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QTAIM and the stress tensor were used to provide a detailed analysis of the topology of the molecular graph, BCP and 

bond-path properties, including the new introduced helicity length H, of a Tyr-Gly dipeptide conformer subjected to a 

torsion with four levels of theory; MP2, M06-2X, B3LYP-D3 and B3LYP and a modest-sized basis set, 6-31+G(d).  

Structural effects and bonding properties are quantified and reflect differences in the BSSE and lack of inclusion of 
dispersion effects in the B3LYP calculations. The helicity length H demonstrated that MP2 produced a unique 

response to the torsion suggesting future use as a diagnostic tool. 
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The analysis of even modest-sized peptide conformers is a difficult problem due to their inherent flexibility, 

yielding huge numbers of different conformers. It is generally not feasible to study all possible geometries at 

a high level of theory with large basis sets. Not only do high-level methods scale less favorably with 

increasing system size, but higher levels of theory require large basis sets to obtain reliable results. For 

instance, MP2 calculations may produce large basis set superposition error (BSSE) when used with small or 

moderate-sized basis sets. This may produce more folded and compact conformers because BSSE results in 

artificial attraction between different parts of the molecule
1–3

.  

A previous study on the Tyr-Gly dipeptide identified the folded “book1” conformer as the most stable one, 

based on single-point MP2/6-31+G(d) calculations using B3LYP/6-31+G(d) geometries
4
. A subsequent, 

more recent, study investigated book1 along the ψtyr Ramachandran torsion angle profile, and identified an 

additional minimum around 100° with MP2, M06-2X and B3LYP-D3, but not with B3LYP
5
. The BSSE for 

this minimum was estimated to be 28.63 (MP2), 6.27 (M06-2X) and 4.28 (B3LYP-D3) kJ/mol.  

B3LYP has well known issues with the lack of inclusion of the attractive London dispersion forces, which 

could be the cause of the lack of a minimum in this region of the B3LYP potential energy surface. On the 

other hand, the minimum predicted by the other methods could potentially be an artifact of BSSE.  

In this investigation we analyze this Tyr-Gly dipeptide conformer subjected to the torsion θ, with these four 

levels of theory, all with the modest-sized 6-31+G(d) basis set. The purpose of this investigation is not 

attempting to reduce the large BSSE terms, e.g. by using large basis sets, but instead to better understand the 

effects of BSSE since intramolecular BSSE is inherently difficult to calculate. Though several methods have 

been proposed to (approximately) correct intramolecular BSSE
6–12

 there is no unique way to do this. 

Currently, the efforts to understand the unwanted effects of large BSSE solely focus on the location of 

energy minima and crude insights gained about bonding from the atomic geometries. For example the 

judgement as to which atoms are bonded, outside of QTAIM, is based purely on geometric separation as is 

the degree of structural ‘compactness’. Instead, we will use the rich topological descriptors available from 

QTAIM
13

 and the stress tensor analysis and we will introduce new concepts to better understand the effects 

that the BSSE causes without using QTAIM to calculate or predict the BSSE.  

For instance, we will track the changing numbers of bond critical points (BCPs) and cage critical points 

(CCPs) of the Tyr-Gly dipeptide subject to a torsion θ to assess the level of bonding and compactness of the 

structure. We also assess the bond strength using the total local energy density H(rb) and BCP stability using 

the stress tensor eigenvalue λ3σ. In addition, we introduce a new measure to track the excess length that the 

bond, referred to as the bond-path within QTAIM, possesses as a result of the twisting of the torsional bond, 

referred to as the helicity length H of the bond-path, to find characteristic behaviors of the different levels of 

theory.  

We use QTAIM and the stress tensor analysis, which utilizes higher derivatives of ρ(rb), acting as a 

‘magnifying lens’ on the ρ(rb) derived properties of the wave-function. QTAIM
13

 allows us to identify critical 

points in the total electronic charge density distribution ρ(r) by analyzing the gradient vector field ∇ρ(r). 



  

These critical points can further be divided into four types of topologically stable critical points according to 

the set of ordered eigenvalues λ1 < λ2 < λ3, with corresponding eigenvectors e1, e2, e3 of the Hessian matrix. 

The Hessian of the total electronic charge density ρ(r) is defined as the matrix of partial second derivatives 

with respect to the spatial coordinates. These critical points are labeled using the notation (R, ω) where R is 

the rank of the Hessian matrix, i.e. the number of distinct non-zero eigenvalues, and ω is the signature (the 

algebraic sum of the signs of the eigenvalues): (3, -3) [nuclear critical point (NCP), a local maximum 

generally corresponding to a nuclear location], (3, -1) and (3, 1) [saddle points, called bond critical points 

(BCP) and ring critical points (RCP), respectively] and (3, 3) [the cage critical points (CCP)]. The presence 

of CCPs is associated with the resistance of a structure to being crushed
14

. In this investigation, we have 

closed-shell BCPs (H--O BCPs, H---H BCPs) and shared-shell BCPs that comprise the peptide backbone, 

where the Laplacian ∇2
ρ(r) > 0 for the closed-shell BCPs and ∇2

ρ(r) < 0 for shared-shell BCPs. In the limit 

that the forces on the nuclei become vanishingly small, an atomic interaction line
15

 becomes a bond-path, 

although not necessarily a chemical bond
16

. The complete set of critical points together with the bond-paths 

of a molecule or cluster is referred to as the molecular graph. 

We can represent the QTAIM topologies of sets of isomers corresponding to allowed, forbidden and unstable 

solutions to the Poincaré-Hopf relation
17–19

 using the quantum topology phase diagram (QTPD)
20–22

. For 

molecules and clusters, the relation is expressed as:   

 

n - b + r – c = 1 ,               (1) 

 

where n, b, r, and c are given by the numbers of NCPs, BCPs, RCPs, and CCPs, respectively. For a given 

collection of isomeric molecular graphs the number of BCPs and RCPs, given by b and r respectively, 

contained in each molecular graph are usually plotted along the x-axis and y-axis. In this work however, we 

will instead plot the torsion angle  on the x-axis and either b or c on the y-axis. For consistency, we use 

quantum geometry-centered
23

 rather than Euclidean geometry-centered intuition to determine whether a 

molecular graph is 3-DQT, 2-DQT or 1-DQT, where the subscript ‘QT’ is used to denote quantum topology. 

Molecular graphs of molecules or clusters with one or more CCPs will be considered to be quantum 

topologically 3-DQT. The absence of CCPs, but presence of RCPs and BCPs indicates a 2-DQT molecular 

graph and without either CCPs or RCPs a molecular graph will be considered to be 1-DQT. The absence of 

CCPs, RCPs and BCPs corresponds to a 0-DQT molecular graph which in turn corresponds to isolated nuclei. 

The ellipticity ε provides the relative accumulation of ρ(rb) in the two directions perpendicular to the 

bond-path at a BCP, defined as ε = |λ1|/|λ2| – 1 where λ1 and λ2 are negative eigenvalues of the corresponding 



  

eigenvectors. The presence of a degree of covalent character is determined from the total local energy 

density H(rb)
24,25

, which is defined as: 

 

H(rb) = G(rb) + V(rb)                 (2) 

 

In equation (2), G(rb) and V(rb) are the local kinetic and potential energy densities at a BCP, respectively. A 

value of H(rb) < 0 for the closed-shell interaction, ∇2
ρ(rb) > 0, indicates a BCP with a degree of covalent 

character and conversely H(rb) > 0 reveals a lack of covalent character for the closed-shell BCP. 

The quantum stress tensor, σ(r), is directly related to the Ehrenfest force by the virial theorem and so 

provides a physical explanation of the low-frequency normal modes that accompany structural 

rearrangements
26–28

. There are several versions of the stress tensor in use, but in this investigation we will use 

Bader’s definition
29,30

. A diagonalization of the stress tensor, σ(r), returns the principal electronic stresses. 

The stress tensor eigenvalue associated with the bond-path; λ3σ, has been associated with transition-type 

behavior in molecular motors
31

.  

The bond-path length (BPL) is defined as the length of the path of the e3 eigenvector associated with the λ3 

eigenvalue, defined at the BCP, of the Hessian of the total charge density ρ(r) that follows the maximum in 

ρ(r). The bond-path curvature separating two bonded nuclei is defined as the dimensionless ratio: 

 

(BPL - GBL)/GBL                 (3) 

 

where the geometric bond length (GBL) corresponds to the inter-nuclear separation. The BPL often exceeds 

the GBL particularly for weak or strained bonds and unusual bonding environments
32

. Earlier one of the 

current authors hypothesized that a bond-path may possess 1-D, 2-D or 3-D topology
33

. Bond-paths 

possessing zero and non-zero values of the bond-path curvature defined by equation (3) can be considered to 

possess 1-D and 2-D topologies respectively. For some systems subject to an applied torsion  however, the 

torsional BCP may display negligible variation in the bond-path curvature defined by equation (3). 

Therefore, a new measure that is more appropriate for bonds with negligible values of the curvature is 

required. We choose this quantity to be the length traced out in 3-D by the path swept by, for instance, the 

tips of the scaled e2 eigenvectors of the λ1 eigenvalue; the scaling factor could be the ellipticity ε. From this 

we can define a helicity length H, see Scheme 1: 

 

H =           
   
                     (4) 

 

with n scaled eigenvector e2 tip path points, with pi = qi + εie2,i where εi = ellipticity at the i
th
 bond-path point 

qi on the bond-path q. 

We name this property the helicity length H due the fact that the tips of the scaled e2 eigenvectors will rotate 



  

along the extent of the bond-path between the two bonded nuclei that the bond-path connects. 

                        

Scheme 1. The red line represents the helical path swept out by the tips of the scaled e2 

eigenvectors that we refer to as the helicity length H defined by equation (4). The two blue 

arrows represented e2 eigenvectors scaled by the ellipticity ε where the vertical scales are 

exaggerated for visualization purposes. The green sphere indicates the position of the 

torsional C2-C3 BCP. 

 

 

 

 

 

 

 

 

In the near future we plan a more detailed analysis of the helicity length H*
 that includes the e1 eigenvectors 

in the definition. For now we chose the e1 eigenvector because the associated λ3 eigenvalue has the largest 

magnitude. Analogous to the bond-path curvature, see equation (3), we may define dimensionless, fractional 

versions of the helicity length H; several forms are possible and not limited to the following: 

 

Hf = (H – BPL)/BPL                (5) 

 

 

We outline in the Supplementary Materials S5 implementation details of the strategy for obtaining 

numerically consistent Helicity path lengths H. 
The form of Hf defined by equation (5) is the closest to the spirit of the bond-path curvature given in 

equation (3).  

Relaxed rotational energy profiles were created using Gaussian 09
34

 by varying the ψtyr Ramachandran angle 

(herein referred to as θ) between 80 and 110° in steps of 0.5° at the B3LYP
35,36

, B3LYP-D3
37

, M06-2X
38

and 

MP2 levels of theory, all with the 6-31+G(d) basis set. The calculations employed Gaussian’s “ultrafine” 

integration grid in the DFT and DFT-D3 calculations.  

Calculations of the molecular graphs and critical point properties were performed using AIMAll
39

; all 

molecular graphs were additionally confirmed to be free of non-nuclear attractor critical points. 
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                          (c)                                         (d) 

Figure 1. Molecular graphs for the four theory levels B3LYP, B3LYP-D3, M06-2X and MP2 using the 6-31+G(d) 

basis set for the energy minima are shown in sub-figures (a-d) respectively. Plots of the relative energies ΔE are 

provided in Supplementary Materials S1. The atom labels correspond to the molecular graph atom numbering 

scheme and the torsion C2-C3 BCP is indicated by a red circle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

  (a)                                                (b) 

Figure 2. The variation of the numbers of BCPs (b) and CCPs (c) with the torsion angle  for the four levels of theory; 

MP2, M06-2X, B3LYP and B3LYP-D3 is presented in sub-figures (a) and (b) respectively. 

 

A known effect of BSSE is that it produces structures that are over bound, i.e. with too much bonding caused 

by artificial attraction between different parts of the molecule. The B3LYP functional, on the other hand, 

may have too little bonding due to the inability to describe attractive London dispersion. The degree of 

bonding can be seen by observing the variation of the number of BCPs (b) with torsion θ of the molecular 

graphs of the Tyr-Gly dipeptide obtained with the four levels of theory, see Figure 2(a). The molecular 

graphs produced from the MP2 and B3LYP calculations comprise the highest and lowest values of b 

respectively. The B3LYP molecular graph contains a maximum of 34 BCPs compared with 36 BCPs for the 

MP2 molecular graph. The B3LYP functional, with the lowest minimum value of b (b = 33) however, may 

have missed BCPs due to the missing attractive London dispersion. The number of BCPs of the B3LYP-D3 

molecular graphs falls in between those of MP2 and B3LYP, with a minimum and maximum of 34 BCPs and 

35 BCPs respectively. This is consistent with previous non-QTAIM investigations where MP2 generally 

produced more folded Tyr-Gly dipeptide conformers than B3LYP, indicating a larger degree of bonding 

between different parts of the molecule
1,3

. 

In this investigation we can see that the B3LYP-D3, M06-2X and MP2 levels of theory generate molecular 

graphs with compact 3-DQT quantum topologies in the vicinity of the energy minimum at θ = 96° as 

evidenced by the presence of a CCP, see Figure 2(b). Conversely, use of B3LYP produces an open 2-DQT 

molecular graph. More compact structures are associated with more bonding between different parts of the 

molecule, and thus, the more open structure predicted by B3LYP may be a result of lacking dispersion or 

due to larger BSSE in the MP2 (and M06-2X) calculations. As the D3 add-on in B3LYP-D3 does not add 

BSSE, the more compact B3LYP-D3 structure must be due to dispersion. The even more compact MP2 

structure, however, could in addition be due to BSSE. The plots of the variation of the relative energies ΔE 

with the torsion θ are provided in the Supplementary Materials S1. 

 

 

 

 

 

 

 

 

 

  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (a)                                                   (b) 

Figure 3. The variation of the total local energy density H(rb) (in a.u.) and the stress tensor eigenvalue λ3σ of the 

torsional C2-C3 BCP with the torsion  for the four theory levels are presented in sub-figures (a) and (b) respectively; 

see Figure 1 for details of the atomic labeling scheme. Additional plots of the ellipticity ε, the total local energy 

density H(rb) and λ3σ that also include the closed-shell BCPs are provided in Supplementary Materials S2-S4 

respectively. 

 

 

The order of increasing BCP strength of the torsional C2-C3 BCP as indicated by the total local energy 

density H(rb) from the four levels of theory in the vicinity of the energy minima at 96º is MP2 < M06-2X < 

B3LYP-D3 < B3LYP, see Figure 3(a). This is consistent with the order of decreasing magnitude of the 

BSSE
5
. There is a similar trend for the stress tensor eigenvalue λ3σ, which indicates that the torsional C2-C3 

BCP stability is lowest for the MP2 calculations and highest for B3LYP-D3 and B3LYP, which are very 

close in value to each other, see Figure 3(b).  

 

 

 

  



  

 

 

                    

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 (a)                                                    (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     

                                               

 

 

                                           (c)                                                                        

Figure 4. The variation of the bond-path lengths (BPL) in a.u. of the torsional C2-C3 BCP with torsion angle  for the 

four levels of theory is shown in sub-figure (a). The helicity length H of the torsional C2-C3 BCP is shown in 

sub-figure (b), see also the Supplementary Materials S5. The corresponding variation of the bond-path curvature and 

Hf = (H – BPL)/BPL are presented together in sub-figures (c). 

 

 

The minimum values of the bond-path length defined as BPLmin in a.u. and the corresponding value of 

torsion helicity length H; are B3LYP (2.892,84.0º), B3LYP-D3 (2.891,87.0º), M06-2X (2.890,104.5º) and 

MP2 (2.880,93.0º). The value of the BPL is lowest for the torsional C2-C3 BCP of the molecular graph 

obtained from MP2 calculations and highest with the B3LYP calculations, see Figure 4(a). This result is 

consistent with the results for the total local energy density H(rb), see Figure 2(a). The bond-path curvature 

is also provided; in this case it is four orders of magnitude lower than the BPL and therefore negligible. It 



  

can be seen that the helicity length H of the torsional C2-C3 BCP displays a greater range of values than the 

BPL, see Figure 4(a) and Figure 4(b) respectively. The helicity length H for the MP2 calculations maintains 

a constant level of 2.94 a.u. for the entire range of the torsion θ in contrast to the other three levels of theory, 

see Figure 4(b). The dimensionless fractional helicity measure Hf produced characteristically different 

results for each of the four levels of theory, see Figure 4(c). Similar results are seen for these four levels of 

theory with the def2-TZVP basis set, see the Supplementary Materials S6. 

We have used QTAIM and the stress tensor to provide a detailed analysis of the topology of the molecular 

graph, BCP and bond-path properties including the newly introduced helicity length H of a Tyr-Gly 

dipeptide conformer subjected to a torsion θ with four levels of theory; MP2, M06-2X, B3LYP-D3 and 

B3LYP and a modest sized basis set, 6-31+G(d). The plots of the number of BCPs, b, versus the torsion θ 

indicated that the MP2 and B3LYP levels of theory comprised the highest and lowest numbers of BCPs, 

respectively. The degree of structural compactness was determined with plots of the numbers of CCPs, c, 

versus the torsion θ. The Tyr-Gly conformer obtained using B3LYP was found to possess, for all values of 

torsion θ, 2-DQT molecular graphs, demonstrating the previously suspected ‘floppy’ structure. In addition we 

also found from the stress tensor λ3σ that the stability of the torsional C2-C3 BCP was lowest when using 

MP2 calculations. The newly introduced helicity length H demonstrated that the MP2 calculations produced 

a unique and presumably unwanted behavior on the basis of the previously determined large BSSE value, in 

the form of a negligible response to the torsion θ that was not seen for the M06-2X, B3LYP-D3 and B3LYP 

theory levels. We suggest that these QTAIM and stress tensor tools can be used in the future, subject to 

further investigations, without needing to default to using very large basis sets with a high level of theory or 

needing to calculate the BSSE. 
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Highlights 
 Tyr-Gly dipeptide subjected to a torsion for MP2, M06-2X, B3LYP and B3LYP-D3. 

 Quantum topology phase diagrams quantified changes in bonding topology with torsion. 

 Introduced QTAIM helicity length H for Tyr-Gly dipeptide conformer.  

 QTAIM and stress tensor reflect differences in MP2, M06-2X, B3LYP and B3LYP-D3. 

 Helicity length H demonstrated that MP2 produced a unique response to the torsion. 
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