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Abstract

Computational semigroup theory is an area of research that is subject to growing interest.

The development of semigroup algorithms allows for new theoretical results to be discovered,

which in turn informs the creation of yet more algorithms. Groups have benefitted from this

cycle since before the invention of electronic computers, and the popularity of computational

group theory has resulted in a rich and detailed literature. Computational semigroup theory

is a less developed field, but recent work has resulted in a variety of algorithms, and some

important pieces of software such as the Semigroups package for GAP.

Congruences are an important part of semigroup theory. A semigroup’s congruences deter-

mine its homomorphic images in a manner analogous to a group’s normal subgroups. Prior to

the work described here, there existed few practical algorithms for computing with semigroup

congruences. However, a number of results about alternative representations for congruences,

as well as existing algorithms that can be borrowed from group theory, make congruences a

fertile area for improvement. In this thesis, we first consider computational techniques that can

be applied to the study of congruences, and then present some results that have been produced

or precipitated by applying these techniques to interesting examples.

After some preliminary theory, we present a new parallel approach to computing with con-

gruences specified by generating pairs. We then consider alternative ways of representing a

congruence, using intermediate objects such as linked triples. We also present an algorithm for

computing the entire congruence lattice of a finite semigroup. In the second part of the thesis,

we classify the congruences of several monoids of bipartitions, as well as the principal factors of

several monoids of partial transformations. Finally, we consider how many congruences a finite

semigroup can have, and examine those on semigroups with up to seven elements.
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Preface

Semigroup theory has its roots in group theory, and no thesis on semigroups would be complete

without a discussion of groups. The history of group theory goes back centuries: groups were

studied in some form as early as the late 1700s by Lagrange, in order to solve numerical

equations; this work was continued in the early 1800s by Galois, who first used the word group

to describe them. Groups were then studied in various different contexts – in geometry, in

number theory, and as permutation groups – for some time before the various branches of

theory were united into one, with von Dyck inventing the modern abstract definition of a group

in 1882 [Dyc82]. The study of group theory has flourished since then, becoming a major area of

research in pure mathematics. By contrast, semigroup theory is a relatively young area of study,

having been defined only in the early 1900s and having been studied very little before the 1950s.

A few early papers by authors such as Suschkewitch [Sus28] started things off, but it was not

until the second half of the twentieth century that semigroup theory really gained traction. It

now accounts for a significant body of work, with dedicated journals such as Semigroup Forum,

and seminal books such as [How95] and [Pet84] – but it has never become as popular at its

older counterpart, resulting in an interesting relationship between semigroup theory and group

theory.

Since any group is a semigroup, it might be imagined that groups would be studied simply as

a special case within semigroup theory. In practice, however, we see the reverse: group theory

tends to inform semigroup theory, since it turns out that groups are a very important topic

within the study of semigroups in general. Important features of a semigroup’s structure depend

on its maximal subgroups – for example its Green’s relations, or in the case of a completely

simple semigroup, its linked triples. As a result, groups are a central part of semigroup theory,

allowing us to borrow from the richly developed field of group theory in order to solve problems

for semigroups that are not groups.

Computational algebra has existed for nearly as long as the theory of computation itself.

For instance, perhaps the earliest published group theory algorithm is that by Dehn [Deh11]

for solving the word problem in certain groups. The Todd–Coxeter algorithm [TC36], which

enumerates the cosets of a subgroup in a group, was certainly designed to be carried out by

hand, having been described in the 1930s before the invention of electronic computers. When

computers did arrive, there was early interest in using them for group theory problems, with

the Todd–Coxeter algorithm being implemented on the EDSAC II in Cambridge as early as

1953 [Lee63]. Since then, computational group theory has flourished, with a variety of software

packages such as Magma [BCP97], ACE [RH09], and particularly GAP [GAP18], which has a

variety of packages containing algorithms to solve a wide range of problems. A wealth of material
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is available on computational group theory, including several dedicated books [Sim94, HEO05].

By comparison, computational semigroup theory is much younger and less developed, as is

semigroup theory as a whole. Computers were used as early as 1953 to classify semigroups

of low order up to isomorphism and anti-isomorphism: all 4 semigroups of order 2 and all 18

semigroups of order 3 were classified by Tamura in 1953 [Tam53]; Forsythe followed in 1955

with the 126 semigroups of order 4 [For55]; and the following year Motzkin and Selfridge found

the 1160 semigroups of order 5 [MS56, Jür77]. But despite these early successes, the theory

of computing with semigroups developed more slowly than with groups, and no package has

yet emerged for semigroups on the scale of the group algorithms in GAP. However, there has

been considerable interest in computational semigroup theory in recent years, and increasingly

there do exist algorithms for semigroups, as well as software packages implementing them, such

as Semigroup for Windows [McA99], Semigroupe [Pin09], libsemigroups [MT+18], and the GAP

packages Semigroups [M+19], smallsemi [DM17] and kbmag [Hol19].

In the same way that semigroup theory borrows results from group theory, computational

semigroup theory often borrows algorithms from computational group theory. The Todd–

Coxeter algorithm, for instance, was originally designed to calculate a subgroup’s cosets inside

a group – but with a few changes, it can be used to find the elements of a finitely presented

semigroup, or the classes of a congruence on such a semigroup, as we will see in this thesis. We

also borrow from computational group theory by using properties of a semigroup’s subgroups.

For example, when computing the linked triples on a completely simple semigroup, we require

algorithms from computational group theory to find all the normal subgroups of a given maximal

subgroup. In this way, computational group theory is not just a subset, but a key part, of

computational semigroup theory.

This thesis deals primarily with the congruences on a semigroup. A semigroup’s congruences

describe its homomorphic kernels and images – that is, the ways in which the semigroup can

be mapped onto another semigroup while preserving the operation. In this way, a semigroup’s

congruences serve the same function as a group’s normal subgroups, or a ring’s two-sided ide-

als, and are of as much interest in semigroup theory as those structures are in their respective

fields. Classifying the congruences of important semigroups has long been a major activity in

semigroup theory. Some important early examples are the full transformation monoid Tn by

Mal′cev [Mal52], the symmetric inverse monoid In by Liber [Lib53], and the partial transforma-

tion monoid PTn by Shutov [Shu88] – and more recently, the direct product of any pair of these

by Araújo, Bentz and Gomes [ABG18]. A host of other semigroups have had their congruences

classified over the years – for example, from [Fer00, FGJ05, FGJ09] we know the congruences

on various monoids of partial transformations restricted to elements that preserve or reverse

the order or orientation of the set being acted on. Moving away from partial transformations,

Mal′cev also classified the congruences on the semigroup Fn of n×n matrices with entries from

a field F [Mal53] – and the principal congruences on a direct product Fm × Fn of these are

also classified in [ABG18]. While these examples are by no means an exhaustive list, there

remain many important semigroups whose congruences have not yet been classified. Finding

the congruences on various other semigroups will form the majority of Part II of this thesis.

The computational theory of semigroup congruences is also a young field. Algorithms for

computing information about a given congruence have existed in the GAP library for many years,

but many of them lack sophistication and may take an unreasonably long time to return results
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about semigroups with more than about 25000 elements. We can improve on these algorithms

in two different ways. Firstly we can consider alternative structures that correspond to a

semigroup’s congruences. For instance, in group theory we consider a group’s normal subgroups

rather than studying its congruences directly; in the same way, we can study a completely

simple semigroup’s linked triples, or an inverse semigroup’s kernel–trace pairs, in place of their

congruences, and thus we can often produce the answers to computational questions more

quickly than by using direct methods. This approach forms the basis of the present author’s

previous works [Tor14a, Tor14b], which are expanded upon in this thesis. Secondly, in the more

general cases where no such alternative structure exists, we may still make improvements on

existing algorithms by applying new algorithms that are not currently used for congruences, such

as the Todd–Coxeter coset enumeration procedure, or the Knuth–Bendix completion process.

We will take both approaches in Part I of this thesis, presenting new congruence algorithms, as

well as showing ways in which existing algorithms can be successfully adapted for congruence-

related purposes.

After introducing some preliminary theory, this thesis is divided into two broad parts. Part

I discusses the computational theory of congruences, and presents algorithms that can be used

to answer congruence-related questions. Part II shows some results that have been obtained by

applying these algorithms, as well as results that have been proven by hand using computational

output as a starting point.

Chapter 1 acts as an introduction to this document, providing the preliminary knowledge

which is required to understand the material in the rest of the thesis. It is mostly concerned

with ideas from semigroup theory such as Green’s relations, generators, congruences and pre-

sentations. It also introduces several important types of elements that form semigroups, such

as partial transformations and bipartitions. Some computational issues such as algorithms and

decidability are also covered, as well as some algorithms that are used later on.

Chapter 2 presents a new way of computing with congruences defined by generating pairs.

The method presented uses parallel computation to run a variety of algorithms – including

the Todd–Coxeter algorithm, the Knuth–Bendix algorithm, and an unsophisticated algorithm

known as pair orbit enumeration – that test whether a given pair lies in a congruence, given its

generating pairs. This approach takes advantage of the different algorithms’ abilities to return

an answer quickly in various cases, in each case exhibiting run-times close to the minimum of

all the different algorithms. Modifications for left and right congruences are explained, and

different versions are described for finitely presented semigroups and for concrete semigroups

(semigroups known in advance to be finite). This approach was implemented in libsemigroups

[MT+18], and the results of benchmarking tests on that implementation are shown near the

end of the chapter.

Chapter 3 concerns the various ways of representing a congruence, other than as a set of

pairs. Five possible representations are described – generating pairs, normal subgroups, linked

triples, kernel–trace pairs, and ideals – along with explanations of the precise semigroups and

congruences to which they apply. Algorithms are given for converting from one representation

to another, so that a computational algebra system may quickly convert a congruence specified

in a certain way to the most efficient representation, and thus answer questions about the

congruence in as short a time as possible. All twenty of the possible conversions between the

five representations are considered: many of these are currently implemented in Semigroups
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[M+19], some having never been described before; others are trivial or unnecessary; and two

remain open problems (converting from kernel–trace to generating pairs, and from generating

pairs to an ideal). See Table 3.1 for a summary of all the conversions described in the chapter.

Chapter 4 presents an algorithm for computing the entire congruence lattice of a finite

semigroup. This algorithm is rather rudimentary, but various shortcuts and improvements are

described to try to reduce the computational work required, where possible. A version of this

algorithm is implemented in Semigroups, and thus takes advantage of the methods described

in Chapters 2 and 3. This makes it possible to compute the lattices of any sufficiently small

semigroup in a reasonable time; a brief analysis is included of the sizes of semigroup and lattice

which are feasible, along with some visual examples of lattices that have been computed using

this method.

Chapter 5 considers the Motzkin monoidMn – that is, the monoid of all planar bipartitions

of degree n with blocks of size no greater than 2. An investigation into the congruence lattice

of this monoid was initiated by computational experiments, using the method described in

Chapter 4, and resulted in a complete classification of the congruence lattice ofMn for arbitrary

n, along with generating pairs for each congruence. This classification, originally published in

[EMRT18], is shown here with the kind permission of my co-authors. Other important monoids

of bipartitions are also considered, and their congruence lattices classified.

Chapter 6 completes this thesis by presenting some other results obtained or precipitated

by computational experiments in the Semigroups package. Firstly, we consider the congruences

on the principal factors of the full transformation monoid Tn and some other related monoids,

classifying them for arbitrary n. Secondly, we consider the number of congruences that exist

on an arbitrary finite semigroup. We give some upper and lower bounds for this number based

on a semigroup’s size, and we present two conjectures about the second-largest number of

congruences a finite semigroup can have. To support these conjectures, we also show some

computational evidence produced with the aid of smallsemi [DM17]. Finally, we present some

findings from an exhaustive classification of the congruences on all 1658439 semigroups of size

no larger than 7, up to isomorphism.

At the end of this document we provide an index of the various terms that are used. We also

provide a list of notation, with a brief description of what each mathematical symbol means.

In both of these, each entry has a reference to the page on which the term or symbol is first

defined. In the original digital version of this document, all citations and numbered references

act as hyperlinks, allowing the reader to click them to be redirected to the appropriate location.

14



Acknowledgements

Attempting to complete a PhD has been a great undertaking, and in completing this thesis I am

nearing the end of an important chapter in my life. The years I have spent as a postgraduate

researcher have probably been the happiest of my life, but at times the work involved has been

tough, and without the support of people around me I certainly couldn’t have made it this

far. Almost everyone I have met and got to know during this period has touched my life in a

positive way, but there are a few people in particular that I wish to thank.

Firstly, I would like to thank my supervisor James D. Mitchell, for his honesty and friend-

liness, and for the many hours he has spent correcting my work and making me a better

mathematician. Secondly, I would like to thank my friend and office-mate Wilf Wilson, whose

wonderful company has kept me from falling asleep through many weary afternoons of writing

and coding. I am also indebted to the Engineering and Physical Sciences Research Council

(EPSRC), whose generous grant has allowed me to pursue computational semigroup theory

freely for the last four years.

Finally, I wish to thank Claire Young. She has been the most important part of my life

throughout my postgraduate career, and her love and support during the tougher moments of

this PhD have given me the motivation to overcome what sometimes felt like insurmountable

obstacles.

Michael Torpey

St Andrews
July 2018

Having completed the final version of this thesis, I also wish to thank my examiners Martyn

Quick and Wolfram Bentz, for the time and effort they spent reading my work, conducting

my viva, and providing the detailed feedback that helped me improve this thesis to its current

state.

Michael Torpey

St Andrews
February 2019

15



Chapter 1

Preliminaries

In this chapter, we will introduce various objects and results that are required to understand

this thesis. For reference works relating to semigroup theory and to algebra in general, see

[War90], [Pet84], and particularly [How95].

1.1 Basic notation

We should first mention some conventions adopted in this thesis where notation might differ

from other authors. On the whole, care has been taken to deviate as little as possible from

standard notation, but where ambiguity might arise, the following are the conventions that

were chosen.

Maps are written on the right. Hence, if we have a function f that takes an input x, its

output is written (x)f , with the parentheses sometimes omitted. If two maps are composed,

they are written left-to-right. Hence, if we have another map g to be applied to the output of

f , then their composition is written f ◦ g or simply fg, and we have
(
(x)f

)
g = (x)fg.

Where we denote subsets, the symbol ⊆ is used to denote containment with possible equality,

while ⊂ is used to denote strict containment. Hence X ⊂ Y implies that X is not equal to Y ,

while X ⊆ Y implies that X may be equal to Y or may contain only some of the elements of

Y . In this way, the symbols are consistent with the symbols < and ≤ for comparing numbers.

If E is an equivalence relation on a set X, and x ∈ X, then [x]E will denote the equivalence

class of E containing the element x. That is,

[x]E = {y ∈ X : (x, y) ∈ E}.

Where there is no risk of ambiguity, we will omit the subscript E and simply write [x]. We will

denote by ∆X the diagonal relation or trivial equivalence ∆X = {(x, x) : x ∈ X}, and we will

denote by ∇X the universal relation ∇X = X ×X = {(x, y) : x, y ∈ X}. Note that throughout

this thesis, a relation on X is assumed to mean a binary relation – that is, a subset of X ×X.

The set of natural numbers will be denoted by N, and will be equal to the set {1, 2, 3, . . .},
excluding 0. For a given n ∈ N we will sometimes refer to the set {1, . . . , n} using the notation

n.
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1.2 Semigroups

We start with an introduction to semigroups from a completely abstract point of view. Here

we will define a semigroup and a few closely related concepts, and in later sections we will see

examples of how semigroups arise (see Sections 1.7 and 1.11).

Definition 1.1. A semigroup is a non-empty set S together with a binary operation · :

S × S → S such that

(x · y) · z = x · (y · z)

for all x, y, z ∈ S.

Note that some authors leave out the requirement that S must be non-empty, resulting in the

empty semigroup ∅. This extra semigroup is of little theoretical interest, but requires awkward

caveats to be added to various statements that only apply to a non-empty semigroup, adding

unnecessary complication. Hence, we exclude the empty semigroup from our considerations, and

we will require that all semigroups contain at least one element. Note also that the operation

symbol · is often omitted where there is no risk of ambiguity, in the manner of multiplication.

A semigroup S may contain a few special elements: an identity is an element e ∈ S such

that ex = xe = x for any x ∈ S; a zero is an element 0 ∈ S such that 0x = x0 = 0 for

any x ∈ S; an idempotent is an element e ∈ S such that ee = e; and an element x has an

inverse y if xyx = x and yxy = y. All of these will be used later to define certain semigroups,

or properties of semigroups. We will use the notation S1 to denote the semigroup S with an

identity 1 appended if S does not already have one. We will use the notation S(1) to denote

the semigroup S with an extra identity 1 appended, whether S already has an identity or not.

We now define three important categories of semigroup, based on properties possessed by

their elements.

Definition 1.2. A monoid M is a semigroup containing a distinguished element e such that

ex = xe = x

for all x ∈M . The element e is called the identity of M .

Definition 1.3. An inverse semigroup is a semigroup S in which every element x ∈ S has

a unique inverse, i.e. a unique element x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1.

Definition 1.4. A group G is a monoid in which every element x ∈ G has a group inverse,

i.e. an element x−1 ∈ G such that xx−1 = x−1x = e.

These three definitions represent important subcategories of semigroups, with group theory

in particular being an important field in its own right. Inverse semigroups are not a core part

of this thesis, but we will state a few elementary facts which will be required in Chapter 3:

Proposition 1.5. Let S be an inverse semigroup, and let x be an element of S. The following

hold:

(i) The elements x−1x and xx−1 are idempotent;

(ii) Every L -class and every R-class of S contains exactly one idempotent;
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where L and R are as defined in Section 1.9.

Proof. For (i), simply observe that (x−1x)(x−1x) = (x−1xx−1)x = x−1x and (xx−1)(xx−1) =

(xx−1x)x−1 = xx−1. For (ii), see [How95, Theorem 5.1.1].

As mentioned in the preface, groups are also an important part of any semigroup’s structure

– we will encounter a semigroup’s subgroups as part of the study of its linked triples, for example.

We define subgroups along with submonoids and subsemigroups, as follows.

Definition 1.6. Let (S, ∗) be a semigroup, consisting of a set S together with an associative

binary operation ∗ : S × S → S. Let T be a subset of S, and let ∗|T×T be the restriction of ∗
to T × T . If (T, ∗|T×T ) is a semigroup, then it is a subsemigroup of (S, ∗).

Where the operations ∗ and ∗|T×T are well-understood, we will simply write that T is a

subsemigroup of S.

Similarly, if M is a monoid, then a subsemigroup of M which has the same identity is called

a submonoid of M .

If a subsemigroup of S happens to be a group, we call it a subgroup of S. The subgroups of

a semigroup are an important part of its structure, and will be discussed later in the context of

Green’s relations (see Proposition 1.55). We should also mention an important type of subgroup

possessed by a group.

Definition 1.7. Let G be a group, and let H be a subgroup of G. We call H a normal

subgroup of G if one, and hence all, of the following equivalent statements hold:

• Hg = gH for all g ∈ G;

• g−1Hg = H for all g ∈ G;

• g−1hg ∈ H for all g ∈ G and h ∈ H.

Trivially, we can see that any group G has both the trivial group {idG} and the whole

group G as normal subgroups. As will be seen later (Section 3.1.2) a group’s normal subgroups

correspond to its congruences, so these will come up at various times as important objects.

Definition 1.8. We can express a finite semigroup S using a Cayley table or multiplication

table: a square |S| × |S| table with its rows and its columns labelled by all the elements of S.

The cell in the row corresponding to an element x and the column corresponding to an element

y contains the product xy. See Figure 1.9 for an example.

a b c d

a a b c d

b b a c d

c c d c d

d d c c d

Table 1.9: Cayley table of a semigroup with four elements.
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We should define a few special semigroups which will be used later. Other important

semigroups are described in Section 1.11.

Definition 1.10. We define three new types of semigroup as follows:

• a zero semigroup is a semigroup with a distinguished element 0 such that ab = 0 for all

elements a and b in the semigroup;

• a left zero semigroup is a semigroup in which ab = a for all elements a and b in the

semigroup;

• a right zero semigroup is a semigroup in which ab = b for all elements a and b in the

semigroup.

We will sometimes refer to the zero semigroup of size n, which we will denote by Zn. This

refers to the zero semigroup with elements {z, a1, . . . an−1}, where z is the 0 element. Similarly

we will sometimes refer to the left zero semigroup LZn and the right zero semigroup RZn: these

are the left and right zero semigroups respectively, of size n, with set of elements {a1, . . . , an}.

1.3 Generators

It can be unwieldy or computationally costly to keep a list of all the elements of a semigroup.

Instead, it is possible to specify a semigroup by storing only a small subset of its elements,

known as generators, as follows.

Definition 1.11. Let S be a semigroup, and let X be a non-empty subset of S. The least

subsemigroup of S containing all the elements of X is known as the semigroup generated by

X, and is denoted by 〈X〉. We say that X is a set of generators for 〈X〉.

The above definition only makes sense when our semigroup 〈X〉 is defined as a subsemigroup

of another semigroup S. A set of elements X that is not understood to lie inside a semigroup

does not have a well-defined operation, so the concept of generating more elements does not

make sense. However, most of the semigroups we will encounter will be comprised of elements

that have a natural associative operation, and hence belong to an implicitly defined semigroup.

For example, a set of transformations of degree n can generate a semigroup, because it is

understood to be a subset of the full transformation monoid Tn (see Definition 1.62). Hence,

we can talk about a set of transformations generating a semigroup, without explicitly stating

that it is a subsemigroup of Tn.

Aside from generators for a semigroup, we also have the concept of generators for a monoid, a

group, and an inverse semigroup. These are defined analogously to the last definition, replacing

the word “semigroup” with the appropriate structure. The notation 〈X〉 may be used for any

of these. Note, however, that a generating set X for a monoid or a group can be empty, since

there is a unique least submonoid or subgroup containing it – the trivial group containing just

the identity.

A semigroup with a set of generators can be described using a Cayley graph, a directed

graph with labelled edges that is defined as follows.

Definition 1.12. Let S be a semigroup, with a generating set X. The right Cayley graph

of S with respect to X is the digraph-with-edge-labels Γ, which is described as follows:
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• The vertices of Γ are the elements of S;

• For each pair (s, x) ∈ S ×X there exists an edge from s to s · x labelled by x:

s
x−→ s · x

The left Cayley graph of S with respect to X is defined analogously, replacing s ·x with x · s.

Finally, it is worth noting that we can also use a set of elements to generate a normal

subgroup of a group, using the following definition.

Definition 1.13. Let G be a group, and let X be a subset of G. The least normal subgroup

of G containing all the elements of X is known as the normal closure of X, and is denoted

by 〈〈X〉〉.

We will see that this definition is particularly interesting in the study of congruences (see

Section 1.5). A congruence on a group has classes equal to the cosets of a normal subgroup,

and every congruence arises in this way. Hence, since normal subgroups are the group theory

analogue of semigroup congruences, it follows that the taking of normal closures in a group is

analogous to the use of generating pairs in a semigroup (see Section 1.6). This correspondence

is explained in detail in Section 3.1.2.

1.4 Homomorphisms

Two semigroups can be related by a special kind of map from one to another: a homomorphism

is a map from one semigroup to another that respects the semigroup operation, as follows.

Definition 1.14. Let S and T be semigroups. A semigroup homomorphism is a function

φ : S → T such that

(x)φ · (y)φ = (xy)φ,

for all x, y ∈ S.

Injective and surjective homomorphisms are special cases that will be important when we

compare semigroups to each other. We give these homomorphisms names, as follows.

Definition 1.15. A semigroup monomorphism is a semigroup homomorphism which is in-

jective (one-to-one). It is indicated on diagrams by a hooked arrow:

S ↪→ T

Definition 1.16. A semigroup epimorphism is a semigroup homomorphism which is surjec-

tive (onto). It is indicated on diagrams by a double-headed arrow:

S →→ T

Definition 1.17. A semigroup isomorphism is a semigroup homomorphism which is both

injective (one-to-one) and surjective (onto). It is indicated on diagrams by a hooked double-

headed arrow:

S ↪→→ T
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Next we define some important attributes of a homomorphism.

Definition 1.18. The kernel kerφ of a homomorphism φ : S → T is the equivalence relation

on S defined by the rule that (a, b) ∈ kerφ if and only if

(a)φ = (b)φ,

for a, b ∈ S.

Definition 1.19. The image imφ of a homomorphism φ : S → T is (S)φ, the set of elements

t ∈ T such that

(s)φ = t

for some s ∈ S.

Monoid homomorphisms are defined analogously to semigroup homomorphisms. The defi-

nition is the same as Definition 1.14, replacing the word “semigroup” with “monoid”, and with

the additional requirement that φ must map the identity of S to the identity of T . If not

specified, it is assumed that “homomorphism” refers to a semigroup homomorphism.

The first interesting result about homomorphisms will be the First Isomorphism Theorem

(Theorem 1.26), which links homomorphisms to congruences.

1.5 Congruences

Congruences are the central topic of this thesis. We will describe a number of algorithms for

congruences in Part I, and classify the congruences of several different semigroups in Part II.

As seen in Chapter 3, there are many different ways to view congruences, but we will start with

the original definition: as a special type of equivalence relation on a semigroup.

Definition 1.20. Let S be a semigroup, and let R be a relation on S. The relation R is:

• left-compatible if (x, y) ∈ R implies that (ax, ay) ∈ R for all a ∈ S;

• right-compatible if (x, y) ∈ R implies that (xa, ya) ∈ R for all a ∈ S;

• compatible if it is both left-compatible and right-compatible.

Definition 1.21. Let S be a semigroup, and let ρ be an equivalence relation on S. The relation

ρ is:

• a left congruence if it is left-compatible;

• a right congruence if it is right-compatible;

• a two-sided congruence if it is compatible.

When we talk about a congruence without specifying that it is left or right, it is understood

to be a two-sided congruence. An alternative definition of two-sided congruences is embodied

in the following proposition.
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Proposition 1.22. Let E be an equivalence on a semigroup S. The equivalence E is a con-

gruence on S if and only if

(xs, yt) ∈ E

for all pairs (x, y), (s, t) ∈ E.

Proof. We prove the “only if” direction first, and then consider the “if” direction.

First, assume E is a congruence, containing pairs (x, y) and (s, t). Since E is a left congru-

ence, we have (xs, xt) ∈ E, and since it is a right congruence, we have (xt, yt) ∈ E. Hence, by

transitivity, (xs, yt) ∈ E, as required.

For the converse, assume that (xs, yt) ∈ E for all pairs (x, y), (s, t) ∈ E, and let a ∈ S

be arbitrary. Since (a, a) ∈ E by reflexivity, we must have (xa, ya) ∈ E by the assumption.

Similarly, we must have (ax, ay) ∈ E, by using (x, y) in place of (s, t). Hence E is a congruence,

as required.

Congruences have an important property that allows new semigroups, known as quotient

semigroups, to be made from old ones. We will state the definition of a quotient semigroup,

and then show that the definition is well defined.

Definition 1.23. Let S be a semigroup, and let ρ be a congruence on S. The quotient

semigroup S/ρ is the semigroup whose elements are the congruence classes of ρ, and whose

operation ∗ is defined by

[a]ρ ∗ [b]ρ = [ab]ρ,

for a, b ∈ S.

Proposition 1.24. A quotient semigroup is well-defined by Definition 1.23. That is to say,

for two ρ-classes A and B, the value of A ∗ B is the same regardless of which representatives

are chosen from the two classes.

Proof. Let S and ρ be as in Definition 1.23, and let A and B be classes of ρ, with elements

a1, a2 ∈ A and b1, b2 ∈ B. The product A ∗ B is defined to be the class which contains the

element a1b1, but it is also defined as the class which contains the element a2b2. For this

definition to be consistent, we need to prove that a1b1 and a2b2 are in the same ρ-class.

To prove this, we observe that (a1, a2) ∈ ρ and (b1, b2) ∈ ρ. Hence, by Proposition 1.22,

(a1b1, a2b2) ∈ ρ, so the two representatives are in the same class, as required. Hence A ∗ B is

well-defined.

Note that Definition 1.23 does not apply to left and right congruences, which do not generally

satisfy the condition stated in Proposition 1.22. A quotient semigroup can only be taken using

a two-sided congruence.

Definition 1.25. Let S be a semigroup, and let ρ be a congruence on S. The natural

homomorphism πρ : S → S/ρ is the map which takes an element of S to its ρ-class:

πρ : x 7→ [x]ρ.

It is denoted simply by π where there is no risk of ambiguity.
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Congruences have long been an important area of study in semigroup theory. Perhaps

the most important feature of two-sided congruences is that they determine the homomorphic

images of a semigroup, and therefore describe an important part of a semigroup’s structure.

Consider the following theorem.

Theorem 1.26 (First isomorphism theorem). Let S and T be semigroups, and let φ be a

homomorphism from S to T . Then the kernel of φ is a congruence on S, and the image of φ is

isomorphic to the quotient semigroup S/ kerφ.

S T

S/ kerφ

π

φ

φ̄

Figure 1.27: Illustration of Theorem 1.26, where π : S → S/ kerφ is the natural homomorphism,
and φ̄ : S/ kerφ→ T acts as an isomorphism between S/ kerφ and imφ.

The congruences of a semigroup are related to each other in some interesting ways. Let ρ and

σ be congruences on a semigroup S. The congruence ρ may be contained in σ as a subrelation,

as we can see when we consider the congruences as sets of pairs: intuitively, we have ρ ⊆ σ if ρ

is a refinement of σ, with some of its congruence classes broken down into smaller pieces. The

intersection ρ∩σ is also a congruence on S, as can be seen from the definition of a congruence.

Less obvious is that their join ρ ∨ σ (the least equivalence containing both ρ and σ) is also a

congruence on S, as shown in [How95, §1.5]. Hence we have a relation ⊆ and two operations ∩
and ∨ which apply to the set of congruences on S. We will soon find that the set of congruences

forms a special structure together with (⊆,∩,∨). We will first define this structure, and then

go on to explain how it can be viewed as a semigroup.

Recall that a poset is a set X together with a partial order ≤ – that is, a relation ≤ on X

which is reflexive, anti-symmetric and transitive. If X is a poset, and Y ⊆ X, then x ∈ X is

called an upper bound for Y if y ≤ x for all y ∈ Y ; similarly, x is a lower bound for Y if x ≤ y

for all y ∈ Y . An upper bound for Y is called the least upper bound or join if it lies below

all other upper bounds with respect to ≤; similarly, a lower bound is called the greatest lower

bound or meet if it lies above all other lower bounds.

Definition 1.28. A lattice is a poset (X,≤) such that any two elements of X have a greatest

lower bound and a least upper bound.

If we have two elements x1 and x2 in X, we write their greatest lower bound (meet) using

the notation x1 ∧ x2 and their least upper bound (join) as x1 ∨ x2. We can now view a lattice

as a semigroup in two different ways: the set X together with the binary operation of meet

(∧) or the binary operation of join (∨). In fact, both of these semigroups are commutative,

and all their elements are idempotents [How95, Proposition 1.3.2], and so any finite subset

Y = {y1, . . . yn} has a meet
∧
Y = y1 ∧ · · · ∧ yn and a join

∨
Y = y1 ∨ · · · ∨ yn that do not

depend on any ordering of the set.

We can now describe how this definition applies to the congruences of a semigroup.
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Proposition 1.29 ([How95, §1.5]). The congruences on a semigroup S form a lattice under the

partial order of containment. The meet operation is intersection (∩), while the join operation

is the usual join operation on equivalence relations (∨).

The fact that congruences lie in a lattice, and therefore form a semigroup, allows us to

view congruences as semigroup elements in their own right. In Chapter 4 in particular we will

generate a congruence lattice using just its principal congruences as generators and join (∨) as

a semigroup operation (see Proposition 1.42), and at various points in this thesis we will show

the Hasse diagrams of congruence lattices, viewing them as partial orders (for some examples,

see Figures 4.3 and 5.24).

The idea of a congruence fits closely with the concept of a semigroup presentation, which

we will introduce in Section 1.7, after the prerequisite concept of generating pairs.

1.6 Generating pairs

We now describe a concept key to Chapter 2 as well as to semigroup presentations, that of

generating pairs. Much of the description in this section is adapted from a previous thesis,

[Tor14b], which itself closely follows [How95, §1.4–1.5].

Definition 1.30. Let S be a semigroup and let R be a subset of S × S.

• The equivalence generated by R is the least equivalence relation (with respect to

containment) which contains R as a subset.

• The left congruence generated by R is the least left congruence (with respect to

containment) which contains R as a subset.

• The right congruence generated by R is the least right congruence (with respect to

containment) which contains R as a subset.

• The congruence generated by R is the least congruence (with respect to containment)

which contains R as a subset.

Chapter 2 deals in detail with congruences specified by generating pairs. We now present

some theory relating to generating pairs, in order to inform discussions later.

We first need to establish a few definitions. Let S be a semigroup, and let R be a relation

on S. We define

R−1 = {(x, y) ∈ S × S | (y, x) ∈ R},

so that R−1 is a copy of R but with the entries in each pair swapped. Next, let ◦ be the

operation of concatenation, so that for two relations R1 and R2 on S,

R1 ◦R2 = {(x, y) ∈ S × S | ∃z ∈ S : (x, z) ∈ R1, (z, y) ∈ R2} ,

and for n ∈ N let

Rn = R ◦ · · · ◦R︸ ︷︷ ︸
n times

.

Definition 1.31. The transitive closure R∞ of a relation R is the relation given by

R∞ =
⋃
n∈N

Rn
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The transitive closure R∞ of R is the least transitive relation on S containing R [Tor14b,

Lemma 2.3]. This allows us to give a useful description of the equivalence relation generated

by R.

Definition 1.32. For a relation R on a semigroup S, we define Re as the relation
(
R ∪R−1 ∪∆S

)∞
.

Lemma 1.33. The relation Re is the smallest equivalence on S that contains R as a subset.

Proof. Clearly R ⊆ Re.

We will prove that Re is an equivalence relation, and then go on to prove that there is no

smaller equivalence relation containing R.

Let Q = R ∪R−1 ∪∆S , so that Re = Q∞. Since ∆S contains all the pairs necessary for

reflexivity, we know that Q is reflexive, and therefore Q∞ is reflexive and transitive.

To show symmetry, observe that (x, y) ∈ R if and only if (y, x) ∈ R−1, and that (x, y) ∈ ∆S

if and only if x = y. Q is therefore certainly symmetric, and

Qn = (Q−1)n = (Qn)−1

for any n ∈ N, and so Qn is symmetric.

Now let (x, y) ∈ Re. For some n ∈ N, we have (x, y) ∈ Qn. By the symmetry of Qn,

(y, x) ∈ Qn ⊆ Q∞ = Re,

and so Re is symmetric. Hence Re is an equivalence.

Now to show that Re is the least such equivalence, consider any equivalence E on S such

that R ⊆ E. Since E is reflexive, we know that ∆S ⊆ E, and since E is symmetric and contains

R, we know that R−1 ⊆ E. Hence

Q = R ∪R−1 ∪∆S ⊆ E.

Finally, since E is transitive and contains Q, we know that Q∞ ⊆ E. Hence Re is contained

in E, and so is no larger than any equivalence on S.

Definition 1.34. For a relation R on a semigroup S, we define three relations:

(i) Rc =
{

(xay, xby)
∣∣ (a, b) ∈ R, x, y ∈ S1

}
;

(ii) Rl =
{

(xa, xb)
∣∣ (a, b) ∈ R, x ∈ S1

}
;

(iii) Rr =
{

(ay, by)
∣∣ (a, b) ∈ R, y ∈ S1

}
.

Lemma 1.35. Let R be a relation on a semigroup S. The following hold:

(i) Rc is the smallest compatible relation on S containing R;

(ii) Rl is the smallest left-compatible relation on S containing R;

(iii) Rr is the smallest right-compatible relation on S containing R.

Proof. We prove the statement for Rc, and note that the proofs for Rl and Rr are very similar.

Rc certainly contains R – all the elements of R are encountered in the case that x = y = 1.
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Let us show first that Rc is compatible. Let (u, v) ∈ Rc and let w ∈ S. Now there must

exist a, b ∈ S and x, y ∈ S1 such that u = xay, v = xby, and (a, b) ∈ R. Hence wu = wx · a · y
and wv = wx · b · y, and wx ∈ S1, so (wu,wv) ∈ Rc and Rc is left-compatible. Similarly,

uw = x · a · yw and vw = x · b · yw, and yw ∈ S1, so (uw, vw) ∈ Rc and Rc is right-compatible.

Finally we need to show that there is no compatible relation smaller than Rc which contains

R. For this purpose, let C be a compatible relation on S such that R ⊆ C. Now for any

(a, b) ∈ R and x, y ∈ S1, we must have (xay, xby) ∈ C by the definition of compatibility. Every

element of Rc has this form, hence Rc ⊆ C. [How95, §1.5]

These three relations Rc, Rl and Rr have some properties which will be useful later. These

properties make up the following lemmas.

Lemma 1.36. Let R be a relation on a semigroup S. The following hold:

(i) (R−1)c = (Rc)−1;

(ii) (R−1)l = (Rl)−1;

(iii) (R−1)r = (Rr)−1.

Proof. Let R be a relation on a semigroup S. R−1 = {(a, b) | (b, a) ∈ R}, so

(R−1)c = {(xay, xby) | x, y ∈ S1, (b, a) ∈ R}.

The inverse of this last expression is

{(xay, xby) | x, y ∈ S1, (a, b) ∈ R},

which is equal to Rc. Now
(
(R−1)c

)−1
= Rc, which is equivalent to what we wanted.

A similar argument holds for both Rl and Rr

Lemma 1.37. Let A and B be relations on a semigroup S. If A ⊆ B, then Ac ⊆ Bc, Al ⊆ Bl,

and Ar ⊆ Br.

Proof. Let A ⊆ B, and let (xay, xby) be an arbitrary element of Ac where (a, b) ∈ A and

x, y ∈ S1. Since A ⊆ B, we have that (a, b) ∈ B, and hence also that (xay, xby) ∈ Bc.

A similar statement holds for Al ⊆ Bl and Ar ⊆ Br.

Lemma 1.38. If R is a (left/right) compatible relation, then Rn is also (left/right) compatible,

for all n ∈ N.

Proof. Let R be a compatible relation on a semigroup S, and let n ∈ N. Now let (a, b) ∈ Rn,

and x ∈ S. Hence there exist c1, c2, . . . , cn, cn+1 ∈ S such that a = c1, b = cn+1, and

(c1, c2), (c2, c3), . . . , (cn, cn+1) ∈ R.

Since R is left-compatible,

(xc1, xc2), (xc2, xc3), . . . , (xcn, xcn+1) ∈ R,
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and since R is right-compatible,

(c1x, c2x), (c2x, c3x), . . . , (cnx, cn+1x) ∈ R,

and therefore (xa, xb) ∈ Rn and (ax, bx) ∈ Rn, so Rn is compatible. [How95, §1.5] A similar

argument holds for left and right compatibility.

These lemmas now enable us to give a theorem characterising the congruence, left congru-

ence, and right congruence generated by R.

Theorem 1.39. Let R be a relation on a semigroup S. The following hold:

(i) R], the least congruence on S which contains R, is equal to (Rc)e;

(ii) R/, the least left congruence on S which contains R, is equal to (Rl)e;

(iii) R., the least right congruence on S which contains R, is equal to (Rr)e.

Proof. Since Rc is a relation, it follows from Lemma 1.33 that (Rc)e is an equivalence, and it

certainly contains R. To show that it is a congruence, we now only need to show that it is

compatible.

By Definition 1.32, (Rc)e = Q∞, where

Q = Rc ∪ (Rc)−1 ∪∆S .

Lemma 1.36 gives us that (Rc)−1 = (R−1)c, and we know ∆S = ∆S
c, so

Q = Rc ∪ (R−1)c ∪∆S
c.

Now, we can see directly from Definition 1.34 that Rc1 ∪ Rc2 ∪ Rc3 = (R1 ∪ R2 ∪ R3)c for any

relations R1, R2, R3 on S. Hence we can conclude that

Q = (R ∪R−1 ∪∆S)c.

Hence by Lemma 1.35, Q is a compatible relation.

Let a ∈ S and let (x, y) ∈ (Rc)e = Q∞. By Definition 1.31, (x, y) ∈ Qn for some n ∈ N,

and by Lemma 1.38 we know that Qn is compatible. Hence

(ax, ay), (xa, ya) ∈ Qn ⊆ Q∞ = (Rc)e,

and so (Rc)e is a congruence.

All that remains is to show that there is no congruence containing R which is smaller than

(Rc)e. Let ρ be a congruence containing R. Since ρ is compatible, ρc = ρ by Lemma 1.35; and

since R ⊆ ρ, by Lemma 1.37, Rc ⊆ ρc. So we have

Rc ⊆ ρ.

Finally, since ρ is an equivalence containing Rc, we know from Lemma 1.33 that (Rc)e ⊆ ρ, so

(Rc)e is the smallest congruence on S containing R. [How95, §1.5]

A similar argument holds for R/ and R..
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We will make another definition, which can be seen as the opposite of the ] (sharp) operator,

hence the musical notation [ (flat).

Definition 1.40. Let E be an equivalence on a semigroup S. We denote by E[ the greatest

congruence contained in E.

Note that the above definition is not well-defined for a generic relation R, but only for an

equivalence E. This is because R is not guaranteed to contain any congruence at all, whereas

E must always contain the trivial congruence ∆S . To see that E[ is well-defined, see [How95,

Proposition 1.5.10], which uses the characterisation

E[ =
{

(a, b) ∈ S × S : (∀x, y ∈ S1) (xay, xby) ∈ E
}
,

and shows that E[ is a congruence contained in E, and that any congruence contained in E is

also contained in E[.

Now that we understand the concept of generating pairs, we can define a principal congru-

ence, a concept related to that of a principal ideal.

Definition 1.41. A congruence is principal if it is generated by a single pair. If the pair is

(x, y) then we may write the principal congruence as (x, y)].

The principal congruences of a finite semigroup generate all its congruences, as shown in the

following proposition. Note that the join of two congruences X] and Y ] is equal to (X ∪ Y )].

Proposition 1.42. Let S be a finite semigroup. The semigroup (C,∨) consisting of the con-

gruences on S under the join operation (see Proposition 1.29) is generated by the subset P ⊆ C

consisting of the principal congruences.

Proof. Let ρ be a congruence on S, so ρ ∈ C. We can generate ρ using a set of generating pairs

X ⊆ ρ, choosing X = ρ if necessary. Each pair (x, y) ∈ X generates a principal congruence

(x, y)]. The join of all such principal congruences is equal to X], which is equal to ρ. Hence

any congruence is the join of a set of principal congruences, and so the principal congruences

generate all the congruences under the join operation.

1.7 Presentations

We have now encountered two important concepts for congruences – a congruence can be

defined by generating pairs, and a quotient semigroup is defined by a congruence. We can

combine these two concepts to give a very general way of describing semigroups: presentations.

First we require the definition of a free semigroup.

Definition 1.43. Let X be a set. The free monoid over X is denoted by X∗, and consists of

all finite sequences of elements in X, with the operation of concatenation. If X is non-empty,

then the free semigroup X+ is the subsemigroup of X∗ consisting of sequences of length at

least 1.

When we consider free semigroups and monoids, the set X is usually referred to as an

alphabet, its elements as letters, and sequences of letters as words.
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The justification for the use of the name “free” comes from category theory. We can see

that the free semigroup X+ has the following property, an alternative formulation of “free”

given in [How95, §1.6]:

Proposition 1.44. Let X be a non-empty set. The following hold:

(i) there is a map α : X → X+;

(ii) for every semigroup S and every map φ : X → S there exists a unique homomorphism

ψ : X+ → S such that φ = αψ.

X X+

S

φ

α

∃!ψ

Figure 1.45: Commutative diagram illustrating Proposition 1.44.

Proof. We can choose α to be the obvious embedding which takes a letter x in X to the

corresponding word x of length 1 in X+. Then, for any S and φ : X → S we can define

ψ : X+ → S by

(x1x2 . . . xn)ψ = (x1)φ(x2)φ . . . (xn)φ,

for x1, x2, . . . , xn ∈ X. This clearly satisfies φ = αψ, and it is certainly a homomorphism, since

(x1 . . . xn)ψ · (y1 . . . ym)ψ = (x1)φ . . . (xn)φ · (y1)φ . . . (ym)φ

= (x1 . . . xny1 . . . ym)ψ

for x1, . . . , xn, y1, . . . , ym ∈ X. For uniqueness, let ψ′ be any homomorphism X+ → S such

that φ = αψ′. By this condition, we have

(x1)φ = (x1)αψ′ = (x1)ψ′,

for any x1 ∈ X; and since ψ′ is a homomorphism, this gives us

(x1x2 . . . xn)ψ′ = (x1)ψ′(x2)ψ′ . . . (xn)ψ′ = (x1)φ(x2)φ . . . (xn)φ,

for x1, x2, . . . , xn ∈ X. This shows that ψ′ = ψ, and so ψ is unique.

We can now define semigroup presentations, a useful method of describing a semigroup

which will be encountered many times in this thesis, particularly in Chapter 2. We will give

the definition, and then discuss how the definition is used to describe a semigroup.

Definition 1.46. A semigroup presentation is a pair P = (X,R) consisting of a set X and

a set of pairs R ⊆ X+×X+. A semigroup is defined by the presentation P if it is isomorphic

to X+/R], i.e. the quotient of the free semigroup X+ by the least congruence containing all

the pairs in R.

We will normally write a presentation (X,R) using the notation 〈X |R 〉. Furthermore, if

we refer to explicit pairs with this notation, we will write a pair (a, b) as a = b, and we will

omit the braces {} from both sets. Example 1.49 demonstrates this notation.
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Definition 1.47. A semigroup presentation 〈X |R 〉 is finite if X and R are finite. A semi-

group is finitely presented if there exists some finite presentation that defines it, i.e. if it is

isomorphic to X+/R] for some finite presentation 〈X |R 〉.

The exact wording used to talk about a semigroup S defined by a presentation 〈X |R 〉
varies. Some sources view 〈X |R 〉 as a semigroup in its own right: they might describe S

as “isomorphic to” 〈X |R 〉, or they might even say S “equals” 〈X |R 〉. We will opt for the

more careful language which separates a semigroup from its presentation: S is defined by or

presented by 〈X |R 〉, if and only if it is isomorphic to X+/R].

If S is presented by 〈X |R 〉, there is an epimorphism from X+ to S: if π is the natural

homomorphism from X+ to the quotient semigroup X+/R] (see Definition 1.25) and ι is an

isomorphism from X+/R] to S, then πι is an epimorphism from X+ to S, which assigns each

word in the generators to an element of the semigroup S. If w ∈ X+ and s ∈ S are such that

(w)πι = s, then we say that the word w represents the element s, or that the element s can

be factorised to the word w.

X+ X+

R] Sπ ι

Figure 1.48: How a word from X+ represents an element in S.

Semigroups are not uniquely defined by presentations: two different presentations may

define the same semigroup, and those two presentations may not look similar at all. Consider

the following example.

Example 1.49. The semigroup presentation
〈
a
∣∣ a = a10

〉
defines the cyclic group C9: there

are 9 elements which can be represented by the words

{a, a2, a3, a4, a5, a6, a7, a8, a9}.

However, C9 is also presented by
〈
b, c
∣∣ b = c3, bc = cb, c = c2b2c2

〉
, and an equivalence be-

tween the two presentations can be defined by identifying a with c. This second presentation,

though it is more complicated to describe, allows us to use shorter words to describe many

elements: the elements of C9 are represented by the set of words {c, c2, b, bc, bc2, b2, b2c, b2c2}.

1.8 Ideals

Another semigroup-related object we should describe is an ideal, a particular type of subsemi-

group linked to a semigroup’s congruences and Green’s relations.

Definition 1.50. An ideal of a semigroup S is a non-empty subset I ⊆ S such that is and si

are both in I, for all i ∈ I and s ∈ S.

We can think of an ideal as a set from which it is impossible to escape by left- or right-

multiplying. Ideals appear on eggbox diagrams as downward-closed unions of D-classes (see

Section 1.9). If a semigroup S contains a zero element, then {0} is an ideal, as is the whole

semigroup S. A group G has no ideals other than the whole of G, since it has the cancellative

property that any element x can be transformed into any other element y by right-multiplying

by x−1y.
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We can generate an ideal using an ideal generating set, defined in much the same way as

Definition 1.11: if X is a subset of a semigroup S, then the least ideal containing all the elements

of X is called the ideal generated by X, and is equal to the set S1XS1. An ideal is called

principal if it is generated by a single element – a principal ideal can be written S1xS1 for

some x ∈ S.

An ideal gives rise to a special congruence, known as a Rees congruence, defined in the

following way.

Definition 1.51. Let S be a semigroup with an ideal I. The congruence

ρI = ∇I ∪∆S = {(x, y) ∈ S × S : x = y or x, y ∈ I}

is known as the Rees congruence of I.

Rees congruences will be mentioned at various times later on (for example, see Section 3.1.5

or Table 6.28). The quotient semigroup S/ρI is typically denoted by S/I.

1.9 Green’s relations

A critically important feature of a semigroup is its Green’s relations. First described by Green

in 1951 [Gre51], a semigroup’s Green’s relations reveal a great deal of information about its

multiplication, its ideals, its maximal subgroups and its congruences. We will define five re-

lations L , R, H , D and J , and explain how they are linked to each other and some other

features of a semigroup.

Definition 1.52. Let S be a semigroup. We define five relations L , R, H , D and J on S

as follows:

• x L y if and only if S1x = S1y, i.e. ax = y and by = x for some a, b ∈ S1;

• x R y if and only if xS1 = yS1, i.e. xa = y and yb = x for some a, b ∈ S1;

• x H y if and only if x L y and x R y;

• x D y if and only if there exists some z ∈ S such that x L z R y;

• x J y if and only if S1xS1 = S1yS1, i.e. if x and y generate the same ideal of S;

for all x, y ∈ S.

A few features are fairly obvious straight from these definitions. We can see that L , R

and J are equivalences; it is also fairly obvious that H = L ∩R, and hence that H is an

equivalence. Finally, we can establish that D is an equivalence by the fact that D = L ∨R

[How95, §2.1]. It is also fairly obvious that L ⊆ D , R ⊆ D , and D ⊆J . Less obvious is the

highly useful fact that D = J if S is finite [How95, §2.1]. These containments are shown in

Figure 1.53.

Proposition 1.54. Let S be a semigroup. The relation L is a right congruence on S, and the

relation R is a left congruence on S.
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J

D

L R

H

Figure 1.53: Hasse diagram of Green’s relations under containment. Note that D = J in the
finite case.

Proof. Let (x, y) ∈ L , and let s ∈ S. From Definition 1.52 we have a, b ∈ S1 such that ax = y

and by = x. We have xs = bys and ys = axs, so (xs, ys) ∈ L , and L is a right congruence.

By a similar argument, R is a left congruence.

The J -classes of a semigroup are arranged in a natural partial order by their corresponding

principal ideals, as follows. Let S be a semigroup, let a and b be elements of S1, and let their

J -classes be denoted Ja and Jb. Just as Ja = Jb if and only if S1aS1 = S1bS1, we say that

Ja ≤ Jb if and only if S1aS1 ⊆ S1bS1.

The H -classes of a semigroup have an interesting property which allow us to apply group

theory to semigroups. Consider the following proposition.

Proposition 1.55 ([How95, Theorem 2.2.5]). Let H be an H -class of a semigroup S. Either

H is a group, or ab /∈ H for all a, b ∈ H.

This allows us to split the H -classes of a semigroup into two categories: group H -classes

and non-group H -classes.

We can display a finite semigroup’s Green’s relations pictorially using an eggbox diagram,

which is constructed in the following way. First, note that D = J for a finite semigroup; we

break the semigroup into D-classes and draw a box for each D-class, arranged as a Hasse

diagram according to the partial order of J -classes described above. Now, since L ⊆ D and

R ⊆ D , we can break up a D-class in two different ways. We split the box into rows representing

its L -classes and into columns representing its R-classes. Now each cell in the box represents

the intersection of an L -class L with an R-class R. Since L and R are in the same D-class,

L ∩ R must be non-empty (there must be some z ∈ L ∩ R linking each pair (x, y) ∈ L× R, as

in Definition 1.52). Since H = L ∩ R, L ∩ R is an H -class. Hence, we have a diagram in

which outer boxes represent D-classes, rows represent L -classes, columns represent R-classes,

and cells represent H -classes. Finally, we highlight each group H -class on the diagram: we

shade it in, and mark it with a ∗ symbol or a symbol representing the isomorphism class of the

group. An example of an eggbox diagram is shown in Figure 1.56.
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1

1

1

1

Figure 1.56: Eggbox diagram of the semigroup with 63 elements generated by the two trans-

formations
(

1 2 3 4
3 4 2 3

)
and

(
1 2 3 4
2 4 2 1

)
.
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1.10 Regularity

In Section 1.2, we encountered the concept of a semigroup element’s inverse. This definition is

not the same as an inverse in a group (see Definition 1.4), but it is compatible with it, in the

sense that a group element’s inverse is also a semigroup inverse. In an inverse semigroup, every

element has a unique inverse, but in general an element might not have an inverse, or might

have more than one. We now present a slightly weaker condition than a semigroup inverse, the

concept of a regular element.

Definition 1.57. Let S be a semigroup. An element x ∈ S is called regular if there exists an

element y ∈ S such that

xyx = x.

Note that this definition is not enough to conclude that y is an inverse of x, without the

additional requirement that yxy = y. However, an element with an inverse is certainly regular.

A semigroup may contain regular and non-regular elements. However, it turns out that

a D-class contains either no regular elements, or only regular elements [How95, Proposition

2.3.1]. This establishes the following definition.

Definition 1.58. A D-class of a semigroup is called regular if some, and hence all, of its

elements are regular. A semigroup is called regular if all its D-classes are regular.

Since any element with an inverse is regular, we can see that all inverse semigroups are

regular, as are all groups. We should mention one more interesting type of regular semigroup:

a rectangular band.

Definition 1.59. A rectangular band is a semigroup S such that xyx = x (i.e. y is an inverse

of x) for all x, y ∈ S.

Rectangular bands will appear in Chapters 5 and 6, and the latter will use an important

isomorphism theorem for rectangular bands, as follows.

Theorem 1.60 ([How95, Theorem 1.1.3]). A rectangular band is isomorphic to the set A×B
for two sets A and B, under the operation defined by

(a1, b1)(a2, b2) = (a1, b2).

Since regular semigroups are not a central part of this thesis, we will not explain the wealth

of theory attached to them, but where theory is needed we will cite appropriate literature. For

a fuller explanation of regular semigroups, see [How95, §2.4].

1.11 Element types

In this thesis we will encounter several types of object that have a natural associative operation

defined on them, and which are therefore well-suited to forming semigroups. We will define

a few such objects in this section, drawing particular attention to Cayley’s theorem and its

analogues, which justify the heavy use of these objects as examples.
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1.11.1 Transformations

Transformations are perhaps the most important type of element we will talk about in semigroup

theory, as justified shortly by Theorem 1.63. They are defined very simply, as follows.

Definition 1.61. A transformation on a set X is a function τ : X → X.

In almost all cases in this thesis, a transformation will be on the set n = {1, . . . , n} for some

n ∈ N. This number n is called the degree of the transformation. A transformation τ on n

can be written in two-row notation, that is with the numbers 1 to n written on one row, and

their images under τ written directly beneath, all surrounded by parentheses. For example, the

transformation of degree 5 sending even numbers to 1 and odd numbers to 3 would be written(
1 2 3 4 5

3 1 3 1 3

)
.

Two transformations of a given degree can be composed to produce a new transformation of

the same degree. For example, if τ =
(

1 2 3 4 5

5 3 3 4 1

)
and σ =

(
1 2 3 4 5

2 2 5 2 4

)
then we can compose the

two functions to give τσ =
(

1 2 3 4 5

4 5 5 2 2

)
. This operation is the basis of the following important

semigroup.

Definition 1.62. The full transformation monoid on a setX is the set of all transformations

on X, under the operation of composition, and it is denoted TX . If X = n, then we call it the

full transformation monoid of degree n, and denote it Tn.

Any semigroup of finite-degree transformations is a subsemigroup of the full transformation

monoid for some n. Note that this semigroup is a monoid because it contains the identity map

idn =
(

1 2 · · · n
1 2 · · · n

)
. We will refer to any subsemigroup of Tn as a transformation semigroup.

The true importance of transformations in semigroup theory is shown by the following theo-

rem, which effectively states that any semigroup can be viewed as a transformation semigroup.

Theorem 1.63 (Cayley for semigroups [How95, Theorem 1.1.2]). Every semigroup is isomor-

phic to a subsemigroup of a full transformation monoid.

Proof. We give an outline of the proof. Let S be a semigroup, and consider the full transfor-

mation monoid TS1 on the set of S1, the semigroup S with an identity appended if it does not

already contain one. Define a map φ : S → TS1 by (x)φ : s 7→ sx for x ∈ S and s ∈ S1; that is,

(x)φ is the transformation in TS1 which maps any point in S1 to its right multiple by x. We can

observe that this is a monomorphism, and hence that the image of φ is isomorphic to S. Hence

S is isomorphic to a subsemigroup of TS1 . In particular, if S is finite, then it is isomorphic to a

subsemigroup of Tn, where n = |S|+ 1. Note that S may also be isomorphic to a subsemigroup

of Tn for some much smaller n.

One result of this theorem is that an algorithm for a semigroup of finite transformations can

be applied to any finite semigroup. Furthermore, if we want to prove a result that only relies on

the isomorphism class of a semigroup, we can prove it simply for semigroups of transformations.

The image of the map φ in the proof of the last theorem is called the right regular

representation of S. In other words, to construct the right regular representation of S, we

replace each element x by a transformation on S1 which maps each element s to its right

multiple sx. If we wish to express a generic semigroup as a transformation semigroup, this is a

way in which we can always do so.
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Next we consider a particular type of transformation of interest in group theory: permuta-

tions.

Definition 1.64. A permutation is a transformation that is a bijection, i.e. a transformation

σ : X → X such that the following hold:

• (i)σ = (j)σ if and only if i = j;

• every j ∈ X has some i ∈ X such that (i)σ = j.

Since a permutation σ is a bijection, we can define its inverse σ−1, which acts an an inverse

in the group theory sense (see Definition 1.4). This allows us to define a group comparable to

the full transformation monoid, consisting of all the permutations in TX . Consider the following

definition.

Definition 1.65. The symmetric group on a set X is the set of all permutations on X, under

the operation of composition, and it is denoted SX . If X = n, then we call it the symmetric

group of degree n, and denote it Sn.

The symmetric group plays the same role in group theory as the full transformation monoid

does in semigroup theory, as shown in the following important theorem.

Theorem 1.66 (Cayley for groups [Rot65, Theorem 3.16]). Every group is isomorphic to a

subgroup of a symmetric group.

This theorem is proven in much the same way as Cayley’s theorem for semigroups (Theorem

1.63). It also entails a similar important fact, which is that any group can be viewed as a group

of permutations, for the sake of determining information that is isomorphism-invariant.

1.11.2 Partial transformations

We will also deal with a generalisation of transformations known as partial transformations. A

partial transformation can be seen as a transformation which simply fails to map certain points.

The formal definition is as follows:

Definition 1.67. A partial transformation on a set X is a function Y → X for some subset

Y of X.

Again, the set X in this thesis will typically be n = {1, . . . , n}, and we will talk about a

partial transformation of degree n in this case. In two-row notation we can show that a point

is not mapped by a partial transformation by writing a ‘−’ symbol under it, as in the partial

transformation
(

1 2 3 4 5

4 − − 3 3

)
which maps 1 to 4, 4 to 3 and 5 to 3, and does not map 2 or 3 at

all. We compose two partial transformations σ and τ by the rule

(i)στ =

{ (
(i)σ

)
τ, if (i)σ and

(
(i)σ

)
τ are both defined;

undefined, otherwise.

Using this composition rule, we can define the partial transformation monoid PTn of

all partial transformations of degree n, in the same manner as the full transformation monoid

Tn.

We also have a partial counterpart to permutations, as follows.
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Definition 1.68. A partial permutation is a partial transformation that is injective, i.e. a

partial transformation such that (i)σ = (j)σ if and only if i = j.

The product of two partial permutations is also a partial permutation, giving rise to the

following important inverse semigroup, analogous to Tn, Sn and PTn.

Definition 1.69. The symmetric inverse monoid on a set X is the set of all partial per-

mutations on X, under the operation of composition, and it is denoted IX . If X = n, then we

call it the symmetric inverse monoid of degree n, and denote it In.

This monoid plays the same important role for inverse semigroups that Tn and Sn play for

semigroups and groups, as shown by the following analogue to the two Cayley theorems.

Theorem 1.70 (Wagner–Preston [How95, Theorem 5.1.7]). Every inverse semigroup is iso-

morphic to a subsemigroup of a symmetric inverse monoid.

We have now described several different types of partial transformation. We next define a

few attributes of a partial transformation which will be used at various points.

Definition 1.71. Let τ be a partial transformation from PTn. We define the following at-

tributes of τ .

• dom τ , the domain of τ , is the set of points which are mapped by τ ;

• rank τ , the rank of τ , is size of im τ ;

• ker τ , the kernel of τ , is the equivalence relation on dom τ which contains all pairs (a, b)

such that (a)τ = (b)τ ;

• im τ , the image of τ , is the set of points which are mapped onto by τ .

Note that these attributes are also well-defined for transformations, permutations, and par-

tial permutations, since they are all subsets of partial transformations. A partial permutation

has rank equal to the size of its domain. A permutation always has rank equal to its degree,

and image equal to its domain.

1.11.3 Order-preserving elements

Partial transformations (including transformations) can map points in their domain to points

in their image in any order. We now define an interesting property a partial transformation

may have that will be important when we come to consider planar bipartitions later (Definition

5.2). Recall that PTn is the monoid of all partial transformations on the set {1, . . . , n} for some

n ∈ N.

Definition 1.72. A partial transformation τ ∈ PTn is order-preserving if for all i, j ∈ dom τ ,

we have i ≤ j if and only if (i)τ ≤ (j)τ .

Each of the monoids PTn, Tn, In and Sn contains a submonoid consisting of the order-

preserving elements: respectively, POn, On, POIn and the group consisting of just the identity

map idn. The containment of these monoids is shown in Figure 1.73.
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PTn

In POn Tn

POIn Sn On

{idn}

Figure 1.73: Hasse diagram showing containment of some important monoids of partial trans-
formations, along with their order-preserving submonoids.

Note that the definition of order-preserving only makes sense for partial transformations

that act on a set with a natural total ordering, such as the set {1, . . . , n}. It is not well-defined

in PTX for an arbitrary set X.

These order-preserving monoids will be considered in Section 6.1.3, where we will classify

the congruences on their principal factors.

1.11.4 Bipartitions

Another important type of element discussed in this thesis is a bipartition (sometimes referred

to just as a partition). Bipartitions are formally defined as a class of equivalence relations that

form semigroups under an interesting composition operation; but we will often understand them

in a graphical way, as in Figure 1.76. Bipartition semigroups are thus included in the class of

diagram semigroups [EENFM15]. The study of bipartition semigroups is born out of the study

of diagram algebras, for example Temperley–Lieb algebras and the bipartition algebra [Mar94].

However, they are of independent interest in semigroup theory, since the bipartition monoid

(defined below) contains copies of important algebras such as Sn, Tn and In. It also has other

interesting features such as being an example of a regular ?-semigroup, also defined below. For

more information about bipartition semigroups, see [DEG17, §1].

We begin with the formal definition.

Definition 1.74. A bipartition is an equivalence relation on the set n ∪ n′, where n =

{1, . . . , n} and n′ = {1′, . . . , n′} for some n ∈ N.

The equivalence classes of a bipartition are called blocks. A block is called an upper

block if it only contains points from n, a lower block if it only contains points from n′, or a

transversal if it contains points from both n and n′.

The number n is called the degree of the bipartition. Two bipartitions α and β of the

same degree can be composed in the following way to make another bipartition, αβ: let n′′ =

{1′′, . . . , n′′}, let α∨ be obtained from α by changing every point i′ ∈ n′ to i′′, and let β∧ be

obtained from β be changing every point i ∈ n to i′′. Now let Π be the equivalence on n∪n′∪n′′
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given by (α∨∪β∧)e. We define αβ as the bipartition Π∩
(
(n∪n′)× (n∪n′)

)
. This composition

is more easily understood visually, as will be seen in Example 1.75. The operation can be seen

to be associative, and so we can use it to form semigroups of bipartitions.

A bipartition can be displayed visually by plotting the points 1 to n in order in a horizontal

line, with the corresponding points 1′ to n′ underneath, and drawing edges between points to

make a spanning skeleton of the equivalence relation. The product of two bipartitions can then

be found by concatenating the two diagrams top-to-bottom and deleting points in the middle

line. Consider the following example.

Example 1.75. Let α be the bipartition of degree 5 with blocks {1, 1′, 2′}, {2}, {3, 4, 3′, 4′},
{5} and {5′}. Let β be the bipartition of degree 5 with blocks {1, 2, 5, 1′, 2′}, {3, 4′, 5′}, {4}
and {3′}. The diagrams of these two figures, along with their product αβ, are shown in Figure

1.76. Note that two different diagrams are shown for αβ.

α = β =

αβ = = =

Figure 1.76: Diagrams of the bipartitions in Example 1.75.

Since a given equivalence may have several spanning skeletons, a bipartition may be repre-

sented by several different diagrams; for example, note the two different representations of αβ

in Figure 1.76. In general, it does not matter which diagram is used, only that it represents

the appropriate bipartition – we will usually choose the diagram that illustrates the bipartition

most clearly. In particular, for each block that contains points from both n and n′, we will

usually draw only one line crossing the diagram from top to bottom.

Next we define some attributes of bipartitions, which will be important when we come to

consider certain bipartition semigroups later.

Definition 1.77. Let α be a bipartition.

• The rank of α, denoted rankα, is the number of transversals in α;

• The domain of α, denoted domα, is the set of points i ∈ n such that i lies in a transversal

of α;

• The codomain of α, denoted codomα, is the set of points i ∈ n such that i′ lies in a

transversal of α;

• The kernel of α, denoted kerα, is the equivalence relation on n such that two points

i, j ∈ n lie in the same block of kerα if and only if they lie in the same block of α

(equivalently, kerα = α ∩ (n× n));
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• The cokernel of α, denoted cokerα, is the equivalence relation on n such that two points

i, j ∈ n lie in the same block of cokerα if and only if the corresponding points i′, j′ ∈ n′

lie in the same block of α.

We illustrate these attributes by continuing our example.

Example 1.78. Let α and β be the bipartitions described in Example 1.75. The attributes of

α are

domα = {1, 3, 4}, kerα =
{
{1}, {2}, {3, 4}, {5}

}
,

codomα = {1, 2, 3, 4}, cokerα =
{
{1, 2}, {3, 4}, {5}

}
,

and the attributes of β are

domβ = {1, 2, 3, 5}, kerβ =
{
{1, 2, 5}, {3}, {4}

}
,

codomβ = {1, 2, 4, 5}, cokerβ =
{
{1, 2}, {3}, {4, 5}

}
,

where a kernel or cokernel is identified with the set of its blocks. We also have rankα = rankβ =

2.

Since drawing a diagram for a bipartition consumes a lot of space, and since writing out the

blocks is unwieldy and difficult to read, we have another way of representing a bipartition: a

modified two-row notation. In this notation, the blocks of the bipartition’s kernel are written

across the top row, separated by vertical lines, and the blocks of the cokernel are written across

the bottom row, omitting prime symbols. Transversals are written first, with the appropriate

kernel block written above its corresponding cokernel block. Non-transversal blocks are written

afterwards, with upper and lower blocks separated by horizontal lines. A generic bipartition

could thus be represented by

α =
[
A1 . . . Aq C1 . . . Cr

B1 . . . Bq D1 . . . Ds

]
,

where α has q transversals of the form Ai∪B′i with Ai ⊆ n and B′i ⊆ n′, r upper blocks labelled

Ci, and s lower blocks labelled D′i.

Example 1.79. The bipartitions from Example 1.75 can be written in the form

α =
[

1 3, 4 2 5

1, 2 3, 4 5

]
, β =

[
1, 2, 5 3 4

1, 2 4, 5 3

]
.

We should also mention the ? operation. To each bipartition α is assigned another bipar-

tition α?, which is found by swapping each point i ∈ n with its opposite point i′. Hence if

α =
[
A1 . . . Aq C1 . . . Cr

B1 . . . Bq D1 . . . Ds

]
, then we have α? =

[
B1 . . . Bq D1 . . . Ds

A1 . . . Aq C1 . . . Cr

]
. This operation has the

property that αα?α = α, and that (α?)? = α. Hence α? is a semigroup inverse for α.

We now consider the semigroup of all bipartitions of a given degree.

Definition 1.80. The bipartition monoid Pn is the semigroup of all bipartitions of degree

n under composition, where n ∈ N.

The bipartition monoid has many interesting features. First of all, a number of other

important semigroups embed into Pn as subsemigroups. For example, consider the following

way of embedding the full transformation monoid Tn, the symmetric inverse monoid In, and

the symmetric group Sn.
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Example 1.81. Let f : PTn → Pn be the map that sends a partial transformation τ to the

bipartition
{(
i, (iτ)′

)
: i ∈ dom τ

}e
. For example, the partial transformation

(
1 2 3 4 5

3 − 4 3 −

)
would

be mapped to the bipartition
[

1, 4 3 2 5

3 4 1 2 5

]
. It would be easy to mistake f for a homomorphism;

however, consider the following simple counter-example:

a =
(

1 2

1 1

)
, b =

(
1 2

− −

)
, ab =

(
1 2

− −

)
,

(a)f =
[

1, 2

1 2

]
, (b)f =

[
1 2

1 2

]
,

(a)f(b)f =
[

1, 2

1 2

]
6=
[

1 2

1 2

]
= (ab)f,

showing that f does not respect composition. Still, f is useful as an embedding for several

submonoids of PTn. The restricted maps f |Tn and f |In are monomorphisms [Eas11, §3.1–3.2]

and hence, since Sn = Tn ∩ In, so is f |Sn . Thus, we can see that Pn contains copies of Tn, In
and Sn.

Note that, since each bipartition α ∈ Pn has an inverse α? ∈ Pn, we have that Pn is a

regular semigroup. Furthermore, consider the following definition.

Definition 1.82 ([NS78, Definition 1.1]). A regular ?-semigroup is a semigroup S together

with a unary operation ? : S → S such that the following hold:

(i) (x?)? = x;

(ii) (xy)? = y?x?;

(iii) x = xx?x;

for all x, y ∈ S.

We can see that the ? operation described above fulfils all three of these criteria, and

therefore that (Pn,? ) is a regular ?-semigroup. For more information on regular ?-semigroups,

see [NS78].

As with any semigroup, it will be helpful to describe the Green’s relations of the bipartition

monoid. The following proposition describes the Green’s relations, the containment of J -

classes and the ideals of Pn very simply in terms of domain, codomain, kernel, cokernel, and

rank.

Proposition 1.83. Let α and β be bipartitions in Pn. The following hold:

(i) α R β if and only if domα = domβ and kerα = kerβ;

(ii) α L β if and only if codomα = codomβ and cokerα = cokerβ;

(iii) α J β if and only if rankα = rankβ;

(iv) Jα ≤ Jβ if and only if rankα ≤ rankβ.

(v) the ideals of Pn are precisely the sets Ir = {α ∈ Pn : rankα ≤ r} for r ∈ {0, . . . , n}.

Proof. Parts (i) to (iv) are from [FL11], and (v) follows immediately from (iv).
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The bipartition monoid Pn grows very quickly as n increases: its size is the Bell number

B2n [OEIS, A000110]. It therefore grows much faster than the symmetric group Sn with n!

elements, the symmetric inverse monoid In with
∑n
k=0

(
n
k

)
n!

(n−k)! elements, and even the full

transformation monoid Tn with nn elements. The degree of this difference is illustrated in Table

1.84.

n |Sn| |In| |Tn| |Pn|
1 1 2 1 2
2 2 7 4 15
3 6 34 27 203
4 24 209 256 4 140
5 120 1 546 3 125 115 975
6 720 13 327 46 656 4 213 597
7 5 040 130 922 823 543 190 899 322
8 40 320 1 441 729 16 777 216 10 480 142 147
9 362 880 17 572 114 387 420 489 682 076 806 159

10 3 628 800 234 662 231 10 000 000 000 51 724 158 235 372

Table 1.84: Sizes of Sn, In, Tn and Pn for small values of n.

1.12 Computation & decidability

Since this thesis will deal with many computational issues, it may be helpful to make precise

some computational terms. We start with a definition of “algorithm”, a term which is generally

well understood, but whose precise definition is debatable. In this thesis, we opt for a definition

in line with the Church–Turing thesis, which has been favoured by a variety of authors since it

was established [Min67, Gur00].

The Church–Turing thesis evolved from work by Gödel, Church and Turing in the 1930s,

in which they established three different models of computation: general recursive functions

[Göd31], λ-calculus [Chu36], and Turing machines [Tur37]. These three models were soon

shown to be equivalent, with any method computable on one being computable on both the

others. This led to the Church–Turing thesis: the opinion that the informal notion of an

algorithm is accurately characterised by each of these three models, and therefore that they

should be used as a definition of “algorithm”. This gives rise to our chosen definition.

Definition 1.85. An algorithm is a computational method which can be simulated by a

Turing machine.

A Turing machine is a conceptual machine based on a finite state automaton which interacts

with an infinite tape. There are several different formulations of a Turing machine, all of which

are equivalent in terms of the set of computational methods that they can run. Though this

definition is not central to this thesis, we present one such formulation here for completeness.

Definition 1.86. A Turing machine is a tuple (Q,Σ, q0, δ,H) where

• Q is a set, called the set of states;

• Σ is a set, called the alphabet ;
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• q0 ∈ Q is a state known as the initial state;

• δ : Q×Σ→ Q×Σ×{L, R} is a function known as the transition function, which uses the

current state and a character from the tape to process a step in the computation;

• H ⊆ Q is a subset of states known as the halting states.

This machine is paired with a conceptual infinite tape – a sequence of characters from Σ which

continues infinitely in both directions. This tape is provided as an input to the algorithm. The

machine starts in state q0 with its read/write head pointed to a given position on the tape. On

each step of computation, it starts in a state q, reads a symbol σ from the read/write head’s

position on the tape, and uses (q, σ)δ to produce a triple (q′, σ′, d) from Q × Σ × {L, R}: it

then changes state from q to q′, replaces the character σ on the tape with σ′, and moves the

read/write head one character to the left or right according to d. This process is repeated until

the machine enters a state in H, at which time it halts, having completed its operation. The

program’s output is the resulting tape.

This definition encompasses every computation which can be run on today’s electronic com-

puters, and is therefore certainly applicable to any practical implementation of the algorithms

described in this thesis.

Now that we have a definition of an algorithm, we can define decidability. Decidability is

not a core topic of this thesis, but it will be worth going into at least some detail, particularly

around ideas related to semigroup presentations. A deeper discussion of decidability can be

found in, for example, [End01].

Definition 1.87. A class of problems is decidable if there exists a single algorithm which

is guaranteed to return a correct answer to any instance of one of those problems in a finite

amount of time.

Note that although an algorithm may be guaranteed to complete in finite time, the length

of time might be unbounded; that is, an actual run of the algorithm, though guraranteed to

complete, might take an arbitrarily long time.

Decidability is always something that should be considered when designing an algorithm that

may act on infinite objects. In this thesis, particularly in Chapter 2, we encounter semigroup

presentations, which have an interesting decidability feature.

Definition 1.88. Let 〈X |R 〉 be a semigroup presentation. The word problem for 〈X |R 〉
is the following question: given two words u, v ∈ X+, do u and v represent the same semigroup

element?

For many individual semigroup presentations, the word problem is decidable. For example,

consider the following presentation.

Example 1.89. Let S be defined by the presentation

〈 a, b | ab = ba 〉 .

The word problem for this presentation is decidable: two words represent the same element of

S if and only if they contain the same number of occurrences of a and the same number of

occurrences of b.
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In Example 1.89, there is an algorithm to answer the word problem; hence, we say that

〈 a, b | ab = ba 〉 has decidable word problem. However, we have not shown the word problem in

general to be decidable, since our algorithm does not apply to every semigroup presentation,

only to the one considered in the example. It turns out that there is no single algorithm which

can be applied to every presentation to solve its word problem. In fact, we can make a stronger

statement: there are some presentations for which there is not even a specific algorithm to

solve the word problem. Consider the following example from Makanin, which has only three

generators.

Example 1.90 (Makanin, 1966). The presentation

〈a, b, c | c2b2 = b2c2, bc3b2 = cb3c2, ac2b2 = b2a,

abc3b2 = cb2a, b2c2b4c2 = b2c2b4c2a〉

has undecidable word problem [Mak66].

Furthermore, consider the following example from Cijtin, perhaps the simplest undecidable

presentation, with 5 generators but only 33 occurrences of those generators in its relations.

Example 1.91 (Cijtin, 1957). The presentation

〈a, b, c, d, e | ac = ca, ad = da, bc = cb, bd = db,

ce = eca, de = edb, c2e = c2ae〉

has undecidable word problem [Cij57, C+86].

These two examples show that even relatively simple presentations can give rise to semi-

groups with undecidable word problem. Hence, no algorithm we give for solving the word

problem can be guaranteed to finish in finite time. Furthermore, since words can be arbitrarily

long, and presentations can have an arbitrarily large set of relations, solving the word problem

can take an unbounded finite length of time even if it is decidable. This means that it may be

impossible to tell whether an algorithm for the word problem will complete or not, since it is

not clear in advance whether a given semigroup has decidable word problem. At a given stage

while such an algorithm is running, it may be that an answer is about to be returned, but it

may instead be that it will run forever, and it may be impossible to tell the difference between

those two possibilities.

Aside from the word problem, there are a great many other properties of finite presentations

which are undecidable in general. For example, there is no algorithm which can take an arbitrary

finite presentation and decide whether the semigroup it describes:

• is finite;

• has an identity;

• has a zero;

• has idempotents;

• is a group;
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• has a nontrivial subgroup;

• is an inverse semigroup;

• is regular; or

• is simple.

References for these facts, and a survey of many other decidability problems for finitely presented

semigroups, can be found in [CM09].

1.13 Union–find

This thesis deals with congruences, and a congruence is a particular type of equivalence. It will

therefore be useful for us to discuss methods of computing with equivalences, in order to help

us describe other algorithms later, particularly the pair orbit enumeration algorithm in Section

2.6.1. We begin by recalling a few definitions, and stating a problem we wish to solve.

Let X be a set. Recall that an equivalence on X is a relation (a subset of X ×X) which is

reflexive, symmetric, and transitive – that is, a partition of X into disjoint subsets. Also recall

from Definition 1.32 the relation Re, the least equivalence containing a given relation R. It

may be that, given a set of pairs R, we wish to compute the equivalence Re. This is where the

union–find method can be useful.

A union–find table, also known as a disjoint-set data structure, is a data structure that

stores and modifies an equivalence relation by viewing it as a partition and using trees to keep

track of which elements lie in which class. This approach was first described in 1964 in [GF64],

and its time complexity has since been improved in various ways. A few of these ways will be

described after the main description of the algorithm, but see [GI91] for a detailed survey of

different improvements and their possible advantages and drawbacks.

Assume we wish to compute Re for a relation R on a set X. A union–find table, for us, is

a pair (Λ, τ) consisting of a set Λ of elements from X and a function τ : Λ→ Λ. The set Λ will

contain all elements not in singletons, and the function τ will be used to keep track of which

elements of Λ are in which equivalence class, in a way described below. Initially Λ is empty,

and τ is the empty function ∅→ ∅. This initial state represents the diagonal relation ∆X . We

proceed by iterating through the pairs in R, and updating Λ and τ using the following three

operations:

• AddElement takes an element x ∈ X and starts tracking it using the union–find table;

• Union takes two elements x, y ∈ X and alters the table to indicate that they lie in the

same class in Re;

• Find takes an element x ∈ X and returns a canonical representative x′ of the equivalence

class in which x lies. For two elements x, y ∈ X, we have Find(x) = Find(y) if and only

if (x, y) ∈ Re.

At the beginning of the algorithm, every Re-class is assumed to be a singleton. The set Λ

only needs to contain the elements that are in non-singletons, so it starts empty; the function

τ is defined over Λ, so it is also empty. As the algorithm progresses, at various times we will
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find that two distinct elements (say x and y) are Re-related, and we will wish to record this.

If either x or y is not already in Λ, we call AddElement on it to start tracking it in the

union–find table; AddElement simply adds an element – for example, x – to the set Λ, and

redefines τ such that (x)τ = x. See Algorithm 1.92 for pseudo-code. Then we call Union(x, y)

to combine the two classes as described below.

Algorithm 1.92 The AddElement algorithm (union–find)

Require: x /∈ Λ
1: procedure AddElement(x)
2: Λ← Λ ∪ {x}
3: (x)τ := x

A simple way of tracking classes would be for τ to be a function from X to N, where (x)τ

would be the index of the equivalence class in which x lies: distinct elements x and y would

be in the same equivalence class if and only if x, y ∈ Λ and (x)τ = (y)τ . By this method,

Union(x, y) would need go through the whole of τ , finding every z such that (z)τ = (y)τ , and

updating it so that (z)τ = (x)τ , thus making the two classes equal. However, this operation

has high time complexity – in the worst case, O(|X|) – and would cause any implementation of

this algorithm to take a long time to complete. Instead, the union–find algorithm treats τ as a

pointer to a parent element in a forest structure, as follows.

Formally, we say that a forest (that is, a set of rooted trees) describes an equivalence relation

on a set X if each element of X appears as a node in precisely one tree, and the set of nodes

in each tree in the forest is equal to one equivalence class. The arrangement of nodes in each

tree is not important, but it should be noted that each tree will have a single root, which will

be one element in the equivalence class the tree defines. We use τ to describe such a forest as

follows.

Rather than treating τ as a simple function such that elements are Re-related if and only

if they have the same τ output, we instead have τ map an element in Λ to its parent node in

the forest of Re. If x is an element in Λ, then (x)τ is the parent of x in the tree that contains

all the elements in its class. Each class contains a single element r such that (r)τ = r; this is

the root of the tree. Hence the Find function takes an element x, and traverses the tree all the

way back to the root by calling τ on it again and again until we reach the root. Pseudo-code

is given in Algorithm 1.93.

Algorithm 1.93 The Find algorithm (union–find)

1: procedure Find(x)
2: repeat
3: x← (x)τ . Set x to the parent of the old x
4: until x = (x)τ . Check whether the new x is the root
5: return x

Now we may view the operation of finding an element’s class as traversing a tree from a

node up to its root, and we can view the entire connected tree as the class itself. In order to

combine two classes, therefore, we have the function Union, which simply finds the roots of the

two trees and changes one to point to the other. Its pseudo-code is shown in Algorithm 1.94.

Note that a total ordering < of elements is used; this ordering can be arbitrary, but since it
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is only ever used for elements in non-singletons, we choose to use the order in which elements

were added to Λ. In lines 2 and 3, we find the roots x′ and y′ of the trees of x and y, by using

Find. Whichever of these is higher (x′ < y′ or y′ < x′) is set so that its τ output is equal to

the one which is lower: (y′)τ ← x′ or (x′)τ ← y′. Hence, a future call to Find(x) will return

the same result as a call to Find(y) – the result will be whichever is the lower of x′ and y′.

Example 1.95 shows this algorithm in action.

Algorithm 1.94 The Union algorithm (union–find)

1: procedure Union(x, y)
2: x′ := Find(x)
3: y′ := Find(y)
4: if x′ < y′ then
5: (y′)τ ← x′

6: else if y′ < x′ then
7: (x′)τ ← y′

Note that the algorithms described only ever make z an output of τ if (z)τ = z. This ensures

that when Find traverses a tree, it always moves towards the root, and never gets caught in a

cycle. Neither AddElement nor Union contain any loops, so if Λ is finite and τ was created

using the methods described, all three algorithms will always halt in finite time.

These three algorithms allow us to use a simple data structure (Λ, τ) to describe any equiv-

alence relation on a semigroup. Whenever a pair (x, y) is found in ρ, we call AddElement(x)

and AddElement(y) if necessary, and then call Union(x, y). This combines the congruence

classes of x and y, and forces Find(x) = Find(y).

Note that this union–find method has automatically removed the problem of transitivity, as

well as those of reflexivity and symmetry: if we relate the element x to y, and then y to z, we

have combined all three elements into a single class, and so we will see that Find(x) = Find(z),

so we have added the pair (x, z) with no additional effort; similarly every element x is related

to itself from the very beginning; and relating x to y is precisely the same as relating y to x. In

other words, if we perform Union on all the pairs of R one by one, we produce Λ and τ which

describe the equivalence Re.

Other descriptions of union–find do not always include AddElement. The union–find

algorithm is generally used to calculate equivalences on finite sets, but it is possible to use it

with infinite sets as well. The method described here allows for X to be an infinite set, and

stores information only about elements that are not in singletons, by calling AddElement on

each element only when it is found to be in the same class as another element. If there are

infinitely many elements in non-singleton classes, or if there are infinitely many pairs in R, then

of course Re cannot be computed with this method.

Example 1.95. Let X = {a, b, c, d, e, f, g, h} and let R be the set of pairs

{(f, b), (d, c), (e, b), (b, d)}.

We can calculate the classes of Re by applying Union to each pair in R in turn, calling

AddElement on any appropriate elements to add them to Λ first.

First we call AddElement(f) and AddElement(b), then Union(f, b). After these oper-

ations we have Λ = {f, b} and τ has the results (f)τ = f and (b)τ = f , representing just one
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non-singleton class containing both elements. Next we call AddElement on d and c, and then

Union(d, c), after which we have Λ = {f, b, d, c} and new results (d)τ = d and (c)τ = d. This

state is shown in forest form in the first diagram of Figure 1.96.

Next we AddElement(e) and call Union(e, b). Union follows b to its parent f in the tree,

and sets e to point to it; hence Λ = {f, b, d, c, e} and (e)τ = f . This is represented in forrest

form in the second diagram of Figure 1.96.

Finally we process the last pair by calling Union(b, d). This finds the root of b, which is f ,

and the root of d, which is d itself, and unites the two roots. f was added to Λ before d was, so

(d)τ is set equal to f . At this final stage we have Λ = {f, b, d, c, e} as before, and τ maps the

elements f, b, d, c, e to f, f, f, d, f respectively, representing the forest structure shown in the

third diagram of Figure 1.96.

f

b

d

c

f

b e

d

c

f

b e d

c

Figure 1.96: Diagrams of union–find table in Example 1.95.

This represents a single tree, and therefore a single equivalence class consisting of all the

elements {b, c, d, e, f}. However, note that a, g and h have not been added to Λ, so they are in

singleton classes of Re.

The simple description we have given so far is sufficient to implement a working version of

the algorithm, but has complexity that can be easily reduced. The height of a tree created

by repeated applications of Union can be as great as the size of the set X, which means that

the worst-case time complexity of both Find and Union is O(|X|). But we may consider the

following improvements to both Find and Union, which limit the height of trees and thus lower

complexity.

The Find operation descends all the way from a node to the root of its tree, but does not do

anything with the final value that is found. Hence, if Find is later called on the same element,

all the work is likely to be repeated. One possible improvement is to change the element’s

τ -entry to be equal to the result of Find, before returning. This way, a future call to Find

will reach the root of the tree in a single step. Furthermore, it is possible to change every node

in the tree along the way, essentially flattening the entire path each time Find is called. This

improvement is known as path compression [HU73]. Alternatives have been proposed which do

less up-front work, for example path splitting which points each node to its grandparent, or even

path halving which points alternate nodes to their grandparents [vLW77]. These all improve

complexity in a way which we will describe shortly.

The Union operation combines two trees by making one root the parent of the other. In the

method described above, we choose the root that was added to Λ earlier to be the new parent,

but we might choose the parent differently. The union by size method keeps track of the size

of each tree, and makes the smaller tree point to the larger [GI91]; the union by rank method
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instead keeps track of the depth of each tree (the length of the longest path from the root) and

makes the shallower tree point to the deeper [TvL84]. Either of these methods curbs the height

of trees in the table, preventing any tree from growing to a height greater than dlog2 |X|e [GI91,

Lemma 1.1.2].

These improvements are enough to give us the following statement about complexity.

Theorem 1.97 ([GI91, Theorem 1.1.1]). Choose any Find method from path compression, path

splitting or path halving. Choose either union by size or union by rank as a Union method. A

sequence of n− 1 calls to Union and m calls to Find completes in O(n+mα(m+n, n)) time,

where α is a functional inverse of Ackermann’s function.

Ackermann’s function is a function which grows extremely quickly, and the functional inverse

used in Theorem 1.97 (defined explicitly in [TvL84]) therefore grows extremely slowly. In fact,

we have α(m,n) ≤ 3 for any n < 216, so in practice it can be treated as constant and the

complexity stated in Theorem 1.97 is close to O(n+m), meaning that over several calls, Union

and Find have close to constant time complexity.
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Part I

Computational techniques
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Chapter 2

Parallel method for generating

pairs

A congruence is a binary relation, and therefore is formally described as a set of pairs. In

a computational setting, it is rarely practical to keep track of every pair in a congruence; a

congruence on a semigroup of size n contains n2 pairs in the worst case, and on an infinite

semigroup contains an infinite number of pairs. A congruence can be described in more concise

ways: for example, taking advantage of it being an equivalence relation and recording only its

equivalence classes; or in the case of a Rees congruence, storing a generating set for the ideal

which defines it. A variety of different ways to describe a congruence are explained in Chapter

3, along with ways to convert from one to another. However, a congruence is still just a set of

pairs, and by reducing the number of pairs we store, we can often describe a congruence very

concisely using them.

Let S be a semigroup and let R be a subset of S × S. Recall from Definition 1.30 that the

congruence generated by R is the least congruence (with respect to containment) that contains

R as a subset. This definition is based on a simple intuitive idea: a congruence ρ is generated by

a set of pairs R if it consists of only the pairs in R along with the pairs required by the axioms

of a congruence (reflexivity, symmetry, transitivity and compatibility). Thus a congruence can

be described completely by storing only a few pairs. Indeed, many congruences are principal,

requiring only one pair to generate them: see, for example, the congruences studied in Chapter

5, most of which are principal.

Another justification for the use of generating pairs is that it is a completely generic represen-

tation. Some special types of semigroup have their own abstract representations of congruences

– for inverse semigroups, one can study kernel–trace pairs [How95, §5.3]; for groups, normal

subgroups [War90, Theorem 11.5]; for completely simple or completely 0-simple semigroups,

linked triples [How95, §3.5] – but generating pairs can represent a congruence on any semi-

group whatsoever. Furthermore, one might be interested in what pairs are implied by a given

pair or set of pairs in a congruence, and this representation can answer such questions. Left

congruences and right congruences can also be described using generating pairs, and some al-

gorithms designed for two-sided congruences can be used with minor modifications to compute

information about left and right congruences.
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Algorithms for computing a congruence defined by generating pairs have existed in the GAP

library for many years [GAP18, lib/mgmcong.gi], but lack sophistication and perform slowly

(see Section 2.8.2 for benchmarks). The approach taken in the library is based on an algorithm

in [AHT84] for finding the blocks of a transitive permutation group: essentially it consists

of repeatedly left- and right-multiplying the generating pairs by generators of the semigroup,

and storing the generated relation in a union–find table (see Section 1.13). This approach

is essentially the same as the pair orbit enumeration algorithm that is described in detail in

Section 2.6.1.

This chapter describes a new parallelised approach for computing a congruence from a set of

generating pairs, as implemented in libsemigroups [MT+18]. First we will give a general outline

of the system and what questions it hopes to answer; then we will describe in detail each

algorithm used, its advantages and disadvantages, and when it can be applied. Next we will

explain how the different algorithms are executed together, and consider their implementation

in libsemigroups; and finally we will show the results of some benchmarking tests which compare

its performance to the code in the GAP library.

2.1 Reasons for parallelisation

Parallel processing has seen major advances in the last ten years, with multi-core processors

becoming the norm in many types of computers, and processors with 4, 8, or even 16 cores

becoming common on a desktop PC. This being the case, it is desirable to parallelise math-

ematical algorithms wherever possible, and take advantage of the ability to execute multiple

threads of instructions concurrently. Some algorithms are “embarrassingly parallel” – that is,

they can be split into independent threads which require almost no communication with each

other. Examples of these algorithms would be brute force searches, or rendering of computer

graphics. These are suited so well to parallelisation that splitting the operation into n paral-

lel threads reduces the expected run-time to barely more than 1
n times the expected run-time

in a single thread. Other algorithms do not parallelise so well: sometimes threads have to

communicate, or use shared resources, causing significant slowdown and severely limiting the

improvements that can be made by parallelising.

When it comes to computing information about a congruence from generating pairs, there

are various different approaches that can be taken: in Sections 2.6.1, 2.6.2 and 2.6.3, we describe

three possible algorithms: pair orbit enumeration, the Todd–Coxeter algorithm, and the Knuth–

Bendix algorithm. Depending on what sort of semigroup is given as an input (see Section

2.4), several or all of these might be appropriate. However, depending on certain properties

of the congruence, one might perform far better than another. For example, the pair orbit

algorithm works well on congruences that contain few non-reflexive pairs, while the Todd–

Coxeter algorithm tends to work well on congruences with few classes (i.e. very many pairs).

For a detailed analysis of which algorithms perform well on which inputs, see Section 2.8. Given

only a set of generating pairs, these properties are likely to be unknown in advance, which makes

it difficult to choose a good algorithm.

The natural answer to this problem is the core concept of this chapter: a parallel approach

which does not attempt to parallelise individual algorithms, but which runs several known

algorithms at the same time, each in a different thread, and simply halts all threads as soon
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as any one completes. Since these algorithms do not interact with each other in any way, the

total run-time will be close to the minimum run-time of all the different algorithms. This is

particularly important, since for certain semigroups and congruences some algorithms will never

terminate, while others may terminate in a very short time.

2.2 Applicable representations of a semigroup

A semigroup can be represented computationally in different ways. For example, a semigroup

of transformations could be specified by a set of transformations that generates it, or alterna-

tively by a finite presentation. Which representation is used affects which methods will be most

effective, or even which methods will be applicable. For this purpose, we consider two differ-

ent categories of semigroup representation: finite presentations, and concrete representations.

Recall Section 1.7 for the definitions of terms surrounding finite presentations.

Definition 2.1. Let S be a semigroup. A concrete representation for S is one of the

following:

• the Cayley table of S, where S is finite;

• a finite generating set for S, whose elements are any of the following:

– partial transformations of finite degree (which might include transformations, partial

permutations, and permutations);

– bipartitions of finite degree;

– partitioned binary relations of finite degreee (as described in [EENFM15, §2.1]);

– n× n boolean matrices for some n ∈ N (as described in [BH97]).

The motivation behind Definition 2.1 is to characterise a data structure that has certain

convenient computational properties. Observe firstly that only finite semigroups can have

concrete representations. Note also that we can use any concrete representation to produce a

list of all the elements of S, and to find the product of any two elements, in a finite amount of

time, as we will now describe.

Let us first consider the most trivial type of concrete representation: a finite semigroup’s

Cayley table (see Definition 1.8). Our Cayley table has a finite number of rows and columns,

and therefore we know immediately that it must describe a finite semigroup. A list of elements

of the semigroup can be taken directly from the indices of the table, and the product xy of

two elements x and y can be found by simply reading the entry in row x and column y. Hence

Cayley tables have the convenient properties we describe above, but in practice in computation

they are used very little, since they require a great deal of space to store – order O(|S|2).

It will be more common for us to consider generating sets of partial transformations. If

S is a semigroup of finite-degree partial transformations, then a finite set of generators for

S is a concrete representation of S. Two elements can be multiplied and compared without

reference to the semigroup as a whole: for example, if x =
(

1 2 3 4 5

1 3 3 4 2

)
and y =

(
1 2 3 4 5

2 4 4 2 2

)
then

we can calculate xy =
(

1 2 3 4 5

2 4 4 2 4

)
without knowing anything else about S. Since all elements

in this semigroup have finite degree, and since there are only a finite number of generators,
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we know immediately that the semigroup in question is finite, and we can produce a list of its

elements using, for example, the Froidure–Pin algorithm (see Section 2.5). Hence, a generating

set for a semigroup of partial transformations also has the properties described above. Note

that bipartitions, partitioned binary relations, and boolean matrices have similar properties.

A finite presentation, on the other hand, is an example of a semigroup representation that is

not concrete, and which may not possess the convenient properties above. If 〈X |R 〉 is a finite

presentation, and S is the semigroup it defines, then it may be that S is infinite, and so 〈X |R 〉
would not have the attractive properties of a concrete representation – consider, for example,

the presentation 〈 a |∅ 〉 with one generator and no relations, which presents the free semigroup

{a}+; it has an infinite number of elements, and so an attempt to produce a full list of them

will never complete in finite time. Certain finite presentations do define finite semigroups –

indeed, in Section 2.5 we give an algorithm for finding a presentation for a finite semigroup.

However, it cannot even be determined that a presentation defines a finite semigroup without

performing some processing, for example running the Todd–Coxeter algorithm. In this way,

finite presentations may not be as useful as concrete representations, and so will be treated

differently in some of the algorithms below.

Since some finite presentations define infinite semigroups, the algorithm described in this

chapter, whose outputs are described in Section 2.4, cannot be guaranteed to complete in all

cases. The only guarantee that can be given is that an answer will be returned if S happens

to be finite. In the concrete case, semigroups are always finite and so an answer is guaranteed;

but in the case of a finite presentation, it is unknown in advance whether the semigroup it

defines is finite or not. Hence, the user of this algorithm might not know whether a particular

run is guaranteed to terminate, since a run that is about to finish is indistinguishable from one

that will run forever. In some cases, however, we may be able to return an answer even if S is

infinite. For a fuller explanation of presentations and decidability issues, see Sections 1.7 and

1.12.

Finitely presented monoids are treated as equivalent to finitely presented semigroups, since a

monoid presentation 〈X |R 〉 can be easily converted into an equivalent semigroup presentation:

an extra generator ε should be added to X, and relations (xε, x) and (εx, x) added to R for

each generator x ∈ X.

2.3 Program inputs

Our algorithm determines the properties of a single left, right, or two-sided congruence defined

by generating pairs, over a semigroup S. For the remainder of this chapter, the word “congru-

ence” will be used to refer to left, right, and two-sided congruences equally, without having the

default meaning of “two-sided congruence”.

If S has a concrete representation (as described in Section 2.2) then we will certainly have

a generating set for S (which may be all the elements in S); in this case, it is quick to use these

generators to calculate a list of elements in S, along with left and right Cayley graphs for S,

using the Froidure–Pin algorithm (see Section 2.5). The Froidure–Pin algorithm also gives us,

for each element s ∈ S, a word w ∈ X+ which represents s in the sense of Figure 1.48. We

use these words to define a factorisation function f : S → X+ which maps each s to its

corresponding word w.
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If, on the other hand, we only have a finite presentation for S, then the elements will not

be known in advance. In either case, a finite presentation 〈X |R 〉 can be given – a technique

for efficiently finding a presentation from a concrete representation is given in Section 2.5. The

exact parameters supplied to the algorithm are therefore as follows:

• A set of generators X;

• A finite set of relations R ⊆ X+ ×X+;

• A finite set of generating pairs W ⊆ X+ ×X+;

• A record of whether we are computing a left, right, or two-sided congruence.

The following are also available only in the case of a concrete representation:

• A list of elements of S;

• Left and right Cayley graphs for S (see Definition 1.12);

• A factorisation function f : S → X+.

We shall now make clear the meanings of these different parameters, by giving a complete

description of the system, starting with the commutative diagram in Figure 2.2.

Here X is our alphabet, and X+ is the free semigroup it defines. We have a set of relations

R ⊆ X+×X+, which generates the two-sided congruence R] on X+. This two-sided congruence

gives rise to a quotient semigroup X+/R]; this is isomorphic to the semigroup S, which is

described by the presentation 〈X |R 〉. The congruence also gives us its natural homomorphism

π : X+ → S (see Definition 1.25). We also have a set of generating pairs P ⊆ S×S, which defines

a left, right, or two-sided congruence P/, P., or P]. The aim of the algorithm described in this

chapter is to obtain a data structure describing this congruence, where the precise meaning of

“data structure” is defined in Section 2.4. If we are calculating a two-sided congruence, then it

gives rise to the quotient semigroup S/P].

X

X+ X+

R]
∼= S S

P]

π

Figure 2.2: How input objects relate to each other.

The generating pairs P are not given by the user. Since the elements of S might be unknown

(for example if S was specified by a finite presentation), it would be impractical for the user

to specify them precisely. Instead, the user specifies a set W consisting of pairs of words from

X+ ×X+, which can be evaluated to pairs of elements in S × S, giving the set of generating

pairs P. More formally, let Π : X+ ×X+ → S × S be defined by Π : (w1, w2) 7→ (w1π,w2π),

where π is the natural homomorphism from X+ to S mentioned above. The generating pairs

P of the congruence are given by P = WΠ. This relationship is summarised in Figure 2.3.
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W P

X+ ×X+ S × S

Π|W

Π

Figure 2.3: How generating pairs are specified.

2.4 Program outputs

Each method we are about to explain can provide a variety of different pieces of information,

but it is important to consider which questions we aim to answer. Our system should be able

to return the following information about a given congruence when requested:

(i) An algorithm to determine whether a given pair (x, y) is in the congruence;

(ii) The number of congruence classes;

(iii) An algorithm that takes an element x and returns the index of the congruence class to

which it belongs (it should return the same index for elements x and y if and only if (x, y)

is in the congruence);

(iv) A list of the elements in each non-trivial congruence class (only if all such classes are

finite).

Each of our algorithms will produce a data structure that can be used to compute these

four pieces of information. However, note that not every algorithm can produce all four pieces

of information in all cases. For example, if S is infinite, the Knuth–Bendix algorithm cannot be

used to compute (ii), and the Todd–Coxeter algorithm cannot be used to produce (iv). After

each algorithm is described in Section 2.6, we will explain how that algorithm can be used to

produce each one of these four outputs, and we will also explain the situations in which a given

algorithm cannot produce a certain output, while pointing out which alternative algorithm will

be successful instead.

Note that item (iv) can only be produced by any algorithm if the list happens to be finite

– that is, only if all but finitely many elements of the semigroup lie in singletons.

2.5 Finding a presentation

Recall from Section 2.3 that a concrete representation for a semigroup may not include a

finite presentation. In order to use the Todd–Coxeter and Knuth–Bendix algorithms, a finite

presentation is required, and so a presentation 〈X |R 〉 must be calculated for S. For the

purposes of the algorithm described in this chapter, it is not important how this presentation

is obtained. However, for the sake of completeness, we will briefly discuss how a presentation

could be computed.

We will start by describing a very simple way of producing a presentation from a concrete

representation: by using its Cayley table directly.

Method 2.4. Let S be a semigroup with concrete representation, and assume we have access

to its Cayley table. We can produce a presentation as follows. Let S̄ be a set with the same
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cardinality as S, containing an element x̄ for each element x ∈ S, and let R ⊆ S̄ × S̄ be equal

to {(x̄ȳ, xy) : (x, y) ∈ S × S}. The resulting presentation
〈
S̄
∣∣R 〉 defines the semigroup S.

Proof. Consider the natural homomorphism π : S̄+ → S which maps a word x̄1x̄2 . . . x̄n to the

semigroup element x1x2 . . . xn. Note that π is surjective, since for any element x ∈ S we have

(x̄)π = x. To prove that
〈
S̄
∣∣R 〉 defines S we must show that for any two words u, v ∈ S̄+,

(u, v) ∈ R] if and only if (u)π = (v)π.

Let u, v ∈ S̄+ such that (u, v) ∈ R]. As in Theorem 1.39, there must be a chain of words

u = w1 → w2 → · · · → wk = v

such that wi = xay and wi+1 = xby for some words x, y ∈ S̄∗ and a, b ∈ S̄+ where either (a, b) or

(b, a) is in R, for each i ∈ {1, . . . , k−1}. In each of these steps, (a, b) or (b, a) being in R implies

that (a)π = (b)π, because of the way in which R was created. Since π is a homomorphism, this

tells us that (xay)π = (xby)π, and therefore that (u)π = (v)π, proving this implication.

For the converse, let u, v ∈ S̄+ such that (u)π = (v)π. Let u = ū1ū2 . . . ūk and v =

v̄1v̄2 . . . v̄l, with each ūi and v̄j being from S̄. Since R has a relation (x̄ȳ, xy) for each pair

(x̄, ȳ) ∈ S̄ × S̄, there exists a relation (ū1ū2, u1u2) ∈ R, and so by repetition we have (u, u′) =

(ū1ū2 . . . ūk, u1u2 . . . uk) ∈ R], relating the word u with length k to a word u′ with length 1,

such that (u)π = (u′)π. We can perform a similar process on v to produce a word v′ also with

length 1, with (v)π = (v′)π. Since (u′)π = (u)π = (v)π = (v′)π and both u′ and v′ have length

1, we must conclude that u′ = v′, and so we find that

u R] u′ = v′ R] v,

so (u, v) ∈ R] as required.

Consider the following example.

Example 2.5. Let T2 be the full transformation semigroup on 2 points. It has 4 elements,{(
1 2

1 2

)
,
(

1 2

2 1

)
,
(

1 2

1 1

)
,
(

1 2

2 2

)}
,

which we will relabel as {a, b, c, d}. The Cayley table is

a b c d

a a b c d

b b a c d

c c d c d

d d c c d

Method 2.4 converts this Cayley table to the presentation

〈 a, b, c, d | aa = a, ab = b, ac = c, ad = d,

ba = b, bb = a, bc = c, bd = d,

ca = c, cb = d, cc = c, cd = d,

da = d, db = c, dc = c, dd = d 〉,

which has 4 generators and 16 relations.
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This approach is simple to describe, but of course results in a large, unwieldy presentation

which will be difficult to use in computations: it will have |S| generators and |S|2 relations,

which is likely to be far more than necessary, and will therefore slow down the Todd–Coxeter

and Knuth–Bendix algorithms badly. If S is T5, the full transformation semigroup on 5 points,

it has only 3125 elements, but the presentation produced would have 3125 generators and

9, 765, 625 relations, an absurdly large representation for a semigroup which can be generated

by just three transformations of degree 5. We therefore might consider an alternative.

If S has a known generating set X, we can use it to produce a presentation which is likely to

be much smaller. Consider the following approach, which is adapted from the simplified version

of the algorithm shown in [FP97, §3.1], where its correctness is proven in more detail.

Method 2.6. Let S be a finite semigroup with a concrete representation, and let X ⊆ S

be a generating set for S. We can produce a presentation 〈X |R 〉 consisting of the known

generating set X together with some relations R which are computed as follows, with complete

pseudo-code in Algorithm 2.7.

Let R begin empty (line 2), and start enumerating the elements of the monoid S(1). We

keep a list LS of elements that have been found in S(1) (initially just the identity id, as in

line 3), and we keep another list LX∗ of words made up of generators from X (initially just

the empty word ε, as in line 4). We also define a function ν : X∗ → S(1) which maps a word

w = x1x2 . . . xn to the element x1 · x2 · · ·xn found by multiplying the generators (and ε 7→ id

as a special case). We now loop over the words w that have been found and added to LX∗ ;

initially this list contains only one word, but in each iteration of the loop, we may discover new

words, which we add to the end of the list, and iterate over in course, until we have considered

all words (line 18).

In each iteration of the loop, we take the next word w ∈ LX∗ (line 8) and for each generator

x ∈ X in turn we consider the new word wx made by appending x to the end of w. If this

new word represents an element of S(1) that has already been found – that is, if (wx)ν ∈ LS
– then we add a new relation (wx,w′) to R, where w′ is the word we have already stored that

represents (wx)ν (lines 10–12); we do not add anything to LX∗ , ensuring that all the words in

LX∗ describe distinct elements (as asserted in line 16). If, on the other hand, this new word

does not represent an element that we already know, then we have encountered a new element

which must be added to LS (line 14) and we have a word that represents it, which must be

added to LX∗ (line 15); this ensures that (wx)ν ∈ LS for all x ∈ X at the end of this run of the

repeat-loop, which is therefore true for all u ∈ LX∗ considered so far (as asserted in line 17).

Once the loop is run to the end, this if–else statement (lines 10–15) ensures that every word

w ∈ X∗ can be rewritten by relations in R to a word in LX∗ , and that every element in S has

precisely one word in LX∗ which represents it. Hence the resulting presentation 〈X |R 〉 defines

the semigroup S.

We can also see that this algorithm always terminates for finite X and finite S: the repeat-

loop is only run once for each element of S, and the for-loop inside is only run once for each

generator in X. Hence the loop must complete, and the algorithm halts.

We can improve further on this method. The libsemigroups implementation of this chap-

ter’s algorithm uses the Froidure–Pin algorithm [FP97], a method which is essentially a more

advanced variation of Algorithm 2.7. The Froidure–Pin algorithm takes a concrete set of gen-
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Algorithm 2.7 The PresentationFromGenerators algorithm

1: procedure PresentationFromGenerators(X)
2: R := ∅
3: LS := {id}
4: LX∗ := {ε}
5: i := 0 . Number of words we have looped over
6: repeat
7: i← i+ 1
8: w := the ith element of LX∗

9: for x ∈ X do
10: if (wx)ν ∈ LS then . New word for known element
11: w′ := the unique element in LX∗ such that (w′)ν = (wx)ν
12: Add (wx,w′) to R
13: else . Previously unknown element
14: Add (wx)ν to LS
15: Add wx to LX∗

16: . (u)ν 6= (v)ν for all u, v ∈ LX∗

17: . (ux)ν ∈ LS for all x ∈ X and the first i elements u in LX∗

18: until i = |LX∗ | . There are no words left to consider
19: return 〈X |R 〉

erators X for a semigroup S, and returns several useful pieces of information:

• a left Cayley graph for S with respect to X;

• a right Cayley graph for S with respect to X;

• a confluent terminating rewriting system R describing the elements of S as words in X+

(see Section 2.6.3);

• and for each element s ∈ S, a word w ∈ X+ representing one possible factorisation of s.

The right Cayley graph can be used by the Todd–Coxeter procedure to pre-fill its table (see

Section 2.6.2). But more importantly, the rewriting system R is a set of pairs which can be used

as the relations in a finite presentation 〈X |R 〉 for the semigroup S. Rewriting systems will

be defined later in Section 2.6.3, along with the terms “confluent” and “terminating”. The fact

that R is confluent and terminating may also be useful when it is used as part of a rewriting

system in the Knuth–Bendix process, as we will see in Theorem 2.42.

A full description of the Froidure–Pin algorithm is outside the scope of this thesis, but for

more information about the algorithm and its implementation in libsemigroups, see [FP97] and

[JMP18].

The presentation produced by the algorithms above defines a finite semigroup, and therefore

has decidable word problem. Hence, when we have a concrete representation for a semigroup

S, we can always find a presentation in which we can compare two words and say whether

they represent the same element of S. However, if we started with a finite presentation instead

of a concrete representation, we may not have this guarantee. There are many examples of

presentations for which the word problem is undecidable (see Examples 1.90 and 1.91). Many

presentations do have decidable word problem (see Example 1.89), but many do not, and there

is no algorithm to decide whether a given presentation does. Besides, finite presentations, even
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if their word problem is decidable, can describe infinite semigroups, and the finiteness of S is

also not known in advance – nor, in general, is it decidable.

2.6 The methods

2.6.1 Pair orbit enumeration

The first method we will describe is pair orbit enumeration. This rather simple algorithm

consists of taking the pairs in R, and for each pair (a, b) finding all pairs (as, bs) and (sa, sb)

for all s ∈ S. We might refer to this set of pairs as the orbit of R in S, which justifies the

name. Although this algorithm is simple and in some ways inefficient, there are cases in which

it out-performs the other algorithms in this chapter, so it is worth including in our parallelised

method.

We will now give a brief description of pair orbit enumeration – a pseudo-code description

is shown in Algorithm 2.8. We start with a semigroup S, a set of generators X for S, and

a set of generating pairs R for the congruence ρ we are trying to compute. It will also be

important to remember whether we are calculating a left, right, or two-sided congruence, a

piece of information encoded in Algorithm 2.8 as σ ∈ {L,R, T}. We start with a list of pairs

R′ which we initialise to be equal to the set of generating pairs R (line 3); this list R′ will hold

all the pairs that have been found so far, except those we infer from reflexivity, symmetry and

transitivity. We will also create a union–find table (Λ, τ) for storing the classes (line 4), and

we will be using the three operations AddElement, Union and Find to modify them. See

Section 1.13 for a full description of the union–find method.

Now we can describe the overall structure of the pair orbit enumeration method. We begin

iterating through the pairs in R′ (the repeat loop starting on line 6), and as we do so we will

add further pairs to R′ which will also need to be iterated on, until we reach the end of the list

(line 21). For each pair (a, b) we first need to merge the congruence classes of a and b in the

union–find table using Union (line 13), ensuring that Find(a) = Find(b) (line 20). However,

if either a or b is not already in Λ, then it will need to be added first using AddElement (lines

9–12). Now, for each generator x, we can find the two pairs (xa, xb) and (ax, bx). Depending

on whether we are calculating a left, right, or two-sided congruence (that is, depending on the

value of σ) we add one or both of these pairs to R′ to be processed in its own turn (lines 16

and 18); note that no pair is ever added from outside Rc (line 19).

Once this procedure is finished, we have a complete table (Λ, τ) which describes the con-

gruence’s non-trivial classes. To check whether a pair (a, b) lies in the congruence, we now just

need to look up a and b in the table using Find, and if they lie in the same class we return

true. If either element has not been added to Λ, then it lies in a singleton, and (a, b) is in the

congruence if and only if a = b.

In order to prove that this method is valid, we will recall some facts from Chapter 1, as well

as citing several sources for some theory. Let S be a semigroup, let R ⊆ S×S, let σ ∈ {L,R, T},
and let ρ be the left, right or two-sided (according to σ) congruence on S generated by R. We

can now state the following theorem.

Theorem 2.9. Let (Λ, τ) = PairOrbit(S,R, σ). Distinct elements x and y in Λ lie in the

same class of ρ if and only if Find(x) = Find(y).
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Algorithm 2.8 The PairOrbit algorithm

Require: S a semigroup, R ⊆ S × S, σ ∈ {L,R, T}
1: procedure PairOrbit(S,R, σ)
2: Let X be a generating set for S
3: R′ := R
4: (Λ, τ) := (∅,∅) . An initialised union–find table
5: i := 0 . Number of pairs we have looped over
6: repeat
7: i← i+ 1
8: (a, b) := the ith pair in R′

9: if a /∈ Λ then
10: AddElement(a)

11: if b /∈ Λ then
12: AddElement(b)

13: Union(a, b)
14: for x ∈ X do
15: if σ ∈ {L, T} then
16: Add (xa, xb) to R′ if not already present

17: if σ ∈ {R, T} then
18: Add (ax, bx) to R′ if not already present

19: . R′ ⊆ Rc (also, R′ ⊆ Rl if σ = L, and R′ ⊆ Rr if σ = R)

20: . Find(a) = Find(b) for the first i pairs (a, b) in R′

21: until i = |R′| . There are no pairs left to process
22: return (Λ, τ)

Proof. Recall from Definition 1.34 the relations Rc, Rl and Rr, and recall that they are respec-

tively the smallest compatible, left-compatible, and right-compatible relations which contain R

(see Lemma 1.35).

Let us start by considering the case when σ = L, that is the case where we are computing

the left congruence. For each pair (a, b) ∈ R, the pair orbit enumeration procedure finds all the

pairs (xa, xb) where x is a generator of S. That pair is then added to R′ (line 16), and so it is

kept in line for processing. On a later run through the repeat loop, when i is incremented in

line 7 and reaches the position of (xa, xb) in R′, (xa, xb) is considered as a pair in its own right,

and all of its left multiples are found in their turn: (yxa, yxb) for every generator y ∈ X. In this

way, (sa, sb) is found for every s ∈ S, so the set of pairs found by the PairOrbit algorithm is

{(sa, sb) | (a, b) ∈ R, s ∈ S},

which is equal to the relation Rl. Similarly, if σ = R, the algorithm finds all the pairs in Rr,

and if σ = T , the algorithm finds all the pairs in Rc.

The remainder of the proof considers the union–find method. As described above, since

union–find stores pairs as a partition, it automatically takes care of reflexivity, symmetry, and

transitivity. That is, if a set of pairs Q is fed into the union–find table using Union on every

pair in Q, then the resulting table describes Qe, the least equivalence relation containing Q.

Hence, if σ = L, the table produced by PairOrbit will describe the relation (Rl)e; if σ = R, it

will describe (Rr)e; and if σ = T , it will describe (Rc)e. As we know from Theorem 1.39, these

relations are respectively the least left, right, and two-sided congruence containing R, so the

output of PairOrbit describes ρ accurately, and Find may be used as described to determine
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whether two elements lie in the same congruence class.

In PairOrbit, we call AddElement, and thus add elements to Λ, only when an element

is found in a pair. This approach opens up the possibility of applying this method to infinite

semigroups. Our implementation in libsemigroups [MT+18] includes such a possibility, by taking

a semigroup presentation 〈X |R 〉 and using the Knuth–Bendix algorithm (see Section 2.6.3)

as a way of comparing the semigroup’s elements. The pair orbit enumeration procedure, as

described above, can then be used, and will complete in finite time if and only if the number

of elements in non-trivial congruence classes is finite. It should be noted that we can rely on

PairOrbit terminating in a finite number of steps so long as S and X are finite. There are

only two loops in the algorithm: the inner for-loop is limited by the finite length of X, so it has

only a finite number of steps; and the outer repeat loop can only be run at most |S|2 times,

since it runs once for each pair added to R′, which is a subset of S × S – note that new pairs

are only added if they are not already present (lines 16 and 18).

This is the simplest of the algorithms discussed in this section, and generally does not

perform as well as the others in practice. However, it has certain advantages such as its small

overhead and quick setup, and therefore on certain examples performs better than the others.

Furthermore, it is applicable to any problem discussed in this chapter, whether we have a

concrete representation or a finite presentation, and whether ρ is a left, right or two-sided

congruence. Uniquely among the methods described in this chapter, it does not even require a

presentation in order to be run.

Now that we have explained the pair orbit algorithm, we should consider how it can be used

to answer the questions in Section 2.4. Assume we have a congruence ρ on a semigroup S,

and the pair orbit algorithm has been completed. For (i), we can determine whether a given

pair (x, y) lies in ρ fairly easily using the resultant union–find table: (x, y) ∈ ρ if and only

if Find(x) = Find(y). For (ii), to find the number of congruence classes of ρ, we first find

the number of different blocks in the union–find table (that is, the number of different values

returned by Find when given elements in Λ), and then we add the number of singletons (that

is, the number of elements not in Λ). Hence the number of congruence classes of ρ is equal to

|{Find(x) : x ∈ Λ}|+ |S \ Λ|.

For (iii), we require an algorithm that takes an element and returns a unique integer correspond-

ing to the congruence class in which it lies; we can simply use the function Find and create

a map of outputs to integers over successive calls; for a fuller description, see the ClassNo

function described in Section 2.6.3 under “Computing program outputs” (here we use Find in-

stead of a rewriting system). Finally for (iv) we require a list of the elements in each non-trivial

congruence class; this can be produced by calling Find on each element x in Λ, and putting

x into a list labelled Li where i = Find(i), creating new lists as necessary – once all elements

have been considered, these lists are what is required.

This algorithm has rather high complexity. As we saw in the proof of Theorem 2.9, the

algorithm adds pairs to R′ until it is equal to Rc (for a two-sided congruence – substitute Rl

or Rr for a left or right congruence). The repeat-loop will be therefore be executed once for

each pair in Rc, and it contains a for-loop that iterates over X. Hence, even if we treat calls to

Union as close to constant time (see Theorem 1.97) we can only say that PairOrbit has time
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complexity order O(|Rc|·|X|). Hence, the algorithm can complete quite quickly for congruences

which have a small generating set X and only a few pairs in Rc (that is, with many classes).

However, in the worst case, when the generating set is large and there are many pairs in Rc,

the time complexity is order O(|S|3), since Rc = S × S and X = S. Similarly, to store all the

pairs that are found in Rc the space complexity in this worst case is O(|S|2). This makes the

algorithm unattractive for congruences with many pairs, but in some cases the algorithm can

still out-perform the others in this chapter (see Section 2.8).

Some improvements can be made to the basic algorithm shown above. For example, the

libsemigroups implementation makes use of the symmetry of pairs: a pair (a, b) is not added

to R′ if the pair (b, a) has previously been added. Tweaks like this can make the algorithm

slightly faster, though they do not address the high complexity of the method.

2.6.2 The Todd–Coxeter algorithm

The Todd–Coxeter algorithm was originally described in 1936 in [TC36]. It was an algorithm

to enumerate the cosets of a finitely generated subgroup of a finitely presented group. Arriving

before the advent of electronic computers, the algorithm was originally intended to be carried

out by hand. Perhaps the earliest automatic implementation was on the EDSAC II computer

in Cambridge [Lee63]. Since then, a wide variety of efficient, optimised versions have been

implemented, one notable example being ACE [RH09].

A variation of the Todd–Coxeter algorithm for semigroups was described in 1967 [Neu67].

The algorithm takes a presentation 〈X |R 〉 for a semigroup S and computes the right regular

representation of S(1) with respect to the generators X – that is, it computes all the elements

of S(1) and the result of right-multiplying each element by each generator (see Section 1.11.1).

Since the original algorithm makes very little use of those properties unique to groups, the

method applied to semigroups is essentially the same. Other descriptions of the Todd–Coxeter

algorithm for semigroups can be found in [Ruš95, Chapter 12] and [Wal92, Chapter 1.2], and a

variation specific to inverse semigroups can be found in [Cut01]. Our version of the algorithm is

based closely on an implementation by Götz Pfeiffer, found in [GAP18, lib/tcsemi.gi], itself

based on [Wal92].

We will now describe the Todd–Coxeter method as used in the context of this chapter.

Though the Todd–Coxeter method itself does not represent new work, it is an important part

of the overall parallel approach, and in order to understand its uses and limitations, it is

described here in full. The idea of pre-filling the table is original work (see “Pre-filling the

table” below), as is the integration into the overall parallel algorithm this chapter describes.

Setup

The Todd–Coxeter algorithm is based on a table, where each row corresponds to a single

congruence class (or equivalently in the case of a two-sided congruence, a single element of the

quotient semigroup). The columns of the table correspond to the generators of the semigroup,

and the entry in row i, column j represents the element found by taking element i and right-

multiplying it by generator j. These entries may be blank, and two different rows may be

found to describe the same element. Mathematically, we can view this table as a triple (n,N, τ)

consisting of:
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• an integer n ∈ N representing the number of rows in the table;

• a set N ⊆ {1, . . . , n} containing the indices of the undeleted rows; and

• a function τ : N × X → N ∪ {0}, where (i, x)τ is equal to the entry in row i and the

column corresponding to generator x – with 0 representing a blank entry.

Suppose that we have a semigroup presentation 〈X |R 〉 for a semigroup S. The table is

initialised with a single row, numbered 1. This row corresponds to the empty word ε, or the

adjoined identity of the monoid S(1). The row is empty, containing a blank entry in all |X|
columns. In our mathematical notation, we define n = 1 and (1, x)τ = 0 for all x ∈ X.

We can naturally extend the function τ : N×X → N∪{0} to a function τ̄ : N×X∗ → N∪{0}
which is described as follows. If w ∈ X∗ and w = w1 . . . wn, where w1, . . . , wn ∈ X, then we

can define τ̄ recursively by

(i, w)τ̄ =


i if w = ε,

0 if (i, w1)τ = 0,(
(i, w1)τ, w2 . . . wn

)
τ̄ otherwise.

The effect of τ̄ is to trace an entire word through the table, starting at a given row.

Elementary operations

We now describe three operations which may be applied to the table. These operations will be

described in turn to give an understanding of what they are designed to do, along with their

description in pseudo-code (Algorithms 2.10, 2.11 and 2.12). We will then describe the overall

Todd–Coxeter procedure which uses these operations to find all the elements of a semigroup

from a presentation (Algorithm 2.13). The three operations are:

• Add: Fill in a blank entry and add a row to the table;

• Trace: Trace a relation from a row;

• Coinc: Process a coincidence.

The first operation, Add, is the simplest of the three, and is shown in pseudo-code in

Algorithm 2.10. Calling Add(i, x) should fill in a blank cell in the table in row i and column x

– that is, a position such that (i, x)τ = 0. It fills it in with the address of a new row, which must

first be created. We add a new row at the bottom of the table by incrementing the number

of rows n (line 2), adding its new value to the list of active rows N (line 3), and filling in all

its entries with blanks – that is, setting its τ -outputs to 0 (lines 4–5). Finally, the address of

the new row is written into the blank cell that was specified – that is, we set (i, x)τ to the new

row’s address n (line 6). Now the blank cell has been filled with the address of a new row, as

required.

Trace takes two arguments: a row e in the table, and a relation v = w from R. Its goal

is to ensure that, starting at e, applying the word v has the same result as applying the word

w – in other words, to ensure that (e, v)τ̄ = (e, w)τ̄ . We will now describe how this is done,

referring to Algorithm 2.11 for pseudo-code.
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Algorithm 2.10 The Add algorithm (Todd–Coxeter)

Require: (i, x)τ = 0
1: procedure Add(i, x)
2: n← n+ 1
3: N← N ∪ {n}
4: for x ∈ X do
5: (n, x)τ := 0

6: (i, x)τ ← n

First we follow both words through the table, one letter at a time, up to and including their

penultimate letter. For v, we use a variable s, which starts at e (line 4) and we go through v

one letter vi at a time up to the second-last letter (line 5). At each step, we consider (s, vi)τ ,

the entry in the table which we must follow next to continue going through the word. If it is

not set, we call Add to create a new row to point it towards (lines 6–7). Then we follow it,

setting s to the new value (line 8). At each stage of the loop, s = (e, v1 . . . vi)τ̄ (as asserted on

line 9). Hence, at the end of this loop, we only need to follow the last letter vm to complete

the word – that is, (s, vm)τ = (e, v)τ̄ .

We follow a similar process for w in lines 10–15, going through all letters of w except the

last one, and finding a row t such that (t, wn)τ = (e, w)τ̄ . Now in order to satisfy the objective

(e, v)τ̄ = (e, w)τ̄ , we just need to ensure that two specific cells in the table are equal: we need

to ensure that (s, vm)τ = (t, wn)τ . We do this by considering four different cases:

• if the two cells are both empty, then we apply Add to (s, vm) to create a new row for

(s, vm)τ to point to, and then we copy that entry into (t, wn)τ (lines 16–18);

• if just one of the entries is empty, then the filled entry is copied into the empty one (lines

19–22);

• if both entries are filled and equal, we do not need to do anything;

• if both entries are filled and are distinct, then we need to force the two rows they point

towards to be equal, by applying Coinc to the two entries (lines 23–24).

After each of these cases, the result is that (s, vm)τ = (t, wn)τ , and hence that (e, v)τ̄ = (e, w)τ̄

as required.

Coinc is used when two rows in the table are found to refer to the same element of S(1); it

modifies the table to delete one row and use the other instead. Pseudo-code for Coinc can be

found in Algorithm 2.12. First, the higher-numbered row s is deleted from the list of active rows

(N ← N \ {s}), and all occurrences of the higher number s are replaced by the lower number

r (lines 5–6), in every active row (line 3) and every column (line 4) of the table. Next, the two

rows are combined into one, with all known information being preserved: any columns that are

filled in row s but empty in row r are copied (lines 9–10) and if there is any column that has

different non-empty entries in rows r and s (line 11), we know that those two entries refer to

the same element, and the coincidence needs to be processed with another call to Coinc (line

12). Hence, for each column considered, a cell in row r can only be empty if that cell in row s

is also empty (as asserted in line 13). After the algorithm is finished, all references to s have

been removed from the table, and all information from row s has been incorporated into row r.
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Algorithm 2.11 The Trace algorithm (Todd–Coxeter)

1: procedure Trace(e, v = w)
2: Write v = v1 . . . vm . (vi ∈ X for 1 ≤ i ≤ m)
3: Write w = w1 . . . wn . (wi ∈ X for 1 ≤ i ≤ n)
4: s← e
5: for i ∈ {1, . . . ,m− 1} do
6: if (s, vi)τ = 0 then
7: Add(s, vi)

8: s← (s, vi)τ
9: . s = (e, v1 . . . vi)τ̄

10: t← e
11: for i ∈ {1, . . . , n− 1} do
12: if (t, wi)τ = 0 then
13: Add(t, wi)

14: t← (t, wi)τ
15: . t = (e, w1 . . . wi)τ̄

16: if (s, vm)τ = (t, wn)τ = 0 then
17: Add(s, vm)
18: (t, wn)τ ← (s, vm)τ
19: else if (s, vm)τ = 0 then
20: (s, vm)τ ← (t, wn)τ
21: else if (t, wn)τ = 0 then
22: (t, wn)τ ← (s, vm)τ
23: else if (s, vm)τ 6= (t, wn)τ then
24: Coinc((s, vm)τ, (t, wn)τ)

Algorithm 2.12 The Coinc algorithm (Todd–Coxeter)

Require: r < s
1: procedure Coinc(r, s)
2: N← N \ {s}
3: for e ∈ N do
4: for x ∈ X do
5: if (e, x)τ = s then
6: (e, x)τ ← r

7: . (i, x)τ 6= s for all x ∈ X and i ∈ N such that i ≤ e
8: for x ∈ X do
9: if (r, x)τ = 0 then

10: (r, x)τ ← (s, x)τ
11: else if (r, x)τ 6= (s, x)τ and (s, x)τ 6= 0 then
12: Coinc((r, x)τ, (s, x)τ)

13: . (r, x)τ 6= 0 unless (s, x)τ = 0
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Now that we have these three operations, it is simple to describe the overall ToddCoxeter

procedure, as shown in Algorithm 2.13. First we set up the table as described above: the number

of rows n is set to 1, the set of active rows N contains just this row 1, and the table τ is initialised

to have a blank cell in each column, and just one row (lines 2–6). Now we go through all the

rows e in the table, starting with row 1. For each row, we check whether it is active – that is,

we check whether e is in N (line 10). If it is not, we do nothing and proceed with the next row;

if it is, we apply relations to it. We go through all the relations from R (line 11), and apply

each one to the current row using Trace (line 12). Each call to Trace may, of course, invoke

calls to Add and Coinc, so rows will be appended to the table as the algorithm progresses,

and it may take many iterations of the repeat-loop before the bottom of the table is reached.

When the end is reached (line 15), the table should completely describe the multiplication for

the finitely presented semigroup: each row in N \ {1} represents one element of S, and (i, x)τ

represents the element denoted by i right-multiplied by the generator x.

Algorithm 2.13 The ToddCoxeter algorithm (for semigroups)

1: procedure ToddCoxeter(〈X |R 〉)
2: n := 1
3: N := {1}
4: τ : N×X → N ∪ {0}
5: for x ∈ X do
6: (1, x)τ := 0

7: e := 0
8: repeat
9: e← e+ 1

10: if e ∈ N then
11: for (u, v) ∈ R do
12: Trace(e, u = v)
13: . (e, u)τ̄ = (e, v)τ̄

14: . (i, u)τ̄ = (i, v)τ̄ for all (u, v) ∈ R and i ∈ N such that i ≤ e
15: until e = n . There are no rows left to process
16: return (n,N, τ)

Note that there is no guarantee that the end of N will ever be reached: if the given presen-

tation defines an infinite semigroup, the table will grow forever and the procedure will never

terminate. On the other hand, the procedure is guaranteed to terminate in a finite number

of steps if and only if the presentation defines a finite semigroup (see [HEO05, Theorem 5.5]

and [BC76, Theorem 3]). This number of steps is, however, unbounded; and since we may not

know in advance whether a presentation defines a finite or infinite semigroup, it is impossible

to know, while the procedure is running, whether it will end – indeed, see Example 2.25.

Example 2.14. We now give an example of the Todd–Coxeter algorithm running on the

semigroup presentation 〈
a, b
∣∣ ba = ab, b2 = b, a3 = ab, a2b = a2

〉
.

We initialise the table to look like Table 2.15.
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a b

1

Table 2.15: Initial position.

The list N of undeleted rows contains only a single entry, 1. We begin by tracing each

relation on the row 1, starting with ba = ab. The left-hand side of this relation makes us call

Add on the cell (1, b), creating a new row, 2, which is added to N. For the right-hand side,

we must call Add on the cell (1, a), creating a row 3. At the end of the Trace, we must set

(1, ba)τ̄ equal to (1, ab)τ̄ , so we set both (2, a)τ and (3, b)τ to 4 (as in Table 2.16).

a b

1 3 2

2 4

3 4

4

Table 2.16: Position after Trace(1, ba = ab).

Next, we apply Trace(1, b2 = b). Since (1, b)τ̄ is already set, we just set (1, b2)τ̄ equal to

it: (2, b)τ ← 2. See Table 2.17.

a b

1 3 2

2 4 2

3 4

4

Table 2.17: Position after Trace(1, b2 = b).

Still on row 1, we apply Trace to the third relation, a3 = ab. This creates a new row for

(1, a2)τ̄ = (3, a)τ = 5. The new row’s a entry is set to be the same as (1, ab)τ̄ , which is 4 (see

Table 2.18).

a b

1 3 2

2 4 2

3 5 4

4

5 4

Table 2.18: Position after Trace(1, a3 = ab).

The final relation for row 1 is a2b = a2. (1, a2b)τ̄ is currently blank, and is set to the current

value of (1, a2)τ̄ , which is 5. Hence (5, b)τ ← 5 (as in Table 2.19).
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a b

1 3 2

2 4 2

3 5 4

4

5 4 5

Table 2.19: Position after Trace(1, a2b = a2).

We have now finished with row 1, and we proceed to the next row in N, which is 2. Ac-

cordingly, we apply the first relation, Trace(2, ba = ab). The value of (2, ba)τ̄ is 4, whereas

the value of (2, ab)τ̄ has not yet been set. We set it by applying (4, b)τ ← 4. See Table 2.20.

a b

1 3 2

2 4 2

3 5 4

4 4

5 4 5

Table 2.20: Position after Trace(2, ba = ab).

Proceeding with Trace(2, b2 = b), we find that (2, b2)τ̄ = (2, b)τ̄ already, so we make no

modifications to the table. Next, Trace(2, a3 = ab) discovers that (2, a2)τ̄ is not set, and so

we call Add(4, a), creating a new row 6. Now (6, a)τ is set to (2, ab)τ̄ which is equal to 4. See

Table 2.21.

a b

1 3 2

2 4 2

3 5 4

4 6 4

5 4 5

6 4

Table 2.21: Position after Trace(2, a3 = ab).

The final relation for row 2 is a2b = a2, setting (6, b)τ ← 6 (see Table 2.22).
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a b

1 3 2

2 4 2

3 5 4

4 6 4

5 4 5

6 4 6

Table 2.22: Position after all relations on row 2.

Next we move onto row 3, and we apply Trace(3, ba = ab). Inspecting the table shows

(3, ba)τ̄ = 6 but (3, ab)τ̄ = 5, giving rise to a coincidence. We apply Coinc(5, 6), which deletes

row 6, rewrites any occurrences of 6 in the table to 5, and copies row 6 into row 5 (yielding no

new information). The result is shown in Table 2.23. The rest of the relations are applied to

row 3, and to the remaining rows in the table, but no changes are made to the table, so Table

2.23 is the final state.

a b

1 3 2

2 4 2

3 5 4

4 �65 4

5 4 5

6 4 6

Table 2.23: Final position.

We can now delete row 1, which acts as an appended identity, and we find a description of the

semigroup’s multiplication, with relation to its generators. This description can be represented

as a Cayley graph, as shown in Figure 2.24.

2

b

4
a

3

b

5a

b

a
b

Figure 2.24: Right Cayley graph of
〈
a, b
∣∣ ba = ab, b2 = b, a3 = ab, a2b = a2

〉
.

It is worth noting that the columns of the table now give a right representation of S. That is,

S is isomorphic to the semigroup generated by the transformations
(

1 2 3 4 5

3 4 5 5 4

)
and

(
1 2 3 4 5

2 2 4 4 5

)
,

as we can see from Theorem 1.63: we have (a)φ =
(

1 2 3 4 5

3 4 5 5 4

)
and (b)φ =

(
1 2 3 4 5

2 2 4 4 5

)
, and these
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two transformations generate all the elements of S.

We now consider another example, which shows that the Todd–Coxeter procedure can take

an unbounded length of time, even when the semigroup it computes is relatively small.

Example 2.25. Let 〈X |R 〉 be the semigroup presentation〈
a, b
∣∣ a100 = b, a = a2

〉
.

By inspection we can see that any string an is equal to a by repeated application of the second

relation, and therefore that a = a100 = b by the first relation. Hence any string in X+ is

equal to a, showing that 〈X |R 〉 defines the trivial semigroup. However, if we apply the Todd–

Coxeter procedure to this example, a table with 100 rows will need to be constructed before any

coincidences are found, and 99 of these will need to be deleted before the algorithm terminates.

The number 100 in this example can be replaced by any arbitrarily large value; the pre-

sentation will still define the trivial semigroup, but computation time will be arbitrarily long.

In this way, we can see that although the Todd–Coxeter algorithm is guaranteed to terminate

in a finite number of steps when the input defines a finite semigroup, this number of steps is

unbounded.

Left, right, and two-sided congruences

Next we will describe how to apply the given Todd–Coxeter method to left, right and two-

sided congruences. The description of the Todd–Coxeter algorithm given above is a method

for finding the elements of the semigroup S given by the presentation 〈X |R 〉, and describing

their multiplication. More precisely, the Todd–Coxeter algorithm produces a table in which

each row represents one element s ∈ S(1), each column represents one generator x ∈ X, and

the cell in the row of s and the column of x contains the row number of the element sx. Hence

its columns describe a right regular representation of S, as described in Section 1.11.1. In the

language of congruences, this is equivalent to finding the classes of the trivial congruence on

the semigroup S(1), or of the two-sided congruence R] on the free monoid X∗.

The original problem we wanted to solve, as described in Section 2.3, is to find the classes

of the congruence ρ defined by a set of pairs W ⊂ X+ × X+ over the semigroup defined by

〈X |R 〉. If we are considering a two-sided congruence, we can simply apply the Todd–Coxeter

method described above to the semigroup presentation 〈X |R,W 〉, and the result will represent

the classes of ρ. We call this method ToddCoxeterTwoSided, and give pseudo-code for it

in Algorithm 2.26. Note that this pseudo-code is precisely the same as ToddCoxeter in

Algorithm 2.13, except for the addition of lines 11–12 which trace all the relations in W , before

doing the same for those in R.

The correctness of the ToddCoxeterTwoSided algorithm is inherited from the correct-

ness of the ToddCoxeter algorithm, which is shown in, for example, [TC36] and [BC76].

What we have precisely computed is the elements of the semigroup presented by 〈X |R,W 〉,
or in other words, the quotient semigroup S/ρ. Each class of ρ is thus represented by one row

in the resulting data structure. Since this algorithm does not produce, for example, a list of

all the elements in a given class, we cannot yet say that we have “computed” the congruence

in the sense of the program outputs we specified in Section 2.4. However, see the “Computing
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Algorithm 2.26 The ToddCoxeterTwoSided algorithm (for congruences)

1: procedure ToddCoxeterTwoSided(〈X |R 〉, W )
2: n := 1
3: N := {1}
4: τ : N×X → N ∪ {0}
5: for x ∈ X do
6: (1, x)τ := 0

7: e := 0
8: repeat
9: e← e+ 1

10: if e ∈ N then
11: for (u, v) ∈W do
12: Trace(e, u = v)
13: . (e, u)τ̄ = (e, v)τ̄

14: for (u, v) ∈ R do
15: Trace(e, u = v)
16: . (e, u)τ̄ = (e, v)τ̄

17: . (i, u)τ̄ = (i, v)τ̄ for all (u, v) ∈ R ∪W and i ∈ N such that i ≤ e
18: until e = n . There are no rows left to process
19: return (n,N, τ)

program outputs” section below for a description of the additional work required to produce

all the information we require about the congruence.

If we are considering a left or right congruence we must alter the method slightly. We

shall now describe how to modify the Todd–Coxeter algorithm to compute a table for the right

congruence ρ (see Algorithm 2.27 for pseudo-code).

Let 〈X |R 〉 and W be as described in Section 2.3, and let ρ be the right congruence they

specify. Since 〈X |R 〉 specifies the semigroup over which ρ is defined, we must trace all the

relations R on every row in the table, as usual (lines 11–18). This ensures that, for a relation

(a, b) ∈ R, we have (i, a)τ̄ = (i, b)τ̄ for every i ∈ N, which is equivalent to the left congruence

rule that for any pair (a, b) ∈ R we have (sa, sb) ∈ ρ for every s ∈ S. However, such a condition

is not required for a right congruence, and so we do not need to enforce the pairs from W so

strictly. In fact, we only need to trace the pairs from W from row 1, and not any other row, as

we do in lines 7–8 of Algorithm 2.27. The rest of the algorithm is the same as ToddCoxeter

(Algorithm 2.13), which is explained in detail above.

To see that this algorithm is correct, consider the following theorem.

Theorem 2.28. Let 〈X |R 〉 and W be as in Section 2.3 and ρ be the right congruence they

specify. ToddCoxeterRight(〈X |R 〉, W ) returns a table which describes the classes of ρ

(after the identity row 1 is removed).

Proof. We may safely assume that the basic Todd–Coxeter algorithm is correct [TC36, BC76]

and therefore that ToddCoxeterTwoSided(〈X |R 〉, W ) gives the correct answer for a two-

sided congruence, since it is equivalent to running the Todd–Coxeter algorithm on the presenta-

tion 〈X |R,W 〉. We must now consider how the ToddCoxeterRight algorithm differs from

ToddCoxeterTwoSided, and prove that the resulting table does indeed define the right

congruence ρ.
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Algorithm 2.27 The ToddCoxeterRight algorithm (for right congruences)

1: procedure ToddCoxeterRight(〈X |R 〉, W )
2: n := 1
3: N := {1}
4: τ : N×X → N ∪ {0}
5: for x ∈ X do
6: (1, x)τ := 0

7: for (u, v) ∈W do
8: Trace(1, u = v)
9: . (1, u)τ̄ = (1, v)τ̄ for every pair (u, v) in W considered so far

10: e := 0
11: repeat
12: e← e+ 1
13: if e ∈ N then
14: for (u, v) ∈ R do
15: Trace(e, u = v)
16: . (e, u)τ̄ = (e, v)τ̄

17: . (i, u)τ̄ = (i, v)τ̄ for all (u, v) ∈ R and i ∈ N such that i ≤ e
18: until e = n . There are no rows left to process
19: return τ

ToddCoxeterTwoSided treats pairs from R and pairs from W in essentially the same

way: each pair (u, v) is traced starting at every active row e ∈ N, using Trace(e, u = v).

ToddCoxeterRight follows this method for pairs in R, but traces pairs in W only from row

1.

For a pair (u, v) ∈ W we must certainly have (u, v) ∈ ρ. Hence we run Trace(1, u = v)

on line 8 to ensure that (1, u)τ̄ = (1, v)τ̄ and therefore the row corresponding to u is the same

as the row corresponding to v. However, we must not run Trace(e, u = v) for any numbers e

higher than 1, since this would be enforcing the left congruence criterion – that (su, sv) ∈ ρ for

all s ∈ S – which does not apply to the right congruence ρ.

The right congruence criterion, that for any pair (u, v) ∈ W we have (us, vs) ∈ ρ for all

s ∈ S, is automatically enforced without additional work, in the following way. The words us

and vs should be in the same congruence class of ρ if and only if (1, us)τ̄ = (1, vs)τ̄ ; but we

already know that (1, u)τ̄ = (1, v)τ̄ , because it was enforced using Trace on line 8, and so we

have

(1, us)τ̄ = ((1, u)τ̄ , s)τ̄ = ((1, v)τ̄ , s) = (1, vs)τ̄ ,

which is enough to show that (us, vs) ∈ ρ as required.

In summary, when computing a right congruence with the Todd–Coxeter algorithm, each

relation u = v from R must be applied to every single row e ∈ N (Trace(e, u = v) as on line

15), while the relations from W only need to be applied to the identity row (Trace(1, u = v)

as on line 8).

If, instead of a right congruence, we are considering a left congruence, we may apply the

same method but reversing all multiplications. This is shown in pseudo-code as ToddCox-

eterLeft in Algorithm 2.29. The row given by (1, w1w2 . . . wk)τ̄ does not correspond to the

word w1w2 . . . wk but to the word wkwk−1 . . . w1. The words in every relation in R and W

should be reversed (lines 7 and 12) to make new sets of relations R̄ and W̄ , and then we
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should study the right congruence defined by the resulting relations – that is, the result of

ToddCoxeterRight(
〈
X
∣∣ R̄ 〉 , W̄ ). The Todd–Coxeter method then works in exactly the

same way as described above, but it should be remembered on completion that the resulting

table describes the semigroup and congruence with left multiplication instead of right multipli-

cation.

Algorithm 2.29 The ToddCoxeterLeft algorithm (for left congruences)

1: procedure ToddCoxeterLeft(〈X |R 〉, W )
2: R̄ := ∅
3: W̄ := ∅
4: for (u, v) ∈ R do
5: Let u = u1u2 . . . um . where each ui is in X
6: Let v = v1v2 . . . vn . where each vj is in X
7: R̄← R̄ ∪ {(um . . . u1, vn . . . v1)}
8: . (ū, v̄) ∈ R̄ for every (u, v) in R processed so far

9: for (u, v) ∈W do
10: Let u = u1u2 . . . um . where each ui is in X
11: Let v = v1v2 . . . vn . where each vj is in X
12: W̄ ← W̄ ∪ {(um . . . u1, vn . . . v1)}
13: . (ū, v̄) ∈ W̄ for every (u, v) in W processed so far

14: return ToddCoxeterRight(
〈
X
∣∣ R̄ 〉 , W̄ )

Theorem 2.30. Let 〈X |R 〉 and W be as in Section 2.3 and ρ be the left congruence they

specify. ToddCoxeterLeft(〈X |R 〉, W ) returns a table which describes the classes of ρ

(after the identity row 1 is removed, and with respect to left multiplication).

Proof. For a word w ∈ X∗, let w̄ be the reverse of that word, i.e. if w = w1w2 . . . wn where

wi ∈ X for all i ∈ {1 . . . n}, then let w̄ = wnwn−1 . . . w1. Let R̄ and W̄ be produced from R

and W as shown in Algorithm 2.29, by reversing all the words in all the pairs in each of the

two sets. Note that for two words u, v ∈ X∗, uv = v̄ū, and that ¯̄u = u.

Let S be defined by the presentation 〈X |R 〉, and let S̄ be defined by the presentation〈
X
∣∣ R̄ 〉. If u and v are two words in X+, then (u, v) ∈ R if and only if (ū, v̄) ∈ R̄. This gives

rise to a natural anti-isomorphism ·̄ from S to S̄: if w ∈ X+ represents some s ∈ S, then s̄ is the

element of S̄ represented by w̄. This anti-isomorphism is the basis for ToddCoxeterLeft.

Since ρ is a left congruence, we have the rule that (sa, sb) ∈ ρ for every element s ∈ S and

every pair (a, b) ∈ ρ. We define

ρ̄ = {(ā, b̄) | (a, b) ∈ ρ},

a relation on S̄. The reflexivity, symmetry and transitivity of ρ̄ follow from ρ. But note that

(sa, sb) = (ās̄, b̄s̄) ∈ ρ̄ for every (ā, b̄) ∈ ρ̄, and so ρ̄ is a right congruence. In fact, it is the right

congruence generated by W̄ .

Now when we call ToddCoxeterRight(
〈
X
∣∣ R̄ 〉 , W̄ ) we know we are producing a table

which represents ρ̄. We know that S is anti-isomorphic to S̄, and that (a, b) ∈ ρ if and only

(ā, b̄) ∈ ρ̄, so the table can be used directly to describe ρ itself. We only need to take care to

remember that all the multiplications shown by the Todd–Coxeter table (n,N, τ) are actually

left-multiplications.
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Computing program outputs

So far we have described how the Todd–Coxeter procedure operates and the output it produces.

However, on completion of ToddCoxeterLeft or Right or TwoSided, it may not be im-

mediately obvious how information about the congruence can be retrieved from the resultant

table. In this section we will explain how the output of these algorithms can be used to produce

the four program outputs (i) to (iv) required by Section 2.4. Assume that we have taken inputs

X,R,W and applied them to one of the three algorithms; let ρ be the left, right, or two-sided

congruence described by these inputs, over the semigroup S.

Firstly, we require (i), an algorithm to determine whether a given pair (x, y) of elements

in the semigroup lies in ρ. If x and y are elements of S, then we can find words wx and wy

over the alphabet X which represent them (see Section 2.3). We can then simply compute

Trace(1, wx) and Trace(1, wy), which will be equal to each other if and only if (x, y) ∈ ρ.

For (ii), the number of congruence classes of ρ, we simply observe that each congruence

class is represented by one unique row in the Todd–Coxeter table. Each row corresponds to a

single congruence class, except row 1 which acts as an appended identity. Hence the number of

classes is equal to one less than the number of rows in the table.

For (iii) we require an algorithm that takes an element x and returns the index of the

congruence class to which it belongs. As described above for (i), we can simply take a word wx

that represents x, and call Trace(1, wx): the result is the index of the congruence class.

Finally, output (iv) is a list of the elements in each non-trivial congruence class. This is

not so immediately available, but may still be computed if S is finite. Firstly, we require a

list of the elements of S: if we have a concrete representation, then this is given; if we have

only a finite presentation 〈X |R 〉 then ToddCoxeter can be called on the presentation, and

a representative word for each element can be found during this run. Once this list of words is

found, we can use Trace on each one, as for (iii), to find which congruence class its element

lies in. These results can then be compiled, and singletons discarded, to produce the desired

output.

Note that output (iv) cannot be produced using the Todd–Coxeter algorithm when S is

infinite. However, the pair orbit algorithm will succeed for infinite S, so long as there are only

finitely many elements in non-trivial classes. See Section 2.6.1 for more details.

Pre-filling the table

In the ordinary Todd–Coxeter procedure as described above, we begin with just a single row

representing the empty word, and we add rows to represent the different congruence classes

as we go along, merging rows together if they are found to describe the same congruence

class. However, in the case that we are calculating a congruence over a concretely represented

semigroup – or indeed, over a finitely presented semigroup on which the Todd–Coxeter algorithm

has already been run – we have certain information which we can use to help us with our

calculation. We now describe how to use this information in a process called pre-filling, which

represents new work in this area.

If we have a semigroup S, then we may be able to find a right Cayley graph Γ for S with

respect to its generators X: if we have a concrete representation, then we can find this graph

using the Froidure–Pin algorithm (see Section 2.5); or if the Todd–Coxeter algorithm has been
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run on S, then the resulting table contains all the information required for a right Cayley

graph. Either way, this graph tells us, for each element s ∈ S and each generator x ∈ X, the

value of s · x. To pre-fill the table is to convert this Cayley graph into a Todd–Coxeter table

(n,N, τ) with rows that represent the elements of S(1), instead of starting with just a single

row representing the identity. Then we only need to process the pairs in W in order to calculate

the equivalence classes of ρ, and we do not need to use the pairs in R at all. We now describe

how this works in more detail, with pseudo-code in Algorithm 2.31.

We initialise the table with |S| + 1 rows (line 2), all of them active (line 3), where row 1

represents the identity as usual, and rows 2 to |S| + 1 represent the elements of S. We put

these elements in some order such that S = {s1, s2, . . . , sk}. We now fill in the table, not with

empty cells as in previous Todd–Coxeter algorithms, but with the values we know they should

have according to the Cayley graph of S.

First, row 1 represents the identity. When we multiply the identity by a generator x, we get

x itself. Hence, in lines 5–6, for each x ∈ X, we fill in (1, x)τ with the row that corresponds to x

(that is, one more than the position of x in S). Now, each of the rows beyond row 1 corresponds

to an element in S: row i corresponds to the element si−1. For each row i and each generator

x, we therefore need to fill the table in with the row number of the element si−1 · x. Hence, in

lines 7–8, we fill in (i, x)τ with the row that corresponds to si−1 · x (that is, one more than the

position of si−1 · x in S).

Recall the notation we defined in Section 2.3: our semigroup S is presented by 〈X |R 〉,
and we wish to calculate a congruence ρ defined by the generating pairs W . Pre-filling the

table with the right Cayley graph as described in lines 1–8 above is equivalent to processing all

the relations R and running the Todd–Coxeter algorithm to completion: we have a table which

describes the elements of S, or in other words, the classes of the trivial congruence ∆S on S.

In fact, the state of (n,N, τ) on line 9 is the same as the output of ToddCoxeter(〈X |R 〉),
but may have taken much less time to compute.

Since we wish to calculate information about the classes of ρ, we now have to consider the

pairs W , and find out which ∆S-classes should be combined to make ρ-classes. Since there are

no blanks in the table (i.e. we never have (i, x)τ = 0), we will never be forced to use the Add

operation and create new rows; the procedure from now on will simply be about tracing relations

from W and combining rows together. As we can see, the remainder of the algorithm (lines

10–18) are the same as the final lines of ToddCoxeterTwoSided, with the one difference

that the two lines which trace relations from R have been removed – these relations are now

unnecessary, since they are already incorporated into the table by prefilling from the Cayley

graph of S. This is the main source of time-saving that occurs in this algorithm, and is the

key to its speed advantage over the non-prefilled version (see Figures 2.54, 2.55 and 2.56 for

performance benchmarks).

Theorem 2.32. Let 〈X |R 〉 and W be as in Section 2.3, let S be a semigroup presented by

〈X |R 〉, and assume we have a concrete representation for S. ToddCoxeterPrefill(〈X |R 〉,
W , S) has output identical to ToddCoxeterTwoSided(〈X |R 〉, W ), up to relabelling of the

rows.

Proof. The only difference between Prefill and TwoSided is that Prefill initialises the

Todd–Coxeter table with a right Cayley graph for S, while TwoSided computes one from
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Algorithm 2.31 The ToddCoxeterPrefill algorithm

Require: S = {s1, s2, . . . , sk} is a semigroup with its elements known in a defined order
1: procedure ToddCoxeterPrefill(〈X |R 〉 ,W, S)
2: n := |S|+ 1
3: N := {1, . . . , n}
4: τ : N×X → N ∪ {0}
5: for x ∈ X do
6: (1, x)τ := (position of x in S) + 1
7: for i ∈ {2, . . . , n} do
8: (i, x)τ := (position of si−1 · x in S) + 1

9: . At this point (i, u)τ̄ = (i, v)τ̄ for all (u, v) ∈ R and i ∈ N
10: e := 0
11: repeat
12: e← e+ 1
13: if e ∈ N then
14: for (u, v) ∈W do
15: Trace(e, u = v)
16: . (e, u)τ̄ = (e, v)τ̄

17: . (i, u)τ̄ = (i, v)τ̄ for all (u, v) ∈W and i ∈ N such that i ≤ e
18: until e = n . There are no rows left to process
19: return (n,N, τ)

scratch using R.

In lines 14 and 15 of TwoSided (Algorithm 2.26), we are doing the equivalent of the original

ToddCoxeter algorithm, which produces a right Cayley graph for S. Instead, in lines 2–8

of Prefill (Algorithm 2.31) we input a right Cayley graph for S directly, without consulting

R. These two operations produce the same result – a Todd–Coxeter table filled with a right

Cayley graph for S – so it does not matter which method we use to do so.

The only other part of the algorithm is to process the pairs in W , something which both

algorithms do identically. It might be noticed that in TwoSided this is done before the pairs

in R. Again, since the operation is equivalent to processing the presentation 〈X |R,W 〉, it

does not matter in which order relations are processed.

It is worth noting that, unlike the other Todd–Coxeter algorithms described in this thesis,

ToddCoxeterPrefill is guaranteed to halt in finite time. Since X and S are finite, the loops

in lines 1–8 of the algorithm are guaranteed to have a finite number of iterations. In order to

see that the repeat-loop in lines 11–18 will also have a finite number of iterations, observe that

there are no blanks in the table – that is, that there are no values of (i, x) such that (i, x)τ = 0.

Since there are no blanks, Trace can never cause a call to Add, and therefore the number

of rows n will never go above |S| + 1. Hence the repeat-loop will go through a maximum of

|S|+ 1 iterations, and since the for-loop inside iterates over a finite set W , we are guaranteed

completion in a finite number of steps.

Implementation

In the methods described above, rows may be added to the table, and deleted from it. A list

must be kept of rows which are in use; when a row is added, its position in the table should

be appended to this list at the end, and when a row is deleted it should be removed from its

77



position in the list and added to a list of “free rows” which can be reused later. The “rows in

use” list is best implemented as a doubly-linked list, so that single entries can be added and

removed with as little processor work as possible.

2.6.3 Rewriting systems

Another approach for solving the word problem in a finite presentation is using rewriting sys-

tems. Hence, given a semigroup S with presentation 〈X |R 〉 and a congruence ρ over S with

generating pairs given by W (see Section 2.3) we may be able to find a rewriting system which

converts any word w ∈ X+ to a canonical word representing the same element of 〈X |R, W 〉;
that is, a word representing a semigroup element in the same ρ-class as the semigroup element

of S represented by w.

For ease of notation and understanding, this section will describe an algorithm for the

word problem on a finitely presented semigroup. We understand that this is the same as the

problem of whether a given pair of words represent semigroup elements related to each other

by a two-sided congruence ρ. The current implementation of this method in libsemigroups does

not include left and right congruences as an option (but see Section 2.9.4).

In order to describe the process, we must first explain some background theory. A full

description of these ideas can be found in [HEO05, Section 12.2]. Note that we shall again

consider monoid presentations instead of semigroup presentations, since it is easy to change

between the two by appending or removing an identity (the empty string ε).

Definition 2.33. Let X be an alphabet. A rewriting system R on X∗ is a set of ordered

pairs (u, v) where u, v ∈ X∗.

A pair (u, v) ∈ R is called a rule, and can be viewed as an operation which transforms an

occurrence of u in a word into an occurrence of v. For this section, we will assume that R is

finite. A rewriting system R extends to relations→R,
∗→R, and

∗↔R which describe how words

are rewritten, and which are defined as follows.

Let u, v ∈ X∗ and let R be a rewriting system. We write u→R v if there exist (w1, w2) ∈ R

and s, t ∈ X∗ such that u = sw1t and v = sw2t. That is, u→R v if a rule rewrites a contiguous

subword of u to turn u into v. The relation
∗→R is simply the reflexive transitive closure of

→R; that is, u
∗→R v if and only if u = v or

u = u0 →R u1 →R · · · →R un = v,

for some u0, . . . , un ∈ X∗. Finally,
∗↔R is the symmetric closure of

∗→R. It is easy to see that
∗↔R is an equivalence relation whose classes we may write as [w]R. Where there is no chance

of ambiguity, we omit the subscript in these operations, just writing →,
∗→ and

∗↔.

This definition of a rewriting system does not guarantee that a word can be rewritten in a

useful way. A rewriting system could allow an endless loop of rewriting; for example, a system

over the alphabet {a, b} could contain rules (aa, b) and (b, aa) which would allow the rewrite

sequence

aa→ b→ aa→ b→ aa→ b→ aa→ · · ·

to go on forever. It could also be possible to rewrite one word in two different ways; for example,

a system over the alphabet {a, b, c} could contain rules (aa, b) and (aa, c).
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In order to solve the word problem for a semigroup, we require a rewriting system with

certain properties. We will describe these properties, and then explain how to produce a

rewriting system which satisfies them.

Definition 2.34. A string u ∈ X∗ is R-irreducible if there is no string v ∈ X∗ such that

u→ v; that is, u cannot be rewritten by any rule in R. [HEO05, Def 12.13]

Definition 2.35. A rewriting system is terminating if there is no infinite chain of words

u1, u2, . . . ∈ X∗ such that ui → ui+1 for all i > 0.

If a rewriting system is terminating, this is good news computationally. It means that any

word can be transformed by rules only a finite number of times before it reaches an irreducible

state, so the task of finding an irreducible form of a word is guaranteed to be achievable in

finite time. But note that we can still only talk about an irreducible word, not the irreducible

word. We could still have a word u ∈ X∗ and irreducible words v, w ∈ X∗ such that u
∗→ v and

u
∗→ w but v 6= w. To avoid this, we must ensure that the system is confluent, as follows.

Definition 2.36. A rewriting system is confluent if, for any words u, v1, v2 ∈ X∗ such that

u
∗→ v1 and u

∗→ v2, there exists a word w ∈ X∗ such that v1
∗→ w and v2

∗→ w.

The intuition behind this definition is that, as the name suggests, different paths “flow

together”. The result is that, in a confluent terminating rewriting system, rules can be applied

to a word in any order, and a canonical irreducible word will be found in a finite number of

steps.

Another definition will help us to determine whether a rewriting system is confluent: local

confluence. This is a weaker condition than confluence, but the two are strongly linked by

Lemma 2.38.

Definition 2.37. A rewriting system is locally confluent if, for any words u, v1, v2 ∈ X∗

such that u→ v1 and u→ v2, there exists a word w ∈ X∗ such that v1
∗→ w and v2

∗→ w.

Lemma 2.38 (Newman’s diamond lemma [HEO05, Lemma 12.15]). A terminating rewriting

system is confluent if and only if it is locally confluent.

Lemma 2.38 gives us an idea of how to check computationally whether a system is confluent:

rather than checking every possible transitive rewriting of a word (its neighbours under
∗→), it

suffices to check a word’s immediate children (its neighbours under →). This lemma will help

us later, with Theorem 2.41 and the Knuth–Bendix procedure.

We can now see an application of rewriting systems to the word problem in a finitely

presented monoid. Indeed, given an alphabet X and a rewriting system R, the quotient monoid

X∗/
∗↔R is described by the monoid presentation 〈X |R 〉. Hence, given a monoid M with a

presentation 〈X |R 〉, if there is a confluent terminating rewriting system R such that the word

equality relation =M is the same as the relation
∗↔R, then the word problem can be solved

simply by rewriting two words using R until their irreducible representatives are found, and

then comparing them. The only difficulty is in finding a rewriting system which is confluent

and terminating – but we can find one, by starting with the set of relations R, and then using

the Knuth–Bendix completion algorithm.

Let M be a monoid with finite presentation 〈X |R 〉. We start with no rules in our rewriting

system, R = ∅, and we begin to add relations from R. However, in order to ensure our system
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is terminating, we must reorder each relation to ensure we do not create any loops. For this

purpose, we define a total ordering ≤ on X∗ and reorder each relation so that a rule (u, v) has

the property that u > v. Our chosen ordering ≤ must be a reduction ordering, meaning that if

we have u ≤ v then we must also have wux ≤ wvx for all w, x ∈ X∗ [HEO05, §12.2]. For our

purposes, it will suffice to use the shortlex ordering : u < v if and only if u is shorter than v or

they have equal length and u is less than v lexicographically. Hence the first few words over

the alphabet {a, b} are

ε < a < b < aa < ab < ba < bb < aaa < aab < aba < · · ·

Note that this requires a well-understood total order on the alphabet X itself. Another possible

reduction ordering is wreath product ordering [Sim94, §2.1], which has a particular application

to polycyclic groups; however, this has no particular advantage when applied to semigroups, so

the simpler shortlex ordering is preferable.

The use of a reduction ordering justifies the use of the words “reducible” and “irreducible” –

words are always replaced with lesser words. We must ensure, at all points during the algorithm,

that every rule (u, v) ∈ R satisfies u > v.

Example 2.39 (Exercise 3.1 in [Sim94, §2.3]). Let X = {a, b}, and let R be a rewriting system

on X∗ given by

R =
{(
a5, ε

)
,
(
b5, ε

)
,
(
b4a4, (ab)4

)
,
(
(ba)4, a4b4

)}
.

We can apply any sequence of these rules to any word we wish. For example, we can rewrite

the word b5a6 using the last two rules as follows:

b5a6 = bbbbbaaaaaa→R bababababaa→R baaaaabbbba.

Hence b5a6 ∗→R ba5b4a. Alternatively we could rewrite it using the first two rules:

b5a6 →R εa6 = a5a→R εa = a.

Hence b5a6 ∗→R a. Using both these results together with transitivity, we have a
∗↔R ba5b4a.

Let us consider the shortlex ordering described above. The first two rules in R shorten a

word by 5 characters, and the last two rules replace a subword of length 8 beginning with b by

one beginning with a. Hence all four rules (u, v) have u > v with respect to shortlex ordering.

Hence R is a terminating rewriting system.

Once each relation from R is added – possibly reordered – to R, we will have a terminating

rewriting system such that X∗/
∗↔R = 〈X |R 〉, as required. It only remains to add rules to R

to make it confluent, without altering the relation
∗↔. This is where we use the Knuth–Bendix

completion process.

First described by Knuth and Bendix in [KB83], the completion process adds rules to R by

finding and resolving critical pairs. A critical pair is a pair of rules (u1, v1) and (u2, v2) from

R such that u1 and u2 overlap in a certain way. They are defined as follows, as in [HEO05,

Lemma 12.17].

Definition 2.40. Let R be a terminating rewriting system over an alphabet X∗. A critical

pair is a pair of rules (u1, v1) and (u2, v2) in R such that one of the following is true:
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(i) u1 = rs and u2 = st with r, s, t ∈ X∗ and s 6= ε;

(ii) u1 = ru2t for some r, t ∈ X∗ and u2 6= ε.

A critical pair results in a choice when applying rewriting rules, which leads to different

results depending on which rule is applied. A critical pair of type (i) allows us to rewrite rst

to either v1t or rv2, depending on which rule is applied; and a critical pair of type (ii) allows

us to rewrite u1 to either v1 or rv2t, depending on which rule is applied. In order for R to

be confluent, we have to ensure that whichever option is chosen, a word is still rewritten to a

fixed word later on. This notion is made precise in the following theorem, which is key to the

Knuth–Bendix completion process.

Theorem 2.41 ([HEO05, Lemma 12.17]). A terminating rewriting system R over X is con-

fluent if and only if, for each critical pair of rules (u1, v1) and (u2, v2), the following hold:

(i) if it is a critical pair of type (i), there exists some word w ∈ X∗ such that v1t
∗→R w and

rv2
∗→R w;

(ii) if it is a critical pair of type (ii), there exists some word w ∈ X∗ such that v1
∗→R w and

rv2t
∗→R w.

Now we have all the concepts required to describe the Knuth–Bendix completion process.

The process searches through rules in R looking for critical pairs; when a critical pair is found

which does not satisfy the condition stated in Theorem 2.41, an appropriate word w is chosen

and the rules required in Theorem 2.41 are added to R in order to ensure confluence.

Though, as mentioned in Section 1.12, the word problem for a semigroup presentation is

undecidable in general, we do have a result about the Knuth–Bendix process which ensures

completion in some cases.

Theorem 2.42. Let S be a semigroup with a finite presentation 〈X |R 〉, and let R be the

rewriting system produced from R by applying a shortlex ordering to all pairs, as described

above.

If S is finite, then the Knuth–Bendix process applied to R will eventually halt with a finite,

confluent and terminating set of rules.

Proof. Let u, v ∈ X∗. We know that u
∗↔R v if and only if u and v describe the same element

of S. In particular, if S is finite, then the
∗↔R relation will have finitely many classes – one

for each element of S. Finally, [HEO05, Corollary 12.21] tells us that if the Knuth–Bendix

algorithm is run on any rewriting system R such that
∗↔R has only finitely many classes, it will

halt with a finite, confluent and terminating set of rules. This applies to our rewriting system

R, and so we have the result we need.

Let us consider an example of each of the two types of critical pair in Definition 2.40.

Example 2.43. Let X = {a, b, c}, and let R be a rewriting system on X, containing two rules

(ab, c) and (bb, a). Here the word abb could be rewritten by either rule: abb = (ab)b → cb, but

also abb = a(bb)→ aa. Hence (cb, aa) is a critical pair of type (i).

If there exists some w ∈ X∗ such that cb
∗→ w and aa

∗→ w, then confluence is not violated;

otherwise, we must add a new rule to R to make sure confluence holds. The Knuth–Bendix

process adds the rule (cb, aa), since aa < cb in our shortlex order. Now Theorem 2.41 is satisfied.
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Example 2.44. Let X = {a, b, c} and let R be a rewriting system on X with rules (abc, c) and

(b, a). The word abc can now be written by either rule, abc → c or abc → aac. Hence (c, aac)

is a critical pair of type (ii).

Again, if there are other rules allowing both words to be rewritten to a word w ∈ X∗, then

no rules need to be added; if however there are no such rules, we must add (aac, c) to ensure

the theorem is satisfied, and confluence can be guaranteed.

The Knuth–Bendix completion process consists of searching for these critical pairs and

adding rules where necessary. For a more detailed description of precisely how these tasks are

done, see [Sim94, §2.6].

A large part of the computational work involved in the Knuth–Bendix process consists of

rewriting words using rules from R. If the rewriting system is confluent and terminating,

then the rules can be applied in any order and an irreducible word will eventually be reached.

However, the order in which the rules are applied can have a great effect on the overall runtime

of the algorithm. In Algorithm 2.45 we present one possible strategy, known as rewriting from

the left, which is based on the REWRITE_FROM_LEFT procedure described in [Sim94, §2.4],

where the issues of termination and correctness are addressed formally. The algorithm takes

two arguments – a word u and a confluent terminating rewriting system R – and returns the

irreducible word produced from u by applying rules in R.

The Rewrite algorithm starts with the original word u, and an empty word v. We enter

a loop that constitutes the rest of the algorithm. On each iteration, we start by removing the

first character from u and putting it onto the end of v (lines 4–6). Next we go through each

rule p → q in R (line 7) and attempt to apply it to a suffix of v – that is, we check whether

v ends in p (line 8). If we find a rule p → q such that v does end in p, then we remove the

occurrence of p from the end of v (line 9) and we add the rewritten version q to the beginning

of u (line 10) for further processing in a later iteration of the repeat-loop. After finding just

one of these rules to apply, we stop going through rules (line 11) and if appropriate, go back

to the beginning of the while-loop (line 4). When the whole word has been processed and u is

therefore empty (which will happen in finite time so long as R is terminating and confluent) we

return v, which is the irreducible result of u after a series of rules from R have been applied.

Algorithm 2.45 The Rewrite algorithm

1: procedure Rewrite(u,R)
2: v := ε
3: while u 6= ε do
4: Let u1 be the first character of u
5: v ← vu1

6: Remove the first character of u
7: for (p, q) ∈ R do
8: if v = rp for some r ∈ X∗ then
9: v ← r

10: u← qu
11: break
12: . vu has been rewritten using a rule of R

13: . vu is
∗↔R-related to the original u

14: return v

It should be noted that, like the Todd–Coxeter procedure, there are many inputs for which

82



the Knuth–Bendix algorithm will not terminate. More rules may be added continually, which

themselves need to be checked for critical pairs, without a complete set ever being found. It may

also be that a confluent terminating rewriting system will eventually be found, but not for a

very long time – and it may not be known in advance whether the process is going to terminate.

However, this process has one clear advantage over the Todd–Coxeter algorithm, which is that

it might complete even when the monoid 〈X |R 〉 is infinite, so long as the set of rules in the

rewriting system is finite (see Example 2.46). This is a strong argument in favour of trying

the Knuth–Bendix process along with other methods. The Knuth–Bendix process as currently

implemented cannot be used for left or right congruences, an area where the Todd–Coxeter

algorithm has a clear advantage (but again, see Section 2.9.4).

We give an example of a rewriting system which solves the word problem for an infinite

monoid:

Example 2.46. The bicyclic monoid B = 〈 b, c | bc = ε 〉 trivially admits a rewriting system

{(bc, ε)}. Using this, any element can be rewritten in a finite number of steps to an irreducible

word of the form cibj . There is only one rule in the rewriting system. Since it reduces words

by the short-lex ordering, the system is terminating; and since there are no critical pairs, the

system is confluent by Theorem 2.41.

Computing program outputs

We have shown how the inputs X, R and W can be used as inputs to the Knuth–Bendix

algorithm in order to produce a rewriting system. However, we have not explicitly stated how

this can be used to produce the information we require about the congruence in question, in the

sense of the four program outputs in Section 2.4. We will now consider each of these outputs

in turn, and explain how the rewriting system R can be used to produce them. Let X, R and

W be as described earlier, let S be the semigroup in question, and let ρ be the congruence we

are computing.

For (i) we require an algorithm to determine whether a given pair (x, y) is in ρ. This is the

simplest of the four: we take two words wx and wy over the alphabet X, which represent x and

y respectively, and we rewrite them both using R. The pair (x, y) is in the congruence if and

only if the two words rewrite to the same word.

For (ii) we require the number of classes the congruence has. As just mentioned, an element’s

class is defined by the word produced by rewriting it with R; hence, the number of classes is

equal to the number of different words to which words can be rewritten. If S is finite, this

number can be found by taking a word that represents each element of S, rewriting it with R,

and calculating the number of distinct words computed. However, if S is infinite, we do not

have such a method available, and we cannot return a number in this case. Note that there

could still be a finite number of classes, in which case the Todd–Coxeter algorithm could return

an answer (see “Computing program outputs” in Section 2.6.2).

For (iii) we require an algorithm ClassNo that takes an element x and returns the index

of the congruence class to which it belongs. That is, it should return a positive integer for any

element, and it should have the same output for elements x and y if and only if (x, y) ∈ ρ.

In libsemigroups we take an approach which creates indices for classes as calls are made to the

algorithm. We start with an empty list L. When ClassNo(x) is called, the algorithm takes
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a word representing x, and rewrites it to some word w using the rewriting system R. If w is

in L, then the algorithm returns its position in the list; if not, then the algorithm adds it to

the end of L, and returns its new position. This gives ClassNo the required behaviour, but it

is important to note that the outputs depend on the order in which past calls were made. In

two different program sessions, in which calls were made in a different order, different numbers

would be returned. In this sense, ClassNo is not canonical.

Finally, for (iv), we wish for a list of the elements in each non-trivial congruence class. If

S is finite and we have a list of its elements, we can use (iii) and apply ClassNo to each

element, to find out which elements lie in which class. However, if S is infinite, no such method

is available, and we would have to rely on the pair orbit algorithm to produce the answer.

Note that outputs (ii) and (iv) require a list of the elements of S, which might not be

immediately available at the end of the Knuth–Bendix algorithm. If we have a concrete repre-

sentation for S, then we do have a list of all the elements of S. However, if we only have a finite

presentation for S, then we would need to run another algorithm such as the Todd–Coxeter

algorithm on 〈X |R 〉 in order to find a list of its elements.

2.7 Running in parallel

Now that we have described the various individual algorithms for computing with congruences,

we can describe the overall parallel method which ties all these algorithms together.

The basic principle is not complicated: run all the described algorithms simultaneously, and

whenever one of the algorithms finds an answer, kill all the other algorithms and return the

answer that was given. However, the precise details depend on whether we have a concrete

representation or a finite presentation, as well as whether we are considering a left, right or

two-sided congruence. Table 2.47 shows which algorithms are run in which cases. A tick (3)

denotes that the algorithm is used, a cross (8) denotes that it cannot be used, and a tilde (∼)

denotes that the algorithm could be applied in principle, but is so rarely the fastest option that

in practice it is not worth including.

Type Side TC TC (pre-fill) P KB

Concrete
Two-sided 3 3 ∼ ∼
Left/right 3 3 ∼ 8

FP
Two-sided 3 8 3 3

Left/right 3 8 3 8

Table 2.47: The algorithms that are used in various cases.

The positions in the table marked with a tilde are chosen based on extensive benchmarking

tests with libsemigroups, which can be seen in detail in Section 2.8. It is true that in certain ex-

amples these algorithms will complete faster than the others; however, so few of these examples

have been encountered that it seems more desirable to eliminate the setup cost and overheads

for these algorithms by omitting them entirely, since in the vast majority of cases this will speed

things up.

It should be noted that any one of these algorithms might be able to return an answer before

its respective data structure has been completely evaluated. For instance, if we are running the
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Todd–Coxeter algorithm in order to decide whether two words u and v are congruent, we can

at any time check whether (1, u)τ̄ = (1, v)τ̄ : if this equality holds, then the two words lie in the

same congruence class, and since a class is never split in two by the Todd–Coxeter algorithm,

an answer of “true” can be returned immediately, without any need to run the algorithm until

a complete table is found. If, on the other hand, (1, u)τ̄ 6= (1, v)τ̄ , then we cannot return an

answer: it might be that the words genuinely lie in different congruence classes, or it might be

that a coincidence between their rows will be found in the future. An answer of “false” can

therefore not be returned until the Todd–Coxeter algorithm is run to completion.

A similar condition is true for both the Knuth–Bendix algorithm and pair orbit enumeration.

Imagine we have a rewriting system R halfway through a run of the Knuth–Bendix algorithm;

if two words u and v rewrite to the same word under R, then we can return “true” immediately,

but if they do not, then it might be that the Knuth–Bendix algorithm will add rules to R later

which will cause u and v to rewrite to the same word. Pair orbit enumeration has this condition

even more obviously: more and more pairs are found, and the pair we are looking for can turn

up at any time.

In an implementation of this parallel method, it is therefore prudent to have a periodic

check to see whether a desired pair is present, and return immediately if it is. This check could

be done by each individual algorithm every few hundred operations, or on a timer every few

milliseconds. In this way, operations can quickly return desired results, even if it would take

them a very long time (or even an infinite length of time) to run to completion.

When an algorithm is terminated early after having returned an answer, the data structures

involved and the work done so far could be thrown away. However, it may make sense to keep

all the data structures as they are, preserving the algorithm in a suspended state. This way, if

another piece of information is required later in the running of a program, and the answer is not

already known, the algorithm can simply be resumed. The only alteration to the algorithm on

resuming should be a periodic check for a different piece of information. This is the approach

that is taken in libsemigroups.

2.8 Benchmarking

The approach described in this chapter was implemented in the C++ programming language in

libsemigroups [MT+18], and this allows us to run benchmarking tests to analyse the performance

of the different algorithms, compared to each other and compared to existing programs. In this

section we provide some examples of such tests.

2.8.1 Examples

Firstly, it will be helpful to examine a few examples of problems which can be solved by the

different algorithms, and to compare the types of problems in which each algorithm is most

effective. These examples were implemented in the benchmarking section of libsemigroups, and

their performance was tested with various algorithms.

Example 2.48. Consider PB2, the full PBR monoid of degree 2 – this is a special type of

diagram monoid based on directed graphs, and is explained in detail in [EENFM15, §2.1]. It

has 65536 elements and is therefore large enough to require significant processing time when
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considering its congruences. We take a set of pairs which we know will generate a two-sided

congruence equal to the universal congruence, and we ask libsemigroups for the number of

congruence classes, using the simple Todd–Coxeter algorithm in one case and the pre-filled

Todd–Coxeter algorithm in the other.

On average, the simple Todd–Coxeter algorithm returns an answer in 724 milliseconds, while

the pre-filled version requires an average of 3057 milliseconds, more than 4 times as long. This

difference can be explained by the structure of the table at completion: a single row representing

the one congruence class. In the pre-fill case, a coset table must be constructed with 65536

rows, only to have all but one row deleted. In the simple case, the number of rows may stay

very small throughout the procedure, drastically reducing the amount of work which needs to

be done.

Example 2.49. The virtue of the pre-filled Todd–Coxeter algorithm is shown by a different

congruence on PB2. A much smaller set of generating pairs gives rise to a two-sided congruence

ρ with 19009 congruence classes, in contrast to the universal congruence which has only one.

On average, the simple Todd–Coxeter algorithm returns in around 128 seconds, while the pre-

filled version completes in under 12 seconds, a tenfold increase in speed. This disparity can be

explained by the large number of rows which must be in the table on completion: the simple

algorithm has to compute a large amount of information from relations, and add rows one

by one, while the pre-filled algorithm begins the process with much of the table’s information

already known, and only has to combine rows which coincide.

The two examples above show the difference in speed between two algorithms. We now

consider an example where certain algorithms will never terminate, but others complete quickly.

This is an even greater justification for the parallel use of a variety of algorithms.

Example 2.50. Consider the semigroup S defined by the semigroup presentation〈
a, b
∣∣ a3 = a, ab = ba

〉
.

We define ρ to be the two-sided congruence on S generated by the single pair (a, a2). Since

each word of the form bi represents a different element of S, and a different class of ρ, we

can conclude that S is infinite and ρ has an infinite number of congruence classes. A test

asks whether (ab20, a2b20) is a pair in ρ. The Todd–Coxeter methods would never complete,

since they require a separate row for each congruence class and therefore an infinite amount

of memory. However, the Knuth–Bendix method is able to answer the question very quickly,

since it is not restricted to finite objects.

Taken together, these examples give a justification for the use of several different algorithms

to solve one question. Since it may be unknown in advance which algorithms may perform well

or which may return at all, it is useful to be able to execute all at once and return in whichever

run-time is quickest.

2.8.2 Comparison on random examples

In order to analyse performance, a large number of example congruences were generated ran-

domly, and tested using each different algorithm described in this chapter, along with the default
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implementation in GAP [GAP18]. All these tests were conducted using an Intel Core i7-4770S

CPU running at 3.10GHz with 16GB of memory.

Figure 2.51 shows the results of a set of 250 tests on transformation semigroups. In each

test, 4 transformations of degree 7 were chosen at random, and used to generate a semigroup

S (any semigroup of size over 25000 was rejected). The elements of S were computed, and a

pair of elements was chosen at random to generate a two-sided congruence ρ. Three more pairs

were chosen at random, and each of the different algorithms described in this chapter was used

to determine whether each pair was contained in ρ.

For greater variety, similar tests were also conducted using 3 generating pairs for ρ, and

using a mixture of 1 to 10 generating pairs, as shown in 2.52 and 2.53. The time taken to

return an answer was recorded in each case, and these figures were compared to one another.

The algorithms used were:

• the Todd–Coxeter algorithm (tc),

• the Todd–Coxeter algorithm with pre-filled table (tc prefill),

• the Knuth–Bendix algorithm (kb),

• pair orbit enumeration (p),

• the parallel method described in this chapter (default),

• and the method implemented in the library of GAP (GAP).

As can be seen in Figure 2.51, the pre-filled Todd–Coxeter method is the most likely to

complete fastest, with the standard Todd–Coxeter algorithm winning in a sizeable minority of

cases. This backs up the observations that group theorists have made that the Todd–Coxeter

algorithm tends to perform faster than the Knuth–Bendix algorithm [HHKR99]. We may also

observe that pair orbit enumeration sometimes completes almost instantly, which makes some

sense when we consider how little work the algorithm does when there are very few non-reflexive

pairs in the congruence. The Knuth–Bendix procedure lags behind badly on these examples,

taking even longer than the built-in methods in GAP. These results are a justification for the

decision to run only the Todd–Coxeter algorithms in the case of a concrete representation.

Figures 2.52 and 2.53 show that with a higher number of generating pairs, the pair orbit

enumeration algorithm suffers badly – this can be understood, since it generally has to enumer-

ate more pairs when the generating set is larger. However, with more generating pairs tc tends

to perform relatively better, since there are likely to be fewer congruence classes and therefore

fewer rows in the coset table.

This tendency is illustrated further in Figures 2.54 and 2.55, which show larger tests, each

using 5 generators of degree 8, and of size up to 100,000. In these figures we compare the

standard Todd–Coxeter algorithm with the pre-filled version, arranged according to whether

the congruence in question has many or few classes relative to its size. The x axis in these

figures is

(Number of congruence classes− 1)/(Size of S − 1),

a scale from 0 to 1, where 0 represents a universal congruence and 1 represents a trivial congru-

ence. Since the size of S is a major factor in how long any algorithm takes to run, only the ratio
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Figure 2.51: Performance of the algorithms on 250 transformation semigroups, with one gener-
ating pair.

Figure 2.52: Performance of the algorithms on 250 transformation semigroups, with three
generating pairs.
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Figure 2.53: Performance of the algorithms on 250 transformation semigroups, with a variable
number of generating pairs.
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Figure 2.54: Comparison between the two Todd–Coxeter methods, for transformation semi-
groups with one generating pair.
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of tc to tc prefill is shown: a black line is drawn on the graphs to indicate the length of time

taken by tc prefill, and a data point is then plotted for each test, showing how many times

as long tc took to complete. As can be seen, tc often wins when there are relatively few large

classes, and tc prefill is much more likely to win when there are many small classes. This

reinforces the idea given in Examples 2.48 and 2.49, that the winning algorithm may depend

on number of classes, and it is therefore not clear in advance which algorithm may be better.

This distinction between the performance of tc and tc prefill is echoed in an example for

right congruences, as shown in Figure 2.56. Interestingly, it appears that for right congruences

tc prefill is even more likely to be effective, perhaps because in ToddCoxeterRight so

little time is spent applying relations from W , so the work is almost finished by the time the

table has been pre-filled.

Figures 2.57 and 2.58 show data from the same tests, plotted not by the size of the semigroup,

but simply in order of the ratio between GAP’s runtime and that of the default method in

libsemigroups. As can be seen, the libsemigroups methods run much faster than the GAP methods

in almost all cases, with the GAP methods taking as much as 7000 times as long for one

generating pair. Out of the 500 tests shown in total in these two figures, GAP never performed

better than libsemigroups.

Further tests were carried out in a similar way, but using finite presentations instead of con-

crete representations. The main difference between these tests and the ones described previously

is that for each transformation semigroup S that was generated, a finite presentation 〈X |R 〉
was found for S, and that presentation was used in tests instead of the concrete representation.

This is intended to test which algorithms are effective when the elements of the semigroup are

not known in advance. In order to produce a further comparison, the tests for finitely presented

semigroups were also run with the kbmag package for GAP [Hol19]. The results are shown on

the graphs with the name kbmag.

As can be seen in Figures 2.62 to 2.64, the performance of the GAP library over finite

presentations is far worse than it was for concrete representations, taking as much as 300,000

times as long as libsemigroups to complete. Due to the excessive times GAP took to complete

some tests, the size of semigroups was restricted to 1000. In these tests, unlike for concrete

representations, the Knuth–Bendix algorithm tended to outperform GAP, but in general the

Todd–Coxeter methods were still faster. It should be noted, however, that these were all

congruences that were guaranteed in advance to have a finite number of classes. An arbitrary

congruence on a finitely presented semigroup may have an infinite number of classes, and there

are many examples in which the Knuth–Bendix algorithm can return an answer but the Todd–

Coxeter algorithm cannot (see Example 2.50).

kbmag generally performed worse in tests than the Todd–Coxeter algorithm, but was com-

parable to our implementation of the Knuth–Bendix algorithm. It generally took around 10

times as long as the complete parallel method (default on the graphs).

2.9 Future work

The parallel approach described in this chapter is quite open-ended, and could be extended or

improved in several ways. We will now discuss some areas which could bear investigation, given

more time to spend on the project.
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Figure 2.55: Comparison between the two Todd–Coxeter methods, for transformation semi-
groups with a variable number of generating pairs.
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Figure 2.56: Comparison between the two Todd–Coxeter methods, for right congruences over
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Figure 2.57: Comparison between libsemigroups and the GAP library, for transformation semi-
groups with one generating pair.
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Figure 2.58: Comparison between libsemigroups and the GAP library, for transformation semi-
groups with a variable number of generating pairs.
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Figure 2.59: Performance of the algorithms on 250 finitely presented semigroups with one
generating pair.
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Figure 2.60: Performance of the algorithms on 250 finitely presented semigroups with three
generating pairs.
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Figure 2.61: Performance of the algorithms on 250 finitely presented semigroups with a variable
number of generating pairs.
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Figure 2.62: Comparison between libsemigroups and the GAP library, for finitely presented
semigroups and one generating pair.
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Figure 2.63: Comparison between libsemigroups and the GAP library, for finitely presented
semigroups and three generating pairs.
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Figure 2.64: Comparison between libsemigroups and the GAP library, for finitely presented
semigroups and a variable number of generating pairs.
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2.9.1 Pre-filling the Todd–Coxeter algorithm with a left Cayley graph

The pre-filled Todd–Coxeter algorithm, as described in Section 2.6.2, works by starting the

procedure with a right Cayley graph for S. In libsemigroups and in the Semigroups package for

GAP, a right Cayley graph for a semigroup is found using the Froidure–Pin method, which also

returns the corresponding left Cayley graph. Hence, we may also wish to find a way to use the

left Cayley graph in the pre-filling process.

As mentioned in Section 2.6.2, it is possible to use the Todd–Coxeter algorithm with a

reversed multiplication, essentially studying a semigroup anti-isomorphic to S. It would be

possible to apply the same principle, reverse the multiplication of elements in S, and thus use

the left Cayley graph instead of the right Cayley graph in pre-filling. This could be run as an

additional thread in the parallel procedure.

In many cases, using the left Cayley graph might be very similar in terms of performance

to using the right. However, some semigroups have left and right Cayley graphs which are

very different. Consider, for example, the right zero semigroup RZn, which has n generators,

n elements, and the multiplication xy = y for any x, y ∈ RZn. Its right Cayley graph is the

complete digraph, where any element can be mapped to any other element using the appropriate

generator. Its left Cayley graph is totally disconnected, with each vertex v in a single trivial

connected component with n edges taking v to v. With such different left and right Cayley

graphs, it seems likely that one piece of information would be much more helpful than the other

in calculating congruences on the semigroup.

2.9.2 Interaction between the Knuth–Bendix and Todd–Coxeter al-

gorithms

The Knuth–Bendix and Todd–Coxeter algorithms, as described in this chapter, do not interact

with each other in any way. The Knuth–Bendix process runs in one thread, and the Todd–

Coxeter process runs in another. However, information from one could perhaps be shared with

the other.

The main objective of the Knuth–Bendix algorithm is the addition of new rewriting rules

to a rewriting system R to satisfy the condition of confluence: if a critical pair is found, and

a new rule u → v is added to R, then this gives us a pair of words (u, v) which represents a

pair of congruent elements in the congruence we are studying. If a Todd–Coxeter procedure is

running in parallel, it would be possible to send the pair of words (u, v) to the Todd–Coxeter

thread, which at its next convenience would run Coinc
(
Trace(1, u), Trace(1, v)

)
to identify

the two corresponding rows in the table.

Conversely, the Todd–Coxeter algorithm may find information which could be used by the

Knuth–Bendix algorithm. Firstly, it is trivial to record, for each row i of the table, the word

wi which was first used to describe it: row 1 is identified with the empty word (w1 := ε), and

if a row is created using Add(i, x) then it is assigned the word wix. For each row i, we now

have Trace(1, wi) = i; that is, each row has a word which can act as a representative for its

congruence class. If, in a normal run of the Todd–Coxeter algorithm, it is found that two rows

i and j represent the same class and must be combined, then this immediately gives a pair of

words (wi, wj) which represent the same congruence class. This pair of words can be sent to

a parallel instance of the Knuth–Bendix algorithm, which can add it as a rule wi → wj (or
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wj → wi, as dictated by the chosen ordering).

It may be that this sharing of knowledge between the two algorithms would greatly increase

the speed of certain calculations; or it may be that the time and space overhead required in the

implementation of these ideas would be so great that the algorithms would not speed up at all.

Experiments with this idea might show it to be useful, or might suggest that it is not worth

pursuing.

2.9.3 Using concrete elements in the Todd–Coxeter algorithm

The Todd–Coxeter procedure uses a finite presentation 〈X |R 〉 and a set of extra pairs W in

order to calculate information about a congruence over a semigroup S. If S has a concrete

representation, then 〈X |R 〉 and W must be calculated before the beginning of the Todd–

Coxeter algorithm, so that the procedure can use them as parameters. However, once this

information has been calculated, no other information about S is used for the rest of the

algorithm, which only deals with words, abstract generators and relations.

It may prove helpful to use the concrete representation from S in the the Todd–Coxeter

algorithm procedure, if one is available. For instance, when Add(i, x) for some row i and

generator x, it would be possible to find an element corresponding to row i, find the element

corresponding to the generator x, multiply the two, and see whether a row already exists which

represents that element. In this way, we can avoid the unnecessary creation of new rows which

would only be deleted by Coinc later.

The pre-filling of Todd–Coxeter tables is one use of the concrete elements that we have

already described and implemented, but they may be many more which would be effective.

2.9.4 Left and right congruences with the Knuth–Bendix algorithm

The parallel method in this chapter, and its implementation in libsemigroups, include support for

left congruences and right congruences, as well as the more important two-sided congruences.

Currently, the Todd–Coxeter and pair enumeration algorithms are the only methods which

support left and right congruences, while the Knuth–Bendix algorithm is only applied in the

two-sided case. However, there does exist a version of the Knuth–Bendix algorithm which

applies to left and right congruences, and it could be considered a useful addition to the parallel

algorithm described in this chapter.

The algorithm for right congruences is described in [Sim94, §2.8], and is summarised as

follows. Given parameters X, R, and W , as described in Section 2.3, we wish to find the right

congruence ρ defined by W on the semigroup S presented by 〈X |R 〉. Our goal is to find a

rewriting system R which rewrites two words u and v to the same word if and only if they

represent elements of S which are in the same ρ-class. We define a new symbol, ‘#’, which we

will use as an additional generator in the new alphabet Y = X ∪ {#}. We then consider the

pairs in W , and produce the set

#W = {(#u,#v) : (u, v) ∈W}.

Now, we apply the Knuth–Bendix completion procedure to the presentation 〈Y |R,#W 〉 in

the same way as described in Section 2.6.3. The algorithm produces a rewriting system R.
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Next we consider the subset #X+ ⊆ Y + defined by

#X+ = {#w : w ∈ X+}.

It is shown in [Sim94, §2.8] that #X+ is a union of
∗↔R-classes, and that the

∗↔R-classes

contained in #X+ are in one-to-one correspondence with the ρ-classes of X+. That is, given a

pair of words (u, v) ∈ X+, the elements [u] and [v] in S lie in the same ρ-class if and only if the

words #u and #v are rewritten to the same word by R. A symmetric approach would work for

left congruences, with the # symbols being added to the ends of words instead of to the start.

This additional method could be included in the parallel algorithm, and in libsemigroups,

without too much extra work. It may be that it would perform well, returning faster than the

Todd–Coxeter algorithm on some examples – but it would need to be benchmarked in a manner

similar to Section 2.8 in order to establish whether it were worth running in either the concrete

case or the finite presentation case. Once this were decided, we would be able to remove the

two cross (8) symbols in the ‘KB’ column of Table 2.47, and change each one to either a tick

(3) or a tilde (∼).
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Chapter 3

Converting between

representations

A congruence is a binary relation, and therefore is formally described as a set of pairs – a subset

of S × S. In both computational and mathematical settings, it is worth thinking about how a

congruence could be stored.

One approach to storing a congruence ρ on a semigroup S is simply to store every one of

its pairs. In principle, it is possible to store ρ in this way if and only if S is finite. However,

this could well use a lot of storage – even the trivial congruence would use O(|S|) space, and

in general a congruence could even use O(|S|2) space.

In Chapter 2 we looked in detail at how a congruence can be represented by a set of

generating pairs. As we found there, a congruence can be described by a subset R ⊆ ρ, which

in many cases can be very small. This is one very generic way of representing congruences, in

two senses: firstly that it can be used for any finite semigroup; and secondly that it can be used

for left and right congruences.

However, there are other ways to view congruences in certain circumstances: some semi-

groups have properties such as being an inverse semigroup or being a group, which allow ad-

ditional things to be said about their congruences; and some specific congruences have special

properties, such as being Rees, which allows them to be represented in a certain way. In this

chapter, we will describe some important ways of representing congruences, and then consider

ways of converting one to another. Section numbers for the different representations and the

ways they can be converted to one another are summarised in Table 3.1.

3.1 Ways of representing a congruence

We will begin by describing several different ways of representing a congruence. These repre-

sentations all exist in some form in GAP [GAP18] or the Semigroups package [M+19].

3.1.1 Generating pairs

Recall that a congruence ρ on a semigroup S can be stored using a subset of the pairs in ρ. If R

is a subset of S×S, then we can say that R generates a congruence. The congruence generated
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Generating pairs 3.1.1 3.2.7 3.2.3 3.2.5 3.3.2

Normal subgroup (groups) 3.1.2 3.2.7 3.2.1 3.2.7 3.2.7

Linked triple ((0-)simple) 3.1.3 3.2.4 3.2.1 3.2.7 3.2.7

Kernel–trace (inverse) 3.1.4 3.3.1 3.2.7 3.2.7 3.2.6

Rees congruence 3.1.5 3.2.2 3.2.7 3.2.7 3.2.6

Table 3.1: Section references to algorithms for converting between different congruence repre-
sentations. Grey references represent open problems.

by R is defined as the least congruence on S containing all the pairs in R; equivalently, it is

defined as the intersection of all congruences on S containing all the pairs in R. It is denoted by

R] (see Theorem 1.39). We have similarly defined the left congruence generated by R (denoted

by R/) and the right congruence generated by R (denoted by R.). A full explanation of how

generating pairs can be used to represent congruences is given in Section 1.6, and an approach

for computing properties of congruences using their generating pairs is given in Chapter 2.

Given a set of pairs R, we may wish to produce the congruence R] and represent it using

one of the other methods described in this chapter. It is of course possible to calculate the

set of all pairs in R] and convert that to the other representation; however, in order to find

other representations with as little work as possible, it is desirable to use the pairs in R directly,

calculating as few extra pairs as possible – see, for example, Sections 3.2.3 and 3.2.5. Conversely,

if we wish to convert another representation for a congruence ρ to a set of generating pairs, it is

desirable to find as small a set of pairs as possible – see, for example, Sections 3.2.2 and 3.2.4.

When converting between generating pairs and other representations, these will be the goals.

3.1.2 Groups: normal subgroups

In group theory, it is unusual to encounter discussion of congruences. This is because a group’s

congruences are closely related to another structure – its normal subgroups – and any questions

we could ask about a group’s congruences are easily described using normal subgroups instead.

Recall that a subgroup N of a group G is normal if and only if g−1ng ∈ N for all g ∈ G and

n ∈ N ; recall also that a coset of N is the set Ng or gN for some g ∈ G, and that Ng = gN

if N is normal. The following theorem shows how a group’s normal subgroups are in bijective

correspondence with its congruences.

Theorem 3.2. Let G be a group. If ρ is a congruence on G, then the ρ-class containing the

identity is a normal subgroup of G. Conversely, if N is a normal subgroup of G, then its cosets

are the classes of a congruence on G.

Proof. First, let ρ be a congruence on G, and let I be the ρ-class containing the identity 1.

First we show that I is a subgroup: if a, b ∈ I then ab ρ 11 = 1, so ab ∈ I. Furthermore, we

have (a, 1) ∈ ρ, so (aa−1, 1a−1) = (1, a−1) ∈ ρ, so a−1 ∈ I, and so I is a subgroup. To show

I is normal, let g ∈ G and i ∈ I. Observe that g−1ig ρ g−11g = g−1g = 1, so g−1ig ∈ I, as

required.
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To show the converse, let N be a normal subgroup of G, and let ν be the equivalence on

G whose classes are the cosets of N . If (x, y), (s, t) ∈ ν, then Nx = Ny and sN = tN . Hence

Nxs = Nys = ysN = ytN = Nyt, so we have (xs, yt) ∈ ν, meaning that ν is a congruence as

required.

This theorem means that any information which can be taken from a congruence can instead

be taken from a normal subgroup, and so congruences on a group need never be studied directly.

We even have the fortunate property that the containment of normal subgroups follows the

containment of the corresponding congruences.

It is possible to calculate the normal subgroups of a finite group relatively quickly, using

a variety of well-known algorithms. One method for finding the normal subgroups of a finite

group is given in [Hul98]; this is the method used in the most general case by GAP [GAP18],

though more specific methods are used for certain specific categories of group. In the case of

an infinite group, it may be impossible to find all normal subgroups – indeed, this problem

is undecidable in general [Mil92, Theorem 3.17] – but the LowIndexSubgroups algorithm

[HEO05, §5.4] may be used to find all normal subgroups up to a given index, given a small

modification to exclude subgroups which are not normal [HEO05, §5.5].

The other structures discussed in this section represent congruences on other categories of

semigroup in a similar way.

3.1.3 Completely (0-)simple semigroups: linked triples

There is a special way of describing a congruence on a completely simple or completely 0-simple

semigroup: using a linked triple. We will start by explaining the terms completely simple and

completely 0-simple, then we will define a semigroup’s linked triples and explain how they are

related to its congruences.

Definition 3.3. A semigroup S is:

• simple if its only ideal is S;

• 0-simple if it contains a zero, and has precisely two ideals.

Simple and 0-simple semigroups are closely related. Note that if S is a simple semigroup,

then S0, the semigroup created by appending a zero element to S, is 0-simple. A 0-simple

semigroup’s ideals are {0} and S. Note also that the trivial semigroup is simple but not 0-

simple.

Next, we consider a slightly stronger condition, after a preliminary definition relating to

idempotents.

Definition 3.4. An idempotent p ∈ S is primitive if it is non-zero and there is no other

non-zero idempotent i ∈ S such that ip = pi = i.

Definition 3.5. A semigroup is:

• completely simple if it is simple and contains a primitive idempotent;

• completely 0-simple if it is 0-simple and contains a primitive idempotent.
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Definitions 3.3 and 3.5 are equivalent for finite semigroups – that is to say, a finite semigroup

is completely simple if and only if it is simple, and it is completely 0-simple if and only if

it is 0-simple. Some of the conversions described in this chapter will be applicable only to

finite semigroups, and in those circumstances we will refer to finite simple or finite 0-simple

semigroups, knowing that these are completely simple or completely 0-simple, respectively.

Note that a finite semigroup is simple if and only if it is J -trivial.

Completely simple and completely 0-simple semigroups have a strong and useful isomor-

phism property, which allows us to say a great deal about their structure and, in particular,

their congruences. We will consider first the more complicated case, that of completely 0-simple

semigroups, and then at the end of this section we will explain how this theory can be adapted

for the much less complicated case, that of completely simple semigroups.

Definition 3.6 ([How95, §3.2]). A Rees 0-matrix semigroup M0[T ; I,Λ;P ] is the set

(I × T × Λ) ∪ {0}

with multiplication given by

(i, a, λ) · (j, b, µ) =

{
(i, apλjb, µ) if pλj 6= 0,

0 otherwise,

for (i, a, λ), (j, b, µ) ∈ I × T × Λ, and 0x = x0 = 0 for all x ∈M0[T ; I,Λ;P ], where

• T is a semigroup,

• I and Λ are non-empty index sets,

• P is a |Λ| × |I| matrix with entries (pλi)λ∈Λ,i∈I taken from T 0,

• 0 is an element not in I × T × Λ.

We will require a certain property of the matrix P , which we should define first: we call a

matrix regular if it contains at least one non-zero entry in each row and each column.

The following theorem shows how we can use Rees 0-matrix semigroups to classify completely

0-simple semigroups.

Theorem 3.7 (Rees). Every completely 0-simple semigroup is isomorphic to a Rees 0-matrix

semigroup M0[G; I,Λ;P ], where G is a group and P is regular. Conversely, every such Rees

0-matrix semigroup is completely 0-simple.

Proof. Theorem 3.2.3 in [How95].

Now we can replace any completely 0-simple semigroup with its isomorphic Rees 0-matrix

semigroup when we wish to perform any isomorphism-invariant calculations – hence we can

restrict our further investigations just to this type of semigroup. Note that methods exist in

the Semigroups package for performing this replacement: in a session, we can decide whether

a finite semigroup S is completely 0-simple using IsZeroSimpleSemigroup, and if the result is

positive we can use IsomorphismReesZeroMatrixSemigroup to obtain a Rees 0-matrix semi-

group isomorphic to S, as well as a map between the elements of the two semigroups [M+19].
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If M0[G; I,Λ;P ] is finite, then G, I, Λ and P must all be finite, so all the components of the

semigroup that we work with will also be finite.

Next we consider the congruences of a finite 0-simple semigroup.

Definition 3.8 ([How95, §3.5]). Let S be a finite Rees 0-matrix semigroupM0[G; I,Λ;P ] over

the group G with regular matrix P . A linked triple on S is a triple

(N,S, T )

consisting of a normal subgroup N E G, an equivalence relation S on I and an equivalence

relation T on Λ, such that the following are satisfied:

(i) S ⊆ εI , where εI = {(i, j) ∈ I × I | ∀λ ∈ Λ : pλi = 0 ⇐⇒ pλj = 0},

(ii) T ⊆ εΛ, where εΛ = {(λ, µ) ∈ Λ× Λ | ∀i ∈ I : pλi = 0 ⇐⇒ pµi = 0},

(iii) For all i, j ∈ I and λ, µ ∈ Λ such that pλi, pλj , pµi, pµj 6= 0 and either (i, j) ∈ S or

(λ, µ) ∈ T , we have qλµij ∈ N , where

qλµij = pλip
−1
µi pµjp

−1
λj .

We can associate the linked triples of a finite 0-simple semigroup with its non-universal

congruences, as follows.

Theorem 3.9. Let S be a Rees 0-matrix semigroup defined with a group and a regular matrix.

There exists a bijection Γ between the non-universal congruences on S and the linked triples on

S.

Proof. Theorem 3.5.8 in [How95]

This theorem shows us an alternative way to look at congruences on completely 0-simple

semigroups, just as normal subgroups show us an alternative way to look at congruences on

groups. However, in order to use this at all in a computational setting, we must have a concrete

function Γ which we can use to convert a congruence to a linked triple and back again, rather

than just the knowledge that such a function exists – indeed, describing such a function is the

purpose of this section. We define the function Γ as follows.

Definition 3.10 ([How95, §3.5]). Let S be a Rees 0-matrix semigroup M0[G; I,Λ;P ] over

a group G and a regular matrix P . The linked triple function Γ of S is defined, for ρ a

non-universal congruence, by

Γ : ρ 7→ (Nρ,Sρ, Tρ),

so that it maps any non-universal congruence onto a triple whose entries are defined as follows.

The relation Sρ ⊆ I × I is defined by the rule that (i, j) ∈ Sρ if and only if (i, j) ∈ εI and

(i, p−1
λi , λ) ρ (j, p−1

λj , λ)

for all λ ∈ Λ such that pλi 6= 0 (and hence pλj 6= 0). Similarly, the relation Tρ ⊆ Λ × Λ is

defined by the rule that (λ, µ) ∈ Tρ if and only if (λ, µ) ∈ εΛ and

(i, p−1
λi , λ) ρ (i, p−1

µi , µ)
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for all i ∈ I such that pλi 6= 0 (and hence pµi 6= 0). Finally, we define the normal subgroup

Nρ E G as follows. First, fix some ξ ∈ Λ, a row of the matrix P . Since P is regular, row ξ must

contain a non-zero entry – fix some k ∈ I such that pξk 6= 0. Now we can define

Nρ = {a ∈ G | (k, a, ξ) ρ (k, 1G, ξ)},

where 1G is the identity in the group G.

The inverse of Γ is then such that, for a linked triple (N,S, T ), the congruence (N,S, T )Γ−1

is equal to{(
(i, a, λ), (j, b, µ)

) ∣∣∣ (pξiapλk)(pξjbpµk)−1 ∈ N, (i, j) ∈ S, (λ, µ) ∈ T
}
∪
{

(0, 0)
}
,

where ξ ∈ Λ and k ∈ I can be any elements such that pξi and pλk are both non-zero, as shown

in [How95, Lemma 3.5.6]. Note that ξ and k definitely exist, since P is a regular matrix, and

so column i and row λ must each contain a non-zero entry.

Note that the definition of Nρ does not depend on the choice of ξ and k. Independence from

the choice of ξ is established by the following lemma, and independence from the choice of k

follows by a similar argument.

Lemma 3.11. Let ξ1, ξ2 ∈ Λ and k ∈ I such that pξ1k 6= 0 and pξ2k 6= 0. Then

(k, a, ξ1) ρ (k, 1G, ξ1) if and only if (k, a, ξ2) ρ (k, 1G, ξ2)

for all a ∈ G.

Proof. Assume that (k, a, ξ1) ρ (k, 1G, ξ1). We can right-multiply both sides by (k, p−1
ξ1k
, ξ2) to

give

(k, a, ξ1)(k, p−1
ξ1k
, ξ2) ρ (k, 1G, ξ1)(k, p−1

ξ1k
, ξ2),

which simplifies to

(k, apξ1kp
−1
ξ1k
, ξ2) ρ (k, 1Gpξ1kp

−1
ξ1k
, ξ2),

and then to (k, a, ξ2) ρ (k, 1G, ξ2), as required. The converse argument is identical, swapping

ξ1 for ξ2.

Our discussion so far has focused on 0-simple semigroups, but very similar structures exist

for completely simple semigroups. They are isomorphic to Rees matrix semigroups, and

linked triples can be defined on them in almost exactly the same way, except for the removal

of complications related to the zero element. A Rees matrix semigroup follows Definition 3.6

but with the removal of the zero element, and linked triples follow Definition 3.8, where the

restrictions related to placements of 0 in P are irrelevant. It should also be noted that even the

universal congruence has a linked triple in this case – (G, I × I,Λ×Λ) – so the domain of Γ is

not only the non-universal congruences, but all congruences on S.

3.1.4 Inverse semigroups: kernel–trace pairs

An inverse semigroup also has a structure which can be used in place of its congruences: its

kernel–trace pairs (sometimes confusingly known as “congruence pairs”). In [Tor14b, Chapter

5] the author focused on a computational use of kernel–trace pairs to solve problems about
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congruences. They can certainly be used effectively to carry out calculations, in a similar way

to linked triples.

The basic theory about kernel–trace pairs is presented here, for reference. In all these

definitions, S is an inverse semigroup, E is the set of idempotents in S, and and ρ is a congruence

on S. Recall that E is an inverse subsemigroup of S. This is standard background theory, which

is adapted from [How95, §5.3].

Definition 3.12. The kernel of ρ is
⋃
e∈E [e]ρ, the union of all the ρ-classes of S which contain

idempotents. It is denoted by ker ρ.

Definition 3.13. The trace of ρ is ρ ∩ (E × E), the restriction of ρ to the idempotents of S.

It is denoted by tr ρ.

We will shortly see that a congruence on S is completely defined by its kernel and trace.

First we will approach kernel–trace pairs from an abstract route which will help us to classify

the congruences on S completely. We start with two different definitions of the word “normal”,

one for subsemigroups and one for congruences.

Definition 3.14. A subsemigroup K of S is called normal if it is full (contains all the idem-

potents of S) and self-conjugate (a−1xa ∈ K for all x ∈ K, a ∈ S).

Definition 3.15. A congruence τ on E is normal in S if

(a−1ea, a−1fa) ∈ τ

for every pair (e, f) ∈ τ and every element a ∈ S.

Now we can define a kernel–trace pair, an abstract structure which relates very closely to a

congruence.

Definition 3.16. A kernel–trace pair on S is a pair (K, τ) consisting of a normal subsemi-

group K of S and a normal congruence τ on E, such that

(i) If ae ∈ K and (e, a−1a) ∈ τ , then a ∈ K

(ii) If a ∈ K, then (aa−1, a−1a) ∈ τ

for all elements a ∈ S and e ∈ E.

Now we state the result which identifies an abstract kernel–trace pair with the kernel and

trace of a congruence, and allows us to calculate information about ρ by using ker ρ and tr ρ

directly.

Theorem 3.17. Let S be an inverse semigroup. There exists a bijection Ψ from the congruences

on S to the kernel–trace pairs on S, defined by

Ψ : ρ 7→ (ker ρ, tr ρ),

and its inverse satisfies

Ψ−1 : (K, τ) 7→ {(x, y) ∈ S × S | xy−1 ∈ K, (x−1x, y−1y) ∈ τ}.
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Proof. Theorem 5.3.3 in [How95].

This theorem tells us everything we need to know about kernel–trace pairs and their re-

lationship to congruences on an inverse semigroup. Once we have the kernel–trace pair of a

congruence, we can solve any problem we wish to using the kernel and trace alone, and com-

putational problems such as determining whether a given pair (x, y) lies in the congruence are

much faster than using generating pairs directly [Tor14b, §6.1.3]. However, we may find that if

a congruence is specified initially using generating pairs, it may be costly to find its kernel–trace

pair in the first place; Section 3.2.5 presents a relatively fast method for finding a kernel–trace

pair.

3.1.5 Rees congruences

Recall that a Rees congruence is a congruence on a semigroup S with a distinguished congruence

class I which is a two-sided ideal of S, and in which every other congruence class is a singleton.

We may write this congruence as ρI , and we may write its quotient S/ρI as S/I. Hence, a pair

(x, y) lies in ρI if and only if x = y or x and y both lie in I.

Some or all of a semigroup’s congruences may be Rees: in particular, since S is an ideal

of S, the universal congruence S × S is a Rees congruence which could be written as ρS . If S

has a zero 0, then {0} is an ideal and so the trivial congruence ∆S is a Rees congruence which

could be written as ρ{0}.

A good example of a semigroup with many Rees congruences is the monoid of all order-

preserving transformations On. All of its congruences are Rees, apart from one – the trivial

congruence ∆On , which is not Rees because On does not contain a zero [LS99]. Some examples

of semigroups whose congruences are all Rees can be found in [Gar91, §5].

In order to use the theory of Rees congruences in a computational setting, we must consider

how a Rees congruence can be stored on a computer. To store a Rees congruence ρI we do

not have to store a large set of pairs, or even any information about the congruence’s classes.

We only need to store the ideal I itself, along with the overall semigroup S, and we have

everything we need to know about the congruence. Furthermore, we do not even need to store

all the elements of I, but just a generating set for it. This could be a generating set for I as a

subsemigroup of S, or better yet, an ideal generating set (see Section 1.8). An ideal generating

set can be even smaller than a subsemigroup generating set, since a single generator a, when

considered an ideal generator, gives rise to elements xay for all x, y ∈ S1 rather than just for

all x, y ∈ I.

The Semigroups package for GAP takes the approach of storing an ideal to represent a

Rees congruence, and will store any generating set that is available for the ideal, whether as a

subsemigroup or as an ideal.

3.2 Converting between representations

In Section 3.1 we presented five different ways of representing a congruence. In this section, we

present a survey of the different ways in which they can be converted to each other. Table 3.1

summarises the methods which exist, and the sections in which they are described.
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3.2.1 Normal subgroups and linked triples

In this section we will consider how to convert between a normal subgroup (which represents

a congruence on a group) and a linked triple (which represents a congruence on a simple

semigroup). This conversion is rather trivial, but is presented as a good example of how

different congruence representations can be closely related.

Any group is a completely simple semigroup. In fact, since any group G has precisely one

H -class, it is isomorphic to the Rees matrix semigroup M[G; I,Λ;P ] where |I| = |Λ| = 1

and P is the 1 × 1 matrix (1G). Let φ : G → M[G; I,Λ;P ] be the isomorphism defined by

(g)φ = (1, g, 1).

As described in Theorem 3.2, a congruence ρ on a group G is associated with a normal

subgroup N E G, according to the rule that x ρ y if and only if xy−1 ∈ N . Similarly,

as described in Definition 3.10, a congruence ρ′ on M[G; I,Λ;P ] is associated with a linked

triple (N ′,S, T ), according to the rule that (i, a, λ) ρ (j, b, µ) if and only if i S j, λ T µ, and

(p1iapλ1)(p1jbpµ1)−1 ∈ N ′. Since |I| = |Λ| = 1 and P = (1G), this last condition simplifies to

ab−1 ∈ N ′.
Let ρ′ be the congruence on M[G; I,Λ;P ] such that (x)φ ρ′ (y)φ (i.e. (1, x, 1) ρ′ (1, y, 1))

if and only if x ρ y. The condition defining ρ, that xy−1 ∈ N , is equivalent to the condition

defined by the linked triple (N,∆I ,∆Λ), since I and Λ are both trivial. Hence any normal

subgroup N corresponds to the linked triple (N,∆I ,∆Λ), making linked triples on groups very

easy to deal with.

3.2.2 Generating pairs of a Rees congruence

A natural question, given an ideal I, is how to find a set of generating pairs for the Rees

congruence ρI . In this section we will limit our discussion to finite semigroups.

Theorem 3.18. Let S be a finite semigroup, and let I be an ideal of S. If X is an ideal

generating set for I (see Section 1.8) and M is the minimal ideal of S (which may or may not

be equal to I), then

X ×M

is a set of generating pairs for the Rees congruence ρI .

Proof. Let ρ be the congruence generated by X×M . First we show that ρ ⊆ ρI , and then that

ρI ⊆ ρ.

Let (i,m) ∈ X ×M . We have X ⊆ I since X is a generating set for I, and M ⊆ I since M

is contained in any ideal of S. Hence i and m both lie in I, so they are in the same class of the

Rees congruence: (i,m) ∈ ρI . Hence X ×M ⊆ ρI , and so ρ (the least congruence containing

X ×M) must also be contained in ρI . Hence ρ ⊆ ρI .
Now let (a, b) ∈ ρI ; we wish to show that (a, b) ∈ ρ. If a = b then we certainly have (a, b) ∈ ρ.

Otherwise we must have a, b ∈ I. Since X generates I, we have I = S1XS1. Therefore we can

write

a = s1x1t1, b = s2x2t2,

for some x1, x2 ∈ X and s1, s2, t1, t2 ∈ S1.

107



Now choose some m ∈ M . By definition (x1,m), (x2,m) ∈ ρ since X ×M ⊆ ρ, and by the

compatibility properties of a congruence,

(s1x1t1, s1mt1), (s2x2t2, s2mt2) ∈ ρ.

Since m ∈ M , we must have s1mt1, s2mt2 ∈ M . Let x0 be an arbitrary element of X. We

see (x0, s1mt1), (x0, s2mt2) ∈ X ×M , and so by transitivity (s1mt1, s2mt2) ∈ ρ. Hence

a = s1x1t1 ρ s1mt1 ρ s2mt2 ρ s2x2t2 = b,

and (a, b) ∈ ρ as required.

3.2.3 Linked triple from generating pairs

In [Tor14a, §6.1] it is observed that calculating information about a congruence using its linked

triple is much faster than using a set of generating pairs. However, it may well be that a

congruence on a finite simple or finite 0-simple semigroup is specified by generating pairs, and

we do not know its linked triple a priori. In this case, we will need to calculate the congruence’s

linked triple before we can use it to calculate any other information. We could do this by

enumerating all the elements of all the classes of the congruence, and then simply looking up

the relevant information to find the linked triple. However, this is very expensive, and once the

classes are enumerated there is likely no need for the linked triple, since all information about

the congruence has already been calculated.

In [Tor14b, §3.2], the author presents an algorithm to calculate a congruence’s linked triple

directly from a set of generating pairs, calculating as few extra pairs as possible. This algorithm

performs quickly, representing a big improvement on using a more näıve algorithm to find the

linked triple [Tor14b, §6.1.2]. The algorithm is justified by the following definition and theorem

from [Tor14b].

Definition 3.19 ([Tor14b, Definition 3.10]). Let S =M0[G; I,Λ;P ] be a finite Rees 0-matrix

semigroup over a group G with regular matrix P , and let R ⊆ S × S be a relation on it. We

define the relations R|I and R|Λ by

R|I =
{

(i, j) ∈ I × I
∣∣ (i, a, λ) R (j, b, µ)

}
,

R|Λ =
{

(λ, µ) ∈ Λ× Λ
∣∣ (i, a, λ) R (j, b, µ)

}
.

Theorem 3.20 ([Tor14b, Theorem 3.11]). Let S = M0[G; I,Λ;P ] be a finite 0-simple semi-

group over a group G with regular matrix P , with a relation R ⊆ S × S that generates a

non-universal congruence R]. Let SR] = (R|I)e, let TR] = (R|Λ)e, and let NR] be the least
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normal subgroup of G containing the set{
(pξiapλx)(pξjbpµx)−1

∣∣∣ i, j, x ∈ I, λ, µ, ξ ∈ Λ, a, b ∈ G

such that (i, a, λ) R (j, b, µ) and pξi, pλx 6= 0
}

∪
{
qλµij

∣∣∣ (i, j) ∈ R|I , λ, µ ∈ Λ such that pλi, pµi 6= 0
}

∪
{
qλµij

∣∣∣ (λ, µ) ∈ R|Λ, i, j ∈ I such that pλi, pλj 6= 0
}
.

Then (NR] ,SR] , TR]) is the linked triple corresponding to R].

This theorem is enough to show the correctness of our algorithm for converting a set of

generating pairs to a linked triple – we present this algorithm here as Algorithm 3.21. In

reading the algorithm, it will be helpful to refer to Definition 3.8 for the relations εI and εΛ

and elements of the form qλµij . The notation 〈〈N, x〉〉 describes the least normal subgroup of

G containing N ∪ {x} (see Definition 1.13); in particular, this is equal to N if x ∈ N . We will

now give a brief description of how the algorithm operates, with reference to the pseudo-code

in Algorithm 3.21. For a fuller description of the algorithm and how it is justified by Theorem

3.20, see [Tor14b, §3.2].

The LinkedTripleFromPairs algorithm starts with the minimal linked triple possible:

(N,S, T ) =
(
{1G},∆I ,∆Λ

)
, where {1G} is the trivial subgroup of G, and ∆I and ∆Λ are the

trivial equivalences on the sets of columns and rows in the matrix P . This is the linked triple

that corresponds to the trivial congruence ∆S , which is the result that should be returned if R

is empty. The rest of the algorithm (lines 5–28) consist of going through each pair in R, adding

any necessary extra elements to N , S and T that are implied by that pair, and finally adding

further elements to ensure that (N,S, T ) remains a linked triple.

For each pair (x, y) ∈ R, we first check whether x = y (line 6) – if so, it is a pair in ∆S and

we do not need to do anything to the linked triple in order to account for it. If x 6= y, then we

need to check whether one of x or y is equal to zero; if so, we have a non-zero element related

to zero, which means that R] must be the universal congruence, which has no linked triple,

and we quit the algorithm immediately returning this information (line 9).

If neither element is zero, then x and y must be non-zero elements, which we can rewrite

as (i, a, λ) and (j, b, µ) (lines 10–11). Before we try modifying the linked triple, we check that

columns i and j, and rows λ and µ, have zeroes in the same places in the matrix P (line 12);

if not, they cannot be related by a linked triple, so we again have the universal congruence,

and quit the algorithm immediately (line 13). Otherwise, we can proceed to add information

to the triple, first by uniting the columns (i, j) in S, and then by uniting the rows (λ, µ) in T
(lines 15–16). This could perhaps be tracked using a union–find table for each of S and T (see

Section 1.13).

Next we modify the normal subgroup N by adding an element based on the group elements

a and b (lines 18–20), in line with the definition of Γ−1 in Definition 3.10. As we add this, we

add any necessary elements to N to make it a normal subgroup (taking its normal closure).

Finally, we add any necessary elements of the form qλµij to make N compatible with Definition

3.8 condition (iii) (lines 21–26). At the end of this, we have a triple (N,S, T ) which is linked,
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and whose congruence contains every pair in R. Since we added no elements but those required

by R and the definition of a linked triple, we can be certain that (N,S, T ) describes R], the

least congruence containing all the pairs in R. Again, see [Tor14b, §3.2] for a full justification

of the algorithm.

Algorithm 3.21 The LinkedTripleFromPairs algorithm

Require: M0[G; I,Λ;P ] a finite Rees 0-matrix semigroup
Require: G a group, P a regular matrix
1: procedure LinkedTripleFromPairs(R)
2: N := {1G}
3: S := ∆I

4: T := ∆Λ

5: for (x, y) ∈ R do
6: if x = y then
7: continue
8: else if x = 0 or y = 0 then
9: return Universal Congruence (no linked triple)

10: Let x = (i, a, λ)
11: Let y = (j, b, µ)
12: if (i, j) /∈ εI or (λ, µ) /∈ εΛ then
13: return Universal Congruence (no linked triple)

14: . Combine row and column classes
15: S ← (S ∪ (i, j))

e

16: T ← (T ∪ (λ, µ))
e

17: . Add generators for normal subgroup
18: Choose ν ∈ Λ such that pνi 6= 0
19: Choose k ∈ I such that pλk 6= 0
20: N ← 〈〈N, (pνiapλk)(pνjbpµk)−1〉〉
21: for ξ ∈ Λ \ {ν} such that pξi 6= 0 do
22: N ← 〈〈N, qνξij〉〉
23: . N is a normal subgroup of G containing every qνξij considered so far

24: for z ∈ I \ {k} such that pλz 6= 0 do
25: N ← 〈〈N, qλµkz〉〉
26: . N is a normal subgroup of G containing every qλµkz considered so far

27: . (N,S, T ) is linked and its congruence contains every pair (x, y) considered so far

28: return (N,S, T )

We can see the algorithm working in the following example.

Example 3.22. Let S = M0[D4; {1, 2, 3, 4}, {1, 2};P ] be a Rees 0-matrix semigroup, where

D4 is the permutation group 〈(1 2 3 4), (2 4)〉, isomorphic to the dihedral group on 4 points,

and P is the 2× 4 matrix (
0 (1 2)(3 4) 0 (1 4 3 2)

(2 4) (1 4)(2 3) (2 4) 0

)
.

Let ρ be the congruence generated by the single pair
(

(1, (), 1) , (3, (1 2 3 4), 1)
)
. We can use

LinkedTripleFromPairs to find the linked triple corresponding to ρ, or to determine that ρ

is universal.

We set our triple to
(
{()},∆4,∆2

)
to start with, where ∆n is the diagonal relation on

{1, . . . , n}. Then we consider the single pair in the generating set: x = (1, (), 1) and y =
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(3, (1 2 3 4), 1). We do not have x = y, x = 0 or y = 0, so we go on to consider the two

elements componentwise. The pair (i, j) = (1, 3) lies in εI since columns 1 and 3 contain zeroes

in the same positions, and (λ, µ) = (1, 1) certainly lies in εΛ since it is a reflexive pair; hence

we do not have to return the universal congruence. We modify S by joining the classes of 1

and 3 together; we do not have to modify T , since (1, 1) is already in T . Finally we have to

add generators to N : we can set both ν and k to 2, and then we add to N the element

(pνiapλk)(pνjbpµk)−1 =
(
p21()p12

)(
p23(1 2 3 4)p12

)−1

=
(
(2 4)()(1 2)(3 4)

)(
(2 4)(1 2 3 4)(1 2)(3 4)

)−1

= (1 2 3 4),

and take the normal closure. Finally we have to add any appropriate q values. There is no

value of ξ which meets the stated requirements, but there is one appropriate value for x: x = 4.

Hence we have to add the element qλµkx = q1124 = p12p
−1
12 p14p

−1
14 = (). Since the identity

already lies in N , we do not need to make any changes. There are no more pairs to process, so

we return the linked triple (N,S, T ) = (C4, (1, 3)e,∆2), where

• C4 = 〈(1 2 3 4)〉 is the subgroup of D4 consisting of the four rotations, isomorphic to the

cyclic group of order 4;

• (1, 3)e is the least equivalence on {1, 2, 3, 4} containing the pair (1, 3) (its classes are {1, 3},
{2}, and {4});

• ∆2 is the diagonal relation on {1, 2} (its classes are {1} and {2}).

3.2.4 Generating pairs from a linked triple

Let S be a completely simple or completely 0-simple semigroup, and let ρ be a non-universal

congruence on S. In Section 3.2.3 we presented an algorithm to find the linked triple of ρ, given

only a set of generating pairs for ρ. In this section, we will present the reverse: a method to

find a set of generating pairs for ρ given only its linked triple (N,S, T ).

Firstly we require a lemma describing the inclusion of congruences in each other, and how

it mirrors an inclusion of linked triples.

Lemma 3.23 ([How95, Lemma 3.5.5], [Tor14b, Lemma 3.9]). Let ρ and σ be non-universal

congruences on S with linked triples (Nρ,Sρ, Tρ) and (Nσ,Sσ, Tσ) respectively. We have ρ ⊆ σ
if and only if Nρ ≤ Nσ, Sρ ⊆ Sσ, and Tρ ⊆ Tσ.

Now we can state the main theorem which will inform this algorithm. It also relies on ideas

from Theorem 3.20.

Theorem 3.24. Let S = M0[G; I,Λ;P ] be a finite 0-simple semigroup, and let ρ be a non-

universal congruence with linked triple (Nρ,Sρ, Tρ). Let N ′ρ ⊆ Nρ, S ′ρ ⊆ Sρ and T ′ρ ⊆ Tρ be any

subsets with the following properties:

• Nρ is the normal closure of N ′ρ in G,

• Sρ = (S ′ρ)e,
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• Tρ = (T ′ρ )e.

If R is a subset of ρ such that

(i) for each pair (i, j) ∈ S ′ρ there exist λ, µ ∈ Λ and a, b ∈ G such that (i, a, λ) R (j, b, µ);

(ii) for each pair (λ, µ) ∈ T ′ρ there exist i, j ∈ I and a, b ∈ G such that (i, a, λ) R (j, b, µ);

(iii) for each element n ∈ N ′ρ there exist i, j, x ∈ I and λ, µ, ξ ∈ Λ such that pξi and pλx are

both non-zero and

(i, p−1
ξi np

−1
λx , λ) R (j, p−1

ξj p
−1
µx , µ);

then R] = ρ.

Proof. Assume R is as stated. Since ρ is a congruence and R ⊆ ρ, we know that R] ⊆ ρ. Hence

we only need to show that ρ ⊆ R].

Let (NR] ,SR] , TR]) denote the linked triple associated with R]. We will show that Nρ ⊆
NR] , Sρ ⊆ SR] , and Tρ ⊆ TR] , and therefore that ρ ⊆ R by Lemma 3.23.

Recall the relations R|I and R|Λ from Definition 3.19. By (i) we can see that S ′ρ ⊆ R|I and

hence (S ′ρ)e ⊆ (R|I)e. Meanwhile by Theorem 3.20 we have (R|I)e = SR] . In total this gives

us Sρ = (S ′ρ)e ⊆ (R|I)e = SR] , so Sρ ⊆ SR] . Similarly by (ii) we have Tρ ⊆ TR] .

Now we turn our attention to Nρ, and its generating set N ′ρ – we wish to show that Nρ ⊆
NR] . Let n ∈ N ′ρ. By (iii), there exist i, j, x ∈ I and λ, µ, ξ ∈ Λ such that pξi and pλx are both

non-zero and (i, a, λ) R (j, b, µ), where

a = p−1
ξi np

−1
λx and b = p−1

ξj p
−1
µx .

Note that pξj and pµx must also be non-zero since (i, j) ∈ εI and (λ, µ) ∈ εΛ. To see that

n ∈ NR] , observe that pξiapλx = n and pξjbpµx = 1G. Hence n satisfies the condition that

n = (pξiapλx)(pξjbpµx)−1

for some i, j, x ∈ I, some λ, µ, ξ ∈ Λ, and some a, b ∈ G such that (i, a, λ) R (j, b, µ) and pξi and

pλx are non-zero; this is precisely the requirement in Theorem 3.20 which means that n ∈ NR] .

Hence N ′ρ ⊆ NR] . Since Nρ is the normal closure of N ′ρ, and NR] is a normal subgroup, we

have Nρ ⊆ NR] .

Since Nρ ⊆ NR] , Sρ ⊆ SR] and Tρ ⊆ TR] , Lemma 3.23 gives us ρ ⊆ R], as required.

Theorem 3.24 is enough to justify the PairsFromLinkedTriple algorithm, which is pre-

sented in this thesis as Algorithm 3.26. Given a linked triple (N,S, T ), we only need to choose

applicable subsets N ′ ⊆ N , S ′ ⊆ S and T ′ ⊆ T and we have a good idea of what pairs are

necessary to generate a congruence. In the algorithm, we assume that a generating set N ′ is

known for N (line 2) – this is certainly likely to be the case in a computational setting, for

example in GAP [GAP18] where groups almost always have a known generating set. We should

note that this set should act as a set of normal subgroup generators, meaning that it might

be even smaller than a standard set of subgroup generators. For S ′ we use as few pairs as

possible for each class of S: for each class C = {i1, . . . , in} we include the pair (i1, il) for all

l ∈ {2, . . . , n} (lines 3–8). These pairs relate all elements in the class to each other by transitiv-

ity (line 7), so we do not need to add any other elements. Hence each class requires a number
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of pairs in S ′ equal to one less than the size of the class; and so |S ′| = |I| − kS , where kS is

the number of classes in S. We similarly choose as small a set as possible for T ′ (lines 9–14),

so |T ′| = |Λ| − kT , where kT is the number of classes in T .

Once our three generating sets have been calculated, we collate them into the set of pairs

R as efficiently as possible: each pair we add to R can satisfy the conditions in Theorem 3.24

for one pair (i, j) ∈ S ′, one pair (λ, µ) ∈ T ′, and one element n ∈ N ′. The while-loop on

lines 19–30 steps through the three lists, on each iteration taking a new element a from N ′, a

new pair of columns (i, j) from S ′, and a new pair of rows (λ, µ) from T ′. Then, after fixing

appropriate ξ and k in lines 26–27 as in Theorem 3.24 condition (iii), we add the pair(
(i, p−1

ξi ap
−1
λk , λ), (j, p−1

ξj p
−1
µk , µ)

)
,

which can be seen by inspection to satisfy (i), (ii) and (iii) for the three generators in question.

On each iteration of the while-loop, we remove one item from each of N ′, S ′ and T ′ (lines

20–25), and we add one pair to R. This is repeated until all three sets are exhausted, and so

the total number of pairs returned by the algorithm is equal to the size of the largest of the

three sets – that is,

max(|N ′|, |I| − kS , |Λ| − kT ).

If the sets have different sizes, then on some of the later runs through the loop, one or two

of the three sets will be empty. This does not present a problem: if a set is empty, it is not

popped, and the last value from the loop is simply used again. The set of pairs still satisfies

the necessary condition from the theorem. The only remaining case is that one of the sets may

be empty to start with. To account for this case, we give each of the three variables a default

value in lines 16–18, so that even if a set is never popped, there is a sensible default value that

does not invalidate the condition: for a we can use the identity 1G which must always be in N ;

for (i, j) or (λ, µ) we can use a reflexive pair, from ∆I or ∆Λ respectively.

It is natural to ask whether a set of generating pairs returned by PairsFromLinkedTriple

is minimal – that is, to ask whether any smaller set of pairs could be found which generates

the same congruence.

Theorem 3.25. If |N ′| ≤ |I|−kS or |N ′| ≤ |Λ|−kT , then PairsFromLinkedTriple returns

a set of generating pairs which is minimal.

Proof. The number of pairs returned by PairsFromLinkedTriple depends solely on the

sizes of N ′, S ′ and T ′: it is simply the maximum of these three sizes. The generating set N ′ is

assumed by the algorithm to have been known in advance, and hence is not guaranteed to be

minimal in any way. However, S ′ and T ′ are created in the algorithm, each one consisting of a

set of pairs in I × I or Λ×Λ which makes as few links as possible between elements in a class.

In other words, S ′ and T ′ contain the smallest possible number of pairs such that (S ′)e = S
and (T ′)e = T . Note that |S ′| = |I| − kS and |T ′| = |Λ| − kT .

Let R denote the output of the algorithm, and let R|I be as in Definition 3.19. We can see

from the definition of our algorithm that R|I = S ′, and Theorem 3.20 tells us that SR] = (R|I)e;
that is, we require that (S ′)e = S for the algorithm for the output R to be valid. Since we

have already seen that S ′ has as few pairs as possible such that (S ′)e = S, we know that every

pair in S ′ is necessary to produce a congruence with linked triple (N,S, T ). So |S ′| is a lower
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bound for the size of a set of generating pairs for the congruence. By similar reasoning, |T ′| is

also a lower bound.

Assume |N ′| ≤ |I| − kS or |N ′| ≤ |Λ| − kT . The number of pairs returned by the algorithm

will be either |I| − kS or |Λ| − kT . Since we know that these are both lower bounds for the

possible size of a generating set, we can conclude that the size of R equals the minimum possible

size, so R is minimal.

In the case that N ′ is larger than both |I| − kS and |Λ| − kT , a claim to minimality cannot

be made so easily. Again referring to Theorem 3.20, we see that whereas SR] and TR] are

determined entirely by the I and Λ parts of R respectively, the normal subgroup NR] contains

elements that may be implied by all three components of pairs in R. Indeed, it may be that

some elements in N ′ are in fact implied to be in N by some qλµij , and so could be removed from

N ′ without any loss. Identifying which elements are required in N ′ and which are not could

be difficult computationally, but could be an interesting area of further research that would

guarantee minimality in all cases. Note that, so long as N ′, S ′ and T ′ are all finite, the set of

pairs is guaranteed to be finite, as is the number of steps in the algorithm. Hence we can be

certain that the algorithm will terminate, since we can never enter an infinite loop.

We can see how the algorithm performs on the following example.

Example 3.27. Consider the semigroup S = M0[S4; {1, 2, 3}, {1, 2, 3, 4};P ] where S4 is the

symmetric group of degree 4, and P is the 4× 3 matrix
0 0 (1 2)(3 4)

(1 4) () 0

(1 3 2 4) (2 3 4) 0

0 (1 4 2) 0

 .

This semigroup has 8 congruences: the universal congruence ∇S , and 7 congruences defined

by linked triples – this can be calculated slowly by hand, but much more quickly using the

Semigroups package [M+19]. One such congruence is given by the linked triple (A4,∆3, (2, 3)e),

where A4 is the alternating group of degree 4, ∆3 is the diagonal relation on the column set

{1, 2, 3}, and (2, 3)e is the equivalence on the row set {1, 2, 3, 4} which only unites rows 2 and

3.

If we call PairsFromLinkedTriple(A4,∆3, (2, 3)e), the algorithm first produces the three

generating components N ′, S ′ and T ′. The alternating group A4 can be generated by the set

{(1 2 3), (2 3 4)}, so we may choose this to be our generating set N ′; since ∆3 is diagonal we

produce S ′ = ∅ and since only two rows are united by (2, 3)e we produce T ′ = {(2, 3)}. Now

we collate these three sets to make generating pairs for the congruence.

For the first pair, we have a = (1 2 3), the default column values of (i, j) = (1, 1), and

(λ, µ) = (2, 3). We use the lowest possible values for ξ and k: ξ = 2 and k = 1. The pair we

add is (
(i, p−1

ξi ap
−1
λk , λ), (j, p−1

ξj p
−1
µk , µ)

)
=
(
(1, p−1

21 (1 2 3)p−1
21 , 2), (1, p−1

21 p
−1
31 , 3)

)
=
(

(1, (1 4)(1 2 3)(1 4), 2) , (1, (1 4)(1 4 2 3), 3)
)

=
(

(1, (2 3 4), 2) , (1, (1 2 3), 3)
)
.
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Algorithm 3.26 The PairsFromLinkedTriple algorithm

1: procedure PairsFromLinkedTriple(M0[G; I,Λ;P ], (N,S, T ))
2: N ′ := normal subgroup generating set for N
3: S ′ := ∅
4: for each non-singleton class {i1, i2, . . . , in} of S do
5: for l ∈ {2, . . . , n} do
6: Push (i1, il) onto S ′
7: . Columns i1, . . . , il are all linked together through i1
8: . {i1, i2, . . . , in} is a class of (S ′)e

9: T ′ := ∅
10: for each non-singleton class {λ1, λ2, . . . , λn} of T do
11: for l ∈ {2, . . . , n} do
12: Push (λ1, λl) onto T ′
13: . Rows λ1, . . . , λl are all linked together through λ1

14: . {λ1, λ2, . . . , λn} is a class of (T ′)e

15: R := ∅
16: a := 1G
17: (i, j) := (1, 1)
18: (λ, µ) := (1, 1)
19: while N ′ 6= ∅ or S ′ 6= ∅ or T ′ 6= ∅ do
20: if N ′ 6= ∅ then
21: a← Pop(N ′)

22: if S ′ 6= ∅ then
23: (i, j)← Pop(S ′)
24: if T ′ 6= ∅ then
25: (λ, µ)← Pop(T ′)
26: Fix some ξ ∈ Λ such that pξi 6= 0
27: Fix some k ∈ I such that pλk 6= 0

28: R← R ∪
{(

(i, p−1
ξi ap

−1
λk , λ), (j, p−1

ξj p
−1
µk , µ)

)}
29: . R] is a subset of the congruence defined by (N,S, T )
30: . If (N̄ , S̄, T̄ ) is the linked triple of R], then a ∈ N̄ , (i, j) ∈ S̄, and (λ, µ) ∈ T̄

for all a, (i, j), (λ, µ) popped so far

31: return R
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For the second pair, we change a to the second generator (2 3 4), and having exhausted both

S ′ and T ′ we leave (i, j) and (λ, µ) unchanged. We can use the same values for ξ and k, so the

next pair we add is(
(1, p−1

21 (2 3 4)p−1
21 , 2), (1, p−1

21 p
−1
31 , 3)

)
=
(

(1, (1 4)(2 3 4)(1 4), 2) , (1, (1 4)(1 4 2 3), 3)
)

=
(

(1, (1 2 3), 2) , (1, (1 2 3), 3)
)
.

This exhausts N ′ as well, so have exhausted all three sets. We therefore return the set of two

pairs, {(
(1, (2 3 4), 2) , (1, (1 2 3), 3)

)
,
(

(1, (1 2 3), 2) , (1, (1 2 3), 3)
)}
,

which is a valid generating set for the congruence.

3.2.5 Kernel and trace from generating pairs

Given a set of generating pairs R over a semigroup S, we may wish to consider the congruence

ρ = R] and ask questions such as whether a pair lies in the congruence, or the number of

congruence classes. This is certainly possible by various methods, for example the variety of

algorithms mentioned in Chapter 2 – however, if S is an inverse semigroup then the congruence

has an associated kernel–trace pair, as described in Section 3.1.4. If we know this kernel–trace

pair, then we can use methods associated with it to carry out calculations, and benchmarking

in [Tor14b, §6.1.3] indicates that these calculations are likely to be much faster than by using

other methods. We therefore wish for an algorithm that determines the kernel and trace of ρ.

One way of calculating the kernel and trace would be simply to enumerate all the elements

in all the classes of ρ, and to search for the idempotents to compute the kernel and trace.

However, enumerating all the classes is very time-consuming, and the main reason to calculate

the kernel–trace pair in the first place is probably to avoid this work. Hence, we want to find

the kernel–trace pair directly from the generating pairs R, enumerating as few pairs in R] as

possible.

A new way of finding the kernel and trace directly from the generating pairs is presented

in pseudo-code in Algorithm 3.28, which will require some explanation. It is based on a simple

idea: firstly, populate K and τ with those elements that are implied directly by the pairs in

R; then, add further elements to K and τ to satisfy the conditions of a kernel–trace pair. This

means we return the least kernel–trace pair (K, τ) that implies the pairs in R – that is, we

return the kernel–trace pair that corresponds to R]. This idea is explained more explicitly

below.

To understand why the algorithm is correct, we make use of the following lemma, akin to

Lemma 3.23 for linked triples.

Lemma 3.29. Let ρ and σ be congruences on S with kernel–trace pairs (Kρ, τρ) and (Kσ, τσ)

respectively. We have ρ ⊆ σ if and only if Kρ ≤ Kσ and τρ ⊆ τσ.

Proof. Assume Kρ ≤ Kσ and τρ ⊆ τσ, and let (x, y) ∈ ρ. By Theorem 3.17, we have xy−1 ∈ Kρ

and (x−1x, y−1y) ∈ τρ. Hence xy−1 ∈ Kσ and (x−1x, y−1y) ∈ τσ, which together imply

(x, y) ∈ σ. Hence ρ ⊆ σ.

Conversely, assume ρ ⊆ σ. If k ∈ Kρ then k = xy−1 for some (x, y) ∈ ρ; this means

(x, y) ∈ σ, so k = xy−1 ∈ Kσ. Similarly, if (e, f) ∈ τρ then (e, f) = (x−1x, y−1y) for some
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Algorithm 3.28 The KerTraceFromPairs algorithm

Require: S an inverse semigroup with idempotents E
Require: R ⊆ S × S
1: procedure KerTraceFromPairs(R)
2: K := E
3: τ := ∆E

4: Let S′ be a generating set for S
5: Let E′ be a generating set for E
6: X ← {ab−1 : (a, b) ∈ R}
7: T← {(a−1a, b−1b) : (a, b) ∈ R}
8: τ ← (τ ∪T)e

9: repeat
10: δ ← false . Nothing has changed yet
11: EnumerateKernel( )
12: EnforceConditions( )
13: EnumerateTrace( )
14: . K ⊆ ker R] and τ ⊆ tr R]

15: until δ = false . Exit loop if nothing changed
16: return (K, τ)

17: procedure EnumerateKernel( )
18: if X \K 6= ∅ then
19: K ← 〈〈K,X〉〉
20: δ ← true
21: X ← ∅
22: procedure EnforceConditions( )
23: for a ∈ S do
24: if a ∈ K then
25: if (aa−1, a−1a) /∈ τ then
26: T← T ∪ {(aa−1, a−1a)}
27: τ ← τ ∪ {(aa−1, a−1a)}
28: δ ← true
29: else
30: for e ∈ [a−1a]τ do
31: if ae ∈ K then
32: X ← X ∪ {a}
33: δ ← true
34: . (i) and (ii) from Definition 3.16 hold for each element a ∈ S considered so far

35: procedure EnumerateTrace( )
36: while T 6= ∅ do
37: Pick any (x, y) ∈ T
38: for e ∈ E′ do
39: if (xe, ye) /∈ τ then
40: δ ← true
41: T← T ∪ {(xe, ye)}
42: τ ← (τ ∪ {(xe, ye)})e
43: for a ∈ S′ do
44: if (a−1xea, a−1yea) /∈ τ then
45: T← T ∪ {(a−1xea, a−1yea)}
46: τ ← (τ ∪ {(a−1xea, a−1yea)})e

47: . (a−1xea, a−1yea) ∈ τ
48: . (xe, ye), (ex, ey) ∈ τ
49: T← T \ {(x, y)}
50: . τ satisfies Definition 3.15 for all a ∈ S′ and all (x, y) ∈ τ considered so far

51: . τ is a normal congruence on E (Definition 3.15)
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(x, y) ∈ ρ; this means (x, y) ∈ σ, so (e, f) = (x−1x, y−1y) ∈ τσ. Hence Kρ ≤ Kσ and τρ ⊆ τσ,

as required.

The kernel K starts out containing just the idempotents E (line 2), and the trace τ starts

out as the trivial congruence on E (line 3). Every kernel and trace must contain at least these

elements – in fact, after line 3, (K, τ) corresponds to the trivial congruence ∆S . We assume

that we have generating sets S′ for S and E′ for E (lines 4–5). In the worst case, we can use

S and E themselves, but the algorithm is likely to run faster with a smaller generating set.

Certainly in computational settings such as the Semigroups package for GAP [M+19] semigroups

such as S and E have a generating set stored, and a smaller generating set can sometimes be

created by eliminating unnecessary elements.

Once these setup steps have been done, we add information from the known pairs of ρ –

that is, from the pairs in R. Theorem 3.17 tells us that a pair (a, b) lies in ρ if and only if

ab−1 ∈ K and (a−1a, b−1b) ∈ τ . Now instead of using K and τ to determine whether a pair is

in ρ, we are using a pair in ρ to impose conditions on K and τ . We have two sets, X and T,

which act as queues for elements that need to be processed in K and τ respectively. For each

(a, b) ∈ R we put ab−1 into X (line 6) and (a−1a, b−1b) into T (line 7); elements in X will be

added to K next time we call EnumerateKernel, and we add T to τ straight away (line 8).

Once this has been done, the rule that (a, b) lies in ρ if and only if ab−1 ∈ K and

(a−1a, b−1b) ∈ τ is satisfied for all pairs (a, b) ∈ R. All that is left to do is to add any

elements to K and pairs to τ required to make (K, τ) a kernel–trace pair. The rest of the

algorithm (lines 9–16 and the three sub-procedures) focuses on this task.

Recall from Definitions 3.14, 3.15 and 3.16 the conditions for a kernel–trace pair. We

require (K, τ) to satisfy these conditions, and we must make any additions necessary until

they are all fulfilled. For this purpose we have three sub-procedures – EnumerateKernel,

EnumerateTrace, and EnforceConditions – that test the conditions for a kernel–trace

pair and add any elements necessary. Any of these methods might add to K or τ , which might

in turn imply that another method has more information to find. Hence, the three methods

are run repeatedly until an entire run is completed in which no new information is found (δ

remains false throughout the entire run). If no new information is found, (K, τ) is guaranteed

to be a kernel–trace pair, and we can return. The three methods could be run in any order

without the correctness of the algorithm being affected, but the order shown in Algorithm 3.28

seems to have the best time performance, based on informal experiments. All three methods

are considered to have access to any of the variables in the overall algorithm.

The first method, EnumerateKernel, first checks whether there are any new elements in

X that have not already been added to K (line 18). If there are, it adds all the elements from X

to K, and then on line 19 it adds any necessary elements a−1xa to K, as in Definition 3.14, to

ensure that K remains self-conjugate. This process of adding elements to ensure self-conjugacy

is denoted with the notation 〈〈·〉〉, as for normal closure in a group. Since K contains E from

the beginning, this is enough to guarantee that K is a normal subsemigroup, a fact we can be

certain of at the end of EnumerateKernel. If a change was made, we set δ to true, and

in any case we empty the set X to indicate that no new elements have been found since this

sub-procedure was run.

The EnumerateTrace method ensures that τ is a normal congruence (see Definition 3.15).
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It considers all the pairs that have been added to τ since the last call to EnumerateTrace –

these are precisely the pairs in T – and makes sure that any pairs implied by them are added

to τ and T. For each (x, y) ∈ T, the left and right multiples of (x, y) must be in τ (as required

by the definition of a congruence). In fact, only the right-multiples (xe, ye) need to be added,

since idempotents commute in an inverse semigroup, and the trace is only a relation on the

idempotents. If any of these pairs are new, they are added to T so that further multiples can be

found; this is why we only need to multiply by the generators from E′, rather than all elements

in E. So, in EnumerateTrace, we go through all the pairs (x, y) in T one at a time (lines

36–37) and apply each generator e ∈ E′ to its right-hand side to make the pair (xe, ye) (lines

38–39), which is equal to (ex, ey) by commutativity. For each one of these pairs that is not

already in τ , we have to add it to τ to ensure that τ remains a congruence (line 42), and we have

to add it to T (line 41) to ensure that we process all of its right-multiples in a future iteration

of the while-loop. In order to ensure that τ is normal, we also need to conjugate the pair by

each generator of the semigroup a, and add any of these to τ and T if they are not already

present (lines 43–47). At the end of a call to EnumerateTrace, we can thus be sure that τ

is a normal congruence (line 51). If any changes are made in this call to EnumerateTrace,

then we must of course set δ to true (line 40).

Finally, EnforceConditions deals with conditions (i) and (ii) from Definition 3.16. It

adds any necessary elements to X and any necessary pairs to T and τ , and when finished,

(K, τ) is guaranteed to satisfy conditions (i) and (ii). To achieve this, we iterate through each

element a in the semigroup (line 23). If a is in the kernel K (line 24), then we need to ensure

that (aa−1, a−1a) is in the trace τ to enforce condition (ii); we add it if necessary (lines 25–27).

If a /∈ K but ae ∈ K and (e, a−1a) ∈ τ for some idempotent e, then we need to add a to the

kernel in order to satisfy condition (i). Hence, if a is not in the kernel (line 29), we check any

idempotents e that are τ -related to a−1a (line 30), and if ae is in the kernel (line 31) then we

add a to the list X of elements to be added to the kernel in the next run of EnumerateKernel

(line 32). If we make any changes to T or X in this procedure, we again set δ to true (lines 28

and 33). Lines 24–33 thus ensure that conditions (i) and (ii) hold for the particular value of a

in question, hence the assertion on line 34.

If all three methods complete without any new information being found, they will have

acted as a test ensuring that K is a normal subsemigroup of S, that τ is a normal congruence

on E, and that the two conditions in Definition 3.16 are satisfied; in other words, that (K, τ) is

a valid kernel–trace pair. This means that (K, τ) corresponds to a congruence (K, τ)Ψ−1, and

we know that this congruence contains every pair in R. Hence R] ⊆ (K, τ)Ψ−1. Since we did

not add any elements to K or τ except those implied by R or those required by the definition

of a kernel–trace pair, we can also be sure that (K, τ)Ψ−1 ⊆ R], by Lemma 3.29. Hence (K, τ)

is the kernel–trace pair corresponding to the congruence R].

Note that, so long as S is finite, the KerTraceFromPairs algorithm is guaranteed to

complete in finite time. Due to the way δ is set, the repeat-loop can only continue so long

as the last iteration of the loop added something new to K or τ . Since K can only contain

elements from S, and τ can only contain elements from E × E, we therefore have an upper

bound of |K| + |E|2 times that the loop can be executed, and the likely number of times it

will be executed is much lower. Similarly, there are no loops inside any of the sub-procedures

that can run indefinitely. Hence the algorithm is certain to terminate and return an answer

119



eventually.

3.2.6 Kernel and trace of a Rees congruence

Let S be an inverse semigroup with idempotents E. Each congruence on S is defined by its

kernel and trace (see Section 3.1.4), and some congruences on S may be Rees (see Section 3.1.5).

We may wish to find the kernel and trace of a Rees congruence given the ideal that defines it.

Conversely, we may wish to determine whether a given kernel–trace pair on S describes a Rees

congruence, and if so, what ideal it is associated with.

Let I be an ideal in S, and let ρI be (I × I)∪∆S , the Rees congruence corresponding to I.

To find the kernel and trace of ρI we must consider the positions of the idempotents in S, and

how they interact with I.

Since I is an ideal, it must be a non-empty union of J -classes, and since S is inverse, it

has an idempotent in every J -class; hence, there is at least one idempotent in I. The kernel of

ρI is defined as the set of all elements that are related to an idempotent – that is, all elements

in I and all idempotents outside I. Hence ker ρI = E ∪ I. The trace of ρI is defined as the

restriction of ρI to the idempotents. Two distinct idempotents are ρI -related if and only if they

both lie in I; hence tr ρI = ((E ∩ I)× (E ∩ I)) ∪∆E .

Now we turn our attention to the other direction. Let ρ be a congruence defined by a

kernel–trace pair (K, τ). How can we determine directly from K and τ whether ρ is a Rees

congruence? We first prove a lemma, and then go on to answer this question.

Lemma 3.30. Let x and y be elements of an inverse semigroup S. If xy−1 is idempotent and

x−1x = y−1y, then x = y.

Proof. We start by proving that xy−1 = yy−1, and then go on to prove that x = y. By

Proposition 1.5(i), we know that yy−1 is idempotent. We can left-multiply each of xy−1 and

yy−1 by an element in S to give the other: yx−1(xy−1) = y(x−1x)y−1 = yy−1yy−1 = yy−1 and

xy−1(yy−1) = xy−1. Hence xy−1 L yy−1. However, we know from Proposition 1.5(ii) that

an inverse semigroup has only one idempotent in each L -class. Since xy−1 and yy−1 are both

idempotent, we must therefore conclude that xy−1 = yy−1. Finally, we observe that

x = x(x−1x) = x(y−1y) = (xy−1)y = (yy−1)y = y,

and so we have x = y as required.

Theorem 3.31. Let S be an inverse semigroup with set of idempotents E. If (K, τ) is a kernel–

trace pair on S, then the congruence it defines is a Rees congruence if and only if the following

hold:

(i) τ is a Rees congruence on E, with ideal denoted by Iτ ;

(ii) K = SIτS ∪ E.

Proof. Recall that SXS = S1XS1 for any set X ⊆ S, since x(x−1x) = (xx−1)x = x for any x

in an inverse semigroup.

Let ρ be the congruence defined by (K, τ). We will first show that (i) and (ii) imply that ρ

is Rees, and then we will show that ρ being Rees implies (i) and (ii).
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First, assume that (i) and (ii) hold. Let I = SIτS, so that K = I ∪ E. This I is closed

under left and right multiplication, so it is certainly an ideal of S. We will show that ρ is equal

to the Rees congruence ρI , by showing ρI ⊆ ρ and ρ ⊆ ρI .
For the first, let (x, y) ∈ ρI . If x = y then (x, y) ∈ ρ by reflexivity. Otherwise x and

y are both in I, so x = aeb and y = cfd for some e, f ∈ Iτ and a, b, c, d ∈ S. Since I

is an ideal and x ∈ I, we have xy−1 ∈ I and therefore xy−1 ∈ K. Meanwhile we have

x−1x = (aeb)−1(aeb) = b−1ea−1aeb: since a−1a and e are both idempotents, ea−1ae is an

idempotent, and since e ∈ Iτ we also have ea−1ae ∈ Iτ ; finally, since τ is a normal congruence

(see Definition 3.15) we have b−1(ea−1ae)b ∈ Iτ , and so x−1x ∈ Iτ . Similarly y−1y ∈ Iτ , so

(x−1x, y−1y) ∈ τ . Since xy−1 ∈ K and (x−1x, y−1y) ∈ τ , we have (x, y) ∈ ρ by Theorem 3.17.

For the second, let (x, y) ∈ ρ. By Theorem 3.17 we have xy−1 ∈ K = I ∪ E and

(x−1x, y−1y) ∈ τ : either x−1x = y−1y, or x−1x, y−1y ∈ Iτ . If x−1x = y−1y, then x L y;

we also have (xy−1)y = xx−1x = x, so x R xy−1. Now, since L ⊆J and R ⊆J , we know

that x, y and xy−1 are all J -related, so we have x, y ∈ I in the case that xy−1 ∈ I. In the case

that xy−1 ∈ E, we must have x = y by Lemma 3.30. Either way, (x, y) ∈ ρI . Alternatively, if

x−1x, y−1y ∈ Iτ , then since x J x−1x and y J y−1y, we have x, y ∈ SIτS, that is x, y ∈ I
and so (x, y) ∈ ρI . So (x, y) ∈ ρ implies (x, y) ∈ ρI , as required. Hence ρ = ρI , so ρ is Rees.

We now wish to show the converse, that ρ being Rees implies (i) and (ii). Assume ρ is a

Rees congruence with ideal I, and let (K, τ) be its kernel–trace pair. The trace τ of ρ is the

restriction of ρ to the idempotents E; this is easily seen to be a Rees congruence on E with

ideal I ∩ E. This gives us (i), where Iτ = I ∩ E. The kernel K of ρ is the set of elements

ρ-congruent to an idempotent: this gives us K = I ∪ E, since K consists of every element in

the ideal I along with any other idempotents. Since any ideal is a union of J -classes, and

since any J -class in an inverse semigroup contains an idempotent, we know that I is equal to

S(I ∩ E)S, which is equal to SIτS. Hence K = SIτS ∪ E, and so we have (ii).

3.2.7 Trivial conversions

Some of the conversions between different representations are particularly trivial in nature,

requiring almost no computational resources to calculate. However, it is worth mentioning

them here for completeness.

Normal subgroups and kernel–trace pairs

All groups are inverse semigroups. Hence, if we have a congruence on a group, it can be

represented by a normal subgroup or by a kernel–trace pair. Let ρ be such a congruence, on a

group G: the classes of ρ are the cosets of some normal subgroup N . The kernel of ρ is defined

as the set of elements which are ρ-related to an idempotent. Since there is only one idempotent

– the identity 1G – the kernel is all the elements in N . The trace of ρ is defined as the restriction

of ρ to the idempotent; so tr ρ is just the trivial equivalence on the single element 1G. Hence a

congruence with normal subgroup N has kernel–trace pair (N,∆{1G}).

Normal subgroups and Rees congruences

A groupG has precisely one Rees congruence: the universal congruence ρG. Its normal subgroup

is the entire group G.
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Linked triples and Rees congruences

A completely 0-simple semigroup M0[G; I,Λ;P ] (over a group G and regular matrix P ) has

two Rees congruences: the universal congruence and the trivial congruence. The universal

congruence has no linked triple, while the trivial congruence corresponds to the linked triple

({1G},∆I ,∆Λ). A completely simple semigroup M[G; I,Λ;P ] has only one Rees congruence:

the universal congruence, which has linked triple (G,∇I ,∇Λ).

Linked triples and kernel–trace pairs

We may wish to convert between linked triples and kernel–trace pairs, in the case of an inverse

semigroup which is completely simple or completely 0-simple. An inverse semigroup has exactly

one idempotent in each L -class and each R-class, while a simple semigroup has just one D-

class and an idempotent in every H -class. Hence a completely simple inverse semigroup has

just one H -class, and since it contains an idempotent it must be a group. Since it is a group,

we can conclude that any congruence on a completely simple inverse semigroup has a linked

triple of the form (N,∆I ,∆Λ) (see Section 3.2.1) which corresponds to the kernel–trace pair

(N,∆{1G}) (see Normal subgroups and kernel–trace pairs in this section).

A completely 0-simple inverse semigroup is somewhat different, but also uncomplicated.

Let S be such a semigroup, with idempotent set E. Since each L -class and each R-class

has precisely one idempotent, the relations εI and εΛ are both trivial, so the non-universal

congruences on S correspond to triples of the form (N,∆I ,∆Λ) for any normal subgroup N E G.

Now, the triviality of ∆I and ∆Λ implies that no two elements can be related by a non-universal

congruence ρ unless they lie inside the same H -class. Hence no two idempotents are related, so

tr ρ = ∆E . The kernel consists of all elements in S related to an idempotent. Idempotents are

either 0 or have the form (i, p−1
λi , λ) where pλi 6= 0, so non-zero elements in the kernel must have

the form (i, a, λ) for pλi 6= 0. For (i, a, λ) ρ (i, p−1
λi , λ) we just need (pξiapλx)(pξip

−1
λi pλx)−1 ∈ N

for appropriate ξ and x as in Definition 3.10; but since each L -class and R-class contains

just one idempotent, the only possible values are x = i and ξ = λ. So the actual condition is

(pλiapλi)(pλip
−1
λi pλi)

−1 ∈ N , which is the same as pλiapλip
−1
λi ∈ N , or just pλia ∈ N . Hence

the kernel is given by

ker ρ = {(i, pλin, λ) ∈ S | pλi 6= 0, n ∈ N} ∪ {0}.

Generating pairs and normal subgroups

If G is a group, then a congruence on G can be defined either by a set of generating pairs, or by

a normal subgroup N . We may wish to convert from one of these representations to the other.

We start with a proposition for converting a normal subgroup to a set of generating pairs.

Proposition 3.32. Let G be a group, and N be a normal subgroup of G. If N ′ is a normal

subgroup generating set for N , then {(1G, n) : n ∈ N ′}] is the congruence on G defined by N .

Proof. Let ρ = {(1G, n) : n ∈ N ′}], and let ρN be the congruence whose classes are the cosets

of N . Certainly ρ is a congruence on G, so by Theorem 3.2 we know that [1G]ρ, the ρ-class

containing the identity, is a normal subgroup of G. This ρ-class contains all the elements in N ′,
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so we must have N ⊆ [1G]ρ; and since the pairs used to generate ρ were all from ρN , we must

also have [1G]ρ ⊆ N . Hence the congruence classes of ρ are the cosets of N , as required.

We also have a proposition for converting a set of generating pairs to a normal subgroup.

Proposition 3.33. Let G be a group, and R ⊆ G × G. The normal subgroup generated by

{xy−1 : (x, y) ∈ R} has cosets equal to the classes of the congruence R].

Proof. Let N ′ = {xy−1 : (x, y) ∈ R}, let N = 〈〈N ′〉〉, and let ρN be the congruence whose

classes are the cosets of N . If (x, y) ∈ R, then xy−1 ∈ N , which implies Nx = Ny, so that

(x, y) ∈ ρN ; hence R ⊆ ρN . Since R] is the least possible congruence containing R, we must

have R] ⊆ ρN . Since N contains only elements that are required by R or by the definition of

a normal subgroup, we must also have ρN ⊆ R]. Hence ρN = R], as required.

3.3 Further work

In this chapter we have given a survey of five different representations of congruences, and

shown some algorithms to convert one to another without enumerating entire congruences.

Table 3.1 shows these five representations, and gives references to various conversions between

them. However, there are more areas of research which could be investigated, both in creating

new representations, and in creating new algorithms to convert from one to another.

3.3.1 Generating pairs from a kernel–trace pair

Given an inverse semigroup S and a congruence ρ defined by a kernel–trace pair (K, τ), it is

natural to wish for a set of generating pairs for ρ. There is not yet an algorithm to produce a

set of generating pairs directly from a kernel–trace pair, but this would be an interesting area

of future research.

A solution to this problem might follow the same structure as PairsFromLinkedTriple

(Algorithm 3.26): break down the problem into a component for K and a component for τ ,

establishing a small set of elements which generate K as a normal subsemigroup of S, and a

small set of pairs which generate τ as a normal congruence on E, and somehow combining these

sets to find a set of generating pairs.

One could use the definitions of kernel and trace to produce a relatively straightforward

algorithm. The kernel is the set of elements that are ρ-congruent to an idempotent. Hence, if

K ′ is a generating set for K, then adding (k, e) for each k ∈ K ′, where e is some idempotent

such that k ρ e, would ensure that the kernel contains K. The trace is the restriction of ρ to the

idempotents; hence, if τ ′ is a relation such that (τ ′)e = τ , adding all the pairs from τ ′ would

ensure that the trace contains τ . This approach would result in a very large generating set,

and could almost certainly be improved in some ways, particularly by exploiting (i) and (ii) in

Definition 3.16 of a kernel–trace pair.

3.3.2 Rees congruences from generating pairs

Given a semigroup S and a set R ⊆ S × S, we may wish to know whether the generated

congruence R] is a Rees congruence. A method exists for this in the Semigroups package [M+19].
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It finds the congruence classes of R] and examines their sizes: if all classes are singletons, then

R] is Rees if and only if a zero element exists, and if so, the ideal is {0}; otherwise, we check

that there is only one non-trivial class, and if there is, then we check that it is an ideal. This

method works, but of course involves enumerating the classes first.

It would be desirable to have an algorithm which can inspect the pairs in R and decide

whether R] is Rees, while doing as little calculation of the congruence as possible. If it is

somehow determined that R] is Rees, then it is the Rees congruence corresponding to the ideal

S1{x, y ∈ S : (x, y) ∈ R \∆S}S1.

However, it may be that an answer cannot be determined without a large amount of work being

done first. A more achievable aim would be to find some quick tests which could determine that

R] is or is not Rees in limited cases. For example, if S is the Motzkin monoid Mn, then R] is

certainly Rees if any pair in R \∆S contains an element of rank greater than 1, by Theorem

5.23. Recognising many special cases like this would make it possible for a computer package

to avoid enumerating certain congruences, which is desirable.

3.3.3 Regular semigroups

Recall that a regular semigroup is one in which every element x has an element x′ such that

x = xx′x. An inverse semigroup is a regular semigroup in which each element has a unique

such element x−1, with the additional requirement that x−1xx−1 = x−1. In Section 3.1.4 we

discussed how a congruence on an inverse semigroup is uniquely determined by its kernel and

trace, and gave both an abstract characterisation of a kernel–trace pair (Definition 3.16) and a

concise description of how this pair describes its congruence (Ψ−1 in Theorem 3.17). It turns

out that the congruences on a regular semigroup can be described in a similar way, which we

will briefly examine here. First we will make a definition.

Definition 3.34 ([PP86, Result 1.5]). Let S be a regular semigroup, and let K be a subset of

S. We define πK as the relation on S containing all pairs (a, b) ∈ S × S such that

xay ∈ K ⇔ xby ∈ K

for all x, y ∈ S1.

A congruence on a regular semigroup is uniquely determined by its kernel and trace [PP86,

Corollary 2.11], and a kernel–trace pair can be characterised in the following way, analogous to

Definition 3.16. Recall the definition of E[ (Definition 1.40).

Definition 3.35 ([PP86, Definition 2.12]). A kernel–trace pair on a regular semigroup S is

a pair (K, τ) such that the following hold:

(i) K ⊆ S and K = kerπK ;

(ii) τ is an equivalence on E such that τ = tr(τ ]);

(iii) K ⊆ ker(L τL τL ∩ RτRτR)[;

(iv) τ ⊆ trπK .
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We even have a description of how a kernel–trace pair describes its congruence, analogue to

Theorem 3.17.

Theorem 3.36 ([PP86, Theorem 2.13]). Let S be a regular semigroup. There exists a bijection

Ψ from the congruences on S to the kernel–trace pairs on S, defined by

Ψ : ρ 7→ (ker ρ, tr ρ),

and its inverse satisfies

Ψ−1 : (K, τ) 7→ πK ∩ (L τL τL ∩ RτRτR)[.

This characterisation of congruences on regular semigroups falls short of its inverse semi-

group counterpart. Firstly, this broader definition of a kernel–trace pair is a lot more com-

plicated and harder to compute with: for example, calculating πK for a subset K could be

computationally difficult, as could verifying (iii) and (iv) in Definition 3.35. It is certainly

difficult to contemplate any analogue of KerTraceFromPairs (Algorithm 3.28) which could

find the least kernel–trace pair from a set of generating pairs in anything like as quick a time

or as simple a procedure as in the inverse semigroup case. Secondly, the result in Theorem

3.36 is not as convenient as the inverse semigroup version (Theorem 3.17): if the kernel–trace

pair of an inverse semigroup congruence is known, checking the presence of a given pair (x, y)

is as simple as looking up one easily computed element in the kernel, and looking up another

easily computed pair in the trace. In the regular semigroup case, checking whether a pair lies

in πK ∩ (L τL τL ∩ RτRτR)[ does not appear to be anything like as easy or quick.

For these reasons, using the kernel–trace approach for regular semigroups is not nearly as

attractive as using it for inverse semigroups. However, it is possible that using the representation

in a computational way would be feasible, and it is possible that in some cases it would be

preferable to the näıve use of generating pairs. An algorithm to check the presence of a pair

in (K, τ)Ψ−1 given a kernel–trace pair (K, τ) would be the first requirement; then a version of

KerTraceFromPairs would be highly desirable, since it would allow us to use this approach

even when the kernel and trace of a congruence are not known in advance, without enumerating

the entire congruence first.
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Chapter 4

Calculating congruence lattices

We can learn a lot about a semigroup’s structure by examining its congruences: they describe

a semigroup’s homomorphic images, and quotient semigroups, as explained in Section 1.5. For

this reason, it is of great interest to be able to produce a complete list of congruences on a given

semigroup S. In this chapter, we present an algorithm to do this.

It is natural, when considering a problem in semigroup theory, to consider the approach we

would take in the group case, and to see whether we can apply any of the ideas in this approach

to semigroups generally. Hence, we will start by considering how to compute the congruence

lattice of a group G.

In group theory, we study normal subgroups instead of studying congruences directly. As

described in Section 3.1.2, a normal subgroup N of a group G has cosets equal to the classes of

a congruence ρN , and we know that all congruences on G arise in this way. Furthermore, con-

tainment of normal subgroups corresponds to containment of congruences (i.e. ρM ⊆ ρN ⇐⇒
M ≤ N) so computing a group’s congruence lattice is equivalent to computing the lattice of its

normal subgroups.

Several algorithms exist for computing a group’s normal subgroups. We will first describe

a fairly näıve way to compute the normal subgroups, and then go on to outline the approach

used in GAP. First, recall that a subgroup H ≤ G is normal if and only if g−1hg ∈ H for all

h ∈ H and g ∈ G.

A näıve way to compute the normal subgroups of a groupG is by using its conjugacy classes –

that is, the sets Cx = {g−1xg : g ∈ G} for all x ∈ G. We can see, from the definition of a normal

subgroup given above, that a subgroup of G is normal if and only if it is a union of conjugacy

classes. Hence, we can compute the conjugacy classes of G, and then take normal closures of

their unions. All normal subgroups can be found in this way. This approach is guaranteed to

complete for a finite group, but it is not particularly efficient: firstly, the conjugacy classes of

G have to be computed, and then the taking of unions and normal closures are both likely to

require a lot of work. Just computing the conjugacy classes may take up as much run-time as

the rest of the algorithm, as shown in [Hul98, Table 1].

Next we mention a more sophisticated alternative, as used in GAP. The process is rather

technical, and is not the main focus of this thesis, so we will only give an outline of the method

here, referring the reader to [Hul98] for a fuller explanation. To compute the normal subgroups

of a group G, we first compute a chief series for G – that is, a series of k normal subgroups of
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G,

1 = Nk ⊂ Nk−1 ⊂ · · · ⊂ N1 ⊂ N0 = G,

such that there exists no normal subgroup A E G with Ni ⊂ A ⊂ Ni−1 for any i ∈ {1, . . . , k}.
Once such a chief series has been computed, the normal subgroups of G/Ni are computed

inductively along the series: G/N0 is trivial, and at each subsequent step we compute the

normal subgroups of G/Ni using the normal subgroups of G/Ni−1, until on the last step we

have the normal subgroups of G/Nk = G. This algorithm is a definite improvement on the

näıve approach described above; indeed, tests summarised in [Hul98, Table 1] show that it is

generally quicker to run this whole algorithm than to compute even just the conjugacy classes,

the first step of the näıve method. This quick run-time includes the time taken to find a chief

series of G, methods for which can be found in [CH97].

In examining these group algorithms, we hope to find ideas that can be extended to apply

to semigroups generally. However, inspecting the two approaches described reveals nothing

obvious which we can use. Firstly, we consider the näıve algorithm: the whole method is based

on a normal subgroup being a union of conjugacy classes. Since a semigroup does not generally

have inverses, the definition of conjugacy given above is not well-defined on a generic semigroup,

meaning that a similar statement cannot be made that links the notion of conjugacy to the

classes of a congruence. Several attempts have been made to extend the idea of conjugacy to

semigroups in general [AKM14] but none of these has an obvious link to congruences. Hence,

the first algorithm described cannot easily be extended to semigroup theory. Considering the

second algorithm, there is also no concept of a chief series in semigroup theory. A related idea

would be a chain of k congruences on S,

∆S = ρk ⊂ ρk−1 ⊂ · · · ⊂ ρ1 ⊂ ρ0 = ∇S ,

such that there exists no congruence ρ on G with ρi ⊂ ρ ⊂ ρi−1 for any i ∈ {1, . . . , k}. However,

it is not clear how such a series could be computed without doing as much work as it would take

to compute all the congruences on S anyway. Furthermore, it is not clear how the congruences

on S/ρi could be computed from the congruences on S/ρi−1, the obvious analogue of the

inductive step described above; the bulk of [Hul98] describes how this step can be achieved in

various cases, applying such concepts as group centre, conjugacy, and composition factors, all

concepts which are not directly transferable to semigroup theory. Hence the second algorithm

also cannot easily be converted.

In this chapter, we present a method for calculating all the congruences of a finite semigroup.

This algorithm takes advantage of the fact that congruences lie in a lattice with respect to

containment (⊆), intersection (∩) and join (∨). It computes the lattice structure while it

computes the congruences themselves, and so the lattice structure is returned as an output of

the algorithm, along with the set of congruences. This algorithm was used as a starting point

for the work described in Chapter 5.

In Section 4.1 we give the algorithm in pseudo-code, and explain how it works. In Section 4.2

we outline some practical concerns for implementing the algorithm, with particular reference to

how it is implemented in the Semigroups package [M+19] for GAP [GAP18]. Finally, in Section

4.3, we present some examples of lattices which have been computed using this algorithm.
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4.1 The algorithm

For the purposes of this section, we will make the following definition.

Definition 4.1. A congruence poset on a semigroup S is a pair (Γ,O) where:

• Γ is a set of congruences on S; and

• O is ⊆, the partial order of containment on Γ.

Recall that a partial order is defined as a relation that is reflexive (x ≤ x), anti-symmetric

(x ≤ y and y ≤ x if and only if x = y), and transitive (x ≤ y and y ≤ z implies x ≤ z). Hence

O will be a set of pairs of the form (ρ, σ), where ρ and σ are both congruences on S, and ρ ⊆ σ.

If Γ is the set of all congruences on S, then (Γ,O) will be a lattice by Proposition 1.29, and

two congruences ρ and σ will have an intersection ρ∩ σ and a join ρ∨ σ in Γ. But note that in

general, a congruence poset need not be closed under such operations.

4.1.1 Principal congruences

We first present an algorithm to calculate the principal congruences of a semigroup, along

with their partial ordering ⊆. This is a congruence poset, but since it may not contain all

the congruences on the given semigroup, it may not be a lattice. We call this algorithm

PrincCongPoset. Pseudo-code for is given for it in Algorithm 4.2, and it is discussed in

more detail below.

Algorithm 4.2 The PrincCongPoset algorithm

Require: S a finite semigroup
1: procedure PrincCongPoset(S)
2: Γ := ∅ . Set of congruences
3: O := ∅ . Partial order (⊆) on congruences
4: for (x, y) ∈ S × S do
5: P :=

{(
(x, y)], (x, y)]

)}
. (x, y)] ⊆ (x, y)]

6: for (a, b)] ∈ Γ do
7: if (x, y) ∈ (a, b)] then
8: if (a, b) ∈ (x, y)] then
9: goto line 4 and next pair (x, y) . (a, b)] = (x, y)]

10: else
11: P ← P ∪

{(
(x, y)], (a, b)]

)}
. (x, y)] ⊆ (a, b)]

12: else if (a, b) ∈ (x, y)] then
13: P ← P ∪

{(
(a, b)], (x, y)]

)}
. (a, b)] ⊆ (x, y)]

14: . (x, y)] 6= (a, b)] for each (a, b)] considered so far

15: Γ← Γ ∪ {(x, y)]}
16: O← O ∪ P
17: . O is equal to the containment relation ⊆ on Γ

18: return (Γ,O)

The PrincCongPoset algorithm is not a very sophisticated algorithm, being based on a

concept with a lot of brute-force work checking the presence of pairs in a congruence. However,

when paired with the fast code in libsemigroups [MT+18] for testing the presence of a pair in a

128



single congruence (as described in Chapter 2) it can usually give results about small semigroups

(say, up to size 400) in a reasonable amount of time (see Section 4.3).

The algorithm creates a set Γ of congruences on S, and a partial order O on Γ. By the

end of the algorithm, Γ should contain every principal congruence on S, and O should be the

partial order of containment ⊆ on Γ. To find congruences, we go through each pair (x, y) in

S × S (line 4), and consider the congruence (x, y)] generated by that pair. We create a set P

which will contain pairs that will be added to the partial order O if (x, y)] is added to Γ; it

initially contains
(
(x, y)], (x, y)]

)
, since any congruence contains itself with respect to ⊆. In

this way, since we go through every possible pair in S×S, we certainly encounter every possible

principal congruence at some point.

Starting on line 6, we compare the new congruence (x, y)] to each of the congruences (a, b)]

that we have found and added to Γ so far. If the new congruence is equal to the old one, then we

discard it (lines 8–9) and go on looking for more congruences. Note that this “goto” statement

is necessary: lines 8–9 do not just avoid the else statement in lines 10–11, but actually discard

the entire new congruence (x, y)] and begin the next iteration of the outer for-loop on line 4. If

the new congruence is strictly contained in the old congruence (line 10) or if the old is strictly

contained in the new (line 12) we add a pair to P to show the containment. Once we have gone

through all the old congruences in Γ, if we have not found one that is equal to (x, y)], then we

add (x, y)] to Γ as a new congruence (line 15), and add the set of pairs P to O to describe

how it contains or is contained in the other congruences (line 16). Since each new congruence

is compared to every previously found congruence, every possible appropriate pair is added to

O, and we are therefore guaranteed that O will be equal to the containment relation ⊆ on the

set of congruences found so far (line 17). So long as S is finite, since both the loops in the

algorithm are for-loops based on strictly finite sets, we are guaranteed that this algorithm will

complete in a finite number of steps.

One positive outcome of using generating pairs in this way is that we can use the result

(a, b)] ⊆ (x, y)] ⇐⇒ (a, b) ∈ (x, y)]

for any two pairs (a, b), (x, y) ∈ S × S. Hence, in order to compare the two congruences

comprehensively, we only need to test the presence of one pair in each congruence: (a, b) ∈ (x, y)]

and (x, y) ∈ (a, b)]. Testing the presence of a given pair in a congruence is likely to be faster

than, for example, exhaustively computing its congruence classes. A general algorithm for

testing whether a given pair lies in a congruence specified by generating pairs is described in

Chapter 2; in some cases this can be improved by first converting the congruence to another

representation, as described in Chapter 3.

Since this algorithm is based on iterating over all the pairs in S × S, the time taken to

compute the principal congruences increases rapidly as |S| grows. This makes the algorithm

ineffective for large semigroups. However, useful results can be obtained for small semigroups;

see Section 4.3 for some examples.

Algorithm 4.2 shows a theoretical description of the PrincCongPoset algorithm, described

in a fairly simple way to aid the understanding of the reader. However, it can be modified in a

few simple ways to improve its performance. Firstly, we should consider the source of generating

pairs: we iterate through all pairs (x, y) ∈ S × S. There are ways in which this process is

guaranteed to encounter a given congruence twice, and therefore waste time. For example, if
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we consider a pair (x, y), there is no need later to consider (y, x), since it will generate the same

congruence. Similarly there is no need to consider every reflexive pair (x, x), since each one is

guaranteed to generate the trivial congruence ∆S ; we can instead exclude reflexive pairs from

the algorithm, and simply add ∆S at the end, with an empty set of generating pairs. Thus, if

S has n elements, we need only consider 1
2n(n− 1) pairs, rather than all n2 pairs from S × S.

In the best cases, this may reduce the runtime of the algorithm by more than 50%; however,

note that the asymptotic complexity of the algorithm is not improved.

Note that we could also replace S here with some subset X ⊂ S, if we wish to see what

congruences can be generated only with pairs from X×X. For instance, we might be interested

in congruences generated by pairs from some ideal of S, and how they affect elements outside

the ideal. These questions can be answered with minimal changes to the algorithm.

Another possible improvement would be to use pairs already in O, along with the axiom

of transitivity, to skip certain comparisons. For example, if our new congruence (x, y)] is

found to be a subset of (a, b)], but (a, b)] is itself already known to be a subset of some

congruence (c, d)], then we can immediately add the pair
(
(x, y)], (c, d)]

)
to P and we can skip

the comparison of (x, y)] to (c, d)] later in the algorithm. Since most of the computational

work in this algorithm tends to be in comparing congruences to each other, this ability to skip

comparisons is important.

4.1.2 Adding joins

Our second algorithm is called JoinClosure. This algorithm takes a congruence poset (Γ,O)

as its argument, and returns the congruence poset containing all the congruences in Γ along

with all their joins. That is, for any collection of k congruences (ρi)1≤i≤k from Γ, the output

of JoinClosure will contain the congruence∨
1≤i≤k

ρi = ρ1 ∨ ρ2 ∨ . . . ∨ ρk.

In order to calculate this, we can take advantage of one important property of all lattices:

a lattice can be viewed as a semigroup in its own right. In particular, the set of congruences

of a semigroup forms a semigroup under the operation ∨ of taking joins. Hence, finding the

join-closure of a congruence poset (Γ,O) is equivalent to finding the elements of the semigroup

generated by Γ under ∨, along with information about how they multiply together.

There exist several algorithms which compute all the elements of a semigroup S using its

generators X. An overview of such algorithms can be found in [EENMP18, §1]. A relatively

näıve algorithm would simply create a list of elements, starting with the generators X, and

multiply each element in the list with each generator, on the right and left, adding any new

elements to the list and multiplying them in turn, until no new elements can be found. However,

this algorithm would entail many unnecessary multiplications that could be avoided by using

a more sophisticated algorithm. A better candidate is the Froidure–Pin algorithm which was

mentioned in Section 2.5. This algorithm, first described in [FP97], takes a set of generators

X for a semigroup S and returns, among other things, left and right Cayley graphs for S, and

a list of words w ∈ X+ representing one possible factorisation of each s ∈ S in terms of the

generators. Naturally, this algorithm only works when the multiplication of elements is well-

defined and understood without knowledge of the semigroup as a whole; fortunately, this is the
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case for the join operation ∨ on congruences.

The outputs of the Froidure–Pin algorithm are sufficient to build up the entire congruence

lattice of a semigroup, given the principal congruences. For each congruence ρ we have a word

w ∈ Γ+ representing how it is factorised in terms of the generators: this factorisation is precisely

a list of principal congruences which need to be joined together to give ρ, which gives us a list

of pairs from S × S which generates the congruence. The right Cayley graph returned by the

algorithm describes the lattice structure in terms of joins (∨), from which we can easily deduce

the structure in terms of containment (⊆). Note that the left Cayley graph will be identical

to the right Cayley graph, since the lattice is commutative. Again, a full description of the

Froidure–Pin algorithm is outside the scope of this thesis, but it is described more completely

in [FP97], and the version implemented in libsemigroups is explained in [JMP18].

It is sometimes preferable to use other methods when enumerating a semigroup. For exam-

ple, the Semigroups package uses the method described in [EENMP18] to enumerate semigroups

of transformations, partial permutations, matrices, and various other important classes, taking

advantage of their Green’s relations in order to avoid certain calculations. However, a lattice

is known to be D-trivial, meaning that the advantages of [EENMP18] do not apply to it. For

this reason, the Froidure–Pin algorithm is likely to be a better choice.

The Froidure–Pin algorithm requires a method of deciding whether two congruences are

equal. In JoinClosure, unlike in PrincCongPoset, we may encounter congruences with

more than one generating pair. Hence, for two congruences ρ and σ, we cannot find out

whether ρ = σ in quite the same way as we did in PrincCongPoset. However, we have one

useful result: if R and S are sets of generating pairs, then

R] = S] ⇐⇒ R ⊆ S] and S ⊆ R],

so we only have to check containment of generating pairs in order to check equality of congru-

ences. However, a congruence may have many generating pairs, so in some cases this check may

take a long time. For this reason, if there is an alternative way of representing the congruences

(for example, another representation from Chapter 3) then it may be quicker to use a contain-

ment method specific to that representation. For example, if S is a 0-simple semigroup, then

our two congruences will have linked triples (N1,S1, T1) and (N2,S2, T2) respectively; instead

of checking containment of generating pairs, we can check whether N1 = N2, S1 = S2 and

T1 = T2.

Now that we have described the two algorithms, it is easy to see how we can use them to find

the whole congruence lattice of a finite semigroup S. PrincCongPoset finds all the principal

congruences of S, and JoinClosure finds all the joins of a poset of congruences. Since, in a

finite semigroup, any congruence is the join of a finite number of principal congruences, we can

produce the congruence lattice of S by simply calling

JoinClosure
(
PrincCongPoset(S)

)
.

This is the basis of the function LatticeOfCongruences in the Semigroups package for GAP

[M+19].
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4.2 Implementation

So far, we have given a theoretical description of the PrincCongPoset and JoinClosure

algorithms. As mentioned above, these correspond to functions implemented in the Semigroups

package [M+19] for GAP [GAP18]. PrincCongPoset is implemented approximately as de-

scribed above, while JoinClosure currently uses a rather more rudimentary method than the

Froidure–Pin method, something closer to the näıve method described earlier. In implementing

these algorithms, we have to take into account various technical details which we might see as

unimportant from a theoretical point of view. Some of these details are described below.

Firstly, let us consider how the partial order O is stored on a computer. This problem has

certainly been considered before, and the solution we give here is not a new one, but is included

for the interest and aid of anyone attempting to implement the algorithms described. A näıve

approach would be simply to store all the pairs that are found in an array. This approach

has the advantage of simplicity, and the advantage that the computational object is as close

as possible to the mathematical object it describes. However, it has certain disadvantages that

render it unattractive from a computational point of view – namely, that it is difficult to search

for a given pair, and that it is difficult to find all the super-relations and sub-relations of a given

congruence. Consider looking up whether a given pair (ρ, σ) is in an array of pairs: if the array

is unsorted, this has complexity O(n); even if the array is sorted, it has complexity O(log n).

This complexity is similar to the problem, for a given ρ, of retrieving a list of all elements σ

such that (ρ, σ) is in the array.

A better representation than a list of pairs is that of adjacency lists [BB08]. This method

requires Γ to be stored with some order (which may be arbitrary). Instead of an array of

pairs for O, we have two lists of lists, parents and children, which store, respectively, a

list of indices for all the congruences above each congruence, and a list of indices for all the

congruences below each congruence, in the partial order O. As an example, suppose we have a

congruence ρ, and we want to know all the congruences which lie below ρ in the partial order

O. We look up the index i of ρ in the list Γ, and then the ith list in children contains all the

indices of the congruences we want. If ρi and ρj are the congruences in Γ with indices i and j,

we can find out whether ρi ⊆ ρj by checking if i ∈ children[j] or j ∈ parents[i].

We mentioned above that the containment method (⊆) based on checking generating pairs

can sometimes be improved by adopting a different congruence representation, for example

using linked triples or kernel–trace pairs (see Chapter 3). In the Semigroups package, these

different representations may be used automatically via GAP’s method selection feature. When

a congruence is created from a generating pair (x, y), the semigroup and the generating pair

are supplied as arguments to a function SemigroupCongruence, which examines the properties

of the semigroup, and determines what representation to use. For example, if the semigroup is

known to be simple or 0-simple, SemigroupCongruence will compute the congruence’s linked

triple using the LinkedTripleFromPairs method (Algorithm 3.21) and use it instead of

generating pairs wherever possible; similarly, if the semigroup is known to be inverse, then

a kernel–trace pair will be computed using KerTraceFromPairs (Algorithm 3.28) and the

congruence will be stored in that way. Since a congruence in PrincCongPoset is always

generated by a single pair, we check containment as shown, by testing whether the given pair is

in the congruence; but in JoinClosure, where the number of generating pairs could be much
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higher, GAP’s method selection is used to choose a method for containment (⊆), generally

preferring a method specific to the congruence representation in question.

4.3 Examples

In this section we will show a few examples of congruence lattices that were computed in the

Semigroups package [M+19] using the above algorithms. The output of the algorithm is shown

in Figures 4.3, 4.4 and 4.5, and the code used to produce each lattice is shown underneath it.

gap> Splash(DotString(LatticeOfCongruences(GossipMonoid(3))));

Figure 4.3: Congruence lattice of the Gossip monoid G3 as described in [FJK18, §2]. The
semigroup contains 11 elements, and the lattice contains 84 congruences.

There are two main factors which determine how long LatticeOfCongruences takes to

compute the lattice: the size of the semigroup S, and the number of congruences in the lattice

Γ itself. Informal analysis shows that these two values do not necessarily go hand in hand. For

instance, the monoids considered later in Section 5.4.2 show a variety of numbers of congruences

which do not always correlate with the sizes of the semigroups. Even Figures 4.4 and 4.5
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gap> Splash(DotString(LatticeOfCongruences(FullPBRMonoid(1))));

Figure 4.4: Congruence lattice of the full PBR monoid PB1 as described in [EENFM15, §2.1].
The semigroup contains 16 elements, and the lattice contains 167 congruences.

demonstrate between them that an increase in semigroup size need not indicate an increase in

number of congruences.

In one test on an Intel Core i7-4770S CPU running at 3.10GHz with 16GB of memory,

calculating the lattice of congruences of the wreath product C2 o T3 (Figure 4.5) took 3140 ms,

of which almost all the time (3019 ms) was consumed by PrincCongPoset. This is because

the semigroup is relatively large (216 elements), and therefore iterating through all relevant

pairs in S × S takes a long time; whereas the number of congruences is relatively small (only

47) meaning that the taking of joins does not take long. A contrasting example is the full

PBR monoid PB1 (Figure 4.4): this took 5445 ms in total, of which almost all (5422 ms) was

spent in JoinClosure. This is because the semigroup is relatively small (only 16 elements),

so iterating through S × S is quick; but it has many congruences (167) meaning that it takes a

long time to compute all the joins.

Since it is unknown in advance how many congruences a semigroup has, it is difficult to

predict the feasibility of computing the lattice of a given semigroup, even if its size is known.

Certainly all 853, 303 semigroups of size up to 7 have had their congruence lattices computed

(see Section 6.3) with the aid of the smallsemi library [DM17], and tests on randomly generated

transformation semigroups can usually calculate the lattice of a semigroup of size up to 400 in

less than a minute (on the previously mentioned computer). However, we can choose very small

examples in which JoinClosure runs for an unreasonable amount of time. Take, for example,

the zero semigroup Z10, with only 10 elements. Calculating all its congruences using the
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method above does not complete within an hour, though computing the principal congruences

takes only 16 milliseconds. This is because Z10 has a large number of congruences, given by the

Bell number B10 = 115975, as will be shown in Theorem 6.16. An alternative method would

work better here, since that theorem shows us that any equivalence on Z10 is a congruence.

In both parts of the algorithm, most of the work consists of comparing congruences to

each other. These comparisons can be done relatively quickly by the efficient C++ code in

libsemigroups for generating pairs (see Chapter 2), but minimising the number of comparisons

that need to be made is nevertheless helpful for the algorithm’s overall runtime. Hence it would

be desirable, as future work, to improve the PrincCongPoset algorithm somehow to avoid

unnecessary comparisons, as well as to implement the Froidure–Pin algorithm for JoinClosure

in the Semigroups package.

Since the algorithm described above was implemented in the Semigroups package [M+19],

it has been possible to compute the congruence lattice of many semigroups. Part II of this

thesis examines the congruence lattices of a variety of semigroups, and attempts to explain

their structure. Many of these lattices were originally computed using PrincCongPoset and

JoinClosure. After examining these lattices, it was possible in some cases to classify the

congruences of entire infinite families of semigroups, with proofs that were independent of any

computer code (see, for example, Theorems 5.23 and 6.4). In others it was possible at least

to produce conjectures about families of semigroups, and to prove them for small cases (see

Conjectures 6.17 and 6.18).
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gap> C2 := Group((1, 2));;

gap> T3 := FullTransformationMonoid(3);;

gap> W := WreathProduct(C2, T3);;

gap> Splash(DotString(LatticeOfCongruences(W)));

Figure 4.5: Congruence lattice of the Wreath product C2 o T3 as described in [Mel95, §10.1].
The semigroup contains 216 elements, and the lattice contains 47 congruences.
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Part II

Theoretical applications
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Chapter 5

Congruences of the Motzkin

monoid

In Chapter 4 we explained a relatively quick way of computing all of a semigroup’s congruences,

along with information about how they fit into their lattice structure. This was implemented

in the Semigroups package [M+19], greatly increasing the size and complexity of semigroups

whose congruence lattices can be found using a computer.

One of the first semigroups towards which this new methodology was directed was the

bipartition monoid Pn, whose congruence lattice was not previously known. Computing this

lattice for the first few values of n showed a lattice with a relatively simple structure (see

Figure 5.1) which did not appear to increase much in complexity as n grew higher than 3. The

congruence lattices of various submonoids of Pn were also computed, and appeared to have a

similar structure (again, see Figure 5.1).

With the rapidly increasing size of Pn (see Table 1.84) it proved impractical to näıvely

calculate the congruence lattices beyond n = 4, but careful study of the lattices for small

values of n, along with those lattices computed for various submonoids of Pn, yielded a general

classification of the congruence lattice of Pn for arbitrary n (see Figure 5.40), along with a

classification of the congruence lattices of various important submonoids. This classification

is explained and proven in [EMRT18], the paper upon which this chapter is based. In this

chapter, we will examine the structure of these congruence lattices.

As an author of [EMRT18], my particular focus was the Motzkin monoidMn, which will be

defined below. The other authors on the paper used my code for computing congruence lattices,

as presented in Chapter 4, to study the congruences of Pn, and they produced a classification

of its congruences. I then modified and extended this work to classify the congruences of the

Motzkin monoid, and helped with general tasks towards completing the paper. As such, this

chapter focuses on the Motzkin monoid, only presenting the results for Pn and other monoids

at the end. Many of the results we describe here are contained in some form in [EMRT18], and

are included in this thesis with the permission of my co-authors.

We will start with the definition of the Motzkin monoidMn, then describe some preliminary

theory, then describe the lattice of congruences of Mn (Theorem 5.23), and finally give a brief

description of how these ideas can be extended to Pn and its other submonoids (Section 5.4).
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gap> Splash(DotString(LatticeOfCongruences(PartitionMonoid(3)),

> rec(info:=true)));

gap> Splash(DotString(LatticeOfCongruences(MotzkinMonoid(4)),

> rec(info:=true)));

Figure 5.1: Congruence lattices of P3 (left) and M4 (right), as produced and displayed by
the Semigroups package for GAP. Here ‘T’ represents the trivial congruence, ‘U’ the universal
congruence, and ‘R’ a Rees congruence. Figures 5.40 and 5.24 illustrate these lattices with more
meaningful labels.
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5.1 The Motzkin monoid Mn

In order to define the Motzkin monoid, we must first define a planar bipartition.

Definition 5.2. A bipartition of degree n is called planar if, when represented in diagram

form (see Section 1.11.4), with the points {1, . . . , n} in left-to-right order forming the top of a

rectangle, and the points {1′, . . . , n′} in left-to-right order forming the bottom of the rectangle,

with all edges contained inside the rectangle, it can be drawn without any edges crossing.

Example 5.3. Let α =
[

1, 2 3 4 5

2, 5 1 3, 4

]
and β =

[
2 5 1, 3 4

1 3, 4 2 5

]
. As can be seen in Figure 5.4, α

is planar. However, β cannot be drawn inside the rectangle without the upper block {1, 3}
crossing lines with the transversal {2, 1′} – hence, β is not planar.

α = β =

Figure 5.4: A planar and a non-planar bipartition.

We can now define the Motzkin monoid.

Definition 5.5. The Motzkin monoid Mn is the submonoid of Pn consisting of all planar

bipartitions of degree n in which every block has size 1 or 2.

To see that this is indeed a monoid, we should observe that it is closed. It is easy to see that

the product of two planar bipartitions is also planar, since a double diagram as in Figure 1.76

would contain no crossing lines, and therefore would resolve to a product with no crossing lines.

It is also easy to see that if two bipartitions have no block larger than 2, their product also has

no block larger than 2: any transversal can only contain one point in n and one point in n′, so

any transversal in the product can only contain two points. The upper and lower blocks of the

product are inherited from the original bipartitions, so they will not break the condition either.

The Motzkin monoidMn grows much slower than its parent Pn, having only
∑n
k=0

(
2n
2k

)
Ck

elements [OEIS, A026945], where Ck is the kth Catalan number. Its size in comparison with

Pn is shown in Table 5.6.

n |Mn| |Pn|
1 2 2
2 9 15
3 51 203
4 323 4 140
5 2 188 115 975
6 15 511 4 213 597
7 113 634 190 899 322
8 853 467 10 480 142 147
9 6 536 382 682 076 806 159

10 50 852 019 51 724 158 235 372

Table 5.6: Sizes of Mn and Pn for small values of n.

140

https://oeis.org/A026945


The Motzkin monoid Mn shares a number of features with Pn – indeed, we will see later

that its congruence lattice is very similar. Like Pn, Mn is regular with a possible inverse

given by the ? function. Another important similarity is in its Green’s relations: consider the

following proposition, akin to Proposition 1.83.

Proposition 5.7. Let α and β be bipartitions in Mn. The following hold:

(i) α R β if and only if domα = domβ and kerα = kerβ;

(ii) α L β if and only if codomα = codomβ and cokerα = cokerβ;

(iii) α J β if and only if rankα = rankβ;

(iv) Jα ≤ Jβ if and only if rankα ≤ rankβ;

(v) the ideals of Mn are precisely the sets Ik = {α ∈Mn : rankα ≤ k} for k ∈ {0, . . . , n}.

Proof. For (i) to (iii), see [DEG17, Theorem 2.4]. For (iv) and (v), see [DEG17, Proposition

2.6].

This description of the Motzkin monoid’s Green’s relations, and its containment of J -

classes and ideals, will help us greatly later on. However, one consequence of (i) and (ii) gives

Mn a feature which Pn does not share, namely the following corollary.

Corollary 5.8. The Motzkin monoid Mn is H -trivial.

Proof. Let α, β ∈Mn such that α H β. This tells us that α L β and α R β, so by Proposition

5.7 parts (i) and (ii), we know that α and β share the same domain, kernel, codomain and

cokernel. The upper blocks and lower blocks of α and β must certainly be the same, since they

are just the blocks of the kernel and cokernel that do not lie in the domain or codomain. The

only choice is in the transversals: which blocks in the domain connect to which blocks in the

codomain. In Pn there are (rankα)! ways of choosing this match-up; but in Mn there is only

one way possible, since we cannot allow any lines in the diagram to cross. Hence α = β.

Finally, we will state one other feature of Mn that distinguishes it from Pn: an interesting

property of its minimal ideal I0.

Lemma 5.9. Let α and β be bipartitions inMn, with α in the minimal ideal I0. Then αβα = α.

Proof. Since α has no transversals, αβα also has no transversals. The upper blocks of a product

are equal to those of its first factor, the lower blocks to those of its last factor – so αβα has the

upper and lower blocks of α. Hence it equals α.

The property described in the previous lemma implies that I0 is a rectangular band (see

Definition 1.59).
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5.2 Lifted congruences

We will now define some concepts which allow us to find certain congruences in any semigroup:

retractable ideals (Definition 5.10) and liftable congruences (Definition 5.11). These construc-

tions are new, first appearing in [EMRT18] to help describe some of the congruences on Pn and

its submonoids. It will turn out that all non-Rees congruences ofMn can be found using these

two building blocks.

Definition 5.10. Let S be a finite semigroup, with minimal ideal M . An ideal I of S is called

retractable if there exists some homomorphism φ : I →M such that (m)φ = m for all m ∈M ;

we call φ a retraction.

Definition 5.11. Let S be a finite semigroup, with minimal ideal M . A congruence σ on M is

a liftable congruence of S if either, and therefore both, of the following equivalent conditions

are satisfied:

(i) σ ∪∆S is a congruence on S;

(ii) (ax, bx), (xa, xb) ∈ σ for all pairs (a, b) ∈ σ and elements x ∈ S.

To see that the two conditions in the last definition are equivalent, assume we have S, M

and σ such that (i) is satisfied. Now let (a, b) ∈ σ and x ∈ S be arbitrary. Since σ ∪∆S is a

congruence and (a, b) ∈ σ∪∆S , we must have (ax, bx) ∈ σ∪∆S . If (ax, bx) ∈ ∆S then ax = bx,

and since M is an ideal we must have both ax and bx in M ; hence (ax, bx) is a reflexive pair

and lies in the congruence σ. If (ax, bx) /∈ ∆S then (ax, bx) ∈ σ. Hence, either way, (ax, bx) is

in σ, and by a similar argument, so is (xa, xb), so we have (ii).

Conversely, assume that (ii) holds, let (a, b) ∈ σ∪∆S , and let x ∈ S. If (a, b) ∈ ∆S then a =

b, and so ax = bx and xa = xb. Otherwise, (a, b) ∈ σ and by (ii) we have (ax, bx), (xa, xb) ∈ σ.

In either case, we have (ax, bx), (xa, xb) ∈ σ ∪∆S , and so we have (i).

In order to use these building blocks to produce new congruences, we first need to establish

some results about them. Note that, since Mn is finite, it must have a minimal ideal. More

specifically, the minimal ideal of Mn is given by I0 = {α ∈ Mn : rankα = 0} (see Proposition

5.7). The following lemma will be used at various times throughout this chapter.

Lemma 5.12. Let S be a finite semigroup with minimal ideal M , and let I be an ideal of S.

If I is retractable and φ is a retraction from I to M , then (sxt)φ = s · (x)φ · t for all elements

x ∈ I and all s, t ∈ S1.

Proof. Since S is a finite semigroup, we know that its minimal ideal M is regular, by [How95,

Proposition 3.1.4]. Hence any element m ∈ M has an element m′ ∈ M such that mm′m = m.

Since (mm′)m = m we have a left identity for m; and since m(m′m) = m, we also have a right

identity. Let e be a right identity for (x)φ, so that (x)φ · e = (x)φ. Since φ is a retraction and

e, xe ∈M , we have

(x)φ = (x)φ · e = (x)φ · (e)φ = (xe)φ = xe,
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so (x)φ = xe. Now let f be a left identity for (sx)φ; we also have

(sx)φ · e = f · (sx)φ · e

= (f)φ · (sx)φ · e

= (fsx)φ · e

= (fs)φ · (x)φ · e

= (fs)φ · (x)φ

= (fsx)φ

= (f)φ · (sx)φ

= f · (sx)φ

= (sx)φ,

which shows that e is a right identity for (sx)φ as well as for (x)φ. Hence we have

s · (x)φ = s · xe = (sxe)φ = (sx)φ · (e)φ = (sx)φ · e = (sx)φ,

i.e. φ respects left multiplication; a symmetric argument gives (xt)φ = (x)φ · t, i.e. φ respects

right multiplication too. Finally we can combine these to give (sxt)φ = (sx)φ · t = s · (x)φ · t,
as required.

The previous lemma gives rise to an important corollary which we can use later when we

combine retractable ideals with liftable congruences.

Corollary 5.13. Let S be a finite semigroup, with minimal ideal M . If I is a retractable ideal

of S, then the retraction φ : I →M is unique.

Proof. Let φ and ψ be retractions from I to M . Let x ∈ I, let el be a left identity for (x)φ,

and let er be a right identity for (x)ψ. By Lemma 5.12, we have

(x)φ = el · (x)φ = (elx)φ = elx = (elx)ψ = el · (x)ψ,

so (x)φ = el · (x)ψ. Similarly,

(x)ψ = (x)ψ · er = (xer)ψ = xer = (xer)φ = (x)φ · er,

so (x)ψ = (x)φ · er. But then

(x)φ = el · (x)ψ = el · (x)φ · er = (x)φ · er = (x)ψ,

so φ = ψ.

The effect of Corollary 5.13 is that, for a finite semigroup with a regular minimal ideal, we

can talk about the retraction of a retractable ideal without any loss of generality. We can now

use our two building blocks to produce a new congruence: a lifted congruence.

Definition 5.14. Let S be a semigroup with minimal ideal M , let I be a retractable ideal of

S, and let σ be a liftable congruence of S. We associate to the pair (I, σ) the relation

ζI,σ =
{

(x, y) ∈ I × I :
(
(x)φ, (y)φ

)
∈ σ
}
∪∆S ,
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where φ is the unique retraction from I to M . We call ζI,σ the lifted congruence of (I, σ).

In order to justify the name lifted congruence, we require the following theorem.

Theorem 5.15. The relation ζI,σ in Definition 5.14 is a congruence on S.

Proof. For conciseness, let us refer to ζI,σ as ζ. Let (x, y) be a pair in ζ and let s ∈ S. To

show ζ is a congruence, we must show that (sx, sy) and (xs, ys) both lie in ζ. If (x, y) ∈ ∆S ,

this is certainly true. Otherwise, we have x, y ∈ I and
(
(x)φ, (y)φ

)
∈ σ. Since I is an ideal, we

certainly have sx, sy ∈ I. Now by Definition 5.11(ii), and by Lemma 5.12, we have(
s · (x)φ, s · (y)φ

)
=
(
(sx)φ, (sy)φ

)
∈ σ,

so (sx, sy) ∈ ζ. A symmetric argument gives us (xs, ys) ∈ ζ.

This construction now gives us a usable source of congruences. All that is required is to

find some liftable congruences and retractable ideals of a semigroup, and a number of new

congruences can be described. It turns out that this is an excellent source of congruences for

Mn, yielding every non-Rees congruence on the semigroup, as we will see later.

5.3 Congruence lattice of Mn

We can now apply the general theory of Section 5.2 to the Motzkin monoid, in order to find its

congruences. First, let us mention the easiest congruences to describe – the Rees congruences

(Definition 1.51).

Proposition 5.16. The Rees congruences of Mn are the relations

Rk = {(x, y) ∈Mn ×Mn : rankx, rank y ≤ k} ∪∆Mn
,

for k ∈ {0, . . . , n}.

Proof. This follows immediately from the description of the ideals of Mn in Proposition 5.7

part (v).

We will refer to these congruences by the name Rk for the rest of this chapter. We will

soon see that R0 and R1 are in fact lifted congruences. The higher Rees congruences are not

lifted congruences, as we will see in Corollary 5.34. Next, we will describe some other lifted

congruences, by identifying some liftable congruences and retractions inMn to use as building

blocks.

First, recall that I0 = {α ∈ Mn : rankα = 0} is the minimal ideal of Mn. Let us denote

by L I0 and RI0 the L - and R-relations of Mn restricted to I0, and let ∆I0 and ∇I0 be the

trivial and universal congruences respectively on I0.

Proposition 5.17. The relations ∆I0 , L I0 , RI0 and ∇I0 are all liftable congruences of Mn.

Proof. Since I0 is a semigroup, ∆I0 and ∇I0 are certainly congruences of I0; and both satisfy

Definition 5.11(i), since their unions with ∆Mn
are the congruences ∆Mn

and R0 respectively.

To see that L I0 is a liftable congruence, consider Definition 5.11(ii); let (a, b) ∈ L I0

and x ∈ Mn. Since I0 is the minimal ideal, we certainly have xa, xb, ax, bx ∈ I0; and since
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L is a right congruence on Mn (see Proposition 1.54) we have (ax, bx) ∈ L and therefore

(ax, bx) ∈ L I0 . By Lemma 5.9, since a ∈ I0, we also have a(xa) = a, so xa L a and similarly

xb L b. This means that xa L a L b L xb, so (xa, xb) ∈ L I0 . Hence L I0 is a liftable

congruence of Mn, and by a similar argument, so is RI0 .

Now that we have some liftable congruences, we also want some retractable ideals in order

to form lifted congruences. The following construction establishes one such ideal.

Definition 5.18. If α is a bipartition, then α̂ is the unique bipartition of rank 0 with the same

kernel and cokernel as α.

The element α̂ can be computed easily from α: each transversal is split into an upper block

(the points in n) and a lower block (the points in n′) and nothing else is changed. If we have

a diagram for α, drawn in the standard way described after Example 1.75, then we simply

remove any lines crossing the diagram. If we are using two-row notation, we can simply draw

a horizontal line between the two rows. See Figure 5.19 for an example. Note that α̂ = α for

all α ∈ I0.

α =
{
{1}, {2, 1′}, {3, 5′}, {4, 5}, {2′, 4′}, {3′}

}
α̂ =

{
{1}, {2}, {3}, {4, 5}, {1′}, {2′, 4′}, {3′}, {5′}

}
α = α̂ =

α =
[

2 3 1 4, 5

1 5 2, 4 3

]
α̂ =

[
2 3 1 4, 5

1 5 2, 4 3

]
Figure 5.19: Computing α̂ from α.

Proposition 5.20. The map φ : I1 → I0 defined by α 7→ α̂ is a retraction. Hence, I1 is a

retractable ideal.

Proof. Since α̂ = α for α ∈ I0, we can see that φ satisfies the condition (m)φ = m from

Definition 5.10. Hence we only need to show that φ is a homomorphism. Let α, β ∈ I1, and

we will try to prove that α̂β = α̂β̂. If both α and β have rank 0 then α̂β = αβ = α̂β̂. On

the other hand, if at least one of α and β has rank 1 (without loss of generality, α) then we

may write α =
[
A0 A1 . . . Ar

B0 B1 . . . Bs

]
and β =

[
C0 C1 . . . Ct

D0 D1 . . . Du

]
or β =

[
C0 C1 . . . Ct

D0 D1 . . . Du

]
. This gives

us αβ =
[
A0 A1 . . . Ar

D0 D1 . . . Du

]
if β has the first form and B0 ∩ C0 6= ∅, or αβ =

[
A0 A1 . . . Ar

D0 D1 . . . Du

]
otherwise. Applying φ gives us α̂ =

[
A0 A1 . . . Ar

B0 B1 . . . Bs

]
, β̂ =

[
C0 C1 . . . Ct

D0 D1 . . . Du

]
, and finally, in either

case, α̂β =
[
A0 A1 . . . Ar

D0 D1 . . . Du

]
= α̂β̂, so φ is a homomorphism.

This gives us a retractable ideal I1, with a retraction α 7→ α̂. It is also trivial to see that I0

itself is retractable, with retraction α 7→ α, the identity map. Corollary 5.13 shows that these

retractions are unique.

We now have four liftable congruences
{

∆I0 ,L
I0 ,RI0 ,∇I0

}
and two retractable ideals

{I0, I1}, giving rise to 4× 2 = 8 lifted congruences by Definition 5.14 and Theorem 5.15. The
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congruences lifted from ∇I0 are observed to be equal to the Rees congruences R0 and R1, while

those lifted from ∆I0 , L I0 and RI0 are named with appropriate Greek symbols, as follows:

δ0 = ζI0,∆I0
= {(α, β) ∈ I0 × I0 : (α, β) ∈ ∆I0} ∪∆Mn

,

δ1 = ζI1,∆I0
= {(α, β) ∈ I1 × I1 : (α̂, β̂) ∈ ∆I0} ∪∆Mn

,

λ0 = ζI0,L I0 = {(α, β) ∈ I0 × I0 : (α, β) ∈ L I0} ∪∆Mn
,

λ1 = ζI1,L I0 = {(α, β) ∈ I1 × I1 : (α̂, β̂) ∈ L I0} ∪∆Mn ,

ρ0 = ζI0,RI0 = {(α, β) ∈ I0 × I0 : (α, β) ∈ RI0} ∪∆Mn ,

ρ1 = ζI1,RI0 = {(α, β) ∈ I1 × I1 : (α̂, β̂) ∈ RI0} ∪∆Mn
,

R0 = ζI0,∇I0
= {(α, β) ∈ I0 × I0 : (α, β) ∈ ∇I0} ∪∆Mn

,

R1 = ζI1,∇I0
= {(α, β) ∈ I1 × I1 : (α̂, β̂) ∈ ∇I0} ∪∆Mn .

This naming convention is summarised in Table 5.21.

I0 I1

∆I0 δ0 δ1

L I0 λ0 λ1

RI0 ρ0 ρ1

∇I0 R0 R1

Table 5.21: Lifted congruences of Mn.

Interpreting these statements along with the use of Proposition 5.7 gives the following

characterisation of the lifted congruences in terms of a bipartition’s rank, kernel and cokernel.

Proposition 5.22. The lifted congruences described above can be characterised in the following

way, where (α, β) ∈Mn ×Mn:

δ0 = ∆Mn
,

δ1 = {(α, β) : rankα, rankβ ≤ 1, kerα = kerβ, cokerα = cokerβ} ∪∆Mn
,

λ0 = {(α, β) : rankα, rankβ = 0, cokerα = cokerβ} ∪∆Mn
,

λ1 = {(α, β) : rankα, rankβ ≤ 1, cokerα = cokerβ} ∪∆Mn ,

ρ0 = {(α, β) : rankα, rankβ = 0, kerα = kerβ} ∪∆Mn
,

ρ1 = {(α, β) : rankα, rankβ ≤ 1, kerα = kerβ} ∪∆Mn
,

R0 = {(α, β) : rankα, rankβ = 0} ∪∆Mn
,

R1 = {(α, β) : rankα, rankβ ≤ 1} ∪∆Mn .

Proof. Apart from reflexive pairs, the congruences δ0, λ0, ρ0 and R0 contain only pairs from

I0 × I0. In δ0 these pairs are all from ∆I0 , and are therefore are in ∆Mn
anyway, so it is

equal to ∆Mn
. In λ0, the non-reflexive pairs are precisely those in L I0 : we know that the

elements in I0 are those that have rank 0, and therefore all have empty codomains; and we

know from Proposition 5.7(ii) that elements are L -related if and only if they share a codomain

and cokernel, so we have the statement for λ0. Similarly using Proposition 5.7(i) we have the

statement for ρ0. In R0 the non-reflexive pairs are those from ∇I0 : this relation simply relates
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all elements of rank 0 to each other, so we have the statement.

Moving onto δ1, λ1, ρ1 and R1, we can see that all the non-reflexive pairs are from I1 × I1,

and so they all consist of elements of rank less than or equal to 1. For δ1, consider a pair

(α, β) ∈ I1 × I1 such that (α̂, β̂) ∈ ∆I1 , i.e. α̂ = β̂: by Definition 5.18 these are precisely the

pairs with the same kernel and cokernel, so we have the statement for δ1. For λ1 we require

(α, β) ∈ I1 × I1 such that (α̂, β̂) ∈ L I0 . All elements of I0 have empty codomain, so a pair

satisfies this if and only if α̂ and β̂ have the same cokernel. Since α and α̂ share a cokernel, and

β and β̂ share a cokernel, this is therefore satisfied if and only if α and β share a cokernel, and

so we have the statement for λ1. The statement for ρ1 follows by a similar argument. Finally,

observe that R1 contains all pairs (α, β) ∈ I1 × I1 such that (α̂, β̂) ∈ ∇I0 – this applies to all

pairs in I1 × I1, so we have that R1 unites all elements of rank less than or equal to 1, giving

the statement as shown.

These characterisations will help us later when we consider generating pairs for the congru-

ences. We will discover later that these are the only lifted congruences on Mn, but we have

not yet shown this.

We are now ready to state the main theorem of this chapter, giving a full description of the

congruence lattice of Mn. Much of the work to prove this has already been done, and the rest

of this section will be devoted to completing the proof. Note that our main theorem requires

n ≥ 2; if n = 1 then Mn has only 2 elements, and its only congruences are ∆Mn
and ∇Mn

.

Theorem 5.23. Let Mn be the Motzkin monoid, with n ≥ 2. The following hold:

(i) The congruences of Mn are precisely {δ0, δ1, λ0, λ1, ρ0, ρ1, R0, R1, . . . , Rn};

(ii) The congruence lattice of Mn is as shown in Figure 5.24;

(iii) Every congruence of Mn is principal.

The remainder of this section serves to prove Theorem 5.23, as follows. Let Γ be the set of

relations stated in (i). That the relations in Γ are congruences has already been established.

Next we consider the joins of these congruences in Lemmas 5.25 and 5.26. These show that the

congruences join together as in Figure 5.24, and therefore that Γ is closed under taking joins.

Then, in order to see that these congruences are all distinct, we analyse the possible generating

pairs of each congruence in Lemmas 5.28, 5.29 and 5.30. These results, which are summarised

in Table 5.27, exhaust all pairs in Mn ×Mn and all congruences in Γ, proving that all the

congruences in Γ are principal, and that there are no other principal congruences. Since any

congruence is a join of principal congruences, this proves that Mn has no congruences other

than those in Γ. This completes the proof of (i), (ii) and (iii).

We will now state the lemmas required to complete the proof of Theorem 5.23. Firstly, we

will focus on meets and joins of congruences, and show that there are no other congruences

that can be generated by taking meets and joins of congruences in Γ.
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Rn

R2

R1

λ1 R0 ρ1

λ0 δ1 ρ0

δ0

= ∇Mn

= ∆Mn

Figure 5.24: Congruence lattice of Mn for n ≥ 2 (Hasse diagram).

Lemma 5.25. Let i ∈ {0, 1} and n ≥ 2. In Mn, we have λi ∩ ρi = δi and λi ∨ ρi = Ri.

Proof. Using Proposition 5.22, we have the following characterisations of δi, λi, ρi, and Ri:

δi = {(α, β) : rankα, rankβ ≤ i, kerα = kerβ, cokerα = cokerβ} ∪∆Mn ;

λi = {(α, β) : rankα, rankβ ≤ i, cokerα = cokerβ} ∪∆Mn
;

ρi = {(α, β) : rankα, rankβ ≤ i, kerα = kerβ} ∪∆Mn
;

Ri = {(α, β) : rankα, rankβ ≤ i} ∪∆Mn .

The first statement, λi ∩ ρi = δi, follows directly from these characterisations. For the second,

observe that since λi ⊆ Ri and ρi ⊆ Ri, we must have λi ∨ ρi ⊆ Ri. For Ri ⊆ λi ∨ ρi,
let (µ, ν) ∈ Ri. Observe that µ̂ν̂ has rank 0, the kernel of µ and the cokernel of ν. Hence

µ ρi µ̂ν̂ λi ν, so (µ, ν) ∈ λi ∨ ρi, as required.

Lemma 5.26. The following hold in Mn, with n ≥ 2:

(i) λ0 ⊆ λ1, ρ0 ⊆ ρ1, and δ0 ⊆ δ1;

(ii) λ0 ∩ ρ1 = ρ0 ∩ λ1 = δ0;

(iii) λ0 ∨ ρ1 = ρ0 ∨ λ1 = R1;

(iv) λ0 ∩ δ1 = ρ0 ∩ δ1 = δ0;

(v) λ0 ∨ δ1 = λ1 and ρ0 ∨ δ1 = ρ1;

(vi) R0 ∩ δ1 = δ0 and R0 ∨ δ1 = R1.
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Proof. We can see (i) and (ii) immediately from the descriptions of the congruences in Proposi-

tion 5.22. The same proposition, and the fact that bipartitions of rank 0 are equal if they have

the same kernel and cokernel, also give us (iv) and the first part of (vi).

For (iii), we will prove that λ0 ∨ ρ1 = R1, and observe that the rest follows by a similar

argument. Since λ0 ⊆ R1 and ρ1 ⊆ R1, we must have λ0 ∨ ρ1 ⊆ R1. To prove R1 ⊆ λ0 ∨ ρ1,

let (µ, ν) ∈ R1. We certainly have µ ρ1 µ̂ and ν ρ1 ν̂. Observe that the product µ̂ν̂ has rank

0, the kernel of µ̂, and the cokernel of ν̂. Hence µ ρ1 µ̂ ρ1 µ̂ν̂ λ0 ν̂ ρ1 ν, so (µ, ν) ∈ λ0 ∨ ρ1, as

required.

For (v), we will prove that λ0∨ δ1 = λ1, and observe that the other part follows by a similar

argument. Since λ0 ⊆ λ1 and δ1 ⊆ λ1, we must have λ0 ∨ δ1 ⊆ λ1. To prove λ1 ⊆ λ0 ∨ δ1, let

(µ, ν) ∈ λ1. By the characterisation of λ1 in Proposition 5.22, we have cokerµ = coker ν, and

therefore coker µ̂ = coker ν̂. Hence µ δ1 µ̂ λ0 ν̂ δ1 ν, so (µ, ν) ∈ λ0 ∨ δ1, as required.

Finally we prove the second part of (vi), R0 ∨ δ1 = R1. Since R0 ⊆ R1 and δ1 ⊆ R1, we

must have R0 ∨ δ1 ⊆ R1. To prove R1 ⊆ R0 ∨ δ1, let (µ, ν) ∈ R1. We certainly have µ δ1 µ̂

and ν δ1 ν̂, and since R0 relates any pair of bipartitions of rank 0, we have µ δ1 µ̂ R0 ν̂ δ1 ν, so

(µ, ν) ∈ R0 ∨ δ1, as required.

The last two lemmas together prove that the congruences in Γ form the lattice shown in

Figure 5.24 with respect to containment. Now we only need to show that there are no other

principal congruences onMn, and the proof of Theorem 5.23 will be complete. We will do this

by considering the generating pairs of all the congruences in Γ, and showing that any pair in

Mn ×Mn generates one of them. The results are summarised in Table 5.27.

(α, β)] (α, β) ∈ Reference
δ0 δ0 Trivial
δ1 δ1 \ δ0 Lemma 5.28(iii)
λ0 λ0 \ δ0 Lemma 5.28(i)
λ1 λ1 \ (λ0 ∪ δ1) Lemma 5.29(i)
ρ0 ρ0 \ δ0 Lemma 5.28(ii)
ρ1 ρ1 \ (ρ0 ∪ δ1) Lemma 5.29(ii)
R0 R0 \ (λ0 ∪ ρ0) Lemma 5.29(iii)
R1 R1 \ (λ1 ∪ ρ1 ∪R0) Lemma 5.29(iv)
Rk≥2 Rk \Rk−1 Lemma 5.30

Table 5.27: Generating pairs for each congruence on Mn.

For the remainder of this section, where there is no ambiguity we may write the trivial

congruence ∆Mn
as simply ∆, for brevity and readability.

Lemma 5.28. Let α, β ∈Mn, where n ≥ 2. The following hold:

(i) λ0 = (α, β)] if and only if (α, β) ∈ λ0 \∆;

(ii) ρ0 = (α, β)] if and only if (α, β) ∈ ρ0 \∆;

(iii) δ1 = (α, β)] if and only if (α, β) ∈ δ1 \∆.

Proof. In each statement, the “only if” part is obvious. We will prove (i) and observe that (ii)

follows from a symmetric argument. Then we will prove (iii) separately.
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For (i), let (α, β) ∈ λ0 \∆, and let σ = (α, β)]. Since λ0 is a congruence, we clearly have

σ ⊆ λ0; hence we have only to prove that λ0 ⊆ σ. First we require a special construction: if

γ ∈ I0, let γ′ be the unique bipartition in I0 with trivial kernel and coker γ′ = coker γ. We

claim that (γ, γ′) ∈ σ for any such γ. This claim is proven by induction on r, the number

of kernel-classes of γ: if r = n (trivial kernel) then γ = γ′ and we are done. Otherwise we

have r ≤ n − 1, and we write γ =
[
A1 . . . Ar

B1 . . . Bs

]
. Since (α, β) ∈ λ0 \ ∆, Proposition 5.22 gives

us rankα = rankβ = 0 and cokerα = cokerβ, but since α 6= β we must have kerα 6= kerβ.

Swapping α and β if necessary, let us assume there exists some (i, j) ∈ kerα \ kerβ, and

without loss of generality, assume i < j. We will write n \ {i, j} as {k1, . . . , kn−2}. Since

r ≤ n − 1 there exists some kernel block of γ with 2 elements; let m be the lowest point in

n in a non-trivial kernel block, and without loss of generality, let us assume m lies in A1.

We can now define the bipartition τ =
[
m p A2 . . . Ar

i j k1 . . . kn−2

]
, where A1 = {m, p}. We observe

that ταγ = γ =
[
m, p A2 . . . Ar

B1 B2 B3 . . . Bs

]
and τβγ =

[
m p A2 . . . Ar

B1 B2 B3 . . . Bs

]
. Since σ is left- and right-

compatible, we deduce that γ = ταγ is σ-related to τβγ. Hence γ is σ-related to τβγ, a

bipartition with rank 0, the same cokernel as γ, and r + 1 kernel classes. Applying the same

process inductively, with τβγ in place of γ, implies a chain of σ-relations which relate γ to a

bipartition with rank 0, the same cokernel as γ, and n kernel classes – that is, γ′. This proves

the claim that (γ, γ′) ∈ σ.

To return to the proof that λ0 ⊆ σ, let (µ, ν) ∈ λ0 be arbitrary. If µ = ν then certainly

(µ, ν) ∈ σ, so let us assume µ 6= ν. By Proposition 5.22 we must have rankµ = rank ν = 0 and

cokerµ = coker ν, so we have µ′ = ν′. Hence, by the above claim, we have µ σ µ′ = ν′ σ ν, so

(µ, ν) ∈ σ, and (i) is complete. Observe that (ii) follows by a similar argument.

To prove (iii), let (α, β) ∈ δ1 \∆ as stated, and let σ = (α, β)]. Clearly σ ⊆ δ1; it remains

to prove that δ1 ⊆ σ. Since (α, β) ∈ δ1 \∆, α and β must each have rank 0 or 1, and have the

same kernel and cokernel, but be distinct. Since there is only one bipartition of rank 0 with a

given kernel and cokernel, they cannot both have rank 0. Hence, swapping α and β if necessary,

we may assume that rank(α) = 1, with transversal {i, j′}, and we can write α =
[
i A1 · · · Ar

j B1 · · · Bs

]
.

Then β has one of the following four forms, where without loss of generality, additional labelled

elements are assumed to be from A1 or B1:

(a) β =
[
i A1 A2 · · · Ar

j B1 B2 · · · Bs

]
, so that β = α̂;

(b) β =
[
k i A2 · · · Ar

j B1 B2 · · · Bs

]
, so that β is the same as α but with k in the transversal instead of i;

(c) β =
[
i A1 A2 · · · Ar

l j B2 · · · Bs

]
, so that β is the same as α but with l′ in the transversal instead of j′;

(d) β =
[
k i A2 · · · Ar

l j B2 · · · Bs

]
, so that β is the same as α but with transversal {k, l′} instead of {i, j′}.

Now, for any a, b ∈ n, let us denote by τab the bipartition (a, b′)e ∈ Mn – this has just one

non-trivial block, {a, b′}. Let us use τ∅ to denote the bipartition in Mn consisting entirely of

singletons. We will use the bipartitions τii and τjj . In all four cases above, we have τiiατjj = τij

and τiiβτjj = τ∅. Since α σ β, we also have τiiατjj σ τiiβτjj , so τij σ τ∅. Next, let γ be an

arbitrary bipartition in Mn with rank 1. We can write γ =
[
c C1 · · · Ct

d D1 · · · Du

]
, where {c, d′} is the

one transversal. Let us write n \ {i} = {i1, . . . , in−1} and n \ {j} = {j1, . . . , jn−1}. Then we

can define two new bipartitions: γ =
[
c C1 · · · Ct

i i1 · · · in−1

]
and γ =

[
j j1 · · · jn−1

d D1 · · · Du

]
. We can see that
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γ = γτijγ and γ̂ = γτ∅γ, so we have γ σ γ̂ for any γ of rank 1. The same statement is also

true for γ of rank 0, since γ = γ̂.

To prove that δ1 ⊆ σ, let (µ, ν) ∈ δ1 be arbitrary. Each of µ and ν must have rank 0 or 1,

and they must have the same kernel and cokernel. Hence we have µ σ µ̂ = ν̂ σ ν, so (µ, ν) ∈ σ,

completing the proof of (iii).

Lemma 5.29. Let α, β ∈Mn, where n ≥ 2. The following hold:

(i) λ1 = (α, β)] if and only if (α, β) ∈ λ1 \ (λ0 ∪ δ1);

(ii) ρ1 = (α, β)] if and only if (α, β) ∈ ρ1 \ (ρ0 ∪ δ1);

(iii) R0 = (α, β)] if and only if (α, β) ∈ R0 \ (λ0 ∪ ρ0);

(iv) R1 = (α, β)] if and only if (α, β) ∈ R1 \ (λ1 ∪ ρ1 ∪R0).

Proof. In each statement, as in the previous lemma, the “only if” part is obvious; we just need

to consider the right-to-left implications. First we will prove (i) and observe that (ii) follows

from a symmetric argument. Then we will prove (iii) and (iv) separately.

For (i), start by supposing (α, β) ∈ λ1 \(λ0∪δ1), as in the premise. Clearly (α, β)] ⊆ λ1. To

be outside λ0, either α or β must have rank 1 – without loss of generality, assume rank(α) = 1.

We may therefore write α =
[
i A1 · · · Ar

j B1 · · · Bs

]
. Now, since rankβ ≤ 1 and cokerα = cokerβ, we

may write β in one of the following ways:

(a) β =
[
C0 C1 C2 · · · Ct

j B1 B2 · · · Bs

]
;

(b) β =
[
i C1 C2 · · · Ct

j B1 B2 · · · Bs

]
;

(c) β =
[
k C1 C2 · · · Ct

j B1 B2 · · · Bs

]
, for some k 6= i;

(d) β =
[
i C1 C2 · · · Ct

l j B2 · · · Bs

]
, for some l 6= j;

(e) β =
[
k C1 C2 · · · Ct

l j B2 · · · Bs

]
, for some k 6= i and l 6= j.

Since (α, β) /∈ δ1, we have kerα 6= kerβ. Let γ =
[
j B1 · · · Bs

j B1 · · · Bs

]
, so that coker(αγ) = coker(βγ),

and hence (αγ, βγ) ∈ λ0. In particular, since kerα 6= kerβ, we find αγ 6= βγ, and therefore

(αγ, βγ) ∈ λ0 \ ∆, so Lemma 5.28(i) gives us λ0 = (αγ, βγ)] ⊆ (α, β)]. Since λ1 = λ0 ∨ δ1
by Lemma 5.26, we need only show that δ1 ⊆ (α, β)], and (i) is complete. To do this, we will

consider the cases (a)–(e) separately.

Firstly, assume (a) holds. We know that αα?α = α, and we can see that αα?β = α̂. Hence

Lemma 5.28(iii) gives δ1 = (α, α̂)] = (αα?α, αα?β)] ⊆ (α, β)], so δ1 ⊆ (α, β)].

Next, suppose (b) holds. Since α 6= β, the blocks A1 to Ar cannot be the same as the

blocks C1 to Ct. Hence, swapping α and β if necessary, let (a1, a2) ∈ kerα \ kerβ. Now let n \
{i, a1, a2} = {i1, . . . , in−3}, let τ =

[
a1 i, a2 i1 . . . in−3

a1 i, a2 i1 . . . in−3

]
, and note that τα =

[
a1 i, a2 i1 . . . in−3

j B1 B2 . . . Bs

]
but τβ =

[
a1 i, a2 i1 . . . in−3

j B1 B2 . . . Bs

]
. Hence we have (τα, τβ) ∈ δ1 \∆, so Lemma 5.28(iii) gives us

δ1 = (τα, τβ)] ⊆ (α, β)].

Next, suppose (c) holds. Let τ = (i, i′)e, the bipartition containing just one non-trivial block

{i, i′}, let n \ {i} = {i1, . . . , in−1}, and note that τα =
[
i i1 · · · in−1

j B1 · · · Bs

]
but τβ =

[
i i1 · · · in−1

j B1 · · · Bs

]
.

Again we have (τα, τβ) ∈ δ1 \∆, so by Lemma 5.28(iii) we have δ1 = (τα, τβ)] ⊆ (α, β)].
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Next, suppose (d) holds. Again let n\{i} = {i1, . . . , in−1}, let τ =
[
i A1 · · · Ar

i i1 · · · in−1

]
, and note

that τα = α and τβ =
[
i A1 A2 · · · Ar

l j B2 · · · Bs

]
, so that τα and τβ have the same kernel and cokernel

but a different transversal. We have (τα, τβ) ∈ δ1 \ ∆, so by Lemma 5.28(iii) we again have

δ1 = (τα, τβ)] ⊆ (α, β)].

Finally, suppose (e) holds. Let n\{i, k} = {k1, . . . , kn−2}, let τ be the bipartition with non-

trivial blocks {i, i′} and {k, k′}, and note that τα =
[
i k k1 . . . kn−2

j l B2 . . . Bs

]
and τβ =

[
k i k1 . . . kn−2

l j B2 . . . Bs

]
We have (τα, τβ) ∈ δ1 \∆, so again by Lemma 5.28(iii) we have δ1 = (τα, τβ)] ⊆ (α, β)].

We have now considered all 5 cases, and shown that we always have δ1 ⊆ (α, β)]. Hence

λ1 ⊆ (α, β)], and the proof of (i) is complete. Note that (ii) follows by a symmetric argument.

For (iii), suppose (α, β) ∈ R0 \ (ρ0 ∪ λ0). Since rankα = rankβ = 0, we may write α =[
A1 · · · Ar

B1 · · · Bs

]
and β =

[
C1 · · · Ct

D1 · · · Du

]
, noting that, since (α, β) /∈ ρ0, we must have {A1, . . . , Ar} 6=

{C1, . . . , Ct}. By Lemma 5.25, we have R0 = λ0 ∨ ρ0, so we will prove (α, β)] contains R0

by showing that it contains both λ0 and ρ0. Let γ = αβ =
[
A1 · · · Ar

D1 · · · Du

]
. This gives us

(γ, β) ∈ λ0 \∆, so by Lemma 5.28(i) we have λ0 = (γ, β)] = (αβ, ββ)] ⊆ (α, β)]. By a similar

argument we have ρ0 ⊆ (α, β)], and hence R0 ⊆ (α, β)]. It is obvious that (α, β)] ⊆ R0, so (iii)

is complete.

Finally, for (iv), suppose (α, β) ∈ R1 \ (λ1 ∪ ρ1 ∪ R0), as in the premise. Since the pair is

in R1, the elements’ ranks must both be at most 1; but since it is not in R0, at least one must

be of rank 1 (without loss of generality, assume α). Since the pair is in neither λ1 nor ρ1, we

also know that kerα 6= kerβ and cokerα 6= cokerβ. Hence we can write α =
[
i A1 · · · Ar

j B1 · · · Bs

]
,

and β =
[
k C1 · · · Ct

l D1 · · · Du

]
or β =

[
k C1 · · · Ct

l D1 · · · Du

]
, with

{
{i}, A1, . . . , Ar

}
6=
{
{k}, C1, . . . , Ct

}
. Now,

as in (iii), since R1 = λ1 ∨ ρ1, by Lemma 5.25, we prove that R1 ⊆ (α, β)] by showing that

(α, β)] contains λ1 and ρ1. We will prove the statement for λ1, and observe that ρ1 follows by a

similar argument. Let us proceed by solving three cases separately. One of the following three

statements about β must hold:

(f) rank(β) = 0;

(g) rank(β) = 1 and j = l;

(h) rank(β) = 1 and j 6= l.

First, suppose (f) or (g) holds. Let γ =
[
j B1 · · · Bs

j B1 · · · Bs

]
. Certainly we have αγ = α. To find

βγ we separate into two cases: in case (f) we have βγ =
[
k C1 · · · Ct

j B1 · · · Bs

]
, and in case (g) we

have βγ =
[
k C1 · · · Ct

j B1 · · · Bs

]
. In either case, we have (αγ, βγ) ∈ λ1 \ (λ0 ∪ δ1), so by (i), we have

λ1 = (αγ, βγ)] ⊆ (α, β)], completing this case.

Next, assume (h) holds. Write n \ {j} = {j1, . . . , jn−1}, and let τ = (j, j′)e, the bi-

partition whose only non-trivial block is {j, j′}. Then we have ατ =
[
i A1 · · · Ar

j j1 · · · jn−1

]
and

βτ =
[
k C1 · · · Ct

j j1 · · · jn−1

]
. We have (ατ, βτ) ∈ λ1 \ (λ0 ∪ δ1), so again by (i), we have λ1 =

(ατ, βτ)] ⊆ (α, β)], completing this case. This completes the proof that λ1 ⊆ (α, β)], and the

proof that ρ1 ⊆ (α, β)] is similar. Hence λ1∨ρ1 = R1 ⊆ (α, β)]. It is obvious that (α, β)] ⊆ R1,

and so the proof of (iv) is complete.
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Lemma 5.30. Let α, β ∈ Mn, where n ≥ 2, and let k ∈ {2, . . . , n}. We have Rk = (α, β)] if

and only if (α, β) ∈ Rk \Rk−1.

Proof. Since Rk and Rk−1 are congruences, the “only if” part of the statement is obvious. For

the right-to-left implication, let k ∈ {2, . . . , n}, and let (α, β) ∈ Rk \ Rk−1. For brevity, let

σ = (α, β)]. It is clear that σ ⊆ Rk since Rk is a congruence. We now only need to prove that

Rk ⊆ σ.

For (α, β) to lie in Rk \ Rk−1, at least one of α and β must have rank k. Without loss

of generality, assume rankα = k and rankβ ≤ k. There must be exactly k transversals in

α, and since α ∈ Mn they must all have size 2. Let domα = {i1, . . . , ik} and codomα =

{j1, . . . , jk}, with i1 < . . . < ik and j1 < . . . < jk; since α is planar, its transversals must be

{i1, j′1}, . . . , {ik, j′k}.
Our proof now splits into two cases. Since α 6= β and rankβ ≤ rankα, one of the following

holds:

(a) α and β have precisely the same transversals {i1, j′1} . . . {ik, j′k}, but their other blocks differ

– without loss of generality, assume there exists some (a1, a2) ∈ kerα \ kerβ with a1 < a2;

(b) there exists a transversal {ix, j′x} of α that is not a block of β.

We will now prove two facts: firstly that (γ, γ̂) ∈ σ for all γ ∈ Ik; and secondly that R0 ⊆ σ.

For the first claim, let γ ∈ Ik, and let r = rank γ ≤ k. If r = 0, then γ = γ̂ and the claim

is satisfied; hence let us assume r ≥ 1. We may write γ =
[
c1 . . . cr C1 . . . Ct

d1 . . . dr D1 . . . Du

]
. For ease of

notation, we will also write n\{i1, . . . , ir} = {a1, . . . , an−r} and n\{j1, . . . , jr} = {b1, . . . , bn−r}.
First, assume (a) holds. Let x be the maximal number such that 1 ≤ x ≤ r and ix < a1 (if this

is not possible, we instead let x be the minimal number such that a2 < ix, producing a case

the same as what we describe, but flipped horizontally). Note that since α is planar we must

have ix < a1 < a2 < ix+1 if ix+1 exists. Now define

τ =
[
c1 . . . cx−1 cx cx+1 . . . cr C1 . . . Ct

i1 . . . ix−1 a2 ix+1 . . . ir ix, a1 a3 . . . an−r

]
and

κ =
[
j1 . . . jr b1 . . . bn−r

d1 . . . dr D1 . . . Du

]
.

We have τακ = γ, but

τβκ =
[
c1 . . . cx−1 cx+1 . . . cr cx C1 . . . Ct

d1 . . . dx−1 dx+1 . . . dr dx D1 . . . Du

]
,

a copy of γ but with the transversal {cx, d′x} broken into singletons. See Figure 5.31 for an

illustrative example. Hence γ is σ-related to a bipartition with the same kernel and cokernel but

lower rank. Applying this procedure repeatedly and using transitivity relates γ to a bipartition

with the same kernel and cokernel but rank 0, that is, γ̂. Hence (γ, γ̂) ∈ σ in case (a).

For case (b), instead let

τ =
[
c1 . . . cr C1 . . . Ct

i1 . . . ir a1 . . . an−r

]
and κ =

[
j1 . . . jr b1 . . . bn−r

d1 . . . dr D1 . . . Du

]
.

This gives us τακ = γ, but τβκ equal to a bipartition γ′ which shares a kernel and cokernel

with γ but which has a lower rank. Hence we have (γ, γ′) ∈ σ, and repeating this process

eventually gives (γ, γ̂) ∈ σ.
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α = β =

γ =
τακ
τβκ

}
= =

Figure 5.31: Splitting a transversal of γ in Lemma 5.30 case (a).

Next we will show that R0 ⊆ σ – that is, that σ relates any pair of elements of rank 0. We

do this by showing that any element γ of rank 0 is σ-related to ∅e, the bipartition consisting

of just singletons; our claim follows by transitivity. Let γ =
[
C1 . . . Ct

D1 . . . Du

]
.

First, assume (a) holds. We will show that any upper or lower block in γ can be split

into singletons to obtain a bipartition which is σ-related to γ. First, splitting an upper block:

choose an upper block of γ of size 2 (assume without loss of generality that it is C1), label its

elements C1 = {c1, c2} with c1 < c2. Recall that (a1, a2) ∈ kerα\kerβ, and write n\{a1, a2} =

{a3, . . . , an}. We define τ to be the bipartition with transversals {c1, a′1} and {c2, a′2}, upper

(non-transversal) blocks C2, . . . , Ct, and the rest singletons. Observe that ταγ = γ but τβγ is

equal to a copy of γ with the block {c1, c2} split into two blocks {c1} and {c2}. This process is

illustrated in Figure 5.32.

α = β =

γ =
ταγ
τβγ

}
= =

Figure 5.32: Splitting an upper block of γ in Lemma 5.30 case (a).

Next, splitting a lower block: choose a lower block of γ of size 2 (assume without loss of

generality that it is D′1), and label its elements D′1 = {d′1, d′2} with d1 < d2. Now choose

two indices p, q ∈ {1, . . . , k} such that ip < iq < a1 < a2 (or, if this is impossible, such that

a1 < a2 < ip < iq or iq < a1 < a2 < ip). Let τ be the bipartition of rank 0 with the upper blocks

of γ and the lower blocks {i′p, a′2}, {i′q, a′1}, and the rest singletons. Let κ be the bipartition

with 2 transversals {jp, d′1} and {jq, d′2}, lower blocks D′2, . . . , D
′
u, and the rest of its blocks

singletons. Then τακ = γ, but τβκ is equal to a copy of γ with the block {d′1, d′2} split into
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two singletons. This process is illustrated in Figure 5.33.

α = β =

γ =
τακ
τβκ

}
= =

Figure 5.33: Splitting a lower block of γ in Lemma 5.30 case (a).

In either of the block-splitting procedures just mentioned, it should be noted that we cannot

split a block enveloped by another block: that is, we cannot split a block {x2, x3} if there exists

another block {x1, x4} with x1 < x2 < x3 < x4. However, we can first split the block {x1, x4}
leaving the block {x2, x3} to be split later.

We have now shown that we can split any block of γ to produce a bipartition σ-related to

γ. Hence, we can split every block and we reach ∅e, showing that (γ,∅e) ∈ σ, and therefore

that any two bipartitions of rank 0 are σ-related, in case (a).

Now assume (b), and recall that γ =
[
C1 . . . Ct

D1 . . . Du

]
. Once again, assume without loss of

generality that C1 has size 2, so C1 = {c1, c2}. By (b) we have some transversal {ix, j′x} in α

but not in β; let {iy, j′y} be another transversal from α, which may or may not be in β. Let

τ be the bipartition with transversals {c1, i′x} and {c2, i′y}, upper blocks C2, . . . , Ct, and lower

blocks all singletons. Let κ be the bipartition of rank 0 with lower blocks D′1, . . . , D
′
u, an upper

block {jx, jy}, and the rest singletons. We have τακ = γ, but τβκ equal to a copy of γ with the

upper block {c1, c2} split into singletons. This can be performed repeatedly to split all upper

blocks, and a similar process can be applied to split all lower blocks. Note, again, that a block

enveloped by another block cannot be split immediately. We can now see that, as in (a), any

two bipartitions of rank 0 are σ-related.

We have now proven the two facts in both cases, so we can proceed to show that Rk ⊆ σ.

Let (µ, ν) ∈ Rk. If µ = ν then certainly (µ, ν) ∈ σ; otherwise, µ and ν must both lie in Ik.

Hence by the first fact, we have (µ, µ̂), (ν, ν̂) ∈ σ. By the second fact, since rank µ̂ = rank ν̂ = 0,

we have (µ̂, ν̂) ∈ σ. Hence we have µ σ µ̂ σ ν̂ σ ν, and by transitivity we can see (µ, ν) ∈ σ, as

required.

We have now classified the generating pairs of all the congruences in Γ, and we find that

this exhausts all the pairs in Mn ×Mn, as summarised in Table 5.27. This proves that Γ

includes all the principal congruences on Mn, and since we know from Lemmas 5.25 and 5.26

that these are closed under taking joins, we can conclude that there are no other congruences

on Mn. Hence the congruence lattice in Figure 5.24 is complete, and we have completed the

proof of Theorem 5.23.

We will state one corollary regarding the retractable ideals of Mn.
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Corollary 5.34. Let n ≥ 2 and k ≥ 2. The ideal Ik of Mn is not retractable, and hence the

congruence Rk is not a lifted congruence.

Proof. Assume that k ≥ 2, and that Ik exists (i.e. n ≥ 2) and is retractable. Then we can

choose a liftable congruence and use it with Ik to create a lifted congruence. We choose L I0 ,

which gives us the lifted congruence

λk = ζIk,L I0 = {(α, β) : rankα, rankβ ≤ k, cokerα = cokerβ} ∪∆Mn
.

Observe that λk is not equal to any of the congruences described in Theorem 5.23, and so it is

not a congruence on Mn, a contradiction.

5.4 Other monoids

In Section 5.3 we described the congruences of the Motzkin monoid. These constructions and

results were originally described in [EMRT18], culminating in the classification of the Motzkin

monoid’s congruence lattice as shown in Figure 5.24. However, that paper also considers other

diagram semigroups: the bipartition monoid Pn and several of its other submonoids. Though

these monoids are not the subject of this chapter, their congruence lattices are closely related

to that of Mn, and they use much of the preliminary theory described in Section 5.2. We will

therefore briefly describe these monoids and outline their congruence lattices, for completeness,

referring the reader to [EMRT18] for a full explanation.

5.4.1 IN-pairs

Before we can meaningfully describe the congruences of the other monoids in this section, we

must make a definition which extends that of a lifted congruence (Definition 5.14) by further

relating elements outside the ideal I, using a subgroup N that lies above I in the order of

J -classes.

Definition 5.35 ([EMRT18, Definitions 3.16 & 3.17]). Let S be a finite semigroup. An IN-

pair on S is a pair (I,N) consisting of:

• an ideal I of S; and

• a normal subgroup N of some maximal subgroup of S that lies in a regular J -class of S

that is minimal among the J -classes in S \ I.

The IN-pair (I,N) is called retractable if the following hold:

(i) I is retractable (Definition 5.10);

(ii) |Nx| = |xN | = 1 for each x in the minimal ideal of S.

In the same way we associated to a retractable ideal I and liftable congruence σ the lifted

congruence ζI,σ (Definition 5.14), we can associate to a rectractable IN-pair (I,N) and liftable

congruence σ a relation ζI,N,σ defined by

ζI,N,σ = ζI,σ ∪ {(sxt, syt) ∈ J × J : x, y ∈ N and s, t ∈ S1},
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where J is the J -class containing N .

We also define a relation which can always be built from an IN-pair, whether it is retractable

or not. If (I,N) is an IN-pair, then let the relation RI,N be defined by

RI,N = RI ∪ {(sxt, syt) ∈ J × J : x, y ∈ N and s, t ∈ S1},

where J is the J -class containing N . This can be viewed as an extension of the definition of a

Rees congruence RI . It turns out that both the relations ζI,N,σ and RI,N are congruences on S

[EMRT18, Proposition 3.22]. We will use these to describe congruences on the other monoids

considered in the following section.

Note that two IN-pairs (I,N1) and (I,N2) may contain normal subgroups N1 and N2 from

two different maximal subgroups G1 and G2 of J (which must be isomorphic to each other).

It turns out that all possible congruences ζI,N,σ and RI,N can be found using the normal

subgroups of just one maximal subgroup of J , and that it does not matter which subgroup is

chosen. We will therefore simply consider the isomorphism class of a maximal subgroup in J ,

without needing to specify which precise subgroup we are working with.

5.4.2 Results

We will now consider a number of submonoids in turn, giving the classification of their congru-

ences. The total number of congruences of each monoid is shown in Table 5.36.

Monoid Size Number of congruences

Sn n! 3

In
∑n
k=0

(
n
k

)
n!

(n−k)! 3n− 1

POIn
(

2n
n

)
n+ 1

Mn

∑n
k=0

(
2n
2k

)
Ck n+ 7

PPn C2n n+ 7

Bn (2n− 1)!! 3
2n+ 5

2 or 3
2n+ 13

Jn Cn
1
2n+ 7

2 or 1
2n+ 7

PBn
∑n
k=0

(
2n
2k

)
(2k − 1)!! 3n+ 7

Pn B2n 3n+ 7

Table 5.36: The number of congruences on various diagram monoids. Numbers shown are
correct for n ≥ 5.

We saw in Example 1.81 a way in which partial transformations lie in the partition monoid

Pn. We will therefore start with three monoids of partial transformations which embed into

Pn as submonoids: Sn, In, and POIn. For all the monoids below, we assume n ≥ 3, since any

lower n has very few elements and is rather trivial to solve.

Symmetric group Sn

The symmetric group Sn is isomorphic to the subgroup of Pn consisting of all bipartitions of

rank n with blocks of size precisely 2. Since Sn is a group, its congruences are described by

157



its normal subgroups (see Section 3.1.2). These normal subgroups are well known: the trivial

group {id}, the alternating group An, the whole symmetric group Sn itself, and uniquely in

the case that n = 4, the Klein 4-group K4 = 〈(1 2)(3 4), (1 3)(2 4)〉. For n ≥ 3 these normal

subgroups (and hence these congruences) are all distinct.

Symmetric inverse monoid In

Recall that the symmetric inverse monoid In consists of all the partial permutations of rank up

to n under composition. This embeds into Pn as in Example 1.81 as the submonoid consisting

of all bipartitions with trivial kernel and cokernel.

The ideals of In form a chain with respect to containment, and are precisely the sets

Ik = {α ∈Mn : rankα ≤ k},

for k ∈ {0, . . . , n}, as is the case for Pn and Mn.

The congruences of In were classified in [Lib53], and are reformulated in the context of

IN-pairs as follows.

Theorem 5.37 ([EMRT18, Theorem 4.1]). Let In be the inverse symmetric monoid of degree

n, for n ≥ 0. The congruences of In form a chain, and are as follows:

• the Rees congruences Rk corresponding to the ideals Ik, for k ∈ {0, . . . , n};

• the congruences RI,N corresponding to the IN-pairs (Ik−1, N) for k ∈ {2, . . . , n} and

N ∈ {K4,Ak,Sk} being any non-trivial normal subgroup of Sk (the group isomorphic to

a maximal subgroup of Jk).

Note that Ak and Sk will be used for every k ∈ {2, . . . , n}, but K4 will only be used when

k = 4. Since A2 is trivial, we have RI1,A2
= R1. Note also that, since there is only one

bipartition in In of rank 0, we have R0 = ∆In . As an example, the congruences of I6 are as

follows:

∆I6 = R0 ⊂ R1

⊂ RI1,S2 ⊂ R2

⊂ RI2,A3
⊂ RI2,S3 ⊂ R3

⊂ RI3,K4 ⊂ RI3,A4 ⊂ RI3,S4 ⊂ R4

⊂ RI4,A5
⊂ RI4,S5 ⊂ R5

⊂ RI5,A6
⊂ RI5,S6 ⊂ R6 = ∇I6 .

Order-preserving partial permutation monoid POIn

The monoid POIn of all order-preserving partial permutations embeds into Pn as the submonoid

consisting of all the planar bipartitions with trivial kernel and cokernel. An element of POIn is

defined by its domain and codomain, so POIn contains
(
n
r

)2
elements of rank r, or

∑n
r=0

(
n
r

)2
=(

2n
n

)
elements in total [OEIS, A000984].
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Its ideals have the same description as for In, and its congruences are all Rees. Hence the

congruences of POIn form the chain

∆POIn = R0 ⊂ R1 ⊂ R2 ⊂ . . . ⊂ Rn = ∇POIn .

This is shown in [Fer01, Proposition 2.6].

Planar bipartition monoid PPn

The planar bipartition monoid PPn simply consists of all the planar bipartitions in Pn. It

therefore contains the Motzkin monoid, which has the additional restriction that a bipartition’s

blocks have size 1 or 2. The planar bipartition monoid PPn has a number of elements equal to

the Catalan number C2n [OEIS, A000108]. Its congruence lattice is in fact isomorphic to that

of Mn, and its congruences have the same descriptions (detailed in Theorem 5.23) [EMRT18,

§7].

Brauer monoid Bn

The Brauer monoid Bn consists of all the bipartitions in Pn whose blocks all have size 2. The

Brauer monoid contains

(2n− 1)!! = (2n− 1) · (2n− 3) · · · 5 · 3 · 1

elements in total [OEIS, A001147]. Since each block in Bn must have size 2, the monoid only

contains elements with rank equal to n (mod 2) – in particular, Bn never contains both an

element of rank 0 and an element of rank 1. For this reason, in classifying the congruences of

Bn, we must consider two different cases: one in which n is odd, and one in which n is even.

The odd case is by far the simpler. All bipartitions in Bn are odd in this case, so the

Rees congruences are {R1, R3, . . . , Rn}. We also have lifted congruences {δ1, λ1, ρ1} which are

defined in the same way as for Mn. Finally, via IN-pairs, we have RIk−2,Ak
and RIk−2,Sk for

each k ∈ {3, 5, . . . , n}.
In the even case, there are many more congruences. All bipartitions are even, so the Rees

congruences are {R0, R2, . . . , Rn}. We also have lifted congruences

{ζI0,∆, ζI0,L I0 , ζI0,RI0 , ζI2,∆, ζI2,L I0 , ζI2,RI0},

which we denote, in a way similar to the Motzkin monoid, as {δ0, λ0, ρ0, δ2, λ2, ρ2}. Some more

congruences arise from IN-pairs: (I0,S2) gives rise to

δS2 = ζI0,S2,∆, λS2 = ζI0,S2,L I0 , ρS2 = ζI0,S2,RI0 , RI0,S2 ;

and (I2,K4) gives rise to

δK4 = ζI2,K4,∆, λK4 = ζI2,K4,L I0 , ρK4 = ζI2,K4,RI0 , RI2,K4 .

Finally, we have RIk−2,Ak
and RIk−2,Sk for each k ∈ {4, 6, . . . , n}.

These results are proven in [EMRT18, §8], and the lattices are shown in Figure 5.38.

159

https://oeis.org/A000108
https://oeis.org/A001147


Rn

RI4,A6

R4

RI2,S4

RI2,A4

RI2,K4

ρK4λK4

δK4

R2

ρ2λ2

δ2

RI0,S2

ρS2λS2

δS2

R0

ρ0λ0

δ0

= ∇Bn

= ∆Bn

Rn

RI3,A5

R3

RI1,S3

RI1,A3

R1

λ1 ρ1

δ1

= ∇Bn

= ∆Bn

Figure 5.38: Congruence lattice of Bn for n ≥ 5 when n is odd (upper left) and even (lower
right).
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Jones monoid Jn

The Jones monoid Jn is the submonoid of Pn consisting of all planar bipartitions with blocks

of size 2. By this definition, we can see that Jn = PPn ∩ Bn. Its size is given by the Catalan

number Cn [OEIS, A000108].

As with the Brauer monoid, we consider two different cases based on whether n is odd or

even; however, the congruence lattices are much simpler. If n is odd, then the only congruences

are δ1, λ1, ρ1, and the Rees congruences {R1, R3, . . . , Rn}. If, on the other hand, n is even, then

the congruence lattice is isomorphic to that of Mn/2, and its description can be obtained by

doubling each number in the description of that lattice. That is, the congruences are precisely

{δ0, δ2, λ0, λ2, ρ0, ρ2, R0, R2, . . . , Rn}.

These results are proven in [EMRT18, §9], and the lattices are shown in Figure 5.39.

Rn

R4

R2

λ2 R0 ρ2

λ0 δ2 ρ0

δ0

= ∇Jn

= ∆Jn

Rn

R5

R3

R1

λ1 ρ1

δ1

= ∇Jn

= ∆Jn

Figure 5.39: Congruence lattice of Jn for n ≥ 4 when n is odd (left) and even (right).

Bipartition monoid Pn and partial Brauer monoid PBn

Finally, we can state the congruence lattice of the entire bipartition monoid Pn. As in the case

of the Motzkin monoid, we have Rees congruences {R0, R1, . . . , Rn} and lifted congruences

{δ0, δ1, λ0, λ1, ρ0, ρ1}. The additional congruences on Pn come from IN-pairs: the retractable

IN-pair (I1,S2) gives rise to congruences

δS2 = ζI1,S2,∆, λS2 = ζI1,S2,L I0 , ρS2 = ζI1,S2,RI0 , RI1,S2 ;
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and the non-retractable IN-pairs (Ik−1,Ak) and (Ik−1,Sk) give us the congruences RIk−1,Ak

and RIk−1,Ak
, for k ∈ {3, . . . , n}. Uniquely for k = 4 we also have the IN-pair (I3,K4), yielding

the congruence RI3,K4 . These are all the congruences on Pn, as is proven in [EMRT18, §5].

The lattice is shown in Figure 5.40.

We should also mention the partial Brauer monoid PBn, the submonoid of Pn consisting of

all the bipartitions with blocks of size 1 or 2. It has

n∑
k=0

(
2n

2k

)
(2k − 1)!!

elements [OEIS, A066223], as shown in [Hd14, 2.1]. Again we can see that this monoid contains

the Motzkin monoid; in fact, it is clear from the definitions that Mn = PPn ∩ PBn. Its

congruence lattice has the same description as that of Pn [EMRT18, §6], and is therefore also

shown in Figure 5.40.
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Rn

R3

RI2,S3

RI2,A3

R2

RI1,S2

ρS2λS2

δS2

R1

ρ1λ1

δ1

R0

ρ0λ0

δ0

= ∇Pn

= ∆Pn

Figure 5.40: Congruence lattice of Pn (or PBn) for n ≥ 3.
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Chapter 6

Principal factors and counting

congruences

In Chapter 5 we classified the congruences of the Motzkin monoid and several related diagram

monoids. This classification was achieved by first calculating the congruence lattices for small

values of n using the computational techniques described in Chapters 2 and 4, and then building

up theory in order to prove a classification for general n. In this chapter we present some more

results about congruences that were obtained in a similar way, by first looking for patterns in

computational results, and then extending the results and attempting to prove them for larger

semigroups. The libsemigroups library and the Semigroups and smallsemi packages for GAP were

used to carry out the initial computations [MT+18, M+19, DM17, GAP18].

6.1 Congruences of principal factors

In this section, we will consider an interesting decomposition of a semigroup related to its J -

classes: a semigroup’s principal factors. After defining this construction, we will consider the

principal factors of the full transformation monoid Tn, and classify their congruences. After

this, we will look at the principal factors of some other, somewhat similar monoids, and classify

their congruences using similar principles.

6.1.1 Principal factors

Recall that a semigroup’s J -classes have a natural partial order ≤, defined as follows: if J1

and J2 are J -classes of S, then J1 ≤ J2 if and only if S1J1S
1 ⊆ S1J2S

1. For finite semigroups

we have J = D , and this partial order is shown on eggbox diagrams by the placement of

D-classes above and below each other, as in Figure 1.56. Given a J -class J of a semigroup S,

we can define the ideal IJ generated by J , which is given by IJ = S1JS1. If J is not minimal,

we can also define the ideal of all J -classes below J , which is given by IJ \ J . Since IJ \ J
is an ideal of IJ , we can use it to take a Rees congruence, and a Rees quotient (see Definition

1.51). This allows us to make the following definition.

164



Definition 6.1. Let S be a semigroup, and let J be a J -class of S. The principal factor of

J is denoted by J , and defined by

J =

{
J if J is the minimal ideal;

IJ/(IJ \ J) otherwise.

If J is not the minimal ideal, then the principal factor J is isomorphic to the set J ∪ {0},
with multiplication ◦ defined by

a ◦ b =

{
ab if a, b, ab ∈ J ;

0 otherwise.

In the case that J is the minimal ideal of S, we will always have ab ∈ J , and so we do not have

the element 0.

Since J is composed of a single J -class, possibly with a zero appended, it is a simple or

0-simple semigroup. Hence, if S is finite, we may identify J with a Rees matrix semigroup

M[G; I,Λ;P ] or Rees 0-matrix semigroup M0[G; I,Λ;P ], by the Rees Theorem (Theorem

3.7). This will help us to classify its congruences later, using the concept of linked triples (see

Definition 3.8).

6.1.2 Full transformation monoid Tn
Now we will consider the principal factors of an important monoid, the full transformation

monoid Tn. Recall that Tn is the monoid consisting of all transformations on the set {1, . . . , n},
for some n ∈ N (Definition 1.62). In order to describe the principal factors of Tn, we must first

consider its Green’s relations, as follows.

Proposition 6.2. Let n ∈ N, and let Tn be the full transformation monoid of degree n. For

two mappings α, β ∈ Tn, the following hold:

• α L β if and only if imα = imβ,

• α R β if and only if kerα = kerβ,

• α D β if and only if rankα = rankβ.

The last part of the above proposition allows us to name the semigroup’s D-classes

Dn
1 , D

n
2 , . . . , D

n
n,

where each Dn
k is the D-class of Tn consisting of transformations with rank k. Then the usual

partial ordering of J -classes (which in a finite semigroup are the same as D-classes) gives

Dn
1 < Dn

2 < · · · < Dn
n.

Inside a given D-class Dn
k , elements are divided into L -classes according to their image set;

since all elements have rank k, their images must have size k, and so there are
(
n
k

)
L -classes

in total. Similarly, the elements of Dn
k are divided into R-classes according to their kernel; the

possible kernels are all k-partitions of an n-set, so the total number of R-classes is given by the

Stirling number of the second kind, S(n, k) [OEIS, A008277].

Each H -class inDn
k is the intersection of an L -class and an R-class, so each one corresponds

to an image–kernel pair (hence we will talk about the image and kernel of an H -class). For
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a given kernel with k classes and a given image with k elements, there are k! different ways to

assign image elements to kernel classes – hence there are k! elements in each H -class.

Group H -classes of Tn

To understand the principal factor corresponding to a D-class Dn
k , we need to understand which

of its H -classes are groups and which are not. To determine which H -classes are groups, we

recall that in any semigroup an H -class H is a group if and only if it contains an idempotent

(an element α ∈ H such that αα = α). A transformation α ∈ Tn is an idempotent if and only

if each point in its image is mapped by α to itself, i.e.

iα = i (∀i ∈ imα).

Given an image and a kernel, we can choose a transformation with this condition if and only if

no pair of points in the image are in the same kernel-class – that is, each image point is in a

different kernel-class. Hence an H -class of Dn
k is a group if and only if its image contains one

point from each class of its kernel (i.e. its image is a cross-section of its kernel).

Lemma 6.3. Let k, n ∈ N with k ≤ n, and let Dn
k be the D-class of Tn consisting of the

elements of rank k. The following hold:

(i) For any two distinct R-classes R1 and R2 of Dn
k there is an L -class L such that L ∩R1

is a group H -class, but L ∩R2 is not.

(ii) If k > 1, then for any two distinct L -classes L1 and L2 of Dn
k there is an R-class R such

that L1 ∩R is a group H -class, but L2 ∩R is not.

Proof. For (i), let R1 and R2 be distinct R-classes of Dn
k . These two classes correspond to

distinct kernels P1 and P2, each partitioning {1, . . . , n} into k classes. If k = n then there is

only one possible partition,
{
{1}, . . . , {n}

}
, and so R1 and R2 cannot be distinct. If k < n

then there must be a pair of elements i, j ∈ {1, . . . , n} which are in different classes of P1 but

the same class of P2. Let X be a k-set containing one element from each class of P1, including

i and j – clearly it is a cross-section of P1. But now X contains two elements from one class

of P2, so it is not a cross-section of P2. Hence, if L is the L -class corresponding to image X,

L ∩R1 is a group H -class but L ∩R2 is not a group H -class.

For (ii), let L1 and L2 be distinct L -classes of Dn
k , with 1 < k ≤ n. These two classes

correspond to distinct images of size k in {1, . . . , n}; let us call these images I1 and I2 re-

spectively. Without loss of generality, let I1 = {1, 2, . . . , k}. Since I1 6= I2, there must be an

element i ∈ {1, . . . , k} not in I2. Now consider the k-partition P which puts each element from

{1, . . . , k} in a class on its own, apart from one element j ∈ {1, . . . , k} not equal to i, which

is in a class with all the elements {k + 1, . . . , n} (choosing j 6= i requires k > 1). Now I1 is

a cross-section of P , having precisely one element from each class; but I2 does not have an

element from the class {i}, and so it is not a cross-section of P . Let R be the R-class with

kernel P , and we have that L1 ∩R is a group H -class but L2 ∩R is not.

Principal factors of Tn

As mentioned in Section 6.1.1, any principal factor is either simple or 0-simple, and so it can be

identified with a Rees matrix semigroup or Rees 0-matrix semigroup. Hence, for any k > 1, let
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Dn
k =M0[G; I,Λ;P ], for some group G, index sets I and Λ, and regular matrix P . The rows

and columns of P correspond respectively to the L -classes and R-classes of Dn
k , and G is the

group isomorphic to each of the group H -classes of Dn
k . Since the elements of an H -class here

correspond to all the permutations of its image (all the different ways to assign the k image

points to the k classes of the kernel) this group is isomorphic to the symmetric group Sk.

To consider the congruences of Dn
k , we first recognise the universal congruence ∇Dn

k
. All

the other congruences are in bijective correspondence with the linked triples of Dn
k . Recall the

definition of a linked triples (N,S, T ), from Definition 3.8 – that is, a normal subgroup N E G,

an equivalence relation S on I and an equivalence relation T on Λ, such that the following are

satisfied:

(i) S ⊆ εI , where εI = {(i, j) ∈ I × I | ∀λ ∈ Λ : pλi = 0 ⇐⇒ pλj = 0};

(ii) T ⊆ εΛ, where εΛ = {(λ, µ) ∈ Λ× Λ | ∀i ∈ I : pλi = 0 ⇐⇒ pµi = 0};

(iii) For all i, j ∈ I and λ, µ ∈ Λ such that pλi, pλj , pµi, pµj 6= 0 and either (i, j) ∈ S or

(λ, µ) ∈ T , we have that qλµij ∈ N , where

qλµij = pλip
−1
µi pµjp

−1
λj .

We shall first find all the triples which satisfy conditions (i) and (ii), and then we shall show

that in this case all of them satisfy condition (iii).

First, we should observe that an element pλi is non-zero if and only if the corresponding

H -class is a group. To see this, let us denote the H -class as Hλi and recall Proposition 1.55.

First assume that pλi 6= 0: this gives us an idempotent (i, p−1
λi , λ) ∈ Hλi, which shows that Hλi

is a group. Conversely, assume that pλi = 0: any two elements (i, x, λ) and (i, y, λ) from Hλi

multiply to give 0, violating closure, so Hλi is not a group.

By Lemma 6.3 we can see that for any pair of columns i, j ∈ I there exists a row λ ∈ Λ

such that pλi 6= 0 = pλj . Hence εI = ∆I . Similarly, in the limited case that k > 1, Lemma 6.3

gives us that for any pair of rows λ, µ ∈ Λ there exists a column i ∈ I such that pλi 6= 0 = pµi.

Hence if k > 1 then we have εΛ = ∆Λ.

Linked triples for rank 1

First let us consider the linked triples of Dn
1 . Since this D-class consists of the transformations

with rank 1, its elements have n possible images,

{1}, {2}, . . . , {n}

and only one possible kernel, {
{1, . . . , n}

}
.

Hence the matrix P of Dn
1 has n rows and 1 column. Since Dn

1 is simple, this means that it is

a right zero semigroup. Later in this chapter we will see that every equivalence on a right zero

semigroup is a congruence (see Theorem 6.16). For now we will classify the congruences using

linked triples. Every element in Dn
1 has the form(

1 2 · · · n

i i · · · i

)
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for some i ∈ {1, . . . , n}, so each element is an idempotent in its own H -class. Hence each

H -class is a group, so the matrix P has no zeroes, and εΛ = Λ×Λ. The underlying group G of

the Rees 0-matrix semigroup Dn
1 must be trivial, since each H -class contains just one element.

Taking all this information together, we can classify all the triples (N,S, T ) which satisfy

conditions (i) and (ii) as follows:

• N must be a normal subgroup of the trivial group – hence N is {id}, the trivial group

itself.

• S must be a subset of the trivial relation ∆I – hence S = ∆I ;

• T may be any equivalence on Λ.

This gives us all triples of the form ({id},∆I , T ), where T can be any partition of the n rows in

Λ. The number of these triples is the Bell number Bn. Now consider condition (iii): since the

underlying group of Dn
1 is trivial, and our chosen normal subgroup N is also trivial, we have

that any four nonzero elements from the matrix P must multiply together to give the identity

id, which will always be in N . Hence all the triples described are linked, and there are Bn of

them.

Linked triples for rank 2 and higher

Now let us consider the linked triples of Dn
k for k ≥ 2. By Lemma 6.3 we know that εI = ∆I

and εΛ = ∆Λ, so any triple satisfying conditions (i) and (ii) must have the form

(N,∆I ,∆Λ)

with freedom only in the choice of a normal subgroup N of G. We may write this simply as

(N,∆,∆) for brevity. This underlying group G is, as stated above, isomorphic to the symmetric

group Sk, so N can be chosen to be any normal subgroup of Sk.

The only normal subgroups of Sk for k = 3 and k ≥ 5 are the trivial group, the alternating

group Ak, and the symmetric group Sk itself. For k = 2 we have {id} = A2 < S2, and for k = 4

alone we must add a fourth normal subgroup, K4 = 〈(1 2)(3 4), (1 3)(2 4)〉.
To see that all these triples also fulfil condition (iii) we use the triviality of the relations

S = ∆I and T = ∆Λ. Observe that (i, j) ∈ S only if i = j, and (λ, µ) ∈ T only if λ = µ. In

the former case, we have

qλµij = pλi(p
−1
µi pµi)p

−1
λi = pλip

−1
λi = id ∈ N,

and in the latter case,

qλµij = (pλip
−1
λi )(pλjp

−1
λj ) = id · id = id ∈ N.

Hence condition (iii) is fulfilled and all of the triples described are linked.

Numbers of Congruence Classes

The universal congruence ∇Dn
k

has, by definition, one congruence class. Any other congruence

on a principal factor has a linked triple (N,S, T ), and we can use this triple to calculate
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the number of congruence classes. Each non-zero class corresponds to a triple (Nx, [i]S , [λ]T )

consisting of a coset of N , a class of S and a class of T , as described in [Tor14a, Theorem 3.2].

Hence the total number of classes is equal to the product of the index |G : N |, the number of

classes of S, and the number of classes of T , plus 1 for the universal congruence. Many of our

congruences have S = ∆I and T = ∆Λ; the total number of classes for these congruences will

be

|G : N | · |I| · |Λ|+ 1 =
∣∣Sk : N

∣∣S(n, k)

(
n

k

)
+ 1.

Summary of Results

We can now describe all the congruences of the principal factors Dn
k of the full transformation

monoid Tn. If (N,S, T ) is a linked triple on Dn
k , then let [N,S, T ] be the non-universal congru-

ence associated with that triple. For brevity, let [N ] = [N,∆I ,∆Λ] and let hnk = S(n, k) ·
(
n
k

)
,

the number of H -classes in Dn
k .

Theorem 6.4. The congruences of Dn
k are shown in Table 6.5.

k Congruences of Dn
k Number Number of classes

1 [{id},∆I , T ](∀T ) Bn from 1 to n

2 [{id}], [S2],∇ 3 2hn2 + 1, hn2 + 1, 1

3 [{id}], [A3], [S3],∇ 4 6hn3 + 1, 2hn3 + 1, hn3 + 1, 1

4 [{id}], [K4], [A4], [S4],∇ 5 24hn4 + 1, 6hn4 + 1, 2hn4 + 1, hn4 + 1, 1

≥ 5 [{id}], [Ak], [Sk],∇ 4 k!hnk + 1, 2hnk + 1, hnk + 1, 1

Table 6.5: Congruences of the principal factors of Tn.

We can now summarise the numbers of congruence classes for some small values of n. Table

6.6 gives the number of classes of each congruence on each principal factor Dn
k of Tn, for n up

to 7. Note that for k = 1 only the set of distinct values has been given, since there are Bn

different congruences which must be considered.

6.1.3 Other semigroups

Now that we have considered the principal factors of the full transformation monoid, we can go

on to consider the principal factors of some other semigroups related to Tn, and classify their

congruences. The proofs are broadly similar to those for Tn, so we will only summarise the

arguments, highlighting the parts where they differ from those in Section 6.1.2. We start by

extending our consideration of transformations to partial transformations and then to partial

permuations; then we consider the three corresponding order-preserving submonoids.

Partial transformation monoid PTn

Recall that PTn is the monoid of all partial transformations on the set n = {1, . . . , n}, that is,

all transformations on some subset of n. In many respects a partial transformation behaves like

a transformation: it has an image, a rank (the size of the image), and a kernel. However, we

should also consider a partial transformation’s domain: the set of points which it maps. The
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n = 1 n = 2 n = 3 n = 4 n = 5

k = 1 1 1 to 2 1 to 3 1 to 4 1 to 5

k = 2 – 3, 2, 1 19, 10, 1 85, 43, 1 301, 151, 1

k = 3 – – 7, 3, 2, 1 145, 49, 25, 1 1501, 501, 251, 1

k = 4 – – – 25, 7, 3, 2, 1 1201, 301, 101, 51, 1

k = 5 – – – – 121, 3, 2, 1

n = 6 n = 7

k = 1 1 to 6 1 to 7

k = 2 931, 466, 1 2647, 1324, 1

k = 3 10801, 3601, 1801, 1 63211, 21071, 10536, 1

k = 4 23401, 5851, 1951, 976, 1 294001, 73501, 24501, 12251, 1

k = 5 10801, 181, 91, 1 352801, 5881, 2941, 1

k = 6 721, 3, 2, 1 105841, 295, 148, 1

k = 7 – 5041, 3, 2, 1

Table 6.6: Number of classes of the congruences on the principal factors of Tn, for n up to 7.

kernel is a partition of the domain. Using these definitions, the Green’s relations of PTn are

described in the same way as those of Tn: the D-classes are determined by rank, the L -classes

by image, the R-classes by kernel, and the H -classes by image and kernel. Idempotents are

also described in the same way: a partial transformation α ∈ PTn is an idempotent if and only

if its image is a cross-section of its kernel.

The D-classes of PTn are somewhat different from Tn. Firstly, there exists an element

0 =
(

1 2 · · · n
− − · · · −

)
with rank 0, so we have an additional D-class Dn

0 . For a given rank k, there

are still
(
n
k

)
possible images with size k, so the D-class Dn

k has
(
n
k

)
L -classes, like Tn. However,

the possibility of points not being in the domain means that there are not just S(n, k) possible

kernels, but S(n + 1, k + 1); the intuition behind this is that, instead of considering all k-

partitions of {1, . . . , n}, we are considering all k+ 1-partitions of {1, . . . , n+ 1}, where the class

containing n+ 1 represents those points outside the domain.

Lemma 6.3 holds true for PTn – in fact, both parts hold even when k = 0 or 1. For k = 0

we simply observe that Dn
0 is trivial, and the two statements follow. The proof given for (i) is

sufficient for PTn when k ≥ 1, so (i) is proven. For (ii), the proof given is only sufficient for

PTn when k ≥ 2. For k = 1, it is proven as follows. We must have I1 = {i} and I2 = {j} with

i 6= j; simply let P =
{
{i}
}

, a cross-section of I1 but not I2. This is not possible in Tn because

any kernel has to contain all the elements of n somewhere; but by missing out points from the

domain, it is possible in PTn.

Since Lemma 6.3 holds for all k, we have εI = ∆I and εΛ = ∆Λ in each principal factor Dn
k .

Hence every linked triple on Dn
k must have the form (N,∆,∆). Each group H -class in Dn

k is

isomorphic to Sk, since it corresponds to all the ways of mapping the k classes of the kernel

onto the k points in the image. Hence the possible normal subgroups N are again the normal
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subgroups of Sk. The congruences are summarised in Table 6.7, where hnk is equal to

S(n+ 1, k + 1)

(
n

k

)
,

the number of H -classes in Dn
k .

k Congruences of Dn
k Number Number of classes

0 [{id}] 1 1

1 [{id}],∇ 2 hn1 + 1, 1

2 [{id}], [S2],∇ 3 2hn2 + 1, hn2 + 1, 1

3 [{id}], [A3], [S3],∇ 4 6hn3 + 1, 2hn3 + 1, hn3 + 1, 1

4 [{id}], [K4], [A4], [S4],∇ 5 24hn4 + 1, 6hn4 + 1, 2hn4 + 1, hn4 + 1, 1

≥ 5 [{id}], [Ak], [Sk],∇ 4 k!hnk + 1, 2hnk + 1, hnk + 1, 1

Table 6.7: Congruences of the principal factors of PTn or In.

Symmetric inverse monoid In

Recall that the symmetric inverse monoid In consists of all partial permutations on the set n;

that is, In is the submonoid of PTn consisting of the injective maps. The Green’s relations of

In are determined by rank, image and kernel, as for PTn, but we can think of the R relation

in a slightly simpler way. Since each element of In is a partial permutation, its kernel must

be the diagonal relation on the domain; hence, two elements are R-related if and only if they

have the same domain. This creates a certain symmetry between the L and R relations: if an

element is written in two-row notation, the set of points in the top row determine its R-class,

and the set of points in the bottom row determine its L -class.

This symmetry makes the classification of the principal factors’ congruences quite straight-

forward. The D-class Dn
k of elements with rank k contains

(
n
k

)
L -classes and

(
n
k

)
R-classes.

The idempotents of In are simply the identity maps (that is, the elements α such that iα = i

for all i ∈ domα) so an H -class is a group if and only if its image and its domain are equal.

Hence each L -class and each R-class contains precisely one group H -class. This is enough to

prove the whole of Lemma 6.3, for all k from 0 to n. Hence, as for PTn, all linked triples on

Dn
k are of the form (N,∆,∆).

There are k! elements with a given image and domain of size k, and if the image and domain

are equal they form a group isomorphic to Sk, so like PTn we have that the choices for N are

all the normal subgroups of Sk. The result is that the congruences of the principal factors of In
have the same description as those of the principal factors of PTn. They can be seen in Table

6.7, where the number of H -classes hnk is in this case given by
(
n
k

)2
.

Order-preserving partial transformations POn

Recall that a partial transformation α ∈ PTn is called order-preserving if, for points i, j ∈ domα,

we have i ≤ j if and only if iα ≤ jα. The order-preserving partial transformations in PTn form

a submonoid which we call POn.
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The Green’s relations have the same description as in PTn, being based on rank, image

and kernel. However, some partitions of n do not occur as kernels in POn, since they cannot

preserve order. Let P be a partition of n which contains three points i < j < k such that i and

k are in the same kernel class, and j is in a different kernel class. Any partial transformation α

with kernel P cannot preserve order, since it must have either jα < iα = kα or iα = kα < jα.

A partition is a valid kernel for POn if and only if it observes the following rule: a point i is

either in the same class as i − 1, or it is the lowest point in its class. Hence, there are not

S(n + 1, k + 1) R-classes in Dn
k , as there are for PTn. The actual number of R-classes in Dn

k

is given by
n∑
i=k

(
n

i

)(
i− 1

k − 1

)
,

as shown in [LU04, Lemma 4.1]. This can be understood in the following way. Since an element

in Dn
k has rank k, the domain can have any size from k to n. Given a domain size i, there are(

n
i

)
choices for the domain. Once we have chosen a domain, we must split the i domain points

into classes. By the above description of a valid kernel, this involves simply choosing which i

of the n points are the lowest in their kernel-class. Point 1 must be lowest, so we have
(
n−1
i−1

)
choices. The exception to this rule is Dn

0 , which simply has one R-class.

Idempotents have the same characterisation as for PTn. Lemma 6.3 holds for all k from 0

to n, as follows. Dn
0 is trivial, so both statements hold for k = 0. The proof given for (i) is

sufficient in this case for all k ≥ 1. To prove (ii) for k = 1, we use the same approach described

for PTn. To prove (ii) for k ≥ 2, let I1 and I2 be the images of L1 and L2 respectively; if we

take the kernel ∆I1 , then I1 is a cross-section of it but I2 is not, so the R-class corresponding

to that kernel satisfies the requirement.

Perhaps the most important difference between POn and PTn is that in POn a given kernel

and image determines a single element, not k! elements, since order must be preserved. This

means that the underlying group of Dn
k is not Sk, but simply the trivial group {id}. This result

puts the principal factors Dn
k into the category of congruence-free semigroups by Proposition

6.11, meaning that the only congruences on Dn
k are ∆ and ∇. Indeed, the only linked triple of

Dn
k is ({id},∆,∆), corresponding to the trivial congruence. This result is summarised in Table

6.8, where hnk is the number of H -classes in Dn
k , given by(

n

k

) n∑
i=k

(
n

i

)(
i− 1

k − 1

)
.

k Congruences of Dn
k Number Number of classes

0 [{id}] 1 1

≥ 1 [{id}],∇ 2 hnk + 1, 1

Table 6.8: Congruences of the principal factors of POn or POIn.

Order-preserving partial permutations POIn

Next we consider the order-preserving partial permuations, which form the monoid POIn =

POn ∩ In. Like In, the L and R relations are determined by image and domain, and so
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Lemma 6.3 is proven in the same way as for In, and applies to all k from 0 to n. Since the

kernel of a partial permutation is always a diagonal relation, we do not encounter any kernels

which cannot preserve order; hence the Green’s class structure of POIn is isomorphic to that of

In. In particular, there are
(
n
k

)2
H -classes in Dn

k . The main difference between POIn and In
is that each H -class contains just one element, since each domain–image pair defines only one

order-preserving element. Hence the underlying group of Dn
k is the trivial group {id}, and so

POIn is congruence-free like POn. This information is summarised in Table 6.8, where in this

case the number of H -classes hnk is equal to
(
n
k

)2
.

Order-preserving transformations On

Finally, we consider the submonoid of Tn consisting of the order-preserving transformations,

On = Tn ∩POn. Since On consists of transformations, an element’s kernel includes every point

in n, as for Tn. Its Green’s relations L , R and D are again based on image, kernel and rank, as

for Tn, so we do not have a D-class Dn
0 . Some R-classes in Tn are not present On, since certain

kernels cannot preserve order: like in POn, the valid kernels are those such that a point i either

is in the same class as i − 1, or is minimal in its class. Hence Dn
k contains

(
n−1
k−1

)
R-classes,

since our only choice is which k − 1 of the n− 1 points in n are minimal, apart from 1. There

are still
(
n
k

)
L -classes, as in Tn. Lemma 6.3 applies to On in the same way as it applies to Tn,

with statement (ii) only applying when k > 1. Hence the linked triples for k ≥ 2 have the form

(N,∆,∆) while the linked triples for k = 1 have the form (N,∆, T ) for other possible values

of T .

Two elements are H -related if and only if they share the same image and kernel. Since

all elements are order-preserving, there is only one choice of element for a given image and

kernel; hence On is H -trivial. So the only choice of N for linked triples is the trivial group

{id}. Hence, when k ≥ 2 the only linked triple on Dn
k is ({id},∆,∆), corresponding to the

trivial congruence; if k = 1, as for Tn, we have a linked triple ({id},∆, T ) for any relation T
on the n L -classes of Dn

1 . The congruences are summarised in Table 6.9, where the number of

H -classes hnk is given by
(
n
k

)(
n−1
k−1

)
.

k Congruences of Dn
k Number Number of classes

1 [{id},∆I , T ](∀T ) Bn from 1 to n

≥ 2 [{id}],∇ 2 hnk + 1, 1

Table 6.9: Congruences of the principal factors of On.

6.1.4 Further work

We have considered the monoids of partial transformations PTn, transformations Tn, and partial

permutations In, and for each of those monoids we have considered the submonoid of order-

preserving elements. In the future, the ideas presented here could perhaps be extended to other

similar submonoids of these three, such as the following submonoids, considered in [EKMW18,

§1.2]:

• the monoids of order-preserving or order-reversing elements: PODn, ODn, and PODIn
respectively;
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• the monoids of orientation-preserving elements: POPn, OPn, and POPIn respectively;

• the monoids of orientation-preserving or or orientation-reversing elements: PORn, ORn,

and PORIn respectively.

We could also consider some important monoids which do not consist of partial transforma-

tions. After the results in Chapter 5, it would be interesting to learn about the congruences of

the principal factors of the Motzkin monoid and other bipartition monoids such as Pn. These

monoids are not as straightforward as the ones we have so far considered; certainly, identifying

the idempotents in a semigroup of bipartitions is more complicated than for partial transfor-

mations [DEE+15, Theorem 5]. However, it is possible that their principal factors’ congruences

could be classified in a similar way.

6.2 The number of congruences of a semigroup

In light of the methods in Chapters 2 and 4 to compute the congruences of a semigroup, and

their implementation in libsemigroups and the Semigroups package, we may be interested in the

number of congruences a given semigroup possesses. At the very least, a semigroup S must

have congruences ∆S and ∇S , which are equal if and only if |S| = 1; so any semigroup has at

least one congruence. For an upper bound, consider that a congruence is an equivalence; the

number of equivalences on a finite set is given by the Bell numbers [OEIS, A000110], so a finite

semigroup S cannot have more congruences than the Bell number B|S|. All finite semigroups

have a number of congruences between these two bounds, but the precise number depends on

the structure of the semigroup.

In this section, we consider how many congruences there are on various semigroups, showing

some computational results on small semigroups, as well as proving some more general results.

6.2.1 Congruence-free semigroups

The notion of a congruence-free semigroup has long been understood, but is presented here for

completeness. Note that any semigroup must have at least the trivial and universal congruences

∆ and ∇; the definition of a congruence-free semigroup is as follows.

Definition 6.10. A semigroup S is congruence-free if it has no congruences other than ∆S

and ∇S .

By the above definition, any congruence-free semigroup has 2 congruences, except the trivial

semigroup, which has only 1 congruence. Note that the language used here differs from that

used in group theory: if a group is congruence-free (and therefore has no proper non-trivial

normal subgroups) it is called a simple group. This is not to be confused with the concept of a

simple semigroup (Definition 3.3).

It is relatively easy to determine whether a finite semigroup is congruence-free, using the

following theorem based partly on material in [How95, §3.7]. A full proof is included in [Tor14a,

Chapter 5].

Proposition 6.11. A finite semigroup S is congruence-free if and only if one of the following

holds:
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(i) S has no more than 2 elements;

(ii) S is a simple group;

(iii) S is isomorphic to a Rees 0-matrix semigroup M0[G; I,Λ;P ] where G is the trivial group,

and P is regular, with all its rows pairwise distinct and all its columns pairwise distinct.

6.2.2 Congruence-full semigroups

We now define a new concept: a congruence-full semigroup, by analogy with the congruence-free

semigroups described in the last section.

Definition 6.12. A semigroup S is congruence-full if every equivalence relation on S is a

congruence.

Since the number of equivalences on a finite set is given by the sequence of Bell numbers

(Bn)n∈N, we can say that a finite semigroup is congruence-full if and only if it has precisely Bn

congruences, where n is the size of the semigroup.

We have already classified all the finite congruence-free semigroups in Proposition 6.11. In

this section we explore finite congruence-full semigroups, culminating in a complete classification

in Theorem 6.16. First we need to build up some knowledge about the Green’s relations of

congruence-full semigroups.

Lemma 6.13. A finite congruence-full semigroup of size greater than 2 has H -trivial minimal

ideal.

Proof. Let S be a finite semigroup with more than 2 elements, and let M be its minimal ideal.

Since M is simple, every H -class of M is a group. We will proceed by considering possible

sizes of the H -classes of M , and showing that any H -class size greater than 1 implies that S

is not congruence-full.

Firstly, let H be an H -class in M with at least 3 elements. Let 1H be the group identity

of H, and let g, h ∈ H \ {1H} with g 6= h. Now let ∼ be (1H , g)e, the equivalence whose only

non-singleton class is {1H , g}. Since g is not the identity, we know that gh 6= h. Hence we have

1H ∼ g but 1Hh � gh, so ∼ is not a congruence. Hence S is not congruence-full.

Instead, let H be an H -class in M with precisely 2 elements. Since |S| ≥ 3 we know that

S \ H is non-empty. If there exists some x ∈ S \M , then let h ∈ H \ {1Hx}, and let ∼ be

(x, h)e; since h 6= 1Hx we have x ∼ h but 1Hx � 1Hh (since (1Hx, 1Hh) is not equal to (x, h)

or (h, x) and is not reflexive) so ∼ is not a congruence. If on the other hand S \M is empty,

then M must contain an H -class other than H. Choose some x ∈ M \H such that x L 1H

(if this is not possible, we can choose x such that x R 1H , and a similar argument holds). Let

h ∈ H \ {1H}, and let ∼ be (x, 1H)e. We have xh R x ��R h, so xh ��R h and in particular

xh 6= h. Hence x ∼ 1H but xh � 1Hh, so ∼ is not a congruence. Either of these cases shows

that S is not congruence-full.

Lemma 6.14. A finite congruence-full semigroup of size greater than 2 has a minimal ideal

which is either L -trivial or R-trivial.
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Proof. Let S be a congruence-full semigroup with more than 2 elements, with a minimal ideal

M which is neither L -trivial nor R-trivial.

We know by Lemma 6.13 that M is H -trivial. Since M is simple and H -trivial, it is a

rectangular band (see Definition 1.59). Let x11, x12, x22 ∈M be pairwise distinct elements with

x11 R x12 L x22, and let ∼ be the relation (x11, x22)e. Since M is a rectangular band, we

have x11x22 = x12 and x11x11 = x11. Hence x11 ∼ x22 but x11x11 � x11x22, and so ∼ is not a

congruence. This means that S is not congruence-full, a contradiction.

Lemma 6.15. A finite congruence-full semigroup of size greater than 2 is either simple or a

zero semigroup.

Proof. Let S be a finite congruence-full semigroup with more than 2 elements, with minimal

ideal M . Let us assume S is not simple; this means that S \M is non-empty. By Lemma 6.14,

M is either L -trivial or R-trivial; without loss of generality let us assume that M is L -trivial

(a similar argument applies for R-triviality). We will start by proving that S contains a zero,

and then we will go on to prove that S is a zero semigroup. Firstly, aiming for a contradiction,

let us assume that |M | > 1.

If S \M contains an idempotent, call it x. Choose m,n ∈ M with m 6= n. Now, either

mx = m or mx 6= m. If mx = m, then let ∼ be (n, x)e: since by L -triviality mn = n, and

since mx = m, we have n ∼ x but mn � mx, so ∼ is not a congruence, a contradiction. If on

the other hand mx 6= m, then let ∼ be (m,x)e: since mx 6= x and mx 6= m and xx = x, we

have m ∼ x but mx � xx, so ∼ is not a congruence, a contradiction.

If instead, S \M does not contain an idempotent, then there must exist some x ∈ S \M
such that x2 ∈ M . Let m ∈ M \ {x2} (this is possible since |M | > 1) and let ∼ be (m,x)e.

Since by L -triviality xm = m, we have m ∼ x but xm � xx, so ∼ is not a congruence, a

contradiction.

We have now shown that |M | > 1 violates the condition that S is congruence-full. Hence

the minimal ideal M must contain precisely one element, 0: we have 0x = x0 = 0 for any

x ∈ S, so 0 is a zero for S. Next we will show that S is a zero semigroup, i.e. that xy = 0 for

all x, y ∈ S. Clearly if x or y is 0 then xy = 0.

Let x, y ∈ S \ {0} with x 6= y. The product xy cannot be equal to both x and y, so without

loss of generality let us assume that xy 6= x. Assume, aiming for a contradiction, that xy 6= 0.

Let ∼ be the relation (x, 0)e; since 0y = 0 and xy 6= x we have x ∼ 0 but xy � 0y, so ∼ is not

a congruence, a contradiction. Hence for distinct x, y ∈ S we have xy = 0.

It only remains to consider whether x2 = 0 for every x ∈ S. Let x ∈ S \ {0} and assume,

aiming for a contradiction, that x2 6= 0. Let y ∈ S \ {0, x} (possible since |S| > 2) and let ∼
be (x, y)e; since xy = 0 but x2 6= 0, we have x ∼ y but xx � xy, so ∼ is not a congruence, a

contradiction. Hence xy = 0 for all x, y ∈ S, so S is a zero semigroup.

We can now state the main theorem of this section, a classification of all the finite congruence-

full semigroups.

Theorem 6.16. A finite semigroup S is congruence-full if and only if one of the following

holds:

(i) S has no more than 2 elements;
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(ii) S is a zero semigroup;

(iii) S is a left zero semigroup;

(iv) S is a right zero semigroup.

Proof. First, observe that if S has 1 or 2 elements, then the only equivalences on S are ∆S and

∇S , both of which are congruences; hence, S is congruence-full.

Instead, let S be a finite congruence-full semigroup of size greater than 2. If S is not simple,

then by Lemma 6.15 it is a zero semigroup. If S is simple, it is equal to its minimal ideal.

Therefore, by Lemma 6.14, S is either L -trivial or R-trivial. For any simple semigroup we

have x R xy L y for all x, y ∈ S. If S is L -trivial, then xy = y for all x, y ∈ S, so S is a right

zero semigroup. If S is R-trivial, then xy = x for all x, y ∈ S, so S is a left zero semigroup.

To prove the converse, we consider zero, left zero, and right zero semigroups in turn. First,

let S be a zero semigroup and let ∼ be an equivalence relation on S. Let x, y, s, t ∈ S such that

x ∼ y and s ∼ t. We have xs = 0 = yt, so xs ∼ yt and therefore ∼ is a congruence. Hence S is

congruence-full.

Alternatively, let S be a left zero semigroup and let ∼ be an equivalence relation on S. Let

x, y, a ∈ S such that x ∼ y. We have ax = a = ay and xa = x ∼ y = ya, so ax ∼ ay and

xa ∼ ya. Hence ∼ is a congruence, so S is congruence-full. A similar argument proves the

statement for right zero semigroups.

Note that some semigroups of size 2 fall into categories (ii), (iii), or (iv) of the above theorem.

However, some semigroups of size 2 are not zero, left zero, or right zero semigroups – for example,

1(1), the trivial group with an identity attached – but these are still congruence-free. Hence all

four cases are required.

6.2.3 Semigroups with fewer congruences

If a semigroup of finite size n is not congruence-full, it has fewer than Bn congruences. If n is 2

or 3, there exist semigroups of size n with precisely Bn−1 congruences. However, for 4 ≤ n ≤ 7,

computational experiments show that there is no semigroup of size n with Bn− 1 congruences,

and it seems unlikely that such a semigroup could be found for any higher n. In this section we

propose a value for the second highest number of congruences possible on a semigroup of size

n – that is, the highest number of congruences on a semigroup that is not congruence-full.

Conjecture 6.17. A finite semigroup that is not congruence-full has at most 2Bn−1 congru-

ences.

This conjecture, which does not yet have a proof, is supported by experimental investigation.

An exhaustive analysis of all semigroups up to isomorphism and anti-isomorphism shows that

the conjecture holds for n ≤ 7, and also reveals a pattern in the semigroups which attain the

limit. This pattern is stated in the next conjecture.

Conjecture 6.18. Let n > 3. There are precisely 7 semigroups (up to isomorphism and

anti-isomorphism) of size n which have 2Bn−1 congruences.
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1

1 1 1

Figure 6.19: Nearly congruence-full semigroup 1. Left-zero semigroup LZn−1 with an idem-
potent c appended. There is a distinguished p ∈ M such that cx = p and xc = x for all
x ∈M .

*

1 1 1

Figure 6.20: Nearly congruence-full semigroup 2. Left-zero semigroup LZn−1 with a non-
idempotent element c appended. Multiplication defined by cx = c2 and xc = x for all x ∈M .

*

1

*

1

Figure 6.21: Nearly congruence-full semigroup 3. Zero semigroup Zn−1 with a zero appended.
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*

1

* 1

Figure 6.22: Nearly congruence-full semigroup 4. Zero semigroup Zn−1 with an idempotent c
appended above the minimal ideal. Multiplication defined by cx = xc = z for all x ∈ Zn−1.

*

1 1

*

Figure 6.23: Nearly congruence-full semigroup 5. Zero semigroup Zn−1 with an idempotent c
appended in the minimal ideal. Multiplication defined by cx = c and xc = z for all x ∈ Zn−1.

*

C2

*

Figure 6.24: Nearly congruence-full semigroup 6. Zero semigroup Zn−1 with an element c
appended in the same H -class as z so that {z, c} ∼= C2. Multiplication defined by c2 = z and
xc = cx = c for all x ∈ Zn−1.
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*

C2

*

Figure 6.25: Nearly congruence-full semigroup 7. Cyclic group C2 = {id, g} with n−2 elements
appended such that xy = id, x id = idx = g (for all x, y ∈ S \ C2).

The seven semigroups are shown and described in Figures 6.19 to 6.25, including diagrams

for n = 4. In the descriptions, M is the minimal ideal of the semigroup. Also, when the zero

semigroup with n− 1 elements Zn−1 is a subsemigroup of S, the zero of Zn−1 is called z.

Of the seven semigroups shown, each of the first 6 contain a copy of either the zero semigroup

Zn−1 or the left zero semigroup LZn−1 as a subsemigroup. The one element outside this

subsemigroup, which we will call c (the child element) is key to understanding why these

semigroups have 2Bn−1 congruences. In each semigroup, there is another element p (the parent

element) such that an equivalence ∼ is a congruence if and only if c ∼ p or [c]∼ is a singleton. In

other words, the child has to be alone or with its parent. Now, since S \ {c} is congruence-full,

we can take any congruence (any equivalence) ∼ on S \ {c} and extend it to a congruence on S

in two different ways: by including c as a singleton, or by including c in the same congruence

class as p. Since there are Bn−1 choices for ∼, this gives us precisely 2Bn−1 congruences on S.

The seventh semigroup (Figure 6.25) is unique in that it does not contain Zn−1 or LZn−1

as a subsemigroup. However, it still fulfils the child–parent condition above, where c = id and

p = g.

Conjecture 6.18 does not have a proof, and it is certainly possible that there may be more

than just these seven semigroups when n > 7. However, the statement is certainly true for sizes

4, 5, 6 and 7, so it seems likely that the pattern may continue. The feasibility of computational

experiments for higher values of n is discussed at the end of Section 6.3.

6.3 Small semigroups

The smallsemi package [DM17] provides a library of all the semigroups of size no more than

8, up to isomorphism. Using this library, it was possible to calculate the congruences of all

1658439 semigroups of size no more than 7, revealing some interesting information about the

numbers of congruences of the semigroups, as well as about the properties of those congruences.

Some of these findings are presented here.

The average number of congruences on a semigroup of size n is shown in Table 6.26. Since

we only have the first few values here, it is hard to make a conjecture about the growth of this

sequence. However, it appears to increase rapidly, as might be expected for a value with upper

bound given by the Bell numbers (see Section 6.2.2).
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n Average number

1 1.00

2 2.00

3 3.67

4 6.38

5 11.25

6 22.71

7 78.51

Table 6.26: Average number of congruences on a semigroup of size n.

It is perhaps surprising to see how many congruences on small semigroups are principal

(i.e. generated by a single pair). Table 6.27 shows, for each size n, the average proportion

of a semigroup’s congruences which are principal. As can be seen, this proportion is very

high for small semigroups, but declines greatly as we increase the size, reaching 29% for an

average semigroup of size 7. Also shown is the number of semigroups whose congruences are

all principal, a number which also decreases rapidly.

The number of principal congruences compares curiously to the number of Rees congruences

(see Definition 1.51): Table 6.28 shows the proportion of congruences that are Rees on an

average semigroup of size n, as well as the number of semigroups whose congruences are all

Rees. For n from 2 to 6, there are fewer Rees congruences than principal congruences, but

when n = 7 there are more Rees than principal; indeed, when n = 7 there are more than twice

as many semigroups with all Rees congruences as all principal congruences. This may indicate

that the proportion of principal congruences decreases faster than the rate of Rees congruences,

as n grows; however, with only the first 7 values, it is difficult to reach any reliable conclusions.

There are 3,684,030,417 semigroups of size 8, more than 2000 times as many as there are

semigroups of size 1 to 7. It would require a very long time to compute all the congruences of

all these semigroups on current hardware, with the algorithms and implementations that have

been described. However, it would be possible to calculate the congruences given enough time,

particularly using a very fast computer – and since each semigroup is processed independently,

it would also be trivial to split the task between multiple computers to speed up the process.

It would be interesting to examine the congruences on all the semigroups of size 8, firstly to

see how the trends in Tables 6.26, 6.27 and 6.28 continue, but also to test Conjectures 6.17 and

6.18.

There are 105,978,177,936,292 semigroups of size 9 [OEIS, A027851], a huge number. No

computational library of all these semigroups currently exists, and if one did, it is likely that it

would take an unreasonably long time to compute all their congruences with anything like the

algorithms described in this thesis. A more feasible area of future work would be to consider

the congruences of all small simple or 0-simple semigroups, or of all small inverse semigroups.

Analysing these categories might reveal interesting trends distinct from those in the generic

case.

It is worth mentioning that, up to isomorphism, almost all semigroups are 3-nilpotent –

that is, they contain a zero, and any product of three elements is equal to zero. In [KRS76] a

construction is given which allows us to enumerate all 3-nilpotent semigroups, and in [Dis10,
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n Semigroups Semigroups with just
principal congruences

Average proportion of
principal congruences

1 1 1 (100%) 100%

2 5 5 (100%) 100%

3 24 21 (88%) 98%

4 188 85 (45%) 90%

5 1915 194 (10%) 77%

6 28634 300 (1.0%) 60%

7 1627672 494 (0.030%) 29%

Table 6.27: Number of principal congruences on semigroups of size n. The first column is a
size n; the second column is the number of semigroups of this size up to isomorphism; the third
column is the number of these semigroups that have only principal congruences; and the final
column is the percentage of a semigroup’s congruences that are principal, on average.

n Semigroups Semigroups with just
Rees congruences

Average proportion of
Rees congruences

1 1 1 (100%) 100%

2 5 2 (40%) 70%

3 24 6 (25%) 67%

4 188 16 (8.5%) 57%

5 1915 64 (3.3%) 49%

6 28634 239 (0.83%) 41%

7 1627672 1046 (0.064%) 31%

Table 6.28: Number of Rees congruences on semigroups of size n. The first column is a size n;
the second column is the number of semigroups of this size up to isomorphism; the third column
is the number of these semigroups that have only Rees congruences; and the final column is the
percentage of a semigroup’s congruences that are Rees, on average.
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Theorem 2.3.5] this is used to produce a formula for the number of 3-nilpotent semigroups up to

isomorphism. As n increases, the proportion of semigroups that are 3-nilpotent increases, until

at n = 9 they account for over 99.9% of all the semigroups of size n: this is shown in [Dis10, Table

2.1], and can also be calculated using the appropriate entries in [DM12, Table 3] and [OEIS,

A027851], or by using the smallsemi software package [DM17]. Hence, the trends shown in Tables

6.26, 6.27 and 6.28 become increasingly dominated by 3-nilpotent semigroups, and so anything

we can say about a congruence on a 3-nilpotent semigroup could help explain the patterns

we see. So far, little has been written about the congruences on a 3-nilpotent semigroup,

but in the future it might be possible to develop a new representation for congruences on 3-

nilpotent semigroups, akin to those described in Section 3.1. Such a representation could make

it possible to compute a close approximation to the number of congruences, Rees congruences,

and principal congruences on an average semigroup of size n without having to consider every

semigroup in turn. This would be desirable, since it would allow us to extend the tables to

higher values of n.
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full transformation monoid, 35

generating pairs, 24
generator

for a congruence, 24
for a normal subgroup, 20
for a semigroup, 19
for an ideal, 31

greatest lower bound, 23
Green’s relations, 31
group, 17
group H -class, 32

homomorphism, 20

ideal, 30
idempotent, 17
identity, 17
image

of a (partial) transformation, 37
of a homomorphism, 21

IN-pair, 156
inverse

of a group element, 17
of a semigroup element, 17
semigroup, 17

irreducible, 79
isomorphism, 20

join, 23
JoinClosure, 130
Jones monoid, 161

kernel
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of a (partial) transformation, 37
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of a congruence, 105
of a homomorphism, 21

kernel–trace pair
for a regular semigroup, 124
for an inverse semigroup, 105

KerTraceFromPairs, 117
Knuth–Bendix, 80

lattice, 23
least upper bound, 23
left

Cayley graph, 19
-compatible, 21
congruence, 21
zero semigroup, 19

letter, 28
liftable congruence, 142
lifted congruence, 143
linked triple, 103

function, 103
LinkedTripleFromPairs, 110
locally confluent, 79
lower block, 38
lower bound, 23

meet, 23
monoid, 17
monomorphism, 20
Motzkin monoid, 140

natural homomorphism, 22
normal

closure, 20
congruence, 105
subgroup, 18
subsemigroup, 105

order-preserving, 37

pair orbit enumeration, 60
PairOrbit, 61
PairsFromLinkedTriple, 115
partial Brauer monoid, 161
partial order, 128
partial permutation, 37
partial transformation, 36
partial transformation monoid, 36
permutation, 36
planar bipartition, 140

monoid, 159
poset, 23
pre-fill, 75
present, 30
presentation, 29

finite, 30
PresentationFromGenerators, 59
primitive idempotent, 101
PrincCongPoset, 128
principal

congruence, 28
factor, 164
ideal, 31

quotient semigroup, 22

rank
of a (partial) transformation, 37
of a bipartition, 39

rectangular band, 34
reduction ordering, 80
Rees

0-matrix semigroup, 102
congruence, 31
matrix semigroup, 104

regular
D-class, 34
?-semigroup, 41
element, 34
matrix, 102
semigroup, 34, 124

represent, 30
retractable

ideal, 142
IN-pair, 156

retraction, 142
Rewrite, 82
rewriting system, 78
right

Cayley graph, 19
-compatible, 21
congruence, 21
regular representation, 35
zero semigroup, 19

rule, 78

semigroup, 17
shortlex ordering, 80
simple

group, 174
semigroup, 101

subgroup, 18
submonoid, 18
subsemigroup, 18
symmetric group, 36
symmetric inverse monoid, 37

terminating, 79
Todd–Coxeter, 63
ToddCoxeter, 67
ToddCoxeterLeft, 74
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ToddCoxeterPrefill, 77
ToddCoxeterRight, 73
ToddCoxeterTwoSided, 72
Trace, 66
trace, 105
transformation, 35

semigroup, 35
transitive closure, 24
transversal, 38
Turing machine, 42
two-row notation, 35
two-sided congruence, 21

Union, 47
union–find, 45
upper block, 38
upper bound, 23

word, 28
word problem, 43

zero, 17
semigroup, 19
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