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Summary 

1. Sexual signals may be acquired or lost over evolutionary time, and are tempered in their 

exaggeration by natural selection.   

2. In the Pacific field cricket, Teleogryllus oceanicus, a mutation (“flatwing”) causing loss of the 

sexual signal, the song, spread in < 20 generations in two of three Hawaiian islands where the 

crickets have been introduced.  Flatwing (as well as some normal-wing) males behave as 

satellites, moving towards and settling near calling males to intercept phonotactic females. 

3. From 2005-2012, we surveyed crickets and their responses to conspecific song, noting the 

morph and number of males and females before and after experimental playbacks. The three 

Hawaiian islands consistently contained different proportions of flatwing crickets, ranging from 

about 90% of males on Kauai to 50% on Oahu to rare on the Big Island of Hawaii.  

4. Flatwing and normal-wing males do not appear to differ in responsiveness to playback, a 

behavior that should influence the likelihood of a male encountering a phonotactic female. 

Instead, male and female crickets from populations in which little to no calling song is 

perceptible during development tended to seek out callers more readily than crickets that 

developed in noisier environments.  Such increased phonotaxis makes females more likely to 

find either the caller to which they are responding or to encounter a flatwing (or normal male 

satellite) that has also been attracted to the song.  

5. Our evidence suggests that pre-existing behavioral plasticity (manifest as flexible responses to 

social – particularly acoustic – information in the environment) is associated with the rapid 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

spread of the flatwing trait.  Different social environments select for differential success of 

flatwing or normal-wing males, which in turn alters the social environment itself. 

 

Introduction 

 Sexual signals may be acquired or lost over evolutionary time (Wiens 2001), with the likelihood 

of either determined by how much natural selection imposes a cost on such signals (Fisher 1958; Lande 

1981). These losses or elaborations may occur over historical time scales, contributing to diversification 

(Boughman 2001; Mendelson & Shaw 2005) or more rapidly, over contemporary time scales of a 

hundred generations or fewer (Hendry et al. 2000).  Sexual trait loss, as opposed to gain or 

exaggeration, has been considered relatively little, although it appears to be widespread across taxa and 

is predicted by theoretical models of sexual selection (Lande 1981; Wiens 2001). Despite the expectation 

that sexual selection should drive rapid evolution, instances of rapid sexual trait evolution are 

surprisingly rare, with a systematic literature survey finding only a handful of examples (Svensson & 

Gosden 2007).   

 Perhaps the reason for the paucity of examples is that situations that permit sexual signal loss 

depend on the population dynamics of the organisms in question. If, for example, high population 

density allows frequent encounters with potential mates, this could compensate for decreased signaling. 

Alternatively, sexual signal loss could mean fewer natural enemies attracted to the conspicuous signal, 

which in turn leads to a low mortality rate. Such a decrease in mortality, particularly early in the 

reproductive period, would increase longevity, and a longer life span would then be expected to 

compensate for reduced encounter rates (Rotenberry et al. 2015). Because signal loss is rare, however, 

we lack empirical evidence for the circumstances surrounding signal loss and for its effects on both the 

signaling sex and the receiver. 
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 Here we address these deficits in our understanding by examining the consequences of rapid 

sexual signal loss in the Pacific field cricket, Teleogryllus oceanicus. T. oceanicus occurs throughout a 

wide range in Australia and Oceania, and has been introduced to the Hawaiian Islands (Zuk et al. 1993). 

In Hawaii, it is attacked by an acoustically-orienting parasitoid fly, Ormia ochracea, which finds its hosts 

by homing in on the male cricket’s sexual signal, its calling song (Cade 1975).  Crickets and flies occur 

together on Oahu, Kauai, and the Big Island of Hawaii. The occurrence of cricket populations with and 

without the fly has enabled us to study how natural selection and sexual selection exerted on the same 

trait has influenced the signal, and suggested that pressure from the fly drove quantitative changes in 

calling behavior as well as song structure (Rotenberry et al. 1996).  

 More recently, a new male morph, “flatwing,” that lacks the stridulatory apparatus necessary 

for calling has arisen and spread on two of the islands where the crickets and flies occur, Kauai and Oahu 

(Zuk et al. 2006; Pascoal et al. 2014).  A third population of crickets on the Big Island of Hawaii has only 

shown an occasional flatwing. The mutation spread on Kauai within about 20 generations, or 5 years, 

providing an example of extremely rapid evolution, as well as sexual signal loss (Zuk et al. 2006) 

However, the flatwing phenotype is morphologically distinct and appears to be under independent 

genetic control in Kauai and Oahu populations, despite sharing the same mode of X-linked Mendelian 

inheritance (Zuk et al. 2006; Tinghitella 2008; Pascoal et al. 2014). Flatwings are protected from fly 

parasitism, but face obvious challenges in mate location and acceptance (Zuk et al. 2006; Bailey et al. 

2008; Tinghitella et al. 2009). 

 This situation affords the opportunity to examine the consequences of the loss of a sexually-

selected trait on males and females in a wild setting. Crickets on the two islands with flatwings are now 

faced with a substantially changed social environment, one that contains far less conspecific song, and 

far fewer opportunities for encountering a mate, than that found on the Big Island. Laboratory 

experiments have shown that the acoustic environment influences phonotaxis in both males and 
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females, such that T. oceanicus reared without conspecific song respond more readily to playback, 

behaving more like satellites in the case of males (Bailey et al. 2010) and, in the case of females, being 

less choosy about their response to song variants (Bailey & Zuk 2008).  Such an effect of social 

environment might allow flatwings to more readily encounter females in the field (Zuk et al. 2014), and 

studies using other, closely related grylline crickets have found similar acoustic influences on behavior 

and life-history traits (Kasumovic et al. 2011; DiRienzo et al. 2012; Kasumovic et al. 2012a, 2012b) . In 

addition, females from island populations are less stringent in their requirement for males to produce a 

courtship song before mating (Tinghitella & Zuk 2009). Zuk et al. (2014) suggested that pre-existing 

behavioral flexibility has allowed the mutation to become established despite its sexual selection costs. 

If crickets already have “rules of thumb” that make satellite behavior, for example, more likely when 

males mature in a relatively silent environment, whether that environment is silent because of low 

population density, poor habitat, or the presence of flatwings and hence few callers is immaterial.    

Since the appearance of large numbers of flatwings on Kauai in 2003, we have conducted regular 

surveys of crickets and their responses to conspecific song on all three islands in Hawaii, noting the sex, 

morph, and number of males and females before and after playback (Zuk et al. 2006).  This long term 

dataset enables us to examine at a fine scale the population dynamics and behavioral manifestations of 

a rapidly evolving system in the wild. We were able to capitalize on the fact that the three different 

Hawaiian islands under study – Kauai, Oahu and Hawaii – have consistently contained different 

proportions of flatwing crickets, ranging from over 90% on Kauai to approximately 50% on Oahu to 

barely detectable on the Big Island. The flies are still present on all three islands (unpublished data).  

 Our purpose here is twofold. First, we document the changes in relative proportions of flatwing 

and normal-wing crickets since the former first appeared, as well as the responses of both sexes to 

playback. Second, we tested the hypothesis that differences in response to the acoustic environment 
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have coincided with different evolutionary and population dynamics of flatwing, normal-wing and 

female crickets on the three islands. Specifically, we address the following questions: 

1. How has the abundance of flatwings relative to normal males changed through time on each 

island? If the ratio of the morphs remains relatively stable on Oahu and Kauai, the acoustic 

environment is similarly consistent over time, creating the opportunity for selection to act on 

the novel genotype. Conversely, fluctuations in relative abundance would suggest that the 

system is unstable, with the potential for local extinction. The contrast between Kauai, which is 

nearly all flatwing, and Oahu, which has substantial numbers of callers, is particularly 

informative. 

2. How does the relative abundance of flatwing and normal-wing males, reflecting the acoustic 

environment experienced by each population, influence the responsiveness of females to 

playbacks? If, as our laboratory experiments suggest, female crickets modify their behavior 

when they mature in an environment without calling song and become more phonotactic and 

less discriminating (Bailey & Zuk 2008), we expect phonotaxis to be more pronounced in the 

more silent environment of Kauai than on the Big Island, with Oahu perhaps intermediate. This 

response would reflect behavioral plasticity rather than a genetic change in response to 

selection. 

3. How have the responses of both males and females changed over time? T. oceanicus breed 

continuously, with 3-4 generations per year (Otte & Alexander 1974). The flatwing mutation was 

widespread on Kauai after fewer than 20 generations (Zuk et al. 2006). The survey data reported 

here span approximately twice that time, which may have afforded the opportunity for selection 

to have acted on phonotaxis. We were therefore interested in examining whether later 

responses to playback were different from those at the start of our surveys.  
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Methods 

Field Methods 

 We conducted cricket surveys and playback experiments on lawns at four sites on three islands:  

Hilo, on the Big Island of Hawaii (University of Hawaii-Hilo campus and First United Protestant Church); 

Manoa (University of Hawaii-Manoa Astronomy Center and Manoa Community Center) and La’ie 

(Brigham Young University-Hawaii) on Oahu; and Kauai (Kauai Research Station of the University of 

Hawaii College of Tropical Agriculture) (Fig. 1).  Initial surveys were conducted in July-August 2005, at 

Hilo, Manoa, and Kauai (Zuk et al. 2006); subsequent surveys were conducted opportunistically through 

November, 2012. Surveys were performed one to two times per year, and included the establishment of 

La’ie as a site in September 2008 (Table 1).  

We delineated 2-m radius circles (survey plots) in areas occupied by crickets (confirmed by 

seeing or hearing them).   We began surveys approximately one hour after sunset, and recorded the 

ambient temperature at their onset.  We collected all crickets within a circle (plot), noting the sex, the 

wing type, and the number of each, and translocated them away from the circle.  Thus we had three 

types of crickets:  females, normal-winged males (“normals”), and flat-winged males (“flatwings”).  We 

then played island-specific calling song for 20 min using speakers placed in the center of the circle. 

Playback intensity was calibrated to an SPL of 70 dB at 1 m. At the end of the playback period we again 

collected all crickets inside the circle, noting the sex and wing morphology of each, and measured the 

distance from each cricket to the speaker.  Counts of crickets from the initial removal period reflect the 

density of each sex and wing type in the occupied area, whereas counts and distances following 

playbacks are related to a phonotactic response.  We deleted from analysis any survey plot in which it 

rained before the conclusion.  To mitigate temperature effects, we also deleted survey plots taken on 

nights < 20°C (see Appendix 1 for details).   
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We produced the island-specific calling songs from field-recorded chirps using either Canary v. 

1.2.4 or Raven Pro software. Each song contained the mean values of the following components of T. 

oceanicus calling song:  pulses per long chirp, long chirp pulse duration, long chirp interpulse interval, 

short chirp pulse duration, short chirp interpulse interval, short chirps per song, pulses per chirp, 

intersong interval and frequency for songs recorded in the field at 24–26°C (see Rotenberry et al. (1996) 

for sonogram). Portions of the survey plot data have been previously reported (Zuk et al. 2006, Pascoal 

et al. 2014). 

Sampling Adequacy 

 Collectively, we termed all the nights collecting data at a given site during a given field trip a 

“site-visit.”  We usually sampled about 6 survey plots per night, depending on the weather.  We were 

unable to conduct the same number of survey plots at every site during every visit as both the number 

of days at a site and their weather conditions varied.  Ultimately we deleted as unrepresentative 5 site-

visits with n = 3 or 2 survey plots.  After incorporating these deletions and those associated with rain or 

low temperatures, our final data set consisted of 31 site-visit samples with a range of 6-33 survey plots 

per visit, for a total of 559 survey plots over 103 nights (Table 1).  Note that this sampling design is not 

balanced, which precluded using certain interaction terms in subsequent analyses. 

Analysis 

For analyses applied to data consisting of either counts or proportions of the number of 

individuals in a survey plot, we used generalized linear models (GLMs; McCullagh and Nelder 1983) as 

implemented in SAS PROC GENMOD (SAS Institute 2013) to account for the lack of normality in error 

terms.  For count data we used a log link function and specified a negative binomial error distribution 

(the latter invariably supplied a better fit than a Poisson distribution); for proportional data we used a 

logit link and binomial error.  Proportional data were analyzed in “events/trials” format (e.g., sex ratio is 
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entered as the number of females and the total number of crickets), where both the number of “events” 

and the number of “trials” are given as the dependent variables.  We evaluated significant differences 

among main effects based on a Tukey-Kramer test for multiple comparisons.   We also assessed 

correlations of cricket abundances across sites through time.  

A complication associated with our data is that in trying to assess correlations of abundances 

across sites based on individual data points (i.e., survey points), no data point at one site can be 

specifically linked to one data point in another site, even though sites are sampled at the same time.  

We adopted a solution provided by Hamlett et al. (2003);  for each pair of sites we employed a mixed-

effects model (PROC MIXED; SAS Institute 2013) using site as the main (random) effect, month of 

sampling as a random effect, and survey plots within months as repeated measures. To determine 

within-site correlations of abundances of cricket types through time we followed a similar approach only 

with type as the main (random) effect (Hamlett et al. 2003, 2004; Luo et al. 2015).  We evaluated 

significance of correlations in both cases following Luo et al. (2015), who provides a method for 

estimating confidence limits.  For analyses relating to before-and-after counts in response to playbacks 

we calculated the difference (after minus before, so that a larger value denoted a more positive 

response) and used a GLM with a normal error distribution.  For distances from speakers at end of 

playbacks, we used a mixed model applied to individuals, treating site and cricket type (and their 

interaction) as main effects and survey plot as a random effect (PROC MIXED; SAS Institute 2013).  

Because we had no distances for flatwings at Hilo and no distances for normal males at Kauai (see 

below) we could not generate least-squares means to statistically compare individual differences among 

main effects (e.g., differences among cricket types across sites) in the preceding model.  Therefore we 

repeated the analysis omitting site as a main effect but retaining the site by type interaction.  All 

analyses were conducted in SAS 9.3 (SAS Institute 2013). Maps were drawn using R v.2.15.2 (Becker and 

Wilks 2013a, 2013b). 
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Results 

Patterns of Abundance among Sites and across Time 

Flatwings were first noted on Kauai in 2003 (Zuk et al. 2006).  We performed the first sample 

point surveys in July/August 2005, and at that time detected flatwings at Manoa as well as Kauai. 

However, they were about twice as abundant at Kauai than at Manoa (Fig. 2), and they constituted 

100% of all males counted in surveys at Kauai, vs. only 40% at Manoa (Fig. 3).     

Throughout the > 7 year period, the abundances of each of the three cricket classes varied in 

different ways among sites (Fig. 2; Table 2).  Female numbers, for example, were greater at La’ie and 

Manoa than the other two sites, and this was paralleled by differences in total crickets. Normal-wing 

males were absent from all survey plots at Kauai, although we almost always heard a few callers nearby, 

and flatwings were very scarce in plots at Hilo, whereas the other two sites were intermediate in their 

abundance of both phenotypes.  

Although the numbers of crickets of each type varied substantially among visits to a site, several 

trends were evident (Fig.2). At La’ie the number of females and normal-wing males significantly 

increased through time (GLM of number per survey plot vs. month since start of surveys, p < 0.001), 

whereas at Manoa the number of females and normals declined (p < 0.001).  At Hilo we did not detect 

the first flatwing until August 2010 (month 62), and flatwings persisted in slightly increasing numbers 

through the end of our surveys (p < 0.01).  Females at Hilo also increased (p < 0.001), although normal 

males did not (p > 0.20).  Females also increased at Kauai (p < 0.001). Apart from Hilo, the number of 

flatwings did not significantly trend through time at the other sites (all p > 0.20).  Overall, the total 

number of crickets in survey plots increased significantly at Hilo, La’ie, and Kauai (all p < 0.01), and 

decreased at Manoa (p < 0.001).  Numbers at Manoa diminished to the point that we no longer 

surveyed after January 2011. 
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Flatwings as a proportion of all males sampled differed significantly among sites (GLM of 

flatwings/total males p < 0.001), with Kauai significantly greater than the other sites (p < 0.001, Tukey-

Kramer comparision), Hilo significantly less (p < 0.001), and La’ie and Manoa not differing from each 

other (p = 0.56). Within sites, the proportion of flatwings in samples fluctuated significantly through 

time at all except Kauai, which was constant (all p < 0.05). 

Although the number of females varied among sites (Fig. 2, Table 2), the sex ratio as indexed by 

the proportion of females per survey plot did not differ statistically among sites (GLM of females/total 

crickets p = 0.23; Fig. 4).  The sex ratio varied significantly across visits at Hilo, Kauai, and Manoa (GLM, 

all p < 0.05), but not La’ie (p = 0.91).   In 28 of 31 site-visits females constituted more than half of the 

crickets counted.  

The number of individuals per survey plot in a class sampled at one site was not significantly 

correlated with numbers sampled at other sites at the same time (r ranged from 0.20 to -0.15, with all 

95% confidence limits including zero), although we could not perform all possible comparisons as some 

mixed models failed to converge to a solution due to too few overlapping site visits (e.g., we visited La’ie 

and Manoa at the same time on only three occasions).  This lack of correlation is consistent with the 

absence of any apparent synchrony in population fluctuations across sites through time (Fig. 2).  

On the other hand, a number of correlations among the abundances of the three types of 

crickets (females, normal-wing males, and flatwings) within a site were significant (i.e., 95% confidence 

intervals did not overlap zero).  For example, in Hilo, when females were relatively more abundant 

during a site-visit, so were normal-wing males (r = 0.37 ± 0.16), and flatwings and normal-wings covaried 

significantly (r = 0.18 ± 0.16).  At La’ie, females were correlated with normal-winged and flat-winged 

males (r = 0.57 ± 0.13 and 0.31 ± 0.15), although the two male types were not correlated with each 

other (r = 0.13 ± 0.18).  On Kauai, where we found no normal-wing males in our samples, the average 
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number of females and flatwing males were significantly correlated (r = 0.31 ± 0.17).  At Manoa, only 

females and normal-winged males covaried significantly (r = 0.63 ±0.13).  

Response to playbacks 

 We assessed cricket response to playbacks of conspecific song in two ways, comparing the 

number of individuals before and after the playback period, and measuring the distance between each 

individual and the speaker at the end of the playback period. 

 Before-after response -- Flatwing response differed significantly among sites (GLM of 

before/after difference, p < 0.001), with Kauai differing from the other sites (greater number of 

individuals after playback; Tukey-Kramer p < 0.001), which did not differ among themselves (all p > 0.95) 

(Fig. 5A). Normal-wing males were somewhat less likely to respond to playbacks than flatwings, and in 

only a few cases were normals more abundant after playbacks than before.  Overall, the response for 

normal-wing males did not differ among sites (GLM p = 0.16; Fig. 5B).   Like flatwings, females were 

significantly attracted to playbacks in several of the samples on Kauai, but not the other sites, and thus 

differed significantly among sites in their response (GLM p < 0.001; Fig.5C).  Indeed, they were 

significantly less abundant in the plots following playback in at least one site visit at Manoa and La’ie, 

and in three at Hilo.   

 Differences among the responses of normal-wing males, flatwings, and females were clearly 

driven by Kauai.  All three types co-occur in some abundance at La’ie and Manoa.  Pooling those two 

sites, there is no significant difference in the slopes of the regressions of the number of each type after 

vs. before playback (p = 0.12; Fig. 6).  Indeed, the response to playback by flatwings at Manoa and La’ie 

was virtually the same as that of normal-wing males (Fig. 6 inset).  Offsets of the regression lines 

represent the differences in average abundances of the three types. 
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 Distance Response.--We measured the distance to the speaker for 1841 crickets that responded 

to our playback experiments (1112 females, 287 normal males, 442 flatwing males).  Ninety-eight of 103 

nights and 439 of 559 survey plots yielded distances.  As before, our design was unbalanced across sites, 

visits, and nights, with the additional complication that not all cricket types occurred at all sites post-

playback.   

 Average distances for females and normal males did not differ among sites (all Tukey-Kramer p > 

0.5), whereas those for flatwing males did, with distances at La’ie greater than the other two sites where 

flatwings occurred (p = 0.01; Table 3A).  However, over all sites combined, the average distance varied 

among types (p < 0.001), with females and flatwings significantly closer to the speaker than normal 

males (p < 0.01), but not differing from one another (p = 0.19; Table 3B).  Within a site, patterns differed 

(Table 3C).  At La’ie females approached significantly closer to the speaker than males of either type (p < 

0.05), which did not differ among themselves (p > 0.9), whereas at Manoa females and flatwings were 

significantly closer than normals (p = 0.03; Table 3C).   At Hilo, females did not differ from normals, nor 

did females differ from flatwings at Kauai (both p > 0.9) 

Overall, the flatwing response to playbacks at Kauai lessened through time:  average distance to 

speaker increased with month since start (mixed model, p < 0.001). Otherwise, there were no other 

statistically significant directional changes of distances through time for any other types at any other 

sites (all p > 0.08). 

Discussion 

 Our surveys of T. oceanicus in Hawaii have allowed us to follow population changes in real time 

during and after a rapid evolutionary event, the spread of a mutation causing the loss of sexual 

signaling.  We first detected flatwings on Kauai in 2003, although they may have occurred at low 

frequencies before that time (Zuk et al. 2006).  Although we have consistently found nearly 100% 
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flatwing males on Kauai over our survey period, we know normal-wing males have never entirely 

disappeared because we continue to hear a few singing on most visits (Pascoal et al. 2014; Zuk et al., 

unpublished data). The first flatwings on Oahu (at Manoa) were noted in 2005 (Zuk et al. 2006). Here we 

trace their rise in abundance to approximately 50% of males in survey plots, a proportion that has been 

relatively stable over time. However, our site on the Big Island has yielded only a handful of flatwings 

over the years. We do not know why signal loss occurred at different rates on the different islands.    

Relative abundance and responsiveness of flatwing and normal-wing males  

 The acoustic environment on Kauai is essentially silent, and in keeping with our laboratory 

findings (Bailey & Zuk 2008, Bailey et al. 2010), flatwings on Kauai were more responsive to playback 

than those on Oahu. Normal-wing males on both Oahu and in Hilo were less likely to move in response 

to playback than were flatwings, perhaps because crickets are generally sedentary signalers and do not 

travel to find mates (Zuk & Simmons 1997). The responses of the crickets to field playback on all of the 

islands thus support our suggestion that pre-existing behavioral plasticity was important in the spread of 

the flatwing morphology (Zuk et al. 2014). In other words, “it’s not only who you are, it’s where you are” 

– and the acoustic environment in which an individual matures has a fundamental influence on mating 

behavior. Simply being a flatwing or normal-wing male might not dictate responsiveness to playback, a 

behavior that should increase the likelihood of a male encountering a phonotactic female. Although this 

is difficult to test directly in Kauai, where nearly all males are flatwings, on Oahu, behavioral dynamics 

appear to differ little between the morphs (Fig. 6). Instead, crickets that hear little or no calling song as 

they mature tend to move toward callers more readily than crickets that develop in an environment 

with more conspecifics (Bailey & Zuk 2008; Bailey et al. 2008; Bailey et al. 2010).  Such phonotaxis makes 

a male more likely to behave as a satellite, a behavior that increases the probability of finding a mate 

(Rotenberry et al. 2015).  
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 Coupled with observations about acoustically-mediated flexibility of locomotor behavior in 

crickets from Kauai but not Hilo (Balenger & Zuk 2015), our results suggest that flexible responses to 

social – particularly acoustic – information in the environment are associated with the rapid spread of 

flatwing on Kauai. This behavioral flexibility may have pre-dated the mutation (Bailey et al. 2008; 

Tinghitella et al. 2009, Zuk et al. 2014), which would be consistent with such flexibility functioning as a 

preadaptation promoting the rapid spread of flatwings in Kauai. However, it is challenging to disentangle 

the idea of a preadaptation from the hypothesis that behavioral reaction norms themselves rapidly 

evolved during the proliferation of the flatwing phenotype. One possibility is that the behavioral 

(acoustic) flexibility exists at similar levels in all populations but the current acoustic environment is 

different on each island owing to the different proportions of flatwing males. Therefore, we see 

different behaviors in the surveys. Alternatively, the flexibility itself might have differed pre-flatwing 

such that population reaction norms have different slopes, also leading to the different behaviors we 

observed. Our observations do not allow us to distinguish among these options, but a combination of 

laboratory and field work could be fruitfully directed to address this question.  

Female abundance, responsiveness, and the acoustic environment 

 Female crickets were highly responsive to playback on Kauai, but not the other sites. This 

pattern is consistent with the decreased choosiness and latency to respond to laboratory playback 

observed in T. oceanicus (Bailey & Zuk 2008, Rebar et al. 2011), the variation in female response speed 

induced by prior acoustic manipulations in the congener T. commodus (Kasumovic et al. 2012a), and 

decreased female responsiveness in Gryllus lineaticeps males with prior experience of higher duty-cycle 

songs (Wagner et al. 2001). Heightened phonotaxis after experience of silence or less attractive songs 

should increase a female’s likelihood of encountering a male in the field when callers are scarce, either 

the caller himself or a flatwing that has similarly been attracted to a male’s song. Flatwings still cannot 
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produce a courtship song, the distinct song usually produced once a male and female are in contact, 

which means that increasing encounter rate is only part of the solution to the flatwings’ problem of 

mate attraction. Indeed, previous work found that while Kauai females are more likely to mate with 

flatwings than are females from other populations, they still prefer males that can produce a courtship 

song (Tinghitella et al. 2009). Such preferences may help the small number of callers remaining on Kauai 

persist. 

 In a laboratory experiment with crickets derived from all three islands, Kauai females reared in a 

silent environment mimicking a population dominated by flatwings were less responsive to flatwing 

males in close-range courtship interactions (Bailey & Zuk 2012). Oahu females, however, did not 

modulate their choosiness depending on their acoustic experience, whereas Hilo females exercised the 

reverse pattern: they were choosier when reared in silence (Bailey & Zuk 2012). We lack a sufficient 

sample of populations to make a rigorous statistical comparison, but the apparently consistent 

relationship recovered in long-term behavioral data from the three islands reported here is striking: 

behaviors associated with mating responsiveness and phonotaxis are enhanced on the relatively silent 

island of Kauai, intermediate on Oahu, and relative to Kauai, reversed on Hilo.  

 When they occurred inside a survey plot, females tended to settle closer to the speaker than did 

normal males, with no differences in average distance from the speaker among sites. This response is to 

be expected if the females are approaching a caller to mate, while other males approach callers as 

satellites following an alternative reproductive tactic (Zuk et al. 2014). Normal-wing males settled 

furthest from the speaker, with flatwing males in between, as would be expected if the normal-wing 

males are simply benefiting by being in a group while flatwings undertake more risk of aggression by the 

caller to increase their likelihood of encountering an attracted female. 
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Changes through time 

 Cricket abundances covaried among sites differently than they did within sites. The abundance 

of each class/type of cricket, inferred from pre-playback counts, was unrelated among sites in all cases. 

Thus, cricket abundances at a given site appeared to fluctuate independent of cricket abundances at the 

other sites. However, within sites, the abundances of the classes of crickets was more likely to be 

correlated (6 out of 10 possible comparisons were significant, versus no significant comparisons for 

among-site comparisons), suggesting that factors affecting the abundance of crickets were site-specific 

and less likely to reflect larger-scale phenomena, such as climatic variation, affecting all sites in the 

Hawaiian archipelago. 

 Over the course of our surveys, flatwings became less responsive to playback.  This behavioral 

trend was particularly noticeable on Kauai, where both flatwing males and females were increasingly 

non-responsive over successive survey periods, although only significantly so for flatwings. The dynamics 

on Kauai thus again appear to differ from the other islands, although we do not know whether the trend 

represents a plastic response to the changing numbers of callers over time, or whether selection has 

acted on phonotaxis. Although the probability of non-callers, whether flatwing or female, becoming 

parasitized by flies depositing larvae near the caller is low, it is not zero; a few flatwings, and small 

percentage of females, have been found to harbor larvae (Zuk et al. 1993, N.W. Bailey unpublished 

data).  

The future of flatwings 

 Our surveys reveal different trajectories for the flatwings on Oahu and Kauai. The different 

proportions of the flatwings on the two islands acquire new significance given the discovery that the 

morphs appear to be due to different mutations (Pascoal et al. 2014). Because sex determination in 

crickets is XX-XO, with males always carrying only one copy of the allele, only females can be 
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heterozygous for the trait. We do not know what effects, if any, the allele has in females since they 

never exhibit wing modifications like those of normal-wing males. It is possible that the allele has 

pleiotropic effects on males, females or both, and that those effects differ on the two islands, which led 

to the differing stable proportions of flatwings. Kauai has had a much higher prevalence of fly parasitism 

than the other islands throughout the 1990s, which may have led to the mutation being favored there 

first, but this does not explain why substantial numbers of the morph have not proliferated in Hilo on 

the Big Island , nor why the spread of the mutations was so close in time at the two sites. Intriguingly, 

the flatwing morphs on Oahu and Kauai are associated with different sets of genetic markers and hence 

appear to be the result of convergent evolution (Pascoal et al. 2014). Mutations causing this and other 

types of sexual signal loss might thus be more frequent events than previously appreciated, and 

different genetic causes of sexual trait loss could contribute to variation in the evolutionary dynamics of 

different populations. 

 Alternatively, it is possible that some as-yet unidentified ecological factor differs among islands 

and has influenced the behavioral dynamics and hence the selection pressures. T. oceanicus was 

introduced to Hawaii by humans, but is present in many of the islands across Oceania, where it occurs in 

disturbed areas such as lawns as well as swampy grasslands (Otte & Alexander 1983, Otte 1994). 

Although the environment in Hawaii where the crickets occur appears to be roughly the same as that 

where the species occurs elsewhere, the distribution of T. oceanicus within Hawaii is extremely patchy, 

with many habitats that appear to our eyes as suitable being unoccupied. Furthermore, we know 

nothing about when or where the fly, which is native to North America, was introduced, and hence the 

length of time that the cricket and fly have associated on the three islands where they now occur is 

likewise a mystery. Continued monitoring of the populations, as well as more detailed genetic analyses 

of the cricket morphs, should shed more light on the future of the novel trait.  
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Figure Legends 

Figure 1: Teleogryllus oceanicus sampling locations in the Hawaiian archipelago (stars). Italicized font 

indicates population labels used throughout the study.  

Figure 2.  The number of crickets (average per survey plot over all nights) for each class at each site 

during each period surveyed.  See Table 1 for sample sizes and dates of surveys.  Standard error bars 

omitted for clarity.  Note that scale of both axes is the same among panels. 

Figure 3.  The total number of flatwings as a proportion of the total number of males in a survey plot 

averaged over all survey plots during each site visit.  See Table 1 for sample sizes.  Error bars omitted for 

clarity. 

Figure 4.  The total number of females as a proportion of the total number of crickets in a survey plot 

during each site visit.  Solid horizontal line denotes 50:50 sex ratio.  See Table 1 for sample sizes.  Error 

bars omitted for clarity. 

Figure 5.  Average number of crickets responding to 20-minute playback of island-specific calling songs 

by moving into survey plots compared to number removed from survey plots prior to playback. Axes in 

panels  A and B are to the same scale.  Data are summarized by site-visit for presentation, although 
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analyses were based on individual survey plots. Two-way error bars omitted for clarity. Solid line 

denotes equal numbers after playback as before. 

Figure 6.  Average number of crickets responding to 20-minute playback of island-specific calling songs 

by moving into survey plots compared to number removed from survey plots prior to playback, for La’ie 

and Manoa (both morphs present).   In inset, dashed line is linear regression for normal-winged males, 

solid line for flatwing males.  Data are summarized by site-visit for presentation, although analyses were 

based on individual survey plots. Two-way error bars omitted for clarity. 

 

Table Headings 

Table 1.  Dates and locations of site visits.  Entries are number of survey plots per site-visit used in the 

analyses. 

Table 2.  Mean number (and standard deviation) of crickets per sample point per site for each sex and 

class.  Sites had significantly different numbers of crickets of each type (p < 0.01) based on a generalized 

linear model with a negative binomial error term.  Values in column with same letter did not differ 

significantly (Tukey-Kramer test for multiple comparisons). 

Table 3.  Mean distance (cm) from speaker (and standard deviation) of each cricket type at end of 20-

min playback period, and results of mixed effects modeling applied to individuals.  Values in column with 

same letter did not differ significantly (Tukey-Kramer test for multiple comparisons). 
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Appendix 1.  Temperature Effects 

 Temperatures at the start of a night’s sampling varied within and across visits, and among sites, 

from a low of 12°C on 9 February 2012 at Kauai to a high of 30°C on 5 September 2007 at Manoa.  

Except at the lowest temperatures, activity of crickets (indexed by the average number of all individuals 

counted per sample plot before or after playbacks in a night) appeared unaffected.  Including all 118 

nightly samples, temperature accounted for a statistically insignificant 0.4% of the variation in the 

average number per survey plot before playback (Pearson r = 0.060, p > 0.5; Appendix Fig. 1).  However, 

cricket movement into survey plots in response to playbacks appeared to slow at the lowest 

temperatures, yielding a significant correlation between number per survey plot and temperature 

(Pearson r = 0.268, p < 0.01; r2 = 0.071).  This relationship appeared to be driven by a few samples taken 

at < 20°C (Appendix Fig. 1); if those are omitted, the correlation becomes non-significant (Pearson r = 

0.177, n = 110, p = 0.07) and accounts for only 3.1% of variation in the number of crickets counted after 

playback.  We therefore omitted those survey plots taken on nights < 20°C from further analyses. 

 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Appendix Figure 1.  Number of crickets per survey plot per night before and after playback as a function 

of temperature at the start of sampling.  Lines denote linear regressions.  Vertical dashed line denotes 

20°C threshold for inclusion in subsequent analyses. 

Temperature (degrees C)

10 15 20 25 30 35

T
o

ta
l N

u
m

b
e

r 
o

f 
C

ri
c
k
e

ts
 p

e
r 

N
ig

h
t

(A
ve

ra
g

e
 p

e
r 

s
u
rv

e
y 

p
o

in
t)

0

2

4

6

8

10

12

14

16

Before Playback

Temperature (degrees C)

10 15 20 25 30 35

T
o

ta
l N

u
m

b
e

r 
o

f 
C

ri
c
k
e

ts
 p

e
r 

N
ig

h
t

(A
ve

ra
g

e
 p

e
r 

s
u
rv

e
y 

p
o

in
t)

0

2

4

6

8

10

12

14

After Playback

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Table 1.  Dates and locations of site visits.  Entries are number of survey plots per site-visit used in the 

analyses. 

  

Site 

Date of visit 
Months since 

start  

Big 

Island 

 

Kauai 

 

Oahu 

Hilo 

 

Kauai 

 

Manoa La’ie 

25 Jul-14 Aug 2005 0 31  33  22 -- 

18-22 Apr 2007 21 --  11  10 -- 

4-17 Sep 2007 26 22  20  24 -- 

6-20 Feb 2008 31 --  27  24 -- 

2-11 Sep 2008 38 18  24  18 21 

16-22 Mar 2009 44 --  --  -- 14 

27 Oct-6 Nov 2009 52 11  10  -- 19 

11-27 Aug 2010 62 20  14  11 12 

27 Dec-10 Jan 2011 66 12  --  18 17 

12-20 Jun 2011 72 12  --  -- 18 

7-16 Feb 2012 80 --  6  -- 12 

14-21 Nov 2012 89 23  --  -- 25 

 

--  denotes either site not visited or insufficient sampling (≤ 3 survey plots). 
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Table 2.  Mean number (and standard deviation) of crickets per sample point per site for each sex and 

class.  Sites had significantly different numbers of crickets of each type (p < 0.01) based on a generalized 

linear model with a negative binomial error term.  Values in column with same letter did not differ 

significantly (Tukey-Kramer test for multiple comparisons). 

 

survey 

plots 

site-

visits 
Females 

Normal                

Males 
Flatwing Males 

Total          

Crickets 

Hilo 149 8 1.74  (1.80) b 1.02  (1.35) a 0.05  (0.25) a   2.81  (2.70) a,b 

La'ie 138 8 2.60  (2.81) a 0.85  (1.43) a 0.39  (0.75) b 3.84  (4.08) a 

Manoa 127 7 2.62  (3.15) a 0.87  (1.64) a 0.46  (0.83) b,c 3.94  (4.64) a 

Kauai 145 8 1.54  (1.91) b 0.00  (0.00) b 0.74  (1.15) c 2.29  (2.50) b 

 

 

 

Table 3.  Mean distance (cm) from speaker (and standard deviation) of each cricket type at end of 20-

min playback period, and results of mixed effects modeling applied to individuals.  Values in column with 

same letter did not differ significantly (Tukey-Kramer test for multiple comparisons). 

A. Types across 

sites 

Number of 

Cricketsa 
Females Normal Males Flatwing Males 

Hilo 160, 109, -- 106.8  (61.02)   a 115.7  (59.18)  a -- 
 

La'ie 320, 100, 48 98.2  (59.93)  a 124.1  (53.26)  a 126.5  (52.58)  a 

Manoa 234, 78, 53 95.1  (61.30)  a 122.9  (51.61)  a 94.5  (60.43)  b 
 

Kauai 398, --, 341 94.3  (61.27)  a -- 93.6  (62.55)  b 
 

      

B. Among types 

over all sites 

Number of 

Crickets 
Distance 

   

Females 1112 97.4  (60.92)  a 

   Flatwing Males 442 97.3  (62.01)  a 

   Normal Males 287 120.6  (55.10)  b 

         

C. Among types 

within sites 

Number of 

Cricketsb 
Hilo La'ie Manoa Kauai 
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Females 160, 320, 234, 398 106.8  (61.02)  a 98.2  (59.93)  a 95.1  (61.30)  a 94.3  (61.27)  a 

Flatwing Males -- , 48, 53, 341 -- 126.5  (52.58)  b 94.5  (60.43)  a 93.6  (62.55)  a 

Normal Males 109, 100, 78, -- 115.7  (59.18)  a 124.1  (53.26)  b 122.9  (51.61)  b -- 

a sample sizes listed in order:  females, normal males, flatwing males 

b sample sizes listed in order: Hilo, La’ie, Manoa, Kauai 
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