	effect	
from	the	slopes	in	Figure	4.	The	initial	kinks	of	the	ML	curves	underestimate	the	first	critical	exponent,	they	
then	decrease	to	the	value	of	the	second	critical	exponent.	

Figure	4	shows	the	behavior	of	Barkhausen	dynamics	as	T	is	increased	towards	Tc.	At	ca.	

T	=	410	K,	the	straight-line	behavior	of	the	power-law	exponent	1.65	for	P(J)	against	J	gives	

way	to	a	superposition	of	two	separate	exponential	distributions,	one	of	which	is	

greater	at	1.80	−	2.00.	

The	 maximum	 likelihood	 analysis	 reveals	 the	 power-law	 mixing	 effect	 of	 two	

simultaneous	 exponents.	 From	Figure	 5,	 the	 initial	 kinks	 of	 the	ML	 curves	 approach	 but	

underestimate	 the	 first	 exponent.	 They	 then	 decrease	 to	 the	 value	 of	 the	 second	 lower	
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exponent	before	fluctuating	due	to	a	lack	of	statistically	relevant	data.	In	other	words,	the	

jerk	peaks	extracted	from	higher	temperatures	were	generated	from	two	different	power-

law	mechanisms.	 The	 second,	 smaller	 exponent	 remains	 near	 1.6	 and	 is	 independent	 of	

temperature.	

We	 suggest	 an	 explanation	 for	 this:	 PZT	 is	 known	 to	 have	 a	 very	 high	 density	 of	

dislocations	(ca.	1013	cm−2)	even	in	very	good	samples,	about	an	order	of	magnitude	greater	

than	in	BaTiO3,	and	neighboring	dislocations	ca.	12	nm	apart	[26,	27].	These	are	mostly	

threading	dislocations[28].	

It	 is	 known	 empirically	 that	 de-pinning	 from	 dislocations	 gives	 an	 exponent	 near	 2.0	

[29].	Our	tentative	hypothesis	for	the	second,	higher	exponent	is	the	passage	through	the	

temperature	region	in	which	ferroelectric	domain	walls	de-pin	from	threading	dislocations.	

De-pinning	 temperatures	 significantly	 below	 Tc	 are	 well	 known	 in	 other	 ferroelectrics:	

CsD2AsO4[42,	43].	In	magnets,	Bohn	et	al.	have	demonstrated	[44–46]	different	universality	

classes	 in	 Barkhausen	 pulses.	 These	 emphasize	 dimensionality	 as	well	 as	 thicknesses	 of	

domains	 and	 explicitly	 include	 exponent	 crossover	 as	 fields	 or	 temperature	 increases,	

domains	 become	 smaller,	 and	 de-pinning	 becomes	 different	 from	 occasional	 creep.	 This	

could	give	rise	to	two	exponents.	However,	the	comparison	of	both	hard	and	soft	PZT	in	the	

present	work	makes	this	hypothesis	unlikely	in	our	case.	Most	importantly,	the	switching	

exponent	ε	=	1.64	remains	independent	of	temperature.	

IV.	 CONCLUSION	

From	two	commercial	PZT	samples	albeit	with	a	low	sampling	rate,	we	showed	that	the	

jerks	obeyed	power-law	statistics	and	were	consistent	with	Barkhausen	noise	[6,	12].	The	

distribution	of	Barkhausen	noises	obeys	a	power-law	and	the	determined	exponents	with	

an	estimated	value	of	1.64	±	0.15	are	in	agreement	with	values	from	avalanche	theory.	

This	observation,	when	compared	with	the	expected	MFT	exponent	1.33	[6,	14,	22–25]	

for	 single	avalanches	and	1.67	 for	 field-integrated	models,	 indicates	 that	 the	polarization	

switching	 follows	 a	 field-integrated	 pathway.	 This	 indicates	 that	 after	 each	 pinning	 or	

depinning	event	an	exponential	 relaxation	 follows	as	part	of	 the	avalanche.	We	conclude	

that	the	switching	processes	in	our	PZT	samples	take	the	form	of	complex	avalanches	and	

are	 consistent	with	 Barkhausen	 noise	 and	many	 other	 crackling	 systems.	 The	 discovery	
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and	categorization	of	these	exponents	are	crucial	as	they	show	that	the	domain	switching	

mechanisms	 in	 ferroelectric	ceramics	demonstrate	criticality	 [2,	47,	48].	Other	exponents	

for	 the	amplitudes	and,	most	 importantly,	 for	 the	 inter-event	 times	 for	domain	 switches,	

cannot	 be	 obtained	 from	 our	 measurements.	 Nevertheless,	 these	 parameters	 were	

measured	for	 the	domain	switching	 in	BaTiO3	and	we	may	assume	that	 the	values	 in	PZT	

follow	those	of	BaTiO3	very	closely.	Future	work	on	the	acoustic	emission	in	PZT	is	highly	

desirable	 to	 identify	 such	 full	 sets	 of	 switching	 parameters	 and	 to	 compare	 with	 other	

ferroelectric	

materials.	
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