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Abstract

A Commutative Noncommutative Fractal Geometry

Anthony Samuel

In this thesis examples of spectral triples, which represent fractal sets, are examined and new

insights into their noncommutative geometries are obtained.

Firstly, starting with Connes’ spectral triple for a non-empty compact totally disconnected sub-

set E of R with no isolated points, we develop a noncommutative coarse multifractal formalism.

Specifically, we show how multifractal properties of a measure supported on E can be expressed in

terms of a spectral triple and the Dixmier trace of certain operators. If E satisfies a given porosity

condition, then we prove that the coarse multifractal box-counting dimension can be recovered. We

show that for a self-similar measure µ, given by an iterated function system S defined on a compact

subset of R satisfying the strong separation condition, our noncommutative coarse multifractal for-

malism gives rise to a noncommutative integral which recovers the self-similar multifractal measure

ν associated to µ, and we establish a relationship between the noncommutative volume of such a

noncommutative integral and the measure theoretical entropy of ν with respect to S.

Secondly, motivated by the results of Antonescu-Ivan and Christensen, we construct a fam-

ily of (1,+)-summable spectral triples for a one-sided topologically exact subshift of finite type

(ΣN
A , σ). These spectral triples are constructed using equilibrium measures obtained from the Perron-

Frobenius-Ruelle operator, whose potential function is non-arithemetic and Hölder continuous. We

show that the Connes’ pseudo-metric, given by any one of these spectral triples, is a metric and

that the metric topology agrees with the weak∗-topology on the state space S(C(ΣN
A );C). For each

equilibrium measure νφ we show that the noncommuative volume of the associated spectral triple

is equal to the reciprocal of the measure theoretical entropy of νφ with respect to the left shift

σ (where it is assumed, without loss of generality, that the pressure of the potential function is

equal to zero). We also show that the measure νφ can be fully recovered from the noncommutative

integration theory.
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Chapter 1: Introduction

1.1 Summary of Main Results

The main goal of this thesis is to develop the theory of noncommutative fractal geometry, as

originally proposed by Connes [Con3] and Lapidus [Lap]. A summary of our main contributions

towards this theory is as follows.

A Noncommutative Coarse Multifractal Formalism. We show how multifractal properties

of a Borel probability measure µ supported on a non-empty compact fractal set E of R
satisfying a certain porosity condition1 can be expressed in terms of the complementary

intervals of the support of µ (by a fractal set we mean a non-empty totally disconnected

space with no isolated points). This allows the development of a noncommutative analogue

of a coarse multifractal formalism for Connes’ spectral triple representation of the set E.

Specifically, we prove that from this new development one can recover the coarse multifractal

box-counting dimension of µ. For a self-similar measure µ, given by an iterated function

system S, we then show that our noncommutative coarse multifractal formalism gives rise to

a noncommutative integral which recovers the associated self-similar multifractal measure ν,

and we establish a relationship between the volume of such a noncommutative integral and

the measure theoretical entropy of ν with respect to S.

The Noncommutative Volume of a Subshift of Finite Type. By refining the methods of

Antonescu-Ivan and Christensen given in [AIC1], we derive a (1,+)-summable spectral triple

for each one-sided topologically exact subshift of finite type (Σ∞A , σ) equipped with an equi-

librium measure νφ (where φ ∈ C(Σ∞A ;C) denotes some Hölder continuous non-arithmetic

potential function). We show that a variety of geometric and measure theoretic information

can be recovered form such a spectral triple. We prove that Connes’ pseudo-metric, given by

our spectral triple, is a metric on the state space S(C(Σ∞A ;C)) of the C∗-algebra of complex-

valued continuous functions defined on Σ∞A , and that the topology induced by this metric

is equivalent to the weak∗-topology on S(C(Σ∞A ;C)). We show that the noncommutative

integration theory of our spectral triple is capable of recovering the measure νφ and that the

noncommutative volume is equal to the reciprocal of the measure theoretical entropy of νφ

with respect to the left shift σ.

1.2 Motivation and History

In the 1980s Connes formalised the notion of noncommutative geometry (see for instance [Con3,

Con1]) and, in doing so, showed that the tools of differential geometry can be extended to certain

non-Hausdorff spaces known as “bad quotients” and to spaces of a “fractal” nature. Such spaces

are abundant in nature and commonly arise from various dynamical systems.

A main idea of noncommutative geometry is to analyse geometric spaces using operator algebras,

particularly C∗-algebras. This idea first appeared in the work of Gelfand and Năımark [GN], where

it was shown that a C∗-algebra can be seen as the noncommutative analogue of the space of

complex-valued continuous functions on a locally compact metric space. Also, note that for a

1The concept of lacunarity (derived from the Latin word lacuna meaning gap) or porosity (derived from
the Latin word porus meaning pore - a minute opening in a surface) for a fractal set was introduced by
Mandelbrot. His introduction of this concept in [Man4] begins with the following curious sentence. “A
second skeleton rattles in the closets of most models of the distribution of galaxies.”

1
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smooth compact spin Riemannian manifold, one can recover its smooth structure, its volume and

its Riemannian metric directly from its standard Dirac operator (see [Jos]). Motivated by these

observations, Connes proposed the concept of a spectral triple. A spectral triple is a triple (A,H,D)

consisting of a C∗-algebra A, which acts faithfully on a separable Hilbert space H, and an essentially

self-adjoint unbounded operator D defined on H with compact resolvent such that the set

{a ∈ A : the operator [D,π(a)] extends to a bounded operator defined on H}

is dense in A. (Here π : A → B(H) denotes the faithful action of A on H.) Connes showed that

with such a structure one can obtain a pseudo-metric on the state space S(A) of A, analogous to

how the Monge-Kantorovitch metric is defined on the space of probability measures on a compact

metric space. In 1998 Rieffel [Rie2] and Pavlović [Pav] established conditions under which Connes’

pseudo-metric is a metric and established conditions under which the metric topology of Connes’

pseudo-metric is equivalent to the weak∗-topology defined on S(A). Also, Connes [Con3] showed

that a notion of dimension (called the metric dimension) and that a theory of integration can be

derived for such structures. He also proved that for an arbitrary smooth compact spin Riemannian

manifold there exists a spectral triple from which the metrical information, the measure theoretical

information and the smooth structure of the manifold can be recovered (see [Con3, Ren]). This

illustrates that a spectral triple allows one to move beyond the limits of classical Riemannian

geometry. That is to say, not only is one able to recover classical aspects of Riemannian geometry,

but through the notion of a spectral triple one is able to extend the tools of Riemannian geometry

to situations that present themselves at the boundary of classically defined objects, for instance,

objects which “live” on the boundary of Teichmüller space (such as the noncommutative torus) or

those of a “fractal” nature (such as the middle third Cantor set). Although one of the original

motivations for noncommutative geometry was to be able to deal with non-Hausdorff spaces, such

as foliated manifolds, which are often best represented by a noncommutative C∗-algebra (see [Con3,

Vár, Mar, Rie3]), this new theory has scope, even when the C∗-algebra is commutative.

In Connes’ seminal book [Con3], the concept of a noncommutative fractal geometry is intro-

duced. Consequently, a remarkable amount of interest has developed in this subject. In Chapter

IV of [Con3], Connes gives numerous examples to indicate how fractal sets can be represented by

spectral triples. Connes’ examples include non-empty compact totally disconnected subsets of R
with no isolated points and limit sets of Fuchsian groups of the second kind. Subsequently, in 1997

Lapidus [Lap] proposed several ways in which the notions of a noncommutative fractal geometry

could be extended, after which several important articles on the subject appeared. For instance,

in [GI1] Guido and Isola analysed the spectral triple presented by Connes for limit fractals in R
which satisfy a certain separation condition. (Note that such sets are non-empty compact totally

disconnected and have no isolated points.) There, the authors investigated aspects of Connes’

pseudo-metric, the metric dimension and the noncommutative integral of Connes’ spectral triple.

In [GI2] this construction and analysis is extended to limit fractals in Rn, for all n ∈ N. Further,

Antonescu-Ivan and Christensen [AIC1] have provided a construction of a spectral triple for an AF

(approximately finite) C∗-algebra with particular focus on aspects of Connes’ pseudo-metric. In

[AICL] the authors give several examples of spectral triples which represent fractal sets such as the

von Koch curve and the Sierpiński gasket. There, the authors showed that for such sets the Haus-

dorff dimension can be recovered and that Connes’ pseudo-metric induces a metric equivalent to

the metric induced by the ambient space on the given set. More recently, in [BP] the authors adapt

Connes’ spectral triple to represent the code space {0, 1}N equipped with an ultra-metric d. It is

shown that an adaptation of Connes’ pseudo-metric gives rise to a metric equal to d. Further, they

proved that the box-counting dimension can be recovered and that a noncommutative integration
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theory gives rise to an integral with respect to the normalised δ-dimensional Hausdorff measure on

the metric space ({0, 1}N, d). (Here, δ denotes the Hausdorff dimension of ({0, 1}N, d).)

In [CL, PS, Kra, IKM] the authors showed that any finite metric space can be represented by a

finite spectral triple and that from such a representation one can recover the full geometric structure

of the finite metric space. Within these articles a full classification of finite spectral triples is given.

Further, in [Con4, GBIS] a finite spectral triple which represents the standard model in particle

physics is constructed. There, neutrinos are assumed to be massless. In [Con5], investigations are

carried out in which the assumption that neutrinos are massless is not made.

Attempts to build spectral triples for general (non-fractal) compact metric spaces have been

made by Antonescu-Ivan and Christensen [AIC2]. There, the authors constructed spectral triples

for an arbitrary compact metric space (X, d) by gluing together finite spectral triples associated

with a two-point set as described by Connes in Example 2a on page 563 of [Con3]. In doing so,

they showed that Connes’ pseudo-metric induces a metric on X which is equivalent to d.

1.3 Outline and Statement of Main Results

The main contributions of this thesis are contained in Chapter 4, where our core results are contained

in Theorem 4.1.9, Theorem 4.1.11, Theorem 4.2.5, Theorem 4.2.6 and Theorem 4.2.7. In Theorem

2.1.20, Theorem 2.2.10, Proposition 2.3.4, Corollary 2.3.7, Corollary 2.3.10 and Theorem 3.2.17

we give new results which are both interesting themselves and essential to the proofs of our main

results. Below, we give a more detailed outline of the work carried out in this thesis.

Chapter 2: Fractals, Dynamics and Renewal Theorems. In this chapter, we begin by

discussing some of the basic aspects of fractal geometry that will be required in the sub-

sequent chapters. The first section, Section 2.1, is split into three main parts. A general

and brief introduction to fractal measures and dimensions (Subsection 2.1.1), a brief review

of the Minkowski content of a subset of R (Subsection 2.1.2) and finally an introduction to

the notions of coarse multifractal analysis (Subsection 2.1.3). The material contained in Sub-

section 2.1.1 and Subsection 2.1.2 is standard in the theory of fractal geometry and these

subsections are respectively based on material contained in [Fal1] and [Fal2]. In Subsection

2.1.3, we define the coarse multifractal box-counting dimension b(q) at q ∈ R for a given

Borel probability measure µ with compact support, where we use the extension for negative

q introduced by Riedi [Rie1]. We then prove that an equivalent definition of b exists in terms

of the complement of the support of µ, provided that the support of µ is strongly porous.

Definition. (Definition 2.1.10.) A subset E of R is defined to be strongly porous with

porosity constant ρ ∈ (0, 1), if for each x ∈ E and r ∈ (0, 1] the ball B(x, r) contains a

complementary interval of E with diameter greater than or equal to ρr.

Theorem. (Theorem 2.1.20.) Let µ denote a Borel probability measure on a non-empty

compact subset of R. Assume that the support of µ is strongly porous with porosity constant

ρ > 0, and let {Ik : k ∈ N} denote the set of complementary intervals of supp(µ) whose

lengths are finite. If η > 2ρ−1, then for each q ∈ R, we have that

b(q) = inf

{
t ∈ R :

∑
k∈N

µ(I
η
k)q|Ik|t <∞

}
= inf

{
t ∈ R : lim sup

N→∞

∑N
k=1 µ(I

η
k)q|Ik|t

ln(N)
= 0

}
.

In the above theorem, and later, for an interval I ⊂ R, we let |I| denote the length of I and,
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for each η > 0, we let I
η

denote the closed ball centred at the midpoint of I with radius

(1 + η)|Ik|/2.

Although the result of the above theorem seems unusual at first within the context of standard

multifractal analysis, it is useful in the formulation of a noncommutative coarse multifractal

formalism.

In the next section, Section 2.2, we introduce the concept of a one-sided subshift of finite

type. We describe the thermodynamic formalism for this setting, as developed by Bowen

and Ruelle ([Bow1, Bow2, Rue1, Rue2]). We state the results which give the existence of a

Gibbs measure and the existence and uniqueness of an equilibrium measure on a one-sided

topologically exact subshift of finite type. Finally, in Theorem 2.2.10, a new notion of Haar

basis for the Hilbert space L2(Σ∞A ,B, µ) is developed. (Here, (Σ∞A , σ) denotes a one-sided

topologically exact subshift of finite type and µ denotes a Gibbs measure with support equal

to Σ∞A .) This concept enables us to describe in a natural way the filtration on L2(Σ∞A ,B, µ)

induced by the Gelfand-Năımark-Segal completion and the AF-structure of the C∗-algebra of

complex-valued continuous functions defined on Σ∞A . Thus, we are able to refine and develop

the spectral triple of Antonescu-Ivan and Christensen’s for an AF C∗-algebra, in the setting

of a one-sided topologically exact subshift of finite type.

The final section of this chapter, Section 2.3, contains a discussion of three renewal theorems

for fractal sets and topologically exact subshifts of finite type. A description of the renewal

theorems presented in [Fal3, Lal, GH] is given and it is shown how these results lead to various

interesting counting results. Specifically, we derive the following.

1. Let {0, 1} ⊂ E ⊂ [0, 1] denote a non-empty compact self-similar set whose iterated

function system of similarities satisfies the strong separation condition. Set δ equal

to the Hausdorff dimension of E and let {Ik ⊂ [0, 1] : k ∈ N} denote the set of

complementary intervals of E. Let E : (0,∞)→ R be defined, for each r ∈ (0,∞), by

E(r) :=
∑
k∈N
|Ik|>r

|Ik|δ.

For f, g : R → R and x0 ∈ R, we say that f is asymptotic to g as x tends to x0, if

lim x→x0 f(x)/g(x) = 1. We write f ∼ g as x tends to x0.

Theorem. (Proposition 2.3.4.) There exists a positive constant c such that, as r tends

to zero, E(r) ∼ c ln(r).

The precise value of the constant c above is given in Proposition 2.3.4 and is related to

the geometric structure of the set E.

2. Let (Σ∞A , σ) denote a one-sided topologically exact subshift of finite type equipped with

an equilibrium measure νφ for a real-valued non-arithmetric Hölder continuous potential

function φ ∈ C(Σ∞A ;R). Let hνφ(σ) denote the measure theoretical entropy of νφ with

respect to the left shift σ. For each V ∈ Σ∗A∪∅, let ΥV ,ΞV : (0,∞)→ [0,∞) be defined,

for each r ∈ (0,∞), by

ΥV (r) :=
∑

ω∈Σ∗A with
νφ([ω])>r and [ω]⊆[V ]

1, ΞV (r) :=
∑

ω∈Σ∗A with
νφ([ω])>r and [ω]⊆[V ]

µφ([ω]).

Here, Σ∗A denotes the set of admissible words of finite length and [ω] denotes the cylinder

set associated to ω ∈ Σ∗A. If V = ∅, then we set [V ] := Σ∞A .
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For f, g : R → [0,∞) and for x0 ∈ R, we say that f is comparable to g as x tends to

x0 if there exist constants c1, c2 > 0 such that for all x sufficiently close to x0, we have

that c1f(x) 6 g(x) 6 c2f(x). We write f � g as x tends to x0.

Theorem. (Corollary 2.3.7 and Corollary 2.3.10) For each V ∈ Σ∗A ∪ ∅, as r tends to

zero, we have that

ΥV (r) � r−1, ΞV (r) ∼ νφ([V ])r

hνφ(σ)
.

These counting results, interesting in themselves, also allow us to prove new results. In

particular, they allow us to formulate a link between the notion of measure theoretical entropy

and the notion of a noncommutative volume for a one-sided topologically exact subshift of

finite type equipped with an equilibrium measure (Theorem 4.2.7).

Chapter 3: C∗-algebras and Noncommutative Geometry. Here, we give some of the ba-

sic concepts of noncommutative geometry which we will use and extend in Chapter 4. The

work presented in this chapter is partially based on work published in [Con3, Vár, FGBV,

Mar, BO, Dav] and is organised as follows.

We begin in Section 3.1 by formally defining a C∗-algebra and stating the seminal classification

theorems of C∗-algebras by Gelfand and Năımark as presented in [GN]. We then define the

notion of a noncommutative dynamical system, or, more precisely, a C∗-dynamical system,

and describe how one can obtain from such a system the class of C∗-algebras called discrete

cross product algebras. Such a class of C∗-algebras allows us to demonstrate, by way of

example, how Connes’ theory of noncommutative geometry can be applied to noncommutative

C∗-algebras (see Subsection 3.3.2 and Subsection 3.3.3 for such application). A more extensive

analysis of noncommutative dynamical systems can be found in the recent preprint [BMR].

In Section 3.2, following [Con3], we define the notion of a spectral triple and describe the

geometric and measure theoretic information one can obtain from such an object.

1. Connes’ pseudo-metric (Subsection 3.2.1).

2. The notion of a finitely summable, (p,+)-summable and θ-summable spectral triple,

where the first notion gives rise to the notion of metric dimension for spectral triples

(Subsection 3.2.2).

3. The notion of a noncommutive integration theory and that of a noncommutative volume

(Subsection 3.2.2).

To conclude the chapter, we give three basic examples of spectral triples, examining their

noncommutative geometries. Although most of the material in this section is well-known, it

is often the case that many of the finer details do not seem to appear in the literature. When

this is the case we provide a full account. Specifically, we examine the noncommutative

geometries of spectral triple representations of the following: the unit circle (Subsection

3.3.1), noncommutative tori (Subsection 3.3.2) and duals of countably infinite discrete groups

(Subsection 3.3.3). In the case of the noncommutative torus we take a more dynamical

approach than that usually presented in the literature (see [Con3, Vár, FGBV]). The

material contained in Subsection 3.3.3 is based on material contained in [Con2].

Chapter 4: A Commutative Noncommutative Fractal Geometry. This chapter divides

into two main sections: Section 4.1, a version of which has been recently published in [FS]
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by Falconer and Samuel and Section 4.2, which extends the results of Antonescu-Ivan and

Christensen [AIC1].

In Section 4.1 we begin by describing Connes’ construction of a spectral triple (A,H,D) for

a non-empty compact totally disconnected subset E of R with no isolated points. Then in

Subsection 4.1.1 we investigate the geometric properties of (A,H,D). Specifically, we explore

the relationships between the following concepts.

1. The metric dimension of (A,H,D) and the Hausdorff dimension dimH(E) =: δ of E

(Theorem 4.1.3 and Theorem 4.1.4).

2. The noncommutative volume of (A,H,D) and the Minkowski content of E, provided

that E is Minkowski measurable (Theorem 4.1.5 and Corollary 4.1.8).

3. The noncommutative volume of (A,H,D) and the measure theoretical entropy of the

normalised δ-dimensional Hausdorff measure on E with respect to S, where E is a self-

similar set with associated iterated function system S satisfying the strong separation

condition (Theorem 4.1.6 and Corollary 4.1.8).

4. The noncommutative integral given by (A,H,D) and the normalised δ-dimensional

Hausdorff measure on E (Theorem 4.1.7 and Corollary 4.1.8).

5. Connes’ pseudo metric given by (A,H,D) and the Monge-Kantorovitch metric on the

space of Borel probability measures on E (see the concluding remarks of Subsection

4.1.1).

Although some of the relations stated above are well-known and are presented in [Con3, GI1],

we provide new proofs. Further, we make explicit a point of ambiguity in Theorem 4.2 of

[GI1]. In a personal communication [Bel] we were informed that this ambiguity is well-known

to experts in the field of noncommutative geometry.

In Subsection 4.1.2 we develop a noncommutative analogue of a coarse multifractal formalism

for Connes’ spectral triple (A,H,D) for a compact totally disconnected subset E of R with

no isolated points.

Let b(q) denote the coarse multifractal box-counting dimension of µ at q ∈ R and let L1,+(H)

denotes the Dixmier ideal of H. Under the assumptions that E is strongly porous and that

µ is a Borel probability measure with support equal to E satisfying the (mild) requirement

that, as r tends to zero
ln(µ(B(x, r)))

ln(r)
� 1,

uniformly in x ∈ E, we prove the following.

Theorem. (Theorem 4.1.9.) Let ρ denote the porosity constant of E and let η > ρ. Then

there exists a bounded linear operator Qµ,η : H → H (which we specify) dependent on µ and

η such that, for each q ∈ R, we have that

b(q) = inf{p ∈ R : Qpµ,η|D|q ∈ L1,+(H)}. (1.1)

Next, in Theorem 4.1.11, we focus on the case where E denotes a self-similar subset of R
generated by an iterated function system of similarities S which satisfies the strong separation

condition and where µ denotes a self-similar Borel probability measure on E. Here, we

show that one can obtain a noncommutative integral which recovers the associated self-

similar multifractal measure ν. Before giving the statement of our result, we set the following

notation.
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1. Let (A,H,D) denote Connes’ spectral triple for the set E where π : A→ B(H) denotes

the faithful action of A on H (note that A := C(E;C)).

2. Since S satisfies the strong separation condition, this implies that the set E is strongly

porous. Letting ρ denote the porosity constant of E, for each η > ρ, let Qµ,η : H → H

denote the bounded linear operator as in Equation (1.1).

3. For a given limiting procedure W , let TrW denote the Dixmier trace with respect to W .

Note that it is through the Dixmier trace that one obtains a noncommutative integral.

Theorem. (Theorem 4.1.11) There exist positive constants hν , R1 such that for each limiting

procedure W , each η > ρ and each a ∈ A := C(E;C), we have that

TrW (π(a)Qµ,η|D|−b(q)) = 2R1hν

∫
E

a dν.

In the above theorem the constant hν is equal to the measure theoretical entropy of the

measure ν with respect to S. Further, the precise value of the constant R1 is given in

Proposition 2.3.4 and is related to the geometric structure of the set E and the measure µ.

In our final section, Section 4.2, we build on the results of Antonescu-Ivan and Christensen

[AIC1]. This section divides into two main parts. In Subsection 4.2.1, we review the relevant

results of [AIC1]. We also include an application of these results as given in Proposition 1.9 of

[CM]. We add to the discussion presented in [CM] by considering the metric dimension, the

noncommutative volume, the noncommutative integral and aspects of Connes’ pseudo-metric

of the given spectral triple.

In Subsection 4.2.2 we show how one can construct a spectral triple

(A,H,D) := (C(Σ∞A ;C), L2(Σ∞A ,B, νφ), Dνφ)

for a one-sided topologically exact subshift of finite type (Σ∞A , σ) and an equilibrium measure

νφ for a Hölder continuous potential function φ ∈ C(Σ∞A ;R). This construction is motivated

by the results of Antonescu-Ivan and Christensen and uses the results of Subsection 2.2.2

where we develop a notion of a Haar basis for a one-sided subshift of finite type. To justify

that the spectral triple we construct is reasonable we observe and prove the following.

Theorem. (Theorem 4.2.6.) Connes’ pseudo-metric dC(Σ∞
A

;C) given by the spectral triple

(A,H,D) is a metric on the state space S(A) of A. Moreover, the topology induced by Connes’

pseudo-metric is equivalent to the weak∗-topology on S(C(Σ∞A ;C)).

Theorem. (Theorem 4.2.7.) Let φ ∈ C(Σ∞A ;R) denote a Hölder continuous non-arithmetic

potential function and let νφ denote the unique equilibrium measure on Σ∞A for the potential

φ. Then the spectral triple (A,H,D) is (1,+)-summable with metric dimension equal to one.

Moreover, for each limiting procedure W and each a ∈ A := C(Σ∞A ;C), we have that

TrW (π(a)|Dνφ |
−1) =

1

hνφ(σ)

∫
Σ∞
A

a dνφ.

In particular, the noncommutative volume of (A,H,D) is equal to 1/hνφ(σ).

Very shortly before this thesis was to be submitted, the author learnt that Sharp [Sha]

(motivated by our work in [FS]) developed a very similar result to that presented in Theorem

4.2.7. The main focus of [Sha] is on representing a topologically mixing sub-shift of finite
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type by a spectral triple and calculating the noncommutative volume using a spectral triple

similar to that presented in [BP]. Although our results are similar, Sharp obtains his results

using different methods.

1.4 Basic Notation and Definitions

In this section we set out basic terminology and notation that will frequently be encountered.

1. Let N,Z,Q,R, and C denote the sets of all natural, integer, rational, real and complex num-

bers, respectively. It is assumed that the natural numbers exclude zero, and so, let N0 denote

the set of non-negative integers.

2. For a subset E of Rn let |E| denote the Euclidean diameter of E and let E denote the closure

of E, that is, the small closed subset of Rn containing E. Further, let ∂E denote the closure

of E minus the interior of E, where the interior of E is defined to be the largest open subset

of Rn which is fully contained in E.

3. For each z ∈ C, the same symbol is used for the (complex) norm of z, that is, |z| := (zz)
1/2.

4. Two notions which we will repeatedly use are those of comparability and asymptoticity.

(a) For f, g : R → [0,∞) and x0 belonging to the extended real numbers, we say that f

is comparable to g as x tends to x0 if there exist constants c1, c2 > 0 such that for all

x sufficiently close to x0 (and in the case that x0 = ±∞, for all x sufficiently large,

respectively sufficiently small), we have that c1f(x) 6 g(x) 6 c2f(x). We write f � g

as x tends to x0.

(b) For f, g : R → R and x0 belonging to the extended real numbers, we say that f is

asymptotic to g as x tends to x0 (and in the case that x0 = ±∞, for all x sufficiently

large, respectively sufficiently small) if lim x→x0 f(x)/g(x) = 1. We write f ∼ g as x

tends to x0.

5. For a topological space (X, T ) and a continuous function T : X → X, two continuous

functions g, h : X → R are said to be cohomologous with respect to T if there exists a

continuous function φ : X → R such that g − h = φ − φ ◦ T . This difference is called the

co-boundary of g and h with respect to T .

6. A topological space is called totally disconnected if and only if its connected components

consist of single points. If a topological space has no open set which consists of a single point,

then we say it has no isolated points.

7. Let (X, T ) denote a topological space. A subset Y of X is called discrete if and only if, for

all y ∈ Y , there exists U ∈ T such that Y ∩ U = {y}

8. For a topological space (X, T ), let B denote the Borel σ-algebra, that is, the σ-algebra gen-

erated by the open sets of X. Two finite measures µ1 and µ2 on B are said to be equivalent,

if for each B ∈ B we have that µ1(B) = 0 if and only if µ2(B) = 0.

9. Let µ denote a finite Borel measure on a topological space (X, T ). The support of µ, denoted

by supp(µ), is defined to be the set of all points x ∈ X for which every open neighbourhood

of x has positive measure.
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10. Let (X1, C1, µ1) and (X2, C2, µ2) be two measure spaces and let T : X1 → X2 denote a

measurable map. Then T is said to be measure preserving if µ1(T−1(C)) = µ2(C) for all

C ∈ C2.

11. If (X, C, µ) is a measure space, T : X → X a measure preserving transformation and µ(X) <

∞, then the measure preserving transformation T is called ergodic if and only if for all C ∈ C
with T−1(C) = C one has that µ(C) = 0 or µ(C) = µ(X).

12. For n ∈ N, let λn denote the n-dimensional Lebesgue measure.

13. For a given set X, we define the following.

(a) For Y ⊆ X, let χY denote the characteristic function of Y , that is, for each x ∈ X,

define

χY (x) :=

{
0 if x 6∈ Y ,

1 if x ∈ Y .

(b) For x ∈ X, let δx denote the Dirac point mass at x, that is, for a subset Y of X, define

δx(Y ) :=

{
0 if x 6∈ Y ,

1 if x ∈ Y .

(c) For each x, y ∈ X, let δx,y denote the Kronecker-delta symbol , that is,

δx,y :=

{
0 if x 6= y,

1 if x = y.

14. For a topological space (X, T ), let C(X;C) denote the set of complex-valued continuous

functions on X and let C(X;R) denote the set of real-valued continuous functions on X.

For a measure space (X,B, µ), we let L2(X,B, µ) denote the Hilbert space of complex-valued

square integrable functions on X with respect to µ, where the inner product is given, for all

h1, h2 ∈ L2(X,B, µ), by

〈h1, h2〉 :=

∫
X

h1h2 dµ.

15. For each k ∈ N, let Πk denote the symmetric group on k symbols.

16. For a complex separable Hilbert space H, let B(H) denote the algebra of bounded linear

operators from H to H and let K(H) denote the ideal of B(H) consisting of compact linear

operators. Further, for T ∈ B(H) denote the adjoint of T by T ∗. For a linear operator

T ∈ B(H) define the trace of T to be tr(T ) :=
∑
k∈N〈T (ek), ek〉, where {ek}k∈N is an arbitrary

orthonormal basis for H. An operator T is called a trace-class operator if and only if the trace

of |T | := (T ∗T )
1
2 is finite. Observe that set of trace-class operators form a subset of K(H).

Background on further relevant notions from functional analysis are included in Appendix A.

17. For a Hilbert space H, we let 1 denote the identity element of the set B(H).

18. Following convention, we let ⊗ denote the tensor product of vector spaces.

19. Finally, throughout this thesis we shall assume the Axiom of Choice.



Chapter 2: Fractals, Dynamics and Renewal Theorems

The aim of this chapter is to present necessary background material from the areas of fractal

geometry (Section 2.1), symbolic dynamics (Section 2.2) and renewal theory (Section 2.3). To that

end, we state various well-known results and examples, but also give some new results. With these

foundations and those of Chapter 3, we will be able to achieve our overall goal of constructing and

developing a theory of a noncommutative fractal geometry.

2.1 Fractal Geometry

Let us begin by collecting relevant results from fractal geometry. The majority of the material

detailed here is well-known and so is stated here without proof, with the exception of the final

two results of Subsection 2.1.3 which do not seem to appear in the current literature. For the

interested reader, there is an extensive literature available, with good overviews contained in [Fal1,

Fal3, Man4, Pol2].

2.1.1 Fractal Measures and Dimensions

In the foundational essay [Man3], Mandelbrot introduced the subject of fractal geometry. One

of the main motivations was to introduce tools which would be able to deal with irregular and

fragmented patterns which occur in nature and science. Often, unlike “smooth” objects whose

structure becomes simpler on a shrinking scale, fractal objects tend to be irregular or fragmented

on a shrinking scale. Therefore, fractal sets are too irregular to be described either locally or globally

with traditional geometric tools.

Various attempts have been made to give a mathematically precise definition of a fractal, but in

general such definitions have proven to be unsatisfactory. Therefore, it is often the case that a set

is described as being fractal if it satisfies certain characteristics, for instance the above-described

irregularity at all scales. Another characteristic is having a non-integer Hausdorff dimension, which

is obtained from the Hausdorff measure, where the Hausdorff measure is defined in an analogous

way to the n-dimensional Lebesgue measure, for n ∈ N. In what follows, let n ∈ N be fix.

Definition 2.1.1. Let E denote a subset of Rn, let s > 0 and let η > 0. Define

Hsη(E) := inf

{∑
k∈N

|Ek|s : E ⊆
⋃
k∈N

Ek and |Ek| < η

}

to be the η approximation to the s-dimensional Hausdorff measure and define

Hs(E) := sup
η>0
Hsη(E)

to be the s-dimensional Hausdorff measure of E.

Theorem 2.1.2. For s > 0, we have that Hs is a regular Borel measure and if E ⊆ Rn, then there

exists a unique δ ∈ R such that, for all ε ∈ (0, δ), we have that

Hδ−ε(E) = ∞, Hδ+ε(E) = 0

Moreover, one has that λn = cnHn, where cn is the n-dimensional Lebesgue volume of the unit ball

in Rn.

10
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Proof. See page 31 of [Fal1]. �

Definition 2.1.3. For E ⊂ Rn, the unique δ given in Theorem 2.1.2 is defined to be the Hausdorff

dimension of E and denoted by dimH(E).

Another type of dimension that we shall use is the box-counting dimension. Let E denote a

non-empty bounded subset of Rn. For each ε > 0, define Nε(E) to be the smallest number of subsets

of Rn of diameter less than ε needed to cover E. The box-counting dimension of E is determined

by the power law relationship between Nε(E) and ε.

Definition 2.1.4. The lower and upper box-counting dimensions of E ⊂ Rn are respectively defined

by

dimB(E) := lim inf
ε→0

ln(Nε(E))

− ln(ε)
, dimB(E) := lim sup

ε→0

ln(Nε(E))

− ln(ε)
. (2.1)

If these are equal then the common value is referred to as the box-counting dimension of E and is

denoted by

dimB(E) := lim
ε→0

ln(Nε(E))

− ln(ε)
.

It is often the case that the Hausdorff dimension and the box-counting dimension differ. How-

ever, it is well-known that the box-counting dimension gives an upper bound for the Hausdorff

dimension, that is, for a subset E of Rn we have that

dimH(E) 6 dimB(E) 6 dimB(E).

For a proof of this result and further reading on the Hausdorff dimension and box-counting dimension

we refer the reader to Chapters 2 and 3 of [Fal1].

In this thesis, a specific class of fractal sets which we will work with are self-similar sets. These

sets are made up of smaller images of themselves and can be constructed by an iterated function

system of similarities.

Definition 2.1.5. Let K be a compact subset of Rn. A similarity is a linear map s : K → K

such that there exists an r ∈ (0, 1) with ‖s(x) − s(y)‖ = r‖x − y‖, for all x, y ∈ K. We refer to

r as the contraction ratio of the similarity s. Define an iterated function system of similarities to

be a finite family of distinct similarity mappings {s1, s2, . . . , sm} on K. It is assumed that m is a

positive integer greater than or equal to 2 in order to avoid trivial cases.

A property of an iterated function system of similarities is that it determines a unique invariant

compact subset of Rn.

Theorem 2.1.6. (Hutchinson’s Theorem) If S := {s1, s2, . . . , sm} denotes an iterated function

system of similarities on a compact subset K of Rn, then there exists a unique non-empty compact

subset E of K satisfying

E =

m⋃
i=1

si(E).

We say that E is invariant under S and call E a self-similar set.

Proof. See Theorem 9.1 of [Fal1]. �

A useful condition that is commonly used in fractal geometry is the strong separation condition.



12 CHAPTER 2. FRACTALS, DYNAMICS AND RENEWAL THEOREMS

Definition 2.1.7. Let S := {s1, s2, . . . , sm} denote an iterated function system of similarities on

a compact subset K of Rn and let E denote the unique non-empty compact invariant set under S.

Then S is said to satisfy the strong separation condition if for all distinct i, j ∈ {1, 2, . . . ,m} we

have that si(E) ∩ sj(E) = ∅.

Remark. A self-similar set satisfying the strong separation condition is necessarily a compact

totally disconnected set with no isolated points.

The following theorem gives a simple way of calculating the Hausdorff dimension of self-similar

sets satisfying the strong separation condition. In fact, the theorem holds under a slightly weaker

condition, namely, the open set condition (see page 129 of [Fal1]).

Theorem 2.1.8. (Moran-Hutchinson Formula) Let S := {s1, s2 . . . , sm} denote an iterated function

system of similarities satisfying the strong separation condition (or more generally the open set

condition) and let E denote the unique non-empty compact invariant set under S. Let ri denote the

contraction ratio of si for i ∈ {1, 2, . . . ,m}. Then

dimB(E) = dimH(E) = t,

where t is the unique solution of the equation

m∑
i=1

rti = 1.

Proof. See Theorem 9.3 of [Fal1]. �

An example of a fractal set which we will repeatedly use within this thesis is the following.

Example 2.1.9. For η ∈ (0, 1/2), consider the iterated function system of similarities S := {s1, s2},
where s1, s2 : [0, 1]→ [0, 1] are defined by

s1(x) := ηx, s2(x) := ηx+ 1− η.

We define the middle (1−2η)-Cantor set to be the unique non-empty compact subset of R which is

invariant under S and denote it by Cη. Note that, by the Moran-Hutchinson formula, the Hausdorff

dimension of Cη is equal to − ln(2)/ ln(η).

It is well-known that any compact totally disconnected subset E of R with no isolated points is

homeomorphic to the middle third Cantor set (see Corollary 30.4 of [Wil]). Therefore, we can view

E in terms of its complement, that is, as a family of disjoint open intervals {Ik : k ∈ N}. When

viewing E in this way, it will always be assumed that the complementary intervals Ik are ordered

so that their lengths are non-increasing. If, in addition, one imposes a certain porosity condition on

E, then one obtains bounds on the rate of decrease of the lengths of the complementary intervals

and that the Hausdorff dimension must be strictly positive. The porosity condition with which we

shall be concerned (especially in Subsection 4.1.2) is the following.

Definition 2.1.10. A subset E of R is defined to be strongly porous with porosity constant ρ ∈
(0, 1), if for each x ∈ E and r ∈ (0, 1] the ball B(x, r) contains a complementary interval of E with

diameter greater than or equal to ρr.

Remark. The standard concept of porous set, (see page 156 of [Mat]) only gives an upper bound

on the dimension of the set, hence our use of the term strongly porous.
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In order to show that the Hausdorff dimension of a strongly porous set must be strictly positive

we require the following lemma.

Lemma 2.1.11. Let (mk)k∈N0 denote a sequence in N \ {1} and let [0, 1] =: E0 ⊃ E1 ⊃ E2 . . . ,

where for each k ∈ N0 the set Ek is a finite union of disjoint closed intervals. Assume that every

connected component of Ek contains at least mk connected components of Ek+1. If the maximum

length of the intervals in Ek tends to zero as k tends to infinity, then the set

E :=
⋂
k∈N0

Ek

is a compact totally disconnected set with no isolated points. Suppose that the intervals of Ek are

separated by complementary intervals of lengths at least εk > 0, where εk+1 < εk, for each k ∈ N0,

then

dimH(E) > lim inf
k→∞

ln(m1m2 . . .mk−1)

− ln(mkεk)
.

Proof. See pages 62 - 65 of [Fal1]. �

Theorem 2.1.12. Let E denote a closed strongly porous subset of the unit interval [0, 1], with

porosity constant ρ > 0 and suppose that {0, 1} ⊂ E. Then

dimH(E) >
ln(2)

ln(2)− ln(ρ)
(2.2)

and

−∞ < lim inf
k→∞

ln(|Ik|)
ln(k)

6 lim sup
k→∞

ln(|Ik|)
ln(k)

6 −1. (2.3)

Proof. In order to calculate the lower bound of the Hausdorff dimension of E we construct a subset

F of E whose Hausdorff dimension is greater than or equal to ln(2)/(ln(2)− ln(ρ)). We build the set

F inductively. Fix x ∈ E\{0, 1} and let r := min{|x|, |1−x|}. By the strong porosity condition there

exists a complementary interval Ix ⊆ B (x, r/2) of E, such that ρr/2 6 |Ix| 6 r/2. Let F0 := ∂Ix.

Suppose that the sets F0, F1, . . . , Fk have been constructed. To obtain Fk+1, consider y ∈ Fk. By

the strong porosity condition there exists a complementary interval Iy ⊆ B(y, 2−k−2ρk+1r) of E

such that 2−k−2ρk+2r 6 |Iy| 6 2−k−2ρk+1r. We then set

Fk+1 :=
⋃
y∈Fk

∂Iy.

The set F is then defined by

F :=
⋃
k∈N0

Fk.

Therefore, by applying Lemma 2.1.11, we have that

dimH(F ) >
ln(2)

ln(2)− ln(ρ)
.

For the inequalities given in Equation (2.3) the reader is referred to Proposition 3.7 of [Fal3]. �
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To conclude this subsection we give an alternative way of generating a self-similar set. This is

a simplification of the construction of a cookie cutter set as described in [Fal3, Bed].

Theorem 2.1.13. Let S := {s1, s2, . . . , sm} be an iterated function system of similarities on a

compact subset K of R which satisfies the strong separation condition. Let

T :

m⋃
i=1

si(K) → K

be defined so that T ◦ si(x) := x, for each i ∈ {1, 2, . . . ,m} and each x ∈ k. Then the set

{x ∈ K : T k(x) is defined for all k ∈ N}

is precisely the unique invariant compact subset of K under S.

2.1.2 Minkowski Content

In this subsection we define the Minkowski content of a given subset of R. Its characterisation will

be used in various calculations in Section 4.1.

For a subset E of R and for ε > 0 we define the ε-neighbourhood of E by

Eε := {x ∈ R : there exists y ∈ E with |x− y| 6 ε}.

Here, we want to examine the behaviour of the Lebesgue measure of the ε-neighbourhood Eε of

E as ε tends to zero from above. This quantity is linked to the Minkowski content which we now

introduce.

Definition 2.1.14. Let E denote a subset of R and let s > 0. If the limit

Ms(E) := lim
ε→0

λ1(Eε)

ε1−s
(2.4)

exists, then we define this limit to be the s-dimensional Minkowski content of E. In the case that

s := dimB(E) and the limit in Equation (2.4) exists we say that E is Minkowski measurable. Note

that an analogous definition exists for subsets of Rn, for all n ∈ N (see [Fal1, Gat]).

Theorem 2.1.15. Let I ⊂ R denote a compact interval, and let {Ik : k ∈ N} denote a countably

infinite collection of disjoint open subintervals of I with
∑∞
k=1|Ik| := |I| and such that |Ik| > |Ik+1|,

for each k ∈ N. Let E := I \
⋃
k∈N Ik. Then for all s ∈ (0, 1) and c > 0, we have the following.

1. |Ik| � k−1/s as k tends to infinity if and only if λ1(Eε) � ε1−s as ε tends to zero.

2. limk→∞|Ik|k1/s = 21−1/sc
1/s(1− s)1/s if and only if Ms(E) = c.

Proof. See Proposition 2 of [Fal2]. �

Theorem 2.1.16. Let E ⊂ R denote a self-similar set generated by an iterated function system

of similarities {s1, s2, . . . , sm} which satisfies the strong separation condition, and let ri denote the

contraction ratio of si, for i ∈ {1, 2, . . . ,m}. Further, let δ denote the Hausdorff dimension of E.

Assume without loss of generality that E is scaled so that {0, 1} ⊂ E ⊂ [0, 1]. Then we have the

following.
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1. The additive group generated by the set {ln(r−1
1 ), ln(r−1

2 ), . . . , ln(r−1
m )} is dense in R, if and

only if

lim
ε→0

λ1(Eε)

ε1−δ
= 21−δ(1− δ)−1

∑m−1
i=1 |li|

δ∑m
j=1 r

δ
j ln(r−δj )

,

where l1, l2, . . . , lm−1 denote the complementary intervals of
⋃m
i=1 si([0, 1]) whose lengths are

finite.

2. If the additive group generated by {ln(r−1
1 ), ln(r−1

2 ), . . . , ln(r−1
m )} is isomorphic to Z, then we

have that λ1(Eε) � ε1−δ as ε tend to zero.

Proof. See Proposition 4 of [Fal2] for the proof of the forward implication of 1 and for the proof

of 2. For the reverse implication of 1 see Theorem 6.20 and Theorem 6.21 of [FL]. �

2.1.3 Coarse Multifractal Analysis

Here we describe and develop aspects of coarse multifractal analysis in such a way that allows for the

introduction of an analogous notion within the theory of noncommutative geometry (see Subsection

4.1.2). The final result of this subsection (Theorem 2.1.20) will play a vital role in the formulation

of this new notion. This is a new result which allows for the calculation of the coarse multifractal

box-counting dimension of the support of a measure µ on R in terms of the complement of supp(µ),

provided supp(µ) is compact and strongly porous.

Multifractal analysis originated from statistical mechanics and was later adapted to dynamical

systems. It was developed by two independent groups of mathematicians and physicists. The first

approach can be traced back to the work of Mandelbrot, who in [Man1, Man2] suggested that the

distribution of intermittent dissipation of energy in highly turbulent fluid flows is “multifractal”

in nature and studied it by calculating its moments. The second approach is due to Grassberger,

Hentschel and Procaccia who in [Gra, GP, HP] generalised the work of Rényi [Rén]. These two

approaches were merged in the seminal paper [HMJPS].

Multifractals represent a move from the geometry of a metric space (X, d) to the geometric

properties of measures supported on X. The distribution of the mass of such a measure µ may

vary widely over X. By studying the local dimension of µ at each point of X, one obtains a family

of sets referred to as “level sets”. These are the intrinsic objects which multifractal analysis is

predominantly concerned with. A number of approaches to multifractals have been developed. In

what follows, we aim to introduce the coarse multifractal spectra for compact subsets of R. First

we introduce the Hausdorff dimension spectrum. Note that many of the ideas that follow can be

extended to higher dimensions. However, as we are primarily interested in fractal subsets of R we

state (and where necessary prove) the results for compact subsets of R.

For a finite Borel measure µ on R, we respectively define the lower and upper local dimension

of µ at x ∈ supp(µ) by

dimµ(x) := lim inf
r→0

ln(µ(B(x, r)))

ln(r)
, dimµ(x) := lim sup

r→0

ln(µ(B(x, r)))

ln(r)
.

If these coincide, we refer to the common value as the local dimension of µ at x, and denote it by

dimµ(x). Further, we set dimµ(x) := ∞ if x lies outside the support of µ and that µ(x) = 0 if x

is an atom of x. As a matter of interest, we note that the upper and lower local dimensions are

measurable functions. This follows from the fact that they are upper and lower semi-continuous,

respectively.
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In multifractal theory one is interested in the geometric properties of the level sets, which are

given for each η ∈ R by

Xη := {x ∈ supp(µ) : dimµ(x) = η}.

The function fµ : R→ [0, dimH(supp(µ))] defined by

fµ(η) := dimH(Xη) (2.5)

is called the Hausdorff dimension spectrum of µ.

The coarse multifractal spectrum, in certain cases, coincides with the Hausdorff dimension

spectrum and has parallel features to the box-counting dimension. A goal of coarse multifractal

analysis is to study global irregularities of a measure, in particular, the asymptotic behaviour of its

moment sums. There are many equivalent ways of defining the coarse spectrum. In what follows

we state the intuitive definitions which are given in [Fal3] and also the equivalent definitions given

by Riedi [Rie1].

Let µ denote a finite Borel measure on a compact subset of R. For r > 0, let Br denote a

r-mesh of R, that is, a covering formed by closed intervals of length r such that the interiors are

pairwise disjoint. For each r > 0, define Nr : R→ R, for each η ∈ R, by

Nr(η) := card{B ∈ Br : µ(B) > rη}.

Then the lower and upper coarse multifractal spectra f
C

, f
C

: R→ R of µ are respectively defined,

for each η ∈ R, by

f
C

(η) := lim inf
ε→0

lim inf
r→0

ln(Nr(η + ε)−Nr(η − ε))
− ln(r)

f
C

(η) := lim sup
ε→0

lim sup
r→0

ln(Nr(η + ε)−Nr(η − ε))
− ln(r)

.

If, at some η ∈ R, the lower and upper coarse multifractal spectra coincide the common value is

denoted by fC (η). Heuristically, the coarse multifractal spectrum provides a global overview of the

fluctuations of µ at an infinitesimal scale, but gives no information about the limiting behaviour of

µ at a given point.

In analogy with the box-counting dimension, for a finite Borel measure µ on a compact subset

of R, we respectively define β, β : R→ R, for each q ∈ R, by

β(q) := lim inf
r→0

ln
(
Mq

µ,r

)
− ln(r)

,

β(q) := lim sup
r→0

ln
(
Mq

µ,r

)
− ln(r)

.

Here, Mq
µ,r denotes the multifractal moment sum of µ and is defined, for each r > 0 and q ∈ R, by

Mq
µ,r :=

∑
B∈Br
µ(B)>0

(µ(B))q.

For q ∈ R, we refer to β(q) and β(q) as the lower and upper multifractal box-counting dimension

of µ at q, respectively. If, for some q ∈ R, we have that β(q) = β(q), then we denote the common

value by β(q) and refer to it as the multifractal box-counting dimension of µ at q.
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Just as we have a relationship between the box-counting dimension and the Hausdorff dimen-

sion, there exists a similar relationship between the Hausdorff dimension spectra and the coarse

multifractal spectra.

Theorem 2.1.17. Let µ be a finite Borel measure on a compact subset of R. Then, for each η > 0,

we have that

fµ(η) 6 f
C

(η) 6 f
C

(η). (2.6)

Further, for each η > 0, we have

f
C

(η) 6 inf
q∈R

{
β(q) + η · q

}
, f

C
(η) 6 inf

q∈R

{
β(q) + η · q

}
. (2.7)

Proof. See [Fal3] Lemma 11.1 for a proof of Equation (2.6) and Lemma 11.2 for a proof of

Equation (2.7). �

Remark. In many cases one has equality in Equations (2.6) and (2.7), for instance if µ is a self-

similar measure (a class of measures which we will come to introduce at the end of this subsection).

In the above definition β is well defined for q > 0, whereas for q < 0 the multifractal moment

sums may only converge on subsequences, for r tending to zero. The reason for this is that for

certain values of r there may exist a B ∈ Br such that µ(B) is uncharacteristically small, and so,

µ(B)q becomes uncharacteristically large. To overcome this difficulty we add a slight modification

to the definition of the multifractal box-counting dimension, as given in [Rie1]. But first, let us set

some notation. For a compact interval I := [s, t] of R and for η > 0, let Iη denote the interval

centred about I of diameter (1 + η)(t− s), that is, let

Iη := [s− η(t− s)/2, t+ η(t− s)/2].

For r > 0, set B∗r(µ) := {B ∈ Br : µ(B) > 0}. Define b : R→ R, for each q ∈ R, by

b(q) := inf

k ∈ R : lim sup
r→0

∑
B∈B∗r(µ)

rkµ(Bη)q = 0

 (2.8)

= sup

k ∈ R : lim sup
r→0

∑
B∈B∗r(µ)

rkµ(Bη)q =∞

 . (2.9)

The next proposition shows that b(q) is independent of η > 0 for all q ∈ R, and independent of

η > 0 for q > 0.

Proposition 2.1.18. Let µ denote a finite Borel measure on a compact subset of R.

1. Given q > 0 and 0 6 η1 6 η2 there exists a constant c > 0 such that, for sufficiently small r,

we have that

c
∑

B∈B∗r(µ)

µ(Bη2)q 6
∑

B∈B∗r(µ)

µ(Bη1)q 6
∑

B∈B∗r (µ)

µ(Bη2)q. (2.10)

2. Given q < 0 and 0 < η1 6 η2, for sufficiently small r, we have that∑
B∈B∗r(µ)

µ(Bη2)q 6
∑

B∈B∗r(µ)

µ(Bη1)q 6 2
∑

B∈B∗
(η1r)/(2(1+η2))

(µ)

µ(Bη2)q. (2.11)
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In particular, b(q) is independent of η1 > 0, for all q ∈ R, and independent of η > 0 for q > 0.

Hence, we have that b(q) = β(q), for q > 0.

Proof. The upper bound of Equation (2.10) and the lower bound of Equation (2.11) are

established by using the fact that µ(Bη1) 6 µ(Bη2). The lower bound of Equation (2.10) follows

since for each B ∈ B∗r , there can only exist a finite number of B̃ ∈ B∗r such that the set Bη2 ∩ B̃η1

is non-empty. An application of Hölders inequality (Theorem III.1(c) of [RS]) then gives the

required result for q > 1 and an application of Minkowski’s inequality (Theorem III.1(a) of [RS])

then gives the required result for q ∈ [0, 1]. The upper bound of Equation (2.11) is obtained from

the following observations. Firstly, to each B ∈ B∗r(µ) one can associate a B̃ ∈ B∗(η1r)/(2(1+η2))(µ)

such that B̃η2 ⊆ Bη1 . Secondly, each B̃ ∈ B∗(η1r)/(2(1+η2))(µ) can intersect at most 2 elements of

B∗r(µ). �

Suppose that µ denotes a finite Borel measure on R with compact support. By assuming

that the support of µ is strongly porous (Definition 2.1.10) and using the definition of the coarse

multifractal box-counting dimension given by Riedi (Equations (2.8) and (2.9)), we develop a new

result which allows one to obtain the coarse multifractal box-counting dimension of µ in terms of

the complementary intervals of the support of µ. Although the formula given in Theorem 2.1.20

seems unusual in the context of standard multifractal analysis, it will become clear in Subsection

4.1.2 why this particular formulation is in fact quite natural. We begin with the following technical

lemma.

Lemma 2.1.19. Let µ denote a Borel probability measure on a compact subset of R. Assume that

the support of µ is strongly porous with porosity constant ρ > 0. Let {Ik : k ∈ N} denote the set of

complementary intervals of supp(µ) whose lengths are finite. Then, for each q ∈ R, η1 > 2/ρ and

η2 > 0, there exist positive constants t1, t2, c1, c2 such that for r > 0 sufficiently small, we have that

c1
∑

ρt1r6|Ik|6t1r

µ(I
η1
k )q 6

∑
B∈B∗r(µ)

µ(Bη2)q 6 c2
∑

ρt2r6|Ik|6 t2r

µ(I
η1
k )q. (2.12)

Proof. Without loss of generality assume that {0, 1} ⊆ µ ⊆ [0, 1]. As above, assume that the

complementary intervals of supp(µ) are listed so that |Ik| > |Ik+1|, for each k ∈ N. For each

t ∈ (0, 1), define It:={Ik : ρt 6 |Ik| 6 t}. Fix r ∈ (0, (η1 + 2)/η2) and note that since the support

of µ is strongly porous, the set Iη2r/(η1+2) is non-empty. Now observe that for each Ik ∈ Iη2r/(η1+2),

there exists a B ∈ B∗r(µ) such that B ∩ ∂Ik 6= ∅ and I
η1
k ⊆ Bη2 . This follows since the boundary of

Ik lies in the support of µ and since

|Ik|+
η1

2
|Ik| 6

η2r

η1 + 2
+
η1

2

η2r

η1 + 2
=

η2r

2
.

Next, observe that for each B ∈ B∗r(µ) we have that

card
{
Ik ∈ Iη2r/(η1+2) : I

η1
k ⊆ Bη2

}
6 (r + η2r)

η1 + 2

ρη2r
=

(η2 + 1)(η1 + 2)

ρη2
. (2.13)

From these observations, the lower bound of Equation (2.12) follows for q > 0, where t1 = η2/(η1+2)

and c1 = ρη2/((η2 + 1)(η1 + 2)).

For q < 0 we argue as follows. Fix r ∈ (0, (2ρ + η1ρ − 2)/(η2 + 2)) and consider an element

B ∈ B∗r(µ). For a fixed x ∈ supp(µ) ∩ B, the strongly porous condition on the support of µ

implies that there exists Ik ∈ I(η2+2)r/(2ρ+η1ρ−2) such that Ik ⊂ B(x, (η2 + 2)r/(2ρ+ η1ρ− 2)) and
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ρ(η2 + 2)r/(2ρ+ η1ρ− 2) 6 |Ik|. Therefore, we have that

|Ik|+
η1

2
|Ik| −

(η2 + 2)r

2ρ+ η1ρ− 2
>

ρ(η2 + 2)r

2ρ+ η1ρ− 2
+
η1ρ

2

(η2 + 2)r

2ρ+ η1ρ− 2
− (η2 + 2)r

2ρ+ η1ρ− 2
= r +

1

2
η2r.

From this we conclude that Bη2 ⊆ Iη1
k . Next, observe that for each I

η1
k we have that

card
{
B ∈ B∗r(µ) : Bη2 ⊆ Iη1

k

}
6

(η2 + 2)(2ρ+ η1ρ− 2)−1r

r
=

η2 + 2

2ρ+ η1ρ− 2
. (2.14)

From these observations, the lower bound of Equation (2.12) follows for q < 0, where t1 = (η2 +

2)/(2ρ+ η1ρ− 2) and c1 = (2ρ+ η1ρ− 2)/(η2 + 2).

The upper bound follows in an analogous way. That is, for q > 0, fix r ∈ (0, η1ρ/(2 + η2)).

Then for each Ik ∈ I(2+η2)r/(η1ρ)
, one can find B ∈ B∗r(µ) such that I

η1
k contains Bη2 . Moreover, as

in Equation (2.14), it can be shown, independent of r, that each I
η1
k can contain at most a bounded

number of intervals of the set {Bη2 : B ∈ B∗r(µ)}. Similarly, for q < 0, fix r ∈ (0, (η1 + 2)/η2).

Then using the strongly porous condition on the support of µ, one has that for each B ∈ B∗r(µ),

there exists an Ik ∈ Iη2r/(η1+2) such that I
η1
k ⊆ Bη2 . In addition, as in Equation (2.13), we have

that each Bη2 can contain at most a bounded number of intervals of the set {Iη1
k : Ik ∈ Iη2r/(η1+2)},

independent of r. �

Theorem 2.1.20. Let µ denote a Borel probability measure whose support is a strongly porous

compact subset of R with porosity constant ρ > 0. Let {Ik : k ∈ N} denote the set of complementary

intervals of supp(µ) whose lengths are finite. If η > 2ρ−1, then for each q ∈ R, we have that

b(q) = inf

{
t ∈ R :

∑
k∈N

µ(I
η
k)q|Ik|t <∞

}
(2.15)

= inf

{
t ∈ R : lim sup

N→∞

∑N
k=1 µ(I

η
k)q|Ik|t

ln(N)
= 0

}
. (2.16)

Proof. Without loss of generality, assume that {0, 1} ⊂ supp(µ) ⊂ [0, 1]. Let us begin by proving

the equality given in Equation (2.15). By Lemma 2.1.19, for r > 0 sufficiently small and for all

q, t ∈ R, there exist positive constants t2, c such that∑
k∈N

µ(I
η
k)q|Ik|t >

∑
l∈N0

∑
ρl+1t2r6|Ik|<ρlt2r

µ(I
η
k)q|Ik|t > c

∑
l∈N0

∑
B∈B∗

ρlr
(µ)

µ(Bη)q(ρlr)t.

Therefore, by using the definition of b given in Equations (2.8) and (2.9), we conclude that

b(q) 6 inf

{
t ∈ R :

∑
k∈N

µ(I
η
k)q|Ik|t <∞

}
.

Using the lower bound in Equation (2.12), a similar argument gives that

b(q) > inf

{
t ∈ R :

∑
k∈N

µ(I
η
k)q|Ik|t <∞

}
.

Let us consider the equality given in Equation (2.16). Let η, q, t be as above. If the series
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∑
k∈N µ(I

η
k)q|Ik|t is bounded, then

lim sup
N→∞

∑N
k=1 µ(I

η
k)q|Ik|t

ln(N)
= 0.

Therefore, it follows that

inf

{
t ∈ R : lim sup

N→∞

∑N
k=1 µ(I

η
k)q|Ik|t

ln(N)
= 0

}
6 inf

{
t ∈ R :

∑
k∈N

µ(I
η
k)q|Ik|t <∞

}
.

To obtain the desired equality, first observe that 1 >
∑k
l=1|Il| > k|Ik| for each k ∈ N. Secondly, if

lim sup
N→∞

∑N
k=1 µ(I

η
k)q|Ik|t

ln(N)
= 0,

then there exists a positive constant c, such that for each ε ∈ (0, 1) and each k ∈ N0, we have that

2k+1−1∑
l=2k

µ(I
η
l )q|Il|t+ε 6 c2−kε ln(2k+1).

Using these two observations, we conclude that there exists a positive constant c such that

∑
k∈N

µ(I
η
k)q|Ik|t =

∑
k∈N0

2k+1−1∑
l=2k

µ(I
η
l )q|Il|t 6 c

∑
k∈N0

2−kε ln(2k+1) < ∞.

Therefore, it follows that

inf

{
t ∈ R : lim sup

N→∞

∑N
k=1 µ(I

η
k)q|Ik|t

ln(N)
= 0

}
= inf

{
t ∈ R :

∑
k∈N

µ(I
η
k)q|Ik|t <∞

}
.

�

To conclude this subsection, we consider the class of measures known as self-similar measures.

Let {si : [0, 1] → [0, 1] : i = 1, 2, . . . ,m} denote an iterated function system of similarities and let

p := (p1, p2, . . . , pm) denote a probability vector. A self-similar measure associated to p is defined

to be the unique Borel measure µ, given, for each Borel set B, by

µ(B) :=

m∑
i=1

piµ
(
s−1
i (B)

)
. (2.17)

In this setting, the Hausdorff dimension spectrum of µ is obtained from the Legendre transform of

the function ß : R→ R which is given by the equation

m∑
i=1

pqi r
ß(q)
i = 1.

(See Theorem 11.7 of [Fal3].) Moreover, in this setting, for all q ∈ R, we have that b(q) = ß(q) (see

Theorem 16 of [Rie1]).
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2.2 Symbolic Dynamics

In this section we have three main aims. Firstly, to define the concept of a one-sided subshift of

finite type (Σ∞A , σ). Secondly, to define the notions of a Gibbs measure and equilibrium measure

on the space Σ∞A and then to describe the thermodynamic formalism for the dynamical system

(Σ∞A , σ). Thirdly, to create a new notion of a Haar Basis for the L2-space of Σ∞A with respect

to a Gibbs measure. Let us begin by defining the class of dynamical systems known as one-sided

subshifts of finite type.

Let M ∈ N \ {1} be fixed. Let Σ := {1, 2, . . .M} denote a finite alphabet and let A := [ai,j ]i,j

denote an M ×M matrix with entries in {0, 1}, called the transition matrix . Define the space Σ∞A
by

Σ∞A :=

{
ω := (ω1, ω2, ω3, . . . ) ∈

∏
k∈N

Σ : aωk,ωk+1 = 1 for all k ∈ N

}
. (2.18)

In other words, Σ∞A is the space of all sequences with entries in the alphabet Σ with transitions

allowed by A. Define the left shift σ : Σ∞A → Σ∞A , for each ω := (ω1, ω2, ω3, . . . ) ∈ Σ∞A , by

σ(ω1, ω2, ω3, . . . ) := (ω2, ω3, ω4, . . . ).

Then the system (Σ∞A , σ) is called a one-sided subshift of finite type. If A is a matrix with all entries

equal to 1, we call the system (Σ∞A , σ) the full shift space on M symbols and denote it by (Σ∞, σ).

Next we introduce a topology on Σ∞A . For k ∈ N, define

ΣkA :=
{
ω := (ω1, ω2, . . . , ωk) ∈ Σk : Aωi,ωi+1 = 1

}
, (2.19)

Σ∗A :=
⋃
k∈N

ΣkA (2.20)

and for ω ∈ ΣkA define

[ω] := {υ := (υ1, υ2, . . . ) ∈ Σ∞A : (υ1, υ2, . . . , υk) = ω} ,

|ω| := k.

We call the set [ω] a cylinder set and define the topology T on Σ∞A to be the topology generated

by the family of the cylinder sets. Throughout this thesis we will always assume that the space

Σ∞A is equipped with the topology T . Observe that this topology is metrizable. We call a metric

d : Σ∞A → Σ∞A regular if the following hold.

1. The topology induced by d is equivalent to T .

2. The left shift σ is positively expanding with respect to d, that is, there exists ε > 0 such that

if ω, υ ∈ Σ∞A with ω 6= υ, then there exists k ∈ N0 with d(σk(ω), σk(υ)) > ε.

Definition 2.2.1. Let M ∈ N and let A := [ai,j ]i,j denote an M ×M matrix with real entries.

Then A is said to be non-negative if ai,j > 0 for all i, j. For a non-negative matrix A we make the

following definitions.

1. A is called irreducible if for all i, j ∈ {1, 2, . . . ,M} there exists some k ∈ N such that the

(i, j)-th element of Ak is strictly positive.

2. A is called irreducible and aperiodic if there is some k ∈ N such that for all i, j ∈ {1, 2, . . . ,M}
the (i, j)-th element of Ak is strictly positive.
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If Σ is a finite alphabet and A is an irreducible and aperiodic transition matrix for Σ, then we call

(Σ∞A , σ) a one-sided topologically exact subshift of finite type.

Example 2.2.2. The full shift space is an example of a topologically exact subshift of finite type.

Example 2.2.3. Let M ∈ N \ {1} be fixed. Let Σ := {1, 2, . . . , 2M} and let A := [ai,j ]i,j denote

the 2M × 2M transition matrix with entries in {0, 1} satisfying

ai,j :=

{
1 if |i− j| 6= 1,

0 otherwise.

Then the subshift of finite type (Σ∞A , σ) is topologically exact.

2.2.1 Thermodynamic Formalism: The Perron-Frobenius-Ruelle Operator and

Equilibrium Measures

In this subsection we introduce the notions of a Gibbs measure and an equilibrium measure defined

on the space Σ∞A as well as the Perron-Frobenius-Ruelle operator for a one-sided subshift of finite

type (Σ∞A , σ). We will see that the existence of eigenmeasures of the dual of the Perron-Frobenius-

Ruelle operator proves the existence of Gibbs measures, where topological pressure appears as the

logarithm of the corresponding eigenvalue. The results of this subsection were originally presented in

the work of Bowen and Ruelle, see for instance [Bow1, Bow2, Rue1, Rue2]. However, as a reference

for this subsection we refer the reader to [Wal1, Wal2, MU, Pol1, Pol2].

Let us begin by describing the concept of measure theoretical entropy given by Sinai and Kol-

mogorov. For a σ-invariant measure µ on a one-sided topologically exact subshift of finite type

(Σ∞A , σ), we define the measure theoretical entropy of µ with respect to σ by

hµ(σ) := lim
k→∞

1

k

∑
ω∈Σk

A

−µ([ω]) ln(µ[ω]).

This is a non-negative quantity which measures the uncertainty of µ after iterations by σ. Note

that this limit exists since the sequence ∑
ω∈Σk

A

−µ([ω]) ln(µ[ω])


k∈N

is subadditive (see Corollary 4.9.1 of [Wal2]).

Example 2.2.4. Let E denote a self-similar set satisfying the strong separation condition generated

by an iterated function system of similarities {s1, s2, . . . , sm} and let δ := dimH(E) denote the

Hausdorff dimension of E. Further, let r1, r2, . . . , rm denote the associated contraction ratios of the

similarities and let T : E → E denote the expanding map as defined in Theorem 2.1.13. Then the

dynamical systems (E, T ) is topologically conjugate to a full shift space (Σ∞, σ). That is, there

exists a homeomorphism Φ : E → Σ∞ such that ΦTΦ−1 = σ. Then, letting µ̃ denote the push

forward of the normalised δ-dimensional Hausdorff measure under Φ, we have that

hµ̃(σ) =

m∑
i=1

rδi ln(r−δi ).
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In order to introduce a Gibbs measure on a one-sided subshift of finite type let us define the

Birkhoff sums of a continuous function.

Definition 2.2.5. For each φ ∈ C(Σ∞A ;R) and each k ∈ N0, let Skφ : Σ∞A → R denote the k-th

Birkhoff sum of φ defined, for each ω ∈ Σ∞A , by

Skφ(ω) := φ(ω) + φ(σ(ω)) + · · ·+ φ(σk−1(ω)).

Theorem 2.2.6. Let (Σ∞A , σ) denote a one-sided topologically exact subshift of finite type and let

φ ∈ C(Σ∞A ;R) denote a Hölder continuous function. Then there exists a Borel probability measure

µφ on Σ∞A and a uniquely determined number P (φ, σ) ∈ [0,∞) associated to φ, such that for some

c > 1, we have that, for all k ∈ N and for all ω := (ω1, ω2, . . . ) ∈ Σ∞A , that

c−1 6
µφ[(ω1, ω2, . . . , ωk)]

eSkφ(ω)−kP (φ,σ)
6 c. (2.21)

Moreover, to each Hölder continuous potential function φ ∈ C(Σ∞A ;R), there exists a unique σ-

invariant measure satisfying the condition given in Equation (2.21).

Proof. See Theorem 2.1.3 and Theorem 2.2.4 of [MU]. �

We refer to such a measure satisfying the condition given in Equation (2.21) as a Gibbs measure

for the potential φ. Observe that each Gibbs measure will have strictly positive entropy and that to

each potential function there can exist several Gibbs measures. Moreover, the uniquely determined

number P (φ, σ) is called the topological pressure of φ and is characterised by

P (φ, σ) = sup

{
hµ(σ) +

∫
Σ∞
A

φdµ : µ ∈M(Σ∞A , σ)

}
.

Here, M(Σ∞A , σ) denotes the set of σ-invariant Borel probability measures on Σ∞A . Further, if there

exists a measure ν ∈M(Σ∞A , σ) such that

P (φ, σ) = hν(σ) +

∫
Σ∞
A

φdν, (2.22)

then we call ν an equilibrium measure for the potential φ. Setting φ = 0, it is well-known that

there exists a unique equlibrium measure associated to φ called the measure of maximal entropy

(also called the Parry measure). This meeasure maximizes the measure theoretical entropy, that

is, hµ(σ) = supν∈M(ΣA ,σ) hν(σ). This measure, is the combinatorial measure, namely, the measure

which weights a cylindrical set [x] with weighting 1/card(ΣkA), for x ∈ ΣkA . We refer the reader to

[Wal1, Wal2] for a more detailed description of these notions.

Definition 2.2.7. For φ ∈ C(Σ∞A ;R), define the Perron-Frobenius-Ruelle operator Lφ :

C(Σ∞φ ;R)→ C(Σ∞φ ;R), by

Lφ(f)(ω) :=
∑

υ∈σ−1(ω)

eφ(υ)f(υ).

Further, we denote the dual of the Perron-Frobenius-Ruelle operator by L∗φ. In what follows we

shall consider the restriction of L∗φ to linear functional of norm one, and hence, by the Riesz

Representation Theorem (see Theorem II.4 of [RS]) we shall view L∗φ as an operator on the set

M(Σ∞A ) consisting of all Borel probability measures defined on Σ∞A .
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Theorem 2.2.8. Let (Σ∞A , σ) denote a one-sided topologically exact subshift of finite type and let

φ ∈ C(Σ∞A ;R) denote a Hölder continuous function. Then the following hold.

1. There exists a unique Borel probability µφ on Σ∞A such that

L∗φµφ = eP (φ,σ)µφ.

2. The unique measure µφ, given in part 1, is a Gibbs measure for the potential φ.

3. If ψ is a Hölder continuous function cohomologous to φ with respect to σ, then the associated

Borel probability measures, given in part 1, are equal.

4. There exists a unique strictly positive eigenfunction hφ of Lφ such that Lφ(hφ) = eP (φ,σ)hφ

and such that ∫
Σ∞
A

hφ dµφ = 1.

5. The potential function φ has a unique equilibrium measure νφ. Moreover, νφ is given, for

each B ∈ B, by

νφ(B) :=

∫
B

hφdµφ.

6. The unique equilibrium measure for the potential φ, given in part 5, is a Gibbs measure for

the potential φ.

Proof. See Theorem 2.16, Corollary 4.2 and Theorem 4.5 of [Wal1]. �

Remark. In [Pol1] the results of Theorem 2.2.8 have been extended to the case where the potential

function is a complex-valued function satisfying a condition weaker than Hölder continuity. Further,

the notions of entropy, pressure and that of a Gibbs and equilibrium measure also exist for more

general dynamical systems, see for instance [Fal3, Pol2, Wal1, Wal2].

2.2.2 Haar Basis

In this subsection, we develop an essential notion which will be required in Subsection 4.2.2. This

notion is that of a Haar basis for a one-sided topologically exact subshift of finite type. As the

construction is an original construction we include a full account. We begin with the following

well-known example of a Haar basis for the middle third Cantor set (see for instance [Jor]).

Example 2.2.9. Consider the middle third Cantor set C1/3 generated by an iterated function

system of similarities {s1, s2 : [0, 1]→ [0, 1]} and let δ := dimH(C1/3) = ln(2)/ ln(3). Then, for each

k ∈ N and each (i1, i2, . . . , ik) ∈ {1, 2}k, define ei1,i2,...,ik : C1/3 → R by

ei1,i2,...,ik (x) :=


2
k/2 if x ∈ si1si2 . . . siks1[0, 1] ∩ C1/3

−2
k/2 if x ∈ si1si2 . . . siks2[0, 1] ∩ C1/3

0 otherwise.

Then the set⋃
k∈N

{
ei1,i2,...,ik : (i1, i2, . . . , ik) ∈ {1, 2}k

} ⋃ {
χC1/3

,
√

2
(
χs1C1/3

− χ
s2[C1/3]

)}
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forms an orthonormal basis for L2(C1/3,B, µHδ(C1/3)
), where µ

Hδ(C1/3)
denotes the normalised δ

-Hausdorff measure on C1/3. This basis is called the Haar basis of the middle third Cantor set.

In what follows, our aim is to construct a basis for L2(Σ∞A ,B, µφ) analogous to the Haar basis

given in Example 2.2.9, where (Σ∞A , σ) denotes a one-sided topologically exact subshift of finite type

and where µφ denotes a Gibbs measure for a Hölder continuous potential φ ∈ C(Σ∞A ;R). To this

end, fix Σ∞A , φ and µφ as described above. Define α : Σ∗A → N by

α(ω) :=
∑
x∈Σ

aω|ω|,x.

For each ω ∈ Σ∗A, fix a bijection

θω : {x ∈ Σ : aω|ω|,x = 1} → {1, 2, . . . , α(ω)}.

Then, for each ω ∈ Σ∗A, define the weighted inner product 〈·, ·〉µφ,ω : Rα(ω) × Rα(ω) → R by

〈(x1, x2, . . . , xα(ω)), (y1, y2, . . . , yα(ω))〉µφ,ω :=

α(ω)∑
k=1

µφ([ωθ−1
ω (k)])xkyk

and observe that the set

{fω,j := (µφ([ωθ−1
ω (j)]))−

1/2 (0, 0, . . . , 0,︸ ︷︷ ︸
j−1 times

1, 0, . . . , 0, 0︸ ︷︷ ︸
α(ω)−j times

) : j ∈ {1, 2, . . . , α(ω)}}

forms an orthonormal basis for (Rα(ω), 〈·, ·〉µφ,ω). Further, for each ω ∈ Σ∗A, let Ωω denote the set

defined by

Ωω := {U : Rα(ω) → Rα(ω) : U is linear and has positive determinant,

〈U(x), U(y)〉µφ,ω = 〈x, y〉µφ,ωfor allx, y ∈ Rα(ω), and

U(fω,α(ω)) = (µφ([ω]))−
1/2(1, 1, . . . , 1)}}

and fix a sequence (Uω)ω∈Σ∗
A

with Uω ∈ Ωω. For each (ω, i) ∈
⋃
υ∈Σ∗

A
{υ} × {1, 2, . . . , α(υ) − 1},

define eω,i : Σ∞A → R by

eω,i :=

α(ω)∑
k=1

(µφ([ω(θ−1
ω (k))]))−

1/2 〈fω,k, Uω(fω,i)〉µφ,ω χ[ω(θ
−1
ω (k))]

.

Following convention, for each a ∈ C(Σ∞A ;C), we will let a also denote, where appropriate, the

equivalence class{
f : Σ∞A → C : f is a measurable function and

∫
Σ∞
A

|f − a| dµφ = 0

}

of L2(Σ∞A ,B, µφ).

Remark. For each k ∈ N \ {1} and each ω ∈ ΣkA there exists a canonical choice for Uω. We

construct this canonical choice in the following manner. Assume that Rk is equipped with the

standard Euclidean inner product, for k ∈ {2, 3, . . . , l}. We will now show how to construct a

(canonical) sequence of linear transformations (Vk)lk=1, where Vk : Rk → Rk and such that each Vk
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satisfies the following.

1. Vk is orientation preserving.

2. For every x, y ∈ Rk, we have that 〈Vk(x), Vk(y)〉 = 〈x, y〉.

3. Vk(0, 0, . . . , 0, 1) = n−1/2(1, 1, . . . , 1, 1).

For k = 2, one has only one choice for V2, namely

V2 :=

(
2−1/2 2−1/2

−2−1/2 2−1/2

)
.

For k > 2, assume that Vk−1 := [vi,j ]i,j : Rk−1 → Rk−1 has been given, then define

Ṽk :=



v1,1 . . . v1,k−1 0

v2,1 . . . v2,k−1 0
...

. . .
...

...

vk−1,1 . . . vk−1,k−1 0

0 . . . 0 1

 , Ok :=



1 . . . 0 0 0
...

. . .
...

...
...

0 . . . 1 0 0

0 . . . 0 k−1/2 (1− 1/k)1/2

0 . . . 0 −(1− 1/k)1/2 k−1/2


where Ok ∈ O(k), the orthogonal group of degree k over R. We then define Vk to be the matrix

ṼkOkṼ
t
k . A canonical choice for Uω is then the linear transformation S−1Vα(ω)S, where

S := diag
(
µφ([ωθ−1

ω (1)])1/2, . . . , µφ([ωθ−1
ω (k)])1/2

)
.

Theorem 2.2.10. The set{
eω,i : (ω, i) ∈

⋃
υ∈Σ∗

A
{υ} × {1, 2, . . . , α(υ)− 1}

}
∪
{

(µφ([x]))−
1/2χ

[x]
: x ∈ Σ

}
forms an orthonormal basis for L2(Σ∞A ,B, µφ).

Proof. For each x ∈ Σ, we have that∥∥∥(µφ([x]))−
1/2χ

[x]

∥∥∥2

=

∫
Σ∞
A

((µφ([x]))−
1/2χ

[x]
)2dµφ = 1.

Further, for each (ω, i) ∈
⋃
υ∈Σ∗

A
{υ} × {1, 2, . . . , α(υ)− 1}, we have that

‖eω,i‖2 =

∫
Σ∞
A

α(ω)∑
k=1

(µφ([ω(θ−1
ω (k))]))−

1/2 〈fω,k, U(fω,i)〉µφ,ω χ[ω(θ
−1
ω (k))]

2

dµφ

=

∫
Σ∞
A

α(ω)∑
k=1

(µφ([ω(θ−1
ω (k))]))−1 〈fω,k, U(fω,i)〉2µφ,ω χ[ω(θ

−1
ω (k))]

dµφ

=

α(ω)∑
k=1

〈fω,k, Uω(fω,i)〉2µφ,ω

= ‖Uω(fω,i)‖2 = ‖fω,i‖2 = 1.

Next, we observe the following.
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1. Let x ∈ Σ and let (ω, i) ∈
⋃
υ∈Σ∗

A
{υ} × {1, 2, . . . , α(υ) − 1}. If [ω] 6⊆ [x], then

〈(µφ([x]))−1χ
[x]
, eω,i〉 = 0, since χ

[x]
and fω,i are non-zero on different cylinder sets. Other-

wise, if [ω] ⊆ [x], then

〈(µφ([x]))−1χ
[x]
, eω,i〉

=

∫
[x]

α(ω)∑
k=1

(µφ([x]))−1(µφ([ω(θ−1
ω (k))]))−

1/2 〈fω,k, Uω(fω,i)〉µφ,ωχ[ω(θ
−1
ω (k))]

dµφ

= (µφ([x]))−1〈(1, 1, . . . , 1), Uω(fω,i)〉µφ,ω
= (µφ([x]))−1(µφ([ω]))

1/2〈Uω(fω,α(ω)), Uω(fω,i)〉µφ,ω
= (µφ([x]))−1(µφ([ω]))

1/2〈fω,α(ω), fω,i〉µφ,ω = 0.

2. Let (ω, i), (ω, j) ∈
⋃
υ∈Σ∗

A
{υ} × {1, 2, . . . , α(υ)− 1} with i 6= j. Then we have that

〈eω,i, eω,j〉

=

∫
Σ∞
A

α(ω)∑
k=1

(µφ([ω(θ−1
ω (k))]))−1〈fω,k, Uω(fω,i)〉µφ,ω〈fω,k, Uω(fω,j)〉µφ,ωχ[ω(θ

−1
ω (k))]

dµφ

=

α(ω)∑
k=1

〈fω,k, Uω(fω,i)〉µφ,ω〈fω,k, Uω(fω,j)〉µφ,ω

=

α(ω)∑
k=1

α(ω)∑
m=1

〈〈Uω(fω,i), fω,k〉µφ,ωfω,k, 〈Uω(fω,j), fω,m〉µφ,ωfω,m〉µφ,ω

= 〈Uω(fω,i), Uω(fω,j)〉µφ,ω
= 〈fω,i, fω,j〉µφ,ω = 0.

3. Let (ω, i), (ω′, j) ∈
⋃
υ∈Σ∗

A
{υ} × {1, 2, . . . , α(υ) − 1} ∈ Σ∗A with ω 6= ω′. Then the following

hold.

(a) If either [ω] 6⊆ [ω′] or [ω′] 6⊆ [ω], then we have that 〈eω,i, eω′,j〉 = 0. This follows since

fω,i and fω′,j are non-zero on different cylinder sets.

(b) If [ω] ⊂ [ω′], then there exists a constant C ∈ R such that

〈eω,i, eω′,j〉 = C

∫
[ω′]

α(ω)∑
k=1

(µφ([ω(θ−1
ω (k))]))−

1/2〈fω,k, Uω(fω,i)〉µφ,ωχ[ω(θ
−1
ω (k))]

dµφ

= C

α(ω)∑
k=1

(µφ([ω(θ−1
ω (k))]))

1/2〈fω,k, Uω(fω,i)〉µφ,ω

= (µ([ω]))
1/2〈Uω(fω,α(ω)), Uω(fω,i)〉µφ,ω

= (µ([ω]))
1/2〈fω,α(ω), fω,i〉µφ,ω = 0.

(c) If [ω′] ⊂ [ω], then a symmetric proof to that given in (b), implies that 〈eω,i, eω′,j〉 = 0.

By construction, every characteristic function of a cylinder set can be generated by a finite sum of

elements of the set{
eω,i : (ω, i) ∈

⋃
υ∈Σ∗

A
{υ} × {1, 2, . . . , α(υ)− 1}

}
∪
{

(µφ([x]))−
1/2χ

[x]
: x ∈ Σ

}
.
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The result then follows from the Stone-Weierstrass Theorem (stated below) and the fact that

C(Σ∞A ;C) is L2-norm-dense in L2(Σ∞A ,B, µφ). �

Definition 2.2.11. Let X denote a topological space and let R denote a subset of C(X;C). Then R

is said to separates points, if for all distinct x, y ∈ X there exists a function f ∈ R with f(x) 6= f(y).

Theorem 2.2.12. (Stone-Weierstrass Theorem for Complex Functions) Let X be a compact Haus-

dorff space and recall that C(X;C) denotes the set of complex-valued continuous functions on X.

Let A be a complex sub-algebra of C(X;C) with the property that if a ∈ A, then the complex con-

jugate a belongs to A. If A separates points and contains the set of constant functions, then A is

norm-dense in C(X;C) with respect to the supremum norm.

Definition 2.2.13. We refer to the basis given in Theroem 2.2.10 as a Haar basis for L2(Σ∞A ,B, µφ).

2.3 Renewal Theorems

The renewal theorem is a major theorem from probabilistic analysis. It guarantees convergence to

a steady state for a large class of stochastic processes. In this section three different formulations of

the renewal theorem (Theorems 2.3.2, 2.3.6 and 2.3.8) are given. These allow us to obtain counting

results for self-similar sets and Birkhoff sums of Hölder continuous functions on topologically exact

subshifts of finite type, some of which, to the best of our knowledge, do not appear within the

current literature. When building various noncommutative representations for such sets, these

counting results will allow us to broaden already existing links between various noncommutative

quantities and invariants of dynamical systems (see Chapter 4). The results of this section are based

on those given in [Fal3, Lal, GH]. Let us begin by describing the formulation given in [Fal3].

Definition 2.3.1. Let µ be a measure on R. Then µ is called arithmetic if there exists a positive

real number τ such that the support of µ is contained in the additive group τZ. If τ is the

greatest positive number such that this holds, then µ is called τ -arithmetric. If there exists no such

number τ , then we say that the measure µ is non-arithmetic. Similarly, for m ∈ N, we call a set

Y := {y1, y2, . . . , ym} ⊂ R arithmetic if there exists a positive real number τ such that yi ∈ τZ, for

each i ∈ {1, 2, . . . ,m}. If τ is the greatest positive number such that this holds, then we say that

Y is τ -arithemetic. If there does not exist such a number τ , then we say that Y is non-arithmetic.

Let m > 2 denote a natural number, let (p1, p2, . . . , pm) denote a probability vector and let

{yi : i ∈ {1, 2, . . . ,m}} denote a set of positive real numbers. Let µ denote the measure on R with

support {yi : i ∈ {1, 2, . . . ,m}} such that µ({yi}) := pi, for i ∈ {1, 2, . . . ,m}. Then a function

f : R → R is said to satisfy a renewal equation if there exists a function g : R → R such that for

each t ∈ R, one has that

f(t) =
m∑
j=1

pjf(t− yj) + g(t). (2.23)

Theorem 2.3.2. Let µ be as above and let f, g : R → R satisfy the renewal equation given in

Equation (2.23). Additionally, assume the following.

1. The function g has a discrete set of discontinuities.

2. There exist constants c1, c2 > 0, such that |g(t)| 6 c1e−c2|t|, for each t ∈ R.

3. The function f is a Borel measurable function such that f is bounded on the half-line (−∞, η),

for each η ∈ R. Further, we have that limt→−∞ f(t) = 0.
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If µ is non-arithmetic, then

lim
t→∞

f(t) =

∫∞
−∞ g(y) dy∑m
i=1 yipi

.

If there exists a τ ∈ R such that µ is τ -arithmetic, then for all y ∈ [0, τ), we have that

lim
k→∞

f(kτ + y) =

∑∞
k=−∞ g(kτ + y)∑m

i=1 yipi
.

Proof. See Corollary 7.3 of [Fal3]. �

This allows us to compute the first of our counting results. For a compact subset E of R with

Hausdorff dimension δ, we make the following definitions.

1. Define G := GE : (0,+∞)→ N by letting G(r) equal the number of complementary intervals

of E of length greater than or equal to r, ignoring the two infinite components.

2. Define E := EE : (0,+∞)→ R by

E(r) :=
∑

k∈N with |Ik|>r

|Ik|δ,

where the set {Ik : k ∈ N} denotes the set of complementary intervals of E with finite length.

The following two propositions give the asymptotic behaviour of these functions as r tends to zero.

In particular, we consider a self-similar set {0, 1} ⊆ E ⊂ [0, 1], which is generated by the iterated

function system of similarities {s1, s2, . . . , sm} satisfying the strong separation condition. We begin

with the following proposition which gives the asymptotic behaviour of the function G.

Proposition 2.3.3. Let δ := dimH(E) and let ri denote the contraction ratio of si, for each

i ∈ {1, 2, . . . ,m}. If the set {ln(r−1
1 ), ln(r−1

2 ), . . . , ln(r−1
m )} is non-arithmetic, then there exists a

c > 0 such that as r tends to zero we have that

G(r) ∼ cr−δ.

If {ln(r−1
1 ), ln(r−1

2 ), . . . , ln(r−1
m )} is a τ -arithmetic set, for some positive real number τ , then there

exists a bounded periodic function P : R → R with period τ , such that for y ∈ [0, τ), as k tends to

positive infinity we have that

G(e−kτ+y) ∼ P (y)eδ(kτ−y).

Proof. See Proposition 7.5 of [Fal3]. �

In the next proposition we obtain a new result which gives the asymptotic behaviour of the

function E . This result, along with that given above, will prove useful in Section 4.1.

Proposition 2.3.4. Let {li : i ∈ {1, 2, . . . ,m − 1}} denote the set of complementary intervals

of the set
⋃m
i=1 si([0, 1]) whose lengths are finite, let ri denote the contraction ratio of si and set

δ := dimH(E). Then, as r tends to zero, we have that

E(r) ∼
∑m−1
i=1 |li|

δ∑m
i=1 r

δ
i ln(r−1

i )
ln(r−1).
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Proof. Observe that for each i ∈ {1, 2, . . . ,m} the lengths of the complementary intervals of si(E)

are exactly the lengths of the complementary intervals of E multiplied by ri. Hence,

E(r) =

m∑
i=1

rδi E
(
r

ri

)
+

∑
i∈{1,2,...,m−1}

with |li|>r

|li|δ. (2.24)

Substituting r = e−t and ψ(t) = E(e−t) into Equation (2.24) gives

ψ(t) =

m∑
i=1

rδiψ(t− ln(r−1
i )) +

∑
i∈{1,2,...,m−1}
with |li|>e−t

|li|δ. (2.25)

Although this is a renewal equation, it is not in a form which allows for the application of the

renewal theorem (Theorem 2.3.2). Therefore, with the aim of applying Theorem 2.3.2, the following

definitions and substitutions are made. Let

c :=

∑m−1
i=1 |li|

δ∑m
i=1 r

δ
i ln(r−1

i )
.

Define ψ1 : R→ R by

ψ1(t) :=

{
ψ(t)− ct if t > 0,

ψ(t) if t 6 0

and define g : R→ R by

g(t) =



∑
i∈{1,2,...,m−1}
with |li|>e−t

|li|δ−c
m∑
i=1

rδi ln(r−1
i )

−c
m∑
i=1

rδi

(
t− ln(r−1

i ))χ
(−∞,0)

(t− ln(r−1
i ))

)
if t > 0,

0 if t 6 0.

Let us now show that ψ1 and g satisfy the renewal equation (Equation (2.23)) with pi := rδi and

yi := ln(r−1
i ) for i ∈ {1, 2, . . . ,m}. First, let us consider the case t 6 0. Since in this case we have

that g(t) = 0, that ψ(t) = 0 and that t− ln(r−1
i ) 6 0, for i ∈ {1, 2, . . . ,m}, it follows that

m∑
i=1

rδiψ1(t− ln(r−1
i )) + g(t) =

m∑
i=1

rδiψ(t− ln(r−1
i )) = 0 = ψ(t) = ψ1(t).

Now, let us consider the case t > 0. In this case we have that

m∑
i=1

rδiψ1(t− ln(r−1
i ))

=

m∑
i=1

rδi

(
ψ(t− ln(r−1

i ))− c(t− ln(r−1
i )) + c(t− ln(r−1

i ))χ
(−∞,0)

(t− ln(r−1
i ))

)
= ψ(t)−

∑
i∈{1,2,...,m−1}
with |li|>e−t

|li|δ − ct+ c
m∑
i=1

rδi ln(r−1
i ) + c

m∑
i=1

rδi (t− ln(r−1
i ))χ

(−∞,0)
(t− ln(r−1

i ))
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= ψ(t)− ct− g(t)

= ψ1(t)− g(t).

Moreover, it is clear from the definition of g that g has a discrete set of discontinuities and that

g(t) = 0 for t > max{ln(r−1
i ) : i ∈ {1, 2, . . . ,m}}. It is easy to verify that ψ1 is Borel measurable,

that ψ1 is bounded on the half-line (−∞, η), for each η ∈ R, and that ψ(t) converges to zero as t

tends to negative infinity. Therefore, Theorem 2.3.2 can be applied and we conclude that

lim
t→∞

ψ(t)

ct
= lim

t→∞

ψ1(t) + ct

ct
= 1.

Hence, it follows that E(r) ∼ c ln(r−1) as r tends to zero. �

Next, we consider such counting problems for a one-sided subshift of finite type (Σ∞A , σ). Specif-

ically, for a Gibbs measure µφ for a Hölder continuous potential function φ ∈ C(Σ∞A ;R) and for

V ∈ Σ∗A ∪ ∅, we are interested in the asymptotic behaviour, as r tends to zero, of the sums

ΥV (r) :=
∑

ω∈Σ∗A with
µφ([ω])>r and [ω]⊆[V ]

1, (2.26)

ΞV (r) :=
∑

ω∈Σ∗A with
µφ([ω])>r and [ω]⊆[V ]

µφ([ω]). (2.27)

Here, when V = ∅, we set [V ] := Σ∞A . To calculate the behaviour of such sums, we use renewal

theorems presented in [Lal, GH]. Let us begin with the renewal theorem which is stated in [Lal].

This enables the calculation of the asymptotic behaviour of the sum given in Equation (2.26).

Definition 2.3.5. A real-valued function φ is called arithmetic if it’s cohomologous, with respect

to σ, to a function taking values in a discrete subgroup of R. Otherwise φ is called non-arithmetic.

Let (Σ∞A , σ) denote a one-sided topologically exact subshift of finite type, let φ1 : Σ∞A → R
denote a non-arithmetic Hölder continuous function and let φ2 : Σ∞A → R denote a non-negative

Hölder continuous function that is not identically equal to zero. Define Nφ1,φ2(r, ω), for each r ∈ R
and ω ∈ Σ∞A , by

Nφ1,φ2(r, ω) :=
∑
k∈N0

∑
υ∈σ−k(ω)

φ2(υ)χ
(−∞,r](Skφ1(υ)).

Observe that Nφ1,ψ2(r, ω) satisfies a renewal equation, that is,

Nφ1,φ2(r, ω) =
∑

υ∈σ−1(ω)

Nφ1,φ2(r − φ1(υ), υ) + φ2(ω)χ
[−∞,r)(0).

Theorem 2.3.6. Assume that P (φ1, σ) = 0, let µφ1 denote the unique fixed point of L∗φ1
and let

hφ1 denote the unique fixed point of Lφ1 such that∫
Σ∞
A

hφ1 dµφ1 = 1.
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Define the continuous function C : Σ∞A → R by

C(ω) :=

∫
φ2dµφ1∫

φ1hφ1dµφ1

hφ1(ω).

Then, Nφ1,φ2(r, ω) ∼ C(ω)er as r →∞, uniformly for each ω ∈ Σ∞A .

Proof. See Theorem 1 of [Lal]. �

Corollary 2.3.7. Under the conditions of Theorem 2.3.6, for each V ∈ Σ∗A ∪ ∅, we have that

ΥV (t) � t−1 as t tends to zero from above. (Note that the constants in the comparability statment

may depend on |V |.)

Proof. Recall from Theorem 2.2.8 that the eigenfunction hφ of Lφ is strictly positive and since

Σ∞A is compact, hφ is bounded. Hence, for each ω ∈ Σ∞A , each V ∈ Σ∗, by Theorem 2.3.6, as r

tends to positive infinity, we have that

er � Nφ,χ
[V ]

(r, ω)

� card{υ := (υ1, υ2, . . . ) ∈ σ−k(ω) : k ∈ N, [(υ1, υ2, . . . , υk)] ⊆ [V ] and

− ln(µφ([(υ1, υ2, . . . , υk)])) 6 r}

� card{υ ∈ Σ∗A : µφ([υ]) > e−r and [υ] ⊂ [V ]}

= Υw (e−r).

�

The next result is a modification of a renewal theorem for subshifts of finite type as given in

[GH] and allows for the calculation of the asymptotic behaviour of the sum in Equation (2.27).

Theorem 2.3.8. Let (Σ∞A , σ) denote a one-sided topologically exact subshift of finite type, let νφ

denote an Equilibrium measure on Σ∞A for a Hölder continuous potential function φ ∈ C(Σ∞A ;R)

and let ψ : Σ∞A → R denote a non-arithmetic Hölder continuous function with positive moment with

respect to νφ, that is,

γ :=

∫
Σ∞
A

ψdνφ > 0.

For each ω ∈ Σ∗A, define vω on the set {I ⊂ R : I is bounded and connected} by

vω(I) :=

∫
[ω]

∑
k∈N0

χI (Skψ(x)) dν(x).

Then vω can be extended to a Radon Borel measure on R and we have that

lim
t→−∞

vω(I + t) = 0,

lim
t→+∞

vω(I + t) = γ−1λ1(I)νφ([ω]).

Proof. For each k ∈ N0, define Fk to be the Borel measure on the product space Σ∞A × R × Σ∞A
which is given, for each Borel set X ×B × Y , by

Fk(X ×B × Y ) := νφ({x : (x, Skψ(x), σk(x)) ∈ X ×B × Y }).
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For each t ∈ R, let Fk ∗ δt denote the translate of Fk given by (x, a, y) 7→ (x, a + t, y). In the

proof of Theorem 4 (Section B, page 95) of [GH], Guivarc’h and Hardy show that, provided ψ is a

non-arithmetic Hölder continuous function with positive moment with respect to νφ, one has that

the following hold

lim
t→−∞

∑
k∈N0

Fk ∗ δt = 0,

lim
t→+∞

∑
k∈N0

Fk ∗ δt = γ−1 · νφ × λ1 × νφ.

(Here, the limits are taken with respect to the vague topology and that within the proof of this

result one requires the property that νφ is σ-invariant.) Therefore, for each ω ∈ Σ∗A and each

bounded connected interval I, we deduce that

lim
t→−∞

v[ω](I + t) = lim
t→−∞

∫
[ω]

∑
k∈N0

χI+t(Skψ(x))dνφ(x)

= lim
t→−∞

∫
Σ∞
A
×R×Σ∞

A

χ
[ω]

(x)χI+t(b)χΣ∞
A

(y) d
∑
k∈N0

Fk(x, b, y)

= lim
t→−∞

∫
Σ∞
A
×R×Σ∞

A

χ
[ω]

(x)χI (b)χ
Σ∞
A

(y) d
∑
k∈N0

Fk(x, b, y) ∗ δt

= 0.

Further, we conclude that

lim
t→+∞

v[ω](I + t) = lim
t→+∞

∫
[ω]

∑
k∈N0

χI+t(Skψ(x))dνφ(x)

= lim
t→+∞

∫
Σ∞
A
×R×Σ∞

A

χ
[ω]

(x)χI+t(b)χΣ∞
A

(y) d
∑
k∈N0

Fk(x, b, y)

= lim
t→+∞

∫
Σ∞
A
×R×Σ∞

A

χ
[ω]

(x)χI (b)χ
Σ∞
A

(y) d
∑
k∈N0

Fk(x, b, y) ∗ δt

= γ−1

∫
Σ∞
A
×R×Σ∞

A

χ
[ω]

(x)χI (b)χ
Σ∞
A

(y) d(νφ × λ1 × νφ)(x, b, y)

= γ−1λ1(I)νφ([ω]).

�

Corollary 2.3.9. Let (Σ∞A , σ) denote a one-sided topologically exact subshift of finite type and let

νφ denote the unique equilibrium measure on Σ∞A for a non-arithmetic Hölder continuous potential

φ ∈ C(Σ∞A ;R). Further, assume that P (φ, σ) is equal to zero. Then, for each V ∈ Σ∗A ∪ ∅, as r

tends to positive infinity, we have that

ΞV (e−r) ∼ νφ([V ])r

hνφ(σ)
.

Proof. Since P (σ, φ) is defined to equal zero and since the measure theoretical entropy of a Gibbs

measure is strictly positive, we have that −
∫

Σ∞
A
φdνφ > 0. Next, since νφ is a Gibbs measure there
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exists c > 1 such that for each r > 0, we have that

ΞV (e−r) =

∫
[V ]

∑
ω∈Σ∗

A

χ
[0,r]

(− ln(νφ[ω])) · χ
[ω]

(x) dνφ(x) 6
∫

[V ]

∑
k∈N0

χ
[0,r+ln(c)]

(−Skφ(x))) dνφ(x)

and that

ΞV (e−r) =

∫
[V ]

∑
ω∈Σ∗

A

χ
[0,r]

(− ln(νφ[ω])) · χ
[ω]

(x) dνφ(x) >
∫

[V ]

∑
k∈N0

χ
[0,r−ln(c)]

(−Skφ(x))) dνφ(x).

Then, by Theorem 2.3.8, given ε > 0 there exists R ∈ N such that, for all r � dR+ ln(c)e, we have

that

ΞV (e−r)

6
∫

[V ]

∑
k∈N0

χ
[0,dR+ln(c)e) (−Skφ(x)) dνφ(x) +

dr+ln(c)e−1∑
m=dR+ln(c)e

∫
[V ]

∑
k∈N0

χ
[m,m+1]

(−Skφ(x))) dνφ(x)

6
∫

[V ]

∑
k∈N0

χ
[0,dR+ln(c)e) (−Skφ(x)) dνφ(x) +

(r −R)(1 + ε)νφ([V ])

−
∫

Σ∞
A
φdνφ

and

Ξ(e−r)

>
∫

[V ]

∑
k∈N0

χ
[0,dR−ln(c)e) (−Skφ(x)) dνφ(x) +

br−ln(c)c−1∑
m=dR−ln(c)e

∫
[V ]

∑
k∈N0

χ
[m,m+1]

(−Skφ(x))) dνφ(x)

>
∫

[V ]

∑
k∈N0

χ
[0,dR−ln(c)e) (−Skφ(x)) dνφ(x) +

(r −R− 2)(1− ε)νφ([V ])

−
∫

Σ∞
A
φdνφ

.

Since νφ is an equilibrium measure for the potential, by the charicterisation of the pressure function

given in Equation (2.22) φ, the result follows. �

Corollary 2.3.10. Let (Σ∞A , σ) denote a one-sided topologically exact subshift of finite type and let

νφ denote the unique equilibrium measure for a given non-arithmetic Hölder continuous potential

φ ∈ C(ΣA;R). If ∫
Σ∞
A

φdµφ 6= 0,

then, for each V ∈ Σ∗A ∪ ∅, we have that

lim
ε→0

ΞV (ε)

ln(ΥV (ε))
=

µφ([V ])

hνφ(σ)
.

Proof. This result is an immediate consequence of Theorem 2.2.8, Corollary 2.3.7 and Corollary

2.3.9. �



Chapter 3: C∗-Algebras and Noncommutative Geometry

In the present work, our aim is to add to the ongoing attempts to define noncommutative repre-

sentations of fractal sets as introduced by Connes in [Con3]. To this end, we introduce Connes’

theory of noncommutative geometry. The fundamental idea behind noncommutative geometry is

that of viewing geometric structures in terms of operator algebras. The approach of representing

such structures by algebraic objects has its origins in the work of Gelfand and Năımark on locally

compact Hausdorff spaces and C∗-algebras (see [GN]). In [Con2, Con3, Con1] Connes showed that

it is possible to generalise classical Riemannian geometry in terms of operator algebras, specifically

C∗-algebras. This generalisation takes the form of a spectral triple.

The aim of this chapter is to give some of the basic ideas of noncommutative geometry, which

we will use and extend in Chapter 4. The work in this chapter is organised as follows. In Section

3.1 we introduce C∗-algebras and C∗-dynamical systems. In Section 3.2 we define the notion of

a spectral triple and include a description of some of the geometric properties of this object. To

conclude, in Section 3.3 we include three examples of spectral triples describing, in detail, aspects

of their noncommutative geometries.

3.1 C∗-algebras

3.1.1 C∗-Algebras and The Gelfand-Năımark Theorems

In this subsection we begin by giving the definition of a C∗-algebra (Definition 3.1.2). We discuss

the Gelfand-Năımark-Segal completion of a C∗-algebra and state the seminal classification theorems

of C∗-algebras by Gelfand and Năımark (Theorems 3.1.14 and 3.1.11). To conclude this subsection,

we define two classes of C∗-algebras, which we use within of this thesis. Let us begin with the

following definition.

Definition 3.1.1. A complex algebra is a vector space V over C with an associative operation ·
(multiplication), which satisfies, for all v1, v2, v3 ∈ V and z ∈ C, the following three conditions.

1. v1 · (v2 + v3) = v1 · v2 + v1 · v3.

2. (v1 + v2) · v3 = v1 · v3 + v2 · v3.

3. z(v1 · v2) = (zv1) · v2 = v1 · (zv2).

An involution on V is an operation ∗ such that, for all v1, v2 ∈ V and all z1, z2 ∈ C, the following

hold.

1. (v∗1)∗ = v1.

2. (v1 · v2)∗ = v∗2 · v∗1 .

3. (z1v1 + z2v2)∗ = z1v
∗
1 + z2v

∗
2 .

A complex algebra equipped with an involution is called a complex ∗-algebra.

Definition 3.1.2. A C∗-algebra A is a complex ∗-algebra equipped with a norm ‖·‖ such that the

following hold.

1. A is complete with respect to the norm ‖·‖.

2. ‖a1 · a2‖ 6 ‖a1‖‖a2‖, for all a1, a2 ∈ A.

35
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3. ‖a∗ · a‖ = ‖a‖2, for all a ∈ A.

A norm satisfying these three conditions is referred to as a C∗-norm.

Remark. Any finite dimensional C∗-algebra is isometrically isomorphic to the product of a finite

collection of closed subalgebras of matrix algebras.

Example 3.1.3. The primary example of a commutative C∗-algebra is the set Cc(X) of continuous

complex-valued functions with compact support on a locally compact Hausdorff space X. Here, the

associative operation · is pointwise multiplication, the involution is pointwise complex conjugation

and the C∗-norm is the supremum norm.

Example 3.1.4. An example of a noncommutative C∗-algebra is the set B(H) of bounded opera-

tors on a complex separable Hilbert space H. In this case, the associative operation · is composition,

the involution is given by taking adjoints and the C∗-norm is the operator norm. In fact, any subal-

gebra of B(H) closed under involution and closed under the strong operator norm topology is also

a C∗-algebra.

Remark. It is not necessary for a C∗-algebra to have a unit. However, throughout this thesis we

will assume that a C∗-algebra is unital and that the norm of the unit is equal to 1. We will denote

the unit of a C∗-algebra by the symbol I.

Let us now describe the celebrated Gelfand-Năımark-Segal completion of a C∗-algebra. This

construction allows one to obtain a complex Hilbert space H from a C∗-algebra A, such that there

exists an injective map from A to B(H). This naturally leads to the classification theorems of

Gelfand and Năımark. In order to describe the Gelfand-Năımark-Segal completion of a C∗-algebra

and to state the classification theorems we require the following definitions.

Definition 3.1.5. A ∗-homomorphism is a homomorphism between two complex ∗-algebras, which

preserves involution. A ∗-homomorphism is said to be faithful if for all a ∈ A one has that φ(a∗a) = 0

if and only if a = 0. Further, define a ∗-automorphism to be an isomorphic ∗-homomorphism from

a C∗-algebra onto itself.

It is important to note that a ∗-homomorphism between two C∗-algebras is non-expansive, that

is, bounded with operator norm less than or equal to 1. If, in addition, the ∗-homomorphism is

faithful, then it also preserves the C∗-norm (see Appendix A.4).

Definition 3.1.6. A ∗-representation of a complex ∗-algebra V is a tuple (π,H) consisting of a

complex Hilbert space H and a linear ∗-homomorphism π : V → B(H). A ∗-representation (π,H)

of a complex ∗-algebra is said to be faithful if π is faithful. Further, a ∗-representation (π,H) of a

complex ∗-algebra V is irreducible if and only if the only sets which are invariant under the action

of π(V ) are H and the trivial subspace.

Definition 3.1.7. An element a of a C∗-algebra A is said to be non-negative, denoted by a > 0,

if and only if there exists b ∈ A such that a = b∗b. If, in addition, a 6= 0, then we say that a is

positive and write a > 0. Further, a linear functional ψ : A → C is said to be non-negative if for

each non-negative a ∈ A, we have that ψ(a) > 0. Similarly, a functional ψ : A → C is said to be

positive if for each positive a ∈ A, we have that ψ(a) > 0.

Definition 3.1.8. A positive linear functional ψ of norm one acting on a C∗-algebra A is called a

state. Further, we call a state tracial if ψ(ab) = ψ(ba), for all a, b ∈ A and we let S(A) denote the

state space of A, that is, the set of all states on A.
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For a C∗-algebra A, observe that the state space S(A) is a convex set. Recall that an extremal

point of a convex set S is a point which is not an internal point of any closed line segment contained

in S.

Definition 3.1.9. The extremal points of S(A) are referred to as pure states.

Observe that if (X, d) is a compact metric space, then the state space S(C(X;C)) of the C∗-

algebra C(X;C) of complex-valued continuous functions is equivalent to the space M(X) of Borel

probability measures on X. This follows from the Riesz Representation Theorem (see Theorem II.4

of [RS]).

Definition 3.1.10. Let A denote a C∗-algebra and let (π,H) denote a ∗-representation. Then a

vector h ∈ H is said to be cyclic for A if the set {π(a)(h) : a ∈ A} is norm-dense in H, with respect

to the Hilbert space norm. Further, a vector h ∈ H is said to be separating for A if and only if

whenever a, b ∈ A and π(a)(h) = π(b)(h) then a = b.

We are now in a position to define the Gelfand-Năımark-Segal completion of a C∗-algebra. Let A

denote a C∗-algebra and let ψ ∈ S(A). Observe that 〈a, b〉ψ := ψ(b∗a) defines a positive sesquilinear

form on A which satisfies the Cauchy-Schwarz inequality in the form |ψ(b∗a)|2 6 ψ(a∗a)ψ(b∗b).

Therefore,

Nψ := {b ∈ A : ψ(b∗b) = 0} = {b ∈ A : ψ(a∗b) = 0 for all a ∈ A}

is a closed ideal in A. Note that Nψ = {0} if and only if ψ is a faithful state. The quotient space

A/Nψ is then a pre-Hilbert space under the positive sesquilinear form 〈a+Nψ, b+Nψ〉ψ := ψ(b∗a).

The norm completion of A/Nψ under this form is called the Gelfand-Năımark-Segal completion of

A with respect to ψ and is denoted by Hψ. Observe that A can be embedded into B(Hψ). More

precisely, let B(A/Nψ) denote the set of bounded linear operators on the pre-Hilbert space A/Nψ

and define πψ : A → B(Hψ) to be the continuous linear extension of the map π : A → B(A/Nψ)

given by π(a)(b+Nψ) := ab+Nψ. It can then be shown that the following hold.

1. (πψ, Hψ) is a ∗-representation of A.

2. I +Nψ is a cyclic vector for the representation πψ, where I denote the unit of the A.

3. If ψ is faithful, then I +Nψ is a separating vector.

4. The representation (πψ, Hψ) is irreducible if and only if the state ψ is a pure state.

These results are proved in a number of texts, see for instance [Dav, BR, FGBV, Dix2]. This

naturally leads us to the Gelfand-Năımark classification theorems of C∗-algebras.

Theorem 3.1.11. (The Gelfand-Năımark Classification Theorem) To each C∗-algebra A there

exists a complex Hilbert space H and a faithful ∗-homomorphism which maps A onto a closed sub-

∗-algebra of B(H).

Proof. See Theorem 1.17 [FGBV] or [GN] for the original proof. �

Observe that for an arbitrary C∗-algebra, the Hilbert space given by Theorem 3.1.11 need not

be separable. This leads to the following definition.

Definition 3.1.12. A C∗-algebra A is said to be separable if and only if there exists a ∗-
representation (π,H) where H is a separable complex Hilbert space.
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Example 3.1.13. Examples of a commutative separable C∗-algebra include the set of continuous

functions on a compact metric space equipped with a finite Borel measure. An example of a

non-separable commutative C∗-algebra is the algebra of bounded complex valued functions on R
equipped with the supremum norm.

Theorem 3.1.14. (Gelfand-Năımark classification theorem for commutative C∗-algebras) Given a

commutative C∗-algebra A, there exists a compact Hausdorff space X (unique up to homeomorphism)

such that there exists a bijective ∗-homomorphism from A onto C(X;C).

Proof. See Lemma 1 of [GN]. �

Remark. Similar statements to those given in Theorem 3.1.14 and Theorem 3.1.11 also exist

for non-unital C∗-algebras (see [GN] or [FGBV]).

To conclude this subsection we define two classes of C∗-algebras, which will be used within this

thesis.

Definition 3.1.15. Let ϑ1 denote the one-dimensional spherical measure with ϑ1(S1) = 1. Let

θ ∈ (0, 1) be an irrational number and let Rθ denote the sub-∗-algebra of B(L2(S1,B, ϑ1)) generated

by the operators U and V given, for each f ∈ L2(S1,B, ϑ1) and z ∈ S1, by

U(f)(z) := z · f(z), V (f)(z) := f(z · e−2πiθ). (3.1)

The irrational rotation algebra Aθ is then defined to be the completion of Rθ with respect to the

universal norm, that is, the norm given by

‖a‖u := sup {‖π(a)‖ : (π,H) is a ∗-representation ofRθ} .

Remark. It is well-known that the irrational rotation algebra Aθ (θ ∈ (0, 1) ∩ R \ Q) is simple,

that is, it contains no proper ideals (see Theorem V I.1.4 of [Dav]). Moreover, the irrational rotation

algebra is universal, that is, any C∗-algebra which is minimally generated by two distinct elements

which satisfy the following,

UU∗ = U∗U = V V ∗ = V ∗V = 1, V U = e−2πiθUV. (3.2)

is necessarily isometric ∗-homomorphic to Aθ (see Theorem V I.1.4 of [Dav]).

Definition 3.1.16. If a C∗-algebra A is the normed closure of an increasing sequence of finite

dimensional C∗-algebras, then A is called an AF (approximately finite) C∗-algebra.

Example 3.1.17. The algebra of continuous complex-valued functions on a homeomorphic image

of the middle third Cantor set is an AF C∗-algebra. An example of a noncommutative AF C∗-

algebra is a uniformly hyperfinite C∗-algebra, that is, the operator norm closure of an increasing

sequence of full matrix algebras.

3.1.2 C∗-Dynamical Systems and The Discrete Cross Product Algebra

The main aim of this subsection is to define the notion of a noncommutative dynamical system,

or, more precisely, a C∗-dynamical system, and to show how to obtain from such a system the

class of C∗-algebras called discrete cross product algebras. Note that such a class of C∗-algebras

allows us to demonstrate, by way of example, how Connes’ theory of noncommutative geometry can
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be applied to noncommutative C∗-algebras, which we consider in Subsection 3.3.2 and Subsection

3.3.3. For a general reference on C∗-dynamical systems and the discrete cross product algebra we

refer the reader to [BO, Dav].

Definition 3.1.18. A C∗-dynamical system is a triple (A,α,G), consisting of a separable C∗-

algebra A, a countable discrete group G and a homomorphism α from G into the group Aut(A)

consisting of all ∗-automorphisms on A.

Given a C∗-dynamical system (A,α,G), our goal is to construct a single C∗-algebra which

encodes the C∗-algebra A and the group action of G on A. In group theory, the analogue of this

procedure is called the semi-direct product. We will adapt this idea to create a C∗-algebra AoαG,

called the discrete cross product algebra. This C∗-algebra is constructed using the group-algebra

AG, which is defined by

AG :=

{∑
g∈G

agδg : ag ∈ A for all g ∈ G and ag = 0 for all but a finite number of g ∈ G

}
.

(Recall that δg : G→ {0, 1} denotes the Dirac point mass at g ∈ G.) In other words, AG is the space

of continuous A-valued functions on G with compact support. A multiplication on AG is given by

a twisted convolution product ∗ on AG, which, for all a1 :=
∑
g∈G a1,gδg, a2 :=

∑
g∈G a2,gδg ∈ AG,

is defined by

a1 ∗ a2 :=
∑
g1∈G

(∑
g2∈G

a1,g2 · α(g2)
(
a

2,g−1
2 g1

))
δg1 . (3.3)

Define an involution ∗ on AG given, for each a :=
∑
g∈G agδg ∈ AG, by

a∗ :=
∑
g∈G

α(g)(ag−1
∗)δg. (3.4)

The group-algebra AG with multiplication given by the convolution product defined in Equation

(3.3) and the involution as given in Equation (3.4), is a complex ∗-algebra. This algebra encodes

both the C∗-algebra A and the group action of G on A. In order to form a C∗-algebra from the

complex ∗-algebra AG it must be completed with respect to a C∗-norm. There are two commonly

used methods to complete the complex ∗-algebra AG, namely, the universal completion and the

reduced completion. To define these we introduce the notion of a regular covariant representation

of a C∗-dynamical system and to guarantee that these completions are well defined we require

Proposition 3.1.20 and Proposition 3.1.22.

Definition 3.1.19. A unitary representation of a group G is a pair (U,H) consisting of a complex

Hilbert space H and a homomorphism U : G → B(H) such that U(g) is a unitary operator and

U(g)∗ = U(g−1), for all g ∈ G. A covariant representation of a C∗-dynamical system (A,α,G) is a

triple (π,H, U) consisting of a ∗-representation (π,H) of A and a unitary representation (U,H) of

G such that U(g)π(a)U(g)∗ = π(α(g)(a)), for all a ∈ A and g ∈ G.

The following proposition is well-known, but since the proof is important and rather construc-

tive, we include it here for completeness.

Proposition 3.1.20. For any C∗-dynamical system there exists a covariant representation.

Proof. Let (A,α,G) denote a C∗-dynamical system and let (π,H) denote a faithful ∗-
representation of A. Such a representation exists by the Gelfand-Năımark Classification Theorem
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(Theorem 3.1.11). Consider the Hilbert space

l2(G) :=

{
γ : G→ C :

∑
g∈G

|γ(g)|2 <∞

}
,

with the inner product 〈·, ·〉 : l2(G) × l2(G) → C defined by 〈γ1, γ2〉 :=
∑
g∈G γ1(g)γ2(g), for all

γ1, γ2 ∈ l2(G). Note that the set {δg : g ∈ G} forms an orthonormal basis for l2(G). To define

a covariant representation of A we define a ∗-representation (π̃, H ⊗ l2(G)) of A and a unitary

representation (U,H ⊗ l2(G)) of G as follows.

1. Define π̃ : A→ B(H ⊗ l2(G)) as follows. For all a ∈ A, h ∈ H and γ ∈ l2(G) define

π̃(a)(h⊗ γ) :=
∑
g∈G

π(α(g−1)(a))(h)⊗ γ(g)δg. (3.5)

To define π̃(a) on H ⊗ l2(G) we extend the definition given in Equation 3.5 using linearity.

Since π and α(g), for all g ∈ G, are linear ∗-homomorphisms, it follows that π̃ is a linear

∗-homomorphism. Hence, (π̃, H ⊗ l2(G)) is a ∗-representation of A.

2. Define U : G→ B(H ⊗ l2(G)) as follows. For all g ∈ G, h ∈ H and γ ∈ l2(G) define

U(g)(h⊗ γ) :=
∑
s∈G

h⊗ γ(s)δgs. (3.6)

To define U(g) on H ⊗ l2(G) we extend the definition given in Equation 3.6 using linearity.

Since for all g1, g2 ∈ G, h ∈ H and γ ∈ l2(G), we have that

U(g1)U(g2)(h⊗ γ) = U(g1)

(∑
s∈G

h⊗ γ(s)δg2s

)
=
∑
s∈G

h⊗ γ(s)δg1g2s = U(g1g2)(h⊗ γ)

and

U(g1)∗(h⊗ γ) =
∑
s∈G

h⊗ γ(s)δ
g−1
1 s

,

it follows that (U,H ⊗ l2(G)) is a unitary representation of G.

We conclude that (π̃, H ⊗ l2(G), U) is a covariant representation of (A,α,G), by observing that

U(g)π̃(a)U(g)∗(h⊗ γ) =
∑
s∈G

U(g)π̃(a)(h⊗ γ(s)δg−1s)

=
∑
s∈G

U(g)
(
π(α (s−1g) (a))(h)⊗ γ(s)δg−1s

)
=

∑
s∈G

(π(α (s−1g) (a))(h)⊗ γ(s)δs)

= π̃(α(g)a)(h⊗ γ).

�

Definition 3.1.21. The representation (π̃, H ⊗ l2(G), U) given in the above proof is called a left

regular covariant representation.
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Proposition 3.1.22. Every covariant representation of a C∗-dynamical system (A,α,G) gives rise

to a ∗-representation of the complex ∗-algebra AG and conversely, every non-trivial ∗-representation

of the complex ∗-algebra AG arises in this way.

Proof. See page 117 of [BO]. �

The above two propositions ensure that the supremum in the following definition is not taken

over the empty set.

Definition 3.1.23. The full cross product C∗-algebra A oα G is the completion of the complex

∗-algebra AG with respect to the universal norm given, for each a ∈ AG, by

‖a‖u := sup{‖π(a)‖ : (π,H) is a ∗-representation of AG}.

Definition 3.1.24. Let (π̃, H, U) be a left regular covariant representation for the C∗-dynamical

system (A,α,G) such that the induced ∗-representation (π,H) of the complex ∗-algebra AG is

faithful. Then the reduced cross product algebra A oα G is the norm closure of AG under the

reduced norm given, for each a ∈ AG, by ‖a‖red := ‖π(a)‖.

Proposition 3.1.25. The reduced cross product algebra does not depend on the choice of the left

regular covariant representation.

Proof. See Proposition 4.1.5 of [BO]. �

The following theorem concerning amenable groups will be useful in Example 3.1.28. For more

information on amenable groups, the interested reader is referred to [Kes].

Theorem 3.1.26. Let (A,α,G) be a C∗-dynamical system. If G is an amenable group, then the

reduced cross product algebra and the full cross product algebra are equivalent.

Proof. See Theorem VII.2.8 of [Dav]. �

A particular class of reduced cross product algebras, which we will make use of in Subection

3.3.3 and Subection 4.2.2, is given by the reduced discrete group algebra and is defined as follows.

Definition 3.1.27. Let C be the C∗-algebra of complex numbers, let G be a countable discrete

group and let α : G → C be the trivial action, that is, α(g) := 1, for all g ∈ G. For each

a :=
∑
g∈G zgδg ∈ CG and each γ ∈ l2(G), define the convolution of a with γ by

a ∗ γ :=
∑
g1∈G

(∑
g2∈G

zg2 · γ(g−1
2 g1)

)
δg1 ∈ l

2(G). (3.7)

The reduced discrete group algebra is then defined to be the closure of the complex ∗-algebra CG
with respect to the norm given, for each a ∈ CG, by

‖a‖red := sup
{
‖a ∗ γ‖2 : γ ∈ l2(G) with ‖γ‖2 = 1

}
.

We conclude this subsection by showing that the irrational rotation algebra can be expressed

as a cross product algebra.
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Example 3.1.28. Let A denote the set of 2π-periodic complex-valued functions on R, fix an

irrational number θ ∈ (0, 1) and let αθ : Z→ Aut(A) be defined, for all k ∈ Z, a ∈ A and x ∈ R, by

(αθ(k))a(x) := a(x− 2πkθ).

Observe that (A,αθ,Z) forms a C∗-dynamical system. Also, note the following.

1. The additive group Z is amenable.

2. The ∗-algebra AZ is generated by {U := φ1δ0, V := χRδ1}, where δ0, δ1 : G→ {0, 1} denotes

the Dirac point masses on G at 0 and 1, respectively, and φ1(x) := (2π)−1/2e2πix, for all

x ∈ R.

3. The elements U and V satisfy the following relations

UU∗ = U∗U = V V ∗ = V ∗V = 1, V U = e−2πiθUV.

Therefore, by the remark which immediately follows Defintion 3.1.15 and by Theorem 3.1.26, we

have that the reduced and the universal norm completions of the complex ∗-algebra AZ coincide

and that the resulting cross product algebra is isometric ∗-homomorphic to the irrational rotation

algebra Aθ.

3.2 The Geometric Side of Noncommutative Geometry

The main aims of this section are to give the definition of a spectral triple, which represents the

noncommuative analogue of a compact metric space, to describe the geometric information one can

obtain from this noncommutative object and to give some basic examples. The reader who is not

familiar with the notions of functional analysis, which are in use, is referred to Section 3.1 and

Appendix A.1.

Definition 3.2.1. A spectral triple is a triple (A,H,D) consists of a C∗-algebra A acting faithfully

on a complex separable Hilbert space H and an operator D with the following properties. The

operator D is an essentially self-adjoint unbounded linear operator with a compact resolvent, such

that the set

{a ∈ A : the operator [D,π(a)] is densely defined and extends to a bounded operator onH}

is C∗-norm-dense in A. Here, π represents the faithful action of A on H and [D,π(a)] denotes the

commutator of D with π(a). The operator D is called a Dirac operator .

Remark. The compact resolvent property of D in Definition 3.2.1 can be regarded as a gen-

eralisation of the ellipticity property of the standard Dirac operator defined on a compact smooth

Riemannian manifold (see [Mar]). The condition that the closure of [D,π(a)] is densely defined and

extends to a bounded operator is analogous to a Lipschitz condition (see [BMR, Mar]).

Definition 3.2.2. A Z2-graded complex vector space V is a complex vector space which decomposes

into a direct sum of two vector spaces V0 and V1, that is, V = V0 ⊕ V1. If there exists an operator

Γ : V → V such that Γ2 = 1 and such that Γ(Vk) = Vk+1 (mod 2), for k ∈ {0, 1}, then we call Γ a

Z2-grading operator.

Definition 3.2.3. A spectral triple (A,H,D) is called even if there exists a Z2-grading operator

Γ on H such that Γ commutes with each representative of A in B(H) and anti-commutes with the

Dirac operator on its domain of definition.
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Remark. Observe that in this setting the grading operator corresponds to the chirality operator

defined for a Riemannian spin manifold (see pages 26 - 27 of [Vár]).

In what follows we describe some of the geometric aspects of a spectral triple (A,H,D). Specif-

ically, in Subsection 3.2.1 we introduce Connes’ pseudo-metric on the state space S(A) of A and

in Subsection 3.2.2 we define the operator algebraic analogy of a measurable function, the metric

dimension of a spectral triple and the noncommutative integral. We will see that in order to derive

these concepts the Dirac operator, in particular its singular values, will play a crucial role.

3.2.1 Connes’ Pseudo-Metric

Let us begin by recalling the definition of the weak∗-topology defined on the state space of a C∗-

algebra.

Definition 3.2.4. Let A denote a C∗-algebra. For each a ∈ A, let â : S(a)→ C denote the Gelfand

transform of a given, for each ψ ∈ S(A), by

â(ψ) := ψ(a).

The weak∗-topology on the state space of A is then defined to be the weakest topology on S(A) such

that, for each a ∈ A, the Gelfand transform â is continuous.

Observe that a compact metric space X naturally embeds into the state space S(C(X;C)) of

C(X;C) and recall that S(C(X;C)) coincides with M(X), the space of Borel probability measures

on X. Therefore, by the Banach-Alaoglu Theorem (see Theorem IV.21 of [RS]) this space is weak∗-

compact. Moreover, the Monge-Kantorovitch metric given, for all µ, ν ∈M(X), by

dMK(µ, ν) := sup

{∫
X

f dµ−
∫
X

f dν : f ∈ C(X;C) and is Lipschitz continuous with

Lipschitz constant less than or equal to one

}
,

defines a metric on M(X) whose topology coincides with the weak∗-topology (see Theorem 2.5.17

of [Edg]).

Within the theory of noncommutative geometry, given a spectral triple (A,H,D), the analogue

of a Lipschitz function is an element a ∈ A such that the commutator [D,π(a)] is densely defined

and extends to a bounded operator. Further, the analogue of the Monge-Kantorovitch metric is the

pseudo-metric on the space S(A) known as Connes’ pseudo-metric, which is defined as follows.

Definition 3.2.5. Let (A,H,D) denote a spectral triple, where the ∗-representation is denoted

by (π,H). Let A denote a C∗-norm-dense complex sub-∗-algebra of A, where for all a ∈ A, the

commutator [D,π(a)] extends to a bounded linear operator on H. Then, for each such ∗-algebra

A, define the psudeo-metric dA : S(A)× S(A)→ R by

dA(ψ1, ψ2) := sup{|ψ1(a)− ψ2(a)| : a ∈ A and the operator [D,π(a)] extends to a bounded

operator with norm less than or equal to one}.

We refer to this pseudo-metric as Connes’ pseudo-metric.

The term pseudo-metric is used because it is not clear that d(ψ1, ψ2) is finite for all pairs ψ1, ψ2 ∈
S(A). However, the other axioms of a metric are fulfilled. Therefore, the question which naturally

arises is, when is dA a metric and if dA is a metric, then when does the topology induced by dA
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agree with the weak∗-topology on S(A)? The following theorem by Rieffel gives a characterisation

which addresses this question.

Theorem 3.2.6. Let (A,H,D) denote a spectral triple, where the ∗-representation is denoted by

(π,H). Let A denote a C∗-norm-dense sub-∗-algebra of A, where for all a ∈ A, the commutator

[D,π(a)] extends to a bounded linear operator on H. Then the following hold.

1. The pseudo-metric dA is a metric if and only if the set

{a ∈ A : the operator [D,π(a)] is densely defined and extends to a

bounded operator with norm less than or equal to one} (3.8)

has a bounded image in the quotient space A/{zI : z ∈ C}, where I denotes the identity

element of A.

2. The topology induced by the pseudo-metric dA coincides with the weak∗-topology if and

only if the set given in Equation (3.8) has a totally bounded image in the quotient space

A/{zI : z ∈ C}.

Proof. See Theorem 2.1 of [Rie3]. �

Remark. The essence of the above theorem is that the set given in Equation (3.8) is large enough

that it separates the states of A and, at the same time (by definition), small enough that it has a

bounded image in the quotient space A/{zI : z ∈ C}.

3.2.2 Infinitesimals, Measurability and Dimension

As we have seen in Chapter 2 the Hausdorff dimension of a subset E of Rn is given by

inf{s > 0 : Hs(E) = 0}

(see Theorem 2.1.2). Note that such a relationship also exists for other fractal measures and

fractal dimensions, for instance the Patterson measure and the Poincaré exponent of convergence

(see [Nic, Pat]) and the packing measure and the packing dimension (see [Fal1]). Likewise, in the

noncommutative setting one has an analogous relationship. Therefore, in this subsection, we first

introduce the expectation of a compact operator which arises within the theory of operator algebras

and then we present the definition of the metric dimension of a spectral triple. Having developed

these notions, we are then able to define the noncommutative integral which arises from a spectral

triple.

Within the theory of operator algebras, for a complex separable Hilbert space H, the notion

of an expectation of an operator T ∈ K(H) is given by the coefficient of logarithmic divergence

of the eigenvalues of T . In particular, the ideal K(H) of B(H) provides the “infinitesimal” of

noncommutative geometry. Heuristically, in the commutative setting, an infinitesimal is an “object”

smaller than any feasible measurement and not zero in “size”, but so small that it cannot be

distinguished from zero by any available means. As a matter of interest, we remark that the

founders of calculus, Euler, Leibniz and Newton initially formulated the theory of calculus using

infinitesimals. However, the notion and definition was foreshadowed in Archimedes’ script The

Method of Mechanical Theorems.

Returning to the noncommutative setting, we define an infinitesimal operator as follows.
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Definition 3.2.7. Let H denote a complex separable Hilbert space and let T ∈ K(H). For each

k ∈ N, let σk(T ) denote the k-th largest singular value (including multiplicities) of T , that is, the k-

th largest eigenvalue (including multiplicities) of |T | := (TT ∗)
1/2. We say that T is an infinitesimal

of order s > 0, if σk(T ) � k−s as k tends to infinity.

Early attempts to define an expectation within the theory of operator algebras (see [Seg]) used

ordinary traces of Hilbert space operators, where trace-class operators play the role of integrable

functions. However, it soon became apparent that this is not sufficient. In 1966 Dixmier [Dix1] found

other tracial states that are more suitable. He noted that to appropriately define an expectation

within the theory of operator algebras, one must suppress infinitesimals of order higher than one.

More precisely, one wants to find the coefficient of the divergence rate of the singular values of

an infinitesimal operator of order one. In order to obtain this coefficient, we require the following

definitions.

Definition 3.2.8. A limiting procedure is a positive linear functional W defined on the set

l∞(R) := {(x1, x2, . . . ) : xk ∈ R for all k ∈ N and sup{|xk| : k ∈ N} <∞} ,

where for each (x1, x2, . . . ) ∈ l∞(R), one has that

lim inf
k→∞

xk 6 W (x1, x2, . . . ) 6 lim sup
k→∞

xk

Following convention, for (x1, x2, . . . ) ∈ l∞(R) and for a limiting procedure W , we set

LimW (x1, x2, . . . ) := W (x1, x2, . . . ).

Remark. The existence of a liniting procedure follows immediately from the Hahn-Banach The-

orem (see Chapter 3 of [Bol]).

Example 3.2.9. A generalised limit is an example of a limiting procedure (see [Bol] page 59).

Definition 3.2.10. The Dixmier ideal of a separable Hilbert space H is denoted by L1,+(H) and

is defined by

L1,+(H) :=

{
T ∈ K(H) : lim sup

N→∞

∑N
k=1 σk(T )

ln(N)
< ∞

}
.

For a limiting procedure W , we define a Dixmier trace of a positive linear operator T ∈ L1,+(H) by

TrW (T ) := LimW

(∑N
k=1 σk(T )

ln(N)

)
N∈N

. (3.9)

For a general operator in L1,+(H) the Dixmier trace is defined to be the natural complex linear

extension of TrW .

Definition 3.2.11. Let H denote a complex Hilbert space and let I denote an ideal of B(H). Then,

a singular trace on I is a linear functional T of norm one with domain I such that the following

hold.

1. T vanishes on operators with finite dimensional range.

2. If T1, T2 ∈ I are such that limk→∞ σk(T1)/σk(T2) = 1, then T (T1) = T (T2).



46 CHAPTER 3. C∗-ALGEBRAS AND NONCOMMUTATIVE GEOMETRY

3. If T1, T2 ∈ I have the property that σk(T1) 6 σk(T2) for all but a finite number of k ∈ N,

then T (T1) 6 T (T2).

4. For T1, T2 ∈ I, we have that T (T1T2) = T (T2T1).

Theorem 3.2.12. Let H denote a complex separable Hilbert space and let W denote a limiting

procedure. Then the Dixmier ideal L1,+(H) is an ideal of B(H) and the functional TrW is a singular

trace.

Proof. See Appendix A.3, where we given an independent complete proof. �

In the following definition we define the notions of a measurable operator and the noncommu-

tative analogue of an expectation.

Definition 3.2.13. If T ∈ L1,+(H) and if TrW (T ) is independent of the limiting procedure W ,

meaning that the limit

lim
N→∞

∑N
k=1 σk(T )

ln(N)

exists, then we call T measurable. The noncommutative expectation of a measurable operator

T ∈ L1,+(H) is denoted by
∫
T and given by

∫
T := lim

N→∞

∑N
k=1 σk(T )

ln(N)
.

Remark. If c1, c2 ∈ C and if T1, T2 are measurable operators defined on some complex separable

Hilbert space, then one has the following∫
(c1T1 + c2T2) = c1

∫
T1 + c2

∫
T2.

This follows since the Dixmier trace is a linear functional (see Theorem 3.2.12). Moreover, the

subset of measurable operators in L1,+(H) is a closed subset of L1,+(H) (see Proposition 7.15 of

[FGBV]).

Having introduced the Dixmier ideal of a complex separable Hilbert space, we now discuss the

metric dimension of a spectral triple. The metric dimension of a spectral triple (A,H, π,D) is

given by the non-negative positive integer δ to which the singular values of |1 + D2|−δ/2 form a

logarithmically divergent series. Loosely speaking, this value is given by the exponent to which the

operator (1 + D2)−
1/2 is an infinitesimal of order 1. However, such a number does not necessarily

have to exist. Therefore, we introduce the following summability conditions on a spectral triple.

Definition 3.2.14. Let (A,H,D) be a spectral triple.

1. If for some p > 0

tr((1+D2)−
p/2) < ∞, (3.10)

then (A,H,D) is called a finitely summable spectral triple.

2. For p > 1, if

lim sup
N→∞

∑N
k=1 σk((1+D2)−

1/2)

N1−1/p
< ∞, (3.11)

then (A,H,D) is called a (p,+)-summable spectral triple. If p = 1, then we say that (A,H,D)

is (1,+)-summable if and only if |D|−1 ∈ L1,+(ker(D)⊥).
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3. If for all t > 0

tr
(
e−tD

2
)
< ∞, (3.12)

then (A,H,D) is called a θ-summable spectral triple.

Remark. Let (A,H,D) denote a spectral triple. If D is an invertible operator, then (A,H,D) is

finitely summable if and only if for some p > 0 we have that tr(|D|−p) < ∞. Similarly, (A,H,D)

is (p,+)-summable, for p > 1, if and only if we have that

lim sup
N→∞

∑N
k=1 σk(|D|−p)

ln(N)
< ∞.

Remark. In the above definition of θ-summability we have stated the original definition given

by Connes. This notion was introduced in order to deal with noncommutative representations of

reduced group C∗-algebras of non-amenable groups. We refer the reader to Section 7 of [Con2] for

a more in-depth discussion.

Observe that the condition of a spectral triple being finitely summable can be written in terms

of a (1,+)-summability condtion. Although it seems that this result is known to experts in the field

of noncommutative geometry, we could not find it explicitly stated within the literature, and so we

include a complete proof. Our proof will require the following definition and proposition.

Definition 3.2.15. Let H denote a complex separable Hilbert space. An operator T ∈ B(H) is

said to be a Hilbert-Schmidt operator if and only if T is a compact operator and tr(TT ∗) <∞.

Proposition 3.2.16. The class of Hilbert-Schmidt operators on a complex separable Hilbert space

H is an ideal of B(H).

Proof. See Theorem VI.22 of [RS]. �

Theorem 3.2.17. A spectral triple (A,H,D) is finitely summable if and only if it there exists

a p > 0 such that |D|−p ∈ L1,+(ker(D)⊥). Moreover, a finitely summable spaectral is always

θ-summable.

Proof. The first part follows directly from Lemma 3.2.18 given below. For the second part, we

have the following equality

e−tD
2

= (1+D2)
p/2e−tD

2

(1+D2)−
p/2.

Since (A,H,D) is finitely summable, there exists an N > 0 such that for all p > N , we have

that (1 + D2)−
p/2 is a trace-class operator, and so a Hilbert-Schmidt operator. Further, since the

function f : R→ R given, for each x ∈ R, by

f(x) := (1 + x2)
p/2e−tx

2

,

has supremum (p/(2t))
p/2 et−

p/2, we have that (1+D2)
p/2e−tD

2

is a bounded operator. The result

then follows by an application of Proposition 3.2.16. �

Lemma 3.2.18. Let (xk)k∈N denote an increasing unbounded sequence of positive real numbers and
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let

d1 := sup

{
α > 0 : lim sup

N→∞

∑N
k=1 xk

−α

ln(N)
=∞

}
,

d2 := inf

{
α > 0 : lim sup

N→∞

∑N
k=1 xk

−α

ln(N)
= 0

}
,

d3 := inf

{
α > 0 :

∞∑
k=1

xk
−α <∞

}
= sup

{
α > 0 :

∞∑
k=1

xk
−α =∞

}
,

d4 :=

(
lim inf
k→∞

ln(xk)

ln(k)

)−1

Then if any of the above are positive and finite, they are all equal.

Proof. To see that d1 = d2, fix a p >0 such that

lim sup
N→∞

∑N
k=1 xk

−p

ln(N)
> 0.

Then for 0 < q < p and for each m ∈ N, we have that∑N
k=m xk

−p

ln(N)
=

∑N
k=m xk

−(p−q)xk
−q

ln(N)
6 xm

−(p−q)
∑N
k=m xk

−q

ln(N)
6 xm

−(p−q)
∑N
k=1 xk

−q

ln(N)
.

Therefore, for each m ∈ N, we have that

lim sup
N→∞

∑N
k=1 xk

−p

ln(N)
= lim sup

N→∞

∑N
k=m xk

−p

ln(N)
6 xm

−(p−q) lim sup
N→∞

∑N
k=1 xk

−q

ln(N)
.

Letting m tend to infinity, then gives

lim sup
N→∞

∑N
k=1 xk

−q

ln(N)
= ∞.

Hence, we have that d1 = d2.

It is clear that d2 6 d3, since, if
∑∞
k=1 xk

−p <∞, then

lim sup
N→∞

∑N
k=1 xk

−p

ln(N)
6 lim sup

N→∞

∑∞
k=1 xk

−p

ln(N)
= 0.

To see that d3 6 d4, for each k ∈ N set

yk :=
ln(xk)

ln(k)
(3.13)

and assume that d4 is positive and finite. Since, lim infk→∞ yk = d−1
4 , for each a > d4 there exists a

c > 1 such that for sufficiently large m, we have that a · ym > c. Therefore, there exists a constant

C > 0 such that
∞∑
k=1

xk
−a =

∞∑
k=1

k−a·yk 6 C +

∞∑
k=1

k−c.

Hence, if a > d4, then a ∈
{
s > 0 :

∑∞
k=1 xk

−s <∞
}

, and so, we have that d3 6 d4.

Finally, we need to show that d4 6 d1. Note that if the sequence (yk)k∈N does not have an
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accumalation point then, give a positive M ∈ R, there exists a N ∈ N such that for all k > M , we

have that yk >M . Therefore, for p > 0, it follows that

lim sup
N→∞

∑N
k=1 x

p
k

ln(N)
6 lim sup

N→∞

∑N
k=1 k

−pM

ln(N)
.

Hence, d1 6 1/M for all positive M ∈ R, and so, assuming that d1 is positive, we have that

there exists an accumulation point y > 0 of the sequence (yk )k∈N. Thus, there exists a strictly

monotonically increasing sequence (km)m∈N in N such that ykm tends to y as k tends to infinity.

Fix a < y−1 and fix ε ∈ (0, 1) such that there exists a K ∈ N with a · ykm < 1− ε, for all m > K.

Then, for each m > K, we have that

km∑
i=1

xi
−a > km · xkm

−a = km · k
−a·ykm
m > kεm.

Hence, ∑km
i=1 xi

−a

ln(km)

tends to infinity as m tends to infinity. Therefore, for all a < d4, we have that

a ∈

{
s > 0 : lim sup

N→∞

∑N
k=1 xk

−s

ln(N)
=∞

}
.

This then concludes the proof. �

Remark. In general, if for a positive compact operator T ∈ K(H) there exists p > 0 such that

lim sup
N→∞

∑N
k=1 σk(T )

N1−1/p
< ∞,

then T p ∈ L1,+(H). However, the converse is not necessarilly true, see pages 316− 317 of [FGBV]

for further details.

In the following definition, we introduce the metric dimension of a finitely summable spectral

triple. Note that the metric dimension is only defined for finitely summable spectral triples.

Definition 3.2.19. Let (A,H,D) denote a finitely summable spectral triple. Then the metric

dimension of (A,H,D) is defined to be the non-negative real number

δ = δ(A,H,D) := inf
{
p > 0 : tr((1+D2)−

p/2) <∞
}

(3.14)

= sup
{
p > 0 : tr((1+D2)−

p/2) =∞
}

(3.15)

= sup

{
p > 0 : lim sup

N→∞

1

ln(N)

N∑
k=1

σk((1+D2)−
p/2) =∞

}
(3.16)

= inf

{
p > 0 : lim sup

N→∞

1

ln(N)

N∑
k=1

σk((1+D2)−
p/2) = 0

}
. (3.17)

If (A,H,D) is a θ-summable spectral triple which is not finitely summable, then we say that

(A,H,D) has infinite metric dimension.
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Remark. By the definition of the metric dimension, the operator |D|−δ belongs to the Dixmier

ideal L1,+(ker(D)⊥).

Remark. The dimension of a spectral triple can take the value zero. The two circumstances

under which the dimension is equal to zero are the following.

1. The singular values of (1+D2)−
δ/2 converge to zero exponentially fast, see [AIC2] for examples

of this case.

2. The algebra and the Hilbert space are finite dimensional. Such spectral triples have been fully

classified and the classification can be found in [PS, Kra, IKM].

Note that for a finitely summable spectral triple (A,H,D), the Dixmier trace of the operator

|D|−δ generalises the notion of a volume.

Definition 3.2.20. Let (A,H,D) denote a finitely summable spectral triple with non-zero metric

dimension δ and let W denote a limiting procedure. Then the volume of (A,H,D) with respect to

W is defined by

VW = VW (A,H,D) := TrW (|D|−δ).

Here the Dixmier trace is taken over the ideal L1,+(ker(D)⊥) of the orthogonal complement of the

kernel of D. If |D|−δ is a measurable operator, then we denote the volume of (A,H,D) by

V = V (A,H,D) :=

∫
|D|−δ .

Here the noncommutative integral is taken over the ideal L1,+(ker(D)⊥) of the orthogonal comple-

ment of the kernel of D.

More generally, one can define a noncommutative integral with respect to a spectral triple.

Definition 3.2.21. Let (A,H,D) denote a finitely summable spectral triple with non-zero metric

dimension δ and let W denote a limiting procedure. Then the W -noncommutative integral of an

element a ∈ A with respect to the spectral triple (A,H,D) is given by

TrW (π(a)|D|−δ) (3.18)

Here, (π,H) denotes the faithful ∗-representation of A on H associated to (A,H,D). Further, the

Dixmier trace is taken over the ideal L1,+(ker(D)⊥) of the orthogonal complement of the kernel of

D. If π(a)|D|−δ is measurable then we refer to the common values of the Dixmier traces as the

noncommutative integral of a with respect to the spectral triple (A,H,D) and denote the common

value by ∫
π(a)|D|−δ.

Remark. Let (A,H,D) denote a finitely summable spectral triple with non-zero metric dimension

δ and let (π,H) denote the ∗-representation associated to (A,H,D). If |D|−δ is a measurable

operator, then it is not necessarily the case that π(a)|D|−δ will be a measurable operator, for a ∈ A.

However, in the examples which follow, we shall see that for all a ∈ A, the operator π(a)|D|−δ is a

measurable operator.

Let us end this section with the following theorem, which provides us with an example of a

spectral triple and is presented by Connes [Con3, Con2] as a prototype of such an object. We refer

the interested reader to Chapters 1 and 2 of [Jos] for background on the notions of differential

geometry, which are in use.
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Theorem 3.2.22. Let n ∈ N and let M denote a smooth compact orientable complex manifold of

(real) dimension 2n equipped with a spinc structure. Let A denote the C∗-algebra of continuous

complex-valued functions on M acting by multiplication on the complex Hilbert space H, which

is generated by spinor fields. Further, let D denote the Dirac operator determined by the spin

structure. Then (A,H,D) is an even finitely summable spectral triple where the grading operator

is given by the chirality operator. Moreover, one recovers the theory of Riemannian geometry from

the noncommutative setting. For instance one has the following.

1. The metric dimension is 2n.

2. Connes’ pseudo-metric dC∞(M ;C) induces a metric on M which is bi-Lipschitz equivalent to

the Riemannian metric.

3. If n 6= 1, then for each a ∈ C∞(M ;C), we have that∫
π(a)|D|−2n = cn

∫
M

a ? (1).

Here, (π,H) denotes the faithful ∗-representation of A and cn denotes a constant dependent

on n. Further, following convention, we let ? denote the Hodge star operator which acts on

the p-forms of M .

Proof. See for instance Chapter 11 of [FGBV] or Theorem 9 of [Ren]. �

For a simple and fundamental example of this theorem, namely that of the spin geometry of

the Riemann sphere, we refer the reader to Section 9.A of [FGBV].

3.3 Examples of Spectral Triples

To conclude this chapter, we present three basic examples of spectral triples, examining their

noncommutative geometries. Although most of the material in this section is well-known, it is often

the case that many of the finer details are omitted, and so, where this is the case we provide a full

account. Specifically, we consider and examine the noncommutative geometries of spectral triples

which represent the unit circle (Subsection 3.3.1), noncommutative tori (Subsection 3.3.2) and duals

of countably infinite discrete groups (Subsection 3.3.3). In the case of the noncommutative torus

we take a different approach to that usually presented in the literature. Namely, by noting that

the irrational rotation algebra gives an appropriate representation of the noncommutative torus and

using the representation of the irrational rotation algebra given in Example 3.1.28, we show how the

spectral triple for the unit circle can be extended to obtain a spectral triple for the noncommutative

torus. Before beginning, we recall the following results from functional analysis and measure theory.

Theorem 3.3.1. (Riesz Representation Theorem) Let X denote a locally compact Hausdorff space.

If T is a positive bounded linear functional on Cc(X), then there exists a unique finite Borel measure

µ on X such that T (a) =
∫
X
a dµ, for all a ∈ Cc(X). Moreover, the norm of T is equal to µ(X).

Proof. See Theorem II.4 of [RS]. �

Theorem 3.3.2. If T is a densely defined symmetric operator on a Hilbert space H, then T is

essentially self-adjoint if and only if the range of the operators T ± i1 are norm-dense in H.

Proof. See Corollary to Theorem VIII.3 in [RS]. �
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Definition 3.3.3. Let X denote a given space and let R denote a subset of the power set of X.

Then R is called a semi-ring if it has the following properties.

1. ∅ ∈ R.

2. If Y1, Y2 ∈ R, then Y1 ∩ Y2 ∈ R.

3. If Y1, Y2 ∈ R and Y1 ⊂ Y2, then there exist Z1, Z2, . . . , Zn ∈ R which are pairwise disjoint

such that

Y2 \ Y1 =

n⋃
k=1

Zk.

Definition 3.3.4. For a semi-ring R and for a set function Λ : R→ [0,∞], we make the following

definitions.

1. The set function Λ is said to be additive if for a finite collection of pairwise disjoint sets

W1,W2, . . . ,Wm ∈ R for which
⋃m
k=1 Wk ∈ R, we have that

Λ

(
m⋃
k=1

Wk

)
=

m∑
k=1

Λ(Wk).

2. The set function Λ is said to be σ-subadditive if for a countable collection of sets W1,W2, · · · ∈
R, we have, for each W ∈ R with

W ⊂
⋃
k∈N

Wk,

that

Λ (W ) 6
∑
k∈N

Λ(Wk).

3. The set function Λ is said to be σ-finite on R if there exists a nested sequence of sets

X1 ⊂ X2 ⊂ . . . such that

X =
⋃
k∈N

Xk

and such that Λ(Xk) is finite for each k ∈ N.

Theorem 3.3.5. (Hahn-Kolmogorov Theorem) Let R be a semi-ring and Λ : R→ [0,∞] an additive

σ-subadditive set function with Λ(∅) = 0. Then Λ can be extended to a measure on the σ-algebra

generated by R. Moreover, if Λ is σ-finite on R, then this extension is unique.

Proof. See either [Keß] or Theorem 9.8 of [Bar]. �

Let us begin by describing the standard spectral triple representation of the unit circle in S1 as

given in [Con3, AIC1, AICL, Pal].

3.3.1 Circles

Let A denote the set of continuous 2π-periodic complex-valued functions on R and let τ denote a

state on A given, for each a ∈ A, by

τ(a) :=
1

2π

∫ π

−π
a dλ1. (3.19)
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Let Hτ denote the Gelfand-Năımark-Segal completion of A with respect to τ and observe that

Hτ ∼= L2(S1,B, ϑ1). (Here, ϑ1 denotes the one-dimensional spherical measure on S1 with ϑ1(S1)

equal to one.) Let π : A → B(Hτ ) denote the faithful ∗-homomorphism given by π(a)(h) := a · h.

Next, observe that the Hilbert space Hτ has a canonical orthonormal basis {φk : R→ C : k ∈ Z},
where φk(x) := (2π)−1/2eikx for each k ∈ Z and each x ∈ R. (Note that we follow convention, in

that we do not distinguish between a measurable function f : R→ C and its equivalence class{
g : R→ C : g is a 2π-periodic measurable function with

∫
R
|f − g| dλ1 = 0

}
belonging to Hτ ). Next, set

D := −i d
dt

+
1

2
1.

Observe that D is a linear unbounded operator on Hτ and that φk is an eigenfunction of D with

eigenvalue k+ 1/2, for each k ∈ Z. It is clear that D is an unbounded symmetric operator and that

the domain of D is given by

Dom(D) :=

{
h ∈ Hτ :

∑
k∈Z

(k + 1/2)2|〈h, φk〉|2 <∞

}
.

Proposition 3.3.6. The triple (A,Hτ , D) is a spectral triple, where the ∗-representation is given

by (π,Hτ ).

Proof. The images of the domain of D under D ± i1 are both norm-dense in Hτ . Therefore, by

an application of Theorem 3.3.2, it follows that D is an essentially self-adjoint operator. Further,

since zero does not belong to the spectrum of D, the inverse of D is well defined. Moreover, we

have that D−1(φk) = 2(2k+ 1)−1φk, for each k ∈ Z. Hence, we conclude that D−1 is of trace-class,

and so, D has a compact resolvent. By noting that

C∞(S1;C)

⊂ {a ∈ A : the operator [D,π(a)] is densely defined and extends to a bounded operator onHτ},

we obtain that (A,Hτ , D) is a spectral triple, where the ∗-representation is given by (π,Hτ ). �

Theorem 3.3.7. The metric dimension of the spectral triple (A,Hτ , D) is equal to one. Moreover,

the D−1 is a measurable operator.

Proof. Let p > 0 and observe that

tr(|D|−p) =
∑
k∈N0

21+p(2k + 1)−p.

Since this sum diverges at a logarithmic rate for p = 1, the result follows. �

Theorem 3.3.8. For all a ∈ A, we have that∫
π(a) |D|−1 = π−1

∫ π

−π
a dλ1. (3.20)

Proof. We note that it is enough to show that the result holds for each non-negative real valued

function a ∈ A. We begin by making the following obsevations and fixing the following notations.
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1. For each c ∈ R and for each k ∈ N, we have that

σ2k(π(cχR)|D|−1) =
2|c|

2k − 1
,

and for each k ∈ N0, we have that

σ2k+1(π(cχR)|D|−1) =
2|c|

2(k + 1)− 1
.

Hence, it follows that
∑N
k=1 σk(π(cπ(χR))|D|−1) ∼ 2|c| ln(N).

2. If T ∈ B(Hτ ) is a positive compact operator, then for each N ∈ N, we have that

N∑
k=1

σk(T ) = sup
{

tr(TP ) : P = P 2 = P ∗ and dim(P (Hτ )) = N
}
.

(See Lemma A.3.5 of Appendix A.3.)

3. For each Borel set B ⊆ R, let B̃ denote the Borel set

{x ∈ R : there exists y ∈ B and k ∈ Z withx = y + 2kπ}.

4. For each k ∈ N\{1}, let Kk := [−b(k − 2)/2c , b(k − 1)/2c]∩Z and let Qk : Hτ → Hτ denote

the projection given, for each h ∈ Hτ , by

Qk(h) :=
∑

k1∈Kk

〈h, φk1〉φk1 .

Then, for each Borel set B ⊆ R and for each natural number N > 4, since π(χ
B̃

)|D|−1QN is a

positive operator, we have that

N∑
k=1

σk(π(χ
B̃

)|D|−1) = sup{ tr(π(χ
B̃

)|D|−1P ) : P = P 2 = P ∗ and dim(P (Hτ )) = N}

> tr(π(χ
B̃

)|D|−1QN )

=
∑
k∈N

〈π(χ
B̃

)|D|−1QNφk, φk〉

=
∑
k∈K

N

2|2k + 1|−1(2π)−1λ1(B̃ ∩ [−π, π])

> (2π)−1λ1(B̃ ∩ [−π, π])

bN/2c∑
k=2

2k−1.

Hence, for each real valued function a ∈ A, we have that

lim sup
N→∞

∑N
k=1 σk(π(a)|D|−1)

ln(N)
6 2‖a‖∞, (3.21)

with equality holding if a is a constant function. Further, for each Borel set B ⊂ R we have that

the limit

lim
N→∞

∑N
k=1 σk(π(χ

B̃
)|D|−1)

ln(N)
(3.22)
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exists and is bounded below by π−1λ1(B̃ ∩ [−π, π]). Letting W denote an arbitrary limiting pro-

cedure, the map a 7→ TrW (a|D|−1) defined on A is a bounded linear functional. By the Riesz

Representation Theorem there exists a unique finite Borel measure µ such that, for each a ∈ A, we

have that

TrW (π(a)|D|−1) =

∫ π

−π
a dµ.

Moreover, from the lower bound on the limit given in Equation (3.22), for each non-negative real

valued a ∈ A one can deduce that

TrW (π(a)|D|−1) =

∫ π

−π
a dµ > π−1

∫ π

−π
a dλ1. (3.23)

Suppose that equality does hold, then we can assume without loss of generality, that there exists a

real valued function a ∈ A with 0 6 a(x) 6 1 for all x ∈ R, such that

TrW (π(a)|D|−1) > π−1

∫ π

−π
a dλ1.

If this is the case, then

TrW (π(1− a)|D|−1) = 2− TrW (π(a)|D|−1) < 2− π−1

∫ π

−π
a dλ1 = π−1

∫ π

−π
1− a dλ1.

This gives a contradiction to Equation (3.23). Therefore, equality holds in Equation (3.23) and so

concludes the proof. �

Since the operator D is not a closed operator, it is not a self-adjoint operator. However, as we

have seen above, it is an essentially self-adjoint operator. Therefore, when taking the closure of D

one needs to be cautious, since there exists a non-constant 2π-periodic continuous function θ̃ν with

the following properties.

1. θ̃ν has derivative equal to zero almost everywhere with respect to the Lebesgue measure.

2. The element (θ̃ν , θ̃ν/2) ∈ Hτ ×Hτ belongs to the closure of the graph of D.

This leads us to the following theorem.

Theorem 3.3.9. Let (A,Hτ , D) denote the spectral triple as given in Proposition 3.3.6 and let

A denote the set of Lipschitz continuous 2π-periodic complex-valued functions. Then we have the

following.

1. Connes’ pseudo-metric dA is not bounded.

2. Connes’ pseudo-metric dA is bounded and is equal to the Monge-Kantorovitch metric.

Proof. The second part of the theorem follows from the fact that for any Lipschitz continuous

function a ∈ A, the operator [D,π(a)] extends to a bounded linear operator with norm equal to the

Lipschitz constant of a.

For the first part of theorem, consider the middle third Cantor set C1/3. Let δ := ln(2)/ ln(3)

and let µ
Hδ(C1/3)

denote the normalised δ-dimensional Hausdorff measure on C1/3. Further, let

Θ : [0, 1]→ R be given, for each x ∈ C1/3, by

Θ(x) := µ
Hδ(C1/3)

([0, x] ∩ C1/3).
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Let Θ̃ : R→ R denote the 2π-periodic extension of Θ to R given, for each x ∈ R, by

Θ̃(x) :=
∑
k∈Z

χ
[2kπ,(2k+1)π)

(x)Θ
(
x−2kπ
π

)
+ χ

[(2k+1)π,(2k+2)π)
(x)Θ

(
1− x−(2k+1)π

π

)
.

Then, for each k ∈ N, we have the following.

1. The operator [D,π(kΘ̃)] is densely defined and extends to a bounded operator whose norm

is equal to zero.

2. |kΘ̃ν(0)− kΘ̃ν(π)| = k.

Hence, we have that dA(δ0, δπ) =∞. �

In the following two subsections we turn our attention to two classes of algebras that are not

commutative. We begin with the irrational rotation algebra which gives a representation of the

object known as the noncommutative torus.

3.3.2 The Noncommutative Torus

The noncommutative torus is an example of a space known as a “bad quotient”. In particular, it

is a quotient space which is non-Hausdorff. It arises from an irrational rotation of the unit circle

S1 ∼= R/2πZ. More precisely, fix an irrational number θ ∈ (0, 1) and let Tθ : R/2πZ → R/2πZ be

defined, for each equivalence class [x] ∈ R/2πZ, by

Tθ([x]) := [x− 2πθ].

Define the equivalence relation ∼θ on R/2πZ by, [x1] ∼θ [x2] if and only if there exists k ∈ Z
such that T kθ ([x1]) = [x2], for each [x1], [x2] ∈ R/2πZ. Then the space of equivalence classes

(R/2πZ)/ ∼θ, equipped with the quotient topology, is a non-Hausdorff space and is called the

noncommutative torus. Note that the set of complex-valued continuous functions on (R/2πZ)/ ∼θ,
equipped witht the quotient topology, is isomorphic to C. Therefore, if one wants to study the

space (R/2πZ)/ ∼θ on an algebraic level, one is required to consider a more complex algebra. For

instance, an algebra which encodes the C∗-algebra A of 2π-periodic complex-valued continuous

functions defined on R and the group action of Z given by αθ. (Recall, that αθ : Z → Aut(A) is

given by αθ(k)f(x) := f(x − 2πkθ), for each f ∈ A.) In other words, the appropriate algebra to

study the space (R/2πZ)/ ∼θ is the irrational rotation algebra Aθ := Aoαθ Z.

To construct a spectral triple for Aθ, we first need a suitable Hilbert space. If there exists a

tracial state τ on Aθ, then the GNS completion Hτ of Aθ would provide such an object. In fact it

is well-known that there exists a unique tracial state on Aθ, see for instance Proposition VI.1.3. of

[Dav]. With the representation of Aθ as presented in Example 3.1.28, we observe that the unique

tracial state τ is given, for each
∑
k∈Z akδk belonging to the complex ∗-algebra AZ, by

τ

(∑
k∈Z

akδk

)
:=

∫ π

−π
a0dλ

1. (3.24)

To define τ on the reduced completion A oαθ Z of AZ we extend the definition given in Equation

(3.24) by continuity. The result that τ is a unique tracial state follows from an application of

the Riesz Representation Theorem (Theorem 3.3.1) and the following observation. The only Tθ-

invariant ergodic Borel probability measure on R/2πZ is the push forward of the Lebesgue measure

on R to the quotient space R/2πZ (see Theorem 6.18 of [Wal2]). Due to the fact that the irrational
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rotation algebra is universal, this provides an alternative proof for the existence of a unique tracial

state on the irrational rotation algebra to the standard proof as given in [Dav], Proposition VI.1.3.

We now want to construct a Dirac operator. For reasons which will become clear (see Theorem

3.3.12) fix z ∈ C with =m(z) 6= 0. Define ∇z on the subset

Dom(∇z) :=

{∑
k∈Z

hkδk ∈ Aoαθ Z : hk ∈ A ∩Dom

(
−i d
dx

)
for each k ∈ Z

}

of Hτ by

∇z

(∑
k∈Z

hkδk

)
:=

∑
k∈Z

((
−i d
dx

+ z

(
k +

1

2

)
1

)
hk

)
δk.

Since to each element
∑
k∈Z akδk belonging the complex ∗-algebra AZ, there exists a unique equiv-

alence class in Hτ which contains
∑
k∈Z akδk, following convention, we do not distinguish between

the element
∑
k∈Z akδk and its equivalence class.

Lemma 3.3.10. The operator ∇z is a densely defined unbounded operator with a compact resolvent

such that ∇∗z = ∇z on Dom(∇z).

Proof. By the Stone-Weierstrass Theorem (Theorem 2.2.12) and the GNS construction of Hτ ,

the set Dom(∇z) is norm-dense in Hτ . Linearity of the operator ∇z follows since −i d
dx

is a

linear operator and multiplication by a constant is a linear operator. Similarly, since −i d
dx

is an unbounded operator, it follows that ∇z is an unbounded operator. Moreover, for all∑
k1∈Z hk1δk1 ,

∑
k2∈Z gk2δk2 ∈ Dom(∇z), we have that

τ
(
∇z
(∑

k1∈Z hk1δk1

)
∗
(∑

k2∈Z gk2δk2

)∗)
= τ

(∑
k1∈Z−i

d
dx
hk1δk1 ∗

∑
k2∈Z αθ(k2)(g−k2

)δk2+∑
k1∈Z z(k1 + 1

2
)hk1 ∗

∑
k2∈Z αθ(k2)(g−k2

)δk2

)
= τ

(∑
k1∈N(−i d

dx
hk1αθ(k1)(gk1

))δ0 +
∑
k1∈Z z(k1 + 1

2
)hk1αθ(k1)(gk1

)δ0
)

= τ
(∑

k1∈N hk1αθ(k1)(−i d
dx
gk1

)δ0 +
∑
k1∈Z hk1αθ(k1)(z(k1 + 1

2
)gk1)δ0

)
= τ

(∑
k1∈Z hk1δk1 ∗

∑
k2∈Z αθ(k2)(−i d

dx
g−k2)δk2+∑

k1∈Z hk1 ∗
∑
k2∈Z αθ(k2)(z

(
k1 + 1

2

)
g−k2)δk2

)
= τ

(∑
k1∈Z hk1δk1 ∗

(
∇z
(∑

k2∈Z gk2δk2

))∗)
.

Hence, it follows that〈
∇z
(∑

k1∈Z hk1δk1

)
,
∑
k2∈Z gk2δk2

〉
=
〈∑

k1∈Z hk1δk1 ,∇z
(∑

k2∈Z gk2δk2

)〉
.

Next, note that ∇z−1 is defined, for each
∑
k∈Z hkδk ∈ Dom(∇z), by

∇z−1

(∑
k∈Z

hkδk

)
:=

∑
k1∈Z

∑
k2∈Z

1

k2 + z (k1 + 1/2)
〈hk1 , φk2〉φk2

 δk1 . (3.25)

(Recall that φk(x) := (2π)−1/2eikx, for each k ∈ Z and each x ∈ R.) Observe that ∇z−1 has a

unique extension to a bounded operator on the GNS completion Hτ of A oαθ Z. It follows that
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∇z−1 is compact, since ∇z−1 can be approximated by a sequence of bounded operators with finite

dimensional range. Such a sequence is given by the closure of ∇−1
z,k defined, for each

∑
k∈Z hkδk in

the ∗-algebra AZ, by

∇z,k−1

(∑
k∈Z

hkδk

)
:=

∑
k1∈Z

∑
k2∈Z

χ
[−k,k]

(k1)χ
[−k,k]

(k2)

k2 + z (k1 + 1/2)
〈hk1 , φk2〉φk2

 δk1 .

Therefore, ∇z has a compact resolvent. �

As ∇z is not symmetric we cannot consider it as a Dirac operator. However, the operator Dz

define on Dom(∇z)⊕Dom(∇z) ⊂ Hτ ⊕Hτ and given by

Dz :=

(
0 ∇z
∇z 0

)
,

is a symmetric operator and a more suitable candidate for the Dirac operator. Finally, we require a

representation of A on Hτ⊕Hτ . Recall that the GNS completion provides a faithful ∗-representation

(πτ , Hτ ) of A oαθ Z, and so, define the ∗-representation (π̃τ , Hτ ⊕ Hτ ) of A oαθ Z, by π̃τ (a) :=

πτ (a)⊕ πτ (a), for each a ∈ Aoαθ Z.

Proposition 3.3.11. Let z ∈ C with =m(z) 6= 0. Then the triple (Aoαθ Z, Hτ ⊕Hτ , Dz) with the

∗-representation, (π̃τ , Hτ ⊕Hτ ) is a spectral triple.

Proof. By the properties of ∇z given in Lemma 3.3.10, it follows that Dz is a densely defined

unbounded symmetric linear operator with compact resolvent on Hτ ⊕ Hτ . In order to conclude

that D is an essentially self-adjoint operator we apply Theorem 3.3.2. Therefore, we need to show

that Ran(Dz± i1) are norm-dense in Hτ ⊕Hτ , with respect to the Hilbert space norm. Recall that

the irrational rotation algebra is generated by the two unitary operators U := φ1δ0 and V := χRδ1.

(Here we remind the reader that φ1(x) := (2π)−1/2eix and that χR denote the characteristic function

of R.) Then for all k1, k2 ∈ N, we have that

(Dz ± i1)

(
1

k1 + z(k2 + 1/2)± i (U
k1 ∗ V k2 ⊕ 0)

)
= 0⊕ Uk1 ∗ V k2 ,

(Dz ± i1)

(
1

k1 + z(k2 + 1/2)± i (0⊕ U
k1 ∗ V k2)

)
= Uk1 ∗ V k2 ⊕ 0.

Since the set of polynomials in U and V is norm-dense in Hτ we have that the ranges of Dz ± i1
are norm-dense in Hτ ⊕Hτ . Therefore, D is an essentially self-adjoint operator.

Next, we aim to show that the set

{a ∈ C(S1) oτ
θ
Z : [D, π̃τ (α)] extends to a bounded operator}

is a dense subset of the irrational rotation algebra. Indeed this follows by observing that, for all
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k1, k2, q1, q2, t1, t2 ∈ Z, we have that

∥∥∥∥ [Dz, π̃τ (Uk1 ∗ V k2

)](Uq1 ∗ V t1
Uq2 ∗ V t2

)∥∥∥∥
=

∥∥∥∥∥
[(

0 ∇z
∇z 0

)
,

(
πτ (Uk1 ∗ V k2) 0

0 πτ (Uk1 ∗ V k2)

)](
Uq1 ∗ V t1
Uq2 ∗ V t2

)∥∥∥∥∥
=

∥∥∥∥∥
(
∇z
(
Uk1 ∗ V k2 ∗ Uq2 ∗ V t2

)
− (Uk1 ∗ V k2) ∗ (∇z

(
Uq2 ∗ V t2

)
)

∇z
(
Uk1 ∗ V k2 ∗ Uq1 ∗ V t1

)
− (Uk1 ∗ V k2) ∗ (∇z

(
Uq1 ∗ V t1)

))∥∥∥∥∥
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=
∥∥∥e−iθk2q2 (k1 + z (k2 + 1/2))Uk2+q2 ∗ V k1+t2

∥∥∥+∥∥∥e−iθk2q1 (k1 + z (k2 + 1/2))Uk2+q1 ∗ V k1+t1
∥∥∥

= ‖k1 + z (k2 + 1/2)‖+ ‖k1 + z (k2 + 1/2)‖ .

�

Remark. Observe that the operator Γ ∈ B(Hτ ⊕Hτ ) defined by

Γ :=

(
1 0

0 −1

)
,

provides a grading of the Hilbert space Hτ ⊕ Hτ . Moreover, for each z ∈ C with =m(z) 6= 0, the

data set (A oαθ Z, Hτ ⊕Hτ , Dz) with the ∗-representation, (π̃τ , Hτ ⊕Hτ ) and grading operator Γ

is an even spectral triple.

Theorem 3.3.12. Let z ∈ C with =m(z) 6= 0. Then the metric dimension of the spectral triple

(A oαθ Z, Hτ ⊕ Hτ , Dz), as given in Proposition 3.3.11, is equal to 2. Moreover, |Dz|−2 is a

measurable operator with V (Aoαθ Z, Hτ ⊕Hτ , Dz) equal to 2π/=m(z).

Proof. Recall that φ1 : R → C is defined, for each x ∈ R, by φ1(x) := (2π)−1eix and that χR

denotes the characteristic function of R. Further, recall that U := φ1δ0 and V := χRδ1 form a

generating set for the reduced cross product algebra A oαθ Z. Next, observe that the following

hold.

1. The set {
Uk1V k2 ⊕ 0 : k1, k2 ∈ Z

}
∪
{

0⊕ Uk1V k2 : k1, k2 ∈ Z
}

forms an orthonormal basis for Hτ ⊕Hτ .

2. For k1, k2 ∈ Z we have that

(1+D2)(Uk1V k2 ⊕ 0) = (‖k1 + z (k2 + 1/2)‖2 + 1)(Uk1V k2 ⊕ 0),

(1+D2)(0⊕ Uk1V k2) =
(
‖k1 + z (k2 + 1/2)‖2 + 1

)
(0⊕ Uk1V k2).

Next, observe that as R tends to positive infinity, we have the following

1

ln(2R2)

2R2∑
k=1

σk(|Dz|−2) ∼ 1

2 ln(R)

∑
k1,k2∈Z

k2
1+k2

26R

2

‖k1 + z(k2 + 1
2
)‖2

(3.26)

∼ 1

ln(R)

∑
k1,k2∈Z

k2
1+k2

26R

1

‖k1 + k2z‖2
(3.27)

∼ 1

ln(R)

∫ R

1

∫ π

−π

1

‖r cos(θ) + zr sin(θ)‖2 r dr dθ (3.28)

∼
∫ π

−π

1

‖cos(θ) + z sin(θ)‖2 dθ. (3.29)
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Applying the change of variables u = tan(θ), we observe that

‖cos(θ) + z sin(θ)‖2 = (cos(θ) + <e(z) sin(θ))2 + =m(z)2 sin2(θ)

= cos2(θ) + 2<e(z) sin(2θ) + <e(z)2 sin2(θ) + =m(z)2 sin(z)2

=
1 + cos(2θ)

2
+
<e(z)2

2
(1− cos(2θ)) +

=m(z)2

2
(1− cos(2θ)) + <e(z) sin(2)θ

=
1 + <e(z)2 + =m(z)2

2
+

1−<e(z)2 −=m(z)2

2
cos(2θ) + <e(z) sin(2θ)

=
(1 + <e(z)2 + =m(z)2)(1 + u2) + (1−<e(z)2 −=m(z)2)(1− u2) + 4u<e(z)

2(1 + u2)

=
1 + 2<e(z)u+ (<e(z)2 + =m(z)2)u2

1 + u2
.

Here we have used the following trigonometric identities.

1. cos(2θ) = 2 cos2(θ)− 1.

2. sin(2θ) =
2 tan(θ)

1 + tan2(θ)
.

3. cos(2θ) =
1− tan2(θ)

1 + tan2(θ)
.

Therefore, since
du

dθ
= sec2 θ = 1 + tan2(θ) = 1 + u2

we have that∫ π

−π

1

‖cos(θ) + z sin(θ)‖2 dθ

= 2

∫ π/2

−π/2

1

‖cos(θ) + z sin(θ)‖2 dθ

= 2

∫ ∞
−∞

1

1 + 2<e(z)u+ (<e(z)2 + =m(z)2)u2
du

=
2

<e(z)2 + =m(z)2

∫ ∞
∞

((
u+

<e(z)
<e(z)2 + =m(z)2

)2

+
=m(z)2

(<e(z)2 + =m(z)2)2

)−1

du

=
2

<e(z)2 + =m(z)2

[
<e(z)2 + =m(z)2

=m(z)2
tan−1

(
u+

<e(z)
<e(z)2 + =m(z)2

)]∞
−∞

=
2π

=m(z)
.

By an application of Lemma 3.2.18 the result then follows. �

We now include a brief discussion on the metric aspects of the spectral triple (A oαθ Z, Hτ ⊕
Hτ , Dz) as given in Proposition 3.3.11. Observe that an analogous argument to that given in part

1 of Theorem 3.3.9 can be constructed to show that Connes’ pseudo-metric dAoαθZ not a metric.

However, by considering an appropriate complex sub-∗-algebra A of the irrational rotation algebra

Aθ ∼= Aoαθ Z, a consequence of Theorem 4.2 of [Rie2] shows that one obtains that dA is a metric.

An appropriate choice for the complex sub-∗-algebra is the complex ∗-algebra generated by all

polynomials in the two generators of Aθ.
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3.3.3 Discrete Groups

Finally, let us conclude this section with the spectral triple which Connes investigates in [Con2], that

is, a spectral triple which represents the reduced discrete crossed product algebra of a countably

infinite discrete group. Here we only outline Connes’ construction and refer the reader to [Con2]

for various geometric and algebraic results of the spectral triple.

Definition 3.3.13. For a group G, define a length function of G to be a map L : G→ [0,∞) such

that the following hold.

1. L(g1g2) 6 L(g1) + L(g2), for all g1, g2 ∈ G.

2. L(g−1
1 ) = L(g1), for all g ∈ G.

3. L(e) = 0, where e is the group identity.

Example 3.3.14. For a finitely generated group G, the reduced word length with respect to a

fixed symmetric generating set is an example of a length function.

Remark. If L is a length function on a group G such that L(g) = 0 if and only if g = e, then L

gives rise to a metric on G. For instance, the map dL : G×G→ [0,∞) defined, for each g1, g2 ∈ G,

by dL(g1, g2) := L(g−1
1 g2).

Let G denote a countably infinite discrete group G and let L : G→ [0,∞) denote a given length

function. Define DL on l2(G) by

DL(γ)(g) := L(g)γ(g).

Lemma 3.3.15. The operator DL is an essentially self-adjoint operator.

Proof. For γ1, γ2 ∈ Dom(DL) we observe that

〈DL(γ1), γ2〉 =
∑
g∈G

L(g)γ1(g)γ2(g) =
∑
g∈G

γ1(g)L(g)γ2(g) = 〈γ1, DL(γ2)〉.

Thus, DL is symmetric on its domain. If DL is a bounded operator, then the result immediately

follows. If DL is an unbounded operator, then since the set

{δ ∈ l2(G) : δ(g) = 0 for all but a finite number of g ∈ G}

is norm-dense in l2(G), one can conclude the following.

1. The operator DL is densely defined.

2. The ranges of the operator DL ± i1 are norm-dense in l2(G).

Hence, the result then follows by an application of Theorem 3.3.2. �

Proposition 3.3.16. Let G denote a countably infinite discrete group, let L denote a length function

of G and let A denote the reduced discrete group C∗-algebra Coα G. Further, let (π, l2(G)) denote

the ∗-representation of A, where for each a ∈ A we define π(a)(γ) := a ∗ γ (see Equation 3.7).

If for each k ∈ N0 the cardinality of the set L−1(k) is finite and the sequence (card(L−1(k)))k∈N0

contains only finitely many zeros, then (A, l2(G), DL) is a spectral triple. Moreover, we have that

‖[D,π(δg)]‖ = L(g) for all g ∈ G.
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Proof. The following proof is similar to the proof given by Connes [Con2], however we include

some further details.

By Lemma 3.3.15 we have that the operator DL is an essentially self-adjoint operator. Further,

since for each k ∈ N0 the cardinality of the set L−1(k) is finite and non-zero for all but a finite

number of k ∈ N0, we conclude that the operator (1 + D2
L)−1 can be written as the limit of a

sequence of operators with finite dimensional range. Hence, (1+D2
L) is a compact operator and D

is an unbounded operator.

Letting e denote the group identity of G, observe that, for each g ∈ G, one has that

‖[DL, π(δg)]‖ > ‖[DL, π(δg)]δe‖ = ‖DL(δe∗δg)−δg∗DL(δe)‖ = ‖DL(δg)‖ = ‖L(g)δg‖ = L(g).

Moreover, for each γ ∈ l2(G) with ‖γ‖2 6 1, observe that

‖[DL, π(δg)]γ‖2 =

∥∥∥∥∥DL
(∑
g1∈G

γ(g−1g1)δg1

)
− δg ∗

∑
g2∈G

L(g2)γ(g2)δg2

∥∥∥∥∥
2

=

∥∥∥∥∥∑
g1∈G

L(g1)γ(g−1g1)δg1 −
∑
g2∈G

L(g−1g2)γ(g−1g2)δg2

∥∥∥∥∥
2

=

∥∥∥∥∥∑
g1∈G

(L(g1)− L(g−1g1)γ(g−1g1)δg1

∥∥∥∥∥
2

6 L(g)‖γ‖2 6 L(g).

Since the set {δ ∈ l2(G) : δ(g) = 0 for all but a finite number of g ∈ G} is norm-dense in l2(G),

the result follows. �

Theorem 3.3.17. Let G denote a finitely generated countably infinite discrete group, and fix a

finite generating set. Suppose that L is the length function given by the reduced word length of a

group element with respect to the fixed generating set. Then the following hold.

1. If G has polynomial growth, then the spectral triple (A, l2(G), DL), as given in Proposition

3.3.16, is finitlely summable.

2. If the spectral triple (A,H,DL) is finitely summable then G has polynomial growth.

Proof. The following proof is similar to the proof given by Connes [Con2], however we include

some further details.

For the first part, for each k ∈ N0, let Bk := {g ∈ G : L(g) 6 k}. Since G is of polynomial

growth there exist constants c, r > 0, such that for k ∈ N0, the cardinality of Bk is less than or

equal to c(1 + k)r. Subsequently, if p > r + 1, then we have that

tr
(

(1+D2
L)−

p/2
)

=
∑
g∈G

(L(g)2 + 1)−
p/2 =

∑
k∈N

(card(Bk)− card(Bk−1))
(
1 + k2)−p/2

6
∑
k∈N

(card(Bk))(1 + k)−p

6
∑
k∈N

c(1 + k)r(1 + k)−p

6 c
∑
k∈N

k−p+r < ∞.
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Hence, the spectral triple (A, l2(G), DL) is is finitely summable.

For the second part, if the spectral triple (A,H,DL) is finitely summable, then for some p > 0,

we have that∑
k∈N

(card(Bk)− card(Bk−1))
(
1 + k2)−p/2 =

∑
g∈G

(
1 + L(g)2)−p/2 = tr

(
(1+D2

L)−
p/2
)
< ∞.

Therefore, there exists N ∈ N, where for each k ∈ N, we have that

card(BN+k)− card(BN+k−1) < (N + k + 1)p.

Hence, it follows that there exists a constant c so that

card(BN+k) < c(N + k + 1)1+p.

This finishes the proof. �



Chapter 4: A Commutative Noncommutative Fractal

Geometry

In the past three decades it has gradually emerged from problems in pure mathematics that the class

of Riemannian manifolds is too narrow to encompass all interesting spaces. To rectify this, Connes

suggested that one should work on a C∗-algebraic level and developed the theory of noncommutative

geometry (see Chapter 3). Although one of the original motivations for noncommutative geometry

was to be able to deal with non-Hausdorff spaces, such as foliated manifolds, which are often

best represented by a noncommutative C∗-algebra (see for instance [Con3, Vár, Mar, Rie3], it has

been shown that the theory has a far wider scope even when the C∗-algebra is commutative. For

instance, in [CL, PS, Kra, IKM] the authors show that any finite metric space can be represented

by a finite spectral triple, from which one can recover the geometric structure. In [Con4, GBIS]

spectral triples which represent the standard model in particle physics are considered. Note that,

within these articles neutrinos are assumed to be massless. However, in [Con5] Connes constructs a

noncommutative representation of the standard model where this assumption is not made. Further,

in [Con3, Con2] Connes has shown that from a spectral triple representation of a spin manifold M ,

one can recover much of the geometric information of M (see Theorem 3.2.22). Also, attempts to

build spectral triples for an arbitrary compact metric space have been made by Christensen and

Ivan in [AIC2]. There the authors construct spectral triples for an arbitrary compact metric space

(X, d) by gluing together spectral triples associated with pairs of points. More recently the work of

Palmer [Pal] continues along this research thread.

In what follows, we consider how one can represent a compact totally disconnected set with

no isolated points via a spectral triple and give new insight into the geometric aspects of such a

spectral triple. This illustrates that the tools of noncommutative geometry are capable of bridging

the gap between the continuum and the discrete.

The work in this section is split into two parts. Firstly, in Section 4.1 we briefly review Connes’

method for constructing a spectral triple on a compact fractal subset of R and then we consider

geometric aspects of this spectral triple. In particular, it is proven that from this representation

of a compact “fractal” subset E of R the multifractal box-counting dimension b can be recovered

if E is strongly porous. Moreover, if one has a self-similarity condition, it is shown that the

noncommutative integration theory is able to recover the associated multifractal auxiliary measures.

Secondly, in Section 4.2 we consider the construction of a spectral triple given by Antonescu-Ivan

and Christensen in [AIC1]. Motivated by this construction, given a one-sided topologically exact

subshift of finite type (Σ∞A , σ) and a Gibbs measure µφ for a Hölder continuous potential function

φ ∈ C(Σ∞A ;R), it is shown that there exists a spectral triple which represents the measure space

(Σ∞A ,B, µ). Moreover, it is proved that the topology arising from Connes metric dC(Σ∞
A

;C) agrees

with the weak∗-topology on the state space of C(Σ∞A ;C). Further, if in addition φ is non-arithmetic

and µφ is the unique equilibrium measure for the potential φ, then it is shown that the spectral triple

is (1,+)-summable with metric dimension equal to one, that the noncommutative volume coincides

with the reciprocal of the measure theoretical entropy of µφ and that the noncommutative integral

coincides with the integral with respect to µφ.

65
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4.1 A Spectral Triple for Homeomorphic Images of the Middle Third Cantor

Set

Throughout this section, unless otherwise stated let E denote a compact totally disconnected subset

of R with no isolated points. We will assume, without loss of generality, that {0, 1} ⊂ E ⊂
[0, 1]. Recall from Section 2.1 that such a set can be viewed as the complement of a family {Ik :

k ∈ N} of countably many pairwise disjoint open intervals, ignoring the two infinite connected

components. Here, we assume that the complementary intervals are ordered so that their lengths

are non-increasing. Further, for each k ∈ N, we denote the boundary of Ik by ∂Ik := {b−k , b
+
k },

where b−k and b+k respectively denote the left and right end points of Ik.

Our present aim is to describe the spectral triple presented by Connes in [Con3], which represents

a fractal set E. To this end let A denote the C∗-algebra of complex-valued continuous functions

on E equipped with the supremum norm and let H := l2 ⊕ l2. Here, l2 denotes the Hilbert space

of sequences in C whose sum is absolutely convergent, where the inner product is given, for all

(z1, z2, . . . ), (w1, w2, . . . ) ∈ l2, by

〈(z1, z2, . . . ), (w1, w2, . . . )〉 :=

∞∑
k=1

zkwk.

Let (π,H) denote the ∗-representation of A, where π : A→ B(H) is defined by

π(a) ((xk, yk)k∈N) :=
(
xk · a(b−k ), yk · a(b+k )

)
k∈N . (4.1)

Since the set {b+k , b
−
k : k ∈ N} is dense in E, it follows that the ∗-representation (π,H) of A is

faithful. Let D denote the operator on H with domain

Dom(D) :=

{
(xk, yk)k∈N ∈ H :

∑
k∈N

|Ik|−2 (x2
k + y2

k

)
<∞

}
⊂ H,

and defined, for each (xk, yk)k∈N ∈ Dom(D), by

D
(
(xk, yk)k∈N

)
:=

(
|Ik|−1 (yk, xk)

)
k∈N . (4.2)

Note that

Dom(D) ⊃
{

(xk, yk)k∈N ∈ H : there exist at most finitely many k ∈ Nwith (xk, yk) 6= (0, 0)
}
,

which implies that D is a densely defined operator on H. Further, since the lengths of the com-

plementary intervals are decreasing, we have that D is a well defined unbounded operator. For the

remainder of this section, let A, H and D be fixed as above.

Proposition 4.1.1. The operator D is an essentially self-adjoint operator with a compact resolvent.

Proof. It is clear that D is a symmetric operator. From Theorem 3.3.2 and the fact that

Ran(D ± i1) ⊃ {(xk, yk)k∈N : there exist at most finitely many k ∈ Nwith (xk, yk) 6= (0, 0)} ,

it follows that D is an essentially self-adjoint operator. Moreover, as for each (xk, yk)k∈N ∈ H we

have that

D−1 ((xk, yk)k∈N
)

= (|Ik| (yk, xk))k∈N ,
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one can construct a sequence of operators with finite dimensional range which converges to D−1.

This implies that D has a compact resolvent. �

Proposition 4.1.2. The triple (A,H,D) is an even spectral triple with the action of A on H given

by the ∗-representation (π,H) and grading operator Γ ∈ B(H) given, for each (xk, yk)k∈N ∈ H, by

Γ ((xk, yk)k∈N) := (xk,−yk)k∈N.

Proof. From Proposition 4.1.1, we have that D is an unbounded essentially self-adjoint operator

with a compact resolvent. Next, observe that for each (xk, yk)k∈N ∈ H and a ∈ A, the following

hold.

1. DΓ ((xk, yk)k∈N) = (|Ik|−1(−yk, xk))k∈N = −(|Ik|−1(yk,−xk))k∈N = −ΓD ((xk, yk)k∈N).

2. Γπ(a) ((xk, yk)k∈N) = (xka(b−k ),−yka(b+k ))k∈N = π(a)Γ ((xk, yk)k∈N).

Therefore, all that remains, is to show that the set

{a ∈ A : the operator [D,π(a)] is densely defined and extends to a bounded operator}

is C∗-norm-dense in A. Indeed, if a ∈ C(E;C) belongs to the set Lip(E) of Lipschitz continuous

functions on E, then, for each (xk, yk)k∈N ∈ H, we have that

‖[D,π(a)](xk, yk)k∈N‖ = ‖Dπ(a)(xk, yk)k∈N − π(a)D(xk, yk)k∈N‖

= ‖D(xk · a(b−k ), yk · a(b+k ))k∈N − π(a)(|Ik|−1(yk, xk))k∈N‖

= ‖(|Ik|−1(yk · a(b+k ), xk · a(b−k )))k∈N − (|Ik|−1(yk · a(b−k ), xk · a(b+k )))k∈N‖

= ‖((a(b+k )− a(b−k )) |Ik|−1 (yk,−xk))k∈N‖

6 Lip(a).

Here, Lip(a) denotes the Lipschitz constant of a and is defined by

Lip(a) := inf{r > 0 : ‖a(x)− a(y)‖ < r|x− y| for all x, y ∈ E}.

An application of the Stone-Weierstrass Theorem (Theorem 2.2.12) then finishes the proof. �

4.1.1 Geometric Properties of Connes’ Spectral Triple

In this subsection, the metric dimension, the noncommutative volume, the noncommutative integral

and aspects of Connes’ pseudo-metric of the spectral triple (A,H,D) are discussed. Although most

of the results in this subection are stated in [Con3, GI1], we obtain these results by using different

methods. In contrast to the results given in Theorem 4.4 of [GI1], we show that Connes’ pseudo-

metric dC(E;C) induced by this spectral triple, is not a metric. On personal communication with

Bellissard [Bel] we learnt that the ambiguity in Theorem 4.2 of [GI1] is apparently well-known to

experts in the field of noncommutative geometry. Let us begin by discussing the metric dimension.

Theorem 4.1.3. Let E denote a self-similar set satisfying the strong separation condition and

assume, without loss of generality, that {0, 1} ⊂ E ⊂ [0, 1]. Further, let (A,H,D) denote the

spectral triple representation of E as given in Proposition 4.1.2. Then the metric dimension of

(A,H,D) is equal to the Hausdorff dimension of E.



68 CHAPTER 4. A COMMUTATIVE NONCOMMUTATIVE FRACTAL GEOMETRY

Proof. Let E be generated by the iterated function system of similarities S := {s1, s2, . . . , sm},
which satisfies the strong separation condition and let p > 0 be fixed. Denote the contraction ratios

of the similarities of S by r1, r2, . . . , rm respectively. Applying S to the unit interval [0, 1] gives a set

consisting of m connected components which are separated by m − 1 open connected components

of the complement of S([0, 1]). We denote these separating components by l1, . . . lm−1. Further, let

K :=

m−1∑
i=1

|li|p.

Then we have that

tr((1+D2)−
p/2) =

∑
k∈N

2|Ik|p

(1 + |Ik|2)p/2
< 2K

∑
k∈N0

(rp1 + rp2 + · · ·+ rpm)k,

tr((1+D2)−
p/2) =

∑
k∈N

2|Ik|p

(1 + |Ik|2)p/2
> 21−p/2K

∑
k∈N0

(rp1 + rp2 + · · ·+ rpm)k.

This shows that tr((1 + D2)−
p/2) is finite if and only if rp1 + rp2 + · · · + rpm < 1. Hence, by the

Moran-Hutchinson Formula (Theorem 2.1.8), this holds if and only if p > dimH(E). �

Theorem 4.1.4. Let (A,H,D) be as in Proposition 4.1.2. Suppose that for some s > 0, we have

that |Ik| � k−1/s as k tends to positive infinity. Then the metric dimension of (A,H,D) is equal to

s and coincides with dimB(E).

Proof. Let p > 0 be fixed. Then there exist positive constants c1, c2 such that for sufficiently large

k ∈ N we have that

c1k
−1/s < |Ik| < c2k

−1/s.

It then follows, by using Hölder’s inequality and Minkowski’s inequality that

tr
((
1+D2)−p/2) =

∑
k∈N

2|Ik|p

(1 + |Ik|2)p/2
6
∑
k∈N

2cp2
(k2/s + c21)p/2

6
2cp2

min{1, 21−p/2}
∑
k∈N

k−
p/s,

tr
((
1+D2)−p/2) =

∑
k∈N

2|Ik|p

(1 + |Ik|2)p/2
>
∑
k∈N

2cp1
(k2/s + c22)p/2

>
cp1

max{1, 21−p/2}

∞∑
k=dc2e

k−
p/s.

Hence, tr((1+D2)−
p/2 is positive and finite if and only if p > s. Thus, δ(A,H,D) is equal to s. It

then follows from Theorem 2.1.15 that δ(A,H,D) coincides with the box-counting dimension of E.

�

The results of Theorem 4.1.3 and Theorem 4.1.4 now allow us to consider the noncommutative

volume and the noncommutative integral.

Theorem 4.1.5. Let (A,H,D) be as in Proposition 4.1.2, and assume that E is Minkowski mea-

surable with d-dimensional Minkowski content Md(E), where d := dimB(E). Then the volume

V (A,H,D) is equal to 2d(1− d)Md(E).

Proof. For ease of notation let c := 2d−1(1−d)Md(E). Since E is Minkowski measurable, applying

Theorem 2.1.15 gives that for each ε > 0 there exists N ∈ N such that, for all k > N , the following

inequities hold
2c− ε

2k
6 |Ik|d 6

2c+ ε

2k
. (4.3)
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Now let ε > 0 be fixed and let N ∈ N be such that for all k > N the inequalities in Equation (4.3)

are satisfied for this ε. Then, for each M > 2N , we have that

bM/2c∑
k=1

2c− ε
k

+

N∑
k=1

(
2|Ik|d −

2c− ε
k

)
6

M∑
k=1

σk(|D|−1) 6
dM/2e∑
k=1

2c+ ε

k
+

N∑
k=1

(
2|Ik|d −

2c+ ε

k

)

Therefore, it follows that

lim inf
M→∞

∑M
k=1 σk(|D|−1)

ln(M)
> lim inf

M→∞
(2c− ε) ln(M − 1)− ln(2)

ln(M)
= 2c− ε,

lim sup
M→∞

∑M
k=1 σk(|D|−1)

ln(M)
6 lim sup

M→∞
(2c+ ε)

1 + ln(M + 1)− ln(2)

ln(M)
= 2c+ ε.

The result then follows by letting ε tend to zero. �

In [Con3] Connes showed that a similar result can also be obtained for certian self-similar sets

which are not Minkowski measurable. Namely, self-similar sets for which the contraction ratios are

all equal and the covering intervals are all equally spaced. Indeed, these sets are not Minkowski

measurable by Theorem 2.1.16. Further, in [GI1] Connes’ result was extended to any self-similar

set. In the following proposition we state this result and present an alternative proof.

Theorem 4.1.6. Let (A,H,D) be as in Proposition 4.1.2. Additionally, assume that E is a self-

similar set satisfying the strong separation condition which is generated by an iterated function

system of similarities {s1, s2, . . . , sm}. Denote by r1, r2, . . . , rm the associated contraction ratios

of the similarities and let l1, l2 . . . , lm−1 denote the complementary intervals of
⋃m
i=1 si[0, 1] whose

lengths are finite. Further, let δ denote the Hausdorff dimension of E. Then we have that

V (A,H,D) =
2
∑m−1
i=1 |li|

δ∑m
i=1 r

δ
i ln(r−δi )

. (4.4)

Proof. In order to prove the equality given in Equation (4.4) we will use Proposition 2.3.3 and

Proposition 2.3.4. Recall that for each r > 0 we let G(r) denote the number of complementary

intervals (ignoring the two infinite complementary intervals) with length greater than or equal to

r. Further, recall that, for r > 0, we set

E(r) :=
∑

k∈N with |Ik|>r

|Ik|δ.

For ease of notation let

c :=

∑m−1
i=1 |li|

δ∑m
i=1 r

δ
i ln(r−1

i )
.

Next fix ε > 0 and observe that we have the following.

1. By Proposition 2.3.4, there exists η1 > 0 such that if 0 < r 6 η1, then

(1− ε)c ln(r−1) 6 E(r) 6 (1 + ε)c ln(r−1).

2. By Proposition 2.3.3, there exists η2 > 0 such that for each 0 < r 6 η2 the following hold.

(a) If the set {ln(r1), ln(r2), . . . , ln(rm)} is non-arithmetic, then there exists a positive con-
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stant c1, independent of r and η2, with

c1(1− ε)r−δ 6 G(r) 6 c1(1 + ε)r−δ.

(b) If the set {ln(r1), ln(r2), . . . , ln(rm)} is τ -arithmetic, for some positive real number τ ,

then, for each k ∈ N0 and each y ∈ [0, τ) such that e−kτ+y < η2, we have that

(1− ε)P (y)eδ(kτ−y) 6 G(e−kτ+y) 6 (1 + ε)P (y)eδ(kτ−y).

Here, P is a positive bounded function on the interval [0, τ) which is also bounded away

from zero.

Therefore, there exist constants K1,K2 > 0 such that

ln(r−δ) + ln(K1) + ln(1− ε) 6 ln(G(r)) 6 ln(r−δ) + ln(K2) + ln(1 + ε),

and hence, we have that

lim sup
r→0

E(r)

ln(G(r))
6 lim sup

r→0

(1 + ε)c ln(r−1)

ln(r−δ) + ln(K1) + ln(1− ε)

=
(1 + ε)c

δ
lim sup
r→0

ln(r−1)

ln(r−1) + ln((K1(1− ε))1/δ)

= (1 + ε)
c

δ
.

As the left hand side of this inequality is not dependent on ε, we can let ε tend to zero, and obtain

lim sup
r→0

E(r)

ln(G(r))
6

c

δ
=

∑m−1
i=1 |li|

δ∑m
i=1 r

δ
i ln(r−δi )

.

A similar argument shows that

lim inf
r→0

E(r)

ln(G(r))
>

c

δ
=

∑m−1
i=1 |li|

δ∑m
i=1 r

δ
i ln(r−δi )

.

Therefore, we can conclude that

lim
r→0

E(r)

ln(G(r))
=

∑m−1
i=1 |li|

δ∑m
i=1 r

δ
i ln(r−δi )

.

Thus, for all r ∈ (0, 1), it follows that

lim
k→∞

E(rk)

ln(G(rk))
=

∑m−1
i=1 |li|

δ∑m
i=1 r

δ
i ln(r−δi )

.

Next, let r ∈ (0, 1) be fixed. Since σk(|D|−δ) converges to zero as k tends to infinity, given N ∈ N
there exists ηN ∈ N such that rηN+1 < σN (|D|−δ) 6 rηN . Observe that as N tends to infinity we
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have that ηN tends to infinity. Therefore, it follows that

2E(rηN−1) 6
N∑
k=1

σk(|D|−δ) 6 2E(rηN+1),

ln(2G(rηN−1)) 6 ln(N) 6 ln(2G(rηN+1)).

The result then follows since

lim sup
N→∞

∑N
k=1 σk(|D|−δ)

ln(N)
6 lim sup

N→∞

2E(rηN+1)

ln(2G(rηN−1))
=

2
∑m−1
i=1 |li|

δ∑m
j=1 r

δ
j ln(r−δj )

,

lim inf
N→∞

∑N
k=1 σk(|D|−δ)

ln(N)
> lim inf

N→∞

2E(rηN−1)

ln(2G(rηN+1))
=

2
∑m−1
i=1 |li|

δ∑m
j=1 r

δ
j ln(r−δj )

.

�

Theorem 4.1.7. Assume that we are in the setting of Theorem 4.1.6 and let T denote a singular

trace whose domain contains the operator |D|−δ. Then there exists a positive constant c such that

for all a ∈ A, the following equality holds

T (π(a)|D|−δ) = c ·
∫
E

a dµ
Hδ(E)

. (4.5)

Here, µHδ(E) denotes the normalised δ-dimensional Hausdorff measure on E.

Proof. Let T denote a singular trace defined on an ideal I of B(H) such that |D|−δ ∈ I ⊂ K(H)

and fix an iterated function system of similarities {s1, s2, . . . , sm} with unique invariant non-empty

set E. For k ∈ N, let Σk := {1, 2, . . . ,m}k and let Σ∗ :=
⋃
k∈N Σk. For each k, l ∈ N, i :=

(i1, i2, . . . , ik) ∈ Σk, we have that

σl(π(χ
si1

...sik
(0,1)∩E )|D|−δ) = σl(r

δ
i1π(χ

si2
...sik

(0,1)∩E )|D|−δ)

= rδi1σl(π(χ
si1

...sik
(0,1)∩E )|D|−δ).

(Recall that for a subset F of E, we let χF denote the characteristic function on F .) Therefore,

since T is a singular trace, it follows that

T (π(χ
si1

...sik
(E)

) |D|−δ) = rδi1 . . . r
δ
ikT (|D|−δ)

= µ
Hδ(E)

(si1 . . . sik (E))T (|D|−δ).

Moreover, since T (|D|−δ) is finite and since the domain of T is an ideal of B(H) to which the

operator |D|−δ belongs, it is immediate that the map defined, for all a ∈ A, by

a 7→ T (π(a)|D|−δ),

is a bounded linear functional. Hence, by the Riesz Representation Theorem (Theorem 3.3.1), we

have that there exists a unique finite Borel measure µ such that, for each a ∈ A, the following

equality holds

T (π(a)|D|−δ) =

∫
E

a dµ.
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Next, observe that the set

R := {si1si2 . . . sik (E) : k ∈ N and i1, i2, . . . , ik ∈ Σ∗},

forms a semi-ring on which the set function Λ : R→ [0,∞) given, for each I ∈ R, by

Λ(I) := T (χI |D|
−δ),

defines an additive σ-additive set function. Therefore, since Λ is also σ-finite by the Hahn-

Kolmogorov Theorem (Theorem 3.3.5), we have that

T (π(a)|D|−δ) = T (|D|−1)

∫
E

a dµ
Hδ(E)

.

�

Corollary 4.1.8. Assume we are in the setting of Theorem 4.1.6. Then we have that∫
π(a)|D|−δ =

2
∑m−1
i=1 |li|

δ

−
∑m
j=1 r

δ
j ln(rδj )

∫
E

a dµ
Hδ(E)

.

Additionally, if E is Minkowski measurable, then∫
π(a)|D|−δ = 2δ(1− δ)Mδ(E)

∫
E

a dµ
Hδ(E)

.

In particular, we have that

Mδ(E) =
21−δ ∑m−1

i=1 |li|
δ

(δ − 1)
∑m
j=1 r

δ
j ln(rδj )

.

Proof. The results follow from Theorems 4.1.5, 4.1.6 and 4.1.7. �

Let us now consider the metric aspects of the spectral triple (A,H,D) given in Proposition

4.1.2. By considering the charicteristic function χE ∈ A, one has that

|x− y| 6 sup{|a(x)− a(y)| : a ∈ A and the operator [D, a] extends to a bounded

operator whose norm is less than or equal to one}.

Observe that equality does not necessarily hold in the above equation. This follows, since there can

exist a non-constant function a ∈ A such that ‖[D,π(a)]‖ = 0. For instance, consider the middle

third Cantor set C1/3 ⊂ [0, 1] and let δ := dimH(C1/3) = ln(2)/ ln(3). Further, let Θ : C1/3 → R
denote the continuous function whose graph is the Devil’s staircase of the middle third Cantor set,

that is, for each x ∈ C1/3, we define

Θ(x) := µ
Hδ(C1/3)

([0, x] ∩ C1/3). (4.6)

Then, for each h ∈ H and each k ∈ N, we have that

[D,π(kΘ)]h = 0. (4.7)

Hence, Connes’ pseudo-metric dA : S(A) × S(A) → [0,∞] is unbounded (see Definition 3.2.5).
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Indeed, for all k ∈ N and x, y ∈ C1/3, we have that

dA(δx, δy) > k µ
Hδ(C1/3)

([x, y] ∩ C1/3).

This observation is also reflected in the fact that the set {kΘ : k ∈ N} is a subset of

{a ∈ A : the operator [D,π(a)] is densely defined and extends to a bounded operator}

which does not have a bounded image in the quotient normed space A/{zχE : z ∈ C} (see Theorem

3.2.6). Note that this result is in contrast to Section 4.2 of [GI1] as remarked at the beginning of

this subsection.

Let us now return to the general case, where {0, 1} ⊂ E ⊂ [0, 1] is a compact totally disconnected

set and let Lipd(E) denote the dense ∗-sub-algebra of A := C(E;C) consisting of complex-valued

Lipschitz continuous functions with respect to the metric d induced by the Euclidean distance on

E. Then Connes’ pseudo-metric dLipd(E) : S(A) × S(A) → R is a metric and is equivalent to the

Monge-Kantorovitch metric dMK . Indeed this follows since we have that

{a ∈ Lipd(E) : Lipd(a) 6 1}

= {a ∈ Lipd(E) : the operator [D,π(a)] is densely defined and extends to a bounded

operator with norm less than or equal to 1}.

(Here, Lipd(a) denotes the Lipschitz constant of a ∈ A with respect to d.) However, it is important

to observe the following. There can exist a metric d : E × E → [0,∞), which is equivalent to the

metric d given by the Euclidean distance on E, such that Connes’ pseudo-metric dLipd(E) is not

a metric. (Here, Lipd(E) denotes the dense sub-∗-algebra of A := C(E;C) consisting of complex-

valued Lipschitz continuous functions with respect to d.) For instance, consider the middle third

Cantor set C1/3 and let d : C1/3 × C1/3 → [0,∞) be defined, for each x, y ∈ C1/3, by

d(x, y) := inf{2−k : k ∈ N and such that there exists a sequence (i1, i2, . . . ik) ∈ {1, 2}k

with the property that x, y ∈ si1si2 . . . sik (C1/3)}.

(Here, s1, s2 are the similarity mappings as given in Example 2.1.9.) Then the map Θ, as defined

in Equation (4.6), is a Lipschitz continuous map with respect to the metric d. Since, for all k ∈ N
and h ∈ H, we have that [D, kΘ]h = 0, it follows that the pseudo-metric dLipd(C1/3) is not a metric

on S(C(C1/3;C)).

Remark. The spectral triple presented by Connes to represent a compact “fractal” set E ⊂ [0, 1]

is an “atomic” representation of E. With this in mind, consider the map Tη : [0, 1]→ [0, 1] defined,

for each η ∈ (0, 1/2], by

Tη(x) :=

 x
η

if 0 6 x 6 η
x−η
1−η if η < x 6 1.

In this case, the spectral triple given in Proposition 4.1.2 can be extended to represent the dynamical

system ([0, 1], Tη). Moreover, this can be done such that the metric dimension is equal to 1 and such

that, for each a ∈ C([0, 1];C), we have that∫
π(a)|D|−1 =

1

ln(2)

∫
[0,1]

adν.
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Here, ν denotes the Borel probability measure defined as follows. Let s1 : [0, 1] → [0, η] and s2 :

[0, 1]→ [η, 1] denote the contractions given, for each x ∈ [0, 1], by

s1(x) := ηx, s2(x) := (1− η)x+ η.

Let R denote the semi-ring {si1si2 . . . sik ([0, 1]) : k ∈ N0 and (i1, i2, . . . , ik) ∈ {1, 2}k} and let

Λ : R→ [0,∞) denote the set function given, for each k ∈ N and (i1, i2, . . . , ik) ∈ {1, 2}k, by

Λ(si1si2 . . . sik ([0, 1])) :=
1

2k
.

We then let ν denote the unique extension of Λ to a Borel probability measure with support [0, 1].

Indeed, the existence and uniqueness of such a measure follows from the Hahn-Kolmogorov Theorem

(Theorem 3.3.5).

4.1.2 Multifractal Analysis of Connes’ Dirac Operator

The material contained in this subsection forms the final section of the paper by Falconer and

Samuel [FS]. Our main aim is to show how certain coarse multifractal information of a measure

supported on a compact “fractal” subset of [0, 1] satisfying a porosity condition can be rediscovered

through Connes’ spectral triple, as given in Proposition 4.1.2.

Recall that we let E denote a strongly porous compact totally disconnected subset of R with

no isolated points, where we assume, without loss of generality, that {0, 1} ⊂ E ⊂ [0, 1]. Further,

recall that we let {Ik := (b−k , b
+
k ) : k ∈ N} denote the set of complementary intervals of E of finite

length, ordered so that |Ik| > |Ik+1|.

Let us now introduce a multifractal component for the spectral triple (A,H,D), which gives a

representation of a non-empty compact totally disconnected subset E of R with no isolated points, as

introduced in Proposition 4.1.2. Specifically, we define an operator Q which encodes the multifractal

behaviour of a measure whose support is equal to E. Fix η > 0 and fix a probability measure µ

whose support is equal to E. Define

Q := Qη,µ :
⋃
k∈N

{b−k , b
+
k } → [0,∞)

to be the non-zero positive function given, for each k ∈ N, by

Q (b−k ) := Q (b+k ) := µ(I
η
k). (4.8)

(Recall that I
η
k denotes the closed interval [b−k − η|Ik|/2, b

−
k + η|Ik|/2].) To express the function Q

as an operator on H := l2 ⊕ l2, we let

Q := Qη,µ : H → H,

be given, for each ((xk, yk))k∈N ∈ H, by

Q ((xk, yk)k∈N) := π(Q ) ((xk, yk)k∈N) = (Q (b−k )xk,Q (b+k )yk)k∈N. (4.9)

Recall that (π,H) denotes the ∗-representation as given in Equation (4.1).

The next theorem (Theorem 4.1.9) is a multifractal analogue of Theorem 4.1.3. It shows that
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for a given q ∈ R the critical value

inf{p ∈ R : Qq|D|−p ∈ L1,+(H)}

reflects the behaviour of the multifractal moment sums of E, given that E is strongly porous and

that µ satisfies the mild density condition given in Equation (4.10). Moreover, from this result, in

Corollary 4.1.10, we show that the noncommutative integral gives rise to a non-degenerate integral

with respect to the underlying measure.

Theorem 4.1.9. Let E denote a non-empty compact totally disconnected strongly porous subset of

[0, 1] with no isolated points and porosity constant ρ. Suppose that there exists a probability measure

µ whose support is equal to E and where, for each x ∈ E, we have that as r tends to zero

ln(µ(B(x, r)))

ln(r)
� 1, (4.10)

uniformly in x. Then, for each q ∈ R and each η > 2ρ−1, setting Q := Qη,µ, we have that

b(q) = inf{p ∈ R : Qq|D|−p ∈ L1,+(H)}. (4.11)

Here, b denotes the coarse multifractal box-counting dimension as introduced in Equation (2.9).

Proof. By Theorem 2.1.12 and Equation (4.10), we have that as k tends to infinity

ln(µ(I
η
k))

− ln(k)
� 1. (4.12)

Indeed, this follows since, for each k ∈ N, we have that

(B(b−k , η|Ik|/2) ∪B(b+k , η|Ik|/2)) ∩ E = I
η
k ∩ E.

For ease of notation, let N(r) : (0,∞)→P(N) be defined, for each r ∈ (0,∞), by

N(r) := {k ∈ N : µ(I
η
k)q|Ik|p > r}.

(Here, P(N) denotes the power set of the set of natural numbers.) Observe that by Theorem 2.1.12

and Equation(4.12), we have the following.

1. There exist positive constants t1, t2 such that, for each r > 0 sufficiently small, we have that

{k ∈ N : |Ik| > rt1} ⊆ N(r) ⊆ {k ∈ N : |Ik| > rt2}, (4.13)

and so, ∑
|Ik|>rt1

µ(I
η
k)q|Ik|p 6

∑
k∈N(r)

µ(I
η
k)q|Ik|p 6

∑
|Ik|>rt2

µ(I
η
k)q|Ik|p.

2. Since, as k tends to positive infinity, we have that ln(|Ik|) � − ln(k), it follows that, as r

tends to zero

− ln(r) � ln(card{k ∈ N : |Ik| > r}) � ln(card(N(r)))
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We now aim to show that

b(q) > inf

{
p ∈ R : lim sup

N→∞

∑N
k=1 σk(Qq|D|−p)

ln(N)
<∞

}
.

Observe that each element of the set {µ(I
η
k)q|Ik|p : k ∈ N} is a singular value of the operator

Qq|D|−p with multiplicity two and that by Theorem 2.1.20, we have that

b(q) = inf

{
t ∈ R : lim sup

N→∞

∑N
k=1 µ(I

η
k)q|Ik|t

ln(N)
= 0

}
.

Fix q ∈ R and let p ∈ R be such that

lim sup
N→∞

∑N
k=1 µ(I

η
k)q|Ik|p

ln(N)
= 0.

By definition the sequence (σk(Qq|D|−p))k∈N forms a decreasing sequence which converges to zero.

Also, by Theorem 2.1.12 and Equation (4.12), to each sufficiently large N ∈ N there exists an Ñ ∈ N
such that |I

Ñ
| > σN (Qq|D|−p)t2 and such that ln(Ñ) � − ln(σN (Qq|D|−p)), as N tends to infinity.

Hence, there exist positive constants c1, c2, c3 so that for sufficiently large N ∈ N, we have that

∑N
k=1 σk(Qq|D|−p)

ln(N)
6

2
∑
k∈N(σN (Qq|D|−p)) µ(I

η
k)q|Ik|p

ln(card(N( σN (Qq|D|−p)

1−σN (Qq|D|−p)
)))

6 c1

∑
|Ik|>σN (Qq|D|−p)t2 µ(I

η
k)q|Ik|p

ln(card{k ∈ N : |Ik| > σN (Qq|D|−p)

1−σN (Qq|D|−p)
})

6 c2

∑Ñ
k=1 µ(I

η
k)q|Ik|p

− ln(σN (Qq|D|−p))

6 c3

∑Ñ
k=1 µ(I

η
k)q|Ik|p

ln(Ñ)
.

This then implies that

lim sup
N→∞

∑N
k=1 σk(Qq|D|−p)

ln(N)
= 0.

Therefore, we have that

b(q) = inf

{
t ∈ R : lim sup

N→∞

∑N
k=1 µ(I

η
k)q|Ik|t

ln(N)
= 0

}

> inf

{
p ∈ R : lim sup

N→∞

∑N
k=1 σk(Qq|D|−p)

ln(N)
<∞

}
.

Next, we aim to show that

b(q) 6 inf

{
p ∈ R : lim sup

N→∞

∑N
k=1 σk(Qq|D|−p)

ln(N)
<∞

}
.
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To this end, fix q ∈ R and let p ∈ R be such that

lim sup
N→∞

∑N
k=1 σk(Qq|D|−p)

ln(N)
< ∞.

By Theorem 2.1.12, we have that

b(q) = inf

{
t ∈ R : lim sup

N→∞

∑N
k=1 µ(I

η
k)q|Ik|t

ln(N)
<∞

}
.

Further, by Theorem 2.1.12 and Equation (4.12), for each sufficiently large N ∈ N, there exists

rN > 0 such that |IN | > rt1
N

and such that ln(N) � − ln(rN ), as N tends to infinity. Hence, there

exist positive constants c4, c5, c6 so that for sufficiently large N ∈ N, we have that

∑N
k=1 µ(I

η
k)q|Ik|p

ln(N)
6 c4

∑
|Ik|>r

t1
N
µ(I

η
k)q|Ik|p

ln(rN )

6 c5

∑
k∈N(r

N
) µ(I

η
k)q|Ik|p

ln(card{k ∈ N : |Ik| > rN })

6 c6

∑
k∈N(r

N
) µ(I

η
k)q|Ik|p

ln(card(N(rN )))

Therefore, we have that

b(q) = inf

{
t ∈ R : lim sup

N→∞

∑N
k=1 µ(I

η
k)q|Ik|t

ln(N)
<∞

}

6 inf

{
p ∈ R : lim sup

N→∞

∑N
k=1 σk(Qq|D|−p)

ln(N)
<∞

}
.

This then completes the proof. �

Corollary 4.1.10. Assume that we are in the setting of Theorem 4.1.9 and let q ∈ R. If for some

p ∈ R and some η > 2ρ−1, the measure µ satisfies the condition∑
|Ik|>r

µ(I
η
k)q|Ik|p � − ln(r), (4.14)

as r tends to zero, then p = b(q). Moreover, as N tends to infinity, we have that∑N
k=1 σk(Qq|D|−p)

ln(N)
� 1. (4.15)

In particular, for any limiting procedure W , we have, for each a ∈ A := C(E;C), that the linear

functional

a 7→ TrW
(
π(a)Qq|D|−p

)
(4.16)

gives rise to a non-trivial integral.

Proof. The result follows from Theorem 2.1.12, the Riesz Representation Theorem (Theorem

3.3.1) and Theorem 4.1.9. �



78 CHAPTER 4. A COMMUTATIVE NONCOMMUTATIVE FRACTAL GEOMETRY

Remark. By Lemma 2.1.19, if for some q ∈ R and some η > ρ/2 a measure µ satisfies the

moment condition ∑
B∈B∗r(µ)

µ(Bη)qrb(q) � 1, (4.17)

then the condition given in Equation (4.14) is satisfied.

In the following theorem (Theorem 4.1.11) we specialise to the case where E is a self-similar

set satisfying the strong separation condition and where µ is a self-similar measure. The result is a

multifractal analogue of Theorem 4.1.7 and Corollary 4.1.8. Indeed, by setting q = 0, one recovers

the results of Theorem 4.1.7 and Corollary 4.1.8.

Theorem 4.1.11. Let E ⊂ [0, 1] denote the unique non-empty compact invariant subset of an

iterated function system of similarities S := {si : [0, 1] → [0, 1] : i ∈ {1, 2, . . . ,m}} with associated

contraction ratios r1, r2, . . . rm. Further, assume that S satisfies the strong separation condition

(Definition 2.1.7) and let µ denote the associated self-similar probability measure given by the prob-

ability vector p := (p1, p2, . . . , pm). Then, for each η > 0, each q ∈ R and each a ∈ A := C(E;C),

the operator

π(a)Qqη,µ|D|−b(q)

is a measurable operator. Moreover, if ν is the unique probability measure on E given, for each

Borel set B ∈ B, by

ν(B) :=

m∑
i=1

pqi r
b(q)
i ν(s−1

i (B)),

then, for each a ∈ A, we have that∫
π(a)Qqη,µ|D|−b(q) = 2R1hν

−1

∫
E

a dν. (4.18)

Here,

R1 :=

m∑
i=1

∑
Ik⊆si([0,1])

|Ik|b(q) (µ(I
η
k)q − pqiµ(s−1

i (I
η
k))q

)
+

∑
Ik⊂[0,1]\

⋃m
i=1 si([0,1])

|Ii|b(q)µ(I
η
i )q < ∞,

and

hν :=

m∑
i=1

pqi r
b(q)
i ln(p−qi r

−b(q)
i ).

Remark. Each of the sums in the definition of R1 is over a finite set, and so, R1 is well defined.

Further, the notation hν is purposefully chosen, as it is the measure theoretical entropy of the

measure ν with respect to the expanding map defined on E whose inverse branches are given by the

similarities of S (see Example 2.2.4).

Proof. Let E : (0,∞)→ [0,∞) denote the function given, for each r > 0, by

E (r) :=
∑

µ(I
η
k

)q|Ik|b(q)>r

µ(I
η
k)q|Ik|b(q)
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and let R1 : (0,∞)→ [0,∞) be given, for each r > 0, by

R1(r) :=

m∑
i=1

∑
Ik⊆si[0,1],|Ik|>r

|Ik|b(q) (µ(I
η
k)q − pqiµ(s−1

i (I
η
k))q

)
+

∑
|Ik|>r

Ik⊂[0,1]\
⋃m
i=1 si([0,1])

|Ii|b(q)µ(I
η
i )q.

Note that, for each r > 0, the sums in the definition of R1(r) are over a finite set, and so, R1(r) is

well defined. Since µ is a self-similar measure, for r > 0, we obtain the following scaling relation

E (r) =

m∑
i=1

pqi r
b(q)
i E

(
rp−qi r

−b(q)
i

)
+R1(r).

By applying the transformations t = − ln(r) and ψ1(t) = E (e−t), we obtain that

ψ1(t) =

m∑
i=1

pqi r
b(q)
i ψ1

(
t− ln

(
p−qi r

−b(q)
i

))
+R1(e−t). (4.19)

Although this is a renewal equation (see Equation (2.23)), since R1(e−t) is equal to R1 > 0 for t

sufficiently large, Equation (4.19) is not in a form which allows for the application of the renewal

theorem, as given in Theorem 2.3.2. Therefore, with the aim of applying Theorem 2.3.2, the

following definitions and substitutions are made. Let c := R1hν
−1 and let φ : R → R be defined,

for each t ∈ R, by

φ(t) :=

ψ1(t)− ct if t > 0,

0 if t 6 0.

Further, let g : R→ R be defined, for each t ∈ R, by

g1(t) :=



R1(e−t)−c
m∑
i=1

pqi r
b(q)
i ln(p−qi r

−b(q)
i )

− c
m∑
i=1

pqi r
b(q)
i (t− ln(p−qi r

−b(q)
i ))χ

(−∞,0]
(t− ln(p−qi r

−b(q)
i ))

+

m∑
i=1

pqi r
b(q)
i ψ1(t− ln(p−qi r

−b(q)
i ))χ

(−∞,0]
(t− ln(p−qi r

−b(q)
i )) if t > 0,

0 if t 6 0.

Let us now show that φ and g1 satisfy the renewal equation (Equation (2.23)). First let us consider

the case t 6 0. Since in this case we have that g1(t) = 0, that φ(t) = 0 and that t−ln(p−qi r
−b(q)
i ) 6 0,

for i ∈ {1, 2, . . . ,m}, it follows that

m∑
i=1

pqi r
b(q)
i φ(t− ln(p−qi r

−b(q)
i ) + g1(t) = 0 = φ(t).

Now, let us consider the case t > 0. In this case we have that

φ(t) = ψ1(t)− ct =

m∑
i=1

pqi r
b(q)
i ψ1(t− ln(p−qi r

−b(q)
i )) +R1(e−t)− ct =
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=

m∑
i=1

pqi r
b(q)
i φ(t− ln(p−qi r

−b(q)
i )) +R1(e−t)− c

m∑
i=1

pqi r
b(q)
i ln(p−qi r

−b(q)
i )

− c
m∑
i=1

pqi r
b(q)
i (t− ln(p−qi r

−b(q)
i ))χ

(−∞,0]
(t− ln(p−qi r

−b(q)
i ))

+

m∑
i=1

pqi r
b(q)
i ψ1(t− ln(p−qi r

−b(q)
i ))χ

(−∞,0]
(t− ln(p−qi r

−b(q)
i ))

=

m∑
i=1

pqi r
b(q)
i φ(t− ln(p−qi r

−b(q)
i )) + g1(t).

Moreover, it is clear from the definition of g1 that it has a discrete set of discontinuities and that

g1(t) = 0 for t sufficiently large. It is easy to verify that φ is Borel measurable, that φ is bounded

on the half-line (−∞, t), for each t ∈ R, and that limt→−∞ φ(t) = 0. Therefore, Theorem 2.3.2 can

be applied and we conclude that

lim
r→0

E (r)

− ln(r)
= lim

t→∞

ψ1(t)

t
= lim

t→∞

φ(t) + ct

t
= c. (4.20)

Next, let us consider the function G (r) : (0,∞)→ [0,∞) given, for each r > 0, by

G (r) := card{k : µ(I
η
k)q|Ik|b(q) > r}.

Let R2 : (0,∞)→ [0,∞) be given, for each r > 0, by

R2(r) :=

m∑
i=1

card
{
k ∈ N : Ik ⊆ si([0, 1]) with r

b(q)
i |Ik|b(q)pqiµ(s−1

i (I
η
k))q < r 6 |Ik|b(q)µ(I

η
k)q
}

+ card
{
k ∈ N : |Ik|b(q)µ(I

η
k)q > r and Ik ⊂ [0, 1] \

⋃m
i=1si([0, 1])

}
.

Observe that R2(r) is decreasing with R2(r) equal to zero for r sufficiently large, and that there

exists a positive constant R2 > 0 such that R2(r) = R2, for sufficiently small r. Further, since µ is

a self-similar measure, for r > 0, we obtain the following scaling relation

G (r) =

m∑
i=1

G
(
rp−qi r

−b(q)
i

)
+R2(r). (4.21)

As above, we apply the following transformations. For r > 0, let t := − ln(r) and let ψ2 : R → R,

be given, for each t ∈ R, by

ψ2(t) := e−tG (e−t).

Further, let g2 : R→ R be given, for each t ∈ R, by

g2(t) := e−tR2(e−t).

Applying these transformations to Equation (4.21), then gives the renewal equation

ψ2(t) =
m∑
i=1

pqi r
b(q)
i ψ2

(
t− ln

(
p−qi r

−b(q)
i

))
+ g2(t).

Next, note that the following hold.

1. By the definition of R2, we have that g2 has a discrete set of discontinuities.
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2. For sufficiently large t ∈ R, we have that g2(t) 6 R2e
−t.

3. The function ψ2 is Borel measurable and bounded on the half-line (−∞, t), for each t ∈ R.

4. By the definition of ψ2, we have that ψ2(t) tends to zero as t tends to minus infinity.

Therefore, we can apply Theorem 2.3.2, and so, we obtain that ψ2(t) � 1 as t → ∞, or, more

precisely, we have ψ2(t) either converges to a constant or is asymptotic to a periodic function which

is bounded from above and bounded away from zero. Hence, it follows that

lim
r→0

ln(card{k : µ(I
η
k)q|Ik|b(q) > r})

− ln(r)
= lim

r→0

ln(G (r))

− ln(r)
= 1. (4.22)

By combining Equation (4.22) and Equation (4.20), we can conclude that

lim
N→∞

∑N−1
k=0 σk(Qqη,µ|D|−b(q))

ln(N)
= lim

r→0

2E (r)

ln(card{k : µ(I
η
k)q|Ik|b(q) > r})

= 2c = 2R1hν
−1.

Therefore, the operator Qqη,µ|D|−b(q) is measurable and we have that∫
Qqη,µ|D|−b(q) = 2R1hν

−1. (4.23)

Hence, the map defined, for each a ∈ A, by

a 7→ TrW

(
π(a)Qqη,µ|D|−b(q)

)
is a bounded linear functional. The Riesz Representation Theorem (Theorem 3.3.1) and Equation

(4.23) together imply that there exists a unique Borel probability measure U such that, for each

a ∈ A, the following equality holds

TrW

(
π(a)Qqη,µ|D|−b(q)

)
= 2R1hν

−1

∫
E

a dU.

In order to show that U = ν, we use a scaling argument to show that U and ν agree on a semi-ring

which generates the Borel σ-algebra. Then by an application of the Hahn-Kolmogorov Theorem

(Theorem 3.3.5) the result follows. To this end, consider (i1, i2, . . . , ik) ∈ {1, 2, . . . ,m}k and let I :=

si1si2 . . . sik (E). Then the singular values of π(χI )Qqη,µ|D|−b(q) are precisely those corresponding to

the complementary intervals contained in I and those corresponding to the complementary intervals

whose closure intersects the boundary of I. Next, note that the following hold.

1. The mapping si1si2 . . . sik gives a bijection between the sets {Ik : k ∈ N} and {Ik : k ∈
N and Ik ⊂ I}.

2. For any interval J ⊆ [0, 1], we have |si1si2 . . . sik (J)| = ri1ri2 . . . rik |J |.

3. For any interval J ⊆ [0, 1] of sufficiently small diameter, we have that µ(si1si2 . . . sik (J)) =

pi1pi2 . . . pikµ(J).

4. The Dixmier trace is linear and vanishes on operators with finite dimensional range.

Together, these observations then give, for each (i1, i2, . . . , ik) ∈ {1, 2, . . . ,m}k, that

TrW

(
π(χI )Qqη,µ|D|−b(q)

)
= (ri1ri2 . . . rik )b(q)(pi1pi2 . . . pik )qTrW

(
Qqη,µ|D|−b(q)

)
= 2R1hν

−1ν(I).



82 CHAPTER 4. A COMMUTATIVE NONCOMMUTATIVE FRACTAL GEOMETRY

Therefore, since the set

{si1si2 . . . , sik (E) : k ∈ N and (i1, i2, . . . , ik) ∈ {1, 2, . . . ,m}k}

forms a semi-ring and generates the Borel σ-algebra on which U and ν are defined and since for

each

I ∈ {si1si2 . . . , sik (E) : k ∈ N and (i1, i2, . . . , ik) ∈ {1, 2, . . . ,m}k}

we have that U(I) = ν(I), the result follows. �

4.2 Noncommutative Geometry and Subshifts of Finite Type

In this section, the construction of a spectral triple for an AF C∗-algebra, given by Antonescu-Ivan

and Christensen in [AIC1], is adapted to give a representation of the measure space (Σ∞A ,B, µφ).

Here (Σ∞A , σ) denotes a one-sided topologically exact subshift of finite type and µφ denotes a Gibbs

measure for a Hölder continuous potential function φ ∈ C(Σ∞A ;R). Further, various geometric

aspects of such a spectral triple are investigated. It is within this section that the results of

Subsection 2.2.2 will play a major role. The main results of this section are Theorem 4.2.5, Theorem

4.2.6 and Theorem 4.2.7. Let us begin by giving a brief overview of relevant results which are

presented in [AIC1].

4.2.1 A Review of Antonescu-Ivan and Christensen’s Spectral Triple on AF

C∗-Algebras

Let A denote an AF C∗-algebra, given by the inductive limit of a sequence of finite dimensional

C∗-algebras {Ak}k∈N0 , where A0 := C. Further, suppose that there exists a faithful state ψ on

A. Recall that Hψ denotes the Gelfand-Năımark-Segal completion of A with respect to ψ and that

there exists a natural ∗-representation (π,Hψ) of A (see Section 3.1). Further, since ψ is faithful,

we know that there exists a separating vector h ∈ Hψ with norm equal to one. Therefore, the map

Ψ : A→ Hψ defined, for each a ∈ A, by

Ψ(a) := π(a)h,

induces a bijective linear homomorphism of the finite dimensional algebra Ak onto the finite di-

mensional subspace Hψ,k := Ψ(Ak) of Hψ, for each k ∈ N. Next, for each k ∈ N, fix a projection

Pk mapping Hψ onto Hψ,k. In the following theorem, it is shown that there exists a sequence of

positive real numbers (αk)k∈N such that the operator D(αk)k∈N , defined by

D(αk)k∈N :=
∑
k∈N

αk(Pk − Pk−1), (4.24)

can serve as an appropriate operator so that the triple (A,Hψ, D(αk)k∈N) is a spectral triple.

Theorem 4.2.1. Let A, Hψ and π be as described above. Then the following hold.

1. There exists a sequence (αk)k∈N such that the triple (A,Hψ, D(αk)k∈N) is a spectral triple.

Moreover, Connes’ pseudo-metric dA induces a metric on the state space of A whose topology

coincides with the weak∗-topology.

2. Given any p > 0, there exists a sequence (αk)k∈N such that the triple (A,Hψ, D(αk)k∈N) has

metric dimension equal to p.
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Proof. See Theorem 2.1 of [AIC1]. �

Antonescu-Ivan and Christensen apply this result to obtain a spectral triple representation of

the middle (1 − 2η)-Cantor set Cη (as introduced in Example 2.1.9), where η ∈ (0, 1/2). More

precisely, consider the representation of Cη given by the full shift space (Σ∞, σ), where Σ := {0, 1}.
Recall that (Σ∞, dΣ) is a compact metric space, where the metric dΣ : Σ∞×Σ∞ → [0,∞) is defined,

for each ω := (ω1, ω2, . . . ), υ := (υ1, υ2, . . . ) ∈ Σ∞, by

dΣ(ω, υ) := 2−ω∧υ,

where ω ∧ υ := max{sup{n ∈ N : ω, υ ∈ [x], for some x ∈ ΣnA }, 0}. As in Section 2.2, for each

k ∈ N and each ω ∈ Σk, let

[ω] := {υ := (υ1, υ2, . . . ) ∈ Σ∞ : (υ1, υ2, . . . , υk) = ω}

and let χ
[ω]

: Σ∞ → R denote the characteristic function on [ω]. Further, set

A0 := {zχ
Σ∞ : z ∈ C} ∼= C

and, for each k ∈ N, set

Ak := {zχ
[ω]

: z ∈ C and ω ∈ Σk} ∼= C2k .

Then the C∗-algebra A := C(Σ∞;C) of continuous complex-valued functions on Σ∞ is the norm

completion of the inductive limit of the sequence (Ak)k∈N0 . Here, the norm completion is taken

with respect to the supremum norm. Letting ν denote the measure of maximal entropy of the

dynamical system (Σ∞, σ), define the faithful tracial state τ on A by

τ(a) :=

∫
Σ∞

a dν.

As before, let Hτ denote the Gelfand-Năımark-Segal completion of A with respect to τ . Note that

Hτ is precisely the Hilbert space L2(Σ∞,B, ν), where B denotes the Borel sigma algebra on Σ∞

generated by the ring {[ω] : ω ∈ Σ∗}.

Theorem 4.2.2. Let A := C(Σ∞;C), let H := Hτ and let π : A → B(H) denote the linear

∗-homomorphism given, for each a ∈ A and each h ∈ H, by

π(a)h := a · h.

Then the following hold.

1. Let (αk)k∈N0 denote a sequence of real numbers such that α0 := 0 and such that

∞∑
k=1

sup{|αk − αi|−1 : 0 6 i 6 k − 1} < ∞.

Then the triple (A,H,D(αk)k∈N) is a spectral triple, where the ∗-representation of A is given

by (π,H). Further, Connes’ pseudo-metric dA : S(A) × S(A) → [0,∞) is a metric and the

topology induced by dA is equivalent to the weak∗-topology defined on S(A). Moreover, dA

induces a metric on Σ∞ which is equivalent to the metric dΣ.
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2. For a given η ∈ (0, 1/2), consider the sequence (αk)k∈N0 given by α0 := 0 and αk := η−k+1,

for each k ∈ N. Then the triple (A,H,D(η−k+1)k∈N
) is a finitely summable spectral triple with

metric dimension equal to − ln(2)/ ln(η), where the ∗-representation of A is given by (π,H).

Further, the metric d induced by Connes’ pseudo-metric dA on Σ∞ satisfies, for all x, y ∈ Σ∞

with x 6= y, the inequalities

2 ηmin{k∈N : xk 6=yk}−1 6 d(x, y) 6 2
ηmin{k∈N : xk 6=yk}−1

(1− η)2
.

Proof. See Theorem 4.1 of [AIC1] �

Recall that Θ : C1/3 → R denotes the continuous function whose graph is the Devil’s staircase of

the middle third Cantor set C1/3, as defined in Equation (4.6). Further, let Σ denote the alphabet

{0, 1}, as above. Consider the continuous function which is the lift of Θ from C1/3 onto Σ∞ and let

it also be denoted by Θ. The following proposition shows that for the spectral triple presented in

the second part of Theorem 4.2.2, the operator [D(η−k+1)k∈N
, π(Θ)] is not a densely defined operator

on H, for any η ∈ (0, 2−
2/3). This is in contrast to the result of Equation (4.7) for Connes’ spectral

triple.

Proposition 4.2.3. Let η ∈ (0, 2−
2/3) and let (A,H,D(η−k+1)k∈N

) denote the spectral triple as

given in the second part of Theorem 4.2.2. Then the operator [D(η−k+1)k∈N
, π(Θ)] is not a densely

defined operator on H.

Proof. Let η ∈ (0, 2−
2/3) be fixed and let ν denote the measure of maximal entropy of (Σ∞, σ).

Further, let eω : Σ∞ → R be given, for each k ∈ N and each ω ∈ Σ∗, by

eω(x) :=


2
k/2 if x ∈ [ω0]

−2
k/2 if x ∈ [ω1]

0 if x ∈ Σ∞ \ [ω].

Then {eω : Σ∞ → R}ω∈Σ∗ ∪ {χΣ∞ , χ[0]
− χ

[1]
} is a Haar basis for the Hilbert space L2(Σ∞,B, ν),

as described in Subsection 2.2.2. Recall that we do not make a distinction between a measurable

function f : Σ∞ → C and its equivalence class{
g : Σ∞ → C : g is a measurable function and

∫
Σ∞
|f − g| dν = 0

}
.

Then, for each h ∈ L2(Σ∞,B, ν), we have that

D(η−k+1)k∈N
(h) = 〈h, χ

[0]
− χ

[1]
〉(χ

[0]
− χ

[1]
) +

∑
k∈N

η−k
∑
ω∈Σk

〈h, eω〉eω.

Next, note that

〈Θ, χ
[0]
− χ

[1]
〉 =

∫
[0]

Θ dν −
∫

[1]

Θ dν = −1

4

and that, for each k ∈ N and each ω ∈ Σk, we have that

〈Θ, eω〉 =

∫
[ω0]

2
k/2 Θ dν −

∫
[ω1]

2
k/2 Θ dν = −2

k/2 1

22(k+1)
= − 1

2(3k/2)+2
.
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Therefore, it follows that

[D(η−k+1)k∈N
,Θ]χ

Σ∞ = D(η−k+1)k∈N
(Θ) = −1

4
(χ

[0]
− χ

[1]
)−
∑
k∈N

η−k2−(3k/2)−2
∑
ω∈Σk

eω. (4.25)

Since η−1 > 2
2/3, we have that the right-hand side of Equation (4.25) does not belong to H.

Therefore, [D(η−k+1)k∈N
, π(Θ)] is not defined on constant functions. �

Remark. For each η ∈ (0, 1/2), another representation of Cη is given by the compact Abelian

group
∏
k∈N Z2 equipped with the product topology. Observe that the dual of this group is the infinite

product group
⊕

k∈N Z2, and that there exists a norm preserving bijection between the reduced discrete

group algebra of
⊕

k∈N Z2 and the C∗-algebra of continuous functions defined on Cη equipped with

the supremum norm. Next, consider the length function L :
⊕

k∈N Z2 → R+
0 defined, for each

g := (g1, g2, . . . ) ∈
⊕

n∈N Z2, by

L(g) :=

η−max{k∈N : gk=1} if g 6= (0, 0, . . . ),

0 if g = (0, 0, . . . ).

Then the spectral triple constructed in [Con2], and as described in Subsection 3.3.3, coincides with

the spectral triple given in the second part of Theorem 4.2.2.

Let us conclude this subsection with the following application of Theorem 4.2.1. Here, we

construct a spectral triple which represents the set of continuous functions on the boundary of a

free group generated by k ∈ N elements. (Note that the term “boundary of a group” is used in the

sense of Gromov, see for instance [Gro, ABC+].) Although this construction is partially discussed in

Proposition 1.9 of [CM], we add to the discussion by considering the metric dimension, the volume,

the noncommutative integral and aspects of Connes’ pseudo-metric of the given spectral triple.

Example 4.2.4. Let FM denote the free group generated byM ∈ N\{1} elements. Observe that the

boundary ∂ FM of FM (in the sense of Gromov) has a representation as a one-sided topologically

exact subshift of finite type. Namely, let Σ := {1, 2, . . . , 2M} and let A := [ai,j ]i,j denote the

2M × 2M transition matrix with entries in {0, 1} satisfying

ai,j :=

1 if |i− j| 6= 1,

0 otherwise.

Then there exists a homeomorphism between ∂ FM and Σ∞A . For the remainder of this example we

shall work with this representation.

Consider the C∗-algebra C(Σ∞A ) of continuous functions on Σ∞A and observe that C(Σ∞A ;C) is

an AF-C∗-algebra. Indeed, the inductive limit of finite dimensional algebras

Ak := {zχ
[ω]

: z ∈ C and ω ∈ ΣkA} = C2M(2M−1)k ,

for k ∈ N, with A0 := {zχ
Σ∞
A

: z ∈ C}, is isometrically ∗-homomorphic to C(Σ∞A ;C). (Here, the

inductive limit is taken with respect to the supremum norm.) Let µ denote a Gibbs measure and

let τµ : C(Σ∞A ;C)→ C denote the state given, for each a ∈ C(Σ∞A ;C), by

τµ(a) :=

∫
Σ∞
A

a dµ.



86 CHAPTER 4. A COMMUTATIVE NONCOMMUTATIVE FRACTAL GEOMETRY

The Gelfand-Năımark-Segal completion of A with respect to the tracial state τµ is precisely the

Hilbert space H := L2(Σ∞A ,B, µ). Recall that we do not make a distinction between a ∈ A and its

equivalence class{
f : Σ∞A → C : f is a measurable function and

∫
Σ∞
A

|f − a| dµ = 0

}
.

Now let π : A→ B(H) denote the natural ∗-homomorphism of A given, for each a ∈ A and h ∈ H,

by π(a)h := a ·h. Since the characteristic function χ
Σ∞ is a separating and cyclic vector for the sub-

∗-algebra π(A) ⊂ B(H) and since A is an AF-C∗-algebra, we obtain a natural filtration (Hk)k∈N0

of H, where, for each k ∈ N0, we define Hk := {π(a)χ
Σ∞ : a ∈ Ak}. Let Pk : H → Hk denote the

orthogonal projection from H onto Hk, for each k ∈ N0. Motivated by Theorem 4.2.2, Cornelissen

and Marcolli in [CM] define a Dirac operator D on H by

D :=
∑
k∈N

dim(Ak)(Pk − Pk−1) =
∑
k∈N

2M(2M − 1)k−1(Pk − Pk−1).

In Proposition 1.9 of [CM] it is then shown that the triple (A,H,D) is a finitely summable spectral

triple, where the ∗-representation is given by (π,H). By Theorem 4.2.1, we also have that Connes’

pseudo-metric dA is a metric on the state space S(A) whose topology is equivalent to the weak∗-

topology on S(A).

Let us now consider the metric dimension of the spectral triple (A,H,D). It is easy to see

that σ1(D) = σ2(D) = · · · = σ2M (D) = 2M . Further, for each k ∈ N and each integer l ∈
[2M(2M − 1)k−1 + 1, 2M(2M − 1)k], we have that σl(D) = 2M(2M − 1)k−1. Therefore, for each

p > 0, it follows that

lim
N→∞

∑N
k=1 σk((1+D2)−

p/2)

ln(N)

= lim
N′→∞

∑N′

k=1(2M(2M − 2)(2M − 1)k−1)(1 + (2M)2(2M − 1)2·(k−1))−
p/2

ln(2M(2M − 1)N′)
.

Hence, the metric dimension is equal to 1. Moreover, the noncommutative volume is give by

V (A,H,D) =
2(M − 1)

ln(2M − 1)
.

Next we shall consider the noncommutative integral given by (A,H,D). For each k ∈ N and for

each ω, υ ∈ ΣkA, we have that σk(π(χ
[ω]

)|D|−1) = σk(π(χ
[υ]

)|D|−1) and hence,

TrW (π(χ
[ω]

)|D|−1) = TrW (π(χ
[υ]

)|D|−1). (4.26)

Here, we recall that, by definition, the Dixmier trace is taken over the ideal L1,+(ker(D)⊥). Since

the map given, for each a ∈ C(Σ∞A ), by

a 7→ TrW (π(a)|D|−1)

is a linear functional, by the Riesz Representation Theorem (Theorem 3.3.1), there exists a Borel
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probability measure µ so that, for each a ∈ A, we have that

TrW (π(a)|D|−1) =
2(M − 1)

ln(2M − 1)

∫
Σ∞
A

a dµ.

Therefore, by Equation (4.26) and applying the Hahn-Kolmogorov Theorem (Theorem 3.3.5), it

follows that µ is the unique measure given, for each k ∈ N and each ω ∈ ΣkA, by

µ([ω]) = 2M(2M − 1)−k+1.

This is precisely the measure of maximal entropy for the dynamical system (Σ∞A , σ). Further, since

this holds for all limiting procedures, for each a ∈ A, we have that∫
π(a)|D|−1 =

2(M − 1)

ln(2M − 1)

∫
Σ∞
A

a dµ.

4.2.2 The Noncommutative Volume of a Subshift of Finite Type

The construction of a spectral triple, given in [AIC1] and reviewed in Subsection 4.2.1, gives a

noncommutative representation of a one-sided topologically exact subshift of finite type (Σ∞A , σ).

This follows, since the C∗-algebra of complex-valued continuous functions on Σ∞A is an AF C∗-

algebra. However, the measure theoretical properties of such a spectral triple essentially encodes the

measure of maximal entropy. In what follows, we consider a one-sided topologically exact subshift of

finite type (Σ∞A , σ) and an equilibrium measure νφ for a non-arithmetic Hölder continuous potential

function φ ∈ C(Σ∞A ;C). By refining Antonescu-Ivan’s and Christensen’s construction, we provide a

spectral triple which represents Σ∞A whose measure theoretical properties encode the measure νφ.

Indeed, by breaking down the projections used in Theorem 4.2.1 and by relating the singular values

of the Dirac operator to the νφ-measure of the cylinder sets of Σ∞A , we prove that a spectral triple

(A,H,D) := (C(Σ∞A ;C), L2(Σ∞A ,B, νφ), Dνφ) can be constructed so that the following hold.

1. Connes’ pseudo-metric dC(Σ∞
A

;C) is a metric on the state space S(C(ΣA;C)) and the topology

induced by dC(Σ∞
A

;C) on S(C(ΣA;C)) is equivalent to the weak∗-topology defined on S(A).

2. The spectral triple (A,H,D) is (1,+)-summable with metric dimension equal to one.

3. The noncommutative integral given by (A,H,D) agrees with the integral with respect to νφ.

4. The noncommuative volume of (A,H,D) is equal to 1/hνφ(σ). Recall that hνφ(σ) denotes

the measure theoretical entropy of νφ with respect to the left shift map σ.

Let us begin by setting up some notation. Let Σ denote a finite alphabet with card(Σ) =: M ∈ N
and let A := [ai,j ]i,j denote an irreducible aperiodic M ×M transition matrix for Σ. Let µφ denote

a Gibbs measure for some Hölder continuous potential function φ ∈ C(Σ∞A ;R) and let{
(µφ([x]))−

1/2χ
[x]

: x ∈ Σ
}
∪
{
eω,i : (ω, i) ∈

⋃
υ∈Σ∗

A
{υ} × {1, 2, . . . , α(υ)− 1}

}
denote a Haar basis for L2(Σ∞A ,B, µφ), as described in Subsection 2.2.2). Recall that α : Σ∗A → N
denotes the set function given, for each k ∈ N and each ω := (ω1, ω2, . . . , ωk) ∈ ΣkA, by

α(ω) :=
∑
x∈Σ

aωk,x.
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Let τµφ : C(Σ∞A ;C)→ C denote the tracial state defined, for each a ∈ C(Σ∞A ;C), by

τµφ (a) :=

∫
Σ∞
A

a dµφ.

Then the Gelfand-Năımark-Segal completion of C(Σ∞A ;C) with respect to τµφ is precisely the Hilbert

space L2(Σ∞A ,B, µφ). Next, define the Dirac operator Dµφ on L2(Σ∞A ,B, µφ) by

Dµφ :=
∑
x∈Σ

1

µφ([x])
〈·, χ

[x]
〉χ

[x]
− 〈·, χ

Σ∞
A
〉χ

Σ∞
A

+
∑
ω∈Σ∗

A

α(ω)− 1

µφ([ω])

α(ω)−1∑
i=1

〈·, eω,i〉eω,i. (4.27)

Observe that the operator Dµφ is a well defined unbounded operator since the following hold.

1. The measure µφ is a Gibbs measure and hence, µφ is non-atomic and µφ([ω]) 6= 0, for each

ω ∈ Σ∗A.

2. The domain of Dµφ contains the set of locally constant functions, which is L2-norm-dense in

L2(Σ∞A ,B, µφ).

To compare this with the Antonescu-Ivan and Christensen Dirac operator, given in Equation (4.24),

we observe that the projections used are given, for each k ∈ N, by

Pk+1 :=
∑
x∈Σ

1

µφ([x])
〈·, χ

[x]
〉χ

[x]
+

k∑
l=1

∑
ω∈Σl

A

α(ω)−1∑
i=1

〈·, eω,i〉eω,i,

where

P0 := 〈·, χ
Σ∞
A
〉χ

Σ∞
A
, P1 :=

∑
x∈Σ

1

µφ([x])
〈·, χ

[x]
〉χ

[x]
.

Recall that we do not make a distinction between a measurable function f : Σ∞A → C and its

equivalence class{
g : Σ∞A → C : g is a measurable function and

∫
Σ∞
A

|g − f | dµφ = 0

}
.

Theorem 4.2.5. The triple (C(Σ∞A ;C), L2(Σ∞A ,B, µφ), Dµφ) is a spectral triple, where the ∗-
representation (π, L2(Σ∞A ,B, µφ)) is given by π(a)h := a · h, for each a ∈ C(Σ∞A ;C) and each

h ∈ L2(Σ∞A ,B, µφ).

Proof. Observe that the set C(Σ∞A ;C) equipped with the supremum norm is a C∗-algebra, that

L2(Σ∞A ,B, µφ) is a complex Hilbert space and that (π, L2(Σ∞A ,B, µφ)) is a faithful ∗-representation

of C(Σ∞A ;C). Further, we have seen that Dµφ is a well defined unbounded operator. Next, observe

that the kernel of Dµφ consists of all equivalence classes of L2(Σ∞A ,B, µφ) which contain some

constant function on Σ∞A . Moreover, by the properties of a Gibbs measure, we have that D−1
µφ is a

bounded operator on the complex Hilbert space ker(Dµφ)⊥ ⊂ L2(Σ∞A ,B, µφ). Hence, the operator

(1+D2
µφ)−

1/2 is a bounded operator which can be approximated by operators in B(ker(Dµφ)⊥) with

finite dimensional range. Therefore, Dµφ has a compact resolvent. Moreover, the sets Ran(Dµφ±i1)

are L2-norm-dense in L2(Σ∞A ,B, µφ). This follows, since the set of locally constant functions is L2-

norm-dense in L2(Σ∞A ,B, νφ), since the operator (Dµφ±i1) is linear and since we have the following.
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1. For each x ∈ Σ, we have that

(Dµφ ± i1)

(
1

1± i (χ[x]
)∓ iµφ([x])χ

Σ∞
A

)
= χ

[x]
.

2. For each (ω, j) ∈
⋃
υ∈Σ∗

A
{υ} × {1, 2, . . . , α(υ)− 1}, we have that

(Dµφ ± i1)

(
µφ([ω])

α(ω)− 1± i eω,j
)

= eω,j .

Moreover, we have that Dµφ is symmetric on its domain. Indeed, for each h1, h2 ∈ Dom(Dµφ) ⊂
L2(Σ∞A ,B, µφ), we have that

〈Dµφ(h1), h2〉 =

〈∑
x∈Σ

1

µφ([x])
〈h1, χ[x]

〉χ
[x]
− 〈h1, χΣ∞

A
〉χ

Σ∞
A

+
∑
ω∈Σ∗

A

α(ω)− 1

µφ([ω])

α(ω)−1∑
i=1

〈h1, eω,i〉eω,i,

∑
y∈Σ

1

µφ([y])
〈h2, χ[y]

〉χ
[y]

+
∑
υ∈Σ∗

A

α(υ)−1∑
j=1

〈h2, eυ,j〉eυ,j
〉

=
∑
x∈Σ

1

µφ([x])
〈h1, χ[x]

〉〈h2, χ[x]
〉

+
∑
ω∈Σ∗

A

α(ω)− 1

µφ([ω])

α(ω)−1∑
i=1

〈h1, eω,i〉〈h2, eω,i〉

−
∑
y∈Σ

1

µφ([y])
〈h1, χΣ∞

A
〉〈h2, χ[y]

〉〈χ
Σ∞
A
, χ

[y]
〉

=
∑
x∈Σ

1

µφ([x])
〈h1, χ[x]

〉〈h2, χ[x]
〉

+
∑
ω∈Σ∗

A

α(ω)− 1

µφ([ω])

α(ω)−1∑
i=1

〈h1, eω,i〉〈h2, eω,i〉

−
∑
V∈Σ

1

µφ([V ])
〈h1, χ[V ]

〉〈χ
Σ∞
A
, χ

[V ]
〉
∑
y∈Σ

1

µφ([y])
〈h2, χ[y]

〉〈χ
Σ∞
A
, χ

[y]
〉

=
∑
x∈Σ

1

µφ([x])
〈h1, χ[x]

〉〈h2, χ[x]
〉

+
∑
ω∈Σ∗

A

α(ω)− 1

µφ([ω])

α(ω)−1∑
i=1

〈h1, eω,i〉〈h2, eω,i〉

−
∑
V∈Σ

1

µφ([V ])
〈h1, χ[V ]

〉〈χ
Σ∞
A
, χ

[V ]
〉〈h2, χΣ∞

A
〉

= 〈h1, Dµφ(h2)〉.

Hence, by Theorem 3.3.2, it follows that Dµφ is an essentially self-adjoint operator. In order to

show that (C(Σ∞A ;C), L2(Σ∞A ,B, µφ), Dµφ) is a spectral triple, it remains to show that the set

{a ∈ C(Σ∞A ;C) : the operator [Dµφ , π(a)] is densely defined and extends to a bounded operator}
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is norm-dense in C(Σ∞A ;C) with respect to the supremum norm. To show this, first note that

by the Stone-Weierstrass Theorem (Theorem 2.2.12), the set of locally constant functions is a

norm-dense subset of C(Σ∞A ;C) with respect to the supremum norm. Secondly, note that for each

h ∈ L2(Σ∞A ,B, µφ) and for each y ∈ Σ, we have that

[Dµφ , π(χ
[y]

)]h = Dµφ(χ
[y]
· h)− π(χ

[y]
)Dµφ(h)

=
∑
x∈Σ

1

µφ([x])
〈χ

[y]
· h, χ

[x]
〉χ[x] − 〈χ[y]

· h, χ
Σ∞
A
〉χ

Σ∞
A

+
∑
ω∈Σ∗

A

α(ω)− 1

µφ([ω])

α(ω)−1∑
i=1

〈χ
[y]
· h, eω,i〉eω,i

−
∑
V∈Σ

1

µφ([V ])
〈h, χ

[V ]
〉χ[y] · χ[x] + 〈h, χ

Σ∞
A
〉χ

[y]

−
∑
υ∈Σ∗

A

α(υ)− 1

µφ([υ])

α(υ)−1∑
j=1

〈h, eυ,j〉χ[y]
· eυ,j

=
1

µφ([y])
〈h, χ

[y]
〉χ[y] − 〈χ[y]

· h, χ
Σ∞
A
〉χ

Σ∞
A

+
∑
ω∈Σ∗A
[ω]⊆[y]

α(ω)− 1

µφ([ω])

α(ω)−1∑
i=1

〈h, eω,i〉eω,i

− 1

µφ([y])
〈h, χ

[y]
〉χ[y] + 〈h, χ

Σ∞
A
〉χ

[y]

−
∑
υ∈Σ∗A
[υ]⊆[y]

α(υ)− 1

µφ([υ])

α(υ)−1∑
j=1

〈h, eυ,j〉eυ,j

= −〈χ
[y]
· h, χ

Σ∞
A
〉χ

Σ∞
A

+ 〈h, χ
Σ∞
A
〉χ

[y]
.

By taking norms and applying the triangle inequality and applying Parseval’s identity (Theorem

II.6 of [RS]), since this is a finite sum, one can deduce that the operator-norm of [Dµφ , π(χ
[y]

)] is

finite. Further, for each k ∈ N, each (ω, i) := ((ω1, . . . , ωk), i) ∈
⋃
υ∈Σ∗

A
{υ} × {1, . . . , α(υ)− 1} and

each h ∈ L2(Σ∞A ,B, µφ) we have that

[Dµφ , π(eω,i)]h = Dµφ(eω,i · h)− π(eω,i)D(h)

=
∑
x∈Σ

1

µφ([x])
〈eω,i · h, χ[x]

〉χ
[x]
− 〈eω,i · h, χΣ∞

A
〉χ

Σ∞
A

+
∑
υ∈Σ∗

A

α(υ)− 1

µφ([υ])

α(υ)−1∑
j=1

〈eω,i · h, eυ,j〉eυ,j

−
∑
y∈Σ

1

µφ([y])
〈h, χ

[y]
〉 · eω,i · χ[y]

+ 〈h, χ
Σ∞
A
〉eω,i

−
∑

V∈Σ∗
A

α(V )− 1

µφ([V ])

α(V )−1∑
l=1

〈h, eV ,l〉eω,i · eV ,l =
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=
1

µφ([ω1])
〈eω,i · h, χ[ω1]

〉χ
[ω1]
− 〈eω,i · h, χΣ∞

A
〉χ

Σ∞
A

+
∑
υ∈Σ∗A
[ω]⊆[υ]

α(υ)− 1

µφ([υ])

α(υ)−1∑
j=1

〈eω,i · h, eυ,j〉eυ,j

− 1

µφ([ω1])
〈h, χ

[ω1]
〉eω,i + 〈h, χ

Σ∞
A
〉eω,i

−
∑

V∈Σ∗A
[ω]⊆[V ]

α(V )− 1

µφ([V ])

α(V )−1∑
j=1

〈h, eV ,j〉eω,i · eV ,j .

By taking norms and applying the triangle inequality and applying Parseval’s identity (Theorem

II.6 of [RS]), since this is a finite sum, one can deduce that the operator norm of the operator

[Dµφ , π(eω,i)] is finite. By these observations, it follows that the set

{a ∈ C(Σ∞A ;C) : the operator [Dµφ , π(a)] is densely defined and extends to a bounded operator}

forms a norm-dense subset of C(Σ∞A ;C), with respect to the supremum norm. �

In the following theorem we consider the metric aspects of the spectral triple given in Theorem

4.2.5. Specifically, we verify that Connes’ pseudo-metric dC(Σ∞
A

;C) associated to this spectral triple

is a metric and that the topology induced by dC(Σ∞
A

;C) is equivalent to the weak∗-topology on the

state space of C(Σ∞A ;C).

Theorem 4.2.6. The pseudo-metric dC(Σ∞
A

;C) is a metric on the state space S(C(Σ∞A ;C)) of

C(Σ∞A ;C). Moreover, the topology induced by the metric dC(Σ∞
A

;C) on S(C(Σ∞A ;C)) is equivalent to

the weak∗-topology on S(C(Σ∞A ;C)).

Proof. The proof of this result is motivated by the proof of Theorem 2.1 of [AIC1]. For ease of

notation, set card(Σ) =: M ∈ N and set

ADµφ
:= {a ∈ C(Σ∞A ;C) : the operator [Dµφ , π(a)] is densely defined and extends to

a bounded operator with norm less than or equal to one}.

For each k ∈ N, set

Ck := sup{
√
µφ([ω]) : ω ∈ ΣkA}.

Since µφ is a Gibbs measure, it follows that Ck converges to zero as k tends to infinity.

Observe that the characteristic function χ
Σ∞
A
∈ L2(Σ∞A ,B, µφ) is a separating and cyclic vector

for the subalgeba π(C(Σ∞A ;C)) of B(L2(Σ∞A ,B, µφ)) and define the following mappings.

1. Let P0, P1 : L2(Σ∞A ,B, µφ)→ L2(Σ∞A ,B, µφ) denote the projections given by

P0 := 〈·, χ
Σ∞
A
〉χ

Σ∞
A
, P1 :=

∑
x∈Σ

1

µφ([x])
〈·, χ

[x]
〉χ

[x]
.

Further, for each k ∈ N, let Pk+1 : L2(Σ∞A ,B, µφ) → L2(Σ∞A ,B, µφ) denote the projections

given by

Pk+1 :=
∑
ω∈Σk

A

α(ω)−1∑
i=1

〈·, eω,i〉eω,i.
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2. Let π0, π1 : C(Σ∞A ;C)→ C(Σ∞A ;C) denote the projections given, for each a ∈ C(Σ∞A ;C), by

π0(a) :=

(∫
Σ∞
A

a · χ
Σ∞
A
dµφ

)
χ

Σ∞
A
, π1(a) :=

∑
x∈Σ

1

µφ([x])

(∫
[x]

a dµφ

)
χ

[x]
.

Further, for each k ∈ N, let πk+1 : C(Σ∞A ;C) → C(Σ∞A ;C) denote the projection given, for

each a ∈ C(Σ∞A ;C) by

πk+1(a) :=
∑
x∈Σ

1

µφ([x])

(∫
[x]

a dµφ

)
χ

[x]
+

k∑
l=1

∑
ω∈Σl

A

α(ω)−1∑
i=1

(∫
Σ∞
A

a · eω,i dµφ

)
eω,i.

Since µφ is a Gibbs measure and since we have that Dµφ(χΣ∞
A

) = 0, by the triangle inequality

and by Parseval’s identity (Theorem II.6 of [RS]), there exists a positive constant C dependant on

φ such that for each k,m ∈ N and a ∈ A, we have that

‖πk(a)− πk+m(a)‖∞ = sup
x∈Σ∞

A


∣∣∣∣∣∣
k+m∑
l=k

∑
ω∈Σl

A

α(ω)−1∑
i=1

(∫
Σ∞
A

a · eω,i dµφ

)
eω,i(x)

∣∣∣∣∣∣
 (4.28)

6
k+m∑
l=k

∑
ω∈Σl

A

C√
µφ([ω])

α(ω)−1∑
i=1

∣∣∣∣∣
∫

Σ∞
A

a · eω,i dµφ

∣∣∣∣∣ (4.29)

6
k+m∑
l=k

∑
ω∈Σl

A

M
1/2C√

µφ([ω])

α(ω)−1∑
i=1

∣∣∣∣∣
∫

Σ∞
A

a · eω,i dµφ

∣∣∣∣∣
2
1/2

(4.30)

6
k+m∑
l=k

∑
ω∈Σl

A

C ·M1/2 · Ck(α(ω)− 1)

µφ([ω])

α(ω)−1∑
i=1

∣∣∣∣∣
∫

Σ∞
A

a · eω,i dµφ

∣∣∣∣∣
2
1/2

(4.31)

= C ·M1/2 · Ck ·
k+m∑
l=k

∥∥∥Pl[Dµφ , π(a)]χ
Σ∞
A

∥∥∥
L2

(4.32)

= C ·M1/2 · Ck ·

∥∥∥∥∥
k+m∑
l=k

Pl[Dµφ , π(a)]χ
Σ∞
A

∥∥∥∥∥
L2

(4.33)

6 C ·M1/2 · Ck ·
∥∥∥[Dµφ , π(a)]χ

Σ∞
A

∥∥∥
L2

(4.34)

6 C ·M1/2 · Ck · ‖[Dµφ , π(a)]‖. (4.35)

Further, by using the fact that Dµφ(χ
Σ∞
A

) = 0, applying the triangle inequality and applying

Parseval’s identity (Theorem II.6 of [RS]), for each k ∈ N and a ∈ C(Σ∞A ;C), we have that

‖π0(a)− πk(a)‖∞ = ‖π0(a)− π1(a) + π1(a)− πk(a)‖∞
6 ‖π0(a)− π1(a)‖∞ + ‖π1(a)− πk(a)‖∞
6 ‖[Dµφ , π(a)]χ

Σ∞
A
‖L2 + C ·M1/2‖[Dµφ , π(a)]‖

6 (C ·M1/2 + 1)‖[Dµφ , π(a)]‖.

Therefore, for each k,m ∈ N0 and a ∈ ADµφ , we have that

‖πk(a)− πk+m(a)‖∞ 6 C ·M1/2 + 1. (4.36)
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Moreover, from the Equations (4.28) - (4.35), it follows that, for each a ∈ ADµφ
, the sequence

(πk(a))k∈N is a Cauchy sequence in the C∗-algebra C(Σ∞A ;C), with respect to the supremum norm

‖·‖∞. Hence, the sequence (πk(a))k∈N is a convergent sequence. Let b ∈ C(Σ∞A ;C) denote the limit

of this sequence. Then we have that

π(b)χ
Σ∞
A

= lim
k→∞

π(πk(a))χ
Σ∞
A

= lim
k→∞

k∑
m=1

Pmπ(a)χ
Σ∞
A

= π(a)χ
Σ∞
A
.

Since χ
Σ∞
A

is a separating vector, it follows that b = a. Namely, we have that πk(a) converges to

a as k tends to infinity, for each a ∈ ADµφ . Therefore, by Equation (4.36), for each a ∈ ADµφ , it

follows that

‖π0(a)− a‖∞ 6 C ·M1/2 + 1.

This shows that for an arbitrary a ∈ ADµφ , the quotient norm of a+{π0(a) : a ∈ A} in the quotient

space ADµφ
/{π0(a) : a ∈ A}, is bounded by C ·M1/2 + 1. Therefore, by the first part of Theorem

3.2.6, Connes’ pseudo-metric dC(Σ∞
A

;C) is a metric.

In order to show that the topology induced by the metric dC(Σ∞
A

;C) on S(C(Σ∞A ;C)) is equivalent

to the weak∗-topology on S(C(Σ∞A ;C)), we observe the following. Firstly, by Equations (4.28) -

(4.35) and since πk(a) converges to a as k tends to infinity with respect to the supremum norm, for

each ε > 0, there exists N ∈ N such that for all natural numbers k > N and for each a ∈ ADµφ , we

have that

‖a− πk(a)‖∞ <
ε

2
.

Secondly, for each k ∈ N, the space πk(A) is finite dimensional, and so, the closed ball of radius

C ·M1/2 + 1 in πk(A) is norm compact. By these observations, it follows that given ε > 0, the set

{a− π0(a) : a ∈ ADµφ }

can be covered by a finite number of sets of diameter less than ε/2. In other words, the set

{a − π0(a) : a ∈ ADµφ } is a totally bounded subset of C(Σ∞A ;C). Consequently, it follows that

under the quotient map C(Σ∞A ;C) → C(Σ∞A ;C)/{π0(a) : a ∈ A}, the image of ADµφ
is totally

bounded. The result then follows from the second part of Theorem 3.2.6. �

Let us now consider the metric dimension and measure theoretical aspects of the spectral triple

(C(Σ∞A ;C), L2(Σ∞A ,B, µφ), Dµφ), as given in Theorem 4.2.5.

Theorem 4.2.7. Let φ ∈ C(Σ∞A ;R) denote a Hölder continuous non-arithmetic potential function

and let νφ denote the unique equilibrium measure for the potential φ. Then the spectral triple

(C(Σ∞A ;C), L2(Σ∞A ,B, νφ), Dνφ) is (1,+)-summable with metric dimension equal to one. Moreover,

for each a ∈ C(Σ∞A ;C), we have that∫
π(a)|Dνφ |

−1 =
1

hνφ(σ)

∫
Σ∞
A

a dνφ. (4.37)

In particular, we have that

V (C(Σ∞A ;C), L2(Σ∞A ,B, νφ), Dνφ) =
1

hνφ(σ)
. (4.38)

Proof. For each V ∈ Σ∗A∪∅, let ΥV ,ΞV : (0,∞)→ [0,∞) denote the functions that are respectively

defined in Equation (2.26) and Equation (2.27). Let r ∈ (0, 1) be fixed and let card(Σ) =: M ∈ N.
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For each k ∈ N and a ∈ C(Σ∞A ;C), recall that σk(π(a)|Dνφ |
−1) denotes the k-th largest singular

value of the operator π(a)|Dνφ |
−1 ∈ B(ker(Dνφ)⊥). Further, since Dνφ has a compact resolvent, the

sequence of singular values (σk(|Dνφ |
−1))k∈N of the operator |Dνφ |

−1 ∈ B(ker(Dνφ)⊥) converges

to zero as k tends to infinity. Therefore, for each k ∈ N, there exists ηk ∈ N such that rηk 6

σk(|Dνφ |
−1) < rηk−1 and such that ηk tends to infinity as k tends to infinity. Hence, for each

V ∈ Σ∗A ∪ ∅ there exists a positive constant c such that for N ∈ N sufficiently large, we have that

ΞV
(
MrηN−1) 6 N∑

k=1

σk(π(χ
[V ]

)|Dνφ |
−1) 6 c+ ΞV (rηN ), (4.39)

ln
(
ΥV
(
MrηN−1)) 6 ln(N) 6 ln (c+MΥV (rηN )) . (4.40)

The pressure of the potential function φ− P (φ, σ) is equal to zero and that by Theorem 2.2.8, we

have that the unique equilibrium measure νφ−P (φ,σ) for the potential function φ− P (φ, σ) is equal

to νφ. Then, using the inequalities given in Equation (4.39) and Equation (4.40) and by the results

of Corollary 2.3.7 and Corollary 2.3.9, for each V ∈ Σ∗A ∪ ∅, we have that

lim inf
N→∞

∑N
k=1 σk(π(χ

[V ]
)|Dνφ |

−1)

ln(N)
6 lim inf

N→∞

c+ ΞV (rηN )

ln(ΥV (MrηN−1))

= lim inf
N→∞

c+ ln(rηN ) νφ([V ]) (
∫

Σ∞
A
φdνφ)−1

ln(M−1r−ηN+1)

=
νφ([V ])

hνφ(σ)
.

Moreover, by a similar argument, one can deduce that

lim sup
N→∞

∑N
k=1 σk(π(χ

[V ]
)|Dνφ |

−1)

ln(N)
>

νφ([V ])

hνφ(σ)
.

Therefore, for each V ∈ Σ∞A ∪ ∅, we have that the Dixmier trace of the operator π(χ
[V ]

)|Dνφ |
−1 is

independent of the limiting procedure. Moreover, it follows that∫
π(χ

[V ]
)|Dνφ |

−1 =
νφ([V ])

hνφ(σ)
.

In particular, we have that the noncommutative volume of the spectral triple

(C(Σ∞A ;C), L2(Σ∞A ,B, νφ), Dνφ) is equal to 1/hνφ(σ). Subsequently, by Definition 3.2.19, it

follows that the metric dimension of the spectral triple (C(Σ∞A ;C), L2(Σ∞A ,B, νφ), Dνφ) is equal to

1. Next, note that for each limiting procedure W , the operator defined, for each a ∈ C(Σ∞A ;C), by

a 7→ TrW (π(a)|Dνφ |
−1),

is a bounded linear functional on C(Σ∞A ;C). Hence, by the Riesz Representation Theorem (Theorem

3.3.1), there exists a finite Borel measure ν such that, for each a ∈ C(Σ∞A ;C), we have that

TrW (π(a)|Dνφ |
−1) =

∫
Σ∞
A

a dν.
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Further, the set R := {[ω] : ω ∈ Σ∞A } ∪ {∅,Σ∞A } forms a semi-ring on which the set function

Λ : R→ [0,∞) given, for each I ∈ R, by

Λ(I) := TrW (π(χI )|Dνφ |
−1),

is an additive σ-additive set function (see Definition 3.3.4). Therefore, since Λ is also σ-finite, by

the Hahn-Kolmogorov Theorem (Theorem 3.3.5), for an arbitary limiting procedure W and for each

a ∈ C(Σ∞A ;C), we have that

TrW (π(a)|Dνφ |
−1) =

1

hνφ(σ)

∫
Σ∞
A

a dνφ.

Moreover, for each a ∈ C(Σ∞A ;C), we have that∫
π(a)|Dνφ |

−1 =
1

hνφ(σ)

∫
Σ∞
A

a dνφ.

�

Remark. In certain cases, the condition of φ being non-arithmetic can be weakened. This can

be done, for instance, when (Σ∞A , σ) is the full shift space. More specifically, for M ∈ N, consider

the case when Σ := {1, 2, . . .M} and when the potential function φ is given as follows. Let p :=

(p1, p2, . . . , pM ) denote a probability vector with pi non-zero for all i ∈ {1, 2, . . . ,M}. Then let

φ : Σ∞A → R be given, for each ω := (ω1, ω2, . . . , ) ∈ Σ∞A , by

φ(ω) := − ln(pω1).

Note that if the set {ln(p1), ln(p2), . . . , ln(pM )} is arithmetic then the potential function φ will be

arithmetic, and if the set {ln(p1), ln(p2), . . . , ln(pM )} is non-arithmetic then the potential function

φ will be non-arithmetic. Let νφ denote the unique equilibrium measure for the potential φ and

observe that, for each k ∈ N and each ω := (ω1, ω2, . . . , ωk) ∈ Σk, we have that

νφ([ω]) := pω1pω2 . . . pωk .

Then by Theorem 4.2.5, the triple (C(Σ∞A ;C), L2(Σ∞A ,B, νφ), Dνφ) is a spectral triple. Moreover,

by an argument synonymous to that used in the proof of Proposition 4.1.6, one can deduce that

the spectral triple (C(Σ∞A ;C), L2(Σ∞A ,B, νφ), Dνφ) has metric dimension equal to one and that the

noncommutative volume is equal to 1/hνφ(σ). Further, the measure νφ can be recovered from the

noncommutative integration theory of the spectral triple (C(Σ∞A ;C), L2(Σ∞A ,B, νφ), Dνφ).

Remark. In [BP], Bellissard and Pearson presents an alternative spectral triple to that considered

here, which represents the full shift space Σ on two symbols equipped with an ultra-metric. An

example of such an ultra metric is given, for ω, υ ∈ Σ by

dνφ(ω, υ) := inf{νφ([x]) : x ∈ Σ∗ ∪ {∅} and ω, υ ∈ [x]},

where νφ is an equilibrium measure for a Hölder continuous potential function φ ∈ C(Σ;R). For

such a metric, our results give that the noncommutative volume constant of Bellissard and Pearson’s

spectral triple is equal to 2/hνφ(σ).



Appendix A: Operator Theory and C∗-algebras

A.1 Basic Definitions

In this section we define some basic objects and discuss some fundamental results from functional

analysis which are in use within this thesis. There is an extensive literature available on the subject,

with good overviews found in [Rud, RS]. For the proofs of the results stated in this section we refer

the reader to [Rud, RS].

Let H denote a complex separable Hilbert space and let B(H) denote the set of bounded linear

operators T : H → H. The spectrum of such an operator T is defined to be the set

σ(T ) := {z ∈ C : T − z1 is not invertible}.

The resolvent set of an operator T ∈ B(H) is defined to be the complement of σ(T ) in C.

The adjoint of an operator T ∈ B(H) is denoted by T ∗ and is defined to be the unique operator,

which, for all h1, h2 ∈ H, satisfies the following equality

〈T (h1), h2〉 = 〈h1, T
∗(h2)〉.

We say that T ∈ B(H) is self-adjoint if and only if T = T ∗. Note that the spectrum of a self-adjoint

operator is fully contained in R.

Remark. The notions of the spectrum, the resolvent set and the adjoint for an unbounded densely

defined operator on a complex separable Hilbert space also exist. For this case we refer the reader

to Appendix A.2.

An operator T ∈ B(H) defined on a complex separable Hilbert space H is said to be compact

if one of the following equivalent conditions hold.

1. The closure of the image of the closed unit ball in H under T is compact.

2. For any bounded sequence (hk)k∈N in H, the sequence (T (hk))k∈N contains a convergent

subsequence.

Observe that for a bounded operator T ∈ B(H), defined on a complex separable Hilbert space H,

the following are equivalent.

1. The operator T is compact.

2. The operator T ∗ is compact.

3. The operator TT ∗ is compact

Further, note that the set K(H) of compact operators on a complex separable Hilbert space H

is a two sided ideal of B(H). Moreover, given a compact operator T ∈ B(H), one has that for

each ε > 0 there exists a finite dimensional subspace K ⊂ H such that the norm of T restricted to

K⊥ ⊂ H is smaller then ε. (Here, K⊥ denotes the orthogonal complement of K in H.) In other

words, the ideal of compact operators is the operator-norm closure of the set of operators with finite

dimensional range. Also, note that the spectrum σ(T ) of a compact operator T has the following

properties.

1. The spectrum σ(T ) of T is compact and non-empty.

96
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2. The cardinality of σ(T ) is at most countable.

3. The spectrum σ(T ) of T contains at most one limit point and in the case that there exists a

limit point the limit point is equal to zero.

Moreover, one has the following result.

Theorem A.1.1. (Spectral Theorem for Self-adjoint Compact Opeators) Let H denote a complex

separable Hilbert space. For each self-adjoint T ∈ K(H) there exists a finite or infinite set {φk}k∈N
of eigenvectors of T , with corresponding real non-zero eigenvalues {λk}k∈N, such that, for every

h ∈ H,

T (h) =
∑
n∈N

λn〈h, φn〉φn.

Assuming that the eigenvalues are listed in a non-increasing order, if the set {λk}k∈N is infinite,

then λk tends to zero as k tends to infity.

An operator T ∈ B(H) defined on a complex separable Hilbert space H is said to have a compact

resolvent if for all z 6∈ σ(T ) the operator (T − z1)−1 is compact.

Proposition A.1.2. Let H denote a complex separable Hilbert space. Then an operator T ∈ B(H)

has compact resolvent if and only if there exists a complex number z 6∈ σ(T ) such that (T − z1)−1

is compact.

Proof. The forward implication follows trivially. For the reverse implication let z1, z2 6∈ σ(T ) and

observe that

(T − z11)((T − z11)−1 − (T − z21)−1)(T − z21) = (T − z21)− (T − z11) = z11− z21.

This implies that

(T − z11)−1 − (T − z21)−1 = (z1 − z2)(T − z11)−1(T − z21)−1.

Therefore, (T − z11)−1 is compact if and only if (T − z21)−1 is compact. �

Proposition A.1.3. If T ∈ B(H) denotes a self-adjoint operator defined on a complex separable

Hilbert space H, then T has a compact resolvent if and only if (T 2 + 1)−1 is a compact operator.

Proof. Since T is a self-adjoint operator, we have that ±i 6∈ σ(T ). Therefore, T has a compact

resolvent if and only if the operators (T ± i1)−1 are compact, which is if and only if the operator

(T ∗ − i1)−1(T + i1)−1 = (T 2 + 1)−1

is compact. �

To conclude this section, we define the operator theoretical analogue of a positive number and

state the Square Root Lemma.

Definition A.1.4. Let H denote a complex separable Hilbert space. An operator T ∈ B(H) is

called positive if 〈T (h), h〉 ∈ [0,+∞), for all h ∈ H. We write T > 0 if T is a positive operator and

T1 6 T2 if T2 − T1 > 0, where T1, T2 ∈ B(H).

Note that every bounded positive operator on a complex Hilbert space H is self-adjoint. More-

over, for any T ∈ B(H), we have that the operator T ∗T is positive.
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Theorem A.1.5. (Square Root Lemma) Let H denote a complex separable Hilbert space and let

T ∈ B(H) denote a positive operator. Then there exists a unique S ∈ B(H) with S > 0 and T = S2.

Furthermore, S commutes with every bounded operator which commutes with T .

Definition A.1.6. In the setting of Theorem A.1.5, we call S the square root of T and write

T
1/2 (:= S).

Definition A.1.7. Let H denote a complex separable Hilbert space. The modulus of an operator

T ∈ B(H) is denoted by |T | and is defined by |T | := (T ∗T )
1/2. Further, x ∈ R is said to be a

singular value of T with multiplicity k ∈ N if and only if x is an eigenvalue of |T | of multiplicity k.

A.2 Symmetric and Self-Adjoint Unbounded Operators

In this section we review some of the basic definitions for unbounded operators. There are several

texts on functional analysis which deal with unbounded operators, for instance [Rud, RS, BR]. In

this section we closely follow Chapter VIII of [RS] and refer the reader to [RS] for the proofs of the

stated results.

Let H denote a complex Hilbert space, let T denote a densely defined linear operator on H and

let Dom(T ) denote the domain of T . The graph of T is then defined to be the set

Γ(T ) := {(h, T (h)) : h ∈ Dom(T )} ⊆ H ×H.

If Γ(T ) is a closed subset of H ×H, then T is said to be closed. An operator T is called closable if

it has a closed extension. Note that every closable operator has a smallest closed extension called

its closure which will be denoted by T .

Definition A.2.1. Let T denote a densely defined linear operator on a complex Hilbert space

H. Define Dom(T ∗) to be the set of h1 ∈ H for which there exists a h2 ∈ H such that, for all

h3 ∈ Dom(T ), one has that

〈T (h3), h1〉 = (h3, h2). (A.1)

The adjoint of T is then defined to be the linear operator T ∗ : H → H given by T ∗(h1) := h2. Note

that T ∗ is well defined, since Dom(T ) is a dense subset of H.

Remark. Given a densely defined unbounded operator T , unlike for bounded operators, the do-

main of T ∗ may not be dense in H.

Example A.2.2. Suppose that f : R → R is a bounded measurable function which is not square

integrable with respect to the Lebesgue measure. Let h0 ∈ L2(R,B, λ1) be fixed and define the

linear operator T on L2(R,B, λ1) with domain

Dom(T ) :=

{
h ∈ L2(R,B, λ1) :

∫
|f · h| dλ1 <∞

}
by

T (h) := 〈h, f〉h0.

Since the domain of T contains all square integrable functions with compact support, T is a densely

defined operator. Now, for each h1 ∈ Dom(T ∗) and each h2 ∈ Dom(T ), we have that

〈h2, T
∗(h1)〉 = 〈T (h2), h1〉 = 〈〈h2, f〉h0, h1〉 = 〈h2, f〉〈h0, h1〉 = 〈h2, 〈h0, h1〉f〉.
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Therefore, for each h1 ∈ Dom(T ∗), it follows that

T ∗(h1) = 〈h1, h0〉f.

Hence, for all h1 ∈ Dom(T ∗), we have that 〈h1, h0〉 = 0. Thus, the domain of T ∗ consists of the

orthogonal complement of the vector h0. In particular, we have that the domain of T ∗ is not dense

in H and that it vanishes on its domain of definition.

Definition A.2.3. Let T denote a densely defined linear operator on a complex Hilbert space H.

The resolvent set of T is defined to be the set of all z ∈ C such that the operator T − z1 is a

bijective mapping from Dom(T ) into H whose inverse belongs to B(H). Further, the spectrum of

an unbounded operator is defined to be the complement of the resolvent set.

Definition A.2.4. A densely defined linear operator T on a complex Hilbert space is called

symmetric if Dom(T ) ⊆ Dom(T ∗) and T (h) = T ∗(h), for all h ∈ Dom(T ). If, in addition,

Dom(T ) = Dom(T ∗), then we call T self-adjoint .

Theorem A.2.5. Let T denote a densely defined linear operator on a complex Hilbert space H.

Then we have the following.

1. The operator T ∗ is closed.

2. The operator T is closable if and only if Dom(T ∗) is dense, in which case T = T ∗∗.

3. If T is closable then
(
T
)∗

= T ∗.

Corollary A.2.6. Let T denote a densely defined linear operator on a complex Hilbert space H.

Then we have the following.

1. If T is symmetric then Dom(T ) ⊆ Dom(T ∗∗) ⊆ Dom(T ∗).

2. If T is closed and symmetric, then T = T ∗∗ and Dom(T ) ⊆ Dom(T ∗∗) ⊆ Dom(T ∗).

3. If T is self-adjoint, then T = T ∗∗ = T ∗ and Dom(T ) = Dom(T ∗∗) = Dom(T ∗).

Remark. The distinction between closed symmetric operators and self-adjoint operators is im-

portant, as it is only for self-adjoint operators that one can formulate a spectral theorem.

Another important type of operator is an essentially self-adjoint operator. We note that most

differential operators, although they are symmetric, are not self-adjoint. However, they are often

essentially self-adjoint.

Definition A.2.7. A symmetric operator is called essentially self-adjoint if its closure is self-

adjoint.

Observe that if T is an essentially self-adjoint operator on a complex Hilbert space, then it

has a unique closed self-adjoint extension. This follows since if S is a self-adjoint extension of T ,

then S is closed, and so, since Dom(T ) ⊆ Dom(S), we have that Dom(T ∗∗) ⊆ Dom(S). Thus,

Dom(S) = Dom(S∗) ⊆ Dom((T ∗∗)∗) = Dom(T ∗∗) and so S = T ∗∗.

The following theorem gives the basic criteria for a densely defined symmetric operator to be

self-adjoint and/or essentially self-adjoint.

Theorem A.2.8. Let T be a densely defined symmetric operator on a Hilbert space H. Then, T is

self-adjoint if and only if Ran(T ± i1) = H, where Ran(T ± i1) detnotes the range of the operator

T ± i1. Moreover, T is esentially self-adjoint if and only if Ran(T ± i1) are dense in H.

Proof. See Theorem VIII.3 and the corollary that follows of [RS]. �
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A.3 The Dixmier Ideal and The Dixmier Trace

Here we give a complete proof (of our own design) of the fact that for a complex separable Hilbert

space H, the Dixmier ideal L1,+(H) is an ideal of B(H) and that the Dixmier trace is a singular

trace defined on L1,+(H). The original proof can be found in [Dix1]. Before proving the main results

we give several eigenvalue inequalities which will be required. Further, throughout this section, we

let H denote a complex separable Hilbert space.

Lemma A.3.1. For each T ∈ K(H) and each k ∈ N, we have that σk(T ) = σk(T ∗). (Recall that

σk(T ) denotes the k-th largest singular value of T , where k ∈ N.)

Proof. If h1 ∈ H is a non-zero eigenvector of T ∗T with eigenvalue z1 , then T ∗T (h1)−z1h1 = 0, and

so TT ∗T (h1)− z1T (h1) = 0. Therefore, T (h1) is a non-zero eigenvector of TT ∗ with the eigenvalue

z1 . Similarly, if h2 is an eigenvector of TT ∗ with eigenvalue z2 , then T ∗(h2) is an eigenvector of

T ∗T with eigenvalue z2 . Further, if h3 and h4 are two non-zero orthogonal eigenvectors of T ∗T

with non-zero eigenvalue z3 , then we have that

〈T (h3), T (h4)〉 = 〈T ∗T (h3), h4〉 = z3〈h3, h4〉 = 0.

Thus, T ∗T and TT ∗ have the same eigenvalues with the same multiplicity. Note that we have

implicitly used the assumption that T is compact, since we have used the fact that the eigenspace

of an eigenvalue of a compact operator is finite dimensional. �

Lemma A.3.2. For each positive T ∈ K(H) and each k ∈ N, we have that

σk(T ) = inf
{
‖T (1− P )‖ : P ∈ B(H), P = P 2 = P ∗ and dim(P (H)) = k − 1

}
.

Proof. Assume, without loss of generality that the dimension of the range of T is countably

infinite, since, in the case that the dimension of range of T is finite, a simplification of the following

argument will give the required result. Further, since T is a positive compact operator there exists

a set of orthonormal vectors {φk ∈ H : k ∈ N} such that, for each h ∈ H, we have that

T (h) =
∑
k∈N

σk(T )〈h, φk〉φk. (A.2)

Now, for each k ∈ N, let Hk denote the complex linear span of the set {φm}k−1
m=1 and let Pk : H → H

denote the orthogonal projection from H onto the subspace Hk ⊂ H. Next, for each k ∈ N and

each h ∈ H, observe that

T (1− Pk)(h) =
∑
m∈N

σm(T )

〈∑
l>k

〈h, φl〉φl, φm

〉
φm

=
∑
m∈N

σm(T )
∑
l>k

〈h, φl〉〈φl, φm〉φm

=
∑
l>k

σl(T )〈h, φl〉φl.

Therefore, σl(T ) is an eigenvalue of T (1−Pk) with eigenvector φl, for each k ∈ N and each natural

number l > k. Moreover, for each k ∈ N, we claim that

σ(T (1− Pk)) = {σl : l ∈ N and l > k}.
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To see this, fix a k ∈ N and suppose that there exists a non-zero eigenvalue

z ∈ C \ {σl(T ) : l ∈ N and l > k}

of T (1 − Pk) with eigenvector h. Since, for each natural number l > k, we have that φl is an

eigenvalue of T (1 − Pk), it follows that 〈h, φl〉 = 0, for all natural numbers l > k. Therefore, we

have that T (1−Pk)(h) = 0. This is a contradiction to the assumption that z is non-zero. Therefore,

we conclude that ‖T (1− Pk)‖ 6 σk(T ), for each k ∈ N. Hence, for each k ∈ N, we have that

inf
{
‖T (1− P )‖ : P = P 2 = P ∗ and dim(P (H)) = k − 1

}
6 σk(T ).

In order to complete the proof we are required to show that for each k ∈ N, we have that

inf
{
‖T (1− P )‖ : P = P 2 = P ∗ and dim(P (H)) = k − 1

}
> σk(T ).

However, this is an immediate consequence of the following inequalities.

σk(T ) 6 inf
W⊂H

dim(W )=k−1

sup
h∈W⊥
‖h‖61

〈T (h), h〉, (A.3)

‖T‖ > sup
h∈H
‖h‖61

|〈T (h), h〉|. (A.4)

The inequality given in Equation (A.4) follows directly from the Cauchy-Schwarz inequality.

Indeed we have that

‖T‖ = sup
‖x‖61

‖T (x)‖ > sup
‖x‖61

‖T (x)‖‖x‖ > sup
‖x‖61

|〈T (x), x〉|.

Let us now prove the inequality given in Equation (A.3). Let k ∈ N be fixed and consider a

(k − 1)-dimensional subspace W of H. Let {em}k−1
m=1 denote an orthonormal basis for W and let

{em}m∈N\{1,2,...k−1} denote a set of orthonormal vectors of H, such that the set {em}m∈N is an

orthonormal basis for H. Let {φm}m∈N denote the orthonormal basis as given in Equation (A.2)

and let V denote the closed linear span of {φm : m ∈ {1, 2, . . . , k}}. Suppose that V ∩W⊥ = {0},
then for all h ∈ V , we have that

h =

k−1∑
m=1

〈h, em〉em.

This implies that k = dim(V ) 6 k − 1, and so, provides a contradiction to the assumption that

V ∩W⊥ = {0}. Therefore, V ∩W⊥ contains a non-zero vector. Let h ∈ V ∩W⊥ with norm equal

to one and observe that

〈T (h), h〉 =

〈
k∑

m=1

〈h, φm〉T (φm),
k∑
l=1

〈h, φl〉φl

〉

=

k∑
m=1

k∑
l=1

〈h, φm〉〈h, φl〉σm(T )〈φm, φl〉

> σk(T )

k∑
m=1

|〈h, φm〉|2

= σk(T ).
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(Note that the final inequality follows from Parseval’s identity (Theorem II.6 of [RS])). Hence, we

have that

sup
h∈W⊥ with ‖h‖61

〈T (h), h〉 > σk(T ).

Since the right-hand side of this inequality is independent of the chosen subspace W , the result

follows. �

Corollary A.3.3. For each positive operator T ∈ K(H) and each k ∈ N, we have that

σk(T ) = inf{‖T (1− P )‖ : P = P 2 = P ∗ and dim(P (H)) 6 k − 1}.

Definition A.3.4. For each k ∈ N, let Sk : B(H)→ [0,∞) be defined, for each T ∈ B(H), by

Sk(T ) :=

k∑
m=1

σm(T ).

Lemma A.3.5. Let T ∈ B(H) denote a positive compact operator. Then for each k ∈ N, we have

that

Sk(T ) = sup
{

tr(TP ) : P = P 2 = P ∗ and dim(P (H)) = k
}

(A.5)

= sup
{

tr(PTP ) : P = P 2 = P ∗ and dim(P (H)) = k
}
. (A.6)

Proof. Let us begin by showing the equality given in Equation (A.5). Let k ∈ N be fixed. Then,

for each projection P ∈ B(H) such that dim(P (H)) = k, it is clear to see that σk(T ) > σk(TP ).

Therefore, since T is positive, it follows that Sk(T ) > tr(TP ). Hence, we have that

Sk(T ) > sup
{

tr(TP ) : P = P 2 = P ∗ and dim(P (H)) = k
}
.

On the other hand, let {φm}km=1 denote the set of eigenvectors of T with corresponding eigenvalues

σm(T ). Let P ∈ B(H) denote the projection given by

P :=

k∑
m=1

〈·, φm〉φm.

Then, it immediately follows that Sk(T ) 6 tr(TP ), and so, we have that

Sk(T ) = sup
{

tr(TP ) : P = P 2 = P ∗ and dim(P (H)) = k
}
.

Let us now show the equality given in Equation (A.6). Observe that for any two traceclass

operators T1, T2 ∈ B(H), we have that tr(T1T2) = tr(T2T1). Therefore, if T ∈ B(H) is a compact

operator and P ∈ B(H) is a projection from H onto a finite dimensional subspace of H, it follows

that

tr(PTP ) = tr(TPP ) = tr(TP ).

This then completes the proof. �

Lemma A.3.6. For any two positive compact operators T1, T2 ∈ B(H) and for each k ∈ N, we

have that

Sk(T1 + T2) 6 Sk(T1) + Sk(T2).
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Proof. Let T1, T2 ∈ B(H) denote two positive compact operators and let k ∈ N be fixed. Then,

by Theorem A.3.5, we have that

Sk(T1 + T2) = sup
{

tr((T1 + T2)P ) : P = P 2 = P ∗ and dim(P (H)) = k
}

= sup
{

tr(T1P ) + tr(T2P ) : P = P 2 = P ∗ and dim(P (H)) = k
}

6 sup
{

tr(T1P ) : P = P 2 = P ∗ and dim(P (H)) = k
}

+

sup
{

tr(T2P ) : P = P 2 = P ∗ and dim(P (H)) = k
}

= Sk(T1) + Sk(T2).

�

Lemma A.3.7. For any two positive compact operators T1, T2 ∈ B(H) and for all k1, k2 ∈ N, we

have that

Sk1+k2(T1 + T2) > Sk1(T1) + Sk2(T2).

Proof. Let P1, P2 respectively denote two projections from H onto a k1-dimensional and k2-

dimensional subspace of H. Further, let P ∈ B(H) denote a projection with dim(P (H)) = k1 + k2

and such that P (H) ⊇ P1(H) ∪ P2(H). Observe that tr(T1P1) 6 tr(T1P ) and tr(T2P2) 6 tr(T2P ).

Hence, since tr : K(H)→ R is a linear functional on the set of compact operators, we have that

tr(T1P1) + tr(T2P2) 6 tr(T1P ) + tr(T2P ) = tr((T1 + T2)P ).

The result then follows from Lemma A.3.5. �

Corollary A.3.8. If T1, T2 ∈ K(H) are both positive, then for each k ∈ N, we have that

Sk(T1 + T2) 6 Sk(T1) + Sk(T2) 6 S2k(T1 + T2).

Proof. This is an immediate consequence of Lemma A.3.6 and Lemma A.3.7. �

Recall that L1,+(H) denotes the Dixmier ideal of B(H) and is defined as follows

L1,+(H) :=

{
T ∈ K(H) : lim sup

k→∞

∑k
m=1 σm(T )

ln(k)
< ∞

}
.

Further, let L1,+
+ (H) denote the positive cone of L1,+(H), that is, the set

L1,+
+ (H) :=

{
T ∈ K(H) : lim sup

k→∞

∑k
m=1 σm(T )

ln(k)
< ∞ and T > 0

}
.

Lemma A.3.9. For each limiting procedure W (see Defintion 3.2.8), we have that

TrW : L1,+
+ (H) → [0,∞)

defined, for each T ∈ L1,+
+ (H), by

TrW (T ) := LimW

(∑N
k=1 σk(T )

ln(N)

)
N∈N

,
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is a positive linear functional on L1,+
+ (H).

Proof. For each T ∈ L1,+
+ (H), it is clear to see that, for each N ∈ N, we have that

∑N
k=1 σk(T )

ln(N)
> 0.

Therefore, it follows that the mapping TrW : L1,+
+ (H) → R is a positive functional on the positive

cone of the Dixmier ideal L1,+(H).

Next, let T1, T2 ∈ B(H) denote two positive compact operators. By Corollary A.3.8, for each

k ∈ N, we have that

Sk(T1 + T2)

ln(k)
6

Sk(T1)

ln(k)
+
Sk(T2)

ln(k)
6

ln(2k)

ln(k)

S2k(T1 + T2)

ln(2k)
.

Therefore, since limk→∞ ln(2k)/ ln(k) = 1, for each T1, T2 ∈ L1,+
+ (H), it follows that

TrW (T1 + T2) = TrW (T1) + TrW (T2).

Further, for each T ∈ L1,+
+ (H), each k ∈ N and each η ∈ [0,∞), we have that

σk(ηT ) = ησk(T ),

Hence, it follows that

TrW (ηT ) = ηTrW (T ).

This completes the proof. �

Theorem A.3.10. The set L1,+(H) is an ideal of B(H).

Proof. Let H denote a complex separable Hilbert space. Let T ∈ B(H) denote a compact operator.

Here, we assume that T (H) is not finite-dimensional, since, if not, then the result follows trivially.

By the inequality given in Equation (A.3), for each k ∈ N, we have that

(σk(T ))2 = σk(T ∗T ) 6 inf
W⊂H

dim(W )6k−1

sup
h∈W⊥
‖h‖=1

|〈T ∗T (h), h〉| = inf
W⊂H

dim(W )6k−1

sup
h∈W⊥
‖h‖=1

‖T (h)‖2.

Therefore, for each k ∈ N, each S ∈ B(H) and T ∈ L1,+(H), we have that

σn(ST )2 = inf
W⊂H

dim(W )6k−1

sup
h∈W⊥
‖h‖=1

‖ST (h)‖2 6 ‖S‖2 inf
W⊂H

dim(W )6k−1

sup
h∈W⊥
‖h‖=1

‖T (h)‖2 = ‖S‖2 σn(T )2.

This implies that L1,+(H) is a left ideal in B(H).

Let us now show that L1,+(H) is a right ideal in B(H). By Lemma A.3.1, for each k ∈ N, we

have that

σk(TB) = σk((TB)∗) = σk(B∗T ∗) 6 ‖B∗‖σk(T ∗) = ‖B‖σk(T ).

This implies that L1,+(H) is a left ideal, and so, completes the proof. �

Let us recall the definition of the Dixmier trace TrW on the Dixmier ideal L1,+(H), for W
an arbitrary limiting procedure. Fix a limiting procedure W . Then given a self-adjoint compact
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operator T ∈ L1,+(H), observe that there exist positive compact operators T1, T2 ∈ L1,+(H) such

that T = T1 − T2. We then set

TrW (T ) := TrW (T1)− TrW (T2).

This is well-defined, since if S1, S2, T1, T2 are positive operators such that T = S1 − S2 = T1 − T2,

then we have that

TrW (T1) + TrW (S2) = TrW (T1 + S2) = TrW (T2 + S1) = TrW (T2) + TrW (S1).

Therefore, it follows that

TrW (T1)− TrW (T2) = TrW (S1)− TrW (S2).

Next, observe that for each T ∈ L1,+(H), there exist unique self-adjoint compact operators T3, T4 ∈
L1,+(H) such that T = T3 + iT4. We then set

TrW (T ) := TrW (T3) + iTrW (T4).

Definition A.3.11. Let H denote a complex Hilbert space and let I denote an ideal of B(H).

Then, a singular trace on I is a bounded linear functional T with domain I such that the following

hold.

1. T vanishes on operators with finite dimensional range.

2. If T1, T2 ∈ I are such that limk→∞ σk(T1)/σk(T2) = 1, then T (T1) = T (T2).

3. If T1, T2 ∈ I have the property that σk(T1) 6 σk(T2) for all but a finite number of k ∈ N,

then T (T1) 6 T (T2).

4. For T1, T2 ∈ I, we have that T (T1T2) = T (T2T1).

Theorem A.3.12. For each limiting procedure W , we have that the Dixmier trace TrW is a singular

trace on L1,+(H).

Proof. By Lemma A.3.9 and its extension to L1,+(H) it follows that TrW is a linear positive

functional on L1,+(H). Further, TrW vanishes on operators with finite dimensional range. If

T1, T2 ∈ L1,+(H) are such that limk→∞ σk(T1)/σk(T2) = 1, then for each ε > 0 there exists

N ∈ N such that, for all k > N , we have that

(1− ε)
∑k
m=1 σm(T2)

ln(k)
6

∑k
m=1 σm(T1)

ln(k)
+

∑N
l=1 σl(T2)

ln(k)∑k
m=1 σm(T1)

ln(k)
6

∑N
l=1 σl(T1)

ln(k)
+ (1 + ε)

∑k
m=1 σm(T2)

ln(k)
.

Hence it follows that

TrW (T1) = TrW (T2).

Further, it immediately follows from Lemma A.3.5 that TrW (T1T2) = TrW (T2T1), for all positive

T1, T2 ∈ L1,+(H). Thus by linearity of the Dixmier trace, we have that condition 4 of Definition

A.3.11 holds. Finally, if for all but a finite number of k ∈ N, σk(T1) 6 σk(T2), by the behaviour of

the logarithm, we have that TrW (T1) 6 TrW (T2). �
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A.4 Representations of C∗-Algebras

The aim of this section is to prove the following result.

Theorem. Let A,B denote two unital C∗-algebras and let π : A→ B denote a ∗-homomorphism.

Then the following hold.

1. The ∗-homomorphism π is a non-negative map.

2. For each a ∈ A, we have that ‖π(a)‖ 6 ‖a‖.

Moreover, the following statements are equivalent.

1. The ∗-homomorphism π is faithful.

2. The ∗-homomorphism π is an isometry.

3. The ∗-homomorphism π is a positive map.

The material in this section is largely based on the material contained in Chapter 2 of [BR].

However, other sources where the results can be found are [Rud, RS].

Definition A.4.1. Let A denote a unital C∗-algebra. Then, for each a ∈ A we define the following.

1. The spectrum of a, denoted by σ(a), is defined to be the set

{z ∈ C : a− zI does not have an inverse in A}.

(Here I denotes the unit of A.)

2. The spectral radius ρ(a) of a ∈ A is defined by

ρ(a) := sup{|λ| : λ ∈ σ(a)}.

Definition A.4.2. Let A denote a unital C∗-algebra. Then an element a ∈ A is called normal if

and only if aa∗ = a∗a.

Recall that an element a of a unital C∗-algebra A is said to be non-negative, written a > 0, if

and only if there exists b ∈ A such that a = b∗b. Equivalently, a is said to be non-negative if and

only if a is self-adjoint and its spectrum σ(a) is a subset of [0,∞) (see Theorem 2.2.12 of [BR]).

Further, recall that an element a ∈ A is said to be positive, written a > 0, if and only if a 6= 0 and

a > 0. We also define the relations < and 6 between positive elements a, b ∈ A by a < b if b−a > 0

and a 6 b if b− a > 0.

Lemma A.4.3. Let A denote a unital C∗-algebra. Then

ρ(a) = lim
n→∞

‖an‖1/n. (A.7)

Moreover, if a is normal, then the spectral radius of a is equal to ‖a‖. In particular, for an arbitrary

a ∈ A, we have that

‖a‖ = ‖a∗a‖1/2 = ρ(a∗a)
1/2.



A.4. REPRESENTATIONS OF C∗-ALGEBRAS 107

Proof. The equality given in Equation (A.7) is known as the spectral radius formula, and, in fact,

holds for all Banach algebras. There are several texts which give detailed proofs of this result, see

for instance Proposition 2.2.2 of [BR].

If a denotes a normal element of A, then, for each k ∈ N, we have that

‖a2k‖2 = ‖(a∗)2ka2k‖ = ‖(a∗a)2k‖ = ‖(a∗a)2k−1

‖2 = . . . = ‖a∗a‖2
k

= ‖a‖2
k+1

.

Therefore, by the spectral radius formula we have that

ρ(a) = lim
k→∞

‖a2k‖2
−k

= ‖a‖.

�

In the following Lemma we use the following notation, for Λ a subset of C, we set

Λ := {z ∈ C : z ∈ Λ}.

Lemma A.4.4. Let A denote a unital C∗-algebra. Then we have the following.

1. For each a ∈ A, we have that σ(a∗) = σ(a).

2. For each a such that a is invertible, we have that σ
(
a−1

)
= (σ(a))−1.

3. If a ∈ A is unitary, then σ(a) ⊂ {λ ∈ C : |λ| = 1}.

Proof. Let I denote the unit of A. For each z ∈ C, we have a∗ − zI = (a − zI)∗. Therefore, it

follows that

σ(a∗) = σ(a).

If a ∈ A is invertible, then since (a− zI) = za(−a−1 + z−1I), it follows that

(σ(a))−1 = σ
(
a−1) .

Finally, if a is unitary, then by Lemma A.4.3 we have that σ(a) ⊆ {z ∈ C : |z| 6 1}. Further, we

have that

σ(a) = σ (a∗) = σ (a−1) = σ(a)
−1
.

This then completes the proof. �

Lemma A.4.5. Let A denote a C∗-algebra and let a ∈ A denote a self-adjoint element. Then we

have that

σ(a) ⊆ [−‖a‖, ‖a‖].

Moreover, we have that

σ(a2) ⊆
[
0, ‖a‖2

]
.

Proof. Observe that every self-adjoint element is normal. Therefore, by Lemma A.4.3, for each

self-adjoint a ∈ A, we have that ρ(a) = ‖a‖. Hence, it follows that

σ(a) ⊆ {z ∈ C : |z| 6 ‖a‖}.

Thus, if z ∈ C with |z−1| > ‖a‖, we have that I + i|λ|a has an inverse in A. Let U ∈ A denote the

unitary element given by U := (I+ i|λ|a)(I− i|λ|a)−1 and, for each ξ ∈ C with =m(ξ) 6= 0, observe



108 APPENDIX A. OPERATOR THEORY AND C∗-ALGEBRAS

that
1− i|λ|ξ
1 + i|λ|ξ 6∈ {z ∈ C : |z| = 1}.

Hence, by Lemma A.4.3, for each ξ ∈ C with =m(ξ) 6= 0, the element

U − 1− i|λ|ξ
1 + i|λ|ξ I

has an inverse in A. Next, observe that

U − 1− i|λ|ξ
1 + i|λ|ξ I =

2i|λ|(a+ ξ1)(1− i|λ|a)−1

1 + i|λ|ξ .

Therefore a− ξI has an inverse in A, for all ξ ∈ C with =m(ξ) 6= 0. This then implies that

σ(a) ⊂ {z ∈ C : |z| < ‖a‖} ∩ R = [−‖a‖, ‖a‖].

Finally, since a is self-adjoint, it follows that a2 = a∗a. This implies that a2 > 0, and so, we have

that

σ(a) ⊂ {z ∈ C : |z| < ‖a‖} ∩ R ⊆ [0, ‖a‖].

�

Lemma A.4.6. Let A denote a unital C∗-algebra and let a, b ∈ A. If a > b > 0, then ‖a‖ > ‖b‖
and a‖a‖ > a2.

Proof. Recall that we let I denote the unit of A. By Lemma A.4.3 we have a 6 ‖a‖I. Hence, it

follows that 0 6 b 6 ‖a‖I, and so, 0 6 ‖a‖I − b. This implies that the spectrum of ‖a‖I − b is a

subset of [0,∞). Hence, for all z ∈ σ(b) we have that ‖a‖ − z > 0. Therefore, by Lemma A.4.3,

since a, b are positive they are self-adjoint, and so, it follows that ‖a‖ > ρ(b) = ‖b‖.
Let us now show that a‖a‖ > a2. By Lemma A.4.5 we have that

σ

((
a− ‖a‖

2
I
)2
)
⊂
[
0,
‖a‖2

4

]
.

Hence, it follows that

0 6

(
a− ‖a‖

2
I
)2

6
‖a‖2

4
I.

This then implies that a2 6 ‖a‖a. �

Theorem A.4.7. Let A,B denote two unital C∗-algebras and let π : A → B denote a ∗-
homomorphism. Then we have the following.

1. The ∗-homomorphism π is a non-negative map.

2. For each a ∈ A, we have that ‖π(a)‖ 6 ‖a‖.

Proof. Part 1 is immediate, since if a is a positive element of A, then there exists a b ∈ A such
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that a = b∗b. Therefore, since π is a ∗-homomorphism, we have that

π(a) = π(b∗b) = π(b∗)π(b) = (π(b))∗π(b) > 0.

Let us now prove the second part of the theorem. Note that if ‖a‖ = 0 then the result follows

trivially. Therefore, we assume that ‖a‖ > 0. By Lemma A.4.6 we have that

0 6 (a∗a)2 6 a∗a‖a∗a‖.

Hence, by part 1 it follows that

0 6 π(a∗a)2 6 π(a∗a)‖a∗a‖.

Then, by Lemma A.4.3 and Lemma A.4.6, we have that

‖π(a)‖4 = ‖π(a∗a)‖2 = ‖π(a∗a)2‖ 6 ‖π(a∗a)‖‖a∗a‖ = ‖π(a)‖2‖a‖2.

�

Theorem A.4.8. Let A,B denote two unital C∗-algebras and let π : A → B denote a ∗-
homomorphism. Then the following are equivalent.

1. The ∗-homomorphism π is faithful.

2. The ∗-homomorphism π is an isometry.

3. The ∗-homomorphism π is a positive map.

Proof. Assume that π is faithful, then there exists a ∗-homomorphism π−1 : π(A)→ A such that

π−1(π(a)) = a, for each a ∈ A. Then by Theorem A.4.7 and since π(A) is a complete sub-∗-algebra

of B, for all a ∈ A, we have that

‖a‖ = ‖π−1(π(a))‖ 6 ‖π(a)‖ 6 ‖a‖

Hence, π is an isometry.

Assume that π is an isometry and let a ∈ A denote a positive element. Then ‖π(a)‖ = ‖a‖ > 0,

and so, π(a) 6= 0. Since by Theorem A.4.7 we have that π is non-negative, we conclude that

π(a) > 0.

Finally, we show that 3 implies 1. In order to do so we use a contra-positive argument. Assume

that π is a positive map which is not faithful. Then, there exists a non-zero element a ∈ ker(π).

Since π is a ∗-homomorphism it follows that π(a∗a) = 0. However, since a is non-zero we have that

‖a∗a‖ > 0, which implies that a∗a > 0. This provides a contradiction to the assumption that π is

positive. �
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Birkhäuser Advanced Texts, 2000.

[FL] M. Frankenhuysen and M. L. Lapidus. Fractal geometry and number theory . Birkhäuser
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irreducible matrix, 12

iterated function system of similarities, 2

Kronecker-delta symbol, xix

left regular covariant representation, 31

left shift, 12
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length function, 52

level set, 7

limiting procedure, 36

local dimension, 6

measurable operator, 37

measure of maximal entropy, 14

measure preserving transformation, xix

measure theoretical entropy, 13

Minkowski content/measurable, 5

Monge-Kantorovitch metric, 34

Moran-Hutchinson Formula, 3

multifractal box-counting dimension, 7

non-arithmetic, 19

non-negative element of a C∗-algebra, 96

non-negative matrix, 12

noncommutative torus, 47

noncommutative volume, 41

normal element of a C∗-algebra, 96

one-sided topologically exact subshift of finite

type, 13

Perron-Frobenius-Ruelle operator, 14

positive element, 27

positive element of a C∗-algebra, 96

positive operator, 87

positively expanding, 12

potential, 14

pseudo-metric, 34

pure state, 28

reduced cross product algebra, 32

reduced discrete group algebra, 32

reduced norm, 32

regular metric (subshift of finite type), 12

renewal theorem, 19, 22, 23

resolvent set, 86, 89

Riesz representation theorem, 42

self-adjoint, 86

self-adjoint unbounded operator, 89

self-similar measure, 11

semi-ring, 42, 43

separable C∗-algebra, 28

separating vector, 28

separation of points, 19

similarity, 2

simple algebra, 29

singular trace, 36, 95

singular value, 35

spectral radius, 96

spectral triple, 33

spectrum, 86, 89, 96

spectrum of an unbounded operator, 89

standard model, xiii, 55

state, 27

Stone-Weierstrass Theorem, 19

strong separation condition, 3

strongly porous, 3

subshift of finite type, 12

support of a measure, xviii

symmetric group, xix

symmetric operator, 89

thermodynamic formalism, 13

topological pressure, 14

totally disconnected, xviii

trace, xix

trace-class operator, xix

transition matrix, 12

tricial state, 27

unbounded operator, 88

uniformly hyperfinite algebra, 29

unitary representation, 30

universal norm, 29, 32

weak∗-topology, 34


