Accepted Manuscript

The impact of repeated NALC/NaOH- decontamination on the performance of Xpert MTB/RIF assay

Andrea Rachow, Elmar Saathoff, Bariki Mtafya, Daniel Mapamba, Chacha Mangu, Gabriel Rojas-Ponce, Nyanda E. Ntinginya, Martin Boeree, Norbert Heinrich, Stephen H. Gillespie, Michael Hoelscher

PII: S1472-9792(17)30263-9
DOI: 10.1016/j.tube.2018.04.001
Reference: YTUBE 1689

To appear in: Tuberculosis

Received Date: 12 June 2017
Revised Date: 27 March 2018
Accepted Date: 3 April 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Title page: short communication

The impact of repeated NALC/NaOH- decontamination on the performance of Xpert MTB/RIF assay

Andrea Rachow*, a,b, Elmar Saathoff a,b, Bariki Mtayya c, Daniel Mapamba c, Chacha Mangu c, Gabriel Rojas-Ponce c, Nyanda E. Ntinginya c, Martin Boeree d, Norbert Heinrich a, Stephen H. Gillespie*, e and Michael Hoelscher a,b on behalf of the PanACEA-Consortium

Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich (LMU), Munich, Germany a; German Centre for Infection Research (DZIF), partner site Munich, Germany b; National Institute of Medical Research – Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania c; Radboud UMC /UCCZ Dekkerswald, Nijmegen, The Netherlands d; University of St Andrews School of Medicine, North Haugh, St Andrews, Scotland e

Running title: NALC/NaOH-decontamination and Xpert MTB/RIF-assay

*Corresponding authors:

Stephen Gillespie, School of Medicine, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9FT, United Kingdom

Email: shg3@st-andrews.ac.uk
Phone: +44 1334 461871
Fax: +44 1334 467470

Andrea Rachow, Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich (LMU), Leopoldstr. 5, 80802, Munich, Germany.

Email: rachow@lrz.uni-muenchen.de
Phone:+49 2180 17601
Fax: +49

Abstract: 98 words; main text: 1156 words
Summary
The Xpert MTB/RIF assay detects *Mycobacterium tuberculosis* in unprocessed or NALC/NaOH-decontaminated sputum. The effect of repeated NALC/NaOH-decontamination on several Xpert performance parameters was assessed in this study. A second NALC/NaOH-decontamination had no effect on the binary Xpert-outcome but increased the value for the quantitative readout \(C_{T_{\text{min}}}\). Repeated decontamination was not associated with PCR-inhibition or invalid results. The \(C_{T_{\text{min}}}\) of M.tb positive samples was higher in inhibited Xpert runs. Our data indicate that NALC/NaOH-decontamination has an effect on the performance of the Xpert assay, and that \(C_{T_{\text{min}}}\) readouts of decontaminated sputum samples should be interpreted with caution.
Keywords: Xpert-inhibition; sputum processing; quantitative PCR; Xpert-performance
Introduction

The Xpert MTB/RIF assay (Xpert) is a fully automated PCR test [1], which has been endorsed by WHO for the rapid detection of *Mycobacterium tuberculosis* (*M.tb*) in sputum samples. As previously published, fresh unprocessed sputum as well as NALC/NaOH-decontaminated, concentrated sputum pellets can be used for Xpert testing without effecting the assay’s sensitivity to detect *M.tb* [2]. While Xpert testing is usually performed on unprocessed sputum samples in most clinical settings, decontaminated sputum samples are often used in the context of research and Xpert evaluation studies [3-5]. It is not unusual for sputum samples to require repeated decontamination due to bacterial overgrowth in culture. The impact of NALC/NaOH-decontamination on Xpert’s capacity to detect *M.tb* are scarce apart from the study by Boehme et el. [2]. Furthermore, only a few studies have analysed the inhibition of Xpert in sputum and extrapulmonary samples [6-9]. Blakemore and colleagues showed that inhibition of the Xpert assay resulted in an increased $C_{T_{min}}$ for *M.tb*- positive samples and poorer correlation with the quantitative readouts of the standard methods [10]. Although the typical inhibitors are usually specific to sample type and related characteristics, insoluble calcium-phosphate crystals, formed during the NALC/NaOH-processing, were also reported to inhibit DNA amplification [11]. In this study we analysed the effect of repeated decontamination on critical performance parameters of Xpert such as detection of *M.tb* and PCR-inhibition.

Results and Discussion

We used serial sputum samples from initially smear positive patients enrolled into a phase III TB treatment trial (ClinicalTrials.gov: NCT00864383) in Mbeya, Tanzania. Comprehensive information on ethical aspects, study design and laboratory methods have been published elsewhere [3, 12]. Briefly, after the samples were homogenized and decontaminated, the resulting pellet was processed for smear microscopy and culture methods and the residual was stored at 4°C. If the first culture result was lost due to contamination within the first ten days after inoculation the sputum samples were decontaminated for a second time.

A total of 1134 once or twice decontaminated sputum samples from 90 patients were stored at -80°C until Xpert testing (GeneXpert Dx version 2.1 and 4.0). 97.62% of all
samples (1107/1134) had a final Xpert result (Figure 1), and 38.8% (440/1134) of samples were decontaminated twice - out of which seven had an invalid result - with a non-significant trend (p= 0.063) towards a higher proportion of repeated decontamination for samples from the later study time points.

The Xpert test includes a sample processing control (SPC), to confirm adequate processing and to detect the presence of inhibitors. A negative result for SPC indicates an invalid test in *M. tb*-negative samples. In *M. tb*-positive samples a PCR-run with a CT value of >34 for the SPC is considered as inhibited [10]. As shown before by Blakemore at al. [10], we confirmed in this study that in Xpert-positive samples with a C_T>34 for SPC the readout for minimal cycle threshold (C_{Tmin}) was significantly increased (p <0.001) compared to samples with a C_T<34 for the SPC (data not shown). We further questioned whether Xpert-inhibition could be caused by NALC/NaOH-decontamination and found no data to support this idea. In fact, the risk for an invalid or inhibited Xpert runs was even reduced by 32% and 18%, respectively, after repeated decontamination.

Although this observation was not statistically significant in our study (Table 1), it is in line with other reports, indicating that additional samples processing steps such as sample washing, centrifugation or filtration may reduce inhibition of Xpert [6-8].

The GeneXpert software reports qualitative test results as well as semi quantitative readouts based on the C_{Tmin} determined by one out of five probes specific for *M. tuberculosis* complex becoming positive first. In this study we were investigating the effect of NALC/NaOH-decontamination on the qualitative and quantitative Xpert MTB/RIF result. The analysis of the 1107 samples with a final Xpert result showed that there was no difference in the binary outcome, TB positive or negative, between samples that had been decontaminated once or twice (Table 1). This is consistent with recent findings, indicating that the assay’s sensitivity for *M. tb* was not affected regardless whether fresh or NALC/NaOH-decontaminated sputa were used [2]. We expand this observation to find out whether repeated decontamination had any effect on the bacterial load measured by the C_{Tmin}. Our analysis of 880 samples with a *M. tb*-positive Xpert result revealed that duplicate decontamination did have a significant effect on the reported bacterial load of a sample, expressed as the number of cycle thresholds (C_{Tmin}) and the semi-quantitative readouts (Table 1). The overall median for C_{Tmin} in twice versus once
decontaminated samples was significantly higher, 23.8 versus 21.5 (p<0.001), and this
might be interpreted as a lower bacterial load. Further, after adjusting for week after
treatment initiation in the regression model, the risk for the detection of “high” bacterial
burden measured by Xpert was reduced by 42% (RR=0.58, 95%CI: 0.40 to 0.86, p=
0.007) for twice contaminated samples, whereas the risk was increased by 50% (RR=
1.50, 95%CI: 1.10 to 2.04, p=0.010) for detecting a “very low” bacterial burden. The
lower risk for detection of “high” amount of DNA in connection with a greater risk for
detection of “very low” amount of bacterial DNA for twice decontaminated samples
suggest, that the amount of detectable DNA is reduced by a second decontamination step.
Loss of apparent bacterial load following NALC/NaOH- decontamination is well
recognized for a culture end point [13-14]. Unlike other PCR-assays [14], the Xpert assay
was designed to detect only DNA that is associated with viable mycobacteria, which is
achieved by an integrated mesh and washing step [1]. Yet, we have shown that DNA
linked to non-viable bacilli is also detected by Xpert [3]. The data of this study suggest,
that the second decontamination appears to render some mycobacterial DNA
undetectable by Xpert in these samples. Although we were not comparing fresh sputum
results with data of single decontaminated samples, it is likely that a similar effect of
NALC/NaOH decontamination will be detectable in such comparison. This, however,
needs confirmation by further studies.
In addition to the previous publication by Devonshire et al. [15], which showed that there
is a huge variability among Xpert $C_{T\text{min}}$ data generated from different GeneXpert
instruments, these data provide additional evidence that Xpert $C_{T\text{min}}$ or semi-quantitative
readouts should be used with great caution, when they are used for allocation into
different arms or comparison of treatments within clinical trials or for judgments
regarding disease progression, infectiousness or response to anti-TB treatment within
clinical settings. Uncritical application of NALC/NaOH-decontamination in the
laboratory or unawareness about these procedures among clinicians and scientist might
lead to misinterpretation of quantitative Xpert data and underestimation of mycobacterial
load. These data further suggest that twice decontaminated sputum samples should be
excluded from the interpretation of quantitative Xpert results [3-5]. Future evaluation
studies of Xpert or up-coming newer versions of this test should include an assessment of
the effect of different sputum processing steps on the relevant diagnostic performance parameters of this assay.
Acknowledgements

The authors wish to thank all patients for their participation in this study.

Role of funding source

The study was supported by the German Ministry of Education and Research (BMBF, Grant No. 01KA0901) and the European and Developing Countries Clinical Trials Partnership (EDCTP, Project-ID: IP.2007.32011.011). The funding sources were not involved in the study conduct, data analysis and writing of this report.
References

TABLE 1: The effect of repeated NALC/NaOH-decontamination on Xpert results

<table>
<thead>
<tr>
<th>Re-Decontamination</th>
<th>Yes</th>
<th>No</th>
<th>RR*</th>
<th>95%CI for RR*</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xpert positive %, n=1107†</td>
<td>76.7 (332/433)</td>
<td>81.3 (548/674)</td>
<td>0.98</td>
<td>0.92 to 1.05</td>
<td>0.594</td>
</tr>
<tr>
<td>Xpert semi-quantitative result, n=880‡</td>
<td>high %</td>
<td>7.8 (26/332)</td>
<td>14.8 (81/548)</td>
<td>0.58</td>
<td>0.40 to 0.86</td>
</tr>
<tr>
<td></td>
<td>low %</td>
<td>30.7 (102/332)</td>
<td>40.3 (221/548)</td>
<td>0.80</td>
<td>0.65 to 0.99</td>
</tr>
<tr>
<td></td>
<td>very low %</td>
<td>23.8 (79/332)</td>
<td>14.2 (78/548)</td>
<td>1.50</td>
<td>1.10 to 2.04</td>
</tr>
<tr>
<td></td>
<td>Xpert CTmin (overall median), n=880‡</td>
<td>23.8</td>
<td>21.5</td>
<td>1.07</td>
<td>1.04 to 1.11</td>
</tr>
<tr>
<td>Invalid PCR run (SPC=0) %, n=1134§</td>
<td>4.1 (18/440)</td>
<td>6.1 (42/694)</td>
<td>0.68</td>
<td>0.36 to 1.29</td>
<td>0.237</td>
</tr>
<tr>
<td>PCR inhibited (SPC > 34), %, n=1071∥</td>
<td>8.5 (36/422)</td>
<td>10.6 (69/649)</td>
<td>0.82</td>
<td>0.57 to 1.18</td>
<td>0.283</td>
</tr>
</tbody>
</table>

RR: risk ratio, 95%CI: 95% confidence interval, Xpert: Xpert MTB/RIF assay, SPC: sample processing control, PCR: polymerase chain reaction

* Adjusted for week after treatment initiation
† 1107 samples with a valid Xpert result were included in the analysis
‡ 880 samples with an M. tuberculosis positive Xpert result were included in the analysis
§ Total amount of 1134 samples from 90 smear positive TB patients were included in this analysis
∥ 1071 samples with a positive result for SPC (SPC ≠ 0) were included in this analysis
FIGURE 1

Title: Sample flow chart

Legend: The sample chart is reflecting all 1134 samples which were included in the study and their distribution to different subgroups for analysis.
1134 samples from 90 patients

- 126 samples 1x decontaminated
- 101 samples 2x decontaminated

227 samples with a negative Xpert-result

880 samples with a positive Xpert-result; quantitative analysis (Ctmin)

- 548 samples 1x decontaminated
- 332 samples 2x decontaminated

1107 samples with a final Xpert-result; analysis of qualitative Xpert results

- 36 M.tb-positive samples with negative result for SPC (SPC = 0); excluded from inhibition analysis
- 1071 samples with a positive result for SPC; used for inhibition analysis

27 samples with “error”, “indeterminate” or “invalid” Xpert result; excluded from further analysis