
 
Constructing Active Architectures in the ArchWare ADL 

 
 

1Ron Morrison, 1Graham Kirby, 1Dharini Balasubramaniam, 1Kath Mickan, 2Flavio Oquendo, 
2Sorana Cîmpan, 3Brian Warboys, 3Bob Snowdon, 3R Mark Greenwood 

1School of Computer Science, University of St Andrews, St Andrews, Fife KY16 9SS, UK 
2ESIA, Université de Savoie, 5 Chemin de Bellevue, 74940 – Annecy-le-Vieux, France 

3Department of Computer Science, University of Manchester, Manchester M13 9PL, UK 
{ron, graham, dharini, kath}@dcs.st-and.ac.uk 

{Flavio.Oquendo, Sorana.Cimpan}@esia.univ-savoie.fr 
{brian, rsnowdon, markg}@cs.man.ac.uk 

 
 

Abstract 
 

Software that cannot change is condemned to atrophy: 
it cannot accommodate the constant revision and re-
negotiation of its business goals nor intercept the 
potential of new technology. To accommodate change in 
such systems we have defined an active software 
architecture to be: dynamic in that the structure and 
cardinality of the components and interactions are not 
statically known; updatable in that components can be 
replaced dynamically; and evolvable in that it permits its 
executing specification to be changed. 

Here we describe the facilities of the ArchWare 
architecture description language (ADL) for specifying 
active architectures. The contribution of the work is the 
unique combination of concepts including: a π-calculus 
based communication and expression language for 
specifying executable architectures; hyper-code as an 
underlying representation of system execution; a 
decomposition operator to break up and introspect on 
executing systems; and structural reflection for creating 
new components and binding them into running systems. 

 

1 Introduction 

Software architectures [1, 2] describe systems in terms 
of their components and interactions between 
components. We define an active software architecture to 
be: dynamic in that the structure and cardinality of the 
components and interactions are not statically known; 
updatable in that components can be replaced 
dynamically; and evolvable in that it permits its executing 
specification to be changed. 

Active architectures address problems of co-evolution 
in dynamically changing commercial environments where 
business changes create pressures on the software to 
evolve, and at the same time technology changes create 

pressures on the business to evolve. The business effects 
of introducing, or changing, such software systems are 
often emergent and require their software architecture 
models to accommodate their demands by being dynamic, 
updatable and evolvable. 

Figure 1 shows an evolving system. At the initial stage 
(a), the system is composed of three components of one 
kind (say dynamic clients) interacting with one 
component of another kind (say server) that has access to 
some data. At stage (b), this system has been decomposed 
to yield the individual components with the server still 
maintaining its access to the data. The next stage (c) sees 
the components evolved so that we have three clients and 
two servers both of which maintain the access to the 
shared data. Finally at stage (d) a new evolved system is 
formed by composing the five components so that one 
client interacts one server and the other two clients 
interact with the other server. 

Figure 1. An evolving system 
This paper describes the ArchWare Architecture 

Description Language [3] which is sufficiently rich to 
provide executable specifications of active systems. We 
define a core language on which architectural styles can 
be layered and on which a construction methodology can 
be applied. Our focus is on the base technologies required 

 

Evolve 

Compose 
Decompose 

(a) 

(b) (c) 

(d) 



to support dynamic and evolvable systems and we present 
examples of how the ADL may be used to model active 
architectures. 

 
2 Related work 

Hitherto researchers have proposed many formal 
ADLs for representing and analysing architectural 
designs. Adage [4] supports the use of architectural 
frameworks in the avionics industry; Aesop [5] has 
architectural styles; Meta-H [6] has specific guidance for 
real-time avionics control software; SADL [7] provides a 
formal basis for architectural refinement; C2 [8] supports 
the description of user interface systems; Wright [9] 
supports the specification and analysis of interactions and 
UniCon [10] supports a mixture of heterogeneous 
component and connector types.  

Containment Units [11] provide a mechanism for 
dealing with anticipated change. ArchStudio [12] is a tool 
suite that supports architecture-based development. 
Changes are made to an architectural model and then 
reified into implementation by a runtime architecture 
infrastructure. In [13], specific component managers 
identify external architecture changes by listening to 
events, and then react in order to preserve architecture 
constraints. The constraints themselves cannot be 
evolved. Each ADL has its own focus according to needs 
and taste with little integration of the overlapping ADL 
concepts. ACME [14] is an attempt at such integration but 
does it at the level of a lowest common denominator.  

All of the above ADLs work on the specification and 
enactment model where the formal properties of the 
system are specified, analysed and then executed. The 
focus of the ArchWare project [15] is in evolving 
systems, with emergent properties, where the system is 
executing continuously. The model specification and the 
model enactment are both regarded as part of the 
executing state. At any point in time the model 
specification will be an accurate description of the model 
execution. Our claim is that such systems have active 
architectures and a paradigm shift in ADLs is required to 
accommodate them. 

 

3 Change in active architectures 

We have identified three architectural kinds of change 
in active architectures. These are: 
• Dynamic change: allows the topology of the 

components and interactions to be determined 
dynamically. New components and interactions may 
be created during execution.  

• Update change: allows components to be replaced 
dynamically. Whereas dynamic change is additive, 
update change may be regarded as subtractive and 
then additive (atomically). 

• Evolutionary change: allows the specification of the 
components and interactions to be changed during 
execution. 

There are two main stages to changing active 
architectures: first deciding which changes are required 
and when, and second making the changes. The first 
recognises that all change is made in response to some 
stimulus. Taken from control systems, Figure 2 shows 
how application knowledge, obtained by measurement 
perhaps, is used in predicting a goal and then causing a 
reaction. The reaction may be to continue execution or to 
initiate some change mechanism. 

 
Figure 2. Change mechanisms 

In an active architecture the specification of the 
architectural model changes in lock-step with the model 
execution. Thus changes during execution will change the 
specification and changes to the specification will affect 
the execution. However at any time in the execution of 
the model the specification is dynamically up-to-date.  

In the ArchWare ADL we have provided a number of 
change mechanisms reflecting our estimate of the 
frequency of the expected type of change. Dynamic 
change and update change are made using mechanisms 
built into the specification language. For example, this 
may be adding more components to execute in parallel or 
passing components to other components through 
connections (dynamic change) or replacing a component 
from a library of parts by assignment (updatable change). 

Evolutionary change is characterised by changing 
specifications and requires a reflective system.  In this 
that part of the system to be changed is stopped, its 
specification altered and the new specification enacted in 
the executing model. Evolutionary change may be 
implemented using introspection on the component to be 
changed to yield its specification, and reflection to rebind 
the new specification. The reflection itself can use 
existing specifications to make the alterations. In the limit 
user input may be necessary to provide for change that is 
unexpected. 

 

Application 
Knowledge/ 

Measurement 

Prediction to Achieve a 
Goal 

Reaction 

Model 
Execution 

Change 
User 
Input 

Model Specification 
Change 



4 ArchWare overview 

This work is undertaken within the EC funded 
ArchWare software architecture framework. The 
ArchWare project takes a holistic view of software 
development. Its aims are to advance and integrate 
research on software architecture and reflective systems 
to develop languages, frameworks and tools for 
architecting and engineering dynamic and evolvable 
software systems. The important aspects of the ArchWare 
approach can be described as follows: 
• A formal, style-based, executable architecture 

description language to describe architectural 
structure, behaviour, qualities and evolution of 
systems 

• A suite of tools based on the ADL for architecture 
design and analysis 

• Run-time and environment framework to support the 
development and deployment of software systems 
and coordination of design and analysis tools 

• Generic and customisable process models for 
evolutionary, architecture-centric development of 
software systems 

Here we concentrate on the required environment and 
base technologies within the ArchWare ADL for dynamic 
expression and evolution. These include the following: 
• A formal foundation based on higher-order π-

calculus [16] for specifying components of 
architectures with dynamic structure and cardinality 

• Integration of a π-calculus based language for 
communication and an expression based language to 
yield executable specifications 

• Hyper-code as a representation for system execution 
to support reification 

• A decompose operator essential to break up active 
systems into their components prior to evolution and 
recomposition 

• Structural reflection to support evolution 
The theoretical foundation enables formal analysis of 

the architecture and proof of its desired properties. 
Executable specifications reduce the cost and complexity 
of separately implementing the corresponding software 
systems. The separation of concerns of co-ordination, 
communication and computation of components make the 
system easier to understand and evolve. Dynamic 
expression is built into the constructs of the language. The 
facilities for composition and reification together with 
support for decomposition and reflection enable evolving 
systems. 

 

5 The ArchWare ADL 

The ArchWare ADL is the simplest of a family of 
languages designed for modelling active software 

architectures based on the concepts of π-calculus, 
persistent programming and dynamic system composition 
and decomposition. 

The ArchWare ADL is a strongly, and mostly 
statically, typed persistent language. The ADL system 
consists of the language and its populated persistent 
environment and uses the persistent store to support itself. 
To model the component and communication algebra, the 
ADL supports the concepts of behaviours, abstractions of 
behaviours and connections between behaviours. 
Communication between components, represented by 
behaviours, is via channels, represented by connections. 
For expressing data the language also supports a number 
of data types: integer, boolean, real, string, locations, 
views, sequences and higher order functions. These can 
be regarded as syntactic sugar since they can all be 
encoded in the π-calculus. The language also supports all 
the basic π-calculus and expression based operations as 
well as composition and decomposition. 

The ArchWare ADL is designed using the three 
principles of abstraction, correspondence and type 
completeness [17, 18, 19]. 
• The principle of abstraction allows abstractions over 

every semantically meaningful syntactic category in 
the language. Thus functions are abstractions over 
expressions.  

• The principle of correspondence states that the rules 
for introducing and using names should be the same 
throughout. In particular there should be a one-to-
one correspondence between introducing names in 
declarations and as parameters.  

• The principle of type completeness states that the 
rules for using data types must be complete with no 
gaps. For example, general rules for type 
constructors should have no exceptions.  

The application of these design rules yields languages 
that are both small in the number of concepts and 
powerful. They are small in that there are no exceptions to 
the rules and powerful since every combination is valid. 
These properties are important in the design of hyper-
code and its programmable interface. 

 
5.1 The ArchWare ADL layers 

The ArchWare ADL is designed using a layered 
approach with the above-mentioned principles of 
programming language design guiding the process. 
Layering the language helps to separate different 
concerns. There are currently three layers to the 
ArchWare ADL. 

The base layer (Base) defines a coordination language 
without any data values. This corresponds to non-higher-
order monadic π-calculus. Connections are provided for 
communication but since there are no values to be 
communicated, communication merely provides 



coordination. Thus there is no mobility at the base layer. 
Principles of abstraction and correspondence trivially 
apply at this level; without any data types, the principle of 
type completeness is not applicable. This layer is already 
dynamic though the provision of the replicate operator. 

The first-order layer (FO) builds on the base layer to 
provide data values, behaviours, abstractions over values 
and behaviours (called functions and abstractions 
respectively) and mobility for data values and 
connections. This layer corresponds to non-higher-order 
polyadic π-calculus. The principles of abstraction and 
correspondence apply at this level. The principle of type 
completeness applies to all values except abstractions and 
behaviours since these are not permitted to be 
communicated via connections. 

The higher-order layer (HO) develops the first-order 
layer to add mobility for abstractions and behaviours. 
Thus this layer corresponds to higher-order polyadic π-
calculus. All three principles of programming language 
design apply at this level without exception. It is this layer 
that we present in this paper. 

 
5.2 The ArchWare ADL type system 

The ArchWare ADL type system is based on the 
notion of types as a set structure imposed over the value 
space. Membership of the type sets is defined in terms of 
common attributes possessed by values, such as the 
operations defined over them. These sets or types 
partition the value space. They may be predefined, like 
integer, or they may be formed by using one of the 
predefined type constructors, like view. 

The constructors obey the principle of type 
completeness. That is, where a type may be used in a 
constructor, any type is legal without exception. This has 
two benefits. Firstly, since all the rules are very general 
and without exceptions, a very rich type system may be 
described using a small number of defining rules. This 
reduces the complexity of the defining rules. Secondly the 
type constructors are as powerful as is possible since there 
are no restrictions on their domain. 

The universe of discourse of the ArchWare ADL can 
be described as follows. The following base types are 
defined: 
1. The scalar data types are integer, real, and boolean. 
2. Type string is the type of a character string; this type 

embraces the empty string and single characters. 
3. Type any is an infinite union type; values of this type 

consist of a value of any type together with a 
representation of that type. 

4. Type behaviour is the type of an executing process in 
the ADL. 

The following type constructors are defined: 
5. For any type T, location [T] is the type of a location 

that contains a value of type T. 

6. For any type T, sequence[T] is the type of a 
sequence with elements of type T. 

7. For identifiers I1,...,In and types t1,...,tn, view[I1: 
t1,...,In: tn] is the type of a view with fields Ii and 
corresponding types ti, for i = 1..n and n ≥ 0. 

8. For any types t and t1,...,tn, function[t1,...,tn] → t is 
the type of a function with parameter types ti, for i = 
1..n, where n ≥ 0 and result type t. Functions abstract 
over expressions. 

9. For types T1, …, Tn, connection[T1, …, Tn] is the 
type of a connection (channel in π-calculus) which 
can send or receive values of types T1, …, Tn. 

10. For any types t1,...,tn, abstraction[t1,...,tn] is the 
type of an abstraction with parameter types ti, for i = 
1..n, where n ≥ 0. Abstractions abstract over 
behaviours. 

The world of data values is defined by the closure of 
rules 1 to 4 under the recursive application of rules 5 to 
10.  

Communication between components, represented by 
behaviours, is via channels, represented by connections. 
Abstractions over behaviours are called abstractions and 
may be parameterised by any data type. For example 
functions can be passed to abstractions and abstractions 
can be communicated over connections. Passing 
behaviours over connections yields mobility. All types 
can be regarded as syntactic sugar since they can all be 
coded within the π-calculus. 

 
5.3 Control constructs in the ADL 

The ArchWare ADL provides all of the usual control 
structures associated with expression based languages, 
namely sequence, choice, iteration, and function call 
including recursion. To model update change the ADL 
uses locations and assignment. Any data type may be 
stored in a location and be updated by a value of the same 
type. 

Since the ArchWare ADL is formally based on the 
higher-order π-calculus it provides constructs analogous 
to those provided by the π-calculus for specifying control 
flow, communication and dynamic topology. The default 
execution pattern for behaviours in the ADL is parallel. In 
addition the ADL provides a rich set of control constructs. 

Replication of a behaviour, indicated by ! in the π-
calculus, is equivalent to a potentially infinite number of 
copies of that behaviour executing in parallel. This allows 
the specification of dynamic structure since replication 
generates copies as they are required. In Figure 3, the 
shown behaviour is replicated each time a value is 
received on connection in_channel. The behaviour waits 
at its reduction limit for input. Upon receiving input it 
creates a clone of itself waiting at the reduction limit, and 



sends twice the received value on the out_channel. Many 
clones of the behaviour may be executing in parallel thus 
capturing dynamic topologies in the architecture, and 
supporting dynamic change. 

replicate{ 
  via in_channel receive num ; 
  via out_channel send 2 * num 
 } ; 

Figure 3. Replication 
The choose clause, denoted by + in the π-calculus, 

allows the non-deterministic selection of one behaviour 
from two or more behaviours.  In Figure 4, one of 
behaviours client1, client2 or client3 will be chosen at 
random by the run-time system. 

value client1 =  …  ; 
value client2 =  …  ; 
value client3 =  …  ; 
choose{ client1 
 or  client2 
 or  client3 
} ;  

Figure 4. Choice 
Sequence, indicated by “.” or then in the π-calculus, 

can be modelled by “;” in the ADL. Therefore in Figure 3, 
num will be received on in_channel by the behaviour 
before the output value is sent on out_channel. 

The π-calculus also provides the facility to restrict 
names to processes.  In the ArchWare ADL this 
restriction is enabled partly by block structured 
programming scope rules and partly by an explicit free 
construct that specifies the values to be available further. 

 
5.4 Components 

Software architectures describe systems in terms of 
their components and their interactions. Components are 
units of structure and functionality. In the ArchWare ADL 
components can be modelled by behaviours that are 
analogous to processes in the π-calculus. The code in 
Figure 3 specifies a server component that receives a 
number and sends back twice its value. 

In order to facilitate design and reuse, the ADL allows 
the definition of abstractions that abstract over 
behaviours. Applying an abstraction results in a behaviour 
as illustrated in Figure 5. 

value server = abstraction( ) 
{ via in_channel receive num ; 
 via out_channel send 2 * num } ; 
server( ) ; ! applies the abstraction to yield a behaviour 

Figure 5. Abstraction 
There are two aspects to the interaction between 

components: coordination and communication in the 
ADL. The former is concerned with synchronisation of 
components and the latter with exchange of data between 
components. Connections, analogous to channels in the π-
calculus, are used by the ArchWare ADL for both aspects. 

Behaviours can communicate, i.e. send and receive 
values, via connections if they share connections or if 
their connections have been explicitly unified. Empty 
messages via connections are used for coordination alone. 

So far we have seen how to implement predictive 
change through replicate for dynamic change, and 
locations and assignment for update change. We now turn 
our attention to the facilities for unexpected evolutionary 
change – hyper-code, decomposition, reflection and 
reification. 

 

6 Hyper-code 

The hyper-code abstraction was introduced in [20] as a 
means of unifying the concepts of source code, executable 
code and data in a programming system. The motivation 
is that this may ease the task of the programmer, who is 
presented with a simpler environment in which the 
conceptually unnecessary distinction between these forms 
is removed. In terms of Brooks’ essences and accidents, 
this distinction is an accident resulting from inadequacies 
in existing programming tools; it is not essential to the 
construction and understanding of software systems [21]. 
In a hyper-code system the user composes hyper-code and 
the system executes it. When evolving the system, for 
example because an error has occurred, the user only ever 
sees a hyper-code representation of the program, which 
may now be partially executed. The hyper-code source 
representation of the program is structured and contains 
text and links to extant values. Figure 6 shows an example 
of a hyper-code representation in the ArchWare ADL. 
The links embedded in it are represented by underlined 
tokens to allow them to be distinguished from the 
surrounding text. The first link is to an integer location 
value count that is used as a parameter in the application 
of the server_abs abstraction. The program also has two 
links to a previously defined abstraction client_abs. 
Hyper-code models sharing by permitting a number of 
links to the same value. Note that code values (client_abs) 
are denoted using exactly the same mechanism as data 
values (count). Note also that the value names used in this 
description have been associated with the values for 
clarity only, and are not part of the semantics of the 
hyper-code. 



value server_abs = . . . ; 
 
value server1 = server_abs( count ) ; 
value client1 = client_abs() ; 
value client2 = client_abs() ; 

 

count 

client_abs 

The importance of hyper-code in active architectures is 
that it is rich enough to represent executing code. Thus as 
the program executes, the hyper-code changes in line with 
the semantics of the language. Since hyper-code can 
represent closure, through sharing links, it may be used as 
a representation for introspection of the executing system. 

Figure 6. ADL hyper-code 

 
7 Composition and decomposition 

An essential property of evolutionary systems is the 
ability to decompose a running system into its constituent 
components, and compose evolved or new components to 
form a new system, while preserving any state or shared 
data.  

The ArchWare ADL provides a compose operator 
which operates over a number of behaviours 
(components) and returns a single handle to these 
behaviours executing in parallel. The result of this 
composition is also a behaviour. Thus hierarchical 
systems may also be modelled by components that are 
made up of other components. Figure 7 illustrates 
composition. 

Behaviours client and server are composed to give 
system.  The as construct permits meaningful labels to be 
associated with behaviours.  As the details of client and 
server are not of interest in this example, the position sent 
by server is shown as a hyper-link which has previously 
been defined. 

value channel_1 = connection() ; 
value channel_2 = connection( string ) ; 
 
value client = replicate{  
    via channel_1 send ; 
    via channel_2 receive pos : string } ; 

 
value server = replicate{ 
     via channel_1 receive ; 
     via channel_2 send position } ; 
 
value system = compose{ pos_client as client 
      and    pos_server as server }  

Figure 7. Composition 
The ADL also provides a decompose operator which 

breaks up a behaviour into its constituent behaviours and 
returns them in a suspended state. Figure 8 illustrates the 
use of the decomposition operator on the composition 
from Figure 7. 

value pos_seq = decompose system ; 
 
value client_val = pos_seq::1.bhvr ; 
value server_val = pos_seq::2.bhvr ; 
value comp1_label = pos_seq::1.label 

Figure 8. Decomposition 
Decomposition returns a sequence of views consisting 

of behaviours and their labels (if any) in the order that 
they were composed. All the behaviours are at their 
reduction limit for that composition. Figure 8 shows how 
these behaviours and their labels may be accessed from 
the sequence. These behaviours can be returned to the 
user as hyper-code, modified and recomposed. 

Explicit composition is not normally required since 
two behaviours will communicate if they share the same 
connection and communication is ready. Composition 
gives a handle to the new composed behaviours. The 
higher order nature of the language means that two 
behaviours that have been sent to a third may wish to 
communicate but do not share the same connection value. 
The compose operation has a variant that allows the 
unification of connection values during composition to 
facilitate communication in these circumstances. Figure 9 
shows an example of unification. 



value client = abstraction() 
{ value out_request = connection() ; 
 value in_reply = connection( string ) ; 
 replicate{ 
    via out_request send ; 
    via in_reply receive pos : string } 
} ; 
 
value server = abstraction() 
{ value in_request = connection() ; 
 value out_reply = connection(string) ; 
 replicate{ 
    via in_request receive ; 
    via out_reply send position } 
} ; 
 
value system =  

compose{ pos_client as client() and 
     pos_server as server() 
  where { pos_client::out_request unifies  
      pos_server::in_request, 
     pos_client::in_reply unifies  
      pos_server::out_reply } }  

Figure 9. Unification 

8 Reflection and reification 

A hyper-code system may be thought of as operating 
within two abstract domains: entities (E) and 
representations (R). E contains all the first class values 
defined by the language while R contains the concrete 
representations of the values in E. Given these domains, 
four domain operations over E and R may be defined. 
• reflect maps a representation to its corresponding 

entity (R ⇒ E) 
• reify maps an entity to a corresponding 

representation (E ⇒ R) 
• execute executes an entity, possibly generating a 

result (E ⇒ E) 
• transform maps one representation onto another (R 

⇒ R) 
Figure 10 illustrates the domain operations. 

 

 
Figure 10. Domain operations 

Reflection and reification are of particular interest for 
this paper.  In the context of Figure 1, it may be seen how 

these operations play a vital role in evolving systems.  
Once a system is decomposed, reification allows us to 
view the representations of its components.  These 
representations may be evolved to capture new 
requirements.  Reflection allows the evolved or new 
components to be bound back into the system. 

The ability of hyper-code to capture closures allows us 
to represent parts of a system after decomposition without 
losing their context. It provides representations which can 
be used for both evolving the components and 
recomposing them into the new system. 

 

9 A change example 

The concepts discussed in earlier sections are now 
illustrated using an example written in the ArchWare 
ADL. This example is based on a long running in silico 
experiment [22]. The user is a scientist who wants to run 
the experiment from a desktop-based client. The 
experiment itself runs on a server machine with access to 
a range of resources, e.g. corporate databases. The 
scientist’s client will connect to a server that disseminates 
data about the status of the experiment. The client also 
allows the scientist to control (start and end) the 
experiment.  Initially there will be a single client and a 
single server, but later the system will be evolved so that 
the functionality of the server is split into two. 

The functionality of the server and the client can be 
modelled as abstractions in the ArchWare ADL. When 
applied, these abstractions yield executing behaviours. 
Such behaviours are the components that make up the 
client-server system. The repetitive nature of both the 
client and the server is captured using replication. Thus 
the dynamic nature of the system is already present in that 
the server may replicate itself to deal with data from the 
experiment and the client many replicate itself in parallel 
to react to the data sent by the server. 

Since exact details of the experiment are not of interest 
to this example, we will assume that values of data type 
exp_view provide all necessary information about the 
experiment.  The client abstraction can then be defined as 
shown in Figure 11. 

! client 
value client_abs = abstraction() 
{ value c_start = connection() ; 
 value c_stop = connection() ; 
  value c_get = connection( exp_view ) ; 
 via c_start send ; 
 replicate 
  choose{ 
   { via c_get receive ev : exp_view ; 
    via c_display send ev } 
   or 



   { via user_input receive ; 
    via c_stop send } } 
} 

Figure 11. The client abstraction 
The client defines the connections it needs to 

communicate on, sends a message to start the experiment 
and then on demand replicates itself to choose either to 
receive details of the experiment and display it to the user 
or to receive a command from the user and send a 
message to end the experiment. The former provides the 
scientist with an ongoing view of the experiment and the 
latter with the means to stop the experiment if its progress 
is not satisfactory.  c_display and user_input connections 
are shown as hyper-links in the code as they have 
previously been defined elsewhere. 

Figure 12 shows the definition of the server 
abstraction.  The body of the server mirrors that of the 
client. It defines its connections, receives the start 
message, begins the experiment and then on demand 
replicates itself to choose either to receive the stop 
message and end the experiment or to receive the current 
values of the experiment and send them on.  As before 
connection exp_input and function stop_experiment are 
shown as hyper-links. 

! server 
value server_abs = abstraction() 
{ value s_start = connection() ; 
 value s_stop = connection() ; 
 value s_put = connection( exp_view ) ; 
 via s_start receive ; 
 start_experiment() ; 
 replicate 
  choose{ 
   { via s_stop receive ; 
    stop_experiment() } 
   or 
   { via exp_input receive current_view ; 
    via s_put send current_view } } 
} 

Figure 12. The server abstraction 
Having defined server and client abstractions, we can 

now create a client-server system by composing instances 
of the server and the client abstractions with appropriate 
unification. Unification ensures that corresponding client 
and server connections are matched for communication. 
Defining the composition as a value gives us a handle 
(CS_system1) to the resulting behaviour.  Figure 13 shows 
the composition of one client and one server. 

The as construct allows users to associate meaningful 
labels with behaviours being composed.  In addition to 
aiding the identification of behaviours after 
decomposition, this facility also connections to be 
uniquely identified for unification. 

! client-server system 
value CS_system1 =  
compose{ 
  client as client_abs() and server as 
server_abs() 
  where{ client::c_start unifies server::s_start, 
     client::c_stop unifies server::s_stop, 
     client::c_get unifies server::s_put } 
   } 

Figure 13. The client-server system 
Once the system starts executing, we may wish to 

change its structure. The scientist may want to share a 
view of the in silico experiment with colleagues, or the 
experiment may take longer than expected and the 
scientist may wish to get advice before deciding whether 
the server should be stopped aborting the experiment. 

We begin this process by decomposing the system into 
its component parts as shown in Figure 14. The result of 
this decomposition is a sequence of views containing the 
following information about each behaviour of the 
system: label, behaviour value and list of connections.  In 
long-running systems, labels associated with behaviours 
may help identify their purpose and identity. 

! decompose system 
value cs_seq = decompose CS_system1 

Figure 14. Decomposition 
Necessary changes can then be made by evolving or 

redefining some components. In this case we wish to split 
the functionality of the server into two by creating two 
new servers, one serving status alone, which can be 
shared among multiple clients, and the other serving the 
command messages, of which the scientist who started the 
experiment wants to retain control. Therefore we create 
two new abstractions to replace the old server_abs. 

Using hyper-code representations of the abstractions 
will enable us to define the new abstractions to use the 
current values of variables without having to explicitly 
store and reinitialise them as shown in Figure 15.  
Abstraction view_server_abs disseminates status 
information about the experiment while 
command_server_abs allows the experiment to be 
controlled.  Note that start messages are ignored as the 
experiment has already been running. 



! view server 
value view_server_abs = abstraction() 
replicate 
{ via exp_input receive current_view ; 
 via s_put send current_view  
} 
 
! command server 
 value command_server_abs = abstraction() 
replicate 
 choose{ 
  {  via s_start receive } 
  or 
  { via s_stop receive ; 
   stop_experiment() } 

Figure 15. The new server abstractions 
A new client-server system can then be formed by 

composing the two new servers with the decomposed 
client appropriately as shown in Figure 16. 

! make new client-server system 
value CS_system2 =  
compose{ client as cs_seq::1.bhvr  
 and view_server as view_server_abs() 
 and command_server as command_server_abs() 
 where{ 
  client::c_start unifies command_server::s_start, 
  client::c_stop unifies command_server::s_stop, 
  client::c_get unifies view_server::s_put } 
} ;  

Figure 16. The changed system 
Now the client will communicate with both servers.  If 

experiment information is required the client will talk to 
view_server and if the scientist wishes to control the 
experiment then the client will talk to command_server. 

 

10 Conclusions 

We have identified the need for dynamic evolution of 
software architecture definitions. For reliability it is 
important that the architectural definition of a system is 
automatically kept consistent with the state of the system 
at all times during its execution and evolution. Our 
approach to meeting these requirements involves the 
combination of a number of technologies: reflection, 
reification and representation for closure (hyper-code). 

We have combined these with a variant of the π-
calculus that yields dynamic expressions and 
communication while providing the basis for formal 

analysis tools in the form of theorem provers, type 
checkers and model checkers. 

These elements provide a core evolutionary support 
system. We are currently investigating its usability in 
practice. 

 
11 References 

[1]  D. Garlan, M. Shaw, “An Introduction to Software 
Architecture”, Advances in Software Engineering and 
Knowledge Engineering, Volume 1, World Scientific Publishing 
Co., 1993. 
 
[2]  D. Perry, A. Wolf, “Foundations for the Study of Software 
Architectures”, ACM SIGSOFT Software Engineering Notes, 
October 1992, pp. 40-52. 
 
[3]  F. Oquendo, S. Cîmpan, D. Balasubramaniam, G. Kirby, R. 
Morrison, “The ArchWare ADL: Definition of the Textual 
Concrete Syntax”, European RTD Project IST-2001-32360, 
Deliverable D1.2b, December 2002. 
 
[4] L. Coglianese, R. Szymanski, “DSSA-ADAGE: An 
Environment for Architecture-based Avionics Development”, 
Proceedings of AGARD'93, May 1993. 
 
[5]  D. Garlan, R. Allen, J. Ockerbloom, “Exploiting Style in 
Architectural Design Environments”, Proceedings of the ACM 
SIGSOFT’94 Symposium on Foundations of Software 
Engineering, New Orleans, 1994. 
 
[6]  P. Binns, M. Engelhart, M. Jackson, S. Vestal, “Domain-
Specific Software Architectures for Guidance, Navigation, and 
Control”, International Journal of Software Engineering and 
Knowledge Engineering, 1996. 
 
[7]  M. Moriconi, R.A. Riemenschneider, “Introduction to 
SADL 1.0: A Language for Specifying Software Architecture 
Hierarchies”, Computer Science Laboratory, SRI International, 
Technical Report SRI-CSL-97-01, March 1997. 
 
[8]  R.N. Taylor, N. Medvidovic, K.M. Anderson, E.J. 
Whitehead Jr, J.E. Robbins, K.A. Nies, P. Oreizy, D.L. Dubrow, 
“A Component-and Message-Based Architectural Style for GUI 
Software”, IEEE Transactions of Software Engineering, June 
1996. 
 
[9]  R. Allen, “A Formal Approach to Software Architectures”, 
PhD thesis, Carnegie-Mellon University, 1997. 
 
[10]  R. DeLine,  “Toward User-Defined Element Types and 
Architectural Styles”, Proceedings of the Second International 
Software Architecture Workshop, San Francisco, 1996, pp.47-
49. 
 
[11]  J.M. Cobleigh, L.J. Osterweil, A. Wise, B.S. Lerner, 
“Containment Units: A Hierarchically Composable Architecture 
for Adaptive Systems”, Proceedings of the 10th International 
Symposium on the Foundations of Software Engineering, 
Charleston, South Carolina, November 2002. 
 



[12] P. Oreizy, N. Medvidovic, R.N. Taylor, “Architecture-
Based Runtime Software Evolution”, Proceedings of  ICSE'20, 
Kyoto, Japan, IEEE Computer Society Press, 1998, pp. 177-186. 
 
[13]  I. Georgiadis, J. Magee, J. Kramer, “Self-Organising 
Software Architectures for Distributed Systems”, Proceedings of 
the ACM SIGSOFT Workshop on Self-healing Systems, 
Charleston, South Carolina, 2002. 
 
[14]  D. Garlan, R. Monroe, D. Wile, “ACME: An Architecture 
Description Interchange Language”, Proceedings of 
CASCON’97, Toronto, November 1997, pp.169-183. 
 
[15]  http://www.arch-ware.org 
 
[16]  R. Milner, Communicating and Mobile Systems: The Pi-
Calculus, Cambridge University Press, 1999. 
 
[17]  C. Strachey, “Fundamental Concepts in Programming 
Languages”, Oxford University Press, Oxford , 1967. 
 

[18]  R.D. Tennent, “Language Design Methods based on 
Semantic Principles”, Acta Informatica 8, 1977, pp. 97-112. 
 
[19]  R. Morrison, “On the Development of S-algol”, PhD 
thesis, University of St Andrews, 1979. 
 
[20]  G. Kirby, R. Connor, Q. Cutts, A. Dearle, A. Farkas, R. 
Morrison, “Persistent Hyper-programs”, Persistent Object 
Systems, Springer-Verlag, 1992, pp. 86-106. 
 
[21]  E. Zirintsis, “Towards Simplification of the Software 
Development Process: The Hyper-code Abstraction”, PhD 
thesis, University of St Andrews, 2000. 
 
[22]  C. Goble, S. Pettifer, R. Stevens, “Knowledge Integration: 
In silico Experiments in Bioinformatics”, The Grid: Blueprint 
for a New Computing Infrastructure, Second Edition, eds. I 
Foster and C Kesselman, 2003. 
 

 


