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MAXIMAL SUBSEMIGROUPS OF FINITE TRANSFORMATION AND DIAGRAM

MONOIDS

JAMES EAST, JITENDER KUMAR, JAMES D. MITCHELL, AND WILF A. WILSON

Abstract. We describe and count the maximal subsemigroups of many well-known transformation
monoids, and diagram monoids, using a new unified framework that allows the treatment of several
classes of monoids simultaneously. The problem of determining the maximal subsemigroups of a
finite monoid of transformations has been extensively studied in the literature. To our knowledge,
every existing result in the literature is a special case of the approach we present. In particular, our
technique can be used to determine the maximal subsemigroups of the full spectrum of monoids of
order- or orientation-preserving transformations and partial permutations considered by I. Dimitrova,
V. H. Fernandes, and co-authors. We only present details for the transformation monoids whose
maximal subsemigroups were not previously known; and for certain diagram monoids, such as the
partition, Brauer, Jones, and Motzkin monoids.

The technique we present is based on a specialised version of an algorithm for determining the
maximal subsemigroups of any finite semigroup, developed by the third and fourth authors, and
available in the Semigroups package for GAP, an open source computer algebra system. This allows us
to concisely present the descriptions of the maximal subsemigroups, and to clearly see their common
features.

1. Introduction, definitions, and summary of results

A proper subsemigroup of a semigroup S ismaximal if it is contained in no other proper subsemigroup
of S. Similarly, a proper subgroup of a group G is maximal if it is not contained in any other proper
subgroup of G. If G is a finite group, then every non-empty subsemigroup of G is a subgroup, and so
these notions are not really distinct in this case. The same is not true if G is an infinite group. For
instance, the natural numbers form a subsemigroup, but not a subgroup, of the integers under addition.

Maximal subgroups of finite groups have been extensively studied, in part because of their relation-
ship to primitive permutation representations, and, for example, the Frattini subgroup. The maximal
subgroups of the finite symmetric groups are described, in some sense, by the O’Nan-Scott Theorem [38]
and the Classification of Finite Simple Groups. Maximal subgroups of infinite groups have also been
extensively investigated; see [3, 4, 7, 8, 32, 37] and the references therein.

There are also many papers in the literature relating to maximal subsemigroups of semigroups that
are not groups. We describe the finite case in more detail below; for the infinite case see [14] and
the references therein. Maximal subgroups of infinite groups, and maximal subsemigroups of infinite
semigroups, are very different from their finite counterparts. For example, there exist infinite groups
with no maximal subgroups, infinite groups with as many maximal subgroups as subsets, and subgroups
that are not contained in any maximal subgroup. Analogous statements hold for semigroups.

In [23], Graham, Graham, and Rhodes showed that every maximal subsemigroup of a finite semigroup
has certain features, and that every maximal subsemigroup must be one of a small number of types.
As is often the case for semigroups, this classification depends on the description of maximal subgroups
of certain finite groups. In [13], Donoven, Mitchell, and Wilson describe an algorithm for calculating
the maximal subsemigroups of an arbitrary finite semigroup, starting from the results in [23]. In the
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current paper, we use the framework provided by this algorithm to describe and count the maximal
subsemigroups of several families of finite monoids of partial transformations and monoids of partitions.
The maximal subsemigroups of many families of transformation monoids have already been described
or counted, principally by I. Dimitrova, V. H. Fernandes, and co-authors; see [9, 10, 11, 20, 25] and
the references therein. It is possible to recover the previously known results about transformation
monoids using the approach we present, and, indeed, to illustrate the usefulness of our technique, we
have included full details in a longer version of this paper; see [17].

This paper is structured as follows. In Section 1.1, we describe the notation and definitions relating
to semigroups in general that are used in the paper. In Sections 1.2 and 1.3, we define the monoids
of transformations and partitions whose maximal subsemigroups we classify. These are monoids of
order- and orientation-preserving and -reversing partial transformations; the partition, Brauer, Jones,
and Motzkin monoids; and some related monoids. In Section 2, we present several results about the
maximal subsemigroups of an arbitrary finite monoid. Many of the results in Section 2 follow from [13],
and provide a foundation that is adapted to the specific monoids under consideration in the later sections.
In Sections 3 and 4, we classify the maximal subsemigroups of the monoids defined in Sections 1.2 and 1.3,
respectively. Table 1 contains the sequences of numbers of maximal subsemigroups of the considered
monoids, together with references to the theorems where the maximal subsemigroups are characterised.

1.1. Background and preliminaries for arbitrary semigroups. A semigroup is a set with an
associative binary operation. A subsemigroup of a semigroup is a subset that is also a semigroup under
the same operation. A subsemigroup of S is proper if it does not equal S and it is maximal if it is
a proper subsemigroup of S that is contained in no other proper subsemigroup of S. A monoid is a
semigroup S with an identity element 1, which has the property that 1s = s1 = s for all s ∈ S, and
a submonoid of a monoid S is a subsemigroup that contains 1. For a subset X of a semigroup S, the
subsemigroup of S generated by X, denoted by 〈X〉, is the least subsemigroup of S, with respect to
containment, containing X. More generally, for a collection of subsets X1, . . . , Xm of S and a collection
of elements x1, . . . , xn in S, we use the notation 〈X1, . . . , Xm, x1, . . . , xn〉, or some reordering of this, to
denote the subsemigroup of S generated by X1 ∪ · · · ∪Xm ∪ {x1, . . . , xn}. A generating set for S is a
subset X of S such that S = 〈X〉.

Let S be a semigroup. A left ideal of S is a subset I of S such that SI = {sx : s ∈ S, x ∈ I} ⊆ I.
A right ideal is defined analogously, and an ideal of S is a subset of S that is both a left ideal and a
right ideal. Let x, y ∈ S be arbitrary. The principal left ideal generated by x is the set Sx ∪ {x}, which
is a left ideal of S, whereas the principal ideal generated by x is the set SxS ∪ Sx∪ xS ∪ {x}, and is an
ideal. We say that x and y are L -related if the principal left ideals generated by x and y in S are equal.
Clearly L defines an equivalence relation on S — called Green’s L -relation on S. We write xL y to
denote that (x, y) belongs to L . Green’s R-relation is defined dually to Green’s L -relation; Green’s
H -relation is the meet, in the lattice of equivalence relations on S, of L and R. Green’s D-relation is
the composition L ◦ R = R ◦ L , and if x, y ∈ S, then xJ y whenever the (two-sided) principal ideals
generated by x and y are equal. In a finite semigroup D = J . We will refer to the equivalence classes
of Green’s K -relation, where K ∈ {H ,L ,R,D ,J }, as K -classes where K is any of R, L , H , or
J , and the K -class of x ∈ S will be denoted by Kx. We write KS

x when it is necessary to explicitly
refer to the semigroup S on which the relation is defined. For a J -class J of S and a Green’s relation
K ∈ {H ,L ,R}, we denote by J/K the set of K -classes of S contained in J . A partial order on the
J -classes of S is induced by containment of the corresponding principal ideals: for arbitrary elements
x, y ∈ S, Jx ≤ Jy if and only if the principal ideal generated by y contains the principal ideal generated
by x. A semigroup S is H -trivial if Green’s H -relation is the equality relation on S.

An idempotent is a semigroup element x such that x2 = x. An H -class of S that contains an
idempotent is a subgroup of S [28, Corollary 2.2.6]. An element x ∈ S is regular if there exists y ∈ S
such that xyx = x, and a semigroup is called regular if each of its elements is regular. A D-class is
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regular if it contains a regular element; in this case, each of its elements is regular, and each of its
L -classes and R-classes contains an idempotent [28, Propositions 2.3.1 and 2.3.2].

A semigroup S is a regular ∗-semigroup [35] if it possesses a unary operation ∗ that satisfies (x∗)∗ = x,
(xy)

∗
= y∗x∗, and x = xx∗x for all x, y ∈ S. Clearly a regular ∗-semigroup is regular. Throughout this

paper, for a subset X of a regular ∗-semigroup, we use the notation X∗ to denote {x∗ : x ∈ X}. For a
regular ∗-semigroup S and elements x, y ∈ S, xRy if and only if x∗L y∗. An idempotent x of a regular
∗-semigroup is called a projection if x∗ = x. The idempotent xx∗ is the unique projection in the R-class
of x, and the idempotent x∗x is the unique projection in the L -class of x.

An inverse semigroup is a semigroup S in which for each element x ∈ S, there is a unique element
x−1 ∈ S that satisfies x = xx−1x and x−1 = x−1xx−1. With the operation ∗ on S defined by x∗ = x−1,
an inverse semigroup is a regular ∗-semigroup in which every idempotent is a projection.

An element x in a monoid S with identity 1 is a unit if there exists x′ ∈ S such that xx′ = x′x = 1.
The collection of units in a monoid is the H -class of the identity, and is called the group of units of the
monoid. In a finite monoid, the H -class of the identity is also a J -class; in this case, it is the unique
maximal J -class in the partial order of J -classes of S.

A right action of a group G, with identity 1, on a set X is a function ψ : X ×G −→ X that satisfies
(x, 1)ψ = x and ((x, g)ψ, h)ψ = (x, gh)ψ for all x ∈ X and g, h ∈ G. Usually, (x, g)ψ is written x · g
when ψ is clear from the context. In this paper, we are concerned with a single type of right action,
that of the group of units of a monoid on its set of L -classes by right multiplication. More precisely, if
S is any monoid with group of units G, Ls is the L -class of s ∈ S, and g ∈ G, then Ls · g is defined to
be the L -class Lsg of sg. This describes a well-defined action of G on the set of L -classes of S because
(s, t) ∈ L implies (su, tu) ∈ L for all u ∈ S, in other words, because L is a right congruence on S.
Note that Lsg = Lsg since g is a unit. A right action of a group G on a set X partitions X into orbits,
where x, y ∈ X belong to the same orbit if and only if there exist g ∈ G such that x · g = y. When such
a right action has a unique orbit, the action is said to be transitive, and the group acts transitively. Left
actions, and their orbits can be defined analogously. We are solely concerned with the left action of the
group of units of a monoid on its R-classes defined by left multiplication.

We also require the following graph theoretic notions. A graph Γ = (V,E) is a pair of sets V and E,
called the vertices and the edges of Γ, respectively. An edge e ∈ E is a pair {u, v} of distinct vertices
u, v ∈ V . A vertex u is adjacent to a vertex v in Γ if {u, v} is an edge of Γ. The degree of a vertex v
in Γ is the number of edges in Γ that contain v. An independent subset of Γ is a subset K of V such
that there are no edges in E of the form {k, l}, where k, l ∈ K. A maximal independent subset of Γ
is an independent subset that is contained in no other independent subset of Γ. A bipartite graph is a
graph whose vertices can be partitioned into two independent subsets. If Γ = (V,E) is a graph, then
the induced subgraph of Γ on a subset U ⊆ V is the graph

(
U,

{
{u, v} ∈ E : u, v ∈ U

})
.

In this paper, we define N = {1, 2, 3, . . .}, and where we refer to an ordering of natural numbers, we
mean the usual ordering 1 < 2 < 3 < . . ..

We repeatedly refer to the Fibonacci sequence [39, A000045], (Fn)n∈N, defined by F1 = F2 = 1 and
Fn = Fn−1 + Fn−2 for n ≥ 3. We also define the sequence (An)n∈N, by A1 = 1, A2 = A3 = 2, and

An = An−2+An−3 for n ≥ 4. Note that An is the (n+6)th term of the Padovan sequence [39, A000931].

1.2. Partial transformation monoids — definitions. In this section, we introduce the cast of
partial transformation monoids whose maximal subsemigroups we determine.

Let n ∈ N. A partial transformation of degree n is a partial map from {1, . . . , n} to itself. We
define PTn, the partial transformation monoid of degree n, to be the monoid consisting of all partial
transformations of degree n, under composition as binary relations. Let α ∈ PTn. We define

dom(α) =
{
i ∈ {1, . . . , n} : iα is defined

}
, im(α) =

{
iα : i ∈ dom(α)

}
, and rank(α) = | im(α)|,



4 JAMES EAST, JITENDER KUMAR, JAMES D. MITCHELL, AND WILF A. WILSON

which are the domain, image, and rank of α, respectively, and we also define the kernel of α to be the
equivalence

ker(α) =
{
(i, j) ∈ dom(α)× dom(α) : iα = jα

}
.

We define the following monoids:

• Tn = {α ∈ PTn : dom(α) = {1, . . . , n}}, the full transformation monoid of degree n;
• In = {α ∈ PTn : | im(α)| = | dom(α)|}, the symmetric inverse monoid of degree n; and
• Sn = {α ∈ PTn : im(α) = {1, . . . , n}}, the symmetric group of degree n.

The elements of Tn are called transformations, those of In are called partial permutations, and Sn

consists of permutations. Note that the symmetric group Sn is the group of units of PTn, Tn, and In.
The full transformation monoids and the symmetric inverse monoids play a role analogous to that of

the symmetric group, in that every semigroup is isomorphic to a subsemigroup of some full transforma-
tion monoid [28, Theorem 1.1.2], and every inverse semigroup is isomorphic to an inverse subsemigroup
of some symmetric inverse monoid [28, Theorem 5.1.7].

Let α be a partial transformation of degree n. Then dom(α) = {i1, . . . , ik} ⊆ {1, . . . , n}, for some
i1 < · · · < ik. We say that α is order-preserving if i1α ≤ · · · ≤ ikα, and order-reversing if i1α ≥ · · · ≥
ikα. We say that α is orientation-preserving if there exists at most one value l, where 1 ≤ l ≤ k − 1,
such that ilα > il+1α, and similarly, we say that α is orientation-reversing if there exists at most one
value 1 ≤ l ≤ k − 1 such that ilα < il+1α.

Having defined these notions, we can introduce the monoids of partial transformations whose maximal
subsemigroups we will describe in Section 3. These are:

• POn = {α ∈ PTn : α is order-preserving} and On = POn ∩ Tn;
• PODn = {α ∈ PTn : α is order-preserving or -reversing} and ODn = PODn ∩ Tn;
• POPn = {α ∈ PTn : α is orientation-preserving} and POPIn = POPn ∩ In; and
• PORn = {α ∈ PTn : α is orientation-preserving or -reversing} and PORIn = PORn ∩ In.

These monoids have been extensively studied; see [10, 11] and the references therein, where the notation
used in this paper originates.

We require the groups of units of these monoids. Throughout this paper, we denote the permutation
of degree n that reverses the usual order of {1, . . . , n} by (1 n)(2 n− 1) · · · (
n/2� �n/2�). We define Cn
to be the cyclic group generated by the n-cycle (1 2 . . . n), and

Dn = 〈(1 2 . . . n), (1 n)(2 n− 1) · · · (
n/2� �n/2�)〉.
When n ≥ 3, Dn is a dihedral group of order 2n. Note that C2 = D2 = 〈(1 2)〉.

The monoids POn and On have trivial groups of units; the groups of units of PODn and ODn are
〈(1 n)(2 n− 1) · · · (
n/2� �n/2�)〉; the groups of units of POPn and POPIn are Cn; the groups of units
of PORn and PORIn are Dn.

1.3. Diagram monoids — definitions. In this section, we define those monoids of partitions whose
maximal subsemigroups we determine.

Let n ∈ N be arbitrary. A partition of degree n is an equivalence relation of the set {1, . . . , n} ∪
{1′, . . . , n′}. An equivalence class of a partition is called a block, and a block is transverse if it contains
points from both {1, . . . , n} and {1′, . . . , n′}. A block bijection is a partition all of whose blocks are
transverse, and a block bijection is uniform if each of its blocks contains an equal number of points of
{1, . . . , n} and {1′, . . . , n′}.

Let α and β be partitions of degree n. To calculate the product αβ, we require three auxiliary
partitions, each being a partition of a different set. From α we create α∨ by replacing every occurrence
of each i′ by i′′ in α, so that α∨ is a partition of {1, . . . , n}∪{1′′, . . . , n′′}. Similarly, replacing i by i′′, we
obtain from β a partition β∧ of {1′′, . . . , n′′}∪{1′, . . . , n′}. We define (αβ)′ to be the smallest equivalence
on {1, . . . , n} ∪ {1′, . . . , n′} ∪ {1′′, . . . , n′′} that contains the relation α∨ ∪ β∧, i.e. the transitive closure
of α∨ ∪ β∧. The product αβ is the intersection of (αβ)′ and ({1, . . . , n} ∪ {1′, . . . , n′}) × ({1, . . . , n} ∪
{1′, . . . , n′}). This operation is associative, and so the collection Pn of all partitions of degree n forms
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a semigroup under this operation. The partition whose blocks are {i, i′} for all i ∈ {1, . . . , n} is the
identity element of this semigroup, and is called the identity partition of degree n. Therefore Pn is a
monoid — called the partition monoid of degree n. A diagram monoid is simply a submonoid of Pn for
some n ∈ N.

Let α be a partition of degree n. We define α∗ to be the partition of {1, . . . , n} ∪ {1′, . . . , n′} created
from α by replacing the point i by i′ in the block in which it appears, and by replacing the point i′ by
i, for all i ∈ {1, . . . , n}. For arbitrary partitions α, β ∈ Pn, (α

∗)∗ = α, αα∗α = α, and (αβ)
∗
= β∗α∗.

In particular, Pn is a regular ∗-monoid, as defined in Section 1.1.
There is a canonical embedding of the symmetric group of degree n in Pn, where a permutation α is

mapped to the partition with blocks {i, (iα)′} for all i ∈ {1, . . . , n}. Since an element of Pn is a unit if
and only if each of its blocks has the form {i, j′} for some i, j ∈ {1, . . . , n}, it follows that the image of
this embedding is the group of units of Pn. We reuse the notation Sn to refer to this group.

We define a canonical ordering

n′ < (n− 1)′ < · · · < 1′ < 1 < 2 < · · · < n

on {1, . . . , n} ∪ {1′, . . . , n′}. We say that α ∈ Pn is planar if there do not exist distinct blocks A and
X of α, and points a, b ∈ A and x, y ∈ X, such that a < x < b < y. For a graphical description of
planarity, and of partitions more generally, see [26].

In Section 4, we determine the maximal subsemigroups of Pn and the following submonoids:

• PBn = {α ∈ Pn : each block of α has size at most 2}, the partial Brauer monoid of degree n,
introduced in [34];

• Bn = {α ∈ Pn : each block of α has size 2}, the Brauer monoid of degree n, introduced in [34];
• Fn = {α ∈ Pn : α is a uniform block bijection}, the uniform block bijection monoid of degree n,
or the factorisable dual symmetric inverse monoid of degree n, see [19] for more details;

• PPn = {α ∈ Pn : α is planar}, the planar partition monoid of degree n, introduced in [26];
• Mn = {α ∈ PBn : α is planar}, the Motzkin monoid of degree n, see [5] for more details; and
• Jn = {α ∈ Bn : α is planar}, the Jones monoid of degree n, introduced in [29] and also known
as the Temperley-Lieb monoid.

Each of these monoids is closed under the ∗ operation, and is therefore a regular ∗-monoid; further-
more, Fn is inverse. The group of units of PBn, Bn, and Fn is Sn, and the group of units of Mn and
Jn is trivial.

The factorisable dual symmetric inverse monoid Fn is a submonoid of the dual symmetric inverse
monoid I∗n, which consists of all block bijections of degree n. The maximal subsemigroups of I∗n are
described in [33, Theorem 19].

By [26], the planar partition monoid of degree n is isomorphic to the Jones monoid of degree 2n.
Therefore, we will not determine the maximal subsemigroups of PPn directly, since their description
can be obtained from the results in Section 4.4.

2. The maximal subsemigroups of an arbitrary finite monoid

In this section, we present some results about the maximal subsemigroups of an arbitrary finite
monoid, which are related to those given in [13, 23] for an arbitrary finite semigroup. Since each of
the semigroups to which we apply these results is a finite monoid, we state the following results in that
context. While some of the results given in this section hold for an arbitrary finite semigroup, many of
them do not.

Let S be a finite monoid. By [23, Proposition 1], for each maximal subsemigroup M of S there exists
a single J -class J that contains S \M , or equivalently S \ J ⊆ M . Throughout this paper, we call a
maximal subsemigroup whose complement is contained in a J -class J a maximal subsemigroup arising
from J . In the following lemma, we characterise J -classes that do give rise to maximal subsemigroups.
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Monoid Group of Number of maximal OEIS [39] Result
units subsemigroups

POn Trivial 2n + 2n− 2 A131520 [11, Theorem 1]
Mn 2n + 2n− 3 A131898 Theorem 4.9
On A2n−1 + 2n− 4 A000931 Theorem 3.7, cf. [9, Theorem 2]
Jn 2Fn−1 + 2n− 3 A290140 Theorem 4.8
PPn 2F2n−1 + 4n− 3 A290140 Theorem 4.8

PODn Order 2 2�n/2� + n− 1 A016116 Theorem 3.3
ODn An + n− 3 A000931 Theorem 3.8, cf. [25, Theorem 2]

POPIn Cn (cyclic) |Pn|+ |Pn−1| A059957 Theorem 3.10
POPn |Pn|+ 2 A083399 Theorem 3.9

PORIn Dn (dihedral) 1 + |Pn−1|+
∑

p∈Pn
p A290289 Theorem 3.11

PORn 3 +
∑

p∈Pn
p A008472 Theorem 3.9

Fn Sn (symmetric) sn + 1 A290138 Theorem 4.5
Bn sn + 1 A290138 Theorem 4.4
PTn sn + 2 A290138 Theorem 3.2
PBn sn + 3 A290138 Theorem 4.3
Pn sn + 4 A290138 Theorem 4.2

Table 1. The number of maximal subsemigroups of the monoids from this paper,
where n is sufficiently large (usually n ≥ 2 or n ≥ 3). The maximal subsemigroups
themselves are described in the referenced theorems. For k ∈ N, sk is the number
of maximal subgroups of the symmetric group of degree k [39, A290138]; Pk is the
set of primes that divide k; Ak is the kth term of the sequence defined by A1 = 1,
A2 = A3 = 2, and Ak = Ak−2+Ak−3 for k ≥ 4; and Fk is the kth term of the Fibonacci
sequence [39, A000045], with F1 = F2 = 1.

Lemma 2.1. Let S be a finite monoid, and let J be a J -class of S. There exist maximal subsemigroups
arising from J if and only if every generating set for S intersects J non-trivially.

Proof. Let M be a maximal subsemigroup of S arising from J , so that S \ J ⊆ M . For any subset A of
S that is disjoint from J , it follows that 〈A〉 ≤ 〈S \J〉 ≤ M �= S, and A does not generate S. Conversely,
if J intersects every generating set for S non-trivially, then certainly S \ J does not generate S. Thus
the subsemigroup 〈S \ J〉 of S is proper, and is therefore contained in a maximal subsemigroup. �

Thus, given Lemma 2.1, in order to calculate the maximal subsemigroups of S, we first identify
those J -classes of S that intersect every generating set of S non-trivially. Then we find the maximal
subsemigroups of S that arise from each such J -class.

Let S be a finite monoid, let J be a regular J -class of S, and let M be a maximal subsemigroup of
S arising from J . By [13, Section 3], the intersection M ∩ J has precisely one of the following forms:

(M1) M ∩ J = ∅.
(M2) M ∩ J is a non-empty union of both L - and R-classes of J ;
(M3) M ∩ J is a non-empty union of L -classes of J ;
(M4) M ∩ J is a non-empty union of R-classes of J ;
(M5) M ∩ J has non-empty intersection with every H -class of J ;

In general, the collection of maximal subsemigroups arising from a particular regular J -class J can have
any combination of types (M2), (M3), (M4), and (M5). However, if S \J is a maximal subsemigroup of
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S, then clearly it is the only maximal subsemigroup to arise from J , since a maximal subsemigroup of
type (M2)–(M5) is a proper subsemigroup that properly contains S \J . In other words, there is at most
one maximal subsemigroup of type (M1) arising from J , and its existence precludes the occurrence of
maximal subsemigroups of types (M2)–(M5); see Proposition 2.6.

It is often most difficult to calculate the maximal subsemigroups of S that arise from J and have
type (M5) — we consider a special case in Section 2.2.2, which covers all of the instances in this paper.
However, in many cases it can be easily shown that no maximal subsemigroups of type (M5) exist,
such as when S is H -trivial, or when S is idempotent generated. More generally, since a maximal
subsemigroup of S of type (M5) contains every idempotent of S, the following lemma holds.

Lemma 2.2. Let S be a finite monoid with group of units G, let J be a J -class of S that is not equal
to G, and let E(S) be the set of idempotents of S. If

(a) each H -class of J is trivial, or
(b) J ⊆ 〈G, E(S)〉,

then there are no maximal subsemigroups of type (M5) arising from J .

Proof. Let T be an arbitrary subsemigroup of S that contains S \ J and intersects each H -class of J
non-trivially. A maximal subsemigroup of S of type (M5) that arises from J is a proper subsemigroup
that satisfies these conditions. Thus, it suffices (in both cases) to prove that T = S.

By definition, T contains an element from each H -class of J . Thus if each H -class of J is trivial,
then T contains J , and so T = S, proving part (a). To prove part (b), note in particular that T contains
one element from each group H -class of J . Since S is finite and T is closed under multiplication, it
follows that T contains the identity element of each such H -class, i.e. T contains every idempotent of
J . Since T contains S \ J and J �= G, it follows that T contains G, the idempotents of S \ J , and the
idempotents of J , and so 〈G, E(S)〉 ⊆ T . Therefore, if J ⊆ 〈G, E(S)〉, then T contains J , and so
T = S, as required. �
2.1. Maximal subsemigroups arising from the group of units. The maximal subsemigroups of
a finite monoid that are easiest to describe are those that arise from the group of units. Such maximal
subsemigroups exist by Lemma 2.1, since the subset of non-units in a finite monoid is an ideal, and
so the group of units intersects every generating set of a finite monoid non-trivially. As shown in the
following lemma, these maximal subsemigroups can be calculated from the group of units in isolation,
without reference to the remainder of the semigroup.

Lemma 2.3. Let S be a finite monoid with group of units G. Then the maximal subsemigroups of S
arising from G are the sets (S \G) ∪ U , for each maximal subsemigroup U of G. In other words, if G
is trivial, then the unique maximal subsemigroup of S arising from G is S \G, which has type (M1); if
G is non-trivial, then the maximal subsemigroups of S arising from G are the sets (S \G)∪U , for each
maximal subgroup U of G, which have type (M5).

Proof. Since S \G is an ideal of S, it follows that, for a subset U of G, (S \G) ∪ U is a subsemigroup
of S if and only if U is a subsemigroup of G. Since this correspondence between subsemigroups of S
containing S \ G and subsemigroups of G clearly preserves inclusion, the result follows. Note that a
subsemigroup of a finite group is a subgroup, unless it is empty; the only group to possess the empty
semigroup as a maximal subsemigroup is the trivial group. �

Only three families of non-trivial groups appear as the group of units of a monoid in this paper:
the cyclic groups, the dihedral groups, and the symmetric groups. The conjugacy classes of maximal
subgroups of the finite symmetric groups are described in [30] and counted in [31]; see [39, A066115].
However, no simple formula is known for the total number of maximal subgroups. Thus we use the
notation sk to denote the number of maximal subsemigroups of the symmetric group of degree k [39,
A290138]. For the maximal subgroups of the cyclic and dihedral groups, we present the following
well-known results.
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Lemma 2.4. Let n ∈ N, n ≥ 2, and let G = 〈α | αn〉 be a cyclic group of order n. The maximal
subgroups of G are the subgroups 〈αp〉, for each prime divisor p of n. In particular, the total number of
maximal subgroups is the number of prime divisors of n.

Lemma 2.5. Let n ∈ N, n ≥ 3, and let G = 〈σ, ρ | σ2, ρn, (σρ)
2〉 be a dihedral group of order 2n.

The maximal subgroups of G are 〈ρ〉 and the subgroups 〈ρp, ρ−iσρi〉, for each prime divisor p of n and
for each integer i with 0 ≤ i ≤ p− 1. In particular, the total number of maximal subgroups is one more
than the sum of the prime divisors of n.

Given a monoid whose group of units is trivial, cyclic, dihedral, or symmetric, the description and
number of its maximal subsemigroups that arise from the group of units is an immediate consequence
of the results of this section. Therefore, for the sake of brevity, in the results of Sections 3 and 4 we
explicitly describe only those maximal subsemigroups that do not arise from the group of units.

2.2. Maximal subsemigroups arising from a regular J -class covered by the group of units.
Let S be a finite monoid with group of units G, and let J be a J -class of S that is not equal to G. The
maximal subsemigroups that arise from J are, in general, more complicated to describe than those that
arise from G. This is because the elements of S contained in J -classes that are above J (in the J -class
partial order) may act on, or generate, elements within J . Therefore it is not possible to calculate the
maximal subsemigroups that arise from J without considering these other J -classes.

Certainly G is a J -class of S that is strictly above J , since it is the unique maximal J -class of
S. When the group of units is the only J -class strictly above J , the problem of finding the maximal
subsemigroups that arise from J is simpler than the general case. We say that such a J -class is covered
by the group of units. Since the elements contained in J -classes above J are units, their action on
J is easier than understand than the action of arbitrary semigroup elements. Additionally, maximal
subsemigroups always arise from such a J -class, as shown in the following proposition.

Proposition 2.6 (Maximal subsemigroups of type (M1)). Let S be a finite monoid with group of units
G, and let J be a J -class of S that is covered by G. Then S \J is a maximal subsemigroup of S if and
only if no maximal subsemigroups of types (M2)–(M5) arise from J .

Proof. It suffices to show that there exist maximal subsemigroups arising from J . Let x, y ∈ S and
suppose that xy ∈ J . By definition of the J -class partial order, J = Jxy ≤ Jx and J ≤ Jy. Thus
x, y ∈ J ∪ G, since J is covered by G. If x, y ∈ G, then xy ∈ G, a contradiction. Thus at least one
of x and y is contained in J . In other words, S \ J is a subsemigroup of S. The result follows by
Lemma 2.1. �

For most of the monoids considered in this paper, the only J -classes that give rise to maximal
subsemigroups are the group of units, and regular J -classes that are covered by the group of units.

By [23, Proposition 2], a maximal subsemigroup either is a union of H -classes of the semigroup, or in-
tersects every H -class of the semigroup non-trivially. A maximal subsemigroup of type (M1), (M2), (M3),
or (M4) is a union of H -classes, whereas maximal subsemigroups of the second kind are those of
type (M5). We consider these cases separately. We present versions of some results from [13] that
are simplified to suit the current context, and that are used for calculating maximal subsemigroups
of types (M2), (M3), and (M4), in Section 2.2.1. Only a few of the monoids considered in this paper
exhibit maximal subsemigroups of type (M5), and we present results tailored to some of these monoids
in Section 2.2.2.

2.2.1. Maximal subsemigroups that are unions of H -classes: types (M2), (M3), and (M4). Let S be a
finite monoid, and let J be a regular J -class of S that is covered by the group of units G of S. To
find the maximal subsemigroups of S arising from J that have types (M2)–(M4), we construct from
J a bipartite graph Δ(S, J), and analyse its properties according to the forthcoming results. This
bipartite graph was introduced by Donoven, Mitchell, and Wilson in [13, Section 3]. When the context
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unambiguously identifies the J -class that is under consideration, i.e. when a monoid possesses only one
J -class covered by the group of units, we will often use the shorter notation Δ(S) in place of Δ(S, J).

As described in Section 1.1, right multiplication induces a right action of G on the L -classes of J , and
left multiplication induces a left action of G on the R-classes of J . We define the vertices of Δ(S, J) to
be the orbits of these actions. In other words, a vertex of Δ(S, J) is an orbit {Lg : g ∈ G} of L -classes
of J for some L ∈ J/L , or an orbit {gR : g ∈ G} of R-classes of J for some R ∈ J/R, and every
vertex of Δ(S, J) is obtained in this way. In the special case that J consists of a single H -class, we
will follow the convention that the orbit of L -classes {J} and the orbit of R-classes {J} are distinct,
so that Δ(S, J) contains two vertices.

There is an edge in Δ(S, J) between an orbit of L -classes A and an orbit of R-classes B if and only
if there exists an L -class L ∈ A and an R-class R ∈ B such that the H -class L ∩ R is a group. We
define the two bicomponents of Δ(S, J) as follows: one bicomponent is the collection of all orbits of
L -classes of J , the other bicomponent is the collection of all orbits of R-classes of J ; the bicomponents
of Δ(S, J) partition its vertices into two maximal independent subsets. Although not important for the
rest of this paper, we note that Δ(S, J) is isomorphic to a quotient of the Graham-Houghton graph of
the principal factor of J , as defined in [16, 24, 27] — in the case that the orbits of L - and R-classes
are trivial, these graphs are isomorphic.

The following results characterize the maximal subsemigroups of S of types (M2)–(M4) that arise
from J in terms of the graph Δ(S, J). These propositions follow from the results of [13, Section 3],
having been simplified according to the assumption that J is covered by the group of units of S. More
specifically, the results of [13, Section 3] are formulated in terms of two graphs Δ and Θ, and two
coloured digraphs ΓL and ΓR, that are constructed from the relevant J -class. When the semigroup
in question is a monoid and the J -class is covered by the group of units, the graph Θ and the digraphs
ΓL and ΓR have no edges, and each vertex of ΓL and ΓR has colour 0. Thus the conditions on Θ, ΓL ,
and ΓR are immediately satisfied. The graph Δ in [13, Section 3] is equivalent to Δ(S, J).

Proposition 2.7 (Maximal subsemigroups of type (M2); cf. [13, Corollary 3.13]). Let T be a subset of
S such that S \ T ⊆ J . Then T is a maximal subsemigroup of S of type (M2) if and only if there exist
proper non-empty subsets A � J/L and B � J/R such that T ∩ J is the union of the L -classes in A
and the R-classes in B, and A and B are unions of vertices that together form a maximal independent
subset of Δ(S, J).

By Proposition 2.7, the maximal subsemigroups of S of type (M2) arising from J are in bijective
correspondence with the maximal independent subsets of Δ(S, J) — excluding the bicomponents of
Δ(S, J). Thus we deduce the following corollary.

Corollary 2.8. The number of maximal subsemigroups of S of type (M2) arising from J is two less
than the number of maximal independent subsets of Δ(S, J).

The connection between the graph Δ(S, J) and the maximal subsemigroups of S of type (M3) that
arise from J is given in the following proposition.

Proposition 2.9 (Maximal subsemigroups of type (M3); cf. [13, Corollary 3.15]). Let T be a subset of
S such that S \ T ⊆ J . Then T is a maximal subsemigroup of S of type (M3) if and only if there exists
a proper non-empty subset A � J/L such that T ∩J is the union of the L -classes in A, and (J/L )\A
is a vertex in Δ(S, J) that is not adjacent to a vertex of degree 1.

There is a natural dual to this proposition, which describes the maximal subsemigroups of S of
type (M4) that arise from J in terms of the graph Δ(S, J).

By Proposition 2.9, the number of maximal subsemigroups of S of type (M3) is the number of
orbits of L -classes that are adjacent in Δ(S, J) only to orbits of R-classes with degree at least 2. In
the case that every orbit of R-classes has degree 2 or more in Δ(S, J), then the number of maximal
subsemigroups of type (M3) is simply the number of orbits of L -classes. The analogous statements hold
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for maximal subsemigroups of type (M4). By the same token, the existence of maximal subsemigroups
is restricted when there is a single orbit of L -classes or a single orbit of R-classes (i.e. when the group
acts transitively).

Lemma 2.10. If G acts transitively on the L -classes of J , then no maximal subsemigroups of types (M2)
or (M3) arise from J . Similarly, if G acts transitively on the R-classes of J , then no maximal sub-
semigroups of types (M2) or (M4) arise from J .

Proof. Suppose that G acts transitively on the L -classes of J . Since J is regular, for every L -class
L of J there exists an R-class R of J such that L ∩ R is a group, and vice versa. Therefore there are
no isolated vertices in Δ(S, J), and so each vertex of R-classes is adjacent only to the unique vertex of
L -classes. It follows that the bicomponents of Δ(S, J) are its only maximal independent subsets. By
Corollary 2.8, there are no maximal subsemigroups of type (M2) arising from J , and by Proposition 2.9,
there are no maximal subsemigroups of type (M3) either. The proof of the second statement is dual. �

When S is a regular ∗-monoid, the L -classes and R-classes of a J -class are in bijective correspon-
dence via the ∗ operation, and so the graph Δ(S, J) is particularly easy to describe.

Lemma 2.11. Let S be a regular ∗-monoid and let J be a J -class covered by the group of units G of
S. Then a collection of L -classes {Lx1 , . . . , Lxn} is a vertex of Δ(S, J) if and only if the collection of
R-classes {Rx∗

1
, . . . , Rx∗

n
} is a vertex of Δ(S, J), and any pair of such vertices is adjacent in Δ(S, J).

Proof. If Lx and Ly are L -classes of J in the same vertex of Δ(S, J), then there exists g ∈ G such that
Lxg = Ly. Therefore

g∗Rx∗ = g∗L∗x = (Lxg)
∗
= L∗y = Ry∗ ,

and so Rx∗ and Ry∗ belong to the same vertex of Δ(S, J). By symmetry, the first statement holds. The
second statement holds since, for any element x ∈ J , the H -class Lx∩Rx∗ contains the projection x∗x,
and is therefore a group. In particular, the vertex of Δ(S, J) containing Lx is adjacent to the vertex of
Δ(S, J) that contains Rx∗ . �

The situation is further simplified when every idempotent of J is a projection, which occurs, for
instance, when S is inverse.

Corollary 2.12. Let S be a finite regular ∗-monoid with group of units G, and let J be a J -class of
S that is covered by G and whose only idempotents are projections. Suppose that {O1, . . . , On} are the
orbits of the right action of G on the L -classes of J . Then the maximal subsemigroups of S arising
from J are of types (M1), (M2), or (M5). A maximal subsemigroup of type (M2) is the union of S \ J
and the union of the Green’s classes{

L : L ∈ Oi, i ∈ A
}
∪
{
L∗ : L ∈ Oi, i �∈ A

}
,

where A is any proper non-empty subset of {1, . . . , n}. In particular, there are 2n− 2 maximal subsemi-
groups of type (M2), and no maximal subsemigroups of types (M3) or (M4).

Proof. By definition, the vertices of L -classes of Δ(S, J) are {O1, . . . , On}, and so by Lemma 2.11, the
vertices of R-classes are

{
{L∗ : L ∈ Oi} : i ∈ {1, . . . , n}

}
. Since every idempotent of J is a projection, for

each L -class Lx of J , the only group H -class contained in Lx is Lx∩Rx∗ , and so the vertex containing Lx

is only adjacent to the vertex containing Rx∗ . Therefore the edges of Δ(S, J) are {Oi, {L∗ : L ∈ Oi}} for
each i ∈ {1, . . . , n}. In particular, each vertex of Δ(S, J) has degree 1, and it follows from Proposition 2.9
and its dual that no maximal subsemigroups of types (M3) or (M4) arise from J . Furthermore, given the
description of Δ(S, J), it is clear that a maximal independent subset of Δ(S, J) is formed by choosing any
one vertex from each of the n edges, and so there are 2n maximal independent subsets. The description
and number of maximal subsemigroups of type (M2) follows by Proposition 2.7 and Corollary 2.8. �
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2.2.2. Maximal subsemigroups that intersect every H -class: type (M5). To describe maximal subsemi-
groups of type (M5) — i.e. those that intersect each H -class of S non-trivially — we use a different
approach from that in Section 2.2.1. Few of the monoids in this paper exhibit maximal subsemigroups
of type (M5) that arise from a J -class covered by the group of units. However, such maximal subsemi-
groups do occur in some instances, and in Proposition 2.16, we present a result that will be useful for
these cases.

Let S be a finite regular ∗-monoid with group of units G. To prove Proposition 2.16, we require the
following definition: for a subset A ⊆ S, define the setwise stabilizer of A in G, StabG(A), to be the
subgroup {g ∈ G : Ag = A} of G. Note that StabG(A) is defined to be the set of elements of G that
stabilize A on the right. However, with A∗ = {a∗ : a ∈ A}, the set of elements of G that stabilize A on
the left is equal to StabG(A

∗), since{
g ∈ G : gA = A

}
=

{
g ∈ G : A∗g∗ = A∗

}
= StabG(A

∗)∗ = StabG(A
∗)−1 = StabG(A

∗).

Thus, for a subset H of S that satisfies H∗ = H, such as for the H -class of a projection,

StabG(H) = {g ∈ G : Hg = H = gH}.
This observation is required in the proof of Proposition 2.16.

In Proposition 2.16, we require the set e StabG(He) =
{
es : s ∈ StabG(He)

}
, where e is a projection

of the regular ∗-monoid S, and the J -class Je is covered by G. Any submonoid of S that contains both
e and G also contains e StabG(He). In particular, every maximal subsemigroup of type (M5) arising
from Je contains G and all idempotents in Je, and hence contains e StabG(He). A stronger result,
necessary for the proof of Proposition 2.16, is given by the following lemma.

Lemma 2.13. Let S be a finite monoid with group of units G, let e be an idempotent of S, and let T
be a submonoid of S that contains both e and G. Then the set e StabG(H

S
e ) is a subgroup of HT

e .

Proof. Since e is an idempotent, HT
e = T ∩ HS

e [36, Proposition A.1.16]. Clearly e StabG(H
S
e ) ⊆

eG ⊆ T . Let g ∈ StabG(H
S
e ). Then eg ∈ HS

e by definition, and so e StabG(H
S
e ) ⊆ HS

e . Thus
e StabG(H

S
e ) ⊆ T ∩HS

e = HT
e , and the subset is non-empty since e = e1 ∈ e StabG(H

S
e ), where 1 is the

identity of S. Since S is finite, it remains to show that e StabG(H
S
e ) is closed under multiplication. Let

g, g′ ∈ StabG(H
S
e ). Since eg ∈ HS

e and e is the identity of HS
e , it follows that (eg)e = eg. Thus

(eg)(eg′) = (ege)g′ = (eg)g′ = e(gg′) ∈ e StabG(H
S
e ). �

The following two technical lemmas are also required for the proof of Proposition 2.16.

Lemma 2.14 ([36, Theorem A.2.4]). Let S be a finite semigroup and let x, y ∈ S. Then xJ xy if and
only if xRxy, and xJ yx if and only if xL yx.

Lemma 2.15 (follows from [28, Proposition 2.3.7]). Let R be an R-class of an arbitrary semigroup,
and let x, y ∈ R. Then xy ∈ R if and only if Hx is a group.

Proposition 2.16. Let S be a finite regular ∗-monoid with group of units G, let J be a J -class of S
that is covered by G, and let HS

e be the H -class of a projection e ∈ J . Suppose that G acts transitively
on the R-classes or the L -classes of J , and that J contains one idempotent per L -class and one
idempotent per R-class (i.e. every idempotent of J is a projection). Then the maximal subsemigroups
of S arising from J are either:

(a) (S \ J) ∪ GUG = 〈S \ J, U〉, for each maximal subgroup U of HS
e that contains e StabG(H

S
e )

(type (M5)), or
(b) S \ J , if no maximal subsemigroups of type (M5) exist (type (M1)).

Proof. Since S is a regular ∗-monoid, G acts transitively on the L -classes of J if and only if G acts
transitively on the R-classes of J . Hence there are no maximal subsemigroups of types (M2), (M3),
or (M4) arising from J , by Lemma 2.10. By Proposition 2.6, it remains to describe the maximal
subsemigroups of type (M5).
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Let U be a maximal subgroup of HS
e that contains e StabG(H

S
e ), and define MU = (S \ J) ∪GUG.

To prove that MU is a maximal subsemigroup of S, we first show that MU is a proper subset of S,
then that it is a subsemigroup, and finally that it is maximal in S. Since G acts transitively on the
L - and R-classes of J and MU contains S \ J , it follows that the set MU intersects every H -class of
S non-trivially. Once we have shown that MU is a subsemigroup, it will obviously follows that MU is
generated by (S \ J) ∪ U , since G ⊆ S \ J .

To prove that MU is a proper subset of S, it suffices to show that GUG∩HS
e ⊆ U . Let x ∈ GUG∩HS

e .
Since x ∈ GUG, we may write x = αuβ for some α, β ∈ G and u ∈ U . Since u, αuβ ∈ HS

e , it is
straightforward to show that αu, uβ ∈ HS

e . Thus

αHS
e = α(uHS

e ) = (αu)HS
e = HS

e , and HS
e β = (HS

e u)β = HS
e (uβ) = HS

e .

In other words, α and β stabilize HS
e on the left and right, respectively. Thus α, β ∈ StabG(H

S
e ), and

x = ex = eαuβ = eαueβ ∈
(
e StabG(H

S
e )

)
U
(
e StabG(H

S
e )

)
⊆ U3 = U.

In order to show that MU is a subsemigroup, it suffices to show that xy ∈ MU whenever x, y ∈
G ∪ GUG, because S \ (G ∪ J) is an ideal of S. If x ∈ G and y ∈ G, then certainly xy ∈ G. If x ∈ G
and y ∈ GUG, then xy ∈ G2UG = GUG and yx ∈ GUG2 = GUG. For the final case, assume that
x, y ∈ GUG and that xy ∈ J . By definition, x = αuβ and y = σvτ for some α, β, σ, τ ∈ G and u, v ∈ U .
It suffices to show that βσ ∈ StabG(H

S
e ), because then

xy = αuβσvτ = α(ue)βσvτ = αu(eβσ)vτ ∈ GU
(
e StabG(H

S
e )

)
UG ⊆ GU3G = GUG.

Since HS
e is a group containing u and v, it follows that u∗u = vv∗ = e. Thus

eβσe = u∗uβσvv∗ = u∗α−1(αuβσvτ)τ−1v∗ = u∗α−1(xy)τ−1v∗.

Together with xy = αu(eβσe)vτ , it follows that eβσe ∈ J . By Lemma 2.14, eβσe ∈ RS
e . Since the

elements eβσ and e, and their product eβσe, are all contained in RS
e , Lemma 2.15 implies that HS

eβσ is

a group. By assumption, RS
e contains only one group H -class, which is HS

e . Thus eβσ ∈ HS
e , and so

HS
e βσ = (HS

e e)βσ = HS
e (eβσ) = HS

e , i.e. βσ ∈ StabG(H
S
e ), as required.

Let M be a maximal subsemigroup of S that contains MU . By [23, Proposition 4], M ∩ HS
e is a

maximal subgroup of HS
e , and the intersection of M with any H -class of J contains exactly |M ∩HS

e |
elements. Since M ∩HS

e contains U , the maximality of U in HS
e implies that U = M ∩HS

e . Since the
group G acts transitively on the L - and R-classes of J , the intersection of GUG with any H -class of
J contains at least |U | elements. Thus |M | ≤ |MU |, and so M = MU .

Conversely, suppose that M is a maximal subsemigroup of S of type (M5) arising from J . By [23,
Proposition 4], the intersection U = M ∩ HS

e = HM
e is a maximal subgroup of HS

e , and it contains
e StabG(H

S
e ) by Lemma 2.13. Since M contains G, U , and S \J , it contains the maximal subsemigroup

MU = (S \ J) ∪GUG. But M is a proper subsemigroup, which implies that M = MU . �

2.3. Maximal subsemigroups arising from other J -classes. The following lemma can be used to
find the maximal subsemigroups that arise from an arbitrary J -class of a finite semigroup. In the later
sections, for conciseness, we will sometimes use this lemma to find the maximal subsemigroups that
arise from a J -class of a monoid that is covered by the group of units. Additionally, a small number of
the diagram monoids in Section 4 exhibit maximal subsemigroups arising from a J -class that is neither
equal to nor covered by the group of units. The following lemma will be particularly useful when we
determine the maximal subsemigroups that arise in this case. Although the results of [13] are, in their
full generality, applicable to such cases, the few examples in this paper do not warrant their use.

Lemma 2.17. Let S be a finite semigroup, and let J be a J -class of S. Suppose that there distinct
subsets X1, . . . , Xk ⊆ J such that for all A ⊆ J , S = 〈S \ J, A〉 if and only if A ∩ Xi �= ∅ for all
i ∈ {1, . . . , k}. Then the maximal subsemigroups of S arising from J are precisely the sets S \ Xi for
each i ∈ {1, . . . , k}.
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Proof. Note that, by the definition of the sets Xi and the assumption that they are distinct, no set Xi

is contained in a different set Xj . Let i ∈ {1, . . . , k}. We show that S \ Xi is a subsemigroup of S;
its maximality is then obvious. Let x, y ∈ S \ Xi. Since S \ Xi does not generate S, but it contains
S \ J and an element xj ∈ Xj for each j ∈ {1, . . . , n} \ {i}, it follows that xy �∈ Xi. Conversely, let
M be a maximal subsemigroup of S arising from J . If M ∩ Xi �= ∅ for each i then, by assumption,
S = 〈M〉 = M , a contradiction. Thus M ∩ Xi = ∅ for some i. In other words, M ⊆ S \ Xi. By the
maximality of M in S, it follows that M = S \Xi. �

We also prove the following corollary, which will be useful in Section 4.3.

Corollary 2.18. Let S be a finite monoid with group of units G, and suppose there exists a non-
empty subset X of S \ G with the property that S = 〈G, x〉 if and only if x ∈ X. Then the maximal
subsemigroups of S are those that arise from the group of units and S \X.

Proof. Let x ∈ X. Since S = 〈G, x〉 and G is closed under multiplication, the principal ideal generated
by x is S \G. Since x was arbitrary, every element of X generates the same principal ideal, and so X is
contained in some J -class J of S. Therefore the maximal subsemigroups of S are those that arise from
its group of units, and S \X, which can be found by applying Lemma 2.17 with k = 1 and X1 = X. �

3. Partial transformation monoids

In this section, we find the maximal subsemigroups of the families of monoids of partial transforma-
tions defined in Section 1.2. Recall that we will only explicitly describe those maximal subsemigroups
that do not arise from the group of units: in each case, given the group of units, the description of these
maximal subsemigroups, and their number, follows immediately from the results of Section 2.1.

There are several families of partial transformation semigroups related to those we consider here,
and whose maximal subsemigroups have been described in the literature; see [10, 20] and the references
therein. The maximal subsemigroups of the singular ideal of ODn were described in [9, 25]. However,
since the group of units of ODn is non-trivial, this is a fundamentally different problem than finding
the maximal subsemigroups of ODn. Furthermore, the maximal subsemigroups of PTn and On are
known: those of PTn are well-known folklore, and those of On were found in [9]. We find that the
descriptions of the maximal subsemigroups of On and ODn are closely linked. Thus it is instructive to
reprove the known result about On alongside the new result about ODn, using the results of Section 2.
Our techniques allow us to correct an incorrect result in the literature about the number of maximal
subsemigroups of On. To our knowledge, no description of the maximal subsemigroups of any of the
remaining monoids that we consider in this section has appeared in the literature.

Let n ∈ N, n ≥ 2. We require some facts and notation that are common to the submonoids of PTn
defined in Section 1.2; let S be such a monoid. Green’s relations on PTn are characterised by:

• αL β if and only if im(α) = im(β),
• αRβ if and only if ker(α) = ker(β), and
• αJ β if and only if rank(α) = rank(β),

for α, β ∈ PTn — see [21, Theorem 4.5.1]. Note that ker(α) = ker(β) implies that dom(α) = dom(β), by
definition. Since S is a regular submonoid of PTn, it is straightforward to see that this also characterises
the Green’s relations on S. Furthermore, any generating set for S contains elements of ranks n and
n− 1, but needs not contain elements of smaller rank.

Therefore, by Lemma 2.1, to describe the maximal subsemigroups of S, we must find those maximal
subsemigroups that arise from the group of units, and those that arise from the J -class containing
elements of rank n−1. The results of Section 2.1 apply in the former case, and the results of Section 2.2
apply in the latter case.

Notation for the groups of units that appear in this section was defined in Section 1.2. In order to
describe the remaining maximal subsemigroups, we require the following notation for the Green’s classes
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that contain partial transformations of rank n− 1. Define

Jn−1 =
{
α ∈ PTn : rank(α) = n− 1

}
to be the J -class of PTn consisting of partial transformations of rank n− 1. A partial transformation
of rank n−1 lacks exactly one element from its image, and is either a partial permutation that lacks one
element from its domain, or is a transformation with a unique non-trivial kernel class, which contains
two points. Thus for distinct i, j ∈ {1, . . . , n}, we define the Green’s classes

• Li =
{
α ∈ Jn−1 : i /∈ im(α)

}
, which is an L -class;

• Ri =
{
α ∈ Jn−1 : i /∈ dom(α)

}
, which is an R-class consisting of partial permutations; and

• R{i,j} = {α ∈ Jn−1 : (i, j) ∈ ker(α)}, which is an R-class consisting of transformations.

An H -class of the form Li ∩Rj is a group if and only if i = j, and an H -class of the form Li ∩R{j,k}
is a group if and only if i ∈ {j, k}.

Let S be one of the submonoids of PTn defined in Section 1.2. It follows that the set Jn−1 ∩ S
is a regular J -class of S, that the L -classes of Jn−1 ∩ S are the sets of the form Li ∩ S, and that
the R-classes of Jn−1 ∩ S are those non-empty sets of the form Ri ∩ S and R{i,j} ∩ S, for distinct
i, j ∈ {1, . . . , n}. Whenever we present a picture of the graph Δ(S) = Δ(S, Jn−1 ∩ S), such as the
picture given in Figure 2, we label an L -class as Li rather than as Li ∩ S, and so on, in order to avoid
cluttering the image. This approach also has the advantage of emphasizing the similarities between the
graphs of related monoids — indeed, some graphs may be obtained as induced subgraphs of others.

Note that the non-trivial kernel class of an order-preserving or -reversing transformation of rank
n − 1 has the form {i, i + 1} for some i ∈ {1, . . . , n − 1}, and that the non-trivial kernel class of an
orientation-preserving or -reversing transformation of rank n−1 has the same form, or is equal to {1, n}.
Any non-empty subset of {1, . . . , n} appears as the image of some partial transformation in each of the
monoids defined in Section 1.2.

Often, the principal obstacle to describing the maximal subsemigroups of S is to determine the
maximal independent subsets of Δ(S). To do this, we must calculate the left and right actions of the
group of units G of S on the R-classes and on the L -classes of Jn−1 ∩ S, respectively. The following
lemma show that these actions correspond to natural right actions of G on points and pairs in {1, . . . , n}.
Lemma 3.1. Let S be one of the submonoids of PTn defined in Section 1.2, with group of units G.

(a) Let Ω ⊆ {1, . . . , n}. Then Ω is an orbit of G on {1, . . . , n} if and only if
{
Li ∩ S : i ∈ Ω

}
is an

orbit of the right action of G on (Jn−1 ∩ S)/L .
(b) Let Ω ⊆ X =

{
i : Ri ∩ S �= ∅

}
. Then Ω is an orbit of G on X if and only if

{
Ri ∩ S : i ∈ Ω

}
is

an orbit of the left action of G on the R-classes of Jn−1 ∩ S that contain partial permutations.
(c) Let Ω ⊆ Y =

{
{i, j} : i �= j, R{i,j} ∩ S �= ∅

}
. Then Ω is an orbit of G on Y if and only if{

R{i,j} : {i, j} ∈ Ω
}
is an orbit of the left action of G on the R-classes of Jn−1∩S that contain

transformations.

Proof. To prove part (a), let i, j ∈ {1, . . . , n} and let α ∈ Li ∩S. Then, with respect to the right action
of G on {1, . . . , n},

i and j belong to the same orbit ⇔ iσ = j for some σ ∈ G

⇔ j �∈ im(ασ) for some σ ∈ G

⇔ ασ ∈ Lj ∩ S for some σ ∈ G

⇔ (Li ∩ S)σ = Lj ∩ S for some σ ∈ G.

The proofs of the remaining parts are similar. �

The right actions of the trivial group, 〈(1 n)(2 n− 1) · · · (
n/2� �n/2�)〉, Cn, Dn, and Sn (as defined
in Section 1.2) on the sets of points, and pairs of points, are easy to understand, since a permutation of
degree n is defined in terms of its action on {1, . . . , n}. Therefore, if S is one of the monoids defined in
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{
Li : i ∈ {1, . . . , n}

}
{
Ri : i ∈ {1, . . . , n}

} {
R{i,j} : i, j ∈ {1, . . . , n}, i �= j

}

Figure 1. The graph Δ(PTn).

Section 1.2, then by Lemma 3.1, the right and left actions of its group of units on its L - and R-classes
of Jn−1 ∩ S may be readily understood.

3.1. PTn. First we find the maximal subsemigroups of the partial transformation monoid PTn. This re-
sult is well-known folklore, but we include the following result as a gentle introduction to the application
of the results of Section 2.

Theorem 3.2. Let n ∈ N, n ≥ 2, and let sn be the number of maximal subgroups of Sn. Then the
maximal subsemigroups of PTn are those sn arising from the group of units, and:

(a) PTn \
{
α ∈ Tn : rank(α) = n− 1

}
(type (M4)); and

(b) PTn \
{
α ∈ In : rank(α) = n− 1

}
(type (M4)).

In particular, there are sn + 2 maximal subsemigroups of PTn.
Proof. It is well-known that PTn is generated by its group of units Sn, along with any partial permu-
tation of rank n− 1 and any transformation of rank n− 1. Since Tn and In are subsemigroups of PTn,
any generating set for PTn contains both a transformation and a partial permutation of rank n − 1.
Thus, using Lemma 2.17 with k = 2, X1 = Jn−1 ∩ Tn, and X2 = Jn−1 ∩ In, the result follows. �

The description of the maximal subsemigroups of PTn that arise from its J -class Jn−1 can also be
obtained by using the graph Δ(PTn) and the results of Section 2.2.1. Since PTn is generated by its units
and its idempotents of rank n−1, Lemma 2.2 implies that no maximal subsemigroups of type (M5) arise
from Jn−1. The right action of Sn on the L -classes of Jn−1 by right multiplication contains a single
orbit (i.e. the right action is transitive), and so by Lemma 2.10 there are no maximal subsemigroups of
types (M2) or (M3). However, there are two orbits under the left action of Sn on the R-classes of Jn−1:
one contains the R-classes of transformations, the other contains the R-classes of partial permutations.
These orbits are adjacent in Δ(PTn) to the unique orbit of L -classes; a picture of Δ(PTn) is shown in
Figure 1. By the dual of Proposition 2.9, there are two maximal subsemigroups of type (M4) arising
from Jn−1, formed by removing the R-classes from each of these orbits in turn.

3.2. PODn. The maximal subsemigroups of POn were described in [11]. To our knowledge, the max-
imal subsemigroups of PODn have not been described in the literature. Using our approach, we find
that the maximal subsemigroups of PODn are closely linked to those of POn.

The main result of this section is the following theorem; to state it, we require the following notation.
Let n ∈ N, n ≥ 2. Then Jn−1 ∩ PODn is a regular J -class of PODn, the L -classes of Jn−1 ∩
PODn are

{
Li ∩ PODn : i ∈ {1, . . . , n}

}
, and the R-classes are

{
Ri ∩ PODn : i ∈ {1, . . . , n}

}
and{

R{i,i+1} ∩ PODn : i ∈ {1, . . . , n− 1}
}
. Note that POn is idempotent generated [22, Theorem 3.13],

and that PODn is generated by POn and the permutation (1 n)(2 n− 1) · · · (
n/2� �n/2�).
Theorem 3.3. Let n ∈ N, n ≥ 2. Then the maximal subsemigroups of PODn are the unique maximal
subsemigroup arising from the group of units, and:

(a) the union of PODn \ Jn−1 and the union of the sets in{
(Li ∪ Ln−i+1) ∩ PODn : i ∈ A

}
∪
{
(Ri ∪Rn−i+1) ∩ PODn : i /∈ A

}
∪
{
(R{i,i+1} ∪R{n−i,n−i+1}) ∩ PODn : i, i+ 1 /∈ A

}
,
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{L1, Ln} {L2, Ln−1} {L(n+1)/2}

{R1, Rn} {R2, Rn−1} {R(n+1)/2}

{R{1,2}, R{n−1,n}} {R{2,3}, R{n−2,n−1}} {R{(n−1)/2,(n+1)/2}, R{(n+1)/2,(n+3)/2}}

. . .

Figure 2. The graph Δ(PODn), when n is odd.

{L1, Ln} {L2, Ln−1} {Ln/2, Ln/2+1}

{R1, Rn} {R2, Rn−1} {Rn/2, Rn/2+1}

{R{1,2}, R{n−1,n}} {R{2,3}, R{n−2,n−1}} {R{n/2−1,n/2}, R{n/2+1,n/2+2}} {R{n/2,n/2+1}}

. . .

Figure 3. The graph Δ(PODn), when n is even.

where A is any non-empty proper subset of {1, . . . , �n/2�} (type (M2));
(b) PODn \ (Ri ∪Rn−i+1), for i ∈ {1, . . . , �n/2�} (type (M4)); and
(c) PODn \ (R{i,i+1} ∪R{n−i,n−i+1}), for i ∈ {1, . . . , 
n/2�} (type (M4)).

In particular, there are 2�n/2� + n− 1 maximal subsemigroups of PODn.

The most substantial part of the proof of Theorem 3.3 is the description of the maximal indepen-
dent subsets of Δ(PODn). The group of units of PODn is 〈(1 n)(2 n − 1) · · · (
n/2� �n/2�)〉; this
consists of (1 n)(2 n − 1) · · · (
n/2� �n/2�) and the identity transformation of degree n, which fixes
each point in {1, . . . , n}. By Lemma 3.1, since 〈(1 n)(2 n − 1) · · · (
n/2� �n/2�)〉 has �n/2� orbits on
the set {1, . . . , n}, there are �n/2� corresponding orbits of L -classes and �n/2� orbits of R-classes of
partial permutations. Furthermore, there are 
n/2� orbits of 〈(1 n)(2 n − 1) · · · (
n/2� �n/2�)〉 on the
set

{
{i, i+ 1} : i ∈ {1, . . . , n− 1}

}
, and these orbits correspond to 
n/2� orbits of R-classes of transfor-

mations. A picture of Δ(PODn) is shown in Figure 2 for odd n, and in Figure 3 for even n; see these
pictures for a description of the edges of this graph. Given this description of Δ(PODn), we establish
the following lemma.

Lemma 3.4. Let K be any collection of vertices of the graph Δ(PODn). Then K is a maximal
independent subset of Δ(PODn) if and only if K is equal to{

{Li ∩ PODn, Ln−i+1 ∩ PODn} : i ∈ A
}
∪
{
{Ri ∩ PODn, Rn−i+1 ∩ PODn} : i /∈ A

}
∪
{
{R{i,i+1} ∩ PODn, R{n−i,n−i+1} ∩ PODn} : i, i+ 1 �∈ A

}
,

for some subset A of {1, . . . , �n/2�}.
Proof. (⇒) Suppose that K is a maximal independent subset of Δ(PODn). There exists a set A ⊆
{1, . . . , �n/2�} of indices such that

{
{Li ∩ PODn, Ln−i+1 ∩ PODn} : i ∈ A

}
is the collection of L -class

vertices in K. Since a vertex of the form {Ri ∩ PODn, Rn−i+1 ∩ PODn} is adjacent in Δ(PODn)
only to the vertex {Li ∩ PODn, Ln−i+1 ∩ PODn}, it follows by the maximality of K that {Ri ∩
PODn, Rn−i+1 ∩ PODn} ∈ K if and only if i /∈ A. Similarly, since an orbit of the form {R{i,i+1} ∩
PODn, R{n−i,n−i+1}∩PODn} is adjacent in Δ(PODn) only to the orbits {Li∩PODn, Ln−i+1∩PODn}
and {Li+1 ∩ PODn, Ln−i ∩ PODn}, it follows that {R{i,i+1} ∩ PODn, R{n−i,n−i+1} ∩ PODn} ∈ K if
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{L1} {L2} {Ln−1} {Ln}

{R{1,2}} {R{2,3}} {R{n−1,n}}
. . .

Figure 4. The graph Δ(On).

and only if i /∈ A and i + 1 /∈ A. Since we have considered all vertices of Δ(PODn), it follows that K
has the required form.

(⇐) It is easy to verify that K is a maximal independent subset of Δ(PODn). �

Proof of Theorem 3.3. The group of units 〈(1 n)(2 n − 1) · · · (
n/2� �n/2�)〉 of PODn has order 2,
which gives rise to one maximal subsemigroup by Lemma 2.3. Since PODn is generated by POn and
the permutation (1 n)(2 n − 1) · · · (
n/2� �n/2�), and since POn is idempotent generated, it follows
by Lemma 2.2 that there are no maximal subsemigroups of type (M5) arising from Jn−1 ∩ PODn. It
follows directly from Proposition 2.7, and Lemma 3.4, that the maximal subsemigroups of type (M2) are
those described in the theorem. There exist vertices of degree 1 in Δ(PODn): the orbits of R-classes
of partial permutations. Each orbit of L -classes is adjacent to such a vertex. Thus by Proposition 2.9
and its dual, there are no maximal subsemigroups of type (M3) arising from PODn, but each orbit
of R-classes can be removed to provide a maximal subsemigroup of type (M4); there are n maximal
subsemigroups of this type. By Proposition 2.6, there is no maximal subsemigroup of type (M1). �

3.3. On and ODn. The maximal subsemigroups of the singular ideal of On were incorrectly described
and counted in [41]: the given formula for the number of maximal subsemigroups of the singular ideal
of On is correct for 2 ≤ n ≤ 5, but gives only a lower bound when n ≥ 6. A correct description,
although no number, was later given in [9]. The maximal subsemigroups of the singular ideal of ODn

were described in [25]. The group of units of On is trivial, and so the maximal subsemigroups of
its singular ideal correspond in an obvious way to the maximal subsemigroups of On. However, the
group of units of ODn is 〈(1 n)(2 n − 1) · · · (
n/2� �n/2�)〉, which acts on ODn in such a way as to
break the correspondence between the maximal subsemigroups of the singular part, and the maximal
subsemigroups of ODn itself. Thus [25] solves an essentially different problem than the description of
the maximal subsemigroups of ODn.

Recall that On = POn ∩ Tn, and ODn = PODn ∩ Tn. Let S ∈ {On,ODn}. Then S is a regular
monoid, the subset Jn−1 ∩ S is a regular J -class of S, the set of L -classes of Jn−1 ∩ S is

{
Li ∩ S :

i ∈ {1, . . . , n}
}
, and the set of R-classes of Jn−1 ∩ S is

{
R{i,i+1} ∩ S : i ∈ {1, . . . , n− 1}

}
.

Since ODn = PODn ∩ Tn, we may identify a Green’s class of Jn−1 ∩ ODn with the corresponding
Green’s class of Jn−1 ∩ PODn that contains it, so that Li ∩ ODn corresponds with Li ∩ PODn, and
R{i,i+1} ∩ ODn corresponds with R{i,i+1} ∩ PODn. In this way, we obtain Δ(ODn) as the induced
subgraph of Δ(PODn) on those orbits of Green’s classes that contain transformations — thus the
definition of Δ(ODn) is contained in that of Δ(PODn). The graph Δ(On) contains n singleton orbits
of L -classes and n − 1 singleton orbits of R-classes. A picture of Δ(On) is shown in Figure 4, which
gives a description of its edges.

For k ∈ N, we define the path graph of order k to be the graph with vertices {1, . . . , k} and edges{
{i, i+ 1} : i ∈ {1, . . . , k − 1}

}
.

The vertices of degree 1 in the path graph of order k are the end-points, 1 and k. It is easy to see
that Δ(On) is isomorphic to the path graph of order 2n− 1, via the isomorphism that maps the orbit
{Li∩On} to the vertex 2i−1, and maps the orbit {R{i,i+1}∩On} to the vertex 2i. Similarly, Δ(ODn) is
isomorphic to the path graph of order n. We can describe and count the number of maximal independent
subsets of a path graph, and hence of Δ(On) and Δ(ODn), by using the following results.
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Lemma 3.5. Let n ∈ N be arbitrary, let Γ be the path graph of order n, and let U be a subset of the
vertices of Γ. Then U is a maximal independent subset of Γ if and only if the following conditions hold:

(a) the least vertex in U is either 1 or 2; and
(b) for each i ∈ U ∩ {1, . . . , n− 1}, i+ 1 �∈ U ; and
(c) for each i ∈ U ∩ {1, . . . , n− 2}, exactly one of i+ 2 and i+ 3 is contained in U .

Proof. Since vertices in Γ are adjacent if and only if they are consecutive, U is an independent subset
of Γ if and only if (b) holds. It is easy to verify that an independent subset U of Γ is maximal when
conditions (a) and (c) hold. Conversely, if U satisfies (b) but contains neither 1 nor 2, then U ∪{1} is an
independent subset properly containing U , and U is not maximal. Similarly, suppose that U satisfies (b)
and contains some i ∈ {1, . . . , n− 2}, but contains neither i+ 2 nor i+ 3. Then since U also does not
contain i+ 1, it follows that U ∪ {i+ 2} is an independent subset properly containing U , and U is not
maximal. Thus, if U is a maximal independent subset of Γ, then conditions (a) and (c) hold. �

There are two special maximal independent subsets of a path graph: the subset of all even vertices,
and the subset of all odd vertices. These maximal independent subsets correspond to the bicomponents
of Δ(On) and Δ(ODn), and so they are the unique maximal independent subsets that do not give rise
to maximal subsemigroups of On and ODn of type (M2) — see Proposition 2.7 and Corollary 2.8.

Corollary 3.6. The number of maximal independent subsets of the path graph is counted by the sequence
(An)n∈N, as defined in Section 1.1, which satisfies the recurrence relation A1 = 1, A2 = A3 = 2, and
An = An−2 +An−3 for n ≥ 4.

Proof. For n ∈ N, define Γn to be the path graph of order n, and let f(n) be the number of maximal
independent subsets of Γn. It is straightforward to verify that f(1) = 1, and f(2) = f(3) = 2, so
suppose that n ≥ 4. By Lemma 3.5, if U is a maximal independent subset of Γn−3, then U ∪{n−1} is a
maximal independent subset of Γn, and if U is a maximal independent subset of Γn−2, then U ∪{n} is a
maximal independent subset of Γn. Thus distinct maximal independent subsets of Γn−3 and Γn−2 give
rise to distinct maximal independent subsets of Γn, and f(n) ≥ f(n−2)+f(n−3). Conversely, if U is a
maximal independent subset of Γn, then by Lemma 3.5, U contains either n−1 or n. If n−1 ∈ U , then
n− 2 /∈ U , which implies that U \ {n− 1} is a maximal independent subset of Γn−3. Otherwise, U \ {n}
is a maximal independent subset of Γn−2. Thus f(n) ≤ f(n− 2) + f(n− 3), and f(n) = A(n). �

We may now prove the main results of this section.

Theorem 3.7. Let n ∈ N, n ≥ 2. The maximal subsemigroups of On are the unique maximal subsemi-
group arising from the group of units, and:

(a) the union of On \ Jn−1 and the union of the Green’s classes in{
L(i+1)/2 ∩ On : i ∈ A, i is odd

}
∪
{
R{i/2,(i/2)+1} ∩ On : i ∈ A, i is even

}
,

where A is a maximal independent subset of the path graph of order 2n − 1 that contains both
odd and even numbers, as described in Lemma 3.5 (type (M2));

(b) On \ L, where L is any L -class in Jn−1 ∩ On (type (M3)); and
(c) On \R{i,i+1}, where i ∈ {2, . . . , n− 2} (type (M4)).

In particular, for n ≥ 3 there are A2n−1 + 2n − 4 maximal subsemigroups of On, where A2n−1 is as
defined at the end of Section 1.1.

Theorem 3.8. Let n ∈ N, n ≥ 3. The maximal subsemigroups of ODn are the unique maximal
subsemigroup arising from the group of units, and:

(a) the union of ODn \ Jn−1 and the union of the sets in{
(L(i+1)/2 ∪ Ln+1−(i+1)/2) ∩ ODn : i ∈ A, i is odd

}
∪
{
(R{i/2,(i/2)+1} ∪R{n−(i/2),n+1−(i/2)}) ∩ ODn : i ∈ A, i is even

}
,
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where A is a maximal independent subset of the path graph of order n that contains both odd
and even numbers, as described in Lemma 3.5 (type (M2));

(b) ODn \ (Li ∪ Ln−i+1), where

{
i ∈ {1, . . . , (n+ 1)/2} if n is odd,

i ∈ {1, . . . , n/2− 1} if n is even
(type (M3)); and

(c) ODn \ (R{i,i+1} ∪R{n−i,n−i+1}), where

{
i ∈ {2, . . . , (n− 3)/2} if n is odd,

i ∈ {2, . . . , n/2} if n is even
(type (M4)).

In particular, for n ≥ 4, there are An + n− 3 maximal subsemigroups of ODn, where An is as defined
at the end of Section 1.1.

Proof of Theorems 3.7 and 3.8. In each case, the group of units has a single maximal subsemigroup,
and so by Lemma 2.3, there is a unique maximal subsemigroup rising from the group of units.

Since On is generated by its idempotents of rank n − 1 [1], and since ODn is generated by On and
the permutation (1 n)(2 n − 1) · · · (
n/2� �n/2�) [18], it follows by Lemma 2.2 there are no maximal
subsemigroups of type (M5) arising from Jn−1∩S. We have already noted that Δ(On) and Δ(ODn) are
paths of length 2n−1 and n, respectively. It follows by Proposition 2.7 and Lemma 3.5 that the maximal
subsemigroups of type (M2) are those described in the theorems. By Corollary 2.8 and Corollary 3.6,
the number of maximal subsemigroups of type (M2) is A2n−1 − 2 for On, and An − 2 for ODn.

To describe the maximal subsemigroups of types (M3) and (M4), it suffices to identify the two
vertices of Δ(S) that are adjacent to the end-points of Δ(S). From this, the description of the maximal
subsemigroups of types (M3) and (M4) follows from Proposition 2.9 and its dual. In particular, the
total number of both types of maximal subsemigroups is two less than the number of vertices of Δ(S).

By Proposition 2.6, and since n ≥ 4, there is no maximal subsemigroup of S of type (M1). �

3.4. POPn and PORn. Let n ∈ N, n ≥ 2. To state the results of this section, we require the following
notation. Let S ∈ {POPn,PORn}. Then Jn−1∩S is a regular J -class of S. The L -classes of Jn−1∩S
are the sets Li ∩ S for each i ∈ {1, . . . , n}, and the R-classes of Jn−1 ∩ S are the sets Ri ∩ S for each
i ∈ {1, . . . , n} and R{i,i+1} ∩ S for each i ∈ {1, . . . , n − 1}, along with the set R{1,n} ∩ S. The group
of units of POPn is Cn, and the group of units of PORn is Dn — see Section 1.2 for the definitions of
these groups.

The following theorem is the main result of this section.

Theorem 3.9. Let n ∈ N, n ≥ 3, and let S ∈ {POPn,PORn}. The maximal subsemigroups of S are
those arising from the group of units, and:

(a) S \
{
α ∈ S ∩ Tn : rank(α) = n− 1

}
(type (M4)); and

(b) S \ {α ∈ S ∩ In : rank(α) = n− 1} (type (M4)).

In particular, there are |Pn|+ 2 maximal subsemigroups of POPn, and there are 3 +
∑

p∈Pn
p maximal

subsemigroups of PORn for n ≥ 3, where Pn is the set of primes that divide n.

Proof. By Lemmas 2.3, 2.4, and 2.5, there are |Pn| maximal subsemigroups arising from the group of
units Cn of POPn, and 1 +

∑
p∈Pn

p that arise from the group of units Dn of PORn.

Let S ∈ {POPn,PORn}, and let G be the group of units of S. Since POn is idempotent gen-
erated [22, Theorem 3.13], and S = 〈POn, G〉, it follows by Lemma 2.2 that there are no maximal
subsemigroups of type (M5) arising from Jn−1 ∩ S.

The remainder of the proof is similar to the discussion in Section 3.1 after the proof of Theorem 3.2.
The group of units G of S acts transitively on the L -classes of Jn−1 ∩ S, and so there are no maximal
subsemigroups of types (M2) and (M3) by Lemma 2.10. On the other hand, G has two orbits on
the set of R-classes of Jn−1 ∩ S: it transitively permutes the R-classes of transformations, and it
transitively permutes the R-classes of partial permutations. By the dual of Proposition 2.9, the two
maximal subsemigroups of S of type (M4) are found by removing either the partial permutations, or the
transformations, of rank n−1. By Proposition 2.6, there is no maximal subsemigroup of type (M1). �
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3.5. POPIn and PORIn. The maximal subsemigroups of the inverse monoids POPIn and PORIn

exhibit maximal subsemigroups of type (M5) arising from a J -class covered by the group of units, and
to which we can apply the results of Section 2.2.2, and Proposition 2.16 in particular.

Let n ∈ N, and let S ∈ {POPIn,PORIn}. Then Jn−1 ∩ S is a regular J -class of S consisting of
partial permutations. By definition, POPIn = POPn ∩ In and PORIn = PORn ∩ In. Therefore the
group of units of POPIn is Cn and the group of units of PORIn is Dn, and given the description of
the Green’s classes of POPn and PORn in Section 3.4, it follows that the L -classes and R-classes of
Jn−1 ∩ S are

{
Li ∩ S : i ∈ {1, . . . , n}

}
and

{
Ri ∩ S : i ∈ {1, . . . , n}

}
, respectively.

In the following theorems, we describe the maximal subsemigroups of POPIn and PORIn.

Theorem 3.10. Let n ∈ N, n ≥ 3, and define ζn to be the partial permutation(
1 2 · · · n− 2 n− 1 n
2 3 · · · n− 1 1 −

)
.

For k ∈ N, let Pk denote the set of all primes that divide k. Then the maximal subsemigroups of
POPIn are those |Pn| arising from the group of units, and the subsemigroups 〈POPIn \ Jn−1, ζpn〉 for
each p ∈ Pn−1, which have type (M5). In particular, there are |Pn|+ |Pn−1| maximal subsemigroups of
POPIn.

Proof. The group of units of POPIn is Cn, which, by Lemma 2.4, gives rise to |Pn| maximal subsemi-
groups. Since POPIn is inverse, each of its idempotents is a projection. Clearly the group of units Cn
acts transitively on the L -classes and R-classes of Jn−1 ∩ POPIn. Define

H =
{
α ∈ POPIn : dom(α) = im(α) = {1, . . . , n− 1}

}
.

Then H is a group H -class in the J -class Jn−1 ∩ POPIn. Note that H is isomorphic to the cyclic
group of order n − 1, and is generated by ζn. Since the conditions of Proposition 2.16 are satisfied,
we may apply its results. Therefore the maximal subsemigroups that arise from Jn−1 ∩ POPIn are
the subsemigroups 〈POPIn \ Jn−1, U〉, for each maximal subgroup U of H that contains StabCn(H)
(defined in Section 2.2.2), or POPIn \Jn−1, if no such maximal subgroups exist. The setwise stabilizer
StabCn(H) is equal to the pointwise stabilizer {σ ∈ Cn : nσ = n} of n in Cn, which is trivial. Therefore
any maximal subgroup of H gives rise to a maximal subsemigroup of POPIn; by Lemma 2.4, the
maximal subgroups of H are 〈ζpn〉 for each p ∈ Pn−1, and as n ≥ 3, the result follows. �

Theorem 3.11. Let n ∈ N, n ≥ 4, and define partial permutations ζn and τn of degree n by

ζn =

(
1 2 · · · n− 2 n− 1 n
2 3 · · · n− 1 1 −

)
, and τn =

(
1 2 · · · n− 1 n

n− 1 n− 2 · · · 1 −

)
.

For k ∈ N, let Pk denote the set of all primes that divide k. Then the maximal subsemigroups of PORIn

are those 1+
∑

p∈Pn
p that arise from the group of units, and the subsemigroups 〈PORIn\Jn−1, ζ

p
n, τn〉

for each p ∈ Pn−1, which have type (M5). In particular, there are 1 + |Pn−1| +
∑

p∈Pn
p maximal

subsemigroups of PORIn.

Proof. The number of maximal subsemigroups arising from the group of units Dn follows by Lemma 2.3.
Each idempotent of PORIn is a projection since it is an inverse semigroup, and Dn acts transitively

on the L - and R-classes of Jn−1 ∩ PORIn. Therefore we may use Proposition 2.16 to describe the
maximal subsemigroups that arise from Jn−1 ∩ PORIn. Define idn−1 to be the partial transformation
with domain {1, . . . , n− 1} that fixes each point in its domain, and define

H = HPORIn

idn−1
=

{
α ∈ PORIn : dom(α) = im(α) = {1, . . . , n− 1}

}
.

Then H is a group H -class contained in Jn−1 ∩PORIn. Note that since n ≥ 4, H is a dihedral group
of order 2(n− 1), and it is generated by the partial permutations ζn and τn. An element of Dn belongs
to the setwise stabilizer StabDn(H) if and only if it fixes the point n. Thus StabDn(H) contains only
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the identity permutation, which fixes every point in {1, . . . , n}, and the permutation that fixes n and
reverses the order of {1, . . . , n− 1}. In particular,

idn−1 StabDn(H) =
{
idn−1 ·h : h ∈ StabDn(H)

}
= {idn−1, τn}.

Since any subgroup of H contains idn−1, it follows from Proposition 2.16 that the maximal subsemi-
groups arising from PORIn ∩ Jn−1 are 〈PORIn \ Jn−1, U〉, for each maximal subgroup U of H that
contains τn. By Lemma 2.5, the maximal subgroups of H are 〈ζn〉 and the subgroups 〈ζpn, ζ−i

n τnζ
i
n〉,

where p ∈ Pn−1 and 0 ≤ i ≤ p− 1. Thus the maximal subgroups of H that contain τn are those in the
latter form where i = 0. It follows that the maximal subsemigroups arising from PORIn ∩ Jn−1 are
those stated in the theorem, and that there are |Pn−1| such maximal subsemigroups. �

4. Diagram monoids

In this section, we determine the maximal subsemigroups of the monoids of partitions defined in
Section 1.3. Note that, again, we do not explicitly describe those maximal subsemigroups arising from
the group of units, because their description can be immediately deduced from the results of Section 2.1.

There is a natural injective function φ : PTn −→ Pn such that if α ∈ PTn, then the non-singleton
blocks of αφ are {i′} ∪ iα−1, for each i ∈ im(α). Although φ is not a homomorphism, partitions can
nevertheless be thought of as generalisations of transformations via φ. Furthermore, it is easy to see
that for any α ∈ PTn, α is order-preserving if and only if αφ is planar, and so we may consider planar
partitions to be generalisations of order-preserving partial transformations.

Let α ∈ Pn. The rank of α, denoted rank(α), is the number of transverse blocks that it contains. We
define ker(α), the kernel of α, to be the restriction of the equivalence α to {1, . . . , n}. We also define
dom(α), the domain of α, to be the subset of {1, . . . , n} comprising those points that are contained in a
transverse block of α. Given these definitions, we define coker(α) = ker(α∗) and codom(α) = dom(α∗),
the cokernel and codomain of α, respectively. For the majority of the monoids defined in Section 1.3,
the Green’s relations are completely determined by domain, kernel, and rank.

Lemma 4.1. Let S ∈ {Pn,PBn,Bn,Mn,Jn} and let α, β ∈ S. Then:

(a) αRβ if and only if dom(α) = dom(β) and ker(α) = ker(β);
(b) αL β if and only if codom(α) = codom(β) and coker(α) = coker(β); and
(c) αJ β if and only if rank(α) = rank(β).

See [34], [40, Theorem 17], and [12, Theorem 2.4] for the proof of this lemma. For the uniform block
bijection monoid Fn, parts (a) and (b) of Lemma 4.1 hold, since it is a regular submonoid of Pn [28,
Proposition 2.4.2]. However, while part (c) does not hold for Fn in general, it does hold for uniform block
bijections of ranks n or n− 1. For n ∈ N and k ∈ {0, 1, . . . , n}, we define Jk = {α ∈ Pn : rank(α) = k}
to be the J -class of Pn that comprises the partitions of rank k.

In general, if S is any of the diagram monoids defined in Section 1.3, then S has a unique J -class
J that is covered by the group of units of S. In several cases, to determine the maximal subsemigroups
of S that arise from J , we require the graph Δ(S, J), as defined in Section 2.2.1. Given a description of
the L -classes and R-classes of J , to describe Δ(S, J) it remains to describe the action of the group of
units on the R-classes of J . Since S is a regular ∗-monoid, a description of the action of the group of
units on the L -classes of J is obtained as a consequence. We observe that, for α ∈ Pn and σ ∈ Sn,

(1) dom(σα) =
{
iσ−1 : i ∈ dom(α)

}
and ker(σα) =

{(
iσ−1, jσ−1

)
: (i, j) ∈ ker(α)

}
.

Given this description and Lemma 4.1, the action of a subgroup of Sn on the R-classes of a particular
J -class is straightforward to determine.

4.1. The partition monoid Pn. Let n ∈ N, n ≥ 2. We require the following information about the
Green’s classes of Pn in the J -class Jn−1. Let α ∈ Jn−1. By definition, α contains n − 1 transverse
blocks. Since each transverse block contains at least two points, and there are only 2n points in
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{1, . . . , n} ∪ {1′, . . . , n′}, there are few possible combinations of kernel and domain for α. In particular,
either ker(α) is trivial and dom(α) = {1, . . . , n}\{i} for some i ∈ {1, . . . , n}, or dom(α) = {1, . . . , n} and
{i, j} is the unique non-trivial kernel class of α, for some distinct i, j ∈ {1, . . . , n}. By Lemma 4.1, these
properties describe the R-classes of Jn−1. Since the L -classes and R-classes of a regular ∗-semigroup
correspond via the ∗ operation, analogous statements hold for the L -classes of Jn−1. Thus, for distinct
i, j ∈ {1, . . . , n}, we make the following definitions:

• Ri =
{
α ∈ Jn−1 : dom(α) = {1, . . . , n} \ {i}

}
, an R-class;

• R{i,j} =
{
α ∈ Jn−1 : (i, j) ∈ ker(α)

}
, an R-class;

• Li = R∗i =
{
α ∈ Jn−1 : codom(α) = {1, . . . , n} \ {i}

}
, an L -class;

• L{i,j} = R∗{i,j} =
{
α ∈ Jn−1 : (i, j) ∈ coker(α))

}
, an L -class.

An H -class of the form Li ∩ Rj is a group if and only if i = j, an H -class of the form Li ∩ R{j,k} or
Ri ∩ L{j,k} is a group if and only if i ∈ {j, k}, and an H -class of the form L{i,j} ∩ R{k,l} is a group if
and only if {i, j} = {k, l}.

The main result of this section is the following theorem.

Theorem 4.2. Let n ∈ N, n ≥ 2, and let sn denote the number of maximal subgroups of the symmetric
group Sn. Then the maximal subsemigroups of Pn are those sn that arise from the group of units, and:

(a) Pn \
{
α ∈ Pn : rank(α) = n− 1 and ker(α) is trivial

}
(type (M4));

(b) Pn \
{
α ∈ Pn : rank(α) = n− 1 and dom(α) = {1, . . . , n}

}
(type (M4));

(c) Pn \
{
α ∈ Pn : rank(α) = n− 1 and coker(α) is trivial

}
(type (M3)); and

(d) Pn \
{
α ∈ Pn : rank(α) = n− 1 and codom(α) = {1, . . . , n}

}
(type (M3)).

In particular, there are sn + 4 maximal subsemigroups of Pn.

Proof. By [15, Section 6], the ideal Pn \ Sn is generated by its idempotents of rank n− 1. Thus, since
J -equivalence in Pn is determined by rank, the maximal subsemigroups of Pn arise from its group of
units Sn, and the J -class Jn−1. By Lemma 2.3, there are sn maximal subsemigroups of the first kind.

By Lemma 2.2, there are no maximal subsemigroups arising from Jn−1 of type (M5). It is clear
from (1) that Sn transitively permutes the R-classes of Jn−1 with trivial kernel, and it transitively
permutes the R-classes of Jn−1 with domain {1, . . . , n}. Thus there are two orbits of R-classes of Jn−1

under the action of Sn; therefore there are two corresponding orbits of L -classes.
Since the bicomponents are the only maximal independent subsets of Δ(Pn) = Δ(Pn, Jn−1), Corol-

lary 2.8 implies that there are no maximal subsemigroups of type (M2). Each vertex of Δ(Pn) has degree
2, and so by Proposition 2.9, there are two maximal subsemigroups of type (M3), formed by removing
each orbit of L -classes in turn. Similarly, there are two maximal subsemigroups of type (M4). �

4.2. The partial Brauer monoid PBn. The restriction to In of the injective map φ : PTn → Pn,
defined at the start of Section 4, is an injective homomorphism from In into Pn. We will identify In
with its image under φ. In this way, In is clearly a submonoid of PBn.

To describe the maximal subsemigroups of PBn, we require a description of the elements of PBn

whose rank is at least n− 2. Partitions of degree n that have rank n are units, and the group of units
of PBn is Sn.

Let α ∈ Jn−1 ∩ PBn. By definition, α contains precisely n − 1 transverse blocks of size two, and
two singleton blocks {i} and {j′}, for some i, j ∈ {1, . . . , n}. Therefore α is the image of some partial
permutation of rank n − 1 under the embedding φ. Since α was arbitrary, and In ⊆ PBn, it follows
that Jn−1 ∩ PBn = Jn−1 ∩ In.

Let α ∈ PBn, and suppose that rank(α) = n−2. Then α contains n−2 transverse blocks, which leaves
a pair of points of {1, . . . , n} and a pair of points of {1′, . . . , n′} that are not contained in transverse
blocks. Each of these pairs forms either a block of size 2, or two singleton blocks. In particular, dom(α)
lacks some two points i and j, and either ker(α) is trivial, or {i, j} is the unique non-trivial kernel class
of α. A similar statement holds for the codomain and cokernel of α.
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Theorem 4.3. Let n ∈ N, n ≥ 2, and let sn denote the number of maximal subgroups of Sn. The
maximal subsemigroups of PBn are those sn arising from the group of units, and:

(a) PBn \ {α ∈ PBn : rank(α) = n− 1} (type (M1));
(b) PBn \ {α ∈ PBn : rank(α) = n− 2 and ker(α) is non-trivial} (type (M4)); and
(c) PBn \ {α ∈ PBn : rank(α) = n− 2 and coker(α) is non-trivial} (type (M3)).

In particular, there are sn + 3 maximal subsemigroups of PBn.

Proof. By [12], PBn is generated by its elements with rank at least n−2, and any generating set contains
elements of ranks n, n − 1, and n − 2. By Lemma 4.1, Green’s J -relation in PBn is determined by
rank. Thus, the J -classes of PBn from which there arise maximal subsemigroups are its group of units,
Jn−1∩PBn, and Jn−2∩PBn. By Lemma 2.3, sn maximal subsemigroups arise from the group of units.

Since the J -class Jn−1 ∩ PBn is covered by the group of units, PBn \ Jn−1 is a subsemigroup of
PBn. Let α ∈ Jn−1 ∩PBn = Jn−1 ∩ In be arbitrary. It is well-known that In is generated by its group
of units Sn along with any element of rank n− 1. Thus 〈PBn \ Jn−1, α〉 ⊇ 〈PBn \ Jn−1, In〉 = PBn.
This shows that PBn \Jn−1 (type (M1)) is the unique maximal subsemigroup to arise from Jn−1∩PBn.

In order to determine the maximal subsemigroups of PBn that arise from its J -class of rank n− 2,
we define the subsets

X = {α ∈ PBn : rank(α) = n− 2 and ker(α) is non-trivial}, and

X∗ = {α∗ : α ∈ X} = {α ∈ PBn : rank(α) = n− 2 and coker(α) is non-trivial}.
Note that X is a union of R-classes of PBn, and X∗ is a union of L -classes. Let A be a subset of
Jn−2 ∩ PBn such that (PBn \ Jn−2) ∪ A generates PBn. Let α ∈ X be arbitrary. Then α can the
written as a product α = β1 · · ·βk of some of these generators. Clearly the generators β1, . . . , βk have
rank at least n − 2. Every element in PBn of rank n and n − 1 has a trivial kernel, and the subset of
partitions with trivial kernel in Pn forms a subsemigroup. Thus there exists some r ∈ {1, . . . , k} such
that rank(βr) = n − 2 and ker(βr) is non-trivial — in other words, βr ∈ X. A dual argument shows
that A ∩X∗ �= ∅. Conversely, for any subset A of Jn−2 ∩ PBn that intersects X and X∗ non-trivially,
we have PBn = 〈PBn \ Jn−2, A〉. By Lemma 2.17, the maximal subsemigroups of PBn arising from
Jn−2 ∩ PBn are PBn \ X and PBn \ X∗; these maximal subsemigroups have types (M4) and (M3),
respectively. �

4.3. The Brauer monoid Bn and the uniform block bijection monoid Fn. Let n ∈ N, n ≥ 2.
The main results of this section are the following theorems, which describe the maximal subsemigroups
of Bn and Fn. Recall that the group of units of Bn and Fn is Sn, and that we denote the number of
maximal subgroups of Sn by sn.

Theorem 4.4. Let n ∈ N, n ≥ 2. The maximal subsemigroups of Bn are those sn that arise from the
group of units, and Bn \ {α ∈ Bn : rank(α) = n − 2}, which has type (M1). In particular, there are
sn + 1 maximal subsemigroups of Bn.

Theorem 4.5. Let n ∈ N, n ≥ 2. The maximal subsemigroups of Fn are those sn arising from the
group of units, and Fn \ {α ∈ Fn : rank(α) = n − 1}, which has type (M1). In particular, there are
sn + 1 maximal subsemigroups of Fn.

Recall that an element α of a regular ∗-semigroup is a projection if α = α2 = α−1. By [2], Bn is
generated by Sn and any projection of rank n − 2, and by [33, Section 5], Fn is generated by Sn and
any projection of rank n− 1. These facts are used in the following proof.

Proof of Theorems 4.4 and 4.5. The number of maximal subsemigroups arising from the group of units
follows by Lemma 2.3. Let α ∈ Jn−2 ∩ Bn. The non-transverse blocks of α are {i, j} and {k′, l′} for
some i, j, k, l ∈ {1, . . . , n} with i �= j and k �= l. Let τ ∈ Sn be a permutation that contains the blocks
{k, i′} and {l, j′}. Therefore the non-transverse blocks of ατ are {i, j} and {i′, j′}, and so (ατ)

m
is a
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{L1} {L2} {L3} {L4} {Ln−2} {Ln−1}

{R1} {R2} {R3} {R4} {Rn−2} {Rn−1}
· · ·

Figure 5. The graph Δ(Jn,Jn ∩ Jn−2).

projection of rank n− 2 for some m ∈ N. Thus 〈Sn, α〉 ⊇ 〈Sn, (ατ)
m〉 = Bn, and so Bn = 〈Sn, α〉. By

a similar argument, Fn = 〈Sn, β〉 for any uniform block bijection of rank n− 1. By Corollary 2.18, the
remaining maximal subsemigroups are those stated in the theorems. �

4.4. The Jones monoid Jn. Let n ∈ N. In this section, we find the maximal subsemigroups of the
Jones monoid Jn (also known as the Temperley-Lieb monoid). Since the planar partition monoid of
degree n is isomorphic to the Jones monoid of degree 2n [26], by determining the maximal subsemigroups
of Jn we obtain those of PPn.

Suppose that n ≥ 2. By [6], Jn is generated by the identity partition and its projections of rank
n− 2. By Lemma 4.1, the set Jn−2 ∩Jn is a J -class of Jn, and since there are no elements of Jn with
rank n − 1, it follows that this J -class is covered by the group of units. Note that Jn is H -trivial,
since it consists of planar partitions.

To describe the maximal subsemigroups of Jn that arise from its J -class of rank n − 2 partitions,
we require the graph Δ(Jn) = Δ(Jn, Jn−2 ∩ Jn). Thus we require a description of the Green’s classes
of Jn−2 ∩Jn. Let α ∈ Jn−2 ∩Jn. Then α has n− 2 transverse blocks, and these contain two points. By
planarity, the remaining blocks are of the form {i, i+1} and {j′, (j+1)′} for some i, j ∈ {1, . . . , n−1}. By
Lemma 4.1, the J -class Jn−2∩Jn contains n−1 R-classes and n−1 L -classes. For i ∈ {1, . . . , n−1},
we define

• Ri =
{
α ∈ Jn : rank(α) = n− 2 and {i, i+ 1} is a block of α

}
, an R-class; and

• Li =
{
α ∈ Jn : rank(α) = n− 2 and {i′, (i+ 1)′} is a block of α

}
, an L -class.

The intersection of the L -class Li and the R-class Rj is a group if and only if |i − j| ≤ 1. Since the
group of units of Jn is trivial, its action on the L -classes and R-classes of Jn−2 ∩ Jn is trivial. A
picture of Δ(Jn) is shown in Figure 5.

The maximal independent subsets of Δ(Jn) are described and counted in the following results.

Lemma 4.6. Let n ∈ N, n ≥ 2, be arbitrary and let U be a subset of the vertices of Δ(Jn). Then U is
a maximal independent subset of Δ(Jn) if and only if the following conditions hold:

(a) U contains either {L1} or {R1}, but not both; and
(b) U contains either {Ln−1} or {Rn−1}, but not both; and
(c) if {Li} is in U for some i ∈ {1, . . . , n − 2}, then the vertex in U \

{
{Li}

}
with smallest index

greater than or equal to i is either {Li+1} or {Ri+2}; and
(d) if {Ri} is in U for some i ∈ {1, . . . , n − 2}, then the vertex in U \

{
{Ri}

}
with smallest index

greater than or equal to i is either {Ri+1} or {Li+2}.
Proof. It is straightforward to verify from the definition of Δ(Jn) that a subset of the vertices satisfying
the conditions of the lemma is a maximal indepedent subset.

Conversely, let U be a maximal independent subset of Δ(Jn). We first show that condition (a) holds.
Since {L1} and {R1} are adjacent in Δ(Jn), they are not both contained in U . Similarly, at least one
of {L2} and {R2} is not contained in U . If {L2} �∈ U , then either {L1} ∈ U , or the maximality of U
implies that {R1} ∈ U . If instead {R2} �∈ U , then it follows similarly that {L1} ∈ U or {R1} ∈ U . By
a similar argument, U contains precisely one of {Ln−1} and {Rn−1}, i.e. condition (b) holds.

To prove that condition (c) holds, let i ∈ {1, . . . , n − 2}, and suppose that U contains the vertex
{Li}. Consider the vertex in U \

{
{Li}

}
with smallest index greater than or equal to i; such a vertex
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exists, since U contains {Ln−1} or {Rn−1}. Certainly this vertex is not {Ri} or {Ri+1}, since these
are adjacent in Δ(Jn) to {Li}. If U does not contain {Ri+2}, then the maximality of U implies that U
contains {Li+1}. Noting that U does not contain both {Li+2} and {Ri+2}, it follows that the vertex in
U \

{
{Li}

}
with smallest index greater than or equal to i is either {Li+1} or {Ri+2}, as required. An

analogous argument show that condition (d) holds. �

Recall that (Fn)n∈N is the Fibonacci sequence, which is defined at the end of Section 1.1.

Corollary 4.7. The number of maximal independent subsets of Δ(Jn) is 2Fn−1.

Proof. The result may be verified directly for n ∈ {2, 3}, so suppose that n ≥ 4. By the symmetry of
Δ(Jn), the maximal independent subsets that contain {L1} are in bijective correspondence with the
maximal independent subsets that contain {R1}. Therefore we shall count a(n), the number of maximal
independent subsets of Δ(Jn) that contain {L1}; the total number of maximal independent subsets is
2a(n).

For i ∈ {1, 2}, define Λn−i be the induced subgraph of Δ(Jn) on the vertices{
{Li+1}, . . . , {Ln−1}, {Ri+1}, . . . , {Rn−1}

}
.

Clearly Λn−i is isomorphic to Δ(Jn−i), and so the number of maximal independent subsets of Λn−1

that contain {L2} is a(n − 1), and the number of maximal independent subsets of Λn−2 that contain
{R3} is a(n− 2).

Let U be a maximal independent subset of Δ(Jn) containing {L1}. By Lemma 4.6, U contains
precisely one of {L2} or {R3}. If U contains {L2}, then U \

{
{L1}

}
is a maximal independent subset

of Λn−1 that contains {L2}, while if U contains {R3}, then U \
{
{L1}

}
is a maximal independent

subset of Λn−2 that contains {R3}. Conversely, maximal independent subsets of Λn−1 containing {L2},
and maximal independent subsets of Λn−2 containing {R3}, give rise to distinct maximal independent
subsets of Δ(Jn) that contain {L1}, via the addition of {L1}. It follows that a(n) = a(n−1)+a(n−2).
By this recurrence, and since a(2) = F1 and a(3) = F2, it follows that a(n) = Fn−1. �

We may now describe and count the maximal subsemigroups of Jn.

Theorem 4.8. Let n ∈ N, n ≥ 3. The maximal subsemigroups of Jn are the unique maximal subsemi-
group arising from the group of units, and:

(a) The union of Jn\Jn−2 and the union of the Green’s classes contained in a maximal independent
subset of Δ(Jn) that is not a bicomponent of Δ(Jn), as described in Lemma 4.6 (type (M2));

(b) Jn \ L, where L is any L -class in Jn of rank n− 2 (type (M3)); and
(c) Jn \R, where R is any R-class in Jn of rank n− 2 (type (M4)).

In particular, there are 2Fn−1 +2n− 3 maximal subsemigroups of Jn, where Fn−1 is the (n− 1)th term
of the Fibonacci sequence, as defined at the end of Section 1.1.

Proof. Since the Jones monoid Jn is H -trivial, there are no maximal subsemigroups of type (M5) by
Lemma 2.2, and there is one maximal subsemigroup arising from the group of units by Lemma 2.3. By
Lemma 4.6 and Proposition 2.7, the maximal subsemigroups of type (M2) arising from the J -class
of rank n − 2 are those described in the theorem, and by Corollary 2.8 and Corollary 4.7, there are
2Fn−1 − 2 such maximal subsemigroups. Since n ≥ 3, each vertex of Δ(Jn) has degree at least 2, and
so it follows by Proposition 2.9 that any L -class of rank n − 2 can be removed to form a maximal
subsemigroup of type (M3). Similarly, any R-class of rank n − 2 can be removed to form a maximal
subsemigroup of type (M4). Thus there are n − 1 maximal subsemigroups of each of these types. By
Proposition 2.6, there is no maximal subsemigroup of type (M1). �
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4.5. The Motzkin monoid Mn. Finally, in this section, we describe and count the maximal subsemi-
groups of the Motzkin monoid Mn. Let n ∈ N, n ≥ 2. By [12, Proposition 4.2], Mn is generated by
its elements of rank at least n− 2, and any generating set for Mn contains elements of ranks n, n− 1,
and n− 2. By Lemma 4.1, Green’s J -relation on Mn is determined by rank, and so the maximal sub-
semigroups of Mn arise from the J -classes that correspond to these ranks. To describe the maximal
subsemigroups of Mn, we therefore require a description of its elements that have rank at least n− 2.

Clearly the unique element of Mn of rank n is the identity partition of degree n.
An arbitrary element of rank n−1 in Mn has trivial kernel and cokernel, and is uniquely determined

by the point i that it lacks from its domain and the point j that it lacks from its codomain. By
Lemma 4.1, this determines the L - and R-classes of Jn−1 ∩ Mn. An element of Jn−1 ∩ Mn is an
idempotent if its domain and codomain are equal, and so every idempotent ε in Jn−1 ∩ Mn satisfies
ε∗ = ε; in other words, every idempotent in Jn−1 ∩Mn is a projection, as defined in Section 1.1.

We will use Lemma 2.17 to describe the maximal subsemigroups of Mn that arise from Jn−2 ∩Mn.
To apply this lemma, we require [12, Lemma 4.11], which, in the case that r = n − 1, states that Mn

is generated by its elements of ranks n and n − 1 along with its projections of rank n − 2 that have
non-trivial kernel and cokernel.

The main result of this section is the following theorem.

Theorem 4.9. Let n ∈ N, n ≥ 2. The maximal subsemigroups of Mn are the unique maximal
subsemigroup that arises from the group of units, and:

(a) The union(
Mn \ Jn−1

)
∪

⋃
i∈A

{
α ∈ Mn : rank(α) = n− 1 and {i} is a block of α

}
∪

⋃
i	∈A

{
α ∈ Mn : rank(α) = n− 1 and {i′} is a block of α

}
,

where A is any non-empty proper subset of {1, . . . , n} (type (M2));
(b) Mn \

{
α ∈ Jn−2 : {i, i+ 1} is a block of α

}
for i ∈ {1, . . . , n− 1} (type (M4)); and

(c) Mn \
{
α ∈ Jn−2 : {i′, (i+ 1)′} is a block of α

}
for i ∈ {1, . . . , n− 1} (type (M3)).

In particular, there are 2n + 2n− 3 maximal subsemigroups of Mn.

Proof. The Motzkin monoid has a trivial group of units, and so by Lemma 2.3, it gives rise to a
single maximal subsemigroup. Given the above description of the J -class Jn−1 ∩Mn, it follows from
Corollary 2.12 that the maximal subsemigroups that arise from this J -class are those described in
the theorem of type (M2), and that there are 2n − 2 of them; there are no maximal subsemigroups of
type (M5) since Mn is H -trivial. It remains to describe the maximal subsemigroups that arise from
the J -class of rank n− 2.

For i ∈ {1, . . . , n− 1}, we define the subsets

Xi = {α ∈ Mn : rank(α) = n− 2 and {i, i+ 1} is a block of α}, and

X∗
i = {α∗ : α ∈ Xi} = {α ∈ Mn : rank(α) = n− 2 and {i′, (i+ 1)′} is a block of α}

of the J -class Jn−2 ∩Mn. Note that Xi is an R-class of Mn and X∗
i is an L -class of Mn.

Let A be a subset of Jn−2 ∩Mn such that (Mn \ Jn−2) ∪ A generates Mn. Let i ∈ {1, . . . , n − 1}
and α ∈ Xi be arbitrary. Then α can be written as a product α = β1 · · ·βk of the generators that have
rank n− 1 or n− 2. If rank(β1) = n− 1, then β1, and each of its right-multiples, contains a singleton
block of the form {j} for some j ∈ {1, . . . , n}. However, α is a right-multiple of β1 and α contains no
such block; thus rank(β1) = n − 2 = rank(α). Lemmas 2.14 and 4.1 imply that ker(α) = ker(β1), i.e.
A ∩Xi �= ∅. A dual argument shows that A ∩X∗

i �= ∅.
Conversely, for any subset A of Jn−2 ∩ Mn that intersects Xi and X∗

i non-trivially for all i ∈
{1, . . . , n−1}, it is straightforward to see that 〈Mn \Jn−2, A〉 contains every projection in Jn−2∩Mn,
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and hence is equal to Mn. By Lemma 2.17, the maximal subsemigroups of Mn arising from its J -class
of rank n− 2 are the sets Mn \Xi and Mn \X∗

i for i ∈ {1, . . . , n− 1}; these maximal subsemigroups
have types (M4) and (M3), respectively. �

Acknowledgements

The first author gratefully acknowledges the support of the Glasgow Learning, Teaching, and Research
Fund in partially funding his visit to the third author in July, 2014. The second author wishes to
acknowledge the support of research initiation grant [0076 | 2016] provided by BITS Pilani, Pilani. The
fourth author wishes to acknowledge the support of his Carnegie Ph.D. Scholarship from the Carnegie
Trust for the Universities of Scotland. The authors also thank the anonymous referee for their helpful
comments.

References
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