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An Information Flow architecture for Global Smart Spaces 

Introduction 
The Global Smart Spaces project is aimed at supporting the needs of mobile users on 
a global scale. This requires a large and diverse range of services to be deployed at 
geographically appropriate locations. Each service is connected to its peers via 
channels, each carrying some appropriate information. Constantly changing 
requirements and usage patterns necessitate the ability to introduce new components 
and change – at runtime – the topology and composition of this environment. That is, 
both the services running at nodes and the channels by which they are connected must 
change dynamically. 
In order to illustrate the requirements of the information flow architecture, consider 
Figure 1, which shows a collection of components running on the PDA of a mobile 
user sending position events via SMS to an SMS server which in turn sends events to 
a Street Server responsible for some geographical area. The Street Server sends events 
to a Hearsay service which returns information to the user about items of local interest 
such as cafes or shops. 

 
Figure 1: Deployed Components 

Architectural Requirements 
The first requirement is for some kind of architectural description of the components, 
the hosts which are going to execute the components and the interconnections 
between the components. In this example, the three hosts hosting computation must 
be specified: the client, the SMS Server and the Street Server. Next, the set of 
components running on each host needs to be specified – for example, we need to 
specify that the Street Server is to run an instance of the P2P Device, The Hearsay 
Service and the User Proxy. Finally the channels connecting each of the components 
need to be specified. For example we must specify that the output of the P2P Device 
component running on the SMS Server needs to be connected to the input of the P2P 
Device component running on the Street Server. 
The second requirement is the ability to enact the architectural description in order to 
obtain a running deployment consisting of the set of components specified in the 
architectural description. This requires a number of mechanisms including the ability 
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to both execute and install code on remote servers. The ability to execute and install 
code on remote machines necessitates a security mechanism to ensure malicious 
parties cannot execute harmful agents. 
To be generally accepted by application programmers, it must be possible to program 
the architectural components using standard programming languages and appropriate 
programming models. It should also be possible for architectural components to 
interface with common off-the-shelf (COTS) components that are already deployed. 
In order to permit distributed components to be assembled into appropriate topologies 
and communicate with each other, the components must exhibit some degree of 
interface standardisation. In the architecture described here, communication is via 
asynchronous channels that may be dynamically rebound arbitrary components either 
by the components themselves or by suitably privileged external parties. 
All software architectures are subject to evolutionary pressure – however, we 
anticipate that architectures supporting mobile users on a global scale will be subject 
to extreme evolutionary pressures in order to accommodate changes in users’ location, 
activities and interests. This will require the architecture to adapt its topology, caching 
behaviour, process placement and machine usage.  
In order to address these requirements, in this paper we describe an architecture 
which: 

1. Permits the deployment and execution of components in appropriate 
geographical locations. 

2. Provides security mechanisms that prevent misuse of the architecture. 
3. Supports a programming model that is familiar to application programmers. 
4. Permits installed components to share data. 
5. Permits the deployed components to communicate via communication 

channels. 
6. Provides evolution mechanisms permitting the dynamic rearrangement of 

inter-connection topologies and the components that they connect. 
7. Supports the specification and deployment of distributed component 

deployments. 
The system described in this paper is hosted by an enabling infrastructure called 
CINGAL that supports Computation IN Geographically Appropriate Locations. We 
describe this system first before describing the GLOSS information flow architecture. 

CINGAL Computational Model 
The CINGAL Computational model is conceptually simple, CINGAL enabled nodes 
provide: an entry point permitting bundles to be fired, a content addressable store, a 
name binder, an extensible collection of symbolically named machines each 
executing bundles, channel based asynchronous inter-machine communication and a 
capability system controlling the permissions entities have over stored data, machines 
and bindings. 
A bundle is the only entity that may be executed in CINGAL. Bundles are passive and 
consist of code, data and a set of bindings naming the data. Each Bundle is uniquely 
identified by a globally unique identifier (guid) which is implemented via an MD5 
key. In practice, Bundles are encoded as XML as shown in Figure 2 below. In the 
current implementation the code may be written in either Java or Javascript with Java 
classes being MIME encoded. The code entry point is designated via the entry 
attribute of the CODE tag. The data section of a bundle comprises a number of 
datums each of which has an id attribute representing the datum’s name within the 
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bundle which must be unique. The collection of id names forms a local set of data 
bindings for the bundle. It is common for Bundles to carry other Bundles as payload. 
In Figure 2, the Bundle carries another Bundle as a datum called PAYLOAD. 
 

<BUNDLE> 
<CODE entry="uk.ac.stand.dcs.gloss.cingal.Installer" type="java"> 

<Class name="uk.ac.stand.dcs.gloss.cingal.Installer"> 
DQrK/rq+AAMALQA8CgA 
... code elided ..  
ACQAAgABACUAAAACACY</Class>  

</CODE> 
<DATA> 

<DATUM id="PAYLOAD"> 
<BUNDLE> 

<CODE entry="deployment.deployA.A" type="java"> 
<Class name="deployment.deployA.A"> 
DQrK/rq+AAMALQAuCgAI 

... code elided .. 
DwAQAAAAAAACAB0AHgAB</Class>  

</CODE> 
<DATA> 
<DATUM id="LOCAL_Name">Bobs Comp</DATUM>  
</DATA> 

</BUNDLE> 
</DATUM> 
<DATUM id="INSTALL_NAME">ApplicationA</DATUM>  

</DATA> 
</BUNDLE> 

Figure 2: An Example Bundle 

Bundles are executed on a remote node by firing them. From a remote node this is 
achieved by sending a bundle to a standard port. Each CINGAL enabled host has a 
listener that expects clients to communicate with it using the Thin Server Simple 
Communication Protocol (TSSCP). TSSCP supports a number of operations including 
the firing of a bundle. 

Machines 
When a bundle is received by the host, provided that the bundle has passed a number 
of checks described below, the bundle is fired, that is, it is executed in a new machine 
as shown in Figure 3. Computation within the fired bundle begins at the entry point 
specified in the bundle. Bundles may carry out any arbitrary computation that they are 
encoded to perform including the provision of network services. 
Each machine is an isolated protection domain implemented as a separate operating 
system process. Unlike processes running on traditional operating systems, bundles 
have a limited interface to their local environment. The repertoire of interactions with 
the host environment is limited to: interactions with the local store, the manipulation 
of bindings, the firing of other bundles, and interactions with other machines. Each of 
these operations is restricted via a capability protection scheme described later. 
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Figure 3: Firing a Bundle 

The Store 
Conceptually the store is a collection of passive data. The store component supports 
the storage of arbitrary bundles. So that a bundle may be retrieved, a key in the form 
of a globally unique identifier (of type TSGUID) is returned by the store on its 
insertion. Stores implement the following interface: 

TSBundle storeGet(TSGUID guid) 
Retrieves a bundle from the store 

 TSGUID storePut(TSBundle bundle) 
Adds a new bundle to the store 

 void storeRemove(TSGUID guid) 
Removes a bundle from the store 

Figure 4: The Store Interface 

The storePut operation inserts a bundle into the store, and returns a key. If that key is 
later presented via the storeGet operation, the original bundle is returned. The 
storeGet operation fails if presented with an unknown key. Stores do not support any 
update operations. Where the effects of update are required by an application, these 
may be obtained using binders as described later. A desire for simplicity drove the 
decision to have a store generate the key for a given bit-string, rather than let the key 
be supplied by the caller. 
Figure 5 illustrates the use of the storePut and storeGet operations to add a bundle 
and later retrieve it. 
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Figure 5: Main Store Operations 

The Store Binder 
The store interface is sufficient to allow information of any kind to be stored and 
retrieved. For practical use, however, two further abilities are required: 

• to support update operations; 
• to be able to access stored information through symbolic names as well as 

arbitrary system-specified keys. 
These are provided by the store binder (sbinder) component, which implements a 
modifiable many-to-many mapping between symbolic names and keys. A name may 
be bound to multiple keys, allowing a set to be retrieved in a single operation; a key 
may be bound to multiple names, giving aliasing. Mappings may be updated so that a 
given name may refer to various keys over time. The binder provides the following 
interface: 

 TSGUID[ ] sBinderGet(String symName) 
Retrieves an entry from the Binder 

 void sBinderPut(String symName, TSGUID guid) 
Inserts an entry in the Binder 

 void sBinderPut(String symName, TSGUID guid, String clue) 
Inserts an entry in the Binder 

 void sBinderRemove(String symName, TSGUID guid) 
Removes an entry from the Binder 

Figure 6: Binder Interface 

The sBinderPut and BbinderRemove operations establish and remove a binding 
between the given name and key respectively. The sBinderGet operation returns all 
the keys currently bound to the given name; this may be an empty set. Figure 7 
illustrates the use of the sBinderPut and sBinderGet operations to bind a name to key 
binding, and later to retrieve the set of keys currently bound to that name. 
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Figure7 Main Binder Operations 

The Process Binder 
Just as the store binder permits data in the store to be symbolically named, another 
binder, the process binder (pbinder) permits processes (services) to be named. The 
interface to the pbinder is shown in Figure 8 below. The process binder provides 
operations for the addition and removal of services via the operations pBinderPut and 
pBinderRemove. These operate in a similar fashion to the corresponding store and 
store binder interface functions. In addition to the specification of a symbolic service 
name and the GUID of bundle implementing that service, the pBinderPut operation 
takes an extra parameter specifying the maximum number of processes that may be 
instantiated to deliver the named service. Whenever another process attempts to bind 
to the named service, a new process will be created to provide that service up to the 
number specified in instances and thereafter the process will be connected to an 
extant process. Processes lookup services using the inter-process communication 
mechanisms described below.  
 

 void pBinderPut(String service, TSGUID guid, int instances) 
Adds a new entry into the store PBinder 

 void pBinderRemove(String service) 
Removes an entry from the PBinder 

Figure8 PBinder Interface 

A mechanism is also required that permits executing bundles to name themselves as a 
service. This is achieved using the setResourceName method shown in Figure 9. 
 

 void setResourceName(java.lang.String resourceName)  
Permits a running bundle to name itself as a resource 

Figure9 SetResourceName Interface 
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Inter-Process Communication 
CINGAL supports asynchronous message oriented inter-process communication. All 
communication is via channels. In CINGAL, all channels implement the ITSChannel 
interface which supports conventional read and write operations. Whenever a bundle 
is fired on a machine, a Channel to that bundle is returned to its creator. This Channel 
may be accessed by the (Thin Server side) fired bundle using the getDefaultChannel 
operation shown in Figure 10 below. In the case of a bundle being pushed from a 
conventional client, this Channel is returned by the bundle deployment software 
wrapped up in an object of type ThinServerClient as shown below. This channel 
permits direct communication between a deployed Bundle and its creator, be it local 
or remote. 
 
ITSChannel getDefaultChannel()  

The Default user level communications Channel 

Figure10 The get Default Channel Interface 

The ThinServerClient object is supplied by the CINGAL deployment infrastructure. It 
provides functionality to interact with a Thin Server. It can connect and send mobile 
code to a remote Thin Server as well as send requests about resources already present 
on the local Thin Server.  Figure 3 may now be refined as shown in Figure 11 to show 
the inter-process communication between the deployer and the executing bundle. 
 

fire

Bundle

Listener

Protection Barrier

4 getDefaultChannel
5. Channel r/w

Machine

Store Binder

Regular Computer

Protection Barrier

OS Process

1. Construct Bundle

2 Send Bundle

3 Fire Bundle

4 Start machine
6 Channel r/w

 
Figure11 Inter-process communication 

To fire a bundle, the (almost real) pseudo code shown in Figure 12 is executed.  
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public class OriginatingProcess { 
 public void main() { 
  // get a bundle from somewhere 
  TSBundle bundle = getBundleToFire();  
  // send bundle to Thin Server with address ipaddr 
  ThinServerClient client = ThinServerClient.send(ipaddr,bundle); 
  // Get chanel from ThinServerClient 
  TSChannel defaultChannel = client.getResourceChannel(); 
  // read off the channel 
  String messageFromFiredBundle = defaultChannel.getString(); 
 } 
} 

Figure12 Deployment code 

The code executed in the bundle on the Thin Server might look something like that 
shown in Figure 13 below. 
 

public MobileCode implements ITSBundle { 
 // Start is the entry point for mobile code 
 // This blocks until a connection is made. 
 public void Start() { 
  ITSChannel defaultChan = machine.getDefaultChannel() 
  defaultChan.writeString(“HelloWorld”); 
 } 
} 

Figure13 Deployed Code 

The channel established between a bundle and its progenitor is of limited use and is 
normally only used for diagnostics and the passing of parameters. A running bundle 
may establish Channels with other bundles using the resourceConnect method which 
has a number of variations shown in Figure 14. 
 
 ThinServerClient resourceConnect(String resource, String provider) 

Open a Channel with a resource residing on same TS node. 
ThinServerClient resourceConnect(String host, String resource, String provider)

Open a Channel with a resource residing on another TS 
node. 

 ITSChannel resourceConnect(String host, int port) 
Open a Channel with a resource residing on a conventional 
node. 

Figure14 Inter-process communication 

The first variation of resourceConnect is used to obtain a Channel to a resource 
running on the same Thin Server. The second is used to connect to a process on a 
remote thin server. In both cases the resource name is used to find a resource which 
has been registered with the Thin Server either using the setResourceName call or has 
been registered in the pbinder. The last resourceConnect call provides a connection to 
a machine running on a conventional node and functions like a IP socket connection. 
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Firing Local Bundles 
Executing Bundles (running in a machine) may instantiate new machines running 
other bundles using the interfaces shown in Figure 15 below. These permit both 
bundles from the store and dynamically created bundles to be fired. The latter 
interface may be used to fire bundles with arbitrary parameters stored in a bundle’s 
data section. 
 
 ThinServerClient fire(TSGUID guid) 

Fire a bundle that resides in the node's Store 
 ThinServerClient fire(TSBundle bundle) 

Fire a specified bundle 

Figure15 The Local Fire Interface 

Named Channels 
The diagram in Figure 1 shows components arranged in a pipeline with the outputs of 
one process connected to the inputs of another. The mechanisms describe thus far are 
sufficient for this purpose. However they lack flexibility in regard to the way in which 
globally distributed computations may be arranged and evolved. In order to increase 
this flexibility the CINGAL computational model includes named channels between 
entities. This idea stems from Milner’s pi calculus. Using named channels, individual 
executing bundles are isolated from the specifics of what components are connected 
to them. CINGAL provides mechanisms binding, unbinding and rebinding named 
channels. 
When the concept of named channels is introduced, the Bundle execution model may 
be refined as shown n Figure 16. To recap, the bundle executes within a machine 
presents the bundle with a small number of methods via an interface passed to its start 
method (the entry point) on initialisation. 

Protection Barrier

Executing Bundle

Machine

Named
Channels

Default
Channel

Machine
API

Machine
Channel

“c”
“in”
“x”
“out”

ConnectionManager

listen

 

Figure16 The Local Fire Interface 
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In addition to the operations we have shown this far, the machine interface also 
permits bundles to obtain bindings to named channels within the machine in which 
they execute. This interface is called getAbstractChannel and takes the name of a 
named channel as a parameter and returns a channel of type ITSChannel. 
 

ITSChannel getAbstractChannel( String name ) 
Return an abstract Channel 

Figure17 The Abstract Channel interface presented to running Bundles 

The channels returned by getAbstractChannel() are initially unbound – that is, they 
are not connected to any other machine instance. Some mechanism needs provided to 
permit the binding of abstract channels to other channels. Furthermore, the 
mechanism needs to support the connection of abstract channels by a third party (If 
this were not so the other channel mechanisms would suffice). To support wiring by 
third parties, in addition to the default channel, each running machine provides 
another channel interface which permits interaction with the machine infrastructure 
rather than the bundle running in the machine. This is channel interface is known as 
machine channel and is also shown in Figure 17. All interactions with the machine are 
via the TSSCP described earlier. 
Within the machine infrastructure a component called the connection manager is 
responsible for the management of named channels. The interface to this component 
is shown in Figure 18 below. This component is not accessible to bundles executing 
with the machine.  
 

boolean connectChannelToName( String host, int port, String Channel 
name) 
Connect to another TS Machine 

ITSChannel getAbstractChannel( String name ) 
Return an abstract Channel 

Port_id listenForConnectionAndBindToChannel( String name ) 
Wait for binding to a remote named channel  

Figure18 Connection Manager interface 

The pseudo code for a machine X establishing a channel between a named channel 
called in contained within machine Y and a named channel called out on machine Z 
is as follows. Machine X sends a TSSCP request to the machine Y requesting that a 
named channel called in is established. Machine Y. Machine Y calls the 
listenForConnectionAndBindToChannel method within Machine Y with “in” as a 
parameter. The connection manager starts a thread listening for an incoming request 
and returns the port via TSSCP to machine X. Next, machine X sends a TSSCP 
message to machine Z with parameters “out” and the address of the node hosting Y 
and the port returned by machine Y.. Machine Z calls the connectToChannelName 
method of Z’s connection manager. This connection manager establishes a connection 
with machine Y and the channel is established. The getAbstractChannel method 
provided by the connection manager is where the channel implementation resides. 
The code running in the bundle calls this method indirectly when the machine 
interface method of the same name is called. 
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CINGAL Protection Model 
The model described thus far is a perfect virus propagation mechanism. Code may be 
executed on remote nodes and that code may create new processes, update the store, 
create name bindings and fire bundles on other thin servers. The CINGAL system 
implements a two level protection system. The first level restricts the firing of bundles 
on thin servers; the second restricts what bundles can do when they are running. 
However, before describing the CINGAL protection model a distinction must be 
made between the ability to make use of services provided by CINGAL nodes and the 
ability to deploy and run code on nodes. The use of services running on a CINGAL 
server such as a Web server is never restricted by the CINGAL security model, it is 
the firing of bundles on a remote server and the operations that the fired bundles may 
perform that is subject to security restrictions.  
As stated above the first level of restriction is on who is permitted to fire bundles. 
Clearly a convention Unix or Windows style security model is not appropriate for thin 
servers which do not have users in the conventional sense. Instead, security is 
achieved by means of digital signatures and certificates To implement security, each 
CINGAL node maintains a list of trusted entities each associated with a security 
certificate. This data structure is maintained in a repository called the Valid Entity 
Repository (VER) which presents the interface shown in Figure 19 below. 
 

String verPut(byte[] certificate, String type, String subject, Cap Rights) 
Adds a new entry in the VER 

 void verRemove(String entity) 
Deletes an entity from the VER 

boolean verify(Bundle b)  
Verifies the integrity and authenticity of a Bundle. 

Figure19 Valid Entity Repository interface 

Bundles presented for firing from outwith a Thin Server node are required to be 
signed by a valid entity stored in the valid entity repository. Like many of the data 
structures maintained by CINGAL nodes, the VER maintains an associative data 
structure. In the case of the VER this data structure is indexed by the entity id and 
maps to a tuple including certificates and rights. Operations are provided for adding 
(verPut) and removing (verRemove) entities from the repository. Of course these 
operations are subject to the second protection mechanism which is capability based. 
An example of a signed bundle is shown in Figure 20. 
 

<BUNDLE> 
<AUTHENTICATION 
 entity="19730129df7442a5bb5373447eb91509" 
 signature="DQowLAIUPFq…BQu1JP5JfO44” /> 

 <CODE entry=”XX"> … </CODE> 
<DATA> … </DATA> 

</BUNDLE> 
 

Figure20 A Signed Bundle 
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The attributes of the AUTHENTICATION tag represent the name of an entity in the 
VER of the node on which the bundle is being fired and the signature is the signed 
body of the code payload of the bundle. The Thin Server deployment infrastructure 
provided for deploying bundles from conventional machines provides programmers 
with the methods shown in Figure 21 to ease the pain of managing the signing of 
Bundles. 

 
Bundle generateSignature(PrivateKey pKey, Bundle b ) 

Signs a Bundle with the private key of owner. 
PrivateKey getPrivateKey(File keystore, String type, String alias, 

char[] password)  
Retrieves the private key from a key store. 

protected 
 boolean 

verify(byte[] signed)  
Verifies the integrity and authenticity of a Bundle. 

Figure21 Operations for managing signing 

The signing of bundles and their validation on arrival at thin servers prevents the 
misuse of Thin Server nodes by unauthorised entities. However it does not prevent a 
bundle from interfering with other bundles or entities in the binder or store. Ideally, 
bundle could be totally isolated from each other if they wish giving the illusion that 
they are the only entities running on a Thin Server node. Conversely, bundles should 
be able to share resources if required. 
To address these needs, the second protection mechanism provided by thin servers is a 
capability based protection mechanism. In addition to the signatures stored in the 
VER, Thin Server nodes store segregated capabilities for entities stored in the store, 
sBinder, pBinder and the VER itself. Whenever a running bundle attempts an 
operation, the capabilities stored in the VER associated with the entity that invoked 
the operation are checked. The operation only proceeds if the entity holds sufficient 
privilege. Further discussion of these mechanisms is beyond the scope of this 
document. 

Dynamic Deployment using the Deployment Engine 
The CINGAL system provides the infrastructure for deploying arbitrary components 
in arbitrary geographical components which is a prerequisite for the deployment of 
Global Smart Spaces. However, it is not sufficient. Some infrastructure needs to be 
provided to: a) describe global architectures and b) to deploy components from the 
descriptions. This requirement is addressed by a description language and a 
deployment engine and mobile code documents and tools which are described below. 

Deployment Engine 
The Deployment Engine distributes autonomous components which perform a 
specific computation/function (service). The deployment engine consists of a parser 
that reads a Deployment Description Document (DDD) and a deployer which 
transmits bundles which perform the tasks necessary to instantiate the architecture 
described in the DDD. These tasks typically consist of deploying components, 
running components and configuring the topology of the deployed application. 
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Control Documents 
Central to the deployment process are mobile code tools and XML control documents 
– to do lists and task reports. To do lists are composed of a set of Tasks which detail 
actions a tool must attempt to perform upon arrival at a Thin Server. Consequent task 
report documents list the outcomes of each task and any other associated information. 
When the tool completes its assigned tasks a task report is sent back to the 
deployment engine. An example to do list and task report is shown in Figure 22 
below. 

<ToDoList> 
 <Task guid="urn:gloss:aEcncdeEe" type="INSTALL"> 
  <datum id="PayloadRef">urn:gloss:a222jdjd2s</datum> 
 </Task> 
 <Task guid="urn:gloss:aBcbcdebe" type="INSTALL"> 
  <datum id="PayloadRef">urn:gloss:b333jdjd2s</datum> 
 </Task> 
</ToDoList> 

 
<TaskReport> 
 <TaskOutcome guid="urn:gloss:aEcncdeEe" success="TRUE"> 

<!--  TaskOutcomes can have zero, one or many datum 
elements which are bindings and data this 
permits any application specific information 
to be sent back to the Deployment Engine --> 

  <datum id="StoreGuid">AECJCJDKSKDLDJSUVDJD</datum> 
 </TaskOutcome> 
 <TaskOutcome guid="urn:gloss:aBcbcdebe" success="FALSE"> 
  <datum id="Error">403</datum> 
 </TaskOutcome> 
</TaskReport> 

Figure 22 – Example to do list and consequential task report 

Mobile code tools are CINGAL bundles which are configurable by attaching an 
appropriate to do list to the bundle which encloses the tool. The deployment engine 
utilises three primary tools: Installers, Runners and Wirers. An example of an installer 
bundle is shown in Figure 23 below which carries a payload of a bundle containing 
two Java classes named MatchingEngine and HearsayClient in addition to the 
installer code itself which is of of class uk.StAnd....Installer. Note that in addition to 
the classes, the bundle also carries within its payload a to do list as described above. 
Note that the payload reference identifies the datum with id=”urn:gloss:a222jdjd2s” 
as the bundle to be installed. 
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<BUNDLE> 
 <AUTHENTICATION entity="197301m7wWwrPxX9..EySLGU" 
  signature="kUdzrv6T..fFNn5Kap" /> 
 <CODE entry="uk.StAnd....Installer" type="java"> 
   <Class name=”uk.StAnd....Installer" 
   <!--  MIME Encoded Class  --> 
  </Class> 
 </CODE> 
 <DATA> 
  <DATUM id="urn:gloss:a222jdjd2s"> 
   <BUNDLE> 
    <AUTHENTICATION entity="1973012..91509" 
     Signature="DQowLAIUNs..if1Dn5Kap" /> 
    <CODE entry="MatchingEngine" type="java"> 
     <Class name="MatchingEngine"> 
      <!--  MIME Encoded Class  --> 
     </Class> 
     <Class name="MatchingEngine"> 
      <!--  MIME Encoded Class  --> 
     </Class> 
     <Class name="HearsayClient"> 
      <!--  MIME Encoded Class  --> 
     </Class> 
    </CODE> 
    <DATA> 
     <DATUM />  
    /DATA> 
   </BUNDLE> 
  </DATUM> 
  <DATUM id="ToDoList"> 
   <ToDoList> 
    <Task guid="urn:gloss:aEcncdeEe" 
     type="INSTALL"> 
     <datum id="PayloadRef"> 
      urn:gloss:a222jdjd2s 
     </datum>  
    </Task> 
   </ToDoList> 
  </DATUM> 
 </DATA> 
</BUNDLE> 

Figure 23 An installer 

Installer tools install an arbitrary number of bundles into the store of the Thin Server 
to which they are sent. Runner Tools start the execution of bundles installed in the 
store of a Thin Server. Wirer Tools are responsible for making concrete connections 
between pairs of components using the named channel mechanisms described above. 
Thus components move between three states as they move towards becoming 
functional components of a deployed architecture: 

Deployed – corresponds to the state when a bundle has been installed into the 
TSStore of a node. 
Running – corresponds to the state when a bundle has started computation. 
Any read/write on named channels will block as they have not been 
connected. 
Wired – corresponds to the state when a bundle has started computation and 
all abstract channels have been connected to other components. 
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Deployment Description Document 
A Deployment Descriptor Document is a static description of a distributed graph of 
components. An example DDD is shown in Figure XX1. From this example it can be 
seen that a DDD specifies where to retrieve components (Bundles), the machines 
available, the mapping of components to machines (a deployment) and the 
connections between abstract channel pairs. These are specified in the bundles, nodes, 
deployments and connection sections respectively. 
 

<DDD name="gloss infrastructure"> 
 <bundles> 
  <bundle name="MatchingEngine" 
   code="bundles/MatchingEngine.xml" />  
  <bundle name="HearsayCachingServer" 

   code="bundles/cachingBundle.xml" />  
 </bundles> 
 <nodes> 
  <node id="als machine" address="129.127.8.34" />  
  <node id="andrews machine" address ="129.127.8.23" />  
  <node id="grahams machine" address ="129.127.8.35" />  
 </nodes> 
 <deployments> 
  <deployment name ="St_Andrews_Hearsay_Engine" 
   bundle="MatchingEngine" 

   target="Als Machine" />  
  < deployment name ="St_Andrews_Hearsay_Infrastructure" 
   bundle="HearsayCachingServer" 

   target="andrews machine" />  
  < deployment name ="Fife_Hearsay_cache" 
   bundle="HearsayCachingServer" 

   target="grahams machine" />  
 </deployments> 
 <connections> 
  <connection> 
   <source deployment="St_Andrews_Hearsay_Engine" 
    channel="OutGoingMatches" /> 
   <destination 
    deployment= 

     "St_Andrews_Hearsay_Infrastructure" 
    channel="IncomingMatches" />  
  </connection> 
  <connection> 
   <source deployment="Fife_Hearsay_Cache" 
    channel="DownstreamCache" />  
   <destination 
    deployment= 
     "St_Andrews_Hearsay_Infrastructure" 
    channel="UpstreamCache" />  
  </connection> 
 </connections> 
</DDD> 

Figure 24 A Deployment Description Document 

The Deployment Process 
The deployment process is as follows, the DDD is input to the Deployment Engine 
(this process is known as compilation of the DDD). Following compilation, the engine 
retrieves the specified bundles from a component catalogue and installers are 
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configured (by creating an appropriate to do list). Next the installers are fired (sent to 
appropriate nodes and executed) to install required components onto Thin Servers 
throughout the network. One installer is fired per Thin Server. Each installer sends 
back a report to the deployment engine listing the TSGUIDs of each installed bundle. 
Figure 25 shows the installation process with the installers running on the set of thin 
servers specified in the DDD shown in Figure 24. 

 
Figure 25 The Installation Process 

Upon completion of this phase of the deployment process the required bundles are 
stored in each Thin Server’s store as shown in Figure 26. 
 

Node: Als machine

Node: Andrews Machine Node: Grahams machine

Stage: Installed

TSStore TSStore

TSStore

St_andrews_hearsay_infrastructure
stored into the TSStore on Andrews
Machine

St_andrews_hearsay_engine
stored into the TSStore on
Als Machine

Fife_hearsay_cache stored into the
TSStore on Grahams Machine

 
Figure 25 Result of the Installation Process 
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Each installer tool returns a Task Report to the initiating site containing the store 
TSGUID for each bundle installed. The example below shows the task report returned 
by the Installer sent to Als Machine. 
 

Lists the store GUID the bundle is stored as in the store  
Figure 26 Task report sent from Als Machine 

Following installation, the deployment engine configures the set of runners by 
creating an appropriate to do list. These runners are fired to start execution of all 
‘dormant’ installed bundles for this deployment. One runner is fired per Thin Server. 
Figure 27 shows the runner Bundle for Als machine showing the to do list instructing 
the tool to fire a specified bundle from the Store. This bundle is the bundle installed 
earlier by the installer. 
 

  ToDoList
  Instructs Runner tool to fire
  specified bundles from the store of
  the Thin Server it is fired on

Runner Tool
Classes required for the Runner

 
Figure 27 The installer bundle sent to Als Machine 

Figures 28 and 29 show the runners executing at each Thin Server to fire the 
appropriate bundles from the Thin Server stores and the result of their execution. 
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Als machine

Andrews Machine Grahams machine

Stage: Runners fired onto
required ThinServers.

TSStore TSStore

TSStore Runner configured to fire a
previously installed bundle in store

Runner

RunnerRunner

Runner configured to fire a
previously installed bundle in store

Runner configured to fire a
previously installed bundle in store

<ToDoList>
<ToDoList>

<ToDoList>

St_andrews_hearsay_infrastructure Fife_Hearsay_Cache

St_Andrews_Hearsay_Engine

 
Figure 27 The runner bundles running on the distributed thin servers 

Node: Als machine

Node: Andrews Machine Node: Grahams machine

St_andrews_hearsay_infrastructure

St_andrews_hearsay_engine

Fife_Hearsay_CacheAbstract
Channel
named

Incoming
Matches

Abstract
Channel
named

OutGoing
Matches

Abstract
Channel
named

Downstream
Cache

Abstract
Channel
named

Upstream
Cache

Stage: Running

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

 
Figure 28 Components running but not connected 

As with the installation process, each Runner tool returns a Task Report listing the 
connector of the enclosing machine for each fired bundle. Figure 29 shows the task 
report returned by the Runner fired on Als Machine. 

Information about the enclosing machine the bundle was fired on.
Allows later communication with the machine or resource.
Format :
<IP Address>-<MachinePort>-<ResourcePort>  

Figure 29 Task report sent from Als Machine 
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The last step in the process is to connect the named channels on each running bundle 
to assemble the global application topology. To achieve this, the deployment engine 
first configures wirers by creating appropriate to do lists and fires them to connect the 
named channels in each machine. One wirer is used per connection. The two nodes 
which hold the channels to be connected are labelled arbitrarily as the primary and 
secondary nodes. The primary node is where the wiring process will begin, the other 
end at which the connection is to be created is known as the secondary node. 
Each wirer created is provided with configuration data describing  

1. The connector for each machine – this contains the IP address of the 
machine and the machine and resource ports. 

2. The name used by executing bundle to reference the channel in both 
machines (may be different for each machine). 

Shown in Figure 30 is the wirer Bundle for Als Machine which is (arbitrarily chosen 
as) the primary machine for the connection between the named Channels 
“OutgoingMatches” and “IncomingMatches”. 
 
 

Wirer Tool
Classes required for Wirer

ToDoList
Instructs Wirer Tool to connect the
abstract channel “Outgoing
Matches” in the Primary Machine to
the abstract channel “Incoming
Matches” in the secondary machine

 
Figure 30 The wirer bundle sent to Als machine 

As described above, the Thin Server provides a TSSCP protocol permitting the wirer 
to communicate with the Connection Manager. The result of the primary phase of the 
channel establishment process for the working example is shown in Figure 31. 

 



 GLOSS: GLOBAL SMART SPACES 
PROJECT NO. IST-2000-26070 

D15 
AN INFORMATION FLOW ARCHITECTURE FOR 
SMART SPACES 

 
 
 PAGE 22/25

 

 
© 2001 GLOSS CONSORTIUM 

13/11/03 
VERSION 1 

     

Als machine

Andrews Machine Grahams machine

St_andrews_hearsay_infrastructure

St_andrews_hearsay_engine

Fife_Hearsay_CacheAbstract
Channel
named

Incoming
Matches

Abstract
Channel
named

OutGoing
Matches

Abstract
Channel
named

Downstream
Cache

Abstract
Channel
named

Upstream
Cache

Stage: Wirers fired to Primary machines to set up primary phase of connection
process Connection Callback listening in each machine for incoming connection

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

<ToDoList>Wirer <ToDoList>Wirer

IPC IPC

Connection
Callback
Port 4512

Connection
Callback
Port 6534

Connection
Callbacks

listening for
incoming

connection from
secondary
machines

IPC with
connection

manager to set up
connection on

primary machines

 
Figure 31 First Phase of Channel establishment 

Following completion a listener at the primary node, configures another wirer bundle 
(its ‘offspring’) which is sent to the secondary node. The purpose of this wirer is to 
connect the named Channel on the secondary node to the waiting channel on the 
primary node. When the offspring wirer arrives at the secondary node, it 
communicates with the Connection Manager of the machine which requires wiring 
and instructs it to connect the second named Channel to the listener on the primary 
node as described above and the connection is established. 
 

Als machine

Andrews Machine Grahams machine

St_andrews_hearsay_infrastructure

St_andrews_hearsay_engine

Fife_Hearsay_CacheAbstract
Channel
named

Incoming
Matches

Abstract
Channel
named

OutGoing
Matches

Abstract
Channel
named

Downstream
Cache

Abstract
Channel
named

Upstream
Cache

Stage: Wirers migrated to Secondary
machines to complete connection process

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

IPC

Connection
Callback
Port 4512

Connection
Callback
Port 6534

Connection
Callbacks

listening for
incoming

connection from
secondary
machines

<ToDoList>Wirer<ToDoList>Wirer

IPC

IPC with connection
manager to instruct

connection manager to
connect Abstract Channels

to specified ports
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Figure 32 Second Phase of Channel establishment 

Once all the wirers have completed (possibly parallel) computation the installation 
process is complete and all named Channels are connected as shown in Figure 33. 
 

Node: Als machine

Node: Andrews Machine Node: Grahams machine

St_andrews_hearsay_infrastructure

St_andrews_hearsay_engine

Fife_Hearsay_CacheAbstract
Channel
named

Incoming
Matches

Abstract
Channel
named

OutGoing
Matches

Abstract
Channel
named

Downstream
Cache

Abstract
Channel
named

Upstream
Cache

Stage: Wired and Running

Socket
connected
abstract
channels

 
Figure 32 Result of installation 

Conclusion 
At the start of this paper it was claimed that it would describe an architecture which 
provides the following: 

1. Permits the deployment and execution of components in appropriate 
geographical locations. 

2. Provides security mechanisms that prevent misuse of the architecture. 
3. Supports a programming model that is familiar to application programmers. 
4. Permits installed components to share data. 
5. Permits the deployed components to communicate via communication 

channels. 
6. Provides evolution mechanisms permitting the dynamic rearrangement of 

inter-connection topologies the components that they connect. 
7. Supports the specification and deployment of distributed component 

deployments. 
In conclusion these claims are critically re-examined.  
Claim 1 
The CINGAL infrastructure permits bundles to be deployed in arbitrary geographic 
locations from conventional machines. Bundles may perform arbitrary computation 
and offer arbitrary network services. 
Claim 2 
The two level security mechanisms provided by CINGAL prevent unauthorised 
entities from firing bundles on nodes on which they do not have privilege. The 
ownership model which makes uses of standard cryptographic certificate techniques is 
well suited to distributed deployment. Tools (not described here) but which operate in 
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a similar manner to the deployment tool are provided for managing entity privileges 
and updating collections of machines. The capability protection system provided 
within CINGAL nodes prevents bundles for malicious or unintentional abuse of the 
Thin Server infrastructure. 
Claim 3 
The programming model is familiar to application programmers. New concepts have 
been introduced, for example, named channels, but these are not unlike abstractions 
commonly used by application programmers. Programmers can write bundle code in 
Javascript or Java and in theory the system could be extended to support 
programming arbitrary languages. 
Claim 4 
The store and binder provided by Thin Server nodes support content addressed 
storage which permits code and data to be stored with zero chance of ambiguous 
retrieval. The binder permits objects to be symbolically named to facilitate the 
retrieval of components whose content keys are not known. The binder also provides 
an evolution point supporting update of component mappings. 
Claim 5 

8. Permits the deployed components to communicate via communication 
channels. 

The CINGAL infrastructure supports asynchronous channel based communication. A 
variety of mechanisms are provided for the establishment of channels including 
default channels to the progenitors of bundles, standard (socket-based channels) 
between conventional clients and Thin Server machines and named channels.  
Claim 6 

9. Provides evolution mechanisms permitting the dynamic rearrangement of 
inter-connection topologies the components that they connect. 

A number of novel evolution mechanisms are provided by the architecture. Firstly, the 
architecture supports the ability to remotely update components. Secondly flexible 
binding between components is made possible thorough the binder and store 
interfaces. Most importantly, distributed architectures may be re-arranged by 
unbinding and reconnecting named channels within running machines running on 
Thin Server nodes. 
Claim 7 
Distributed Deployment Description documents support the specification of 
distributed architectures. The deployment engine technology combined with the Thin 
Server infrastructure permits these distributed deployments to be realised into running 
instances of component based architectures. The process of deployment from 
specification through to having a connected collection of running components on 
distributed nodes is totally automated. 
 

Future Work 
In the future we propose to expand the system in two primary ways. Firstly we would 
like to make the specification of distributed components more declarative. To this end 
we are currently investigating the use of constraint based specification languages. It is 
our intention to construct higher level specifications and a set of tools to support them 
and compile these specifications down onto DDD documents. Secondly, we are 
investigating how evolution can be specified at the DDD level. Since we use DDDs to 
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specify deployments, it seems natural to have high level descriptions of evolution and 
automatically generate bundles to enact the necessary changes. 
 


