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Abstract 

This thesis deals with ligand design for a variety of applications in homogeneous catalysis 

with an overarching objective of advancing in the search for sustainable catalytic conversions 

and energy utilization. The first chapter is a general introduction that briefly describes the 

key features of bidentate xantphos ligands and its favorable modular structure, which can be 

applied in rational ligand design. Several examples are discussed to illustrate how careful 

ligand design in combination with mechanistic understanding leads to exquisite performance 

in different catalytic conversions. 

The second chapter describes the use of heteroleptic copper(I) complexes bearing modified 

xantphos and neocuproine as ligands and their application in the light driven C ̶ C coupling 

reaction of 1,2,3,4-tetrahydro-2-phenyl isoquinoline with nitromethane. In particular, a series 

of new electronically tuned complexes has been synthesized and used as photocatalysts to 

establish structure - activity relationships in photocatalysis. It was found that electronic 

features were crucial to significantly enhance the stability and therefore the catalytic activity 

of this type of complexes. Mechanistic insights were also obtained, suggesting that the 

reaction studied likely involves oxidative and reductive quenching pathways according to the 

correlations between the catalytic results and the photophysical features of the complexes.  

The third chapter of this thesis focuses on lignin depolymerization. For this purpose, the use 

of ionic liquids as reaction media has gained a lot of attention due to their unique properties 

compared to classical solvents. In the context of sustainable catalytic processes, recovery of 

the solvent and catalyst is very important. This chapter aims at using imidazolium-tagged 

ligands to achieve catalyst and solvent recyclability. A robust synthesis of ion-tagged ligands 

based on the xantphos backbone was developed and optimized. Their use in the ruthenium 

catalyzed C ̶ O bond cleavage of a lignin model compound was briefly studied. This 

methodology follows the principle of bringing catalyst and lignin substrate together by 

rendering a suitable environment, such as protected ionic liquids, which could dissolve lignin 

efficiently allowing its catalytic transformation. 
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The aim of the fourth chapter of this thesis is to combine the findings of the two previous 

chapters by introducing imidazolium-tags in a copper based photosensitizer for the 

photocatalytic reduction of carbon dioxide to carbon monoxide in ionic liquids. The 

functionalized complex proved to be active in this transformation but catalyst recovery was 

not achieved. Nevertheless, a system containing unmodified ligands exhibited better 

performance than the concurrent systems reported in the literature using ionic liquids as 

reaction media.  

The last chapter corresponds to the experimental section. It gives a full step by step 

description of all the relevant experiments and synthetic procedures to support the 

conclusions of this doctoral thesis. In addition, full characterization involving 1H, 13C, 31P 

and 19F NMR spesctroscopy, High Resolution Mass Spectroscopy, infrared spectroscopy, 

elemental analysis and melting points of new synthesized compounds are described to 

support their identity and purity when applicable and possible. 
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Chapter I. General introduction 

1.1 Phosphine ligands development 

1.1.1 Tertiary phosphine ligands 

A ligand is an organic, main-group molecule or ion that binds to a metal generating a 

coordination complex. The nature of the ligand influences both the bond interaction with the 

metal center and the steric environment around it, thus the reactivity of the metal complex.1 

Understanding the electronic and steric contributions of the ligand to the metal – phosphine 

bond and overall reactivity of the complex is therefore an essential tool for a rational design 

approach.2 Among the various molecules studied, tertiary phosphines have been widely 

investigated in this field. They are ancillary neutral ligands that coordinate to transition 

metals by σ-donation from the lone pair of their phosphorus atom to the empty orbitals of the 

metal center. They also accept π-backdonation from the d-orbitals of the metal to their 

antibonding P ̶ C σ* orbitals.3-4 These two contributions are the basis for the stability of the 

formed complex, especially with late transition metals due to their soft nature. The success 

of phosphine ligands goes beyond fundamental chemistry and their metal complexes remain 

the catalysts of choice for many successful processes based on homogeneous catalysis, 

numerous of them applied at industrial level.5-7 Nowadays, a wide library of phosphines is 

available; they can be classified, for example, by their denticity which refers to the number 

of sites of attachment the ligand has with the metal. The most studied classes are monodentate 

and bidentate (or chelating) phosphines, the latter provide increased stability and better 

control over the coordination sphere of the metal compared with the former ones.8 The focus 

of this thesis is based on bidentate phosphine ligands. 

1.1.2 Electronic and steric properties of phosphine ligands  

1.1.2.1 Monodentate phosphines 

The main tool for quantifying the electronic properties of the phosphine ligand is measuring 

the CO stretching in a metal carbonyl complex. This is called the Tolman electronic 

parameter (χ) named after its inventor in 1970.9-10 It employs the A1 IR stretching frequencies 

(A1) of carbonyl ligands in [Ni(CO)3L] as probe by using P(t-Bu)3 as reference ligand. 

Therefore, χ is defined as the difference between the stretching frequencies of [Ni(CO)3L] 

and the one of  [Ni(CO)3P(t-Bu)3] in cm-1. The coordination of the ligand (L) to the metal 
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center (M) causes donation of electron density from L to M, which is then transferred as π-

backdonation to the carbonyl’s anti-bonding orbital (π*). This causes a stretching of the C ̶ 

O triple bond that is associated with the donor ability of L. An alternative approach consists 

of measuring the coupling constant between the phosphorous atom and another NMR active 

nucleus like rhodium, platinum or selenium. Stronger donating ligands result in stronger bond 

with the transition metal and, therefore, in larger coupling constants.11-13 One of the 

convenient options is the measurement of the coupling constant in phospinoselenides 

between phosphorous and selenium.14-15 The advantage of this method lies in the 

straightforward synthesis of these compounds that are air-stable solids, thus facilitating their 

manipulation compared to most transition metal complexes. 

Another important approach to determine the phosphine basicity can be described by using 

the Hammett parameters σ. These parameters are determined according to the ionization 

constants of substituted benzoic acids. The substituent has an effect on the acid dissociation 

constants and the corresponding equation can be used to determine the Hammett σ value 

where KX is the corresponding constant for a meta (m) or para (p) substituted benzoic acid 

and KH is the ionization constant of benzoic acid at 25 ºC (Equation 1, Scheme 1). The 

Hammett σp values (Hammett parameter σp) relate to the para substitution of benzoic acid, 

describing the resonance and inductive effects of the sustituent.48-49 This thesis uses the 

Hammett σp values in order to discuss the effect of the para substituents present on the aryl 

ring attached to the phosphorus atom for the discussions corresponding to chapter II.  

  

Scheme 1. Determination oh Hammett values.  

The steric properties of phosphine ligands are usually quantified using the Tolman cone angle 

which is defined as the angle formed at the apex of a cone centered at a metal positioned 2.28 

Å from the phosphorous atom (a typical Ni ̶ P bond distance). The cone is framed embracing 

all the atoms of the ligand; this parameter is based on space filling models (Figure 1).9 The 
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major limitation of this approach is that usually the shape of a ligand is different from a 

perfect cone and when more complex and different ligands are bound to a metal center an 

introduction of strain is induced. Such fact makes it difficult to determine when a minimum 

cone has been accomplished and how much it compares with the behavior of the real 

molecule. In order to overcome these drawbacks, other models have been proposed based on 

crystal structures and/or calculations such as the solid angle by White and co-workers,16-17 

and the steric repulsive energy parameter (ER) by Brown and co-workers.18-19 

 

Figure 1. Tolman’s definition of the cone angle. 

1.1.2.2 Bidentate phosphines 

Bidentate phosphine ligands possess two tertiary phosphines linked by a backbone (Figure 

2) and usually chelate the metal center providing increased stability. The backbone can 

contain a carbon skeleton (dppe, BISBI), heteroatoms (diop, DPEphos) and transition metals 

(dppf). Moreover, it can be used to produce chiral ligands (BINAP). This thesis will be 

focused on the chemistry of xantphos, which will be covered in detail in the next section.  
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Figure 2. Selected examples of bidentate phosphine ligands. 

The classification of this type of ligands is problematic by using the aforementioned 

parameters of cone angle and χ. In order to compare bidentate ligands in a systematic fashion, 

the natural bite angle is used in addition to other former parameters and it refers to the P ̶ M ̶ 

P angle in a transition metal complex that is determined by the backbone of the ligand.20 It 

was introduced by Casey and co-workers and calculated by molecular modelling placing a 

central dummy atom at a distance of 2.135 Å from both phosphorous atoms.21 As alternative 

it can be measured by an X-ray structure and this is called crystallographic bite angle, which 

has been shown to be in agreement with the calculated one.20-21 The bite angle affects the 

properties of the metal complex via an electronic effect on the metal and via a steric effect 

induced by the ligand. The term of electronic bite angle effect refers to the electronic changes 

at the metal as consequence of the natural bite angle of bidentate phosphines.22 It can also be 

described as metal-preferred bite angle defined as the P ̶ M ̶ P angle of the lowest energy 



Chapter I. General introduction 

 

 
9 

 

conformation in a metal complex in the absence of steric effects.20 For example, square planar 

and octahedral complexes prefer ligands with a natural bite angle of 90°, whereas a 

tetrahedral complex prefers ligands with a natural bite angle of 109°. The closer the natural 

bite angle of a ligand is to the metal-preferred bite angle, the better the stabilization of the 

resulting complex is. On the other hand, deviations from these values result in electronic 

destabilization of the complex. The steric bite angle effect describes the variation in steric 

interactions around the metal complex when the backbone of the ligand is modified. The final 

properties of a diphospine-metal complex are always dependent on both electronic and steric 

bite angle effects that cause a particular electron density of the metal center and a specific 

environment around it. These leads to different interactions with a given substrate, 

consequently to different performances in catalysis.8, 22  

1.1.3 Xantphos 

This versatile ligand is the object of this thesis and was first reported by van Leeuwen and 

co-workers in 1995 with the goal of obtaining high selectivity and understanding the effect 

of the bite angle on catalytic transformations such as the rhodium catalyzed 

hydroformylation.23 This ligand is based on the xanthene type backbone, which can be 

modified to vary its features (Figure 3). The three common sites used to modify this ligand 

are the bridgehead position (blue circle), the substituents on the phosphorous atoms (green 

circle) and the positions in the para position to the oxygen atom of the backbone (red circle). 

Such synthetic modifications enable the effective tuning of the properties of the ligand as 

well as the generation of ligand libraries.24 
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Figure 3. Synthetic modifications of xant-type ligands in order to tune their features. 

1.1.4 Influence of bite angle in catalysis 

The influence of the bite angle in catalysis involving xant-type ligands has been studied for 

different reactions. This introduction reports three selected examples (vide infra) 

hydrocyanation,25 hydroformylation of alkenes26-27 and C ̶ O bond cleavage of aryl ethers.28 

In addition to these, other studies have been reported in many different transformations, for 

example for  allylic alkylation,29-30 amination of aryl halides 31-32 and cross coupling.33 In the 

addition of HCN to double bonds, the rate determining step is reported to be the reductive 

elimination of RCN from the square planar Ni(II) complex to form the tetrahedral Ni(0) 

species.34 Moloy reported that nickel diphosphine complexes with large bite angles enhanced 

the rate of the reductive elimination step.35 Studies on the hydrocyanation of styrene 

highlighted the utility of xant-type ligands with a natural bite angle of 105 ̶ 106° in stabilizing 

the tetrahedral Ni(0) complex, thus facilitating the reductive elimination (Scheme 2).25  
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Scheme 2. Nickel-catalyzed hydrocyanation of styrene.22 

It was reported that bidentate ligands displaying large bite angles are able to destabilize the 

square planar geometry of Ni(II) intermediates, stabilizing tetrahedral Ni(0) species by 

enforcing coordination geometries.1 Higher yields and selectivity were always obtained when 

using xantphos-type derivatives compared to the use of PPh3 or other diphosphine like 

DPEPhos, dppe and BINAP (Table 1).  
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Table 1. Nickel-catalyzed hydrocyanation of styrene using bidentate phosphines. 

 

Ligand Bite angle n (°) Yield (%)a Branched product 

(%) 

PPh3  0  

Dppe 79 <1 ca. 40 

BINAP 85 4 29 

DPEPhos 101 35 ̶ 41 88 ̶ 91 

Sixantphos 105 94 ̶ 95 97 ̶ 98 

Thixantphos 106 69 ̶ 92 96 ̶ 98 

Xantphos 109 27 ̶ 75 96 ̶ 99 

Reaction conditions: Styrene/Ni = 28.5, HCN/Ni = 17.5, [Ni] = 73.3 mM, T = 60 °C, t = 18 

h. aYields are based on HCN.  

In a different study, van Leeuwen and co-workers synthetically modified the xanthene 

backbone at the 9-position, obtaining a wide library of xant-type ligands with different 

natural bite angles and applied them in the hydroformylation reaction (Figure 4).27  
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Figure 4. Modified xantphos ligands to evaluate bite angle effects.27 

It was demonstrated that the rate of the reaction and the selectivity for the linear aldehyde as 

main product, increases when the natural bite angle of the xant-type ligand becomes wider, 

being 102° for homoxantphos and 121° for benzoxantphos (Table 2).  
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Table 2. Hydroformylation of 1-octene. The bite angle effect. 

Ligand Bite angle 

n (°) 

l:b ratio % linear 

aldehyde 

% isomer TOF 

Homoxantphos 102.0 8.50  0.16 88.2  0.4 1.4  0.3 36.9  4.8 

Phosxantphos 107.9 14.6  0.9 89.7  0.4 4.2  0.1 74.2  1.6 

Sixantphos 108.5 34.3  0.6 94.4  0.2 2.9  0.2 76.5  8.8 

Thixantphos 109.6 56.6  0.2 93.7  0.1 4.7  0.03 94.1  0.4 

Xantphos 111.4 52.2  1.4 94.5  0.2 3.7  0.2 187  4 

Isopropxantphos 113.2 49.8  0.3 94.3  0.1 3.8  0.1 162  7 

Nixantphos 114.1 50.6  1.3 94.3  0.3 3.9  0.3 154  12 

Benzylnixantphos 114.2 69.4  3.2 94.9  0.4 3.7  0.5 160  5 

Benzoxantphos 120.6 50.2  0.4  96.5  0.04 1.6  0.02 343  7 

aReaction conditions: CO/H2 = 1, P(CO/H2) = 20 bar, ligand/Rh = 5, substrate/Rh = 637, 

[Rh] = 1.00 mM, number of experiments = 3. In none of the experiments hydrogenation was 

observed. bLinear over branched ratio, percent selectivity for linear aldehyde, percent 

isomerization to 2-octene, and turnover frequency were determined at 20% alkene 

conversion. cTurnover frequency = (mol of aldehyde) (mol of Rh)-1 h-1. 

When using bidentate phosphines for this transformation, such ligands can coordinate to the 

metal center in bisequatorial (ee) or equatorial-apical (ea) fashion (Scheme 3) depending on 

their bite angle. The benzoxantphos ligand exhibits a low ee:ea isomer ratio, fact that could 

be attributed to the higher rigidity of the backbone resulting from the introduction of the extra 

phenyl ring. Ligands with the presence of nitrogen as heteroatom in the backbone showed 

lower activity, perhaps by the donating ability of the nitrogen moiety and/or their higher 

flexibility.  
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Scheme 3. Bisequatorial (ee) or equatorial-apical (ea) fashion ligand coordination for 

(diphosphine)Rh(CO)2H. 

The expansion of the steric bulk of the bidentate phosphine by increasing its natural bite 

angle explains the selectivity towards the linear aldehyde. The reason that favors the 

formation of the linear product over the branched one relies on the formation of a sterically 

congested rhodium center that forms more selectively the less sterically hindered linear 

rhodium alkyl species (Scheme 4).27 As suspected from related studies by the same group, 

the selectivity of the reaction yielding linear aldehyde as major product of the catalytic 

process depends on the natural bite angle and on the electronic features of the ligand.26 

 

Scheme 4. Rhodium-catalyzed hydroformylation of alkenes.24 

https://www.linguee.es/ingles-espanol/traduccion/obtention.html
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1.1.5 Influence of electronic ligand effects in catalysis 

The electronic properties of xant-type ligands can be tuned by changing the substituent on 

the phosphorous atom and it has been shown to impact the catalytic performance of the 

modified complexes. For example, in the rhodium catalyzed hydroformylation of 1-octene 

the para substitution of thixantphos influenced the activity of the catalyst but not the 

selectivity which is dictated by the natural bite-angle.26  

Important previous work by Christenson,36 reported the effect of electron donation from the 

phosphine ligand in hydroformylation. The results were obtained by testing a series of 1,1’-

bis(p-R-diphenylphosphino)ferrocene ligands. The outcome from this study stated that less 

donating phosphine ligands exhibited higher linear aldehyde (l:b) ratios as well as higher 

reaction rates.  

Casey and co-workers compared the iridium complexes of BISBI and DIPHOS noticing that 

the former assumes only an ee coordination (ee:ea = 100:0) to the metal center, whereas the 

latter is only ae (ee:ea = 0:100).37 The same ligands were applied in the Rh-catalyzed 

hydroformylation of 1-hexene, forming the catalyst in situ from the diphosphine ligand and 

Rh(CO)2(acac). The BISBI-Rh catalyst showed higher l:b ratio (66.5±0.5) than DIPHOS-Rh 

(1.3±0.1), leading to the assumption that selectivity was dictated by the coordination of the 

diphosphine ligand. However, the scenario is not so simple, in fact the selectivity was 

doubled (l:b = 123±3) by using BISBI-(3,5-CF3) that shows only ee coordination, showcasing 

that the electronic effect of the ligand play an important role and higher selectivity is achieved 

with electron withdrawing substituents. 

Later, a series of modified thixantphos ligands forming a Hammett series was studied by van 

Leeuwen and co-workers.26 The authors reported that the equilibrium between the ee and ea 

coordination for the pentacoordinated rhodium intermediate (diphosphine)Rh(CO)2H 

depends on the donation from the phosphorus ligand. Again, it was described that electron 

withdrawing substituents favored the equilibrium towards the ee coordination and in higher 

l:b ratio in the hydroformylation of 1-octene (Table 3).37 Other observations from the authors 

are that faster dissociation of the carbonyl ligand by weaker donation from the phosphine 

ligand in the (diphosphine)Rh(CO)2H complex enhances the coordination of the substrate, 

increasing the reaction rates. The more electrophilic the rhodium center is, more CO 
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dissociation is observed and -hydride elimination can take place after the formation of the 

Rh-alkyl intermediate.26 

Table 3. Hydroformylation of 1-octene. The electronic ligand effect.

 

R Bite-angle 

n (°) 

σp l:b ratiob % 

selectivityb 

% 

isomerb 

TOFb,c 

N(CH3)2 109.1 -0.83 44.6 93.1 4.8 28 

OCH3 106.9 -0.27 36.9 92.1 5.3 45 

CH3 106.7 -0.17 44.4 93.2 4.7 78 

H 106.4 0.00 50.0 93.2 4.9 110 

F 106.6 0.06 51.5 92.5 5.7 75 

Cl 107.8 0.23 67.5 91.7 6.9 66 

CF3 109.3 0.54 86.5 92.1 6.8 158 

aReaction conditions: CO/H2 = 1, P(CO/H2) = 20 bar, ligand/Rh = 5, substrate/Rh = 637, 

[Rh] = 1.00 mM, number of experiments = 3. In none of the experiments hydrogenation was 

observed. bLinear over branched ratio, percent selectivity for linear aldehyde, percent 

isomerization to 2-octene, and turnover frequency were determined at 20% alkene 

conversion. cTurnover frequency = (mol of aldehyde) (mol of Rh)-1 h-1. 

1.1.6 Steric and electronic effects studies in biomass conversion 
A ruthenium-xantphos system has been applied in the catalytic C ̶ O bond cleavage of aryl 

ethers in model compounds for biomass conversion through a hydrogen borrowing 

mechanism. Ellman et al. reported xantphos as the best ligand from the screening when 

compared to other mono and bidentate phosphines, displaying quantitative conversions of 

lignin model compounds and a synthetic polymer.38 
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Kamer and co-workers studied the system from the perspective of the influence of the 

electronic and natural bite angle effects by ligand modification.28 Variation of the bite angle 

from 102° to 121° showed the unmodified xanthene backbone as the optimal one for this 

transformation. Better conversions were achieved by increasing the phosphine basicity, fact 

that led the authors to propose oxidative addition as the rate limiting step in the catalytic 

process (Table 4 and scheme 12, chapter III). 

Table 4. Electronic effect on C ̶ O bond cleavage of 2-phenoxy-1-phenylethanol.

 

R σp
b Conversion (%)c 

OCH3 -0.27 47.6 

CH3 -0.17 46.5 

H 0.00 44.6 

F 0.06 26.2 

CF3 0.54 5.1 

aConditions: 0.25 mmol of 2-phenoxy-1-phenylethanol with 2 mol% catalyst loading (0.005 

mmol of Ru(H)2(CO)(PPh3)3, 0.005 mmol of ligand and 0.125 mmol of 1,2,4,5-

tetramethylbenzene as the internal standard in anhydrous xylenes in a closed microwave vial, 

135 °C, 45 min. bHammett σp values. cConversion determined by gas chromatography. 

1.1.7 Functionalized ligands  
Catalyst separation and recyclability are important research topics contemplated to overcome 

major drawbacks of homogeneous catalysis. Despite the high activity and selectivity 

exhibited by many organometallic complexes, the separation of the reaction products from 

the reaction media and the catalyst is often troublesome. In addition, catalyst recyclability 

remains a challenge. One important approach to reach a general solution to these limitations, 

consists of the structural rational modification of the catalyst to favor its solubility in a 
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specific type of solvent or phase. Such solvent/phase should be immiscible or allow the 

extraction of the products under certain conditions, creating in this manner a biphasic 

system.39  

Synthetic tailoring of the ligand/catalyst depends on the requirements of the catalytic system. 

Examples of modified xantphos-type ligands suitable for biphasic catalysis have been 

described as water-soluble ligands,40 amphiphilic ligands,41-42 fluorous-based ligands43 and 

imidazolium-tagged ligands.44-47 Among them, this thesis will focus on ion-tagged ligands 

with imidazolium cores in their structure. 

1.1.7.1 Imidazolium-tagged ligands suitable for biphasic catalysis 

The modular structure of the xantphos ligand gives the opportunity of performing synthetic 

transformations that achieve demonstrable changes in reactivity and overall performance of its 

complexes by rational ligand design. It has been proven that such changes facilitate various 

processes and/or help with the understanding of reaction mechanisms.  

van Leeuwen and co-workers reported ligand 1 (Figure 5) for the hydroformylation of 1-octene 

in butyl-3-methylimidazolium hexafluorophosphate with high reaction rates and low catalyst 

leaching (5 ppb). The system could be recycled up to seven times.47 Cole-Hamilton and co-

workers applied ligand 2 (Figure 5) in the continuous flow homogeneous hydroformylation 

of long chain alkenes using supercritical fluids in 1-butyl-3-methylimidazolium and 1-n-

octyl-3-methylimidazolium triflimide as ionic liquids.45 The results were comparable to 

commercial systems. Optimization of the aforementioned system provided rates and 

selectivities to the desired linear aldehyde that are of commercial interest.46 
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Figure 5. Ion-tagged modified ligands. 1: Imidazolium-tagged xantphos-type ligand: 2,7-

bis(5-(3-methylimidazolium)pentyl)-9,9-dimethyl-4,5-bis(2,8-dimethyl-10-phenoxa 

phosphino)xanthene hexafluorophosphate, 2: Imidazolium-tagged nixantphos ligand:  4,6-

bis(diphenylphosphino)-10-propyl-methylimidazolium-phenoxazine chloride. 

In this section the effectiveness and importance of rational ligand design in catalytic 

transformations has been highlighted in selected examples and it is intended to aid the 

discussion of the research chapters. This thesis will specifically focus on p-substituted xantphos 

ligands (Hammett series) and imidazolium-tagged ligands of the xantphos family with the 

presence of imidazolium cores in their structure applied to different catalytic processes.  
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1.2 Thesis outline 
Ligand design is a very interesting and widely studied topic in homogeneous catalysis, it has 

been presented as a brief general introduction in Chapter I, contemplating selected examples 

using xantphos as bidentate ligand for different catalytic processes. The incentive was to 

highlight the importance of the optimization of existing catalytic reactions, advancement 

towards catalyst stability as well as development of sustainable and efficient methodologies; 

areas which are the main focus of this thesis.  

Each research chapter contains its own specialized introduction to contextualize and 

familiarize the reader with the topic and content of the section.  

The synthesis and complexation of para-modified xantphos ligands for the evaluation of the 

phosphine ligand effect in photocatalytic applications is discussed in Chapter II. The selected 

model reaction was the Cross Dehydrogenative Coupling (CDC) of 1,2,3,4-tetrahydro-2-

phenyl isoquinoline with nitromethane photocatalyzed by [Cu(p-R-xantphos)(dmp)]BF4 

complexes.  

The synthesis of potentially recyclable imidazolium-tagged xant-type ligands and their 

application in the Ruthenium Catalyzed C–O bond cleavage of 2-phenoxy-1-phenylethanol 

in ionic liquids is discussed in chapter III.  

Towards energy utilization, the last research section, Chapter IV, discusses the photocatalytic 

CO2 reduction in ionic liquid media by [Cu(xantphos)(bcp)]PF6, [Cu(POP-

xantphos)(bcp)]PF6 and [Cu(Imidazolium-tagged POP-xantphos)(bcp)]PF6 complexes. This 

chapter faces the challenges of performing photocatalysis in alternative solvents. 

Lastly, Chapter V contains the experimental sections corresponding to each research chapter.  

 

 

 

 



Chapter I. General introduction 

 

 
22 

 

1.3 References 
1. Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Wide Bite Angle 

Diphosphines: Xantphos Ligands in Transition Metal Complexes and Catalysis. Acc. Chem. 

Res. 2001, 34 (11), 895-904. 

2. Gillespie, J. A.; Dodds, D. L.; Kamer, P. C. J. Rational design of diphosphorus ligands 

- a route to superior catalysts. Dalton Trans. 2010, 39 (11), 2751-2764. 

3. Leyssens, T.; Peeters, D.; Orpenb, G.; Harvey, N.J. Insight into metal–phosphorus 

bonding from analysis of the electronic structure of redox pairs of metal–phosphine 

complexes. New J. Chem. 2005, 29, 1424–1430. 

4. Marynick, D. S. π-Accepting abilities of phosphines in transition-metal complexes. 

J. Am. Chem. Soc. 1984, 106 (14), 4064-4065. 

5. Knowles, W. S., Asymmetric hydrogenations (Nobel Lecture). Angew. Chem. Int. Ed. 

2002, 41 (12), 1998-2007. 

6. Noyori, R. Asymmetric catalysis: science and opportunities (Nobel Lecture). Angew. 

Chem. Int. Ed. 2002, 41 (12), 2008-2022. 

7. Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Palladium-catalyzed cross-coupling 

reactions in total synthesis. Angew. Chem. Int. Ed. 2005, 44 (29), 4442-4489. 

8. Kamer, P. C. J.;  van Leeuwen, P. W. N. M. Phosphorus(III)Ligands in Homogeneous 

Catalysis: Design and Synthesis. Wiley. 2012, 978-0-470-66627-2. 

9. Tolman, C. A. Steric effects of phosphorus ligands in organometallic chemistry and 

homogeneous catalysis. Chem. Rev. 1977, 77 (3), 313-348. 

10. Tolman, C. A. Electron donor-acceptor properties of phosphorus ligands. Substituent 

additivity. J. Am. Chem. Soc. 1970, 92 (10), 2953-2956. 

11. Mann, B. E.; Musco, A. A phosphorus-31 nuclear magnetic resonance investigation 

of the structure, equilibriums, and kinetics of [Pt(PR3)n] in solution. J. Chem. Soc., Dalton 

Trans. 1980,  (5), 776-785. 

12. Roodt, A.; Otto, S.; Steyl, G. Structure and solution behaviour of rhodium(I) Vaska-

type complexes for correlation of steric and electronic properties of tertiary phosphine 

ligands. Coord. Chem. Rev. 2003, 245 (1-2), 121-137. 

13. Banger, K. K.; Brisdon, A. K.; Herbert, C. J.; Ghaba, H. A.; Tidmarsh, I. S. 

Fluoroalkenyl, fluoroalkynyl and fluoroalkyl phosphines. J. Fluorine Chem. 2009, 130 (12), 

1117-1129. 

14. Allman, T.; Goel, R. G. The basicity of phosphines. Can. J. Chem. 1982, 60 (6), 716-

722. 

15. Beckmann, U.; Sueslueyan, D.; Kunz, P. Is the 1J PSe Coupling Constant a Reliable 

Probe for the Basicity of Phosphines? A 31P NMR Study. Phosphorus, Sulfur Silicon Relat. 

Elem. 2011, 186 (10), 2061-2070. 

16. White, D.; Tavener, B. C.; Leach, P. G. L.; Coville, N. J. Solid angles I . The radial 

profile. J. Organomet. Chem. 1994, 478 (1-2), 205-211. 

17. White, D.; Taverner, B. C.; Coville, N. J.; Wade, P. W. Solid angles. III. The role of 

conformers in solid angle calculations. J. Organomet. Chem. 1995, 495 (1-2), 41-51. 

18. Brown, T. L.; Lee, K. J. Ligand steric properties. Coord. Chem. Rev. 1993, 128 (1-

2), 89-116. 

19. Bilbrey, J. A.; Kazez, A. H.; Locklin, J.; Allen, W. D. Exact Ligand Solid Angles. J. 

Chem. Theory Comput. 2013, 9 (12), 5734-5744. 



Chapter I. General introduction 

 

 
23 

 

20. Dierkes, P.; van Leeuwen, P. W. N. M. The bite angle makes the difference: a 

practical ligand parameter for diphosphine ligands. J. Chem. Soc., Dalton Trans. 1999,  (10), 

1519-1530. 

21. Casey, C. P.; Whiteker, G. T. The natural bite angle of chelating diphosphines. Isr. J. 

Chem. 1990, 30 (4), 299-304. 

22. Freixa, Z.; Van Leeuwen, P. W. N. M. Bite angle effects in diphosphine metal 

catalysts: steric or electronic? Dalton Trans. 2003,  (10), 1890-1901. 

23. Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van Leeuwen, P. W. N. 

M.; Goubitz, K.; Fraanje, J. New Diphosphine Ligands Based on Heterocyclic Aromatics 

Inducing Very High Regioselectivity in Rhodium-Catalyzed Hydroformylation: Effect of the 

Bite Angle. Organometallics. 1995, 14 (6), 3081-3089. 

24. van Leeuwen, P. W. N. M.; Kamer, P. C. J. Featuring Xantphos. Catal. Sci. Technol. 

2018, 8 (1), 26-113. 

25. Kranenburg, M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Vogt, D.; Keim, W. 

Effect of the bite angle of diphosphine ligands on activity and selectivity in the nickel-

catalyzed hydrocyanation of styrene. J. Chem. Soc., Chem. Commun. 1995,  (21), 2177-2178. 

26. Van der Veen, L. A.; Boele, M. D. K.; Bregman, F. R.; Kamer, P. C. J.; Van Leeuwen, 

P. W. N. M.; Goubitz, K.; Fraanje, J.; Schenk, H.; Bo, C. Electronic Effect on Rhodium 

Diphosphine Catalyzed Hydroformylation: The Bite Angle Effect Reconsidered. J. Am. 

Chem. Soc. 1998, 120 (45), 11616-11626. 

27. Van der Veen, L. A.; Keeven, P. H.; Schoemaker, G. C.; Reek, J. N. H.; Kamer, P. 

C. J.; Van Leeuwen, P. W. N. M.; Lutz, M.; Spek, A. L. Origin of the Bite Angle Effect on 

Rhodium Diphosphine Catalyzed Hydroformylation. Organometallics. 2000, 19 (5), 872-

883. 

28. Shaw, L.; Somisara, D. M. U. K.; How, R. C.; Westwood, N. J.; Bruijnincx, P. C. A.; 

Weckhuysen, B. M.; Kamer, P. C. J. Electronic and bite angle effects in catalytic C-O bond 

cleavage of a lignin model compound using ruthenium Xantphos complexes. Catal. Sci. 

Technol. 2017, 7 (3), 619-626. 

29. Van Haaren, R. J.; Oevering, H.; Coussens, B. B.; Van Strijdonck, G. P. F.; Reek, J. 

N. H.; Kamer, P. C. J.; Van Leeuwen, P. W. N. M. On the influence of the bite angle of 

bidentate phosphane ligands on the regioselectivity in allylic alkylation. Eur. J. Inorg. Chem. 

1999,  (8), 1237-1241. 

30. Kranenburg, M.; Kamer, P. C. J.; Van Leeuwen, P. W. N. M. The effect of the bite 

angle of diphosphine ligands on activity and selectivity in palladium-catalyzed allylic 

alkylation. Eur. J. Inorg. Chem. 1998,  (1), 25-27. 

31. Harris, M. C.; Geis, O.; Buchwald, S. L. Sequential N-arylation of primary amines as 

a route to alkyldiarylamines. J. Org. Chem. 1999, 64 (16), 6019-6022. 

32. Guari, Y.; Van Es, D. S.; Reek, J. N. H.; Kamer, P. C. J.; Van Leeuwen, P. W. N. M. 

An efficient, palladium-catalyzed amination of aryl bromides. Tetrahedron Lett. 1999, 40 

(19), 3789-3790. 

33. Kranenburg, M.; Kamer, P. C. J.; Van Leeuwen, P. W. N. M. The effect of the bite 

angle of diphosphine ligands on activity and selectivity in palladium-catalyzed cross-

coupling. Eur. J. Inorg. Chem. 1998,  (2), 155-157. 

34. McKinney, R. J.; Roe, D. C. The mechanism of nickel-catalyzed ethylene 

hydrocyanation. Reductive elimination by an associative process. J. Am. Chem. Soc. 1986, 

108 (17), 5167-5173. 



Chapter I. General introduction 

 

 
24 

 

35. Marcone, J. E.; Moloy, K. G. Kinetic Study of Reductive Elimination from the 

Complexes (Diphosphine)Pd(R)(CN). J. Am. Chem. Soc. 1998, 120 (33), 8527-8528. 

36. Unruh, J. D.; Christenson, J. R. A study of the mechanism of rhodium/phosphine-

catalyzed hydroformylation: use of 1,1'-bis(diarylphosphino)ferrocene ligands. J. Mol. Catal. 

1982, 14 (1), 19-34. 

37. Casey, C. P.; Paulsen, E. L.; Beuttenmueller, E. W.; Proft, B. R.; Petrovich, L. M.; 

Matter, B. A.; Powell, D. R. Electron Withdrawing Substituents on Equatorial and Apical 

Phosphines Have Opposite Effects on the Regioselectivity of Rhodium Catalyzed 

Hydroformylation. J. Am. Chem. Soc. 1997, 119 (49), 11817-11825. 

38. Nichols, J. M.; Bishop, L. M.; Bergman, R. G.; Ellman, J. A. Catalytic C-O Bond 

Cleavage of 2-Aryloxy-1-arylethanols and Its Application to the Depolymerization of 

Lignin-Related Polymers. J. Am. Chem. Soc. 2010, 132 (36), 12554-12555. 

39. Cole-Hamilton, D. J. Homogeneous Catalysis--New Approaches to Catalyst 

Separation, Recovery, and Recycling. Science 2003, 299 (5613), 1702-1706. 

40. Schreuder Goedheijt, M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. A water-soluble 

diphosphine ligand with a large 'natural' bite angle for two-phase hydroformylation of 

alkenes. J. Mol. Catal. A: Chem. 1998, 134 (1-3), 243-249. 

41. Desset, S. L.; Cole-Hamilton, D. J. Carbon dioxide induced phase switching for 

homogeneous-catalyst recycling. Angew. Chem. Int. Ed. 2009, 48 (8), 1472-1474. 

42. Buhling, A.; Elgersma, J. W.; Nkrumah, S.; Kamer, P. C. J.; van Leeuwen, P. W. N. 

M. Novel amphiphilic diphosphines: synthesis, rhodium complexes, use in hydroformylation 

and rhodium recycling. Dalton Trans. 1996,  (10), 2143-2154. 

43. Adams, D. J.; Cole-Hamilton, D. J.; Harding, D. A. J.; Hope, E. G.; Pogorzelec, P.; 

Stuart, A. M. Towards the synthesis of perfluoroalkylated derivatives of Xantphos. 

Tetrahedron. 2004, 60 (18), 4079-4085. 

44. Bronger, R. P. J.; Silva, S. M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. A novel 

dicationic phenoxaphosphino-modified Xantphos-type ligand: a ligand for highly active and 

selective, biphasic, rhodium catalysed hydroformylation in ionic liquids. Dalton Trans. 2004,  

(10), 1590-1596. 

45. Webb, P. B.; Kunene, T. E.; Cole-Hamilton, D. J. Continuous flow homogeneous 

hydroformylation of alkenes using supercritical fluids. Green Chem. 2005, 7 (5), 373-379. 

46. Kunene, T. E.; Webb, P. B.; Cole-Hamilton, D. J. Highly selective hydroformylation 

of long-chain alkenes in a supercritical fluid ionic liquid biphasic system. Green Chem. 2011, 

13 (6), 1476-1481. 

47. Bronger, R. P. J.; Silva, S. M.; Kamer, P. C. J.; Leeuwen, P. W. N. M. A novel 

dicationic phenoxaphosphino-modified Xantphos-type ligand—a unique ligand specifically 

designed for a high activity, selectivity and recyclability. Chem. Commun. 2002,  (24), 3044-

3045. 

48.     Hansch, C.; Leo, A.; Taft, R. W. A Survey of Hammett Substituent Constants and 

Resonance and Field Parameters. Chem. Rev. 1991, 97, 165-195. 

49.  Allman, T.; Goel, R. The basicity of phosphines. Can. J. Chem. 1982, 60, 716-722. 



Chapter II: Electronic phosphine ligand effects on the photochemistry of heteroleptic Cu(I) 

complexes: A comprehensive study 

 
25 

 

Chapter II: Electronic phosphine ligand effects on 

the photochemistry of heteroleptic Cu(I) 

complexes: A comprehensive study. 

2.1 Introduction 

2.1.1 Heteroleptic copper complexes in the context of energy utilization 

The increasing global consumption of energy encourages the search for solutions to supply 

and efficiently utilize it. Those are major challenges the human population is facing. World 

energy statistics and projections underline the increased consumption of energy from 13.5 

TW in 2001 to 27.6 TW in 2050, reaching 43.0 TW in 2100.1 In 2013, 86% of this energy 

was produced from fossil fuels, thus impacting the environment due to the increase in the 

CO2 levels and the well-known related problems.2 Therefore, the development of more 

efficient systems able to produce and use carbon-neutral energy (solar, eolic, geothermal, 

etc.) is of great demand. Among the various sources of energy, solar radiation is one of the 

most attractive; significant progress has been achieved for its capture, conversion and 

storage.3 Moreover, it can also be used to promote chemical reactions (photoreaction) which 

can be accelerated by a catalyst (photocatalyst). In this field several transition metal 

complexes have been utilized as photocatalyst mainly based on expensive transition metals 

such as iridium and ruthenium.4-7 It has been recently shown that copper can promote several 

transformations being an attractive alternative to more precious metals.8 The advantage of 

using copper lies notably in its cheaper price and higher abundancy when compared with 

other elements.9 

This part of this thesis is focused on cationic heteroleptic copper(I) complexes bearing 

bidentate nitrogen and phosphorous ligands with general formula [Cu(N^N)(P^P)]+, where 

neocuproine or bathocuproine are the N^N ligand and xantphos the P^P ligand. In the next 

sections an overview of the characteristics of these complexes and their applications in 

photocatalysis is presented.  
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2.1.1.1 Homoleptic [Cu(N^N)2]+ complexes 

Copper(I) coordination compounds bearing identical ligands, proved to be of great interest 

due to their comparable excited state properties with the more expensive [RuII(bpy)3]
2+ 

(Figure 1).9 Among them, copper(I) phenanthroline complexes usually absorb UV-Vis light 

in a range between 350-650 nm with high extinction coefficients (ε ~103 ̶ 104 M-1cm-1). The 

excited states are metal to ligand charge transfer states (MLCT),10 accessible upon light 

absorption and promotion of an electron from the d orbitals of copper to the π* orbitals of 

the ligand, it is formally a Cu(II) metal center coordinated to a reduced ligand, 

[CuII(N^N)(N^N.-)]+*. These MLCT excited states are emissive with lifetimes τ = 10-9 ̶ 10-7 

s at room temperature in CH2Cl2 solution.11-13 

 

Figure 1. Comparison between the photophysical properties of [RuII(bpy)3]
2+ and 

[CuI(dmp)2]
+.9 

When absorbing light, the copper center formally oxidizes from Cu(I) to Cu(II) and therefore 

possesses different structural and electrochemical properties. Regarding their geometry, 

Cu(I) is d10 and prefers a tetrahedral geometry, on the other hand Cu(II) is d9 and adopts a 

Jahn-Teller distorted square planar arrangement. Therefore, when Cu(I) is excited it has to 

undergo a structural reorganization and this can be hampered by increasing the steric bulk of 

the phenanthroline ligand at the 2,9 positions (adjacent to the nitrogen). In fact, it was found 

that it is easier to oxidize CuI(phen)2 than CuI(dmp)2, with a 400 mV difference in redox 

potential, because the former can change geometry more easily than the latter. Apart from 

steric factors, their redox chemistry is also solvent dependent. For example, the E1/2 for the 
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couple Cu(I)/Cu(II) is 0.93 V in CH2Cl2, 0.77 V in CH3CN and 0.64 V in DMSO with a 

common electrolyte versus a silver wire reference.10 A proposed model accounting for their 

relaxation is presented below (Scheme 1). 

 

Scheme 1. Schematic model for photoexcitation and the relaxation of [CuII(phen)2]
+ type 

complexes. General geometrical changes of homoleptic bis-diimine Cu(I) complexes upon 

excitation. Radiative transitions (fluorescence (fl) and phosphorescence (ph)) are shown as 

dashed lines and non-radiative transitions as thin solid lines.14-16 

 

Upon excitation the Franck-Condon 1MLCT state is populated, which is necessarily a singlet 

state and undergoes vibrational relaxation in the form of pseudo Jahn-Teller distortion to 

1MLCTflattened.
17-18 This relaxation causes a significant red shift in the emission spectra of 

these complexes.19  The system populates the triplet 3MLCTflattened state by intersystem 

crossing (ISC). Finally, as a result of this flattening, it opens the coordination sphere around 

the copper center for coordination of a donor molecule, usually solvent, forming an exciplex 

and quenching their emission.20-21 Radiative relaxation to the ground state as emission is 
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possible either from 1MLCTflattened or 3MLCTflattened, the former as fluorescence (fl) and the 

latter as phosphorescence (ph).   

2.1.1.2 Heteroleptic  [Cu(N^N)(PPh3)2]+ complexes 

In addition to homoleptic complexes, heteroleptic complexes where the metal binds to 

different types of ligands have been explored. The first family of related heteroleptic 

complexes studied is described by the general formula [Cu(N^N)(PPh3)2]X. Their behavior 

in solution is complex and their photophysical properties depend on the nature of the 

phenanthroline ligand, the solvent and the counterion. Moreover, defining their speciation in 

solution is not straightforward due to their tendency to undergo ligand redistribution 

reactions. For example, the comparison between [Cu(dmp)(PPh3)2]
+ and [Cu(phen)(PPh3)2]

+ 

is illustrative, where dmp is 2,9-dimethyl-1,10-phenanthroline and phen an unsubstituted 

phenanthroline.22 They exist as heteroleptic complexes due to the synergic effect associated 

with the σ-donating PPh3 and π-acceptor phenanthroline, but steric factors play a role. The 

complex [Cu(dmp)(PPh3)2]
+ possesses methyl groups on the phenanthroline ligand, which 

leads to unfavorable steric interactions with the phenyl groups of the phosphines and 

promotes their dissociation. Overall, the combination of steric constrains and coordinating 

factors make the preparation of a CH2Cl2 solution in which [Cu(dmp)(PPh3)2]
+ is the only 

complex present difficult to characterize, whereas it is possible with [Cu(phen)(PPh3)2]
+. 

These two complexes are comparable emitters in the solid state. In solution, their emission 

is quenched by solvent-induced exciplex quenching upon transient coordination of the 

solvent and the coordination number of the copper center increases from four to five.  

Therefore, the emission of [Cu(phen)(PPh3)2]
+ is lower in methanol (ϕ = 2.8 X 10-5) than in 

CH2Cl2 (ϕ = 6.6 X 10-4) because the former is more nucleophilic, thus more efficient as 

quencher. In methanol the emission of [Cu(dmp)(PPh3)2]
+ (ϕ = 1.4 X 10-3) is higher than the 

one of [Cu(phen)(PPh3)2]
+ (ϕ = 2.8 X 10-5) because the steric crowding around the copper 

center prevents coordination of the quencher. 

These comparisons highlight the importance of choosing the right combination of ligands in 

order to achieve stability and high emissions. Apart from varying the steric crowding around 

the metal center by substituting the 2,9 positions of the phenanthroline, the electronic 

properties of the phosphine have been investigated for a series of [Cu(dmp)(p-R-PPh3)2]BF4 

(R = Me, H, Cl) complexes. McMillin et al. studied the effect of the phosphine ligand on the 
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stability of Cu(I) complexes. In this study the ligand dmp was kept constant while the 

triphenylphosphine ligand was varied for a family of [Cu(dmp)(p-R-PPh3)2]BF4 complexes. 

They observed systematic changes on the emission responding to variation in donor strength 

of the phosphine where more basic phosphine donors increased the electron density of the 

copper center, affecting the charge transfer excited states by lowering their energy.23 

2.1.1.3 Heteroleptic [Cu(N^N)(P^P)]+ complexes based on chelating diphosphines 

Two major drawbacks of the [Cu(N^N)(PPh3)2]
+ complexes are the exciplex quenching in 

nucleophilic solvents and the poor control of speciation in non-coordinating media.22-23 In 

order to overcome these problems, bidentate chelating phosphines have been studied and 

[Cu(N^N)(DPEphos)]+ was the first example.24-25 DPEphos shows improved photophysical 

properties when compared to its triphenylphosphine analogues (Table 1). The emission 

properties depend on the steric bulk of the phenanthroline used, in fact comparable values 

were measured for the unsubstituted [Cu(phen)(DPEphos)]+ and [Cu(phen)(PPh3)2]
+, 

whereas [Cu(dmp)(DPEphos)]+  possesses higher emission with remarkable longer lifetime.  

Table 1. Photophysical data for heteroleptic copper(I) complexes in CH2Cl2 at room 

temperature. 

Complex λabs (nm) λem (nm) Φ τ, µs 

[Cu(phen)(DPEphos)]+ 391 700 0.0018 0.19 

[Cu(dmp)(DPEphos)]+ 383 570 0.15 14.3 

[Cu(phen)(PPh3)2]
+ 370 680 0.0007 0.22 

[Cu(dmp)(PPh3)2]
+ 365 560 0.0014 0.33 

[Cu(dmp)(dppe)]+ 400 630 0.010 1.33 

An interesting observation is that solvent-induced exciplex quenching is less effective for 

DPEphos complexes than the for those bearing PPh3. In fact, the life time of 

[Cu(dmp)(DPEphos)]+ in methanol is 2.4 µs whereas the one of [Cu(dmp)(PPh3)2]
+ is just 

330 ns and its emission perseveres in acetone (τ = 3.8 µs) and acetonitrile (τ = 1.1 µs). The 

superior emission properties of [Cu(dmp)(DPEphos)]+ might result from the introduction of 

the bidentate phosphine which hampers ligand dissociation and favors the pseudo tetrahedral 

geometry instead the flattened one resisting the typical distortion.25 Another reason  for this 

fact could be attributed to the better interlocking caused by ligand-ligand interactions of 
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bulkier ligands, which could suppress exciplex quenching and provide major rigidity when 

compared to the one with two PPh3, similarly to the previously reported effect present in 

homoleptic [Cu(N^N)]2
+ bearing biquinoline ligands.26  

2.1.1.4 Modification of [Cu(N^N)(P^P)]+: phenanthroline 

After the discovery of the superior photophysical performances achievable when using 

bidentate phosphines, the search for the best combination of N^N and P^P ligand started. The 

functionalization of the phenanthroline scaffold has been intensively considered in order to 

rationalize factors that augment stability, photochemical properties and catalytic performance 

of the heteroleptic [Cu(N^N)(P^P)]+ type complexes. A detailed study investigating the 

stability of these complexes was reported by Armaroli and co-workers using an extensive 

combination of different P^P and N^N ligands (Figure 2).27 

 

Figure 2. N^N and P^P ligands used for preparation of heteroleptic [Cu(N^N)(P^P)]+ 

complexes. 

The authors concluded that stable heteroleptic complexes were always formed with all the 

P^P ligands tested in combination with unsubstituted phen or with the 4,7 substituted Bphen. 

Conversely, bulkier substituents at the 2,9 positions resulted in more labile complexes (Table 

2). Complexes bearing dmp could be isolated. Although stable in the solid state, these 
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complexes undergo disproportionation in solution even in apolar solvents such as CD2Cl2. 

Homoleptic/heteroleptic ratios are highly dependent on the bidentate ligand. It was also found 

that increasing the size of the substituent at the 2 and 9 positions of the N^N ligand (e.g. from 

methyl of dmp to phenyl in dpp) led to the exclusive formation of the homoleptic complexes. 

This instability is due to the steric interaction between the 2,9 substituents of the 

phenanthroline and the PPh2 groups of the phosphine, which increases in the order dmp < 

dpep < dpp. Noteworthy, DPEphos is able to form almost exclusively heteroleptic complex 

with both dmp and dpep due to the destabilization of the [Cu(P^P)2]
+ and favorable 

orientation of PPh2 groups limiting the steric interaction with the 2,9 substituents of the N^N 

ligand. Therefore, it is not surprising that similar P^P ligands, such as xantphos, have been 

used in different applications, which are presented in the following sections. 

Table 2. Proportion of heteroleptic complex as deduced from integration of the 1H NMR 

spectra of the crude product mixture. 

 dmp dpep dpp 

dppm 30% 10% traces 

dppe 80% 15% traces 

dppp 80% 10% traces 

dppb 65% 5% traces 

DPEphos >99.5% >99.5% traces 

 

2.1.2 Applications of [Cu(N^N)(P^P)]+ complexes 

2.1.2.1 Catalysis 

Water reduction 

The main motivation for these investigations on this topic lies in the utilization of solar 

energy being the most abundant energy source to produce hydrogen from water. This is a 

clean and sustainable approach for hydrogen production which does not affect the 

environment by causing pollution.28  The catalytic reduction of water to hydrogen is one of 

the most studied reactions catalyzed by [Cu(N^N)(P^P)]+ complexes. In this transformation, 

the aforementioned  complexes are used as photosensitizers (PS) in combination with a water 

reduction catalyst (WRC) and a sacrificial electron donor (SR)29 (Scheme 2).  
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Scheme 2. Cycles for the photocatalytic proton reduction. Pathway A (red): reductive 

quenching cycle; Pathway B (blue): oxidative quenching cycle.30 

A common feature throughout the different reports is the methodical modification of the 

phenanthroline ligand. The first study was reported in 2013 by Beller and co-workers, who 

used [Fe3(CO)12] as the WRC in combination with triethylamine as SR.30 Firstly, they 

investigated the effect of the functionalization of the N^N ligand in combination with 

DPEphos. Among the nitrogen donor ligands tested, bathocuproine (bcp) showed significant 

activity (TON = 477) due to both steric and electronic factors. The methyl groups of 

bathocuproine help to reduce the non-radiative decay, and prevent exciplex quenching by 

obstructing the expansion of the coordination sphere around the metal center. The 

electronegative phenyl groups may provide π* states lower in energy that facilitate MLCT. 

After showing the superior performance of bcp, different P^P ligands have been tested 

(Figure 3).  
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Figure 3. Activity of [Cu(N^N)(P^P)]+ photosensitizers in water reduction. 

Xantphos gave better performance (TON = 781) with respect to DPEphos due to the larger 

bite angle and higher rigidity. The highest activities were achieved with DBP-thixantphos 

(TON = 797) and POP-thixantphos (TON = 804). It is worth mentioning that under their 

reaction conditions these three copper complexes outperformed the classic and more 

expensive [Ru(bipy)3]Cl2 (TON = 58) and [Ir(bipy)(ppy)2]PF6 (TON = 576). 

After this first report, major efforts were made in tuning the phenanthroline scaffold. Beller 

and co-workers reported a comprehensive library of phenanthroline ligands with different 

steric and electronic properties.31 The related copper complexes were formed in situ using 

xantphos or POP-thixantphos as the P^P ligand and they were compared in catalysis. In all 

cases the latter showed better performances presumably because of the lower steric hindrance 

between the phenanthroline and the phosphine ligand resulting from the more rigid structure 

around the phosphorus atoms. The steric bulk of the 2,9 substituents of the phenanthroline 

ligands was analyzed using A ̶ E, and the optimal structure was found using s-Bu (Figure 4, 

top). The electronic effects were probed using I ̶ O, which possess an olefin spacer to place 

the substituents far from the metal center in order to avoid any extra steric contribution 

(Figure 4, bottom). A linear correlation between the Hammett parameter and activity exist 
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for this series of compounds, with electron donating groups being the less active, presumably 

due to the destabilization of the excited state. 

 

Figure 4. Phenanthroline ligands tested in water reduction mediated by [Cu(N^N)(P^P)]+ 

photosensitizers. 

Finally, phenyl substituents in the 4,7 positions, such as the bathocuproine structure, provided 

one of the choices to achieve high TONs. Overall, the best catalyst proved to be the one 

bearing POP-thixantphos as P^P ligand and C as N^N ligand, which is a bulkier 

phenanthroline possessing sec-butyl groups at the 2,9 positions. A further improvement of 

the performance of the CuPSs was made by incorporating a triphenylamine substituent 

instead of the phenyl moiety at the 4,7 position (Figure 5), which generates intra-ligand 

charge transfer (ILCT) excited states resulting in outstanding absorption and excited-state 

lifetime. This is reflected in superior performances with an astonishing TON = 19000 and 

TOF = 1800 h-1.32 
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Figure 5. Structure of TPAPhen in comparison with bathocuproine structure and activity of 

the related CuPSs. 

Recently, two diimine ligands possessing extended pi-system in the backbone (Figure 6) have 

been tested with the aim of increasing conjugation, consequently augment the extinction 

coefficients and induce a redshifted absorption.33 Experimentally, these complexes revealed 

very weak emissions, which implies rapid deactivation processes. As a consequence, copper 

complexes using these diamine ligands performed poorly in the reduction of water to 

hydrogen. 

 

Figure 6. Structures of the diimine ligands with extended -system in the backbone. 

In parallel to the search for a high performing PSs, researchers investigated the various steps 

of the photocatalysis involving these species. Lochbrunner and co-workers reported a 

detailed time-resolved spectroscopic analysis of several heteroleptic copper sensitizers 

[Cu(N^N)(P^P)]+ concerning their initial light-induced intramolecular electron transfer and 

their relaxation steps in order to compare them with the parent homoleptic [Cu(N^N)2]
+ and 

rationalize their higher performances.34 The excitation of the [Cu(N^N)2]
+ depends on the 

wavelength used and can populate directly the S1 (singlet state) or excite the Sn (where n ≥2) 

state followed by fast population of the S1 state in ~ 100 fs.35-36 Subsequently, the “flattening” 

of the complex structure from a pseudo-tetrahedral to a distorted square planar geometry 

occurs in τ1 ~ 0.8 ps, followed by intersystem crossing (ISC) to the respective T1 (triplet state) 
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in τ2 ~ 10 ps.37-39 As final step, the relaxation from T1 to the ground state takes place on a 

microsecond timescale, partially as emission. TDDFT calculations on [Cu(bcp)(xantphos)]+ 

(I) revealed that excitations from the copper d orbitals to the π* of the  phenanthroline ligand 

are involved in the transitions from S0  S1 and from S0  S2, whereas xantphos does not 

have any positive contribution in harvesting radiation. Since a single charge transfer is 

possible in the heteroleptic complexes from the copper center to the only phenanthroline 

ligand (with respect to two in the homoleptic congeners), smaller extinction coefficients are 

characteristic for [Cu(N^N)(P^P)]+  species.  The following distortion and ISC processes 

have been evaluated for different complexes (Table 3). The flattening from pseudo 

tetrahedral to square planar arrangements is always slower for heteroleptic complexes (1.0 

ps ≤ τ1 ≤ 1.4ps) and depends on the molecular weight and size of the surrounding ligands. 

Finally, faster ISC was detected with phenanthroline bearing the substituent SO3Na (III and 

IV), whereas the n-butyl moiety increases this time (τ2 (II) = 8.4 ps). 

Table 3. Time constants for the distortion (τ1) and ISC (τ2) processes in [Cu(N^N)(P^P)]+ I-

IV (P^P = xantphos) and [Cu(N^N)2]
+ (N^N = bathocuproine, bcp) V. 

 

Complex τ1 (ps) τ2 (ps) 

I 1.1 7.4 

II 1.0 8.4 

III 1.4 6.5 

IV 1.4 6.8 

V 0.7 7.5 

 

Overall this study pointed out that the first initial step after photoexcitation is very fast (in 

the order of picoseconds) and the small differences cannot account for the superior 

performances of the heteroleptic PSs in hydrogen evolving systems. Therefore, their 
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decomposition during the photocatalysis was investigated. The excited CuPSs* can undergo 

both pathways, reductive or oxidative quenching depending on how the electron transfer 

occurs.40 Among them, oxidative quenching pathway is dominant, resulting in the formation 

of the oxidized CuPS which decomposes by dissociation of xantphos and formation of the 

homoleptic [Cu(N^N)2]
+. This has been confirmed by a combination of UV-Vis, Raman 

spectroscopy and electrochemistry techniques.41 

CO2 reduction 

Another interesting application of these CuPSs involves the reduction of CO2 to CO 

described by Beller and co-workers (Figure 7).42 The CuPSs were combined with 

cyclopentadienone iron complexes as catalyst and dimethylphenylbenzimidazoline (BIH) as 

sacrificial donor. Again, [Cu(bcp)(xantphos)]PF6
 (I) was found to be the best PS among the 

ones tested, with a TON (CO) = 487 and selectivity of 99%. In order to investigate the 

possible pathway for the photoinduced electron transfer in this catalytic system, quenching 

experiments using Stern–Volmer analysis were performed between the CuPS and the iron 

catalyst or the SR (BIH). These experiments showed the reductive quenching between CuPS 

and the iron catalyst pathway to operate in this transformation 

 

Figure 7. CO2 reduction to CO catalyzed by iron complexes using  [Cu(N^N)(xantphos)]+ as 

PS and BIH and SR. 

Other catalytic applications 

The complexes with formula [Cu(N^N)(P^P)]+  have been applied for the synthesis of 

carbazoles from tertiary amines via C–C bond formation (Scheme 3),43 which is 
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complementary to the more explored C–N bond formation using transition metal catalysts 

with palladium or copper in combination with strong oxidants.44-46 The active catalyst, 

[Cu(xantphos)(dmp)]BF4, was formed in situ and it successfully catalyzed the formation of 

a broad range of carbazoles bearing both N-aromatic or N-alkylic substituents under visible 

light. The reaction rates were increased by using a continuous flow system, lowering the 

reaction time from 120 h in batch to 10 h when using triphenylamine as starting material. 

Moreover, the optimized procedure uses I2 as oxidant, but it can be replaced with molecular 

oxygen with a slightly lower yield (75% with I2 and 55 % with O2 when triphenylamine was 

used as substrate).  

 

Scheme 3. Synthesis of carbazole using the in situ preformed [Cu(xantphos)(dmp)]BF4 

catalyst under flow conditions and visible light irradiation. 

Another application comprises the synthesis of helicenes, which are interesting materials due 

to their chirality and conjugated nature. The classical approach for their synthesis is the UV 

light-mediated photocyclodehydrogenative cyclization of stilbenes (Mallory reaction)47 

coupled with an in situ oxidation  to restore the aromaticity. This methodology encounters 

selectivity problems when applied to higher helicenes such as [5]helicene VII. It can be 

obtained by irradiation of the stilbenyl starting material VI with a high intensity mercury 

lamp, using molecular iodine as oxidant. The low yield of 25% obtained, was due to the 

formation of the over oxidized polycyclic aromatic species VIII (37%) and the regioisomeric 

product dibenzo[b,g]phenanthrene IX (38%). Attempts to improve selectivity were achieved 

by obtaining 57% yield of the desired product VII using the in situ preformed 

[Cu(xantphos)(dmp)]BF4 under irradiation in the visible region (Scheme 4).48 Importantly, a 

clean reaction was obtained without the formation of any byproduct. The reaction time can 

be shortened using flow conditions from 120 h to 10 h (flow reactor, 40% yield) with 

comparable yield and complete selectivity. 
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Scheme 4. Synthesis of [5]helicene using [Cu(xantphos)(dmp)]BF4. 

Finally, these complexes have been also applied in photoredox transformations of organic 

halides, such as reduction and cyclization.49 In those cases, the complex bearing xantphos 

was less active than the one using DPEphos and in all cases bathocuproine performed better 

than all the other phenanthrolines tested. 

2.1.2.2 Sensors 

These complexes have been also studied as oxygen sensors since their emission intensity 

diminishes as the concentration of oxygen increases, which can be measured by Stern–

Volmer analysis (KSV). An efficient sensor requires two features: long excited-state lifetimes 

and accessibility to oxygen.50 Mann and coworkers reported crystalline 

[Cu(xantphos)(dmp)]tfpb, [Cu(xantphos)(dipp)]tfpb, and [Cu(xantphos)(dipp)]pftpb ( dipp=  

2,9-diisopropyl-1,10-phenanthroline; tfpb = tetrakis(bis- 3,5-trifluoromethylphenylborate;  

pftpb = tetrakis(pentfluorophenyl)borate)  and their performances correlate with the amount 

of void space calculated from their crystal structure (Table 4).51  
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Table 4. Photophysical, % void space and oxygen sensing data. 

Complex KSV Φ (N2) Φ (O2) τ  

(µs, N2) 

τ  

(µs, O2) 

% 

void  

[Cu(xantphos)(dmp)]tfpb 5.65(8) 0.66(5) 0.084(3) 30.2 5.0 3.3% 

[Cu(xantphos)(dipp)]tfpb 3.41(9) 0.95(5) 0.22(1) 38.5 9.6 2.0% 

[Cu(xantphos)(dipp)]pftpb 0.153(2) 0.47(4) 0.31(3) 19.5 15.6 2.0% 

 

The better performances of the complexes bearing tfpb were ascribed to the alignment of the 

void cavities in their solid structure, which were separated by highly mobile CF3 groups 

creating a sort of channel and allowing higher contact with oxygen (Figure 8). On the other 

hand, [Cu(xantphos)(dipp)]pftpb crystals contain void spaces as distinct pockets, thus 

limiting its efficiency. Later, the same authors incorporated [Cu(xantphos)(dmp)]PF6 on solid 

support AP200/19 obtaining similar efficiency (KSV = 5.59) as with [Cu(xantphos)(dmp)]tfpb 

(KSV  = 5.65(8)).52 

 

Figure 8. Representation of the calculated void space as red space filling spheres for 

compound [Cu(xantphos)(dmp)]tfpb. The fluorine atoms of the disordered CF3 groups that 

clutter the void cavities are shown in green.51  
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2.2 Justification and project aims 
Heteroleptic copper(I) complexes with general formula [Cu(P^P)(N^N)]+ containing 

bidentate phosphine (P^P) and phenanthroline (N^N) ligands are an emerging class of 

photocatalysts and photosensitizers in several applications (vide supra).30, 34, 42-43, 53-58,48, 51-52, 

59 In comparison with the benchmark Ru(II) polypyridyl complexes, which have been 

intensively studied for the past decades,60-61 the understanding of the electronic and structural 

requirements governing their photophysical performance is far from complete. The modular 

structure of these scaffolds provides unique opportunities to fine-tune the photophysical, 

structural and electrochemical properties of the complexes by independent modification of 

the (P^P) or (N^N) ligands.29, 62-63 Among the different combinations of (P^P) and (N^N) 

ligands reported in the literature, complexes bearing xantphos and phenanthroline derivatives 

have shown the most promising results in photocatalysis. In order to improve the 

performance of these copper complexes, either as photocatalysts or photosensitizers, fine-

tuning of both steric and electronic properties is needed. Thus, comprehension of the 

underlying steric and electronic features influencing their properties is essential. Up to date, 

modification of the phenanthroline scaffold remains the most common strategy compared to 

the bidentate phosphine component.30, 33, 40  Nevertheless, the xanthene backbone offers more 

options for the fine tuning of both, electronic and steric properties, but this has remained 

relatively unexplored.  

With respect to catalyst development, a systematic study of the properties of the bidentate 

phosphine ligand and their effect on the photophysical and photochemical features of this 

type of heteroleptic copper complexes has not been yet reported. Predominantly, 

commercially available phosphines have been used to assess their photocatalytic 

performance.62 The modification of these ligands typically requires challenging synthetic 

procedures as they tend to oxidize easily in the presence of air which requires laborious 

preparation methods.64 Nevertheless, such ligands have found widespread use in the field of 

homogeneous catalysis and their modular structure allows tweaking their steric and 

electronic properties.65-66 Especially, xantphos derivatives possess rigid backbones and large 

bite angles, which disfavor the square planar geometry and stabilize the tetrahedral 

arrangement of metal complexes.67-68 This feature in particular makes them promising 

candidates for photocatalytic applications, where conservation of a tetrahedral geometry in 
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the excited states has been found to be crucial.69 Furthermore, the structure of this versatile 

bidentate phosphine allows very subtle electronic fine-tuning while keeping the steric 

properties intact.70 Therefore, in this research chapter we studied a Hammett series of five 

well-defined [Cu(p-R-xantphos)(neocuproine)]BF4 (R = CF3, F, H, Me, OMe) complexes (1  ̶

5, Figure 9) by systematic electronic modification of the xantphos scaffold at the para 

position of the arylphosphine moiety. Their structural characterization, determination of 

photophysical properties and application in the aerobic photocatalyzed cross-

dehydrogenative coupling of 1,2,3,4-tetrahydro-2-phenyl isoquinoline with nitromethane 

enabled us to expand the current knowledge regarding these species through the assessment 

of their structure-activity relationships. 

 

Figure 9. Modifications of the xantphos ligand presented in this work. Hammett series of 

[Cu(p-R-xantphos)(dmp)]BF4 complexes. 
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2.3 Results and discussion  

2.3.1 Synthesis of ligands and complexes  

Chloroamino phosphines are important intermediates in phosphorus synthesis; the 

bis(diethylamino)chlorophosphine precursor is extremely moisture sensitive and a 

pyrophoric diethylamino derivate.  It had to be obtained reliably in large amounts as it is a 

crucial reagent for xantphos ligand synthesis. It has to be noted that its synthesis requires 

strict inert conditions and dry reagents. This compound was obtained by the reaction between 

diethylamine and PCl3.
71-72 During its synthesis, formation of 

mono(dialkyl)aminodichlorophosphine and trisubstituted phosphines have to be avoided as 

they cannot be easily separated by distillation. It was found that the most effective 

methodology required the use of mechanical stirring; while the most suitable solvent was 

hexanes. Using these conditions, the synthetic precursor was obtained in a good 80% isolated 

yield (Scheme 5). 

 

Scheme 5. Synthesis of bis(diethylamino)chlorophosphine. 

The synthesis of the xantphos-based Hammett ligand series started from 9,9-dimethyl 

xanthene 6 as the free backbone (Scheme 6) by performing ortho-dilithiation followed by 

reaction with bis(diethylamino)chlorophosphine to afford the intermediate 7 in excellent 90% 

yield.73 In the second step, the methodology of Zhu and co-workers was implemented to 

obtain  the intermediate 4,5-bis(dichlorophosphino)-9,9-dimethylxanthene 8 by chlorination 

of the previous synthetic intermediate in the presence of hydrogen chloride in ether in 70% 

yield.74 In the first three steps of the synthesis, mechanical stirring is required when 

performing the reactions in multigram scale due to the presence of large quantities of salts. 

Lastly, a Grignard reaction with the corresponding p-substituted aryl bromide afforded the 

desired phosphine ligand 9 in generally good yields of 68 ̶ 90%.75 This last step requires to 

be handled with caution when using fluorinated aryl bromides as they can explosively 

decompose yielding metal fluorides.76  These family of ligands used for complexation were 

previously reported by Kamer and co-workers.75 During the development of this thesis an 

optimized synthetic route was achieved. Avoiding side reactions during the synthesis is 
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crucial to obtain these synthetic intermediates in few steps and multigram scales, thereby 

making them highly accessible. Careful monitoring of those reactions by 31P NMR 

spectroscopy is essential to avoid impurities such as remaining starting material or 

decomposition products, which form after extended reaction times, in order to obtain 

reproducible results. All these procedures have been performed multiple times with high 

reproducibility. Importantly, none of the synthetic intermediates and ligands required 

separation by chromatography and only recrystallization was employed to afford them in 

high purity and isolated yields. When compared with the reported methodologies, yields have 

been improved from 16 to 31% for the synthesis of intermediates and final products. 

Multigram scale synthesis of the precursor bis(diethylamino)chlorophosphine and 

intermediates 7 and 8 was possible and the described procedures of this thesis can be scaled 

up successfully.  

Scheme 6. Synthesis of p-substituted xantphos-type ligands. 

With these ligands in hand, the corresponding Cu(P^P)(N^N)]BF4 ((N^N) = 2,9-dimethyl-

1,10-phenanthroline dmp; (P^P)= para modified xantphos ligand) complexes were 

synthesized by stoichiometric reaction of the tetrakis acetonitrile copper tetrafluoroborate 

precursor, [Cu(MeCN)4]BF4, with the chelating phosphine ligand, followed by addition of 

the diimine ligand in dichloromethane (Scheme 7). 
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Scheme 7. Synthesis of [Cu(P^P)(N^N)]BF4 complexes. 

The major hurdle in the synthesis of these complexes is their disproportionation in solution 

with the formation of homoleptic species [Cu(N^N)2]
+ and [Cu(P^P)2]

+, of which the former 

possesses a remarkable thermodynamic stability.77-79 When the phosphine ligand is strongly 

electron donating (p-OMe) or electro withdrawing (p-CF3) the synthesis of the complexes is 

more problematic, probably being governed by the higher thermodynamic stability of the 

homoleptic complex, which was observed in significant amounts at room temperature. 

Moreover, the two species (homoleptic and heteroleptic complexes) were difficult to separate 

by routine purification techniques. Manual separation of the crystals led to a tedious and low 

yielding purification. In order to displace the equilibrium towards the formation of the 

heteroleptic complex (kinetic product of the reaction) and suppress any equilibration to the 

homoleptic complex, the synthesis and purification were performed at -78°C. With this 

strategy, it was possible to hamper the formation of the thermodynamically more stable 

homoleptic species. Analytically pure complexes were isolated by precipitation with diethyl 

ether from a dichloromethane solution of the crude complex, followed by recrystallization 

from a 1:1 mixture of diethyl ether/dichloromethane.   

The complexes were characterized by multinuclear NMR spectroscopy. The 31P NMR 

spectra of all the complexes present a broad singlet at around – 13 ppm, which is shifted at 

low field (ca. 7 ppm) with respect to the signal of the free ligand upon to the coordination to 

the metal center. No trend exists between chemical shift and electronic nature of the para 

substituent at the aryl ring of the phosphorous ligand. The 1H NMR spectra of all the 

complexes show in the aromatic region the two characteristic deshielded peaks of dmp at 

around 8.3 ppm and 7.8 ppm, in addition to the other peaks of dmp and xantphos ligand. In 

the aliphatic region the singlet belonging to the methyl of dmp at 2.2 ppm and the singlet of 

the methyl of the xantphos backbone are present at around 1.8 ppm. The 19F NMR signals of 
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the tetrafluoroborate anion (BF4
-) consist of two singlet signals at ca. 153.3 ppm with ratio 

1:4, corresponding to the isotope 10B and 11B respectively. 

The ligands p-tert-Butyl 9e (Scheme 7) and tert-Butyl xantphos (commercially available) 

could not form this type of heteroleptic complexes due to steric hindrance under our 

complexation conditions and only the homoleptic phenanthroline complex was obtained in 

both cases. The ligand p-(diethylamino)methyl xantphos (xantham) 9c complexated 

successfully but the corresponding complex was not used for catalysis as it was not stable 

under reaction conditions due to its easily oxidizable amino substituents.  

2.3.2 Dissociative equilibria studies  

Dynamic ligand exchange in solution has been observed for various heteroleptic copper 

complexes obtained from dmp and bidentate phosphines, which are however stable in the 

solid state. As described by Armaroli and co-workers the homoleptic/heteroleptic ratio is 

highly dependent on the bidentate phosphine chelating the copper center (Scheme 8).27 In 

order to observe the magnitude of the disproportionation of isolated complexes in solution, 

stability experiments were performed by quantitative 31P NMR spectroscopy with 

triphenylphosphine oxide as internal standard during a period of eight hours in deuterated 

dichloromethane at room temperature. The formation of homoleptic complexes product of 

ligand exchange was not observed for any of the electronically modified ligands 1 ̶ 5. It shows 

the distinctive stability of the complexes bearing xantphos derivatives compared to other 

chelating ligands previously reported with dmp as diimine ligand.27  

 

Scheme 8. Dissociative equilibria for [Cu(P^P)(N^N)]+ complexes. 

During the course of this project it was possible to synthetize the homoleptic species [Cu 

(xantphos)2]BF4 (10) to confirm its structure and that it can be formed despite large steric 

hindrance of the xantphos ligands. We were also successful in obtaining an X-ray crystal 

structure of this complex (Figure 10).  
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Figure 10. Thermal ellipsoid representation of complex 10. Anion, hydrogen atoms and co-

crystallized solvent molecules have been omitted for clarity. Displacement ellipsoids 

correspond to 50% probability. 

2.3.3 Structural features  
All the complexes have been fully characterized and crystals suitable for X-ray analysis 

(Figure 11-15) were grown by slow diffusion of diethyl ether into a saturated solution of the 

complex in dichloromethane (1, 2, 3 and 4), and by slow evaporation of a solution of the 

compound in dichloromethane (5).  
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Figure 11. Thermal ellipsoid representation of complex 1. Anion, hydrogen atoms and co-

crystallized solvent molecules have been omitted for clarity. Displacement ellipsoids 

correspond to 50% probability.  

 

Figure 12. Thermal ellipsoid representation of complex 2. Anion, hydrogen atoms and co-

crystallized solvent molecules have been omitted for clarity. Displacement ellipsoids 

correspond to 50% probability.  
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Figure 13. Thermal ellipsoid representation of complex 3. Anion, hydrogen atoms and co-

crystallized solvent molecules have been omitted for clarity. Displacement ellipsoids 

correspond to 50% probability.  

 

Figure 14. Thermal ellipsoid representation of complex 4. The second independent molecule, 

anions, hydrogen atoms and co-crystallized solvent molecules have been omitted for clarity. 

Displacement ellipsoids correspond to 50% probability.  
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Figure 15. Thermal ellipsoid representation of complex 5. Anion, hydrogen atoms and co-

crystallized solvent molecules have been omitted for clarity. Displacement ellipsoids 

correspond to 50% probability.  

Each structure except 4 (Me) comprises one complex cation, a tetrafluoroborate anion, and, 

other than in the case of 2 (F), various solvent molecules. In the case of 4 (Me) the structure 

comprises two independent complex cations, and CH2Cl2 solvent. In all the species, the 

copper atom possesses the expected distorted tetrahedral geometry, coordinated by the two 

nitrogens of dmp and the two phosphorus of the xantphos derivative. The Cu–N bond lengths 

[2.080(3)–2.127(4) Å] fall into the typical range, although several of them are towards the 

longer end of the range. Conversely, while the majority of the Cu–P bond lengths [2.2562(9) 

–2.3274(9) Å] are also within the typical range, several of these exceed the range of bond 

lengths commonly seen (2.23–2.29 Å), without any noticeable trend in particular regarding 

to phosphine basicity.  

The structures show two general arrangements of the xantphos derivative; where the two aryl 

rings of the xantphos derivative in proximity to each other are either approximately parallel 

or approximately orthogonal. Complexes 2 (F), 3 (H) and 4 (Me) show a parallel 

arrangement, and while the rings in 3 (H) and 4 (Me) are not close enough to take part in π-

π stacking, those in 2 (F) are, although around the limit of distances for such interactions 

[centroid···centroid distance 3.804(15) Å]. Complexes 1 (CF3) and 5 (OMe) show a near-

orthogonal arrangement of rings, the two rings inclined at 70° 5 (OMe) and 85° 1 (CF3) with 
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respect to each other. The greater deviation from orthogonality in 5 (OMe) positions the rings 

too far apart to take part in CH···π interactions, but they are close enough in complex 1 (CF3) 

to form a very weak interaction (C–H···centroid distance 2.96 Å). This distance is slightly 

larger than the conventional van der Waals limit, but CH···π interactions have been suggested 

to be effective at distances greater than this value.98 In addition to the changes within the 

arrangement of the xantphos derivative, the complexes also show variation in relative 

arrangements of the xantphos and dmp. In complexes 2 (F) and 3 (H) the dmp sits centrally 

relative to the two PR2 groups of the xantphos derivative, the aryl rings that form this cavity 

lying approximately orthogonal to the plane of the dmp, but not close enough to give rise to 

CH···π interactions. The methyl of the dmp lying closest to the xanthene core is close enough 

to form weak CH···π interactions involving two different hydrogens on the same methyl in 

both cases (C–H···centroid distances 2.79–2.87 Å). In contrast, complexes 1 (CF3), 4 (Me) 

and 5 (OMe) show the dmp positioned closer to one aryl ring of the xantphos derivative than 

the other, although these three complexes do show variations on this arrangement. Both 

complexes 4 (Me) and 5 (OMe) have the aryl ring of the xantphos closest to being 

approximately orthogonal to the dmp plane, and positioned to form a CH···π interaction, at 

C–H···centroid distances of 2.75 and 2.68 Å, respectively. In both these cases the dmp is 

again positioned with a methyl group in proximity to the xanthene, and able to form CH···π 

interactions, although these are likely weaker than those seen in 2 (F) and 3 (H) (C–

H···centroid distances for 4 (Me) 2.87–2.89 Å, for 5 (OMe) 2.97 Å), and in the case of 5 

(OMe) may be regarded as extremely weak due to their length. Complex 1 (CF3), although it 

does show inclination of the dmp towards one aryl ring, in this case the two ring systems are 

parallel, although not close enough to be involved in π-π stacking. Unlike the other four 

complexes, however, the dmp is inclined differently, and the methyl proximal to the xanthene 

is not close enough to form any CH···π interaction. 

All five complexes show some intermolecular interactions between cationic complexes. For 

complexes 2 (F), 3 (H), 4 (Me) and 5 (OMe) these are CH···π interactions involving 

predominantly aryl hydrogens, although in 4 (Me) and 5 (OMe) interactions are seen 

involving the methyl hydrogens of the dmp (C–H···centroid distances 2.63–2.94 Å). In 

contrast, in 1 (CF3) no CH···π interactions between complexes are seen, instead the primary 

interactions are mutually supporting π···π interactions between adjacent dmp 
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[centroid···centroid distances 3.523(2) and 3.639(2) Å]. These interactions between 

complexes are additionally supported by a variety of CH···F interactions with the 

tetrafluoroborate anions, where the anion can often bridge adjacent complexes. The solvent 

molecules, where present, also form similar interactions with both cations, anions and other 

solvent molecules. The analysis corresponding to the structural features was performed by 

Dr. David B. Cordes at the University of St Andrews. 

2.3.4 Electrochemistry  
For the sections 2.3.4 - 2.3.6, electrochemical and photophysical characterizations of 1 ̶ 5  

were carried out and analyzed by Chenfei Li under the supervision of Dr. Eli Zysman-Colman 

at the University of St Andrews. The analysis of the phosphine ligand effect on UV-Vis 

absorption features (Section 2.3.5) was analyzed at Leibniz Institute for Catalysis (LIKAT) 

in Rostock by Paola Andrea Forero Cortés and Dr. Esteban Mejía. The electrochemistry of 

1–5 was studied by cyclic voltammetry (CV) in order to discern the redox behavior of the 

complexes. Measurements were carried out in degassed HPLC grade dichloromethane 

(CH2Cl2) and acetonitrile (MeCN) under a nitrogen atmosphere with 0.1 M TBAPF6 as the 

supporting electrolyte using a glassy carbon working electrode, a platinum wire  counter 

electrode, a Ag/Ag+ pseudo-reference electrode and referenced vs. SCE using Fc/Fc+ as an 

internal standard (0.46 V in CH2Cl2)
80 and scan rate: 50 mV s-1. The CV and DPV traces are 

resumed in Table 5 (CH2Cl2) and Table 6 (MeCN). 
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Table 5. Ground and excited state electrochemical data of 1–5 in CH2Cl2. 

Complex σp Eox/ Va Ered/ Va Eredox/ Va Eopt/ Vb E*ox/ Vc E*red/ Vc 

1 0.54 1.51 -1.74 3.25 2.89 -1.38 1.15 

2 0.06 1.32 -1.96 3.28 2.78 -1.46 0.82 

3 0 1.18 -2.03 3.21 2.62 -1.44 0.59 

4 -0.17 1.25 / / 2.56 -1.35 / 

5 -0.27 1.12 -1.71 2.92 2.70 -1.58 0.99 

a) Electrochemical measurements carried out in a degassed HPLC grade CH2Cl2 with 

glassy carbon working electrode, Ag/Ag+ reference electrode and a platinum wire counter 

electrode. Fc/Fc+ was used as the internal standard and the data reported versus SCE (0.46 V 

vs SCE in CH2Cl2);
81 b) optical gap inferred from the onset of the absorption of the MLCT 

band, defined as the energy at 10% relative intensity of the maximum on the low energy tail; 

c) excited state redox potentials calculated with equation E*ox = Eox - Eopt, E*red = Ered + 

Eopt.
82 σp: Hammett parameter.  

Table 6. Ground and excited state electrochemical data of 1–5 in MeCN. 

Complex σp Eox/ Va Ered/ Va Eredox/ Va Eopt/ Vb E*ox/ Vc E*red/ Vc 

1 0.54 1.51 -1.63 3.14 2.79 -1.28 1.16 

2 0.06 1.20 -1.73 2.93 2.66 -1.46 0.93 

3 0 1.21 -1.74 2.95 2.61 -1.40 0.87 

4 -0.17 1.19 -1.72 2.91 2.58 -1.39 0.86 

5 -0.27 1.17 -1.75 2.92 2.53 -1.36 0.78 

a) Electrochemical measurements carried out in a degassed HPLC grade MeCN with 

glassy carbon working electrode, Ag/Ag+ reference electrode and a platinum wire counter 

electrode. Fc/Fc+ was used as the internal standard and the data reported versus SCE (0.38 V 

vs SCE in MeCN);31 b) optical gap inferred from the intersection points of the normalized 

absorption spectra and the tangent of the onset of the normalized emission spectra in MeCN, 

defined as the energy at 10% relative intensity of the maximum on the low energy tail; c) 
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excited state redox potentials calculated with equation E*ox = Eox - Eopt, E*red = Ered + Eopt.
82 

σp: Hammett parameter. 

All the complexes studied show irreversible oxidation and quasi-reversible reduction waves 

when studied in CH2Cl2 and MeCN, with the exception of complex 4 (p-Me) where the 

reduction wave was not detected. It should be noted that small differences in oxidation waves 

were observed for all complexes in the two solvents but that for complexes 2 (p-F) and 3 (p-

H), significantly more negative reduction potentials were obtained in CH2Cl2 when compared 

to MeCN. The excited state oxidation potentials of 1–5 vary from E*ox= -1.58 V for 5 to 

E*ox= -1.28 V for 1. These values are higher than that of [Ru(bpy)3]
2+ ( E*ox = -0.81 V), 

which is widely used in photoredox catalysis reactions following oxidative quenching 

pathways.83 Comparing 1–5 with [Cu(dap)2]Cl (dap = anisylphenanthroline) (E*ox = -1.43 

V), a well-studied copper-based photoreductant,84 one of the five complexes was found to be 

a stronger photoreductants (E*ox= -1.46 for 2). On the other hand, these copper complexes 

also have the potential of being photooxidants. The excited state reduction potentials of 1 ̶ 5 

vary from 0.59 V (for 3) to 1.16 V (for 1). The E*red for 1 is close to that of the photocatalyst 

[Ir(dF-CF3-ppy)2(dtbupy)]+ (E*red = 1.21 V),85 while most of the complexes have larger 

E*red than [Ru(bpy)3]
2+ (E*red = 0.77 V).83 

The electrochemical measurements in CH3CN were plotted versus the Hammett parameter 

(σp) and was observed an increase of ΔEred, Eopt, E*ox and E*red going from complexes 

possessing negative σp (electron donating substituents) to the ones with positive σp (electron 

withdrawing substituent). Contrarily, complexes bearing more positive σp have lower Ered 

(Figure 16). Poor correlations were observed when using the electrochemical data in CH2Cl2. 
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Figure 16. Hammett plot of the electrochemical data in CH3CN for 1 ̶ 5. 

2.3.5 UV-Vis absorption 

The absorption data for 1 ̶ 5 are compiled in Table 7. The absorption spectra are dominated 

by two features: an intense (ε ≈ 37000 M-1cm-1) high energy (250 ̶ 300 nm), ligand-centered 

(1LC) π - π * transition and a low energy (350 ̶ 450 nm), (ε ≈ 2000 M-1cm-1) metal to ligand 

charge transfer (1MLCT) transition. These absorption profiles mimic literature reports of 

[Cu(N^N)(P^P]+ complexes.40  

All complexes of the Hammett series show a similar CT absorption band  ̴ 376 ̶ 403 nm (Table 

7) and emission band  ̴ 520 ̶ 558 nm (Table 8). These bands shifted slightly to longer 

wavelengths when the Hammett value changed from positive to negative values due to the 

increased donation ability of the phosphine. The trend observed correlates with the energy 

gap between the phenanthroline π* orbital and the copper d orbital which in turn decreases 

as the Hammett value becomes more positive, lowering the energy of the CT excited states 

(Figure 17).23, 86  
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Table 7. Relevant absorption data for complex 1–5 

Complex 
  abs / nm      ( / *103M-1cm-1)a   

σp LC CT 

1 0.54 278(41) 376 (3.3) 

2 0.06 275(40) 385 (2.8) 

3 0 276(38) 393 (2.7) 

4 -0.17 276(41) 392 (3.2) 

5 -0.27 274(36) 403 (1.9) 

a) Absorption data for complexes 1–5, all measurements were carried out in HPLC grade 

CH2Cl2 at 298K. σp: Hammett parameter. 

2.3.6 Solution photophysics 
The photophysical properties of 1–5 were studied in degassed CH2Cl2 at 298 K. Their 

photophysical data are given in Table 8. All five complexes showed broad and unstructured 

CT emission profiles and emit over a narrow range in the green-yellow color range from 520 

for 1 to 558 nm for 5. The emission energies fit a Hammett trend, demonstrating that 

modulation of the electronics of the P^P ligand can tune the emission energy of the complex 

in a controlled manner (Figure 17).  

Table 8. Relevant solution state photophysical data for complexes 1–5a 

Complex σp λem (nm)b ФPL (%)c τPL (µs)d kr x 104 s-

1 

knr x 104 s-

1 

1 0.54 520 8.0 3.09 2.60 29.77 

2 0.06 537 11.8 3.37 3.50 29.67 

3 0 550 12.5 3.00 4.17 33.33 

4 -0.17 550 9.3 6.17 1.51 16.21 

5 -0.27 558 14.5 6.83 2.12 14.64 

a) Measurements at 298 K in deaerated CH2Cl2; b) exc = 360 nm;  c) Quinine sulfate 

used as the reference (PL = 54.6% in 0.5 M H2SO4 at 298 K);18 d) exc = 369 nm. ФPL: 

Photoluminescence quantum yield, PL: excited state life time, kr radiative decay constant, knr: 

non-radiative decay constant. σp: Hammett parameter. 

 



Chapter II: Electronic phosphine ligand effects on the photochemistry of heteroleptic Cu(I) 

complexes: A comprehensive study 

 
57 

 

 

Figure 17. Hammett plot of absorption and emission energies in CH2Cl2 for 1 ̶ 5. 

As a result of the large degree of steric hindrance around the metal center induced by both 

the dmp and the bulky xantphos ligands, photoluminescence quantum yields between 8-

14.5% were observed for 1 ̶ 5. The excited state lifetimes, PL, of 1 ̶ 5 range from 3.00 to 6.83 

μs. Complexes bearing electron-donating substituents on the xantphos ligand (4 and 5) show 

decreased knr compared to the other complexes within the series.  

It is now possible to cross-compare the photophysical properties of 1 ̶ 5 with other Cu-based 

photocatalysts. For instance, [Cu(dmp)(DPEPhos)]+ shows a marginally higher ФPL in 

CH2Cl2 (15%) and significantly longer life time PL (14.3 s) than 1 ̶ 5. However, E*ox of 

[Cu(dmp)(DPEPhos)]+ is -1.35 V, which is the same as complex 4 (Table 5) and less reducing 

than the remaining four complexes in the series.25 In the context of photoredox catalysis, an 

analysis of the excited state redox behavior of 1 ̶ 5 reveals the attractive potential of 5 as it 

has the highest excited state oxidation potential, highest solution state PL and longest PL. 

2.3.7. HOMO and LUMO contributions 
Density functional theory (DFT) calculations indicated that the lowest unoccupied molecular 

orbital (LUMO) of 1 ̶ 5 is located on the dmp ligand while the highest occupied molecular 

orbital (HOMO) consists of a combination of copper d-orbitals and P^P ligand orbitals. These 
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calculations were performed by Professor Michael Bühl, Robert Dickson and Chenfei Li at 

the University of St Andrews.  

 

Figure 18. Kohn-Sham energy diagram for 1 ̶ 5 with electron density distribution of HOMO 

and LUMO (PBE0 level of DFT calculations). Red bars represent copper orbitals, green bars 

represent orbitals on the N^N ligand and blue bars represent orbitals on the P^P ligand. 

The trend in HOMO energies follows the Hammett trend, it was observed that complexes 4 

and 5 have the highest HOMO and smaller ΔE between HOMO and LUMO compared to 

complexes bearing electron-withdrawing substituents (1 and 2) according to DFT-calculated 

HOMO-LUMO gaps). It can be deduced that the electronic phosphine effect on the LUMO 

is less evident when compared to the HOMO (Figure 18).  
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2.3.8 Photocatalysis 

In order to assess the influence of the electronic phosphine ligand effect in the photocatalytic 

performance of these complexes, the aerobic photocatalyzed cross-dehydrogenative coupling 

(CDC) between N-phenyl-tetrahydroisoquinoline 11 and nitromethane was selected as model 

reaction, based on the previous report by Wang and co-workers which used a carborane-

based phosphine ligands.87 This simple reaction allowed us kinetic profiling and comparison 

between our series of complexes (Scheme 9).  

 

 

 

 

 

 

Scheme 9. CDC of 1,2,3,4-tetrahydro-2-phenyl isoquinoline with nitromethane 

photocatalyzed by [Cu(P^P)(dmp)]BF4 complexes. Reaction conditions: 11 (0.2 mmol), 

[Cu]+ (0.003 mmol, 1.5 mol%), CH3NO2 (10 mL), O2 atmosphere. Reaction profiles taken 

within 4 hours and yields were determined by quantitative 1H NMR analysis of the crude 

reaction mixture using naphthalene as external standard based on 11. Irradiation: 300 W 

xenon lamp at ambient temperature (25 ªC). Wavelength 300 ̶ 600 nm. 
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The five complexes studied gave yields of product 12 varying from 26 to 88% after four 

hours of irradiation by a 300 W xenon lamp operating in the 300-600 nm range. Very fast 

reaction rates were obtained initially for complexes 2 and 3, but conversion stalled after only 

two hours of reaction, suggesting fast deactivation of the catalyst. Complexes 4 and 5 gave 

slower initial rates of reaction but these rates remained constant over longer periods of times, 

suggesting that the catalyst remained active over the course of the experiments. A series of 

control experiments were conducted in order to confirm the requirement of all the 

components of the reaction (Table 9). 

Table 9. Control experiments for the CDC of 1,2,3,4-tetrahydro-2-phenyl isoquinoline with 

nitromethane. 

 

Entry Variation Yield (%) 

1 0.003 mmol xantphos, 0.003 mmol [Cu(MeCN)4]BF4 8 

2 0.003 mmol dmp, 0.003 mmol [Cu(MeCN)4]BF4 8 

3 0.003 mmol [Cu(MeCN)4]BF4 4 

4 Only substrate 4 

5 No irradiation 0 

Reaction conditions: 11 (0.2 mmol), CH3NO2 (10 mL), O2 atmosphere. Reaction time: 8 

hours and yields were determined by quantitative 1H NMR analysis of the crude reaction 

mixture using naphthalene as external standard based on 11. Irradiation: 300 W xenon lamp 

at ambient temperature (25 °C). Wavelength 300 ̶ 600 nm. 
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It was observed that the reaction does not proceed in the dark (Table 9, entry 5) and only 4 

% of the product was observed in the presence of the copper salt without addition of any of 

the ligand (entry 3) as well as with only substrate in absence of the metal precursor and 

ligands upon irradiation (entry 4). It was also observed that a yield of only 8% of the desired 

product was obtained when the homoleptic xantphos and dmp complexes were formed in situ 

(entries 1 and 2). Moreover, kinetic profiles of each catalyst were obtained using a long pass 

filter Cut-On 422 nm and a decrease of the reaction rates for all complexes was observed; the 

maximum product yield obtained by complex 5 was 21% after four hours (Figure 9, Chapter 

V). It suggests the reaction does not work in optimal conditions when the complexes are not 

irradiated at their wavelength of maximum absorbance, as expected.  

2.3.8.1 Structure – reactivity relationships 

The correlations between photophysical, structural parameters and the conversion for each 

catalyst (1 ̶ 5) at four hours reaction time are reported in Table 10. The full electrochemistry 

and photophysical data in dichloromethane were selected in this chapter to address the 

discussion due to the lower interference of this solvent in terms of complex stability. Redox 

potentials in acetonitrile serve as reference for comparison of the complexes with those in 

literature but their full photophysical characterization in this solvent is still needed in order 

to showcase their behavior. Overall activity has been considered for the established 

correlations which can differ from the initial catalyst activity due to secondary processes.  
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Table 10. Correlations between photophysics, structural parameters and activity of [Cu(p-R-

xantphos)(dmp)]+ complexes. 

Entry p-R σp  PL (s) PL (%) E*Ox (V) Yield at 4h (%)  

1 OMe (5) -0.27 6.83 14.5 -1.58 88.4 

2 H (3) 0 3.0 12.5 -1.44 64 

3 F (2) 0.06 3.37 11.8 -1.46 53.6 

4 Me (4) -0.17 6.17 9.3 -1.35 38.4 

5 CF3 (1) 0.54 3.09 8.0 -1.38 26.8 

p-R: para substituent, σp: Hammett parameterPL: Life time, ФPL: photoluminescence 

quantum yield, E*ox: Excited state oxidation potential. Yield at 4h (%): Reaction conditions: 

11 (0.2 mmol), [Cu]+ (0.003 mmol, 1.5 mol%), CH3NO2 (10 mL), O2 atmosphere. Yields 

were determined by quantitative 1H NMR analysis of the crude reaction mixture using 

naphthalene as external standard based on 11. Irradiation: 300 W xenon lamp at ambient 

temperature (25 °C). Wavelength 300 ̶ 600 nm. 

Geometry 

It has been observed that conservation of the tetrahedral geometry is a very important 

requirement for the optimal performance of Cu(I) photosensitizers as stated by Beller and co-

workers.40,42 As previously discussed in section 2.3.3, all complexes display a pseudo 

tetrahedral geometry in the ground state. These results are in agreement with the previously 

reported strategy employed to stabilize the Cu(I) excited state using sterically hindered 

ligands that preserve the tetrahedral geometry by preventing the Jahn-Teller distortion and 

concomitant flattening of the complex to the square planar geometry, thus favoring the 

radiative relaxation pathway.41 By forcing the excited state into a tetrahedral environment, 

the energy gap between the copper d-orbitals and the π* orbitals from the ligand increases, 

slowing down the premature non-radiative deactivation of the photosensitizer.26 This effect 

on the catalysis can be illustrated by comparing the results of the catalytic reaction performed 

by the homoleptic Cu(N^N)2 complex with neocuproine as ligand. This complex does not 
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have the xantphos ligand which enforces 109° bond angle and readily undergoes Jahn-Teller 

distortion to a flattened excited state. When the complex is formed in situ and used for 

catalysis, it only results in 8% yield after four hours of irradiation. By contrast, the 

heteroleptic complexes 1 ̶ 5 possess the xant-type ligand that forces the metal center into a 

tetrahedral geometry and all of them perform significantly better under identical catalytic 

conditions. Even complex 1, the least efficient of the series, gives more than a three-fold 

increase in yield up to 26%. The homoleptic complex Cu(P^P)2 formed in situ performs 

poorly, in this case geometry would not be the drawback but instead the MLCT process could 

be different from the synergic xantphos-dmp combination affecting the catalytic outcome. 

Electronic phosphine ligand effect 

In addition to the geometric factor, the stability of these species is dictated also by an 

electronic component. This constitutes the synergic effect associated with a good σ-donor 

(phosphine ligand) in combination with the π-acceptor dimethylphenanthroline which helps 

to hamper ligand dissociation.22-23, 88 In principle, higher donation from the phosphine results 

in more stable complexes. Such correlation has not been previously proven for the 

[Cu(P^P)(N^N)]+ type of complexes containing xantphos as chelating ligand, despite their 

various applications. In our case, with better sigma donors such as 4 and 5 the conversion 

rate did not change over the course of the reaction, indicating negligible deactivation of the 

catalyst. In contrast, the presence of the most electron withdrawing ligand in complex 1 

deactivates faster than its analogues giving the lowest conversion after four hours. Despite 

the high activity that the unmodified xantphos complex 3 exhibits, catalyst decomposition is 

still observed, as evidenced by the sharp decrease in reaction rate after 2 hours of irradiation 

which also occurs in a similar fashion to complex 2 (Scheme 9). Importantly, here we show 

for the first time how the electronic effects of the diphosphine ligand influences the excited 

state stability in these type of photosensitizers. We observed that complexes bearing electron 

donating groups (negative Hammett values) exhibit longer excited state life times (5 (6.83 

μs), 4 (6.17 μs)) (Table 10, entries 4 and 1). This observation confirms that the design of 

photosensitizers with longer state lifetimes not only depends on the geometry but also on the 

electronic features which undoubtedly play a crucial role enhancing the stability of the 

complexes. 
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Solvation 

It has been shown that one of the major deactivation pathways of the Cu(I) complexes of the 

type studied in this chapter involves a solvent induced exciplex quenching of their excited 

states. In general, the bulky xant-like ligands prevent Cu(I) complexes against solvation, 

therefore slowing non radiative decay processes of the excited stated. Since solvation of Cu(I) 

complexes depends not only on the geometry around the copper center but also on the 

electrostatic interactions of such cationic compounds with the solvent, electronics of the 

ligand play a decisive role. More donating phosphines decrease the positive character of the 

Cu(I) metal center,89 thus reducing the destabilizing complex-solvent interaction leading to 

more stable complexes and enhancing their photochemical activity.  

Among all the complexes tested, [Cu(p-OMe-xantphos)(dmp)]BF4 (5) represents the ideal  

combination between σ donation from the chelating phosphine ligand making this 

photosensitizer highly stable. The complex in mention exhibits the highest ΦPL,  the lowest 

non radiative decay rate constant knr, the longest excited state life time PL, more negative 

Hammett parameter and most negative E*ox potential among the Hammett series (Table 10). 

As a result of this, the reaction reaches full conversion within 5 hours, yielding 93% of the 

desired product. 

Mechanistic insights  

For this transformation a dominant reductive quenching pathway has been previously 

proposed in which the excited Cu(I) species is reduced to a radical anion copper intermediate 

“Cureduced”, oxidizing the amine substrate II and the photocatalyst being regenerated by 

molecular oxygen (Scheme 10, upper catalytic cycle), yielding the superoxide anion as 

byproduct III.87 An alternative mechanism can be envisaged based on a oxidative quenching 

pathway (Scheme 10, lower catalytic cycle). In this case, the excited Cu(I) undergoes an 

electron transfer with molecular oxygen, yielding the oxidized Cu(II) species II which can 

be reduced back to Cu(I) by the amine substrate III. It should be noted that in both of these 

mechanisms, the radical cation of the amine substrate is formed along with the superoxide 

anion O2
.- and the major difference lies in the initial electron transfer to the excited 

photocatalyst from the amine in a reductive quenching pathway, or from the excited 

photocatalyst to molecular oxygen in an oxidative quenching pathway.  

 



Chapter II: Electronic phosphine ligand effects on the photochemistry of heteroleptic Cu(I) 

complexes: A comprehensive study 

 
65 

 

Analysis of the photophysics of the complexes (1 ̶ 5), showed a strong correlation between 

the photocatalyst performance and E*ox potentials, but no significant correlation with E*red 

potentials, suggesting an oxidative quenching in the catalytic cycle as the preferred pathway 

(Scheme 10). As observed by Walton and co-workers, complexes with tetrahedral structures 

exhibit the higher E*ox potentials due to their resistance to undergo the Jahn-Teller distortion 

for the appropriated flattened geometry of complexes with formal Cu(II) oxidation state, 

which is the case for our series of complexes.25 Among them, photocatalyst 5 has the most 

negative E*ox potential (E*ox = -1.58 V Vs SCE) within the series which explains its 

superior activity in this reaction. Indeed, both reduction of oxygen to the superoxide anion 

(Ered(O2/ O2
.-

) = -0.75 V Vs SCE)90 by the photoexcited Cu(I) complex and the oxidation of the 

tetrahydroisoquinoline (Eox = 0.83V to 0.88V Vs SCE depending on solvent)91-93 by the 

oxidized Cu(II) (Eox = 1.12V Vs SCE) are highly favored. In another illustrative case, 

complex 3 has a E*red = 0.59V (Vs SCE in CH2Cl2) which should prevent any reductive 

quenching pathway via electron transfer from the amine, but the catalytic reaction proceeds 

in 53% yield after four hours suggesting the preferred oxidative quenching pathway. 
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Scheme 10. Proposed mechanism for the aerobic photocatalyzed cross-dehydrogenative 

coupling between N-phenyl-tetrahydroisoquinoline and nitromethane performed by [Cu(p-

R-xantphos)(dmp)]+ complexes. 

We therefore propose the following mechanism for this transformation (Scheme 10). After 

light irradiation, the excited state of the heteroleptic copper complex is quenched by 

molecular oxygen, generating a Cu(II) species and the superoxide radical anion O2
.- II. Single 
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electron transfer between this Cu(II) and 11 regenerates the photocatalyst along with the 

formation of the radical cation 13 III (Scheme 10, lower cycle). Deprotonation from the 

benzylic position of 13 by O2
.- forms the radical 14 along with the hydroperoxyl radical HOO. 

IV. Reaction of those two species, either by direct recombination V or single electron 

transfer, leads to an equilibrating mixture of hydroperoxide 15 and iminium ion 16 VI.94-96  

Finally, nucleophilic attack of nitromethane on the highly electrophilic 16 leads to the 

formation of the CDC product 12 VII. 

The existence of the oxidative pathway under our reaction conditions was further supported 

by emission quenching experiments. Therefore, the emission intensity of a 41.66 µM solution 

of 5 was determined in the absence and in the presence of the quenchers 11 and O2 (2.6mM 

each)97, respectively (Figure 19). The emission was quenched by ca. 18.2% in the presence 

of 11 (red line) and by ca. 95.9% in the presence of O2 (blue line), pointing out to the 

preferential interaction between 5 and O2 than between 5 and 11. It is important, however, to 

state that the quenching of emission does not necessarily mean an electron transfer. 
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Figure 19. Steady-state emission spectra of 5 in the absence of any quencher (black), in the 

presence of 2.6 mM 11 (red) and in the presence of 2.6 mM O2 (blue). Note that in the 

presence of O2, almost all of the emission is quenched. Steady-state emission spectra were 

recorded using a Cary Eclipse Fluorescence spectrophotometer (Agilent Technologies) with 

an excitation wavelength of 390 nm, a slit width of 10 nm for excitation and of 20 nm for 

emission and an averaging time of 0.1s. The studies were performed in a sealable 10x10 mm 

quartz glass cuvette. The oxygen amount was adjusted by addition of the corresponding 

amount of an O2-saturated acetonitrile solution97 (2.6 mM O2) to the solution of 5. 

According to the quenching experiment a reductive pathway is also possible and has to be 

considered where the copper complex is excited by light I, then performs SET with the 

substrate 11 II and the yielded reduced copper gets oxidized by oxygen regenerating the 

catalyst III (Scheme 10, upper cycle).  In order to compare the likelihood of both pathways 

under reaction conditions, it is possible to compare the favorability of the initial electron 

transfer by looking at the potentials of these components. The redox potentials of the excited 

state of the complexes reveal that a reduction of oxygen by the complexes is favorable, 

complexes 1̶ 5 having consistently more negative E*ox potentials, ranging between -1.35 V 

and -1.58 V in dichloromethane (Table 5) and -1.28 V to -1.46 V in acetonitrile (Table 6), 

allowing the facile reduction of oxygen with potential of -0.75 V Vs SCE90 (II).  On the other 
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hand, the excited state reduction potential E*red of complexes 1 ̶ 5 range from 0.59 V to 1.15 

V in dichloromethane and 0.78 V to 1.16 V in acetonitrile. These values are only slightly 

more positive, or even less positive in the case of complex 3 in CH2Cl2, than the reported 

oxidation potential from 0.83 to 0.88 V Vs SCE depending on the solvent91-93 for the 

oxidation of tetrahydroisoquinoline 11 to the radical cation. Collectively, this suggests that 

the oxidative quenching process would be favored for all the complexes studied in this 

section but that, although unlikely, a minor contribution of the reductive quenching pathway 

could be operating for some complexes. 

It is also important to consider that analysis of this catalytic process is also affected by 

contribution not only from the well-defined catalyst but also from the homoleptic complexes 

formed during the reaction, which showed to be slightly active when formed in situ under 

reaction conditions (Table 9). Other non-radiative pathways may be taking place during this 

catalytic process but there is not enough experimental evidence at this stage supporting such 

processes. At the current state of our investigations, quenching of the excited photosensitizers 

by oxygen forming singlet oxygen cannot be discarded and the result from the steady-state 

emission experiments cannot be fully attributed to an oxidative quenching (Figure 16, blue 

line). Identification of singlet oxygen under reactions conditions and its role not only as a 

quencher of the excited photosensitizer but as a reactant that yields the product in this specific 

catalytic process requires additional experimental work which is not covered in this PhD 

thesis. Therefore, this chapter focused on the discussion of the phosphine ligand effects and 

oxidative and reductive pathways based on redox potentials and experimental evidence. 

Other processes that could be operating in competition are not discussed in the present 

manuscript but research on the topic is ongoing in order to conclude the project.  
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2.4 Conclusions 
The Hammett series of xantphos ligands was synthesized by an optimized methodology, 

reliably obtaining precursors and synthetic intermediates in multigram scale. Additionally, 

the synthetic procedures reported in this thesis do not require tedious purification protocols 

such as column chromatography for sensitive compounds and these can be obtained by 

recrystallization in high purity and in good to excellent yields. 

 Donating substituents at the para position of modified xantphos ligands play a key role in 

stabilizing heteroleptic copper(I) photosensitizers and have a significant impact on their 

catalytic performance. The more negative the Hammett parameter σp is, the higher the 

stability of the photosensitizer is. Evidently, the choice of the chelating phosphine ligand is 

relevant for the optimization of the performance of Cu(I) complexes in photocatalytic 

applications. With the application of the Hammett series of complexes in the aerobic 

photocatalyzed Cross-Dehydrogenative Coupling (CDC) between N-phenyl-

tetrahydroisoquinoline and nitromethane as model reaction, it has been shown that structure, 

photophysical properties and stability of the photosensitizers are all important components 

to consider for the achievement of high catalytic performance. Interestingly, it has been 

shown that, although some photophysical properties correlate with the Hammett parameter, 

their influence on the photocatalytic performance is more complex and contemplates several 

interdependent variables. Among the complexes tested, 5 achieved the highest catalytic 

activity, due to the synergistic combination of all these factors. Fine-tuning of the electronic 

properties of the phosphine ligand resulted in the enhanced catalytic performance of the 

photosensitizer. Moreover, the systematic investigations presented in this work helped to 

understand the reaction mechanisms for the photocatalytic process.  

In particular, a direct correlation between activity and E*ox potentials, along with emission 

quenching experiments proved that oxidative and reductive quenching pathways are involved 

in the aerobic photocatalyzed CDC between N-phenyl-tetrahydroisoquinoline and 

nitromethane. Overall, this detailed study showcased that systematic investigations are a 

powerful tool to achieve more efficient systems by understanding of reaction mechanisms 

and complex interactions in photocatalytic transformations.   



Chapter II: Electronic phosphine ligand effects on the photochemistry of heteroleptic Cu(I) 

complexes: A comprehensive study 

 
71 

 

2.5 References 
1. Hoffert, M. I.; Caldeira, K.; Jain, A. K.; Haites, E. F.; Harvey, L. D. D.; Potter, S. D.; 

Schlesinger, M. E.; Schneider, S. H.; Watts, R. G.; Wigley, T. M. L.; Wuebbles, D. J. Energy 

implications of future stabilization of atmospheric CO2 content. Nature 1998, 395 (6705), 

881-884. 

2. US Dept of Energy, W., DC, Energy Information Administration (2015) Annual 

Energy Outlook  with projections to 2040. 2015. 

3. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 

351 (6271), 353. 

4. Teegardin, K.; Day, J. I.; Chan, J.; Weaver, J. Advances in Photocatalysis: A 

Microreview of Visible Light Mediated Ruthenium and Iridium Catalyzed Organic 

Transformations. Org. Process Res. Dev. 2016, 20 (7), 1156-1163. 

5. Campagna, S.; Puntoriero, F.; Nastasi, F.; Bergamini, G.; Balzani, V. Photochemistry 

and photophysics of coordination compounds: ruthenium. (Photochemistry and Photophysics 

of Coordination Compounds I).Top. Curr. Chem. 2007, 280, 117-214. 

6. Zeitler, K. Photoredox Catalysis with Visible Light. Angew. Chem. Int. Ed. 2009, 48 

(52), 9785-9789. 

7. Rau, S.; Walther, D.; Vos, J. G. Inspired by nature: light driven organometallic 

catalysis by heterooligonuclear Ru(II) complexes. Dalton Trans. 2007,  (9), 915-919. 

8. Paria, S.; Reiser, O. Copper in photocatalysis. ChemCatChem 2014, 6 (9), 2477-2483. 

9. Sandroni, M.; Kayanuma, M.; Rebarz, M.; Akdas-Kilig, H.; Pellegrin, Y.; Blart, E.; 

Le Bozec, H.; Daniel, C.; Odobel, F. Heteroleptic diimine copper(I) complexes with large 

extinction coefficients: synthesis, quantum chemistry calculations and physico-chemical 

properties. Dalton Trans. 2013, 42 (40), 14628-14638. 

10. Ruthkosky, M.; Castellano, F. N.; Meyer, G. J. Photodriven Electron and Energy 

Transfer from Copper Phenanthroline Excited States. Inorg. Chem. 1996, 35 (22), 6406-

6412. 

11. Horvath, O. Photochemistry of copper(I) complexes. Coord. Chem. Rev. 1994, 135-

136, 303-324. 

12. Kutal, C. Spectroscopic and photochemical properties of d10 metal complexes. Coord. 

Chem. Rev. 1990, 99, 213-252. 

13. Ruthkosky, M.; Kelly, C. A.; Castellano, F. N.; Meyer, G. J. Electron and energy 

transfer from CuI MLCT excited states. Coord. Chem. Rev. 1998, 171, 309-322. 

14. Scaltrito, D. V.; Thompson, D. W.; O'Callaghan, J. A.; Meyer, G. J. MLCT excited 

states of cuprous bis-phenanthroline coordination compounds. Coord. Chem. Rev. 2000, 208, 

243-266. 

15. Zhang, Y.; Schulz, M.; Waechtler, M.; Karnahl, M.; Dietzek, B. Heteroleptic diimine-

diphosphine Cu(I) complexes as an alternative towards noble-metal based photosensitizers: 

Design strategies, photophysical properties and perspective applications. Coord. Chem. Rev. 

2018, 356, 127-146. 

16. Chen, L. X.; Shaw, G. B.; Novozhilova, I.; Liu, T.; Jennings, G.; Attenkofer, K.; 

Meyer, G. J.; Coppens, P. MLCT State Structure and Dynamics of a Copper(I) Diimine 

Complex Characterized by Pump-Probe X-ray and Laser Spectroscopies and DFT 

Calculations. J. Am. Chem. Soc. 2003, 125 (23), 7022-7034. 



Chapter II: Electronic phosphine ligand effects on the photochemistry of heteroleptic Cu(I) 

complexes: A comprehensive study 

 
72 

 

17. Garakyaraghi, S.; Danilov, E. O.; McCusker, C. E.; Castellano, F. N. Transient 

Absorption Dynamics of Sterically Congested Cu(I) MLCT Excited States. J. Phys. Chem. 

A 2015, 119 (13), 3181-3193. 

18. Mara, M. W.; Jackson, N. E.; Huang, J.; Stickrath, A. B.; Zhang, X.; Gothard, N. A.; 

Ratner, M. A.; Chen, L. X. Effects of Electronic and Nuclear Interactions on the Excited-

State Properties and Structural Dynamics of Copper(I) Diimine Complexes. J. Phys. Chem. 

B 2013, 117 (6), 1921-1931. 

19. Siddique, Z. A.; Yamamoto, Y.; Ohno, T.; Nozaki, K. Structure-Dependent 

Photophysical Properties of Singlet and Triplet Metal-to-Ligand Charge Transfer States in 

Copper(I) Bis(diimine) Compounds. Inorg. Chem. 2003, 42 (20), 6366-6378. 

20. Moudam, O.; Kaeser, A.; Delavaux-Nicot, B.; Duhayon, C.; Holler, M.; Accorsi, G.; 

Armaroli, N.; Seguy, I.; Navarro, J.; Destruel, P.; Nierengarten, J.F. Electrophosphorescent 

homo- and heteroleptic copper(I) complexes prepared from various bis-phosphine ligands. 

Chem. Commun. 2007,  (29), 3077-3079. 

21. Armaroli, N. Photoactive mono- and polynuclear Cu(I)-phenanthrolines. A viable 

alternative to Ru(II)-polypyridines?. Chem. Soc. Rev. 2001, 30 (2), 113-124. 

22. Palmer, C. E. A.; McMillin, D. R. Singlets, triplets, and exciplexes: complex, 

temperature-dependent emissions from (2,9-dimethyl-1,10-

phenanthroline)bis(triphenylphosphine)copper(1+) and (1,10-

phenanthroline)(triphenylphosphine)copper(1+). Inorg. Chem. 1987, 26 (23), 3837-3840. 

23. Casadonte, D. J., Jr.; McMillin, D. R. Dual emissions from (2,9-dimethyl-1,10-

phenanthroline)bis(tertiary phosphine)copper(1+) systems in a rigid glass: influence of the 

phosphine donor strength. Inorg. Chem. 1987, 26 (23), 3950-3952. 

24. Kuang, S. M.; Cuttell, D. G.; McMillin, D. R.; Fanwick, P. E.; Walton, R. A. 

Synthesis and Structural Characterization of Cu(I) and Ni(II) Complexes that Contain the 

Bis[2-(diphenylphosphino)phenyl]ether Ligand. Novel Emission Properties for the Cu(I) 

Species. Inorg. Chem. 2002, 41 (12), 3313-3322. 

25. Cuttell, D. G.; Kuang, S.-M.; Fanwick, P. E.; McMillin, D. R.; Walton, R. A. Simple 

Cu(I) Complexes with Unprecedented Excited-State Lifetimes. J. Am. Chem. Soc. 2002, 124 

(1), 6-7. 

26. Riesgo, E. C.; Hu, Y.-Z.; Bouvier, F.; Thummel, R. P.; Scaltrito, D. V.; Meyer, G. J. 

Crowded Cu(I) Complexes Involving Benzo[h]quinoline: π-Stacking Effects and Long-

Lived Excited States. Inorg. Chem. 2001, 40 (14), 3413-3422. 

27. Kaeser, A.; Mohankumar, M.; Mohanraj, J.; Monti, F.; Holler, M.; Cid, J.-J.; 

Moudam, O.; Nierengarten, I.; Karmazin-Brelot, L.; Duhayon, C.; Delavaux-Nicot, B.; 

Armaroli, N.; Nierengarten, J. F. Heteroleptic Copper(I) Complexes Prepared from 

Phenanthroline and Bis-Phosphine Ligands. Inorg. Chem. 2013, 52 (20), 12140-12151. 

28. Tee, S. Y.; Win, K. Y.; Koh, L. D.; Liu, S.; Teng, C. P.; Han, M.-Y.; Tee, S. Y.; Koh, 

L.-D.; Teng, C. P.; Han, M. Y.; Teo, W. S. Recent Progress in Energy-Driven Water Splitting. 

Adv. Sci. 2017, 4 (5), 1600337. 

29. Junge, H.; Rockstroh, N.; Fischer, S.; Brueckner, A.; Ludwig, R.; Lochbrunner, S.; 

Kuehn, O.; Beller, M. Light to hydrogen: photocatalytic hydrogen generation from water 

with molecularly-defined iron complexes. Inorganics. 2017, 5 (1), 14, 1-21. 

30. Luo, S. P.; Mejia, E.; Friedrich, A.; Pazidis, A.; Junge, H.; Surkus, A.-E.; Jackstell, 

R.; Denurra, S.; Gladiali, S.; Lochbrunner, S.; Beller, M. Photocatalytic Water Reduction 



Chapter II: Electronic phosphine ligand effects on the photochemistry of heteroleptic Cu(I) 

complexes: A comprehensive study 

 
73 

 

with Copper-Based Photosensitizers: A Noble-Metal-Free System. Angew. Chem. Int. Ed. 

2013, 52 (1), 419-423. 

31. Chen, N.-Y.; Xia, L.-M.; Lennox, A. J. J.; Sun, Y.-Y.; Chen, H.; Jin, H.-M.; Junge, 

H.; Wu, Q.-A.; Jia, J.-H.; Beller, M.; Luo, S. P. Structure-Activated Copper Photosensitizers 

for Photocatalytic Water Reduction. Chem. Eur. J. 2017, 23 (15), 3631-3636. 

32. Kim, J.; Whang, D. R.; Park, S. Y. Designing Highly Efficient CuI Photosensitizers 

for Photocatalytic H2 Evolution from Water. ChemSusChem 2017, 10 (9), 1883-1886. 

33. Heberle, M.; Tschierlei, S.; Rockstroh, N.; Ringenberg, M.; Frey, W.; Junge, H.; 

Beller, M.; Lochbrunner, S.; Karnahl, M. Heteroleptic copper photosensitizers: Why an 

extended π-system does not automatically lead to enhanced hydrogen production. Chem. Eur. 

J. 2017, 23 (2), 312-319. 

34. Tschierlei, S.; Karnahl, M.; Rockstroh, N.; Junge, H.; Beller, M.; Lochbrunner, S. 

Substitution-Controlled Excited State Processes in Heteroleptic Copper(I) Photosensitizers 

Used in Hydrogen Evolving Systems. ChemPhysChem 2014, 15 (17), 3709-3713. 

35. Zgierski, M. Z. Cu(I)-2,9-dimethyl-1,10-phenanthroline: Density functional study of 

the structure, vibrational force-field, and excited electronic states. J. Chem. Phys. 2003, 118 

(9), 4045-4051. 

36. Iwamura, M.; Watanabe, H.; Ishii, K.; Takeuchi, S.; Tahara, T. Coherent nuclear 

dynamics in ultrafast photoinduced structural change of bis(diimine)copper(I) complex. J. 

Am. Chem. Soc. 2011, 133 (20), 7728-7736. 

37. Huang, J.; Buyukcakir, O.; Mara, M. W.; Coskun, A.; Dimitrijevic, N. M.; Barin, G.; 

Kokhan, O.; Stickrath, A. B.; Ruppert, R.; Tiede, D. M.; Stoddart, J. F.; Sauvage, J. P.; Chen, 

L. X. Highly Efficient Ultrafast Electron Injection from the Singlet MLCT Excited State of 

Copper(I) Diimine Complexes to TiO2 Nanoparticles. Angew. Chem. Int. Ed. 2012, 51 (51), 

12711-12715. 

38. Iwamura, M.; Takeuchi, S.; Tahara, T. Real-Time Observation of the Photoinduced 

Structural Change of Bis(2,9-dimethyl-1,10-phenanthroline)copper(I) by Femtosecond 

Fluorescence Spectroscopy: A Realistic Potential Curve of the Jahn-Teller Distortion. J. Am. 

Chem. Soc. 2007, 129 (16), 5248-5256. 

39. Leydet, Y.; Bassani, D. M.; Jonusauskas, G.; McClenaghan, N. D. Equilibration 

between Three Different Excited States in a Bichromophoric Copper(I) Polypyridine 

Complex. J. Am. Chem. Soc. 2007, 129 (28), 8688-8689. 

40. Mejia, E.; Luo, S.-P.; Karnahl, M.; Friedrich, A.; Tschierlei, S.; Surkus, A. E.; Junge, 

H.; Gladiali, S.; Lochbrunner, S.; Beller, M. A Noble-Metal-Free System for Photocatalytic 

Hydrogen Production from Water. Chem. Eur. J. 2013, 19 (47), 15972-15978. 

41. Zhang, Y.; Heberle, M.; Waechtler, M.; Karnahl, M.; Dietzek, B. Determination of 

side products in the photocatalytic generation of hydrogen with copper photosensitizers by 

resonance Raman spectroelectrochemistry. RSC Adv. 2016, 6 (107), 105801-105805. 

42. Rosas-Hernandez, A.; Steinlechner, C.; Junge, H.; Beller, M. Earth-abundant 

photocatalytic systems for the visible-light-driven reduction of CO2 to CO. Green Chem. 

2017, 19 (10), 2356-2360. 

43. Hernandez-Perez, A. C.; Collins, S. K. A Visible-Light-Mediated Synthesis of 

Carbazoles. Angew. Chem., Int. Ed. 2013, 52 (48), 12696-12700. 

44. Cho, S. H.; Yoon, J.; Chang, S. Intramolecular Oxidative C-N Bond Formation for 

the Synthesis of Carbazoles: Comparison of Reactivity between the Copper-Catalyzed and 

Metal-Free Conditions. J. Am. Chem. Soc. 2011, 133 (15), 5996-6005. 



Chapter II: Electronic phosphine ligand effects on the photochemistry of heteroleptic Cu(I) 

complexes: A comprehensive study 

 
74 

 

45. Jordan-Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J. 

Oxidative Pd(II)-Catalyzed C-H Bond Amination to Carbazole at Ambient Temperature. J. 

Am. Chem. Soc. 2008, 130 (48), 16184-16186. 

46. Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. Combined C-H functionalization/C-N 

bond formation route to carbazoles. J. Am. Chem. Soc. 2005, 127 (42), 14560-14561. 

47. Joergensen, K. B., Photochemical oxidative cyclisation of stilbenes and Stilbenoids - 

the Mallory-reaction. Molecules 2010, 15, 4334-4358. 

48. Hernandez-Perez, A. C.; Vlassova, A.; Collins, S. K. Toward a Visible Light 

Mediated Photocyclization: Cu-Based Sensitizers for the Synthesis of [5]Helicene. Org. Lett. 

2012, 14 (12), 2988-2991. 

49. Michelet, B.; Deldaele, C.; Kajouj, S.; Moucheron, C.; Evano, G. A General Copper 

Catalyst for Photoredox Transformations of Organic Halides. Org. Lett. 2017, 19 (13), 3576-

3579. 

50. Nishikawa, M.; Wakita, Y.; Nishi, T.; Miura, T.; Tsubomura, T. Long-lived and 

oxygen-responsive photoluminescence in the solid state of copper(I) complexes bearing 

fluorinated diphosphine and bipyridine ligands. Dalton Trans. 2015, 44 (19), 9170-9181. 

51. Smith, C. S.; Branham, C. W.; Marquardt, B. J.; Mann, K. R. Oxygen Gas Sensing 

by Luminescence Quenching in Crystals of Cu(xantphos)(phen)+ Complexes. J. Am. Chem. 

Soc. 2010, 132 (40), 14079-14085. 

52. Medina-Rodriguez, S.; Orriach-Fernandez, F. J.; Poole, C.; Kumar, P.; de la Torre-

Vega, A.; Fernandez-Sanchez, J. F.; Baranoff, E.; Fernandez-Gutierrez, A. Copper(I) 

complexes as alternatives to iridium(III) complexes for highly efficient oxygen sensing. 

Chem. Commun. 2015, 51 (57), 11401-11404. 

53. Zhang, Y.; Schulz, M.; Wächtler, M.; Karnahl, M.; Dietzek, B. Heteroleptic diimine–

diphosphine Cu(I) complexes as an alternative towards noble-metal based photosensitizers: 

Design strategies, photophysical properties and perspective applications. Coord. Chem. Rev. 

2018, 356, 127-146. 

54. Lennox, A. J. J.; Fischer, S.; Jurrat, M.; Luo, S. P.; Rockstroh, N.; Junge, H.; Ludwig, 

R.; Beller, M. Copper-Based Photosensitisers in Water Reduction: A More Efficient In Situ 

Formed System and Improved Mechanistic Understanding. Chem. Eur. J. 2016, 22 (4), 1233-

1238. 

55. Fischer, S.; Hollmann, D.; Tschierlei, S.; Karnahl, M.; Rockstroh, N.; Barsch, E.; 

Schwarzbach, P.; Luo, S. P.; Junge, H.; Beller, M.; Lochbrunner, S.; Ludwig, R.; Brueckner, 

A. Death and rebirth: Photocatalytic hydrogen production by a self-organizing copper-iron 

system. ACS Catal. 2014, 4 (6), 1845-1849. 

56. Karnahl, M.; Mejia, E.; Rockstroh, N.; Tschierlei, S.; Luo, S. P.; Grabow, K.; Kruth, 

A.; Brueser, V.; Junge, H.; Lochbrunner, S.; Beller, M. Photocatalytic Hydrogen Production 

with Copper Photosensitizer-Titanium Dioxide Composites. ChemCatChem 2014, 6 (1), 82-

86. 

57. Sun, Y. Y.; Wang, H.; Chen, N.-Y.; Lennox, A. J. J.; Friedrich, A.; Xia, L. M.; 

Lochbrunner, S.; Junge, H.; Beller, M.; Zhou, S.; Luo, S.P. Efficient photocatalytic water 

reduction using in situ generated Knoelker's iron complexes. ChemCatChem 2016, 8 (14), 

2340-2344. 

58. Hernandez-Perez, A. C.; Caron, A.; Collins, S. K. Photochemical Synthesis of 

Complex Carbazoles: Evaluation of Electronic Effects in Both UV and Visible-Light 

Methods in Continuous Flow. Chem. Eur. J. 2015, 21 (46), 16673-16678. 



Chapter II: Electronic phosphine ligand effects on the photochemistry of heteroleptic Cu(I) 

complexes: A comprehensive study 

 
75 

 

59. Xiao, P.; Dumur, F.; Zhang, J.; Fouassier, J. P.; Gigmes, D.; Lalevee, J. Copper 

Complexes in Radical Photoinitiating Systems: Applications to Free Radical and Cationic 

Polymerization upon Visible LEDs. Macromolecules 2014, 47 (12), 3837-3844. 

60. Balzani, V.; Juris, A. Photochemistry and photophysics of Ru(II)polypyridine 

complexes in the Bologna group. From early studies to recent developments. Coord. Chem. 

Rev. 2001, 211 (1), 97-115. 

61. Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zelewsky, A. 

Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and 

chemiluminescence. Coord. Chem. Rev. 1988, 84, 85-277. 

62. Hernandez-Perez, A. C.; Collins, S. K. Heteroleptic Cu-Based Sensitizers in 

Photoredox Catalysis. Acc. Chem. Res. 2016, 49 (8), 1557-1565. 

63. Weber, M. D.; Viciano-Chumillas, M.; Armentano, D.; Cano, J.; Costa, R. D. σ-

Hammett parameter: a strategy to enhance both photo- and electro-luminescence features of 

heteroleptic copper(I) complexes. Dalton Trans. 2017, 46 (19), 6312-6323. 

64. Rinehart, N. I.; Kendall, A. J.; Tyler, D. R. A Universally Applicable Methodology 

for the Gram-Scale Synthesis of Primary, Secondary, and Tertiary Phosphines. 

Organometallics 2018, 37 (2), 182-190. 

65. Adams, G. M.; Weller, A. S. POP-type ligands: Variable coordination and hemilabile 

behaviour. Coord. Chem. Rev. 2018, 355, 150-172. 

66. van Leeuwen, P. W. N. M.; Kamer, P. C. J. Featuring Xantphos. Catal. Sci. Technol. 

2018, 8 (1), 26-113. 

67. Goertz, W.; Keim, W.; Vogt, D.; Englert, U.; Boele, M. D. K.; van der Veen, L. A.; 

Kamer, P. C. J.; van Leeuwen, P. W. N. M. Electronic effects in the nickel-catalyzed 

hydrocyanation of styrene applying chelating phosphorus ligands with large bite angles. J. 

Chem. Soc., Dalton Trans. 1998,  (18), 2981-2988. 

68. Kranenburg, M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Vogt, D.; Keim, W. 

Effect of the bite angle of diphosphine ligands on activity and selectivity in the nickel-

catalyzed hydrocyanation of styrene. J. Chem. Soc., Chem. Commun. 1995,  (21), 2177-8. 

69. McMillin, D. R.; Kirchhoff, J. R.; Goodwin, K. V. Exciplex quenching of photo-

excited copper complexes. Coord. Chem. Rev. 1985, 64, 83-92. 

70. Van der Veen, L. A.; Boele, M. D. K.; Bregman, F. R.; Kamer, P. C. J.; Van Leeuwen, 

P. W. N. M.; Goubitz, K.; Fraanje, J.; Schenk, H.; Bo, C. Electronic Effect on Rhodium 

Diphosphine Catalyzed Hydroformylation: The Bite Angle Effect Reconsidered. J. Am. 

Chem. Soc. 1998, 120 (45), 11616-11626. 

71. Punji, B.; Mague, J. T.; Balakrishna, M. S. Thioether-Functionalized Ferrocenyl-

bis(phosphonite), Fe{(C5H4)P(-OC10H6(μ-S)C10H6O-)}2: Synthesis, Coordination Behavior, 

and Application in Suzuki-Miyaura Cross-Coupling Reactions. Inorg. Chem. 2007, 46 (24), 

10268-10275. 

72. Khabbass, N. D. A. H. A study of the reactions between halamines and varieties of 

phosphorus species. Durham theses 1981, Durham University. 

73. Goertz, W.; Kamer, P. C. J.; Van Leeuwen, P. W. N. M.; Vogt, D. Asymmetric nickel-

catalyzed hydrocyanation of vinylarenes by applying homochiral xantphos ligands. Chem.  

Eur. J. 2001, 7 (8), 1614-1618. 

74. Zhu, Y.; Rawal, V. H. Palladium-catalyzed C3-benzylation of indoles. J. Am. Chem. 

Soc. 2012, 134 (1), 111-114. 



Chapter II: Electronic phosphine ligand effects on the photochemistry of heteroleptic Cu(I) 

complexes: A comprehensive study 

 
76 

 

75. Shaw, L.; Somisara, D. M. U. K.; How, R. C.; Westwood, N. J.; Bruijnincx, P. C. A.; 

Weckhuysen, B. M.; Kamer, P. C. J. Electronic and bite angle effects in catalytic C-O bond 

cleavage of a lignin model compound using ruthenium Xantphos complexes. Catal. Sci. 

Technol. 2017, 7 (3), 619-626. 

76. Ashby, E. C.; Al-Fekri, D. M. The reaction of benzotrihalides and benzal halides with 

magnesium. Synthetic and mechanistic studies. J. Organomet. Chem. 1990, 390 (3), 275-

292. 

77. Mohankumar, M.; Holler, M.; Nierengarten, J. F.; Sauvage, J. P. Preparation of 

Copper(I) Pseudo-rotaxanes from Bis-phosphine Ligands. Chem. Eur. J. 2012, 18 (39), 

12192-12195. 

78. Siankevich, S.; Mozzettini, S.; Bobbink, F.; Ding, S.; Fei, Z.; Yan, N.; Dyson, P. J. 

Influence of the Anion on the Oxidation of 5-Hydroxymethylfurfural by Using Ionic-

Polymer-Supported Platinum Nanoparticle Catalysts. ChemPlusChem 2018, 83 (1), 1. 

79. James, B. R.; Williams, R. J. P. 383. The oxidation-reduction potentials of some 

copper complexes. J. Chem. Soc. 1961,  (0), 2007-2019. 

80. Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic 

Chemistry. Chem. Rev. 1996, 96 (2), 877-910. 

81. Banus, M. G., A design for a saturated calomel electrode. Science 1941, 93, 601-602. 

82. Braslavsky, S. E.; Acuna, A. U.; Adam, W.; Amat, F.; Armesto, D.; Atvars, T. D. Z.; 

Bard, A.; Bill, E.; Bjoern, L. O.; Bohne, C.; Bolton, J.; Bonneau, R.; Bouas-Laurent, H.; 

Braun, A. M.; Dale, R.; Dill, K.; Doepp, D.; Duerr, H.; Fox, M. A.; Gandolfi, T.; Grabowski, 

Z. R.; Griesbeck, A.; Kutateladze, A.; Litter, M.; Lorimer, J.; Mattay, J.; Michl, J.; Miller, R. 

J. D.; Moggi, L.; Monti, S.; Nonell, S.; Ogilby, P.; Olbrich, G.; Oliveros, E.; Olivucci, M.; 

Orellana, G.; Prokorenko, V.; Naqvi, K. R.; Rettig, W.; Rizzi, A.; Rossi, R. A.; San Roman, 

E.; Scandola, F.; Schneider, S.; Thulstrup, E. W.; Valeur, B.; Verhoeven, J.; Warman, J.; 

Weiss, R.; Wirz, J.; Zachariasse, K. Glossary of Terms Used in Photochemistry, 3rd edition 

(IUPAC recommendations 2006). Pure Appl. Chem. 2007, 79 (3), 293-465. 

83. Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible Light Photoredox Catalysis 

with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113 

(7), 5322-5363. 

84. Pirtsch, M.; Paria, S.; Matsuno, T.; Isobe, H.; Reiser, O. [Cu(dap)2Cl] As An Efficient 

Visible-Light-Driven Photoredox Catalyst in Carbon-Carbon Bond-Forming Reactions. 

Chem. Eur. J. 2012, 18 (24), 7336-7340. 

85. Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A., Jr.; Malliaras, 

G. G.; Bernhard, S. Single-Layer Electroluminescent Devices and Photoinduced Hydrogen 

Production from an Ionic Iridium(III) Complex. Chem. Mater. 2005, 17 (23), 5712-5719. 

86. Sakaki, S.; Mizutani, H.; Kase, Y.-i.; Inokuchi, K.-j.; Arai, T.; Hamada, T. 

Photoinduced electron transfer between [Cu(dmphen)L2]+ [dmphen = 2,9-dimethyl-1,10-

phenanthroline, L = PPhn(C6H4)Me-p)3-n (n = 0-3)] and methylviologen. J. Chem. Soc., 

Dalton Trans. 1996, 0, 1909-1914. 

87. Wang, B.; Shelar, D. P.; Han, X. Z.; Li, T.-T.; Guan, X.; Lu, W.; Liu, K.; Chen, Y.; 

Fu, W. F.; Che, C. M. Long-Lived Excited States of Zwitterionic Copper(I) Complexes for 

Photoinduced Cross-Dehydrogenative Coupling Reactions. Chem. Eur. J. 2015, 21 (3), 1184-

1190. 

88. Helmut, S., Ternary Cu2+ Complexes: Stability, Structure, and Reactivity. Angew. 

Chem. Int. Ed.1975, 14 (6), 394-402. 



Chapter II: Electronic phosphine ligand effects on the photochemistry of heteroleptic Cu(I) 

complexes: A comprehensive study 

 
77 

 

89. Sakaki, S.; Hashimoto, S.; Koga, G.; Ohkubo, K. Significant phosphine ligand effect 

on the photochemical reactivity of [Cu(N-N)L2]
+(N-N = 1,10-phenanthroline or 2,9-

dimethyl-1,10-phenanthroline; L = tertiary phosphine). Dalton Trans. 1988,  (6), 1641-1644. 

90. Sawyer, D. T.; Gibian, M. J.; Morrison, M. M.; Seo, E. T. On the chemical reactivity 

of superoxide ion. J. Am. Chem. Soc. 1978, 100 (2), 627-628. 

91. Willms, J. A.; Gleich, H.; Schrempp, M.; Menche, D.; Engeser, M. Investigations of 

the Copper-Catalyzed Oxidative Cross-Coupling of Tetrahydroisoquinolines with 

Diethylzinc by a Combination of Mass Spectrometric and Electrochemical Methods. Chem. 

Eur. J. 2018, 24 (11), 2663-2668. 

92. Yang, Q.; Zhang, L.; Ye, C.; Luo, S.; Wu, L.-Z.; Tung, C. H. Visible-Light-Promoted 

Asymmetric Cross-Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic 

Multiple Catalysis. Angew. Chem. Int. Ed. 2017, 56 (13), 3694-3698. 

93. Bartling, H.; Eisenhofer, A.; König, B.; Gschwind, R. M. The Photocatalyzed Aza-

Henry Reaction of N-Aryltetrahydroisoquinolines: Comprehensive Mechanism, H•- versus 

H+-Abstraction, and Background Reactions. J. Am. Chem. Soc. 2016, 138 (36), 11860-

11871. 

94. Boess, E.; Sureshkumar, D.; Sud, A.; Wirtz, C.; Fares, C.; Klussmann, M. 

Mechanistic Studies on a Cu-Catalyzed Aerobic Oxidative Coupling Reaction with N-Phenyl 

Tetrahydroisoquinoline: Structure of Intermediates and the Role of Methanol As a Solvent. 

J. Am. Chem. Soc. 2011, 133 (21), 8106-8109. 

95. Boess, E.; Schmitz, C.; Klussmann, M. A Comparative Mechanistic Study of Cu-

Catalyzed Oxidative Coupling Reactions with N-Phenyltetrahydroisoquinoline. J. Am. 

Chem. Soc. 2012, 134 (11), 5317-5325. 

96. Ratnikov, M. O.; Doyle, M. P. Mechanistic Investigation of Oxidative Mannich 

Reaction with tert-Butyl Hydroperoxide. The Role of Transition Metal Salt. J. Am. Chem. 

Soc. 2013, 135 (4), 1549-1557. 

97. Quaranta, M.; Murkovic, M.; Klimant, I. A new method to measure oxygen solubility 

in organic solvents through optical oxygen sensing. Analyst 2013, 138 (21), 6243-6245. 

98. Nishio, M.; Umezawa, Y.; Honda, K.; Tsuboyama, S.; Suezawa, H. CH/π hydrogen 

bonds in organic and organometallic chemistry. CrystEngComm 2009, 11 (9), 1757-1788. 

 

 

 



 

 

 

 

 

 

 

  



Chapter III: Modified xantphos ligands for lignin depolymerization in ionic liquid media 

 

 
79 

 

Chapter III: Modified xantphos ligands for lignin 

depolymerization in ionic liquid media 

3.1 Introduction 

3.1.1 Lignocellulosic biomass: Properties and opportunities 

3.1.1.1 Lignocellulosic biomass as alternative to oil 

Currently humanity depends on carbon-based compounds derived from petroleum to obtain 

liquid fuels and chemicals; however, this feedstock is unfortunately a limited source due to 

its non-renewability (Figure 1, left side).1 From an economic point of view, its cost is raising 

due to the large demand and the depletion of exploitable reserves. In this scenario, finding an 

alternative is mandatory and researchers have started to focus their attention towards biomass 

as a renewable feedstock (Figure 1, right side), especially for the production of chemicals 

since electrical energy can be provided from other sources such as wind, sun and 

hydroelectric plants.2 

 

Figure 1. Petroleum and biomass conversion processes. Adapted from Barta.3 

For example, in North America, the idea of increasing the use of biomass for domestic energy 

consumption and production of chemicals is gaining importance. In the U.S the volume of 

chemical commodities derived from biomass was set to increase by 25% by 2030 as 
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estimated in 2005 according to the goals of the U.S. Department of Energy. Lately, the goal 

was modified and currently it is expected an increase of 30%.4-5 

Among the various types of biomass, this introduction is focused on lignocellulose derived 

from plants. This feedstock cannot be used directly as it is comprised of many different 

components with robust structures and therefore requires different separation processes. In 

an ideal bio-refinery process, the complex matrix needs to be first pre-treated in order to 

extract polysaccharides with ethanol for the generation of bio-based fuels. During this 

process, lignin is generated as a by-product which is used as a low quality fuel to provide 

heat for other procedures in the refinery. Discovering novel methodologies for its 

depolymerization will allow lignin to enter in the cycle for the production of bio based 

aromatic chemicals after fractionation and further conversion of the lignocellulosic biomass 

components (Figure 2).6 

 

Figure 2. Integrated ideal bio refinery process for lignocellulosic biomass conversion 

Adapted from Bozell.5 

3.1.1.2 Ethical Considerations 

Regarding the use of waste, chemical processes play a vital role in this challenging area but 

politics, economics and psychology cannot be ignored when making decisions, so “win-win” 

solutions have to be designed.  
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“We can make our waste more treasure than trash. But it also reveals that to achieve that 

goal, we’ll have to work with our waste more than ever. Luckily, a growing number of 

researchers appear to be interested in getting their hands dirty”.7   

Another critical point is that the use of agricultural crops as sources of biofuels could be in 

competition with food/feed needs and industrial purposes. Currently, there is a debate about 

the deficiency of agricultural land and its adequate use. In particular, where food production 

levels are low the use of land for food is a priority and biomass as a source of chemicals and 

energy takes second place.8 In this context it is important to underline that lignin is not 

applicable for nutrition purposes, it already exists in surplus and is underutilized thus its use 

does not induce more competition in the use of agriculture lands. Therefore lignin could be 

exploited in bio refinery processes from the non-edible biomass sources like forest products, 

grass, straw, etc.,9 for the production of second generation bioproducts. Moreover, if the 

monomers extracted from lignin can be successfully isolated they will be already 

functionalized, then the synthesis of chemicals based on them will require fewer than using 

alkanes as starting materials. It is well known that bio-based molecules have shown unique 

properties in terms of biocompatibility and biodegradability in comparison with their 

synthetic analogues, for that reason, their higher benefit and “bio” or “natural” label is better 

accepted in the market.10 

3.1.2 Lignocellulosic biomass composition 

Lignocellulosic biomass is a potential feedstock containing three major components in its 

structure: cellulose, hemicelluloses and lignin (Figure 3). This renewable resource could be 

used for the production of a variety of valuable chemicals, fuel and energy.11 Despite the 

chemical attractiveness of all these fractions, this chapter will only focus on lignin structure, 

properties, and valorization methodologies of this potentially important feedstock. 
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Figure 3. Components of plant cells. Adapted from Weckhuysen.11 

3.1.2.1 Hemi (cellulose) fraction 

Cellulose and hemicellulose are formed by plants via the polymerization of monosaccharides 

which are formed from the photosynthesis process, resulting in cellulose from glucose 

(Figure 4) and hemicellulose as the polymeric product of glucose and xylose. The cellulosic 

reserve is one of the world’s largest biomass resources contributing up to almost 720 billion 

tons of material per year.11 Currently, only about 200 million tons are used industrially, 

mainly as a raw material for paper and packaging industries.12 The very large amount of 

material available, and the increasing interest in biomass as a renewable resource, means the 

valorization of this lignocellulosic fraction has attracted huge attention from the scientific 

community in the last decades. 
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Figure 4. Cellulose polymer. 

Hydrolysis of glycosidic bonds mediated by acid is the predominant process for the 

valorization of these types of biopolymers.13 Several biofuels can be formed starting from 

this biomass fraction such as bioethanol, furan-based biofuels such as 5-(hydroxymethyl) 

furfural (5-HMF) and valeric biofuels such as levulinic acid (LA).14 Moreover, LA can be 

further converter to γ-valerolactone (GVL),15 a precursor that could be potentially used for 

adipic acid synthesis.16 Additionally, 5-HMF can be used as starting material for the synthesis 

of 2,5-furandicarboxylic acid (FDCA), which is under study as a replacement for terephthalic 

acid in polyesters synthesis.17 

3.1.2.2 Lignin fraction 

Lignin is a three-dimensional amorphous polymer formed by random radical coupling of 

aromatic monomers (monolignols) at many different positions due to electron delocalization 

of the aromatic ring, oxo-functionalities and the olefin of the side chain (phenylpropane 

monomers); giving the highly cross-linked polymer.18 The rigidity of the plant is conferred 

by the interaction through chemical bonding between lignin with cellulose and hemicellulose 

micro fibrils. In particular, lignin serves as a permanent glue to give rigidity, water transport 

and defense for plants, making it very resistant to chemical transformations.19-20 As described 

above lignin is formed by different monomers linked together to form a complex 3D polymer. 

The most common sub-units in lignin are derived from the constituent monolignols: coniferyl 

alcohol, sinapyl alcohol and coumaryl alcohol (Figure 5). The ratio of these building blocks 

mainly depends on the plant source. Lignin sources are divided into softwood and hardwood. 
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The composition of softwood and hardwood lignin varies in the relative abundance of the p-

coumaryl, coniferyl, and sinapyl alcohols. Coniferyl alcohols constitute approximately 90% 

of softwood lignin, while similar amount of coniferyl and sinapyl alcohol appear in hardwood 

lignin.11  

Lignin is a waste product of various industrial processes, primarily the pulping and paper 

industries. It has been found that in residual lignin, the condensed phenolic units are formed 

in greater abundance in softwood compared to hardwood.21 All these characteristics are 

important when considering different plant materials as feedstock in order to obtain the 

desired chemicals. 

Figure 5. Model structure of lignin and monolignols with their points of polymerization. 

Adapted from Weckhuysen11 and Barta.22 

Other important feature is the variety of linkages encountered in the lignin matrix (Figure 6). 

In addition to the variation in monolignol composition, there is a varying proportion of the 

different linkages in both hardwood and softwood lignin (Table 1),11 with the β ̶ O ̶ 4 type 

being most common. For this reason, the β ̶ O ̶ 4 is the most studied linkage as its cleavage 

should lead to the most efficient depolymerization of the lignin matrix. 
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Figure 6. Linkages present in lignin. Taken from Weckhuysen.11 

Table 1. Different linkages present in softwood and hardwood lignin. 

Linkage (%)a β ̶ O ̶ 4 5 ̶ 5 β ̶ 5 4 ̶ O ̶ 5 β ̶ 1 β ̶ β 

Spruce (Softwood) 45 ̶ 50 19 ̶ 22 9 ̶ 12   4 ̶ 7 7 ̶ 9 2 ̶ 4 

Birch (Hardwood) 60 9 6   6.5 7 3 

a) Spirodienone and dibenzodioxocin linkages: n.d. 

Nowadays, the use of lignin is mostly limited to be used as an adhesive binder or as a fuel 

for direct combustion simply being burned to provide heat for other processes, but it has 

remarkable potential to produce various forms of aromatic hydrocarbons which can be useful 

for the chemical industry.23 Design of new long term conversion technologies for the 

depolymerization of lignin could provide a source of low-molecular weight starting materials 

and very important aromatic chemicals.24  

Valorization of lignin in a controlled fashion has been limited by difficulties in the dissolution 

of the material caused by its complex 3D structure and the resistance of phenolic ethers 
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toward hydrolysis.9 Its conversion is therefore particularly challenging and has been studied 

by different disciplines in order to access the monolignols as building blocks for more 

complex, valuable and useful molecules.11, 22 

3.1.3 Methodologies for the depolymerization of lignin 

As mentioned above, the β ̶ O ̶ 4 linkage is the predominant one and therefore the most 

promising to target in order to achieve efficient depolymerization. In this section the chemical 

properties of this type of linkage are discussed and an overview of different methodologies 

developed in order to cleave this bond is presented. 

3.1.3.1 β ̶ O ̶ 4 linkage 

This linkage consists of an aryl-ether structure, which can be cleaved at the undesired C ̶ C 

bond or the desired C ̶ O bond position depending on the strategy applied. It is worth 

underlining that many studies were not made on real lignin, but on smaller molecules that 

mimic this substructure of the biopolymer.11 These molecules are used in order to understand 

the chemical properties, reaction mechanism and conditions that can be further applied on 

native lignin. The simplest model compound commonly used for β ̶ O ̶ 4 linkage is phenethyl 

phenyl ether (PPE) (1) (Figure 7). 

 

Figure 7. Simplification of the β-O-4 linkage in correspond model compounds. 

Beckham and co-workers reported the calculation of C ̶ O bond dissociation enthalpies for β ̶ 

O ̶ 4 lignin model compounds and other related oxo-substituted derivatives. Computational 

studies have shown that β–O–4  (70 Kcal mol−1)  and  α–O–4 (55 kcal mol−1) linkages are 
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the most accessible in terms of BDE with respect to the others types  like biphenyl (115 kcal 

mol−1) and β–5 (105 kcal mol−1) (Figure 8).25  

 

Figure 8. Bond Dissociation Enthalpies for different lignin linkages.25 

The authors also presented calculations for β–O–4 linkages with a ketone functionality in the 

α position since this type of intermediate has been reported in a number of different studies 

on the catalytic cleavage of β–O–4 model compounds.26 By oxidizing the benzylic alcoholic 

groups of the molecule to carbonyl groups, the potential for hydrogen bonding is completely 

suppressed in lignin model compounds. Indeed, phenethyl phenyl ether model compounds 

which have methoxy substitution close to the β–O–4 linkage show higher cleavage rates of 

the ether bond.25 

3.1.3.2 Depolymerization approaches of ether-aryl linkages 

Oxidative approaches 

Oxidative depolymerization is a methodology inspired by the natural cleavage of C–C bonds 

and C–O bonds in lignin. The mechanism of degradation is not well understood but it has 

been reported to involve the formation of non-stable radicals, which disintegrate in the 

presence of oxygen.27 A brief overview of this topic with selected examples of different 

methodologies is discussed below.  

Enzymatic 

Bacterial degradation of humic acids has shown that manganese oxides formed by microbial 

catalysis surround bacterial cells and can promote lysis of the complex humic structures to 
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yield low molecular weight organic substrates.28 This is a good inspiration for lignin 

degradation research due to its related structure, in terms of aromatic monomers linked 

together, to humic matter. Manganese peroxidase is a lignin-modifying enzyme secreted by 

ligninolytic fungi. It oxidizes MnII to MnIII which is very reactive and able to attack phenolic 

compounds present in lignin allowing the formation of free unstable radicals that finally 

decompose spontaneously under aerobic conditions.29 Laccases have been identified as 

copper-containing extracellular oxidases that can perform lignin oxidation. These enzymes 

also oxidize MnII to MnIII producing H2O2 that can be used by manganese peroxidases in 

cooperation towards an enzymatic pathway for lignin biodegradation.30 The activity of these 

lignin-oxidizing enzymes is extremely specific, they use lignin as substrate and cellulose 

remains untouched.31 The challenge that this methodology faces is the space time yields for 

a very slow process.  In addition to these enzymes, β-etherases hold encouraging prospects 

due to their high selectivity in the cleavage of C–O bonds.32 The oxidation of the Cα–hydroxyl 

groups of the β–O–4 aryl ether bonds in lignin is required first, as β–etherases require a 

carbonyl group adjacent to the aryl ether linkage.33 

Metal catalysts 

Veratryl alcohol (2) has been studied as a model substrate for oxidative approaches to lignin 

depolymerization. It was chosen since it has been considered as a model compound for lignin 

reactivity studies in enzymatic systems. Co(salen) complexes have been studied and it was 

shown that unsubstituted salens were most efficient with the sulfonated structures (5d) as 

exception (Scheme 1).34  Water-soluble salen metal complexes (7) bearing bulky substituents 

(Figure 9) yielded aldehydes from the benzylic alcohol substrates. Unfortunately, these 

catalysts showed low selectivity, forming mixtures of products from coniferyl alcohol 

substrates.35 



Chapter III: Modified xantphos ligands for lignin depolymerization in ionic liquid media 

 

 
89 

 

 

Scheme 1. Co(salen) type complexes for benzylic oxidation of the lignin model compound 

2.30 

 

Figure 9. Bulky water soluble Co-salen catalysts. 

In addition to salen complexes, other species were tested in oxidation of lignin model 

compounds. For example, vanadium catalysts using tridentate Schiff base ligands (12–15) 

are able to perform oxidation catalysis using dimeric lignin model compounds containing a 

β–O–4 linkage as substrate (e.g. 8) (Scheme 2). Benzylic oxidation provides the major 

product (11) and only small amounts of C–O bond cleavage products from the redox neutral 

transformation (9 and 10) are obtained. Surprisingly, it was found that vanadium catalysts 



Chapter III: Modified xantphos ligands for lignin depolymerization in ionic liquid media 

 

 
90 

 

using tridentate Schiff base ligands prefer C–O cleavage over the typical benzylic oxidation 

which is an unprecedented kind of reactivity.36 

 

Scheme 2. Vanadium catalysts using tridentate Schiff base ligands for oxidation of β–O–4 

model compounds.36 

Metal-free oxidation 

More effective oxidative routes have been reported with more realistic model compounds. It 

has been shown that benzylic oxidation favors the β–O–4 cleavage not only in lignin model 

compounds but also in real lignin in the presence of molecular oxygen and catalytic amounts 

of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and tert-butyl nitrite at 80 oC  

(Scheme 3). After finding a solvent system suitable for dissolving lignin, the catalytic 

depolymerization was achieved with an excess of zinc as reductant giving the respective 
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phenolic products. Around 5% of β–Hydroxypropiosyringone was obtained when this 

methodology was applied to real lignin.37 

 

Scheme 3. Oxidation of β-O-4 model compound using DDQ. 

A common drawback of the oxidative approaches discussed above is the increased oxygen 

content of the products, making this methodology less attractive. To overcome this problem, 

catalytic hydrogenolysis (i.e. reductive cleavage) of β–O–4 model compounds has been 

postulated as a suitable methodology for lignin conversion38 and this strategy is discussed in 

the next section. 

Photocatalytic lignin degradation 

Photocatalytic approaches have been studied in order to reduce the temperature needed for 

the degradation of lignin and lignin model compounds (usually > 80 °C), thus augmenting 

the selectivity of the process. It requires previous oxidation step of the model compound 

which decreases the bond dissociation enthalpy (BDE) of the ether linkage. The first example 

was developed by Stephenson and coworkers utilizing lignin model compounds (Scheme 

4).39 This is a two-step protocol involving first an oxidation of the starting material using [4-

AcNH-TEMPO]BF4 and silica in CH2Cl2. Subsequently, DIPEA, formic acid, 

[Ir(ppy)2(dtbbpy)]PF6 (1 mol%) (where ppy= 2-phenylpyridine and dtbbpy = 4,4′-di-

tertbutyl-2,2′-bipyridyl), and CH3CN were added and the reaction mixture was irradiated 

with blue LEDs to produce the fragmentation products in high yields. Moreover, a batch-to-

flow setup was developed where the oxidation was performed in batch and the reductive 

cleavage in flow, increasing the substrate consumption (1.8 mmol/h in flow from 0.050 

mmol/h in batch) and lowering the catalyst loading (1.0 mol% batch to 0.030 mol% in flow).  
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Scheme 4. Two-steps protocol for the cleavage of lignin model compounds involving 

photocatalysis. 

The stoichiometric amount of [4-AcNH-TEMPO]BF4  in the oxidation step can be replaced 

by a dual catalysis approach involving palladium acetate (10 mol%) in the presence of 

sodium persulphate (2 equiv.) combined with 1 mol % [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (where 

(dF(CF3)ppy) = 2-(2,4-difluorophenyl)-5-trifluoro-methylpyridine) as photocatalyst, which 

was irradiated using blue LEDs, affording the desired β–O–4 cleavage.40 Finally, these 

chemical oxidation steps can also be replaced using electrocatalysis with N-

hydroxyphthalimide (10 mol %), and 2,6-lutidine (10 mol %) in oxygen-saturated acetonitrile 

at 0.64 V (vs Fc+/Fc).41 After irradiation it yielded the products. Interestingly, this last 

methodology was successfully applied to native lignin isolated from pine giving monomeric 

and oligomeric units.  

Another interesting example was reported by Zhang and co-workers utilizing the possibility 

to tune the redox potential of Carbazolic Porous Organic Frameworks (CzCPs) by changing 

their donor:acceptor ratio (D:A) (Scheme 5). This enabled performing both oxidation of the 

starting materials and reductive cleavage of the resulting ketones in two separated steps.52 

The former step is accomplished using 2.5 mol% of CzCP100 in conjunction with N-

hydroxyphthalimide (NHPI) and molecular oxygen, which possess the strongest oxidative 

capability (D:A = 0:100), whereas the latter step is catalyzed by 2 mol % of CzCP33 (D:A = 

66:33) and uses a combination of DIPEA and formic acid as reductant. Despite the fact that 
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both reactions can be performed at room temperature under irradiation with a 26 W white 

compact fluorescent lamp, the major drawback of this method is the need for isolation of the 

oxidized starting material in order to be able to perform the reductive cleavage step. 

 

Scheme 5. Cleavage of lignin model compounds using Carbazolic Porous Organic 

Frameworks (CzCPs). 

Reductive approaches 

Acid promoted cleavage 

Acid catalyzed ether bond cleavage is the classic method used for lignin depolymerization. 

It became an attractive strategy and lignin isolation processes are commonly based on using 

strong acids. This methodology has been important for the characterization of the 

biopolymer, as it allowed the identification of various monomers in the lignin structure.42 

Regarding the β–O–4 cleavage of model compounds, this approach leads to aromatic 

aldehydes, ketones, phenols, and dehydrated intermediates leading to olefinic products.43 

However, under acidic conditions, the carbonyl products also repolymerize to yield complex 

mixtures. 
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Base promoted cleavage 

Cleavage of lignin and lignin model compounds in presence of base has been studied as such 

but also in presence of transition metals and using supercritical fluids providing aromatic 

products including ketones, aldehydes and alcohols. It has been found that the presence of 

base without any other additives leads to condensation and polymerization processes of the 

products rendering the isolation of the monomeric units challenging.44 Miller reported the 

depolymerization of lignin in supercritical methanol and ethanol using KOH at 290 °C for 

ten to fifteen minutes. Alkylated aromatic ethers and phenols as monomeric products were 

obtained using excess of base, but product decomposition became a problem when using high 

temperatures. Side reactions cannot be controlled and new C–C bond formation is favored 

together with coke and tar formation, which is impractical for commercial applications of 

lignin valorization.45 

Heterogeneous approaches 

In general, acid and base based methodologies require harsh conditions and have the common 

drawback of the recondensation of the monomers leading to complex polymers, sometimes 

with higher molecular weight than the lignin starting material. For that reason, more selective 

and milder approaches have been studied in order to achieve a satisfactory depolymerization 

system. One of these strategies is heterogeneous catalysis. Among all the possible metals, 

nickel is gaining increasing attention due to its good performance in the C–O bond cleavage 

of lignin model compounds and real lignin. As a selected example, Xu and co-workers 

showed that Ni/C catalysts achieved up to 80% selectivity in C–O bond cleavage.46 Later, 

Yan and co-workers tested bimetallic NiM catalysts (M= Ru, Rh, Pd, Pt or Au) using 2-

phenoxy-1-phenylethanol (19) as a model compound. Among these catalysts, Ni7Au3 showed 

the best performance converting 87% of the model compound in just one hour; unfortunately, 

the selectivity is low, leading to a mixture of dimeric and monomeric products (Scheme 6).47-

48 
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Scheme 6. Dimers and monomers formed using Ni7Au3 catalyst. 48 

In addition to nickel methodologies other metal catalysts such as palladium have been tested. 

Samec and co-workers described an effective system for cleavage of 19 using a 

heterogeneous palladium catalyst and formic acid as a reducing agent in air affording high 

yields via β–O–4 linkage cleavage (Scheme 7). Interestingly, when applying this system in 

native lignin, lower molecular weight species were obtained making this methodology 

attractive for further developments.49  

 

Scheme 7. Heterogeneous palladium catalyzed cleavage of β–O–4 model compound using 

formic acid.49 
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The main drawback of the hydrogenolysis of aromatic C–O bonds performed by 

heterogeneous catalysts is that it usually requires harsh conditions leading to a mixture of 

products because of the competition with the hydrogenation of the aromatic ring.50 

The same catalyst, Pd/C (5 mol%), was used by Hartwig and co-workers for the 

fragmentation of more complex β–O–4 model compounds. In this case, a temperature as high 

as 200 °C is needed for the reaction to occur.51 Interestingly, no external H2 is needed because 

the hydrogen for the reduction of the C–O bond is provided by the benzylic alcohol of the 

starting materials. 

Homogeneous Catalysis 

Nickel and iridium catalysts 

Homogeneous catalysis has some advantages over heterogeneous systems in the form of very 

good activity and selectivity. When the catalyst is soluble, important spectroscopic and 

kinetic data can be easily obtained, therefore providing a good understanding of the reactions 

mechanisms. This information is vital for catalyst design, enabling tuning of activity and 

selectivity of the catalytic system. A particularly important feature of homogeneous catalysts 

in the context of using lignin as a substrate is their ability to penetrate the complex 3D 

structure of the biopolymer reaching the targeted linkages, which make them very attractive 

for depolymerization catalysis.11 

Hartwig reported that diaryl ethers were selectively cleaved by hydrogenolysis using nickel 

complexes of NHC ligands (22) under mild conditions (Scheme 8). Despite the strength and 

stability of the C–O bond, arenes and phenols were obtained in good to excellent yields.53 
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Scheme 8. Ni(NHC) system for the cleavage of aryl–ether bond.53 

In a later study, the same authors found that a ligand-free system was more active than the 

SIPr–Ni catalyst. To generate a suitable system for the hydrogenolysis of lignin the authors 

developed a heterogeneous system with nickel as a metal without the use of any additional 

ligands, noticing that the nickel acts not as a homogeneous catalysts anymore but as a 

heterogeneous one.54 

The mechanism of the homogeneous Nickel-catalyzed reaction has been investigated using 

DFT calculations55-56 and was later unraveled experimentally (Scheme 9).57 First, SIPr–

Ni(η6–Arsolvent) (A) is formed by sequential deprotonation of SIPr·HCl by NaOtBu, 

coordination of free SIPr to the Ni0, hydrogenation of COD and association of the aromatic 

solvent (Arsolvent) used in the reaction. A is the resting state of the catalyst and reacts with the 

diaryl ether starting material (Ar1OAr) forming the η6–diaryl ether complex SIPr–Ni(η6–

Ar1OAr) (B), which undergoes C–O bond cleavage affording the tri-coordinated SIPr–

Ni(Ar1) (OAr) (C). This was found to be the rate-determining step of the catalytic reaction. 

Successively, C reacts with H2 forming ArOH and SiPr–Ni(η6–Ar1) (D) which replace the 

bound Ar1 with Arsolvent regenerating the resting state A. NaOtBu is also required to 

deprotonate the released ArOH, avoiding decomposition of the catalyst by reaction of phenol 

with SIPr–Ni(η6–Ar1) giving the dimeric [SIPr–Ni(–OAr)]2. 
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Scheme 9. Proposed Mechanism for the Ni-Catalyzed C–O bond cleavage with NHC as 

ligand.57 

Goldman and co-workers performed stoichiometric studies on iridium pincer complexes 

showing that the C–O bond cleavage in simple methyl aryl ether molecules could be 

achieved.58 Later, the same author reported the first example of an atom-economical catalytic 

cleavage of the C–O bond of an alkyl aryl ether by (PCP)Ir-type catalysts (23-25) (Scheme 

10).59 
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Scheme 10. (PCP)Ir-type catalysts for the cleavage of C–O bond in alkyl-aryl ethers.59 

Redox neutral ruthenium-catalyzed C–O bond cleavage 

Bergman reported the redox neutral ruthenium catalyzed cleavage of alkyl aryl ethers, 

assisted by an alcohol group as internal H2 donor.26 It is a very attractive fully atom-

economical approach (Scheme 11). Using a Ru/xantphos system, simple and polymeric 

model compounds based on 2-aryloxy-1-arylethanols structures were successfully converted 

to the ketones and alcohols, giving 98% and 99% yields, respectively. 

 

Scheme 11. Ru/xantphos catalyzed cleavage of β–O–4 model compounds.26 

The reported methodology requires a catalytic system, which is able to perform the needed 

hydrogen shuttling and subsequent bond cleavage processes in tandem to be successful and 
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the ruthenium complex RuH2(CO)(PPh3)3 is known for performing both reactions efficiently. 

Further reaction optimization and mechanistic insights were reported by Kamer and co-

workers (Section 1.6, Chapter I). 

Mechanism of the Ru/xantphos-catalyzed cleavage of aryl ether linkages 

A first proposed mechanism for Ru/xantphos catalyzed cleavage of aryl ether bond was 

reported by Bergman and co-workers, postulating a benzylic ketone as intermediate. The 

final reductive elimination step involves first the elimination of acetophenone (20) followed 

by phenol (21).26 Later, Beckham and co-workers studied this mechanism further (Scheme 

12), using computational DFT calculations. They reached the same conclusions as Bergman 

about the elementary steps and the ketone as intermediate, but proposed the reverse order of 

releasing of the products.60 
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Scheme 12. Detailed mechanism for Ru/xantphos aryl-ether cleavage.60 

The mechanism proposed by Beckham starts with the loss of H2 to form 

[Ru(xantphos)(CO)(PPh3)] after losing PPh3 and coordinating 2-phenoxy-1-phenylethan-1-

ol (19) forming II. In this intermediate, the Ru center is in close proximity to both the protic 

hydrogen attached to the O-atom for oxidative addition to form III as well as the hydrogen 

attached to the α–C-atom for subsequent β-hydride elimination to form IV. The consequent 
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reductive elimination of H2 leads to V which contains the intermediate ketone (27) that can 

either be released and re-enter the catalytic cycle, or undergo the desired C–O bond cleavage. 

This cleavage is proposed to pass through a concerted oxidative addition with a 5-membered 

transition state (Scheme 13), leading to VI which is an O-bound enolate that is less stable 

then the corresponding C-bound analogue derived from the classically accepted 3- membered 

transition state. The authors proposed that it is this O-bound enolate that can further react 

with H2 giving the dissociation of the desired products; the more stable C-bound enolate is 

inactive to further transformations.60 

 

Scheme 13. Concerted oxidative addition of C–O bond giving VI.60  

After coordination of H2 by complex VI, the desired products phenol and acetophenone are 

released by reductive elimination. While the order of product release was originally proposed 

to occur via the successive reductive eliminations of acetophenone (20) followed by phenol 

(21), Beckham considered the feasibility of both sequences of product release, concluding it 

proceeds with initial phenol and subsequent acetophenone release. The first reductive step is 

similar in energy for both products, but the second reductive elimination step is much more 

facile for release of acetophenone with respect to the phenol leading to the first elimination 

of phenol (21) followed by acetophenone (20) and the regeneration of [Ru] I to restart the 

catalytic cycle. 60 
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This elegant approach counts with a very important drawback, the Ru-xantphos catalyst did 

not perform when tested in more complex model compounds within the efforts to simulate 

the native lignin structure. The catalyst suffers partial deactivation to 28 by coordination of 

catechol type moieties (Figure 10).61  

 

Figure 10. Structure of Ru(CO)(xantphos)(OC6H4O)(CO). 

In order to overcome this limitation James and co-workers performed the reaction with -

acetylated model compounds. As products from this process, unsaturated ketone dimers as 

well as the desired momeric products were confirmed. Depolymerization products from kraft 

lignin as substrate were detected.62  

Ru(triphos) system 

Triphos ligands have been also explored in the homogeneous catalytic cleavage of β–O–4 

linkages using [Ru(COD)(methylallyl)2] as metal precursor. Interestingly, with this system 

PPh3, dppe and xantphos did not give significant amounts of phenyl–ether bond cleavage 

(Table 2, entries 1–3). On the other hand, using 1,1,1-tris(diphenylphosphinomethyl)ethane 

(triphos B) or bis(diphenylphosphinoethyl)phenylphosphine (triphos C) led to good yields of 

the desired products  (Table 2, entry 4).63 
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Table 2. Homogeneous catalytic cleavage of β–O–4 linkages using [Ru(COD)(methylallyl)2] 

and phosphines.63 

 

Entry Ligand Yield of 20 (%) Yield of 21 (%) 

1 PPh3 5 5 

2 dppe 2 1 

3 xantphos 11 12 

4 triphos B 67 65 

5 triphos C 93 84 

 

3.1.4 Ionic liquids and biphasic catalysis 

Ionic liquids have been extensively studied by cause of their properties as reaction media. 

From a more chemical point of view, they exhibit more properties and applicability in green 

methodologies and ligand design due to their tunable character. In particular, their 

coordinating abilities become a very attractive characteristic that can be modified with 

different variations of the cationic core, counter ion and substituents.64 Disruption of the 

strong and diverse non-covalent interactions in the lignin structure can be performed by some 

ionic liquids leading to its dissolution as a result of hydrogen bonding disruption in the lignin 

network. Other parameters which play an important role, are interaction and solvation of the 

aromatic moieties of lignin by π-π and n-π interactions generally set by the cationic part of 

the ionic liquid.65-66 
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Ion-tagged ligands could offer better interaction of the final metal complex with an ionic 

liquid in which it is dissolved achieving not only good solubility and product separation 

processes but also offering the potential for catalyst recycling. As an important example, 

selective oxidation of veratryl alcohol (2) to veratraldehyde (3) under air was achieved by a 

cationic salen ligand (29). This transformation is a good example of potential applications of 

this type of cationic ligands (Scheme 14).67 

 

Scheme 14. Cationic Cobalt with ion-tagged salen ligand for the conversion of 2. 

The biphasic catalytic system reported contained the imidazolium ion tagged Co(salen) (30) 

as catalyst and 1-butyl-3-methylimidazolium hexafluorophosphate as ionic liquid using 

water as a co-solvent. It showed that the introduction of the imidazolium core to a ligand is 

a great way to improve the solubility of the complex in the ionic liquid. An IL/H2O system 

allowed the authors to reach efficient product separation and catalyst recyclability.68   

Another example of a recyclable ligand is 2,7-bis(5-(3-methylimidazolium)pentyl)-9,9-

dimethyl-4,5-bis(2,8-dimethyl-10-phenoxaphosphino)xanthene hexafluorophosphate (31) 
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(Figure 11) which has been reported by Kamer and co-workers as a suitable ligand for the 

Rhodium-catalyzed hydroformylation of 1-hexene and 1-octene performed in ionic liquids. 

The reaction proceeded with an excellent combination of regioselectivity, activity and 

recyclability of the catalyst.69 

 

Figure 11. 2,7-bis(5-(3-methylimidazolium)pentyl)-9,9-dimethyl-4,5-bis(2,8-dimethyl-10-

phenoxaphosphino)xanthene hexafluorophosphate ligand (31). 69 

Another related structure was reported by Cole-Hamilton and co-workers, which was used in 

combination of ionic liquids as solvent and supercritical carbon dioxide (scCO2) as transport 

vector for the substrates and products.70 This system was very effective for the 

hydroformylation of long chain alkenes with rhodium and the imidazolium-tagged ligand 

nixantphos (32) (Figure 12) in [alkMIM][NTf2] in a flow system and it was based on the 

insolubility of  ionic liquids in scCO2. In homogeneous catalysis, biphasic systems are a great 

alternative to isolate the products and recycle the catalyst.  

 

Figure 12. Imidazolium-tagged nixantphos ligand (32).70 

 



Chapter III: Modified xantphos ligands for lignin depolymerization in ionic liquid media 

 

 
107 

 

3.2 Justification and project aims 
The wide bite angle diphosphine ligand xantphos has been reported by Bergman as a ligand 

that exhibits great activity in the ruthenium catalyzed cleavage of lignin β–O–4 linkages; 

these ligands perform well in the tandem Oppenauer oxidation and C–O aryl ether 

hydrogenolysis.26 Ligand effects in the reactivity of the complexes can be expected as both 

the transfer hydrogenation and the C–O bond activation steps need to be optimized. The bite 

angle and electronic effects on the Ru/xantphos system-catalyzed ether bond cleavage of the 

model compound 2-phenoxy-1-phenylethanol for the β–O–4 linkage have been investigated 

in our group with a series of different xant-type ligands. It has been observed that substrate 

conversions can be enhanced when using ligands with increased σ ̶ donor ability affording 

better conversion when compared to xantphos.71  

The homogeneous catalytic depolymerization of lignin towards efficient valorization of 

lignocellulosic biomass faces an important bottleneck in the capability to dissolve lignin, 

which remains a challenge. Several solvents and extraction strategies have been recently 

explored to dissolve biomass and separate it into its components. Ionic liquids have recently 

become very popular solvents for the dissolution of biomass. Weckhuysen reported an 

interesting development in recent years studying the catalytic cleavage of lignin and model 

compounds in this kind of alternative solvents. They observed a reaction media effect on the 

catalytic activity caused by stabilization of reactive intermediates.11, 72  For the redox neutral 

cleavage method based on the Ru/xantphos system described before (Section 1.6, Chapter I), 

the substitution of volatile solvents for recyclable ones and the use of biomass as starting 

material for chemical conversions is an important approach for chemical sustainability.  

The catalytic Ru/xantphos system has been based on hydrophobic ligands so far. To achieve 

effective catalyst separation and recyclability, xantphos ion-tagged phosphine ligands 

containing imidazolium cores derived from xantphos (Figure 13)69 and nixantphos (Figure 

14)70 were part of the screening.  Ion-tagged ligands were specifically used aiming at the 

implementation of the ruthenium-catalyzed C–O bond cleavage of lignin β–O–4 linkages in 

ionic liquids. This chapter focuses mainly on the synthesis of a previously reported modified 

xant-type ligand,69 as well as new derivatives and preliminary results of their application in 

the catalytic aryl ether bond cleavage of a lignin model compound in ionic liquid media. 
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The aim of the present work is to optimize catalyst performance in the catalytic ether bond 

cleavage of lignin by both optimizing ligand structure and solubility in ionic liquids as ideal 

solvent for lignin dissolution. 

 

Figure 13. Imidazolium-tagged xantphos-type ligands. 

 

Figure 14. Imidazolium-tagged nixantphos ligand. 
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3.3 Results and discussion  

3.3.1 Synthesis of 2,7-bis(5-(3-methylimidazolium)pentyl)-9,9-dimethyl -

4,5-bis(2,8-dimethyl-10-phenoxaphosphino)xanthene hexafluoro 

phosphate (Imidazolium/Ion-Tagged Ligand) 

Ionic liquids have been shown to be an alternative reaction media to classic solvents, such as 

DMSO73 for lignin solubilization.65 Our interest in cationic ligands is based on the possibility 

of improving the interaction of the catalyst with the substrate and the alternative reaction 

media, ionic liquids. In this respect, an ion-tagged ligand, containing imidazolium groups in 

its structure was published in 2004 by Bronger.69 However, the published synthesis turned 

out not to be reproducible. In this thesis, we report a reproducible and robust synthesis for 

imidazolium tagged ligands. This kind of functionalization is very attractive for ligand design 

due to the possibility of changing substituents and different parameters in order to obtain a 

library of ligands to test in different reactions.  The retrosynthetic route for this type of ligand 

is shown below (Scheme 15). The initial aim was to synthesize the known ligand to check 

the robustness of its chemistry under our reaction conditions. 
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Scheme 15. 2,7-bis(5-(3-methylimidazolium)pentyl)-9,9-dimethyl-4,5-bis(2,8-dimethyl-10-

phenoxaphosphino)xanthene hexafluorophosphate ligand and its retrosynthetic strategy 

proposed by the authors.69 
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3.3.1.1 Step I) Friedel-Crafts Acylation 

 

Scheme 16. Synthesis of the intermediate 2,7-di(5-bromopentanoyl)-9,9-dimethylxanthene 

(34). 

The first step is a Friedel-Crafts acylation which gives the desired product with high 

selectivity according to the procedure reported by Bronger et al.69 The regioselectivity of the 

acylation is determined by the presence of the oxygen on the xanthene ring (mesomeric 

activation towards the para-position). The product 2,7-bis(5-bromopentanoyl)-9,9-

dimethylxanthene (34) was successfully obtained in 95% isolated yield (Scheme 16). 

3.3.1.2 Step II) Deoxygenation 

Acylated products can be converted to the corresponding alkanes via classical protocols such 

as Clemmensen or Wolff-Kishner reductions.74 However, these procedures generally do not 

tolerate halogen groups well. The procedure reported in the initial synthesis of the ligand, 

uses InCl3 and chlorodimethylsilane in a catalytic deoxygenation that is tolerant to the alkyl 

bromide substituents.69 This procedure gives the desired product, but also various 

unidentified silicon containing impurities which are difficult to separate, making this 

methodology less attractive due to long and tedious chromatographic separation (Table 3, 

procedure A). In particular, two successive columns with a large amount of eluent are 

required due to the very similar retention factors of the different species, obtaining only 11% 

isolated yield of the pure deoxygenated product. Moreover, the procedure lacks 

reproducibility depending on the scale of the reaction, which is not convenient to achieve a 

general and scalable methodology. In order to achieve a straightforward optimal synthetic 

route, different strategies were tested (Table 3) and 1H-NMR spectra of the crude mixtures 

are shown in order to compare the feasibility of the different approaches (Figure 15). 
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Table 3. Reaction conditions for the deoxygenation of 2,7-bis(5-bromopentanoyl)-9,9-

dimethylxanthene (34). 

 

Procedure Conditions NMR Conversion  

(%) 

Isolated yield 

(%) 

A69 InCl3 (11 mol%),  

Chlorodimethylsilane (4.8 

eq.), CH2Cl2, r.t., rx followed 

by IR 

>99 

- By-products observed 

- Silicon-based impurities 

11 

 

B75 Pd/C (5 mol%), PMHS (10 

eq.), MeOH, 65 oC ,16 h.  

No full conversion 

- By-products observed 

- Silicon-based impurities 

- 

C76 NaBH4 (9.71 eq.), AlCl3 (5.44 

eq.), THF, reflux, 5h  

>99 

- Only desired product 

97 

The 1H NMR spectrum of the hydrosilylation procedure using InCl3 shows full conversion 

of the starting material, but with formation of different species (Figure 15, spectrum A). 

When Pd/C75 is used as catalysts (Table 3, procedure B), the ketone is not fully converted 

and also formation of by-products is observed similar to the previous discussed methodology 

(Figure 15, spectrum B). As aforementioned, the separation of these different species is 

difficult, mainly due to the large amount of silicon impurities present (red rectangle in Figure 

15). Gratifyingly, using AlCl3 in combination with NaBH4
76 (Table 3, procedure C) gave 

complete conversion towards the desired product (Figure 15, spectrum C).  It is worth to 

underline that this straightforward methodology only requires a simple extraction in order to 

obtain the pure product in excellent isolated yields of 97%, in contrast with the other tested 

procedures.
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Figure 15. 1H-NMR spectra (400 MHz, CDCl3) of the crude mixtures of the different 

deoxygenation methodologies; from top to bottom: reference spectrum of the starting 

material, method A, method B, method C. In the red rectangle the silicon impurities are 

highlighted. 

3.3.1.3 Step III) Bromination 

Aryl halides are important intermediates in synthetic chemistry as they facilitate the 

regioselective functionalization of aromatic rings. In phosphorus chemistry in particular, they 

allow the formation of the new C–P bond required for phosphine synthesis.77  

Previous attempts in our group to obtain the pure dibrominated intermediate (36) were 

unsuccessful and a mixture of products was always observed. For this step, the authors 

reported a selective bromination by dropwise addition of bromine diluted in hexanes at 0 °C 

to the substrate dissolved in CH2Cl2.
69 When trying to reproduce this method a complex 

mixture of products was obtained and the desired product was not clearly observed (Figure 

16, spectrum A). A test adding bromine diluted in hexanes dropwise as reported, but in which 
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the reactants were diluted in double amount of solvent was carried out. Again, no traces of 

the desired product were observed (Figure 16, spectrum B).  

 

Figure 16. Aromatic region of 1H-NMR spectra (400 MHz, CDCl3) of the crude mixtures of 

the bromination step. From top to bottom: reference spectrum of the starting material, A) 

Reaction following the reported methodology,69 B) Reaction in more diluted conditions, C) 

Reference spectrum of the product. 

After these problems with the reported methodology were encountered, a different bromine 

source was tested using HBr in DMSO (Figure 17).78 Unfortunately, no conversion towards 

the product was observed. 
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Figure 17. 1H-NMR spectra (400 MHz, CDCl3) of the crude mixtures of the reaction using 

HBr/DMSO. 

Br2-based halogenation  

Considering the inactivity of the previously tested brominating agent, non-diluted elemental 

bromine was used in order to achieve the desired reactivity. Unfortunately, when using this 

reagent the formation of undesirable by-products could not be prevented using the reported 

methodology.69 With the need of obtaining a pure brominated product to perform the C–P 

bond formation, an optimization of the method using elemental bromine was performed and 

a selected set of experiments is shown below to discuss the main parameters involved in the 

selective bromination of 2,7-bis(5-bromopentyl)-9,9-dimethylxanthene and their 

corresponding 1H-NMR spectra are reported. 

Rebek and co-workers reported a procedure using iron powder to catalyze dibromination of 

2,7 substituted xanthene structures.79  Under these conditions, an important consideration is 

that the reaction should be followed by NMR spectroscopy to prevent the formation of 

undesired products.  
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First NMR tube reactions were performed using 5 mol% of iron powder in deuterated 

dichloromethane as solvent in order to follow product formation. The reaction gave the 

dibrominated product with good selectivity and the formation of by-products was hampered 

(Figure 18A). Unfortunately, when scaling it up to 100 mg, using the same reaction 

conditions, formation of impurities was observed (Figure 18B). The reported methodology 

is substrate dependent and each xanthene derivate requires an amount of bromine from 2.9 

to 4 equiv. and iron catalyst loading from 5 to 10 mol%. In particular, the most similar 

xanthene structure with respect to our molecule requires 4 equiv. of bromine and 10 mol% 

of iron. Using these conditions, the amount of by-products remarkably increased (Figure 

18C). It is important to mention that the yielded impurities are very difficult to remove from 

the desired product by column chromatography as retention factors are very similar for all 

the species formed. This fact strongly affects the isolated yields and the purity of the final 

compound. 

FeCl3 and FeBr3 were tested resulting in lower selectivity.  A blank test without catalyst was 

then performed (Figure 18D) using the same amount of bromine (4 equiv.), but impurities 

were also observed and it was the turning point to avoid the use of catalytic dibromination 

procedures. For expansion of the aromatic area Figure 19 is presented. 
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Figure 18.  1H-NMR spectra (400 MHz, CD2Cl2) of the crude mixtures of the bromination 

step using variations of Rebek’s methodology, expansion of the aromatic area; from top to 

bottom: reference spectrum of the starting material, A) NMR reaction using Fe (5 mol%) and 

Br2 (2.9 equiv.), B) scaling up using Fe (5 mol%) and Br2 (2.9 equiv.), C) Fe (10 mol%), Br2 

(4 equiv), D) Br2 (4 equiv) without catalyst.  All the reactions were performed at 0º C. 
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Figure 19.  1H-NMR spectra (400 MHz, CD2Cl2) of crude mixtures for the bromination step 

using variations of Rebek’s methodology, expansion of the aromatic area; from top to 

bottom: reference spectrum of the starting material, A) NMR reaction using Fe (5 mol%) and 

Br2 (2.9 equiv.), B) scaling up using Fe (5 mol%) and Br2 (2.9 equiv.), C) Fe (10 mol%), Br2 

(4 equiv), D) Br2 (4 equiv) without catalyst.  All reactions were performed at 0º C.  

A literature report indicated that selectivity issues are common for the bromination of 

functionalized aromatic compounds of the xanthene family.80 This patent describes an 

industrial protocol for the selective bromination of fluorescein (40) (Figure 20). The patent 

mentioned describes the perbromination and purification problems for the production of 

substantially pure dibromofluorescein. The authors stated that the synthesis of 

dibromofluorescein gave a reaction mixture composed of a variety of brominated products. 

In order to obtain selective bromination in positions 4 and 5, the pH of the medium has to be 

increased under refluxing conditions in the presence of elemental bromine. These conditions 

could not be applied to the target molecule due to chemical reactivity. In our case this 

protocol would potentially lead to side reactions in the side chains of the molecule.  
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Figure 20. Structure of fluorescein (40). 

Subsequently, a modification of the procedure reported by Bronger69 was performed. Cooling 

down the reaction mixture to -20 oC instead of 0 oC and adding just three equivalents instead 

of 3.6 equiv. of bromine in hexanes afforded the product with fewer extra peaks in addition 

to the expected ones (Figure 21). It shows that temperature and the amount of bromine are 

crucial and that by optimizing these parameters the selectivity of the reaction could be 

improved.  
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 Figure 21. 1H-NMR spectra (400 MHz, CD2Cl2) of the crude mixtures of the bromination 

step using a variation of the reported methodology69 at -20 oC, expansion of the aromatic 

area. 

Lowering the temperature to -78 oC and using non-diluted elemental bromine as adapted from 

Osakada’s methodology;81 great selectivity was achieved towards the desired product (Figure 

22). When scaling up the reaction to 200 mg side products were observed. For this example, 

the use of column chromatography with hexane/acetone (99:1) as eluent system was 

performed for 50 mg of compound and only ~ 42% of the pure dibrominated product was 

obtained.  
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Figure 22. 1H-NMR spectra (400 MHz, CD2Cl2) of the crude product after work up. 

Following the successful trend of lowering both temperature and amount of bromine, the 

desired product was obtained by dropwise addition of 2.7 equivalents of bromine to a CH2Cl2 

solution of the starting material at -78oC. Under these conditions, the reaction is completely 

selective and does not require further purification after the work up, obtaining 4,5-dibromo-

2,7-bis(5-bromopentyl)-9,9-dimethylxanthene (36) in 98% isolated yield (Figure 23). 
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Figure 23. 1H-NMR spectra (400 MHz, CD2Cl2) of isolated brominated product. 

Synthesis of 10-chloro-2,8-dimethylphenoxaphosphine (POP) 

 

Scheme 17. Synthesis of POP-Cl (42). 

The halophosphine 10-chloro-2,8-dimethylphenoxaphosphine (POP–Cl) which is a 

substituent for the synthesis of our tagged ligand was synthesized following a protocol 

described by Herwig and coworkers (Scheme 17).82 The reaction occurs via electrophilic 
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aromatic substitution between phosphorus trichloride and p-tolyl ether following a Friedel-

Crafts type mechanism. The final part requires addition of pyridine to cleave the complex 

formed between the halophosphine with the Lewis acid after reaction completion. Once the 

Lewis acid-amine adduct is removed by filtration, the synthetic intermediate is extensively 

extracted with toluene and washed with diethyl ether to remove the remaining impurities. 

This method allows the access to the synthetic intermediate 10-chloro-2,8-

dimethylphenoxaphosphine (42) in high purity and 68% yield. 

3.3.1.4 Step IV) Lithiation and C–P bond formation 

One of the most widely used methods to synthesize phosphines by carbon-phosphorus bond 

formation, contemplates the reaction of halophosphines with organolithium species. 

Stoichiometric amounts of the reagents are required. The reaction requires strict inert 

conditions not only because of the sensitive nature of intermediates and final product, but 

also because many halophosphines are flammable and corrosive.83  

In order to afford the intermediate 2,7-bis(5-bromopentyl)-9,9-dimethyl-4,5-bis(2,8-

dimethyl-10-phenoxaphosphino)xanthene (37), the dilithiation of 4,5-dibromo-2,7-bis(5-

bromopentyl)-9,9-dimethylxanthene (36)  in THF at low temperature followed by reaction 

with the halophosphine 42 was performed (Scheme 18). The new desired C–P bond was 

achieved by halogen–lithium exchange and the intermediate was obtained in 88% yield.  

 

Scheme 18. Synthesis of the phosphine (37). 

For comparison we also synthesized the xantphos analogue 2,7-bis(5-(3-

methylimidazolium)pentyl)-9,9-dimethyl-4,5-bis-(diphenylphosphino)xanthene triflate (47) 

(Ion-tagged ligand). 
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For the synthesis of the synthetic precursor 2,7-bis(5-bromopentyl)-9,9-dimethyl-4,5-

bis(diphenylphosphino)xanthene (Scheme 19) the same procedure was followed using 

chlorodiphenylphosphine instead of 2,8-dimethyl-10-phenoxaphosphino chloride. The 

phosphine intermediate 2,7-bis(5-bromopentyl)-9,9-dimethyl-4,5-bis(diphenylphosphino) 

xanthene (43) was obtained.   

 

Scheme 19. Synthesis of the phosphine 2,7-bis(5-bromopentyl)-9,9-dimethyl-4,5-bis(di 

phenylphosphino) xanthene (43).   

3.3.1.5 Step V) Quaternarization – Ligand functionalization 

 

Scheme 20. Imidazolium functionalization step for the synthesis of 2,7-bis(5-(3-

methylimidazolium)pentyl)-9,9-dimethyl-4,5-bis(2,8-dimethyl-10-phenoxaphosphino) 

xanthene bromide (38). 

The introduction of the imidazolium cores in the modified xanthene backbone was possible 

following the methodology reported by Cole-Hamilton and co-workers.70 The N–alkylation 

reaction of 1-methylimidazole with the precursor 37 gave full conversion towards the 

functionalized ligand  38 (Scheme 20) despite using lower amounts of 1-methylimidazole. 

Initially we followed the reaction by 31P NMR spectroscopy in order to observe product 

selectivity and estimated reaction time (Figure 24). 
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Figure 24. Monitoring of quaternarization by 31P NMR (202 MHz, C6D5CD3). 

This method avoids long reaction times (48 h instead of 8 days) and does not require further 

purification due to the low solubility of POP-xantphos ligands in organic solvents. The 

compound crashes out from the reaction mixture as a white crystalline powder.  

A crystal structure of the product was obtained (Figure 25). It was possible to identify the 

two imidazolium rings that were introduced by quaternarization. However, the counterion 

could not be identified as bromide. The counterion chloride was used as they could have been 

introduced by using chlorinated solvents at some point during compound manipulation. The 

identification of the anion is difficult to confirm because of the low quality of the crystal; 

therefore, it is unsuitable for detailed analysis.  
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Figure 25. Thermal ellipsoid representation of ligand 38. Hydrogen atoms and co-

crystallized solvent molecules have been omitted for clarity. Displacement ellipsoids 

correspond to 20% probability. 

For the synthesis of the synthetic precursor 2,7-bis(5-(3-methylimidazolium)pentyl)-9,9-

dimethyl-4,5-bis-(diphenylphosphino)xanthene bromide (44) a modification of the 

previously described protocol was necessary (Scheme 21). An important feature of POP-

xantphos derivatives is their crystallization properties and the lack of solubility. The POP-

xantphos ion-tagged precursor crashed out from the reaction mixture and this fact drove the 

reaction to completion in short reaction times. This was not the case for the current precursor 

and product formation as well as purification were challenging. It requires long reaction time, 

followed by extensive washing with toluene and diethyl ether to afford the product.  

 

Scheme 21. Imidazolium functionalization step for synthetic precursor 44. 
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3.3.1.6 Step VI) Counterion exchange 

Counterion exchange was necessary to finalize our synthesis because for catalytic 

applications it is important, considering that halides can be detrimental to catalyst 

performance. Non-coordinating anions such as hexafluorophosphate, triflate and triflimide 

which usually do not interact with the metal center are the ones of choice for catalytic 

applications.84  

Initially, the original methodology reported to obtain this ligand was applied performing the 

counterion exchange in water in presence of the corresponding potassium salt.69 Product 

impurities were observed and water removal under inert conditions is not ideal. Importantly, 

the ligand could not be extracted in the presence of water from the reaction mixture because 

it was present in both phases. The separation of the layers was not possible. Subsequently, it 

was observed that the use of ammonium salts as counterion source was not favorable, despite 

the byproduct crystallization from the reaction mixture. Ammonium salts are slightly soluble 

in organic solvents and contamination from the salt precursor was always detected. 

Subsequently, sodium or potassium salts were used to achieve the counterion exchange in 

acetonitrile (Scheme 22). The suspension gives the desired product after overnight reaction. 

Next, removal of the solvent and filtration of the salts followed by extensive extraction of the 

ligand with various organic solvents afforded the target ligands.  

 

Scheme 22. Counterion exchange reaction for ligands 31, 45 and 46.  

The reaction was followed by 31P NMR spectroscopy in order to assess product formation 

and reaction times (Figure 26 and 27). Despite the conversion towards the product is 

quantitative, the poor solubility of the ligand in organic solvents considerable reduces the 
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isolated yield. The counterion exchange can occur in both dichloromethane or acetonitrile as 

solvents. 

 

Figure 26. Monitoring of counterion exchange of 31 by 31P NMR (202 MHz, CD2Cl2). 

 

Figure 27. Monitoring of counterion exchange of 31 by 1H NMR (400 MHz, CD2Cl2). 
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For the synthesis of the ligand 2,7-bis(5-(3-methylimidazolium)pentyl)-9,9-dimethyl-4,5-

bis(diphenylphosphino)xanthene triflate (47), the reaction was performed as previously 

described for the aforementioned ligand (Scheme 23).  

Scheme 23. Counterion exchange reaction for ligand 47. 

Additionally, the imidazolium-tagged nixantphos ligand 32 was synthesized according to the 

procedure of Cole-Hamilton and co-workers.70 

3.3.2 Catalysis in ionic liquids 

Our goal in catalysis was to assess the performance of the synthesized imidazolium-tagged 

ligands in the ruthenium-catalyzed C–O bond cleavage of lignin model compounds in ionic 

liquids to establish a potential recyclable system for lignin depolymerization.  

Lignin solubilization is a challenge, such feature is problematic for its characterization and 

valorization purposes. This recalcitrant biopolymer exhibits low solubility in most organic 

solvents. Homogeneous catalysts require that lignin goes into solution in the reaction media 

in order to have significant activity toward the conversion of the biopolymer.73, 85 Ionic 

liquids have been reported as alternative solvents to solubilize lignin.72 Because of their 

modular structural components, tuning of solute-solvent interactions can lead to high lignin 

solubility. It has been shown that electrostatic interactions with the solvent can disrupt the 

intra molecular polymer interactions and drive lignin into solution.65 In order to evaluate our 

reaction conditions in this kind of alternative solvent, the ionic liquids selected for this studies 

due to their reported capability to solubilize lignin11, 65, 72 were: 1-ethyl-3-methylimidazolium 

diethyl phosphate, 1,3-dimethylimidazolium methyl sulfate, 1,3-ethyl-3-methylimidazolium 

trifluoromethanesulfonate and 1-ethyl-3-methylimidazolium chloride.  
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Reaction conditions were selected according to the reported procedure for the catalytic C–O 

bond cleavage of a lignin model compound using xant-type ligands, initially using 

commercially available xantphos.71 The reaction was carried out at 0.75 h in order to compare 

our results with the reported data in the literature (Scheme 24). The ionic liquids were dried 

before use (Chapter V, Section 5.2). 

 

Scheme 24. Catalytic C–O bond cleavage of 2-phenoxy-1-phenylethanol compound using 

ruthenium xantphos ligands. 

Under our reaction conditions, only 5% conversion towards the products was observed, while 

in xylenes xantphos achieves 44.6% conversion of 19 at 2 mol%.71 Poor solubility of the non-

modified ligand was discarded by performing the experiments with imidazolium-tagged 

ligands. The nixantphos and xantphos analogues also gave 5% conversion towards the 

product under the same conditions. The imidazolium-tagged POP-xantphos derivative did 

not give any conversion. We believe the acidic proton of the imidazolium present in the ionic 

liquid structure reacted with the ruthenium precatalyst and/or other ruthenium species 

hampering the formation of the desired active complex (Scheme 12, section 3.1.3.2), causing 

its deactivation by forming carbene species. Although, the complex formed by side reactivity 

was not isolated, phosphorus NMR of the reaction mixture does not show the signals 

corresponding to the expected complex (Figure 28).  

 

Figure 28. Expected ruthenium complex (Scheme 12, section 3.1.3.2). 
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Therefore, we decided then to use C2 protected ionic liquids. The ionic liquids tested were 

1-ethyl-2,3-methylimidazolium hexafluorophosphate and 1-ethyl-2,3-methylimidazolium 

bis(trifluoromethanesulfonyl)imide. 

As preliminary results for the catalytic transformation, when using commercial xantphos, full 

conversion of 19 towards the desired products 20 and 21 is achieved in 0.75 hours with 10% 

catalyst loading in both ionic liquids (Table 4). The extraction of the products and internal 

standard from the reaction media was achieved by washing the ionic liquid phase with 

organic solvents. 

Table 4. Catalytic C–O bond cleavage of 2-phenoxy-1-phenylethanol in ionic liquids. 

 

Ionic liquid Catalyst loading 

(mol%) 

Conversion of 19 

(%) 

1-ethyl-2,3 methylimidazolium 

hexafluorophosphate 

10 >99% 

1-ethyl-2,3 methylimidazolium 

Bis(trifluoromethanesulfonyl)imide 

10 >99% 

Reaction conditions: 0.25 mmol of 2-phenoxy-1-phenylethan-1-ol with 10 mol% catalyst 

loading (0.025 mmol of RuH2CO(PPh3)3, 0.025 mmol of xantphos ligand and 0.125 mmol of 

1,2,4,5-tetramethylbenzene as the internal standard in 2 mL of the selected ionic liquid in a 

closed microwave vial provided with a magnetic stirrer. The reaction mixture was sealed and 

heated to 150 °C, 45 minutes after which the reaction mixture was cooled to room 

temperature, washed with 5 mL of toluene, 5 mL of diethyl ether and 5 mL of ethyl acetate. 

The yield was determined by gas chromatography. Results presented are the averages of 

reactions carried out in triplicate. 
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3.4 Conclusions  
The optimized synthetic route reported in this thesis enables the functional modification of 

xantphos ligands suitable for catalysis in ionic liquid media by the introduction of  

imidazolium-tagged cores in their structure. This improved, robust and reliable synthetic 

procedure allows modular access to a variety of functionalized xant-type ligands. 

 

Preliminary catalytic results in C2 protected ionic liquids showed promising results to 

perform the catalytic C–O bond cleavage of 2-phenoxy-1-phenylethanol in ionic liquids 

media. 

In order to achieve effective biphasic catalytic systems, further investigations will determine 

the activity for each new tagged ligand in the homogeneous ruthenium-catalyzed C–O bond 

cleavage of the lignin model compound 2-phenoxy-1-phenylethanol. Reaction optimization 

and recyclability experiments still need to be performed in future investigations in our 

research group to allow product separation and catalyst recycling for lignin depolymerization 

into useful monomers. Once the candidate catalyst and optimized conditions are established, 

the catalytic system will be applied to more complicated lignin model compounds and real 

lignin could be also considered in the long term aim of the present project. 
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Chapter IV: Photocatalytic CO2 reduction in ionic 

liquid media 

4.1 Introduction 

4.1.1 The importance of carbon dioxide utilization  

Carbon dioxide concentrations in the atmosphere have been increasing by 280 ppm over the 

past century reaching 403 ppm in 2016, a value that is 40% higher than the levels 

corresponding to the pre-industrial era. The major reason for this increase lies in the use of 

fossil fuels as primary source (82% in 2015) to supply the increasing demand of energy, 

which grew by almost 150% between 1971 and 2015. Each source of energy (i.e. oil, coal, 

gas etc.) account for CO2 emission related to their content of carbon (Figure 1, left), therefore 

coal represents the source with the highest emission of CO2 (45% of the total) despite being 

less used than oil for energy supply. As consequence, countries that utilize coal as major 

energy supply are also the ones producing more CO2. Noticeable, the first ten countries in 

order of emission accounted for 21.7 Gt of the 32.3 Gt of CO2 emanations in total in 2015, 

with China emitting 28% of the entire amount. Regarding the emission by sector in 2015, 

electricity and heat accounted for 41% of the total, followed by transport (24%), industry 

(19%), residential (6%), services (3%) and other (7%) (Figure 1, right).1-2   

   

Figure 1. Fuel contributions to world primary energy supply and CO2 emissions (left). World 

CO2 emissions from fuel combustion by sector (right).2 
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Three strategies have been envisioned for the reduction of CO2 production.3 The first 

approach consists in reaching higher efficiency in energy production, especially in the sectors 

that contribute more to the emissions. Therefore, better insulation of buildings, new or 

refurbished industrial plants based on low-emission technologies and fuel-efficient vehicles 

are on the top of the priorities. The major problem for the implementation of this strategy 

consists in the high cost and long time needed for the conversion of the existing low-efficient 

buildings, plants and vehicles. The second strategy is shifting from fossil fuels to renewable 

energy sources like sun, wind and geothermal energy. The third strategy fundamentally 

differs from the two previous ones because it is based on the concept of utilization of CO2 

rather than avoiding its production. In this context, CO2 is utilized as C1 carbon source to 

obtain chemicals, but CO2 is a stable molecule (ΔGf° = −396 kJ/mol) and energy is needed 

for its conversion into species in which the O/C ratio is lower than 2 or the H/C ratio is 

increased from zero. Thermal energy combined with stoichiometric (i.e. synthesis of urea4 

and salicylic acid5 or catalytic synthesis of organic carbonates,6 and carbamates7) protocols 

have been developed. More recently, the utilization of solar energy for the reduction of CO2 

started to gain increasing interest due to the desirable switch from fossil fuel to renewable 

energy sources. The one-electron reduction of CO2 to form CO2
•- is very difficult (-2.14 V 

vs. SCE)8-9 and an efficient process requires an overpotential of up to 0.6 V, due in part to 

the kinetic restrictions forced by the structural difference between linear CO2 and bent CO2
•-

.8,10 A more accessible pathway consists of reducing CO2 via proton-assisted multiple-

electron transfer, which can afford different products (Table 1).9 

Table 1. CO2 reduction potentials (E° potentials are reported at pH 7).11 

Reaction E° (V) vs. SCE 

CO2 + 2H+ + 2e-  HCO2H - 0.85 

CO2 + 2H+ + 2e-  CO + H2O - 0.77 

CO2 + 4H+ + 4e-  C + 2H2O - 0.44 

CO2 + 4H+ + 4e- HCHO + H2O - 0.72 

CO2 + 6H+ + 6e-  CH3OH + H2O -  0.62 

CO2 + 8H+ + 8e-  CH4 + 2H2O - 0.48 
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4.1.2 Overview of homogeneous photocatalytic approaches for CO2 

reduction 

Two different systems can be envisioned to perform this reduction using homogeneous 

photocatalysis, the first strategy is based on a single molecule (Pcat) that acts both as 

photosensitizer (PS) and catalyst (cat), whereas in the second approach a photosensitizer (PS) 

and a transition metal catalyst (cat) work concertedly.11  

The complexes belonging to the first class are promoted to an excited state (Pcat*) upon light 

excitation. This excited state is then quenched by a sacrificial donor (S), such as triethylamine 

(TEA) or triethylethanolamine (TEOA), to give the reduced catalyst (Pcat-) that is responsible 

for the reduction of CO2 (Equations 1-3) 

Pcat + hν  Pcat*    (1) 

Pcat* + Et3N Pcat- + Et3N
•+  (2) 

Pcat- + CO2  Pcat + products (3) 

In this context, metalloporphyrins and related metallomacrocycles have been studied because 

they are strong light absorbers with extremely large extinction coefficients in the visible 

spectral region.12-16 However, their excited states lifetimes are really short resulting in low 

concentrations of active catalyst in solution. In addition, they undergo unwanted 

hydrogenation of the macrocycle ring and these degradation products seem to preferentially 

catalyze the reduction of protons over CO2.
11 In addition to metalloporphyrins, 

Re(CO)3(bpy)X-based complexes have been intensely studied,17-19 but they suffer from 

narrow range of absorption in the visible region and sluggish reactivity with CO2  which are 

reflected in poor turnover frequencies (TOF). More recently, mononuclear, binuclear and 

trinuclear terpyridine (tpy) 2-phenylpyridine (ppy) iridium complexes have been also applied 

for the reduction of CO2 to CO.20-22  

Examples of the second class of dual catalytic systems typically involve ruthenium or iridium 

complexes as photosensitizers, which are promoted to an excited state PS* upon light 

excitation. This excited state is then quenched by a sacrificial donor (S), such as triethylamine 

(TEA) or triethylethanolamine (TEOA), to give the reduced PS- that is responsible for 

electron transfer to the catalyst, ultimately reducing CO2 (Equations 4-7).11-23  
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PS + hν  PS*    (4) 

PS* + Et3N PS- + Et3N
•+   (5) 

PS- + cat  PS + cat-    (6) 

cat- + CO2  cat + products   (7) 

Catalysts based on Mn,24-26 Fe,24, 27-28, Co,29-30 or Ni and Ir31 proved to be able to reduce CO2. 

In addition, photosensitizer and catalyst can be connected by a bridge forming a 

supramolecular complex.32-35  

Recently Beller and co-workers reported a selective system from the reduction of CO2 to CO 

applying (cyclopentadienone) iron–tricarbonyl complexes as catalysts due to their 

bifunctional nature, which translates to the presence of both a proton-donor site (ligand) and 

a hydride-donor site (metal center).36 The chosen photosensitizer was [Ir(dF(CF3)ppy)2-

(dtbbpy)]PF6 (IrPS) (where dF(CF3)ppy = cyclometalated 2-(2,4-difluorophenyl)-5-trifluoro-

methylpyridine and dtbbpy = 4,4’-di-tert-butyl-2-2’-bipyridyl).37 They used TEOA as 

sacrificial donor and N-methyl-2-pyrrolidone (NMP) as solvent, irradiating the reaction 

mixture using a Hg-lamp (400–700 nm) at 2.5 W for 5 h at room temperature. Under these 

reaction conditions, a TON of 596 was obtained using 5µM of catalyst, outperforming the 

structurally related [Fe(CO)3(bpy)] that reached a TON of 129. The mechanism was 

investigated using FTIR measurements and Stern-Volmer analysis. Irradiating the sole 

(cyclopentadienone) iron tricarbonyl complex in solution under argon resulted in CO 

dissociation, whereas a new iron-hydride species is formed in the presence of IrPS. Stern-

Volmer analysis showed that either the iron catalyst or TEOA can quench the emission of 

the excited state PS*. However, the former possess an irreversible reduction peak at -1.44 V 

vs. SCE that is more negative than the one of the couple [IrPS*/IrPS+] (-0.89 V vs. SCE), 

thus electron transfer from the PS to the iron catalyst is thermodynamically unfeasible. For 

this reasons, a reductive quenching mechanism between IrPS and TEOA was suggested.   

Later, the same group replaced the iridium photosensitizer with the more economical and 

earth-abundant copper (CuPS) obtaining slightly lower TON of 487.38 In this case 1,3-

dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) was used as sacrificial electron 
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donor and again a reductive quenching mechanism operating between CuPS* and BIH was 

proposed.  

A combination of experimental studies and DFT calculations enabled the elucidation of the 

mechanism for this transformation (Scheme 1).27, 36, 39 According to calculations, removal of 

CO from I to form the corresponding neutral species is unfavorable (ΔG = 32.5 Kcal mol-1), 

but decarbonylation is accessible after reduction of I by the photosensitizer to give II, 

followed by CO dissociation to afford III. CO2 coordination is presumed to dictate the 

product distribution,40 in particular effective formation of CO is associated with CO2 bound 

via the carbon atom whereas η1-OCO coordination will finally lead to formic acid. It was 

calculated that coordination of CO2 via carbon to give IV is facilitated by hydrogen bonding 

with the OH of the cyclopentadienyl ligand. Intermediate IV is in equilibrium with the 

protonated species V and this equilibrium is shifted toward the products by an exergonic and 

irreversible dehydration step that releases H2O and regenerates I.  
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Scheme 1. Proposed mechanism for the photochemical reduction of CO2 using the 

cyclopentadienone iron complex.  

4.1.3 Solubilization and photoreduction of CO2 in ionic liquids 

All the aforementioned photocatalytic systems function using organic solvents, but in the 

perspective of a more environment-friendly processes these have to be replaced. Ionic liquids 

(ILs) have been explored as a greener alternative to molecular solvents. They possess several 

advantages such as negligible vapor pressure, great thermal stability, wide electrochemical 

stability window, tunable polarity, hydrophobicity and solvent miscibility behavior through 

variation of the cations and anions. Figure 2 shows the most common cations studied for CO2 

capture.41   
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Figure 2. Commonly used cations of ILs for CO2 capture.41 

The solubility of CO2 in ILs depends both on enthalpic and entropic effects.41 Enthalpic 

effects are mainly related to the interaction of CO2 with the anion of the ILs, whereas the 

cation has a secondary role.42-44 These contributions were studied experimentally, finding 

that the solubility of CO2 increases in order [NO3]
- (= nitrate) < [SCN]- (= thiocyanate)< 

[MeSO4]
- (= methylsulphate) < [BF4]

- (= tetrafluoroborate) < [DCA]- (= dicyanoamide) < 

[PF6]
- (= hexafluorophosphate) < [Tf2N] (= bis(trifluoromethylsulfonyl)imide) < [Methide]- 

(= tris(trifluoromethylsulfonyl)methide) < [C7F15CO2] (= pentadecafluorooctanoate) (Figure 

3a). 44-45,46  Moreover, greater solubility is associated with higher number of fluorinated 

groups of the anion as shown in Figure 3b, with [BF4]
- < [TfO]- (= triflate) < [TfA] (= 

trifluoroacetate) < [PF6]
- < [Tf2N]- < [methide]- (=tris(trifluoromethylsulfonyl)methide) < 

[C7F15CO2]
- < [eFAP]- (tris(pentafluoroethyl)trifluorophospate) < [bFAP] 

(tris(heptafluoropropyl)trifluorophospate).44-45. Regarding the cation, the solubility of CO2 

increases with the increasing alkyl chain length on the imidazolium cation 44, 47-48(Figure 

3c).49 
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Figure 3. (a) Effect of anion on CO2 solubility. (b) Effect of anion fluorination on CO2 

solubility. (c) Effect of alkyl chain length on CO2 solubility.41 [emim] = 1-ethyl-3-

methylimidazolium; [bmim] = 1-butyl-3-methylimidazolium; [pmim] = 1-propyl-3-

methylimidazolium; [hmim] = 1-hexyl-3-methylimidazolium; [omim] = 1-octyl-3-

methylimidazolium.  

Recently, entropic effects were proven important for the dissolution of CO2 in ILs and its 

solubility increases with increasing the ionic liquid molecular weight, molar volume and free 

volume (free cavities in the ILs). 41, 50-51 For these solubilizing properties of ILs, they have 

been employed as reaction media in combination with heterogeneous52 and homogeneous53 

catalysts for the chemical reduction of CO2 to CO. In addition, electrochemical reduction of 

CO2 to fuels takes place in ILs due to their excellent electrochemical properties.54-59 Recently, 

Lin and co-workers reported the capture and activation of CO2 to give CO by ILs coupled 

with photoredox catalysis using [Ru(bpy)3]Cl2 as PS and CoCl2∙6H2O as catalyst.60 The 

structures of the cations and anions of the imidazolium ILs had considerable effects on the 
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activation and reduction of CO2 (Table 2). Better performances were obtained with [Tf2N] 

and BF4 as anions because the related IL has low viscosity, thus favoring the reaction 

kinetics.61 Decreased yields were correlated with ILs possessing longer chain lengths in their 

cation which shows an opposite trend respect to the previous studies regarding the sole 

solubility of CO2 in ILs that states that longer chains show better solubility of the gas due to 

increased van der Waals interactions.49 However, Wang and co-workers attributed this 

contradictory behavior to the higher molecular weights of the ILs that augment viscosity and 

steric hindrance, leading to low reactivity.60  

Table 2. The effect of various ILs on the photocatalytic conversion of CO2 to CO. 

IL CO/µmol H2/µmol CO + H2/µmol Sel./% 

[emim][Tf2N] 34.7 10.9 45.6 76.1 

[emim][l-l] 3.7 1.1 4.8 77.1 

[emim][OTf] 0.4 0.1 0.5 80.0 

[emim][ac] n.d n.d / / 

[emim][dca] 0.1 0.2 0.3 33.3 

[emim][BF4] 31.0 4.1 35.1 88.3 

[bmim][BF4] 28.0 1.6 29.6 94.6 

[hmim][BF4] 13.1 0.5 13.6 96.3 

[omim][BF4] 6.8 0.3 7.1 95.8 

[bdimim][BF4] 13.7 1.1 14.8 92.3 

Reaction conditions: IL (3.6 mL), H2O (1.2 mL), CO2 (1 atm), [Ru(bpy)3]Cl2 (7.8 mg), 

CoCl2∙6H2O (1 mmol), TEOA (1.2 mL), λ > 420 nm, 30 °C, 2 h. [l-l] = 2-hydroxypropanoate, 

[ac] = acetate, [bdimim] = 1,2-methyl-3-butylimidazolium.60 
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4.2 Justification and project aims  

Increasing of atmospheric levels of CO2 is a worrying problem society is facing. Climate 

change has been well debated not only scientifically but also politically. It is known that the 

earth temperature is rising due to greenhouse gasses (GHGs) and it brings severe 

consequences for humanity. The global surface temperatures have already risen by 0.9 °C 

between 1880 and 2015.62 It has been stated that if society does not address the mitigation of 

such effects, by 2100 the global surface temperature could increase in a range from 1.4 °C to 

5.8 °C compared to 1900.63 The impacts of climate change should not be ignored and there 

are some devastating consequences for our planet such as rise of sea levels, change of weather 

patterns, extreme weather, and effects on human societies notably due to detrimental effects 

on global food production leading to political instability, security risks, human health risks 

and detrimental effects for wildlife and ecosystems.64 Carbon dioxide constitutes 81% of the 

total amount of GHGs65. Utilization of CO2 captured from emissions is therefore mandatory 

to mitigate its negative effects on the atmosphere envisioning it as carbon source replacing 

fossil fuels.66 The reduction of CO2 to CO, generating an energy-rich commodity chemical 

is one  the strategies for CO2 valorization.67-68 

Energy utilization plays also a crucial role in the development of sustainable catalytic 

processes. Solar power is a sustainable source of energy. The amount of energy it provides 

our planet in one hour is the equivalent our humanity could spend in a year.69  For the 

effective use of solar energy it is important to consider the alternatives to not only store but 

also deliver energy according to the demand. Low-cost storage methodologies covering 

variable atmospheric conditions are required in order to use solar energy as primary energy 

supply.70 A feasible approach towards this direction is the development and optimization of 

photocatalytic processes that enable chemical transformations by the use of photonic energy 

as driving force.71   

Combination of energy and CO2 utilization towards catalytic sustainable approaches was the 

inspiration for this chapter. The search for photocatalytic systems that convert carbon dioxide 

to more valuable chemicals is an area of great interest. In this field transition metal complexes 

have been studied where Re, 33, 35, 72-73 Ir20-22 and Ru74-76 are known for being selective. 

Solving the problem of using expensive and less friendly transition metals, Beller and co-
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workers developed a system based on the earth abundant, less toxic copper metal bearing 

bathocuproine and xantphos as ligands. Additionally, it was demonstrated to be a novel 

selective system for the visible-light-driven reduction of CO2 to CO (Section 2.1.2.1).38 

Selective processes towards the production of CO from CO2 are challenging since numerous 

by-products can be generated.77 The reduction of CO2 is also in competition with hydrogen 

formation, a process that usually requires less negative potentials, and therefore is difficult 

to avoid.78-79 Lastly, we were interested in the use of ionic liquids as an alternative for 

traditional molecular solvents. They exhibit incomparable features that make them the ideal 

reaction media for many applications.  The substitution of volatile solvents hampers solvent 

losses to the atmosphere80-81 or contamination of the final product.  

This chapter shows the photocatalytic reduction of CO2 to CO in ionic liquid media by well-

defined earth-abundant metal complexes. Here, we have integrated the key points for 

sustainable catalytic methodologies combining a visible-light driven process in ionic liquids 

for the valorization of CO2.  We showcase the performance of ionic complexes in ionic liquid 

media for catalytic applications as well as the result from a rationally designed ion-tagged 

complex.  
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4.3 Results and discussion  

4.3.1 Synthesis and characterization of complexes 

4.3.1.1 Synthesis 

The following compounds: Knölker complex,82 [Cu(bcp)(xantphos)]PF6 (bcp: 

bathocuproine)83 and BIH (dimethylphenylbenzimidazoline)84 were prepared according to 

literature procedures. These compounds were provided for the project by the group of 

Professor. Matthias Beller/Dr. Henrick Junge. The imidazolium-tagged ligand for the 

preparation of complex 3 was synthesized according to the corresponding procedure (Chapter 

III, section 3.3.1). The complexes studied in this chapter are depicted in Figure 4. 

 

Figure 4. Heteroleptic complexes 1,2,3. Complex 1: [Cu(bcp)(xantphos)]PF6. Complex 2: 

[Cu(bcp)(POP-xantphos)]PF6; POP–xantphos 4,5-bis(2,8-dimethyl-10-phenoxaphosphino) 

-9,9-dimethylxanthene. Complex 3: [Cu(bcp)(Imidazolium-tagged POP-xantphos)]PF6, 

Imidazolium-tagged POP-xantphos: 2,7-bis(5-(3-methylimidazolium)pentyl)-9,9-dimethyl-

4,5-bis(2,8-dimethyl-10-phenoxaphosphino)xanthene hexafluorophosphate. 

 



Chapter IV: Photocatalytic CO2 reduction in ionic liquid media 

 

 
151 

 

Initially, the synthesis of copper complexes to be used as photosensitizers in comparison with 

the reported [Cu(xantphos)(bcp)]PF6  1 was assessed. A more rigid and sterically demanding 

ligand was used to form complex 2 as its similar analogue POP-thixantphos has been reported 

to give exceptional performance in photocatalytic applications.85 Complex 2 was 

successfully synthesized by reaction of 4,5-bis(2,8-dimethyl-10-phenoxaphosphino)-9,9-

dimethylxanthene (POP-xantphos) with the metal precursor copper(I) tetrakis(acetonitrile) 

hexafluorophosphate in CH2Cl2, followed by the addition of the bathocuproine ligand. The 

complex is stable in solution, allowing its full characterization.   

Complex 3 was introduced in this study due to the expected higher solubility of ionic-tagged 

complexes in ionic liquids, as well as to potentially achieve catalyst recovery. Complex 3 

decomposes rapidly in solution in a wide range of molecular solvents, which made its 

characterization very challenging.  Complex 3 could be only identified by HRMS, 31P  NMR 

spectroscopy and electrochemistry due to its low solubility and stability.   

The 31P NMR spectrum of 2 present two peaks belonging to the phosphorous atom of the 

ligand (broad singlet at 53.46 ppm) and to the PF6 anion (septet at -144.53 ppm with J = 

710.1 Hz). Comparable chemical shifts were observed for the 31P signals in 3 (broad singlet 

at -52.90 ppm and multiplet -144.50). No additional spectroscopic data of 3 were obtained 

due to its low solubility and stability in common deuterated solvents. On the other hand, 1H 

NMR spectrum of 2 shows three singlet signals in the aliphatic region belonging to the methyl 

groups of dmp (2.25 ppm), POP (1.98 ppm) and xantphos (1.78 ppm). The 19F NMR 

spectrum of the PF6 anion shows a doublet at -73.64 ppm with coupling constant J = 710.1 

Hz. 

4.3.1.2 Electrochemical and photophysical characterization of complexes 

The solution absorption spectra of all three complexes (Figure 5) show intense absorption 

bands below 330 nm that can be assigned to ligand based transitions. Complexes 2 and 3 

show the same absorption profile whereas the absorption profile of 1 is slightly different 

which is attributed to the different nature of the P^P chelating ligand. The broad absorption 

at around 395 nm arises from a metal to ligand charge transfer transition (MLCT) and is 

characteristic for this type of heteroleptic [Cu(P^P)(N^N)]+ complexes.86 Upon excitation in 

the MLCT band all three compounds exhibit a broad unstructured emission (Figure 6). It is 
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noteworthy that 2 and 3 show almost the same emission maxima (539 and 541 nm 

respectively) whereas the emission of 1 is red-shifted by around 15 nm. We propose that this 

feature is related to the higher steric demand of the phosphine ligand used for the formation 

of 2 and 3. The POP-xantphos ligand is less flexible than xantphos and therefore imposes 

greater steric bulk around the copper(I) center. After excitation in the MLCT band, copper is 

formally oxidized to copper(II), which prefers a square planar geometry. Steric hindrance 

restricts the geometry change and preserves the tetrahedral geometry upon excitation.87 

 
Figure 5: Solution absorption spectra of complexes 1, 2 and 3 (CH2Cl2, 2.5 x 10-5 mol  

dm-3). 
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Figure 6: Normalized emission spectra of copper(I) complexes 1, 2 and 3 (λexc = 400 nm, 

degassed CH2Cl2, 2.5 x 10-5 mol dm-3).  

 

Complexes 1 and 2 show high photo luminescence quantum yields (PLQY) in deaerated 

solution (39.8 and 38.0%) and excited state lifetimes of 9.42 and 7.24 µs respectively. In 

contrast, complex 3 exhibits a lower PLQY of 9.9 % and an excited state lifetime of 3.43 µs. 

This drop in emission performance of 3 could be attributed to the presence of imidazolium 

moieties that facilitate non radiative decay pathways and therefore lower the PLQY. For all 

compounds, the PLQY and excited state lifetimes are shorter in aerated than deaerated 

solutions (Table 3). 

Table 3: Photophysical properties of the complexes in CH2Cl2 solution at a concentration 

of 2.5 x 10-5 mol dm-3 excited at λexc = 365 nm. 

Complex UV-Vis 

MLCT 

λabs/nm 

λem/nm PLQY (non-

degassed/degasseda)% 

τ1/2(non-

degassed/degasseda)/µs 

1 393 555 1.1/38.0 0.338/7.24 

2 398 539 1.3/39.8 0.446/9.42 

3 395 541 1.5/9.9 0.373/3.43 

aDegassed by bubbling nitrogen stream through the solution for 20 min. 
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Redox potentials are summarized in Table 4. The three complexes 1, 2 and 3 show quasi-

reversible oxidations at 0.86, 0.83 and 0.79 V respectively. This signal can be assigned to a 

copper based oxidation. Additionally, 2 and 1 show a quasi-reversible reduction signal at –

2.10 and –2.11 V respectively. In the case of 3 there is an irreversible reduction process 

observed at –1.98 V. Due to the low solubility of 3 in CH2Cl2, all electrochemical signals are 

very weak for this compound. It is noteworthy that 1 and 2 behave similarly in terms of 

oxidation and reduction potential. On the other hand, 3 shows a copper oxidation signal at 

significantly lower potential and an irreversible reduction at less negative potential (–1.98 

V). This process probably relates to an imidazolium reduction, since it is not present in the 

case of 1 and 2. Further analysis is needed to investigate the origin of this signal and its 

influence.  

Table 4: Cyclic voltammetry data for copper(I) complexes referenced to internal Fc/Fc+ = 0 

V; degassed HPLC grade CH2Cl2 solution with [nBu4N][PF6] as supporting electrolyte and 

a scan rate of 100 mV s−1. Processes are quasi reversible unless otherwise stated (ir = 

irreversible). 

Complex Eox
1/2/V (Epc – 

Epa/mV) 

Ered
pa/V Ered

1/2/V (Epa – 

Epc/mV) 

1 0.86 (81)  –2.11 (154) 

2 0.83 (72)  –2.10 (127) 

3 0.79 (68) –1.98ir  

 

Excited state redox potentials are calculated according to formulas (1) and (2)88 and the 

results are summarized in Table 5 where E00 is the (non-observable) energy difference 

between the lowest vibrational level of the electronic ground and electronic excited states 

and Eox
1/2 and Ered

1/2 are the copper based oxidation and ligand based reduction potentials 

(Table 5). E00 is estimated from the solution emission onset (5 % emission intensity) at room 

temperature. Note that for 3 a non-reversible ligand based reduction was observed and 

therefore no excited state reduction potential could be obtained.   

 

E*ox = Eox
1/2 – E00  (1) 

 

E*red = Ered
1/2 + E00  (2) 
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Table 5: Excited state redox potentials. 

 

Complex E*ox/V E*red/V E00/eV 

1 –1.77 0.52 2.63 

2 –1.84 0.57 2.67 

3 –1.97 - 2.75 

 

Electrochemical and photophysical characterization was performed and analized by Fabian 

Brunner from Professors Catherine Housecroft and Edwin Constable group at the University 

of Basel, Switzerland.  
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4.3.2 Photocatalysis 

 

Scheme 2. Photocatalytic CO2 reduction using [Cu(N^N)(P^P)]PF6 as photosensitizers. 

Our investigation started using the well-defined photosensitizers 1 and 2 in combination with 

the iron catalyst I and N-methyl-2-pyrrolidone (NMP) as molecular solvent (Scheme 2 and 

Table 6). Under these reaction conditions a TON (CO) of 427 was obtained with high 

selectivity toward CO (≥ 98%) when using the well-defined PS 1 (Table 6, entry 1) in organic 

solvents.38 A higher TON(CO) was observed when using 2, despite a marginal decrease in 

selectivity (Table 6, entry 2).  

Table 6. Iron photocatalyzed CO2 reduction with  [Cu(N^N)(P^P)]PF6  complexes as PS in 

molecular solvent systems. 

Reaction conditions: [Fe] (1 μmol), [Cu(N^N)(P^P)]PF6 (5 μmol), BIH (150 mg) and TEOA 

(1.25 mL) were illuminated at 400-700 nm (1.50 W) in 6.25 mL of solvent for 5 h. Results 

presented are the averages of reactions carried out in duplicate. 

Entry Complex Solvent TON 

(CO) 

TON 

(H2) 

Selectivity 

[%] 

1 1 NMP/TEOA (5:1, 

v:v) 

427 5 ≥98 

2  2 NMP/TEOA (5:1, 

v:v) 

508 23 ≥95 
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The CuPS/Fe systems were then tested using different ionic liquids as solvent (Table 7) in 

order to ascertain the impact of the latter on the catalytic performances. Interestingly, the 

activity and selectivity of the system was highly dependent on the ionic liquid used. A 

significant increase in selectivity was obtained using 1-butyl-1-methylpyrrolidinium 

dicyanamide (NCN) (Table 7, entries 1 and 2) compared to 1-butyl-3-methylimidazolium 

triflate (BMIMOTf) (Table 7, entries 3 and 4), independently from the CuPS used. In 

particular, almost equal TON(CO) and TON(H2) were observed for 2 in BMIMOTf as 

solvent (Table 7, entry 3) and a significant overproduction of hydrogen was observed when 

1 in BMIMOTf was used (Table 7, entry 4). This unwanted selectivity to hydrogen formation 

was even more pronounced when using 1 in DBMPNTf2 (tributylmethylphosphonium 

bis(trifluoromethylsulfonyl)imide) (Table 7, entry 5). In summary, NCN was found to be the 

most suitable IL to selectively produce CO and 1 was identified as the best photosensitizer 

both in term of activity (TON(CO) = 80) and selectivity (≥96%). Importantly the in-situ 

formation of the CuPS is ineffective when using ILs as solvents (Table 7, entry 6), in contrast 

to the catalytic outcome noticed in molecular solvents. Finally, the production of CO varies 

only marginally when the reaction time was increased from 5 h to 15 h which shows the 

catalyst is not active over longer reaction times (Table 7, entry 7).  
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Table 7 Iron photocatalyzed CO2 reduction with [Cu(N^N)(P^P)]PF6  complexes as PS in 

different ionic liquids. 

 

Reaction conditions: [Fe] (1 μmol), [Cu(N^N)(P^P)]PF6 (5.0 μmol), BIH (150 mg) and 

TEOA (1.5 mL) were illuminated at 400-700 nm (1.50 W) in 6.0 mL of solvent for 5 h. aAn 

In situ CuPS system consisting of [Cu(CH3CN)4]PF6 (5.0 μmol), bathocuproine (5.1 μmol) 

and xantphos (15 μmol) has been utilized. b[Cu(N^N)(P^P)]PF6 (5.2 μmol) and 15 h of 

reaction time were used. Results presented are the averages of reactions carried out in 

duplicate. 

The only system described in the literature that reduces CO2 to CO in pure ionic liquid is 

based on fac-ReCl(bpy)(CO)3 and 1-methylpyrrolidinium tetracyanoborate 

([bmpyrr][TCB]), using supercritical scCO2 where CO2 acts as both a solvent and reactant in 

order to avoid substrate solubility problems. The system showed a dramatically lower TON 

between 0.7 and 5 when compared with ours.89 Moreover, the use of ionic liquid in 

combination with molecular solvent was reported to enhance the intrinsic activity of a 

Entry Complex Solvent TON 

(CO) 

TON 

(H2) 

Selectivity 

[%] 

1 2 NCN/TEOA(4:1, v:v) 32 <3 ≥91 

2 1 NCN/TEOA(4:1, v:v) 80 <3 ≥96 

3 2 BMIMOTf/TEOA (4:1, v:v) 174 171 50 

4 1 BMIMOTf/TEOA (4:1, v:v) 63 124 33 

5 1 DBMPNTf2/TEOA (4:1, v:v) 63 274 19 

6a 1 NCN/TEOA (4:1, v:v) 4 <3 ≥57 

7b 1 NCN/TEOA (4:1, v:v) 82 <3 ≥96 
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photocatalytic system based on [Ru(bpy)3Cl2] as photosensitizer and CoCl2·6H2O as catalyst. 

The chosen ionic liquid was 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

([Emim][NTf2]), obtaining a TON(CO) of 34.7 and selectivity of 76 %, using water in the 

reaction mixture. Both values are lower than the ones achieved with our system.60 

Unfortunately, the authors do not report the activity in pure ionic liquid. At this stage of 

investigation, it is too speculative to propose the reasons for this huge improvement of our 

catalytic system compared to the reported ones, which is most likely a combination of both 

catalyst and ionic liquid choice. Nevertheless, it is already a competitive system with respect 

to the reported ones not only because of the performances, but also for the use of complexes 

based on the economical and abundant copper and iron complexes. 

Control experiments were performed in order to confirm the necessity of all the components 

used in the aforementioned protocol (Table 8). First, irradiating the sole ionic liquid in the 

presence of CO2 produced only traces of CO and H2 (Table 8, entries 1 and 2). Similar results 

were obtained using either only I (Table 8, entry 3) or CuPS (Table 8, entry 4). Therefore, 

all the components need to be present in order to effectively convert CO2, which does not 

proceed in the absence of light, confirming its photochemical nature (Table 8, entry 5). 

Finally, replacing CO2 with argon atmosphere did not yield CO at the end of the reaction 

(Table 8, entry 6) proving this methodology forms CO from CO2 and not from decomposition 

of the catalyst or other components of the reaction system. 
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Table 8. Blank reactions for evaluation of the necessity of the components of the catalytic 

system. 

Entry [Fe] [μmol] [CuPS] [μmol] TON (CO) TON 

(H2) 

Selectivity 

[%] 

1a - - <1 <3 / 

2 - - <1 <3 / 

3 1 - <1 <3 / 

4 - 5 <1 <3 / 

5b 1 5 <1 <3 / 

6c 1 5 <1 <3 / 

Reaction conditions: [Fe] (1 μmol), 1 [Cu(N^N)(P^P)]PF6 (5 μmol), BIH (150 mg) and 

TEOA (1.5 mL) were illuminated at 400-700 nm (1.50 W) in 6.0 mL of 1-Butyl-1-

methylpyrrolidinium dicyanamide for 5 h. a1-Butyl-3-methylimidazolium triflate (6.0 mL) 

was applied as the solvent. bReaction conducted in the absence of light. cReaction performed 

under an atmosphere of argon. Results presented are the averages of reactions carried out in 

duplicate. 

When complex 3 was used a lower TON of 27 was obtained compared to 2 (TON 32). It was 

observed from the electrochemical and photophysical characterization that the interference 

of the imidazolium tags affected the emission properties of the complex compared to the 

original ligand 2. As expected, the PS bearing the functionalized 4,5-bis(2,8-dimethyl-10-

phenoxaphosphino)-9,9-dimethylxanthene (imidazolium-tagged POP-xantphos) ligand 3 

solubilized in the ionic liquid faster compared to 1 and 2 but its performance was poorer in 

the photocatalytic reaction. Complex 3 exhibited a major drawback, its extreme instability in 

organic solvents affected the potential recyclability of this particular photosensitizer 

discarding the required liquid-liquid extractions. We found that ionic unmodified complexes 

perform better overall and are significantly easier to prepare and handle. This finding 

suggests the imidazolium tag modification is not favourable for application in our specific 

photocatalytic system.  
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Complex 1 showed high solubility in the ionic liquid of choice and when the reaction mixture 

was washed with organic solvents in order to recycle the ionic liquid, it remained in the IL 

reaction media. It was the goal we had when applying the imidazolium-tagged complex in 

this reaction. Unfortunately, the complexes were deactivated after five hours reaction time 

and its removal from the ionic liquid was not successful. Recyclability of the ionic liquid and 

the photosensitizer was not achieved. More stable systems under the operating conditions are 

needed to enable efficient recycling. 

4.3.3 High-purity conditions 

High-purity experiments were carried out and analyzed at Leibniz Institute for Catalysis 

(LIKAT) by Dr. Nikolaos Moustakas from Dr. Jennifer Strunk group. Since CO2 is a 

thermodynamically highly stable molecule,90 it is expected that many other carbon-

containing molecules can react faster under the selected experimental conditions. Therefore, 

it is very important for CO2 reduction experiments to verify that neither hydrocarbons nor 

CO are produced from the catalyst, reaction media or any other C-containing impurities that 

could be present in the reaction chamber. If such outcomes are not analyzed carefully, the 

photocatalytic efficiency of the tested sample can be overestimated leading to altered 

conclusions.91-92  

The true formation of products from CO2 as carbon source can be evidenced by the analysis 

of product formation in a blank experiment in the absence of this gas. Under identical reaction 

conditions CO2 is replaced by an inert gas and the chromatogram is analyzed in order to 

identify possible catalyst decomposition, solvent or any other impurities present in the 

reaction set up.93 Extensive baseline measurements without the presence of CO2 should take 

place to determine that the production of hydrocarbons comes from the substrate and not 

from other potential sources of carbon that take place during the experiment.   

4.3.3.1 CO2 reduction to CO 

The reaction chamber was flushed with CO2 for one hour before it was filled up to final 

pressure of 1500 mbar. The sample was irradiated with the 200 W Hg/Xe lamp equipped 

with a 420 nm cut-off filter and a chromatogram was collected every 45 minutes for a total 

of six hours (Experimental set up, Chapter V/Figure 11-12). The sample did not decompose 

under the blank experiments meaning that the production of CO comes from CO2. 
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High concentration of oxygen was identified when handling the sample into the reactor under 

helium atmosphere which is the conventional gas for these experiments. Oxygen was not 

previously observed under argon conditions because of the similar retention compared to 

argon. Even though oxygen was present, the catalytic system performed and CO was 

observed but in significantly lower concentration compared to our previously optimized 

conditions in batch reactors (Section 4.3.2). Further experiments with proper manipulation 

of the sample under inert conditions are recommended where helium is used as the baseline 

inert gas to ensure that no oxygen is present (avoiding the interference with the argon peak). 

The CO concentration over the six hours of the photocatalytic reduction of CO2 to CO in ILs 

is presented in Figure 7. This experiment shows conversions not much higher than 

stoichiometric product formation. Further optimization of the reaction set up is needed and 

the respective experiments are undergoing in the laboratories of Dr. Jennifer Strunk to apply 

high purity conditions for our data analysis using complex 1 which was found to be the best 

candidate for this photocatalytic application. Oxygen is the current interference for product 

analysis and catalytic performance.  

 

Figure 7. CO concentration over the 6 hours of the iron photocatalyzed CO2 reduction with 

[Cu(N^N)(P^P)]PF6  complexes as PS. PS:complex 2. 
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4.4 Conclusions 
Ionic liquids proved to be suitable solvents for the photocatalytic CO2 reduction to CO using 

a reported system based on a copper photosensitizer and an iron catalyst. High selectivity for 

CO and moderate turnover numbers were achieved. Overall our results show that we have 

developed a superior system over those reported with rhenium89 or ruthenium-cobalt60  

systems in ionic liquid media for the same reaction using unmodified xantphos as ligand.  

Introduction of imidazolium tags in the xantphos ligands proved to be a disadvantageous 

strategy for this specific photocatalytic application under our reaction conditions. 

Photophysical properties of the resulting complex were dramatically affected by the 

imidazolium ring, as compared to unmodified ligands, and as a result the catalytic 

performance was poorer. In addition, despite its greater solubility in ionic liquid media, the 

stability of the complex was found to be low and catalyst recovery could not be performed 

after the catalytic experiments, disqualifying it as a viable candidate for further development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter IV: Photocatalytic CO2 reduction in ionic liquid media 

 

 
164 

 

4.5 References 
1. Globally averaged marine surface annual mean expressed as a mole fraction in dry 

air. Earth System Research Laboratory Global Monitoring Division. Global Greenhouse Gas 

Reference Network. https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html. 

2. International Energy Agency (IEA), website: www.iea.org. CO₂ Emissions From 

Fuel Combustion Highlights. Statistics, 2017 Edition, 

https://www.iea.org/publications/freepublications/publication/CO2EmissionsfromFuelCom

bustionHighlights2017.pdf. 

3. Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the Valorization of Exhaust 

Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chem. 

Rev. 2014, 114 (3), 1709-1742. 

4. Global CCS Institute, Accelerating the Uptake of CCS: Industrial Use of Captured 

Carbon Dioxide. March 2011, Parsons Brinckerhoff. 

https://hub.globalccsinstitute.com/sites/default/files/publications/14026/accelerating-

uptake-ccs-industrial-use-captured-carbon-dioxide.pdf. 

5. Schmitt, R.; Burkard, B. Naphtholcarboxylic acids. Chem. Ber. 1877, 20, 2699-2704. 

6. Martin, C.; Fiorani, G.; Kleij, A. W. Recent Advances in the Catalytic Preparation of 

Cyclic Organic Carbonates. ACS Catal. 2015, 5 (2), 1353-1370. 

7. Belli Dell'Amico, D.; Calderazzo, F.; Labella, L.; Marchetti, F.; Pampaloni, G. 

Converting Carbon Dioxide into Carbamato Derivatives. Chem. Rev. 2003, 103 (10), 3857-

3897. 

8. Won, D. I.; Lee, J. S.; Cheong, H. Y.; Cho, M.; Jung, W. J.; Son, H. J.; Pac, C.; Kang, 

S. O. Organic-inorganic hybrid photocatalyst for carbon dioxide reduction. Faraday Discuss. 

2017, 198, 337-351. 

9. Fujita, E. Photochemical carbon dioxide reduction with metal complexes. Coord. 

Chem. Rev. 1999, 185-186, 373-384. 

10. Fujita, E.; Brunschwig, B. S. In: Catalysis of Electron Transfer, Heterogeneous and 

Gas-Phase Systems. ed Balzani V Wiley-VCH.2001, Vol 4, 88-126. 

11. Morris, A. J.; Meyer, G. J.; Fujita, E. Molecular Approaches to the Photocatalytic 

Reduction of Carbon Dioxide for Solar Fuels. Acc. Chem. Res. 2009, 42 (12), 1983-1994. 

12. Grodkowski, J.; Neta, P.; Fujita, E.; Mahammed, A.; Simkhovich, L.; Gross, Z. 

Reduction of Cobalt and Iron Corroles and Catalyzed Reduction of CO2. J. Phys. Chem. A 

2002, 106 (18), 4772-4778. 

13. Grodkowski, J.; Neta, P. Cobalt Corrin Catalyzed Photoreduction of CO2. J. Phys. 

Chem. A. 2000, 104 (9), 1848-1853. 

14. Grodkowski, J.; Dhanasekaran, T.; Neta, P.; Hambright, P.; Brunschwig, B. S.; 

Shinozaki, K.; Fujita, E. Reduction of Cobalt and Iron Phthalocyanines and the Role of the 

Reduced Species in Catalyzed Photoreduction of CO2. J. Phys. Chem. A. 2000, 104 (48), 

11332-11339. 

15. Behar, D.; Dhanasekaran, T.; Neta, P.; Hosten, C. M.; Ejeh, D.; Hambright, P.; Fujita, 

E. Cobalt Porphyrin Catalyzed Reduction of CO2. Radiation Chemical, Photochemical, and 

Electrochemical Studies. J. Phys. Chem. A. 1998, 102 (17), 2870-2877. 

16. Grodkowski, J.; Behar, D.; Neta, P.; Hambright, P. Iron Porphyrin-Catalyzed 

Reduction of CO2. Photochemical and Radiation Chemical Studies. J. Phys. Chem. A 1997, 

101 (3), 248-254. 



Chapter IV: Photocatalytic CO2 reduction in ionic liquid media 

 

 
165 

 

17. Takeda, H.; Koike, K.; Inoue, H.; Ishitani, O. Development of an Efficient 

Photocatalytic System for CO2 Reduction Using Rhenium(I) Complexes Based on 

Mechanistic Studies. J. Am. Chem. Soc. 2008, 130 (6), 2023-2031. 

18. Liu, C.; Dubois, K. D.; Louis, M. E.; Vorushilov, A. S.; Li, G. Photocatalytic CO2 

Reduction and Surface Immobilization of a Tricarbonyl Re(I) Compound Modified with 

Amide Groups. ACS Catal. 2013, 3 (4), 655-662. 

19. Hawecker, J.; Lehn, J. M.; Ziessel, R. Photochemical and electrochemical reduction 

of carbon dioxide to carbon monoxide mediated by (2,2'-

bipyridine)tricarbonylchlororhenium(I) and related complexes as homogeneous catalysts. 

Helv. Chim. Acta. 1986, 69 (8), 1990-2012. 

20. Sato, S.; Morikawa, T.; Kajino, T.; Ishitani, O. A Highly Efficient Mononuclear 

Iridium Complex Photocatalyst for CO2 Reduction under Visible Light. Angew. Chem. Int. 

Ed. 2013, 52 (3), 988-992. 

21. Reithmeier, R. O.; Meister, S.; Rieger, B.; Siebel, A.; Tschurl, M.; Heiz, U.; 

Herdtweck, E. Mono- and bimetallic Ir(III) based catalysts for the homogeneous 

photocatalytic reduction of CO2 under visible light irradiation. New insights into catalyst 

deactivation. Dalton Trans. 2014, 43 (35), 13259-13269. 

22. Reithmeier, R. O.; Meister, S.; Siebel, A.; Rieger, B. Synthesis and characterization 

of a trinuclear iridium(III) based catalyst for the photocatalytic reduction of CO2. Dalton 

Trans. 2015, 44 (14), 6466-6472. 

23. Whitten, D. G. Photoinduced electron transfer reactions of metal complexes in 

solution. Acc. Chem. Res. 1980, 13 (3), 83-90. 

24. Guo, Z.; Cheng, S.; Cometto, C.; Anxolabehere-Mallart, E.; Ng, S. M.; Ko, C. C.; 

Liu, G.; Chen, L.; Robert, M.; Lau, T. C. Highly Efficient and Selective Photocatalytic CO2 

Reduction by Iron and Cobalt Quaterpyridine Complexes. J. Am. Chem. Soc. 2016, 138 (30), 

9413-9416. 

25. Cheung, P. L.; Machan, C. W.; Malkhasian, A. Y. S.; Agarwal, J.; Kubiak, C. P. 

Photocatalytic reduction of carbon dioxide to CO and HCO2H using fac-Mn(CN)(bpy)(CO)3. 

Inorg. Chem. 2016, 55 (6), 3192-3198. 

26. Takeda, H.; Koizumi, H.; Okamoto, K.; Ishitani, O. Photocatalytic CO2 reduction 

using a Mn complex as a catalyst. Chem. Commun. 2014, 50 (12), 1491-1493. 

27. Alsabeh, P. G.; Rosas-Hernandez, A.; Barsch, E.; Junge, H.; Ludwig, R.; Beller, M. 

Iron-catalyzed photoreduction of carbon dioxide to synthesis gas. Catal. Sci. Technol. 2016, 

6 (10), 3623-3630. 

28. Bonin, J.; Robert, M.; Routier, M. Selective and Efficient Photocatalytic CO2 

Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst. J. Am. 

Chem. Soc. 2014, 136 (48), 16768-16771. 

29. Wang, F.; Cao, B.; To, W.-P.; Tse, C. W.; Li, K.; Chang, X. Y.; Zang, C.; Chan, S. 

L. F.; Che, C. M. The effects of chelating N4 ligand coordination on Co(II)-catalysed  

photochemical conversion of CO2 to CO: reaction mechanism and DFT calculations. Catal. 

Sci. Technol. 2016, 6 (20), 7408-7420. 

30. Chan, S. L. F.; Lam, T. L.; Yang, C.; Yan, S. C.; Cheng, N. M. A robust and efficient 

cobalt molecular catalyst for CO2 reduction. Chem. Commun. 2015, 51 (37), 7799-7801. 

31. Thoi, V. S.; Kornienko, N.; Margarit, C. G.; Yang, P.; Chang, C. J. Visible-light 

photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel 



Chapter IV: Photocatalytic CO2 reduction in ionic liquid media 

 

 
166 

 

N-heterocyclic carbene-isoquinoline complex. J. Am. Chem. Soc. 2013, 135 (38), 14413-

14424. 

32. Schneider, J.; Vuong, K. Q.; Calladine, J. A.; Sun, X. Z.; Whitwood, A. C.; George, 

M. W.; Perutz, R. N. Photochemistry and Photophysics of a Pd(II) Metalloporphyrin: Re(I) 

Tricarbonyl Bipyridine Molecular Dyad and its Activity Toward the Photoreduction of CO2 

to CO. Inorg. Chem. 2011, 50 (23), 11877-11889. 

33. Kato, E.; Takeda, H.; Koike, K.; Ohkubo, K.; Ishitani, O. Ru(II)-Re(I) binuclear 

photocatalysts connected by -CH2XCH2- (X = O, S, CH2) for CO2 reduction. Chem. Sci. 

2015, 6 (5), 3003-3012. 

34. Nakada, A.; Koike, K.; Maeda, K.; Ishitani, O. Highly efficient visible-light-driven 

CO2 reduction to CO using a Ru(II)-Re(I) supramolecular photocatalyst in an aqueous 

solution. Green Chem. 2016, 18 (1), 139-143. 

35. Sahara, G.; Ishitani, O. Efficient Photocatalysts for CO2 Reduction. Inorg. Chem. 

2015, 54 (11), 5096-5104. 

36. Rosas-Hernandez, A.; Alsabeh, P. G.; Barsch, E.; Junge, H.; Ludwig, R.; Beller, M. 

Highly active and selective photochemical reduction of CO2 to CO using molecular-defined 

cyclopentadienone iron complexes. Chem. Commun. 2016, 52 (54), 8393-8396. 

37. Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.; Malliaras, G. 

G.; Bernhard, S. Single-Layer Electroluminescent Devices and Photoinduced Hydrogen 

Production from an Ionic Iridium(III) Complex. Chem. Mater. 2005, 17 (23), 5712-5719. 

38. Rosas-Hernandez, A.; Steinlechner, C.; Junge, H.; Beller, M. Earth-abundant 

photocatalytic systems for the visible-light-driven reduction of CO2 to CO. Green Chem. 

2017, 19 (10), 2356-2360. 

39. Rosas-Hernandez, A.; Junge, H.; Beller, M.; Roemelt, M.; Francke, R. 

Cyclopentadienone iron complexes as efficient and selective catalysts for the 

electroreduction of CO2 to CO. Catal. Sci. Technol. 2017, 7 (2), 459-465. 

40. Collin, J. P.; Jouaiti, A.; Sauvage, J. P. Electrocatalytic properties of 

(tetraazacyclotetradecane)nickel(2+) and Ni2(biscyclam)4
+ with respect to carbon dioxide 

and water reduction. Inorg. Chem. 1988, 27 (11), 1986-1990. 

41. Ramdin, M.; de Loos, T. W.; Vlugt, T. J. H. State-of-the-art of CO2 Capture with 

Ionic Liquids. Ind. Eng. Chem. Res. 2012, 51 (24), 8149-8177. 

42. Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. 

J. Why Is CO2 So Soluble in Imidazolium-Based Ionic Liquids?. J. Am. Chem. Soc. 2004, 

126 (16), 5300-5308. 

43. Anthony, J. L.; Anderson, J. L.; Maginn, E. J.; Brennecke, J. F. Anion Effects on Gas 

Solubility in Ionic Liquids. J. Phys. Chem. B 2005, 109 (13), 6366-6374. 

44. Aki, S. N. V. K.; Mellein, B. R.; Saurer, E. M.; Brennecke, J. F. High-Pressure Phase 

Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids. J. Phys. Chem. B. 2004, 

108 (52), 20355-20365. 

45. Muldoon, M. J.; Aki, S. N. V. K.; Anderson, J. L.; Dixon, J. K.; Brennecke, J. F. 

Improving Carbon Dioxide Solubility in Ionic Liquids. J. Phys. Chem. B. 2007, 111 (30), 

9001-9009. 

46. Kumelan, J.; Perez-Salado Kamps, A.; Tuma, D.; Maurer, G. Solubility of CO2 in the 

Ionic Liquids [bmim][CH3SO4] and [bmim][PF6]. J. Chem. Eng. Data. 2006, 51 (5), 1802-

1807. 



Chapter IV: Photocatalytic CO2 reduction in ionic liquid media 

 

 
167 

 

47. Carvalho, P. J.; Alvarez, V. H.; Machado, J. J. B.; Pauly, J.; Daridon, J. L.; Marrucho, 

I. M.; Aznar, M.; Coutinho, J. A. P. High pressure phase behavior of carbon dioxide in 1-

alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. J. Supercrit. 

Fluids. 2009, 48 (2), 99-107. 

48. Schilderman, A. M.; Raeissi, S.; Peters, C. J. Solubility of carbon dioxide in the ionic 

liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Fluid Phase 

Equilibria 2007, 260 (1), 19-22. 

49. Almantariotis, D.; Gefflaut, T.; Padua, A. A. H.; Coxam, J. Y.; Costa Gomes, M. F. 

Effect of Fluorination and Size of the Alkyl Side-Chain on the Solubility of Carbon Dioxide 

in 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide Ionic Liquids. J. Phys. 

Chem. B. 2010, 114 (10), 3608-3617. 

50. Carvalho, P. J.; Coutinho, J. A. P. On the Nonideality of CO2 Solutions in Ionic 

Liquids and Other Low Volatile Solvents. J. Phys. Chem. Lett. 2010, 1 (4), 774-780. 

51. Shannon, M. S.; Tedstone, J. M.; Danielsen, S. P. O.; Hindman, M. S.; Irvin, A. C.; 

Bara, J. E. Free Volume as the Basis of Gas Solubility and Selectivity in Imidazolium-Based 

Ionic Liquids. Ind. Eng. Chem. Res. 2012, 51 (15), 5565-5576. 

52. Wang, W.; Wang, S.; Ma, X.; Gong, J. Recent advances in catalytic hydrogenation 

of carbon dioxide. Chem. Soc. Rev. 2011, 40 (7), 3703-3727. 

53. Wang, S.; Wang, X. Imidazolium Ionic Liquids, Imidazolylidene Heterocyclic 

Carbenes, and Zeolitic Imidazolate Frameworks for CO2 Capture and Photochemical 

Reduction. Angew. Chem. Int. Ed. 2016, 55 (7), 2308-2320. 

54. Rosen, B. A.; Zhu, W.; Kaul, G.; Salehi-Khojin, A.; Masel, R. I. Water enhancement 

of CO2 conversion on silver in 1-ethyl-3-methylimidazolium tetrafluoroborate. J. 

Electrochem. Soc. 2013, 160 (2), H138-H141. 

55. Rosen, B. A.; Haan, J. L.; Mukherjee, P.; Braunschweig, B.; Zhu, W.; Salehi-Khojin, 

A.; Dlott, D. D.; Masel, R. I. In Situ Spectroscopic Examination of a Low Overpotential 

Pathway for Carbon Dioxide Conversion to Carbon Monoxide. J. Phys. Chem. C. 2012, 116 

(29), 15307-15312. 

56. Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. 

J. A.; Masel, R. I. Ionic Liquid-Mediated Selective Conversion of CO2 to CO at Low 

Overpotentials. Science 2011, 334 (6056), 643-644. 

57. Chandrasekaran, K.; Bockris, J. O. M. In-situ spectroscopic investigation of adsorbed 

intermediate radicals in electrochemical reactions: carbon dioxide(1-) (CO2-) on platinum. 

Surf. Sci. 1987, 185 (3), 495-514. 

58. Bockris, J. O. M.; Wass, J. C. The photoelectrocatalytic reduction of carbon dioxide. 

J. Electrochem. Soc. 1989, 136 (9), 2521-2528. 

59. Zhao, G.; Jiang, T.; Han, B.; Li, Z.; Zhang, J.; Liu, Z.; He, J.; Wu, W. Electrochemical 

reduction of supercritical carbon dioxide in ionic liquid 1-n-butyl-3-methylimidazolium 

hexafluorophosphate. J. Supercrit. Fluids. 2004, 32 (1-3), 287-291. 

60. Lin, J.; Ding, Z.; Hou, Y.; Wang, X. Ionic Liquid Co-catalyzed Artificial 

Photosynthesis of CO. Scientific Reports 2013, 3, 1056. 

61. Baltus, R. E.; Culbertson, B. H.; Dai, S.; Luo, H.; DePaoli, D. W. Low-Pressure 

Solubility of Carbon Dioxide in Room-Temperature Ionic Liquids Measured with a Quartz 

Crystal Microbalance. J. Phys. Chem. B. 2004, 108 (2), 721-727. 

62. "Global Temperature" NASA's Goddard Institute for Space Studies (GISS). 

GISTEMP Team, 2018: GISS Surface Temperature Analysis (GISTEMP). NASA Goddard 



Chapter IV: Photocatalytic CO2 reduction in ionic liquid media 

 

 
168 

 

Institute for Space Studies. Dataset accessed 20YY-MM-DD at 

https://data.giss.nasa.gov/gistemp/. Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global 

surface temperature change, Rev. Geophys. 48, RG4004, doi:10.1029/2010RG000345. 

63. Gao, Y.; Gao, X.; Zhang, X. The 2 °C Global Temperature Target and the Evolution 

of the Long-Term Goal of Addressing Climate Change—From the United Nations 

Framework Convention on Climate Change to the Paris Agreement. Engineering 2012, 3, 

272-278.  

64. Henderson, R. M.; Reinert. S. A.; Polina, D.; Migdal, A. Climate change in 2018: 

Implications for business. Harvard Business School 2018. 

https://www.hbs.edu/environment/Documents/climate-change-2018.pdf 

65. Climate Change Division. Overview of Greenhouse Gases. United States 

Environmental Protection Agency 2016, https://www.epa.gov/ghgemissions/overview-

greenhouse-gases. 

66. Wenzel, M.; Rihko-Struckmann, L.; Sundmacher, K. Continuous production of CO 

from CO2 by RWGS chemical looping in fixed and fluidized bed reactors. Chemical 

Engineering Journal 2018, 336, 278-296. 

67. Laitar, D. S.; Müller, P.; Sadighi, J. P. Efficient Homogeneous Catalysis in the 

Reduction of CO2 to CO. J. Am. Chem. Soc. 2005, 127 (49), 17196-17197. 

68. DiMeglio, J. L.; Rosenthal, J. Selective Conversion of CO2 to CO with High 

Efficiency Using an Inexpensive Bismuth-Based Electrocatalyst. Journal of the American 

Chemical Society 2013, 135 (24), 8798-8801. 

69. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy 

utilization. PNAS. 2006, 103 (43), 15729-15735. 

70. Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. 

G. Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chem. Rev. 2010, 

110 (11), 6474-6502. 

71. Takanabe, K. Photocatalytic Water Splitting: Quantitative Approaches toward 

Photocatalyst by Design. ACS Catalysis 2017, 7 (11), 8006-8022. 

72. Nakada, A.; Koike, K.; Nakashima, T.; Morimoto, T.; Ishitani, O. Photocatalytic CO2 

Reduction to Formic Acid Using a Ru(II)-Re(I) Supramolecular Complex in an Aqueous 

Solution. Inorg. Chem. 2015, 54 (4), 1800-1807. 

73. Ettedgui, J.; Diskin-Posner, Y.; Weiner, L.; Neumann, R. Photoreduction of Carbon 

Dioxide to Carbon Monoxide with Hydrogen Catalyzed by a Rhenium(I) Phenanthroline-

Polyoxometalate Hybrid Complex. J. Am. Chem. Soc. 2011, 133 (2), 188-190. 

74. Rosas-Hernandez, A.; Junge, H.; Beller, M. Photochemical reduction of carbon 

dioxide to formic acid using ruthenium(II)-based catalysts and visible light. ChemCatChem 

2015, 7 (20), 3316-3321. 

75. Kuramochi, Y.; Itabashi, J.; Fukaya, K.; Enomoto, A.; Yoshida, M.; Ishida, H. 

Unexpected effect of catalyst concentration on photochemical CO2 reduction by trans(Cl)-

Ru(bpy)(CO)2Cl2: new mechanistic insight into the CO/HCOO- selectivity. Chem. Sci. 2015, 

6 (5), 3063-3074. 

76. Kuramochi, Y.; Kamiya, M.; Ishida, H. Photocatalytic CO2 Reduction in N,N-

Dimethylacetamide/Water as an Alternative Solvent System. Inorg. Chem. 2014, 53 (7), 

3326-3332. 

https://www.epa.gov/ghgemissions/overview-greenhouse-gases
https://www.epa.gov/ghgemissions/overview-greenhouse-gases


Chapter IV: Photocatalytic CO2 reduction in ionic liquid media 

 

 
169 

 

77. Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. 

Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. J. 

Phys. Chem. Lett. 2015, 6 (20), 4073-4082. 

78. Peterson, A. A.; Noerskov, J. K. Activity Descriptors for CO2 Electroreduction to 

Methane on Transition-Metal Catalysts. J. Phys. Chem. Lett. 2012, 3 (2), 251-258. 

79. Shaughnessy, C. I.; Jantz, D. T.; Leonard, K. C. Selective electrochemical CO2 

reduction to CO using in situ reduced In2O3 nanocatalysts. J. Mater. Chem. A. 2017, 5 (43), 

22743-22749. 

80. Flieger, J.; Grushka, E. B.; Czajkowska-Żelazko, A. Ionic Liquids as Solvents in 

Separation Processes. Austin J Anal Pharm Chem. 2014, 1(2), 1009. 

81. Ventura, S. P. M.; Silva, F. A.; Quental, M. V.; Mondal, D.; Freire, M. G.; Coutinho, 

J. A. P. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive 

Compounds: Past, Present, and Future Trends. Chem. Rev. 2017, 117 (10), 6984-7052. 

82. Knoelker, H. J.; Heber, J.; Mahler, C. H., Transition metal-diene complexes in 

organic synthesis. Part 14. Regioselective iron-mediated [2+2+1] cycloadditions of alkynes 

and carbon monoxide: synthesis of substituted cyclopentadienones. Synlett 1992,  (12), 1002-

1004. 

83. Luo, S. P.; Mejia, E.; Friedrich, A.; Pazidis, A.; Junge, H.; Surkus, A. E.; Jackstell, 

R.; Denurra, S.; Gladiali, S.; Lochbrunner, S.; Beller, M. Photocatalytic Water Reduction 

with Copper-Based Photosensitizers: A Noble-Metal-Free System. Angew. Chem. Int. Ed. 

2013, 52 (1), 419-423. 

84. Lee, I. S. H.; Jeoung, E. H.; Kreevoy, M. M. Marcus Theory of a Parallel Effect on α 

for Hydride Transfer Reaction between NAD+ Analogs. J. Am. Chem. Soc. 1997, 119 (11), 

2722-2728. 

85. Mejia, E.; Luo, S. P.; Karnahl, M.; Friedrich, A.; Tschierlei, S.; Surkus, A. E.; Junge, 

H.; Gladiali, S.; Lochbrunner, S.; Beller, M. A Noble-Metal-Free System for Photocatalytic 

Hydrogen Production from Water. Chem. Eur. J. 2013, 19 (47), 15972-15978. 

86. Fresta, E.; Costa, R. D. Beyond traditional light-emitting electrochemical cells - a 

review of new device designs and emitters. J. Mater. Chem. C. 2017, 5 (23), 5643-5675. 

87. Keller, S.; Prescimone, A.; Bolink, H.; Sessolo, M.; Longo, G.; Martínez-Sarti, L.; 

Junquera-Hernández, J. M.; Constable, E. C.; Ortí, E.; Housecroft, C. E. Luminescent 

copper(I) complexes with bisphosphane and halogen-substituted 2,2′-bipyridine ligands. 

Dalton Trans. 2018, 47, 14263-14276. 

88. McCullough, B. J.; Neyhouse, B. J.; Schrage, B. R.; Reed, D. T.; Osinski, A. J.; 

Ziegler, C. J.; White, T. A. Visible-Light-Driven Photosystems Using Heteroleptic Cu(I) 

Photosensitizers and Rh(III) Catalysts To Produce H2. Inorg. Chem. 2018, 57 (5), 2865-2875. 

89. Grills, D. C.; Fujita, E. New Directions for the Photocatalytic Reduction of CO2: 

Supramolecular, scCO2 or Biphasic Ionic Liquid-scCO2 Systems. J. Phys. Chem. Lett. 2010, 

1 (18), 2709-2718. 

90. Freund, H. J.; Roberts, M. W. Surface chemistry of carbon dioxide. Surface Science 

Reports 1996, 25 (8), 225-273. 

91. Yang, C. C.; Vernimmen, J.; Meynen, V.; Cool, P.; Mul, G. Mechanistic study of 

hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15. J. Catal. 2011, 284 

(1), 1-8. 



Chapter IV: Photocatalytic CO2 reduction in ionic liquid media 

 

 
170 

 

92. Yang, C. C.; Yu, Y. H.; van der Linden, B.; Wu, J. C. S.; Mul, G. Artificial 

Photosynthesis over Crystalline TiO2-Based Catalysts: Fact or Fiction?. J. Am. Chem. Soc. 

2010, 132 (24), 8398-8406. 

93. Moustakas, N. G.; Strunk, J., Photocatalytic CO2 reduction on TiO2-based materials 

under controlled reaction conditions: Systematic insights from literature study. Chem. Eur. 

J. 2018, 24 (49), 12739-12746. 

  



Thesis conclusion 

 

 
171 

 

Thesis Conclusion 

In this doctoral thesis, a combination of synthesis of xant-type phosphine ligands and their 

application in different areas of catalysis was achieved. For this purpose, a Hammett series 

and imidazolium-tagged ligands were synthesized by our optimized methodologies. This 

resulted in reliable and scalable synthetic procedures, giving access to those elusive structures 

in high yields and purity, only employing crystallization techniques for purification. 

In the first chapter of this thesis, synthesis of a Hammett series of heteroleptic copper(I) 

complexes and its application in photocatalysis were pursued. In particular, the use of 

heteroleptic copper [Cu(p-R-xantphos)(dmp)]BF4 complexes for the aerobic photocatalyzed 

Cross-Dehydrogenative Coupling (CDC) of 1,2,3,4-tetrahydro-2-phenyl isoquinoline with 

nitromethane was studied. After synthesis, characterization and application of the 

electronically tuned complexes, structure-activity relationships were established. This project 

allowed a better understanding of the underlying design principles to apply for these copper 

complexes in photocatalysis. Mechanistic insights revealed that the aforementioned 

complexes likely operate under both, oxidative and reductive quenching pathways in that 

particular reaction. However, energy transfer processes generating singlet oxygen could be 

taking place in this photocatalytic transformation. In order to assess the possible existence 

and role of singlet oxygen under our reaction conditions, additional experimental work is still 

needed. 

The second chapter of this thesis studied the ligand functionalization for lignin 

depolymerization in ionic liquid media. In the context of sustainable catalytic processes, 

recovery of the solvent and catalyst is very important, a feature that makes the use of ionic 

liquids attractive compared to classical solvents. The synthesis of xantphos imidazolium-

tagged ligands was profoundly optimized. Their use in the ruthenium-catalyzed C-O bond 

cleavage of a lignin model compound was briefly studied after solving side reactivity issues 

caused by the reaction media. This project requires further optimization of the reaction in 

ionic liquid media, as well as the application of this system in more complex substrates.  
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The final research chapter of this thesis intended to combine the findings of the previous 

chapters by employing imidazolium-tagged ligands in heteroleptic copper complexes as 

photosensitizers in the photocatalyzed CO2 reduction to CO. The imidazolium-tagged 

complex was obtained and despite performing in this catalytic transformation, its recovery 

and recyclability were not achieved. While still less efficient than homogeneous systems in 

organic solvents, higher activity in ionic liquid media was achieved as compared to reported 

systems by the use of non-functionalized complexes. Further optimization of the complex 

structure aiming at major stability under irradiation conditions is still needed. More stable 

complexes could allow their recovery and recyclability. This approach could be not only 

applied for this specific reaction but also for other catalytic processes that are mediated by 

[Cu(N^N)(P^P)]+ photosensitizers. 
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Chapter V: Experimental section  

5.1 Chapter II: Electronic phosphine ligand effects on the 

photochemistry of heteroleptic Cu(I) complexes: A 

comprehensive study. 

General information  

For the synthesis of ligands and complexes all reactions were carried out using standard 

Schlenk techniques under argon atmosphere. All glassware was dried at 130 oC overnight 

and cooled under vacuum prior to use. 1H, 13C{1H} and 31P{1H} Nuclear Magnetic 

Resonance (NMR) spectra were recorded at 298 K on either Bruker Avance 300, Avance II 

400 and Bruker Avance II 500 spectrometers using the residual solvent peak for 1H and 

13C{1H} as reference. All NMR shifts are reported as δ in parts per million (ppm). A 

Gallenkamp melting point apparatus was used to determinate melting points. Toluene and 

TMEDA were distilled from sodium, THF and diethyl ether were distilled from 

sodium/benzophenone, hexanes from sodium/benzophenone/triglyme and dichloromethane 

and acetonitrile from calcium hydride. Diethylamine was dried over KOH powder. 

Anhydrous nitromethane was purchased from Sigma Aldrich. Aqueous reagents were 

degassed under argon before use for a minimum period of four hours. All reagents were 

purchased from commercial suppliers and used as received, unless otherwise noted. Mass 

spectrometry was carried out at National Mass Spectrometry Facility (NMSF-Swansea) and 

Leibniz Institute for Catalysis – LIKAT. Elemental analysis was carried out in the facilities 

at London Metropolitan University and Leibniz Institute for Catalysis – LIKAT. All reactions 

performed in this chapter require strict inert conditions. It has been observed that optimal 

results are obtained with freshly distilled solvents and that solvents from the SPS (Solvent 

purification system) can affect the yields for some synthetic procedures.  

Synthesis and characterization of compounds  

Synthesis of precursors 

The synthesis of the highly sensitive compounds 9,9-dimethyl-4,5-

bis(diethylaminophosphino)xanthene and 9,9-dimethyl-4,5-bis(dichlorophosphino) 

xanthene was followed by 31P NMR spectroscopy of the crude mixture. The work-up of these 

compounds were performed quickly to avoid keeping the compounds in solution.  
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Synthesis of bis(diethylamino)chlorophosphine (I) 

 

A modified procedure from the literature reports was performed.1-2 In a three-neck round-

bottomed flask kept under inert atmosphere, the central neck was equipped with a mechanical 

stirrer and the third neck with a dropping funnel. Dried diethylamine (83 mL, 800 mmol) in 

hexanes (200 mL) was added dropwise to a solution of PCl3 (17.5 mL, 200 mmol) in hexane 

(400 mL) at -78 °C over three hours. The reaction was then allowed to warm to room 

temperature overnight; the product was then filtered under an argon blanket and then 

concentrated under reduced pressure and distilled under reduced pressure. A viscous 

colorless liquid was obtained, which was used without further purification. Yield 88% (67 

mL, 67 g). Analytical data were found to be consistent with the literature.  

1H NMR (CDCl3, 400 MHz, 298 K): δ (ppm) = 3.06 (qd, J = 14.1, J = 7.0 Hz, 8H, CH2), 

1.03 (t, J = 7.2 Hz, 12H, CH3).  

13C-{1H} NMR (CDCl3, 100 MHz, 298 K): δ (ppm) = 40.9 (d, J = 18.0 Hz, CH2), 13.6 (d, J 

= 4.7 Hz, CH3).  

31P-{1H} NMR (CDCl3, 162 MHz, 298 K): δ (ppm) =158.2 (s). 
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1H NMR (CDCl3, 400 MHz, 298 K)  

  

13C-{1H} NMR (CDCl3, 100 MHz, 298 K) 
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31P-{1H} NMR (CDCl3, 162 MHz, 298 K)  

Synthesis of 9,9-dimethyl-4,5-bis(diethylaminophosphino)xanthene (7) 

 

9,9-dimethylxanthene (4g, 19.06 mmol) and N,N,N',N'- tetramethylethylenediamine 

TMEDA (5.52 g, 7.12 mL, 47.6 mmol) were dissolved in diethyl ether (70 mL) in a two neck 

round-bottomed flask and cooled to -78 °C. Then, n-butyllithium (21 mL of a 2.5 M solution 

in hexanes, 47.6 mmol) was added dropwise and the reaction mixture was stirred with a 

mechanical stirrer at room temperature overnight.3 Next, the resulting solution was added to 

a solution of bis(diethylamino)chlorophosphine (8.42 mL, 47.6 mmol) in pentane (40 mL) at 

- 78 °C. The mixture was transferred by cannula to a sintered filter and the colorless solution 

was concentrated under vacuum to give a pale yellow powder. The compound was 

crystallized from pentane providing a white powder which was used without further 

purification. This procedure was followed by 31P NMR of the crude mixture. The work-up 

of this compound was performed quickly to avoid keeping the compound in solution.  Yield: 

90% (9.5 g).  

31P-{1H} NMR (Et2O, 162 MHz, 298 K): δ 91.3 (s).  
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31P-{1H} NMR (Et2O, 162 MHz, 298 K) 

Synthesis of 9,9-dimethyl-4,5-bis(dichlorophosphino)xanthene (8) 

 

The precursor of 9,9-dimethyl-4,5-bis(diethylaminophosphino)xanthene (7 g, 12.57 mmol) 

was dissolved in diethyl ether (150 mL) and cooled to -78 °C followed by the dropwise 

addition of hydrogen chloride (2 M solution in Et2O, 62.6 mL, 125 mmol) over two hours.4 

The reaction mixture was then warmed to room temperature and stirred with a mechanical 

stirrer overnight. The mixture was transferred by cannula to a sintered filter and the colorless 

solution was concentrated under vacuum to give a white powder which was used without 

further purification. The work-up of this compound was performed quickly to avoid keeping 

the compound in solution. Yield 70% (3.6 g)  

1H NMR (CD2Cl2, 400 MHz, 298 K): δ (ppm) = 7.93 (dq, J = 7.6 Hz, J = 1.6 Hz, 2H, CHAr), 

7.67 (dd, J = 7.8 Hz, J = 1.5 Hz, 2H, CHAr), 7.35 (t, J = 7.6 Hz, 2H, CHAr), 1.68 (s, 6H, CH3). 

13C-{1H} NMR (CD2Cl2, 100 MHz, 298 K): δ (ppm) = 151.0 (s, Cq), 131.6 (t, J = 2.6 Hz, 

CHAr), 130.9 (s, Cq), 129.7 (s, CHAr), 128.1 (s, Cq), 125.4 (s, CHAr), 34.8 (s, Cq), 32.5 (s, 

CH3). 

31P-{1H} NMR (CD2Cl2, 162 MHz, 298 K): δ (ppm) = 158.53 (s). 

31P-{1H} NMR (Et2O, 162 MHz, 298 K): δ (ppm) = 157.6 (s).  
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1H NMR (CD2Cl2, 400 MHz, 298 K)  

 

13C-{1H} NMR (CD2Cl2, 100 MHz, 298 K)  
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31P-{1H} NMR (CD2Cl2, 162 MHz, 298 K)  

 

Synthesis of ligands 

The last step of the synthesis (Grignard reaction) requires to be performed with caution when 

using fluorinated aryl bromides as they can explosively decompose yielding metal fluorides 

The procedure was adapted from the methodology described by Kamer and co-workers.5  

Conditions for the Grignard reaction as well as purification procedures have been modified. 

Et2O was used for fluorinated ligands and THF for non-fluorinated ligands.  

Activation of magnesium turnings for all ligands: A mixture of magnesium turnings (350 mg, 

14.54 mmol) in Et2O or THF (3 mL) activated with 1,2-dibromoethane (0.1 mL, 1.2 mmol) 

was stirred in a two neck Schlenk flask equipped with a condenser at room temperature for 

one hour, resulting in a suspension. 
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4,5-bis(di-p-trifluoromethylphenylphosphino)-9,9-dimethylxanthene (p-CF3 xantphos 

ligand) (9a) 

 

At room temperature, a solution of 4-bromobenzo trifluoride (1.36 g, 0.84 mL, 6.06 mmol) 

in Et2O (4 mL) was added dropwise to the stirred suspension of the activated magnesium 

turnings. The reaction was followed by GCMS after quenching an aliquot of the reaction 

mixture with deuterated methanol. After affording the Grignard reagent, approximately after 

two hours, the product was filtered and added dropwise to a stirred solution of 9-dimethyl-

4,5- bis(dichlorophosphino)xanthene (500 mg, 1.21 mmol) in Et2O (10 mL) at -20 °C (ice 

bath with NaCl). The reaction mixture was stirred and allowed to warm to room temperature 

overnight. Subsequently, the reaction mixture was hydrolyzed with a solution of 1N HCl 

/Brine 1:1 (10 mL). The aqueous phase was separated, washed with CH2Cl2 (3x20 mL) and 

toluene (2x20 mL). The organic phases were combined, dried over Na2SO4 and volatiles were 

removed under vacuum. The resulting pale yellow powder was washed with cold pentane 

and recrystallized from the same solvent at 0°C affording a white crystalline powder. Yield: 

700 mg, 68 %.  Analytical data were found to be consistent with the literature.5  

1H NMR (500 MHz, CD2Cl2, 298 K): δ (ppm) = 7.56-7.51 (m, 10H, CHAr), 7.32-7.26 (m, 

8H, CHAr), 7.04 (t, J = 7.8 Hz, 2H, CHAr), 6.49 (dd, J = 6.0 Hz, J = 1.2 Hz, 2H, CHAr), 1.67 

(s, CH3). 

13C-{1H} NMR (126 MHz, CD2Cl2, 298 K): δ (ppm) = 152.9 (t, J = 9.7 Hz, Cq), 142.1 (t, J 

= 7.3 Hz, Cq), 134.6 (t, J = 10.4 Hz, CHAr), 132.4 (s, CHAr), 131.2 (q, J = 32.2 Hz, Cq), 131.1 

(s, Cq), 128.1 (s, CHAr), 125.6 (t, J = 3.4 Hz, CHAr), 124.8 (q, J = 273.9 Hz, Cq), 124.6 (s, 

CHAr), 123.7 (t, J = 8.4 Hz, Cq), 35.1 (s, Cq), 32.1 (s, CH3). 

31P-{1H} NMR (202 MHz, CD2Cl2, 298 K): δ (ppm) = -17.67 (s). 

19F-{1H} NMR (470 MHz, CD2Cl2, 298 K): δ (ppm) = -63.06 (s). 

mp: 184-185 °C. 
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1H NMR (500 MHz, CD2Cl2, 298 K)  

 

13C-{1H} NMR (126 MHz, CD2Cl2, 298 K)  
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31P-{1H} NMR (202 MHz, CD2Cl2, 298 K)  

 

19F-{1H} NMR (470 MHz, CD2Cl2, 298 K)  
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4,5-bis(di-p-fluorophenylphosphino)-9,9-dimethylxanthene (p-F xantphos ligand) (9b) 

  

At room temperature, a solution of 1-bromo-4-fluorobenzene (1.0 g, 0.66 mL, 6.06 mmol) in 

Et2O (4 mL) was added dropwise to the stirred suspension of the activated magnesium 

turnings. The reaction was followed by GCMS after quenching an aliquot of the reaction 

mixture with deuterated methanol. After affording the Grignard reagent, approximately after 

two hours, the product was filtered and added dropwise to a stirred solution of 9-dimethyl-

4,5- bis(dichlorophosphino)xanthene (500 mg, 1.21 mmol,) in Et2O (10 mL) at -20 °C (Ice 

bath with NaCl). The reaction mixture was stirred and allowed to warm to room temperature 

overnight. Subsequently, the reaction mixture was hydrolyzed with a solution of 1N HCl 

/Brine 1:1 (10 mL). The aqueous phase was separated, washed with CH2Cl2 (3x20 mL) and 

toluene (2x20 mL). The organic phases were combined, dried over Na2SO4 and volatiles were 

removed under vacuum. The resulting white powder was washed with hexane and 

recrystallized from a saturated solution of the compound in CH2Cl2 layered with Isopropanol 

obtaining a white crystalline powder. Yield: 610 mg, 77 %. Analytical data were found to be 

consistent with the literature.5 

1H NMR (500 MHz, CD2Cl2, 298 K): δ (ppm) = 7.46 (dd, J = 7.8 Hz, J = 1.3 Hz, 2H, CHAr), 

7.15-7.09 (m, 8H, CHAr), 6.99 (t, J = 7.6 Hz, 2H, CHAr), 6.96 (t, J = 7.6 Hz, 8H, CHAr), 6.46 

(dq, J = 7.5 Hz, J = 1.6 Hz, 2H, CHAr), 1.64 (s, 6H, CH3).  

13C-{1H} NMR (126 MHz, CD2Cl2, 298 K): δ (ppm) = 163.9 (d, J = 247.3 Hz, Cq), 152.7 

(t, J = 9.6 Hz, Cq), 136.2 (m, CHAr), 133.2 (m, Cq), 132.1 (s, CHAr), 130.8 (s, Cq), 127.4 (s, 

CHAr), 125.6 (t, J = 8.3 Hz, Cq), 124.2 (s, CHAr), 116.0 (dt, J = 21.0 Hz, J = 3.8 Hz, CHAr), 

35.0 (s, Cq), 32.1 (s, CH3).  

31P-{1H} NMR (202 MHz, CD2Cl2, 298 K): δ (ppm) =  -19.51 (s).  

19F-{1H} NMR (470 MHz, CD2Cl2, 298 K): δ (ppm) =  -113.78 (t, J = 2.3 Hz). 

mp: 196-197 °C. 
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1H NMR (500 MHz, CD2Cl2, 298 K)  

 

13C-{1H} NMR (126 MHz, CD2Cl2, 298 K)  
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31P-{1H} NMR (202 MHz, CD2Cl2, 298 K)  

 

19F-{1H} NMR (470 MHz, CD2Cl2, 298 K)  
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4,5-bis(di-p-tolylphosphino)-9,9-dimethylxanthene (p-Me xantphos ligand) (9d) 

 

At room temperature, a solution of 4-bromo toluene (1.0 g, 0.74 mL, 6.06 mmol) in THF (4 

mL) was added dropwise to the stirred suspension of the activated magnesium turnings. The 

reaction was followed by GCMS after quenching an aliquot of the reaction mixture with 

deuterated methanol. After affording the Grignard reagent, approximately after two hours, 

the product was filtered and added dropwise to a stirred solution of 9-dimethyl-4,5- 

bis(dichlorophosphino)xanthene (500 mg, 1.21 mmol,) in THF (10 mL) at -20 °C (ice bath 

with NaCl). The reaction mixture was stirred and allowed to warm to room temperature 

overnight. Subsequently, the reaction mixture was hydrolyzed with a solution of 1N 

HCl/Brine 1:1 (10 mL). The aqueous phase was separated, washed with CH2Cl2 (3x20 mL) 

and toluene (2x20 mL). The organic phases were combined, dried over Na2SO4 and volatiles 

were removed under vacuum. The resulting white powder was washed with hexane and 

recrystallized from a saturated solution of the compound in THF layered with hexanes 

obtaining a white crystalline powder. Yield: 620 mg, 80 %. Analytical data were found to be 

consistent with the literature.5 

1H NMR (500 MHz, CD2Cl2, 298 K): δ (ppm) = 7.41 (dd, J = 7.8 Hz, J = 1.4 Hz, 2H, CHAr), 

7.07-7.03 (m, 16H, CHAr), 6.95 (t, J = 7.6 Hz, 2H, CHAr), 6.53 (dq, J = 7.5 Hz, J = 1.7 Hz, 

2H, CHAr), 2.32 (s, 12H, CH3), 1.62 (s, 6H, CH3). 

13C-{1H} NMR (126 MHz, CD2Cl2, 298 K): δ (ppm) = 153.0 (t, J = 9.5 Hz, Cq), 138.5 (s, 

Cq), 134.5 (t, J = 6.0 Hz, Cq), 134.4 (t, J = 9.4 Hz, CHAr), 132.4 (s, CHAr), 130.6 (s, Cq), 129.5 

(t, J = 3.5 Hz, CHAr), 126.9 (s, CHAr), 126.6 (t, J = 9.9 Hz, Cq), 123.8 (s, CHAr), 34.9 (s, Cq), 

32.1 (s, CH3), 21.6 (s, CH3). 

31P-{1H} NMR (202 MHz, CD2Cl2, 298 K): δ (ppm) = -20.27 (s). 

mp: 238-239 °C. 
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1H NMR (500 MHz, CD2Cl2, 298 K)  

13C-{1H} NMR (126 MHz, CD2Cl2, 298 K)  
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31P-{1H} NMR (202 MHz, CD2Cl2, 298 K)  

4,5-bis(di-p-anisylphosphino)-9,9-dimethylxanthene (p-OMe xantphos ligand) (9f) 

 

At room temperature, a solution of 4-bromo anisole (1.1 g, 0.75 mL, 6.06 mmol) in THF (4 

mL) was added dropwise to the stirred suspension of the activated magnesium turnings. The 

reaction was followed by GCMS after quenching an aliquot of the reaction mixture with 

deuterated methanol. After affording the Grignard reagent, approximately after two hours, 

the product was filtered and added dropwise to a stirred solution of 9-dimethyl-4,5-

bis(dichlorophosphino)xanthene (500 mg, 1.21 mmol) in THF (10 mL) at -20 °C (ice bath 

with NaCl). The reaction mixture was stirred and allowed to warm to room temperature 

overnight. Subsequently, the reaction mixture was hydrolyzed with a solution of 1N 

HCl/Brine 1:1 (10 mL). The aqueous phase was separated, washed with CH2Cl2 (3x20 mL) 

and toluene (2x20 mL). The organic phases were combined, dried over Na2SO4 and volatiles 

were removed under vacuum. The resulting white powder was washed with hexanes and 

recrystallized from a saturated solution of the compound in CH2Cl2 layered with ethanol 
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obtaining a white crystalline powder. Yield: 650 mg, 77 %. Analytical data were found to be 

consistent with the literature.5 

1H NMR (500 MHz, CD2Cl2, 298 K): δ (ppm) = 7.41 (dd, J = 7.8 Hz, J = 1.4 Hz, 2H, CHAr), 

7.10-7.06 (m, 8H, CHAr), 6.96 (t, J = 7.6 Hz, 2H, CHAr), 6.78 (d, J = 8.6 Hz, 8H, CHAr), 6.52 

(dq, J = 7.7 Hz, J = 1.9 Hz, 2H, CHAr), 3.78 (s, 12H, OCH3), 1.62 (s, 6H, CH3). 

13C-{1H} NMR (126 MHz, CD2Cl2, 298 K): δ (ppm) = 160.5 (s, Cq), 152.8 (t, J = 9.4 Hz, 

Cq), 135.7 (t, J = 11.6 Hz, CHAr), 132.2 (s, CHAr), 130.6 (s, Cq), 129.0 (t, J = 4.9 Hz, Cq), 

127.1-127.0 (m, Cq), 126.8 (s, CHAr), 123.8 (s, CHAr), 114.3 (s, CHAr), 55.6 (s, OCH3), 34.9 

(s, Cq), 32.1 (s, CH3). 

31P-{1H} NMR (202 MHz, CD2Cl2, 298 K): δ (ppm) = -21.08 (s). 

mp: 211-212 °C. 

1H NMR (500 MHz, CD2Cl2, 298 K) 
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13C-{1H} NMR (126 MHz, CD2Cl2, 298 K)  

 

31P-{1H} NMR (202 MHz, CD2Cl2, 298 K)  
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4,5-Bis(di-p-tert-butylphenylphosphino)-9,9-dimethylxanthene (p-t-Bu xantphos ligand) 

(9e) 

 

At room temperature, a solution of 1-bromo-4-tert-butylbenzene (1.075 g, 0.88 mL, 5.05 

mmol) in THF (4 mL) was added dropwise to the stirred suspension of the activated 

magnesium turnings. The reaction was followed by GCMS after quenching an aliquot of the 

reaction mixture with deuterated methanol. After affording the Grignard reagent, 

approximately after two hours, the product was filtered and added dropwise to a stirred 

solution of 9-dimethyl-4,5-bis(dichlorophosphino)xanthene (500 mg, 1.21 mmol) in THF (10 

mL) at -20 °C (ice bath with NaCl). The reaction mixture was stirred and allowed to warm 

to room temperature overnight. Subsequently, the reaction mixture was hydrolyzed with a 

solution of 1N HCl/Brine 1:1 (10 mL). The aqueous phase was separated, washed with 

CH2Cl2 (3x20 mL) and toluene (2x20 mL). The organic phases were combined, dried over 

Na2SO4 and volatiles were removed under vacuum. The resulting white powder was washed 

with hexanes and recrystallized from a saturated solution of the compound in CH2Cl2 layered 

with ethanol obtaining a white crystalline powder. Yield: 870 mg, 90%.  

1H NMR (500 MHz, CD2Cl2, 298 K): δ (ppm) = 7.45(dd, J = 7.8 Hz, J = 1.3 Hz, 2H, CHAr), 

7.37 (d, J = 8.1 Hz, 8H, CHAr), 7.24-7.15 (m, 8H, CHAr), 7.01 (t, J = 7.6 Hz, 2H, CHAr), 6.65 

(dq, J = 7.5 Hz, J = 1.6 Hz, 2H, CHAr), 1.67 (s, 6H, CH3), 1.35 (s, 36H, CH3). 

13C-{1H} NMR (126 MHz, CD2Cl2, 298 K): δ (ppm) = 152.3 (m, Cq), 151.4 (s, Cq), 134.1 

(t, J = 6.2 Hz, Cq), 133.7 (t, J = 10.9 Hz, CHAr), 132.1 (s, CHAr), 129.9 (s, Cq), 126.5 (s, 

CHAr), 125.2 (t, J = 3.8 Hz, CHAr), 123.2 (s, CHAr), 34.5 (s, Cq), 31.8 (s, CH3), 31.0 (s, CH3). 

2 Cq missing.  

31P-{1H} NMR (202 MHz, CD2Cl2, 298 K): δ (ppm) = -22.24 (s). 

Anal. Calcd C55H64OP2: C, 82.26; H, 8.03 Found: C, 82.13; H, 7.85.  

mp: 208-209 ºC. 
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1H NMR (500 MHz, CD2Cl2, 298 K) 

 

13C-{1H} NMR (126 MHz, CD2Cl2, 298 K) 
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31P-{1H} NMR (202 MHz, CD2Cl2, 298 K)

 
(p-bromobenzyl)diethylamine (VII) 

 

At -20 oC a solution of 4-bromobenzyl bromide (60 mmol, 15 g) in Et2O (38 mL) was added 

to an excess of diethyl amine (540 mmol, 56.25 mL) over 1 hour. The reaction is slightly 

exothermic. After stirring for 2 hours the precipitate which formed was filtered off and 

washed three times with Et2O. The filtrate was concentrated and the product was purified by 

flash column chromatography (silica gel, 400 g, EtOAc/hexane 25/75) giving a yellowish oil. 

Yield 85% (12.48 g).  

1H NMR (CD2Cl2, 400 MHz, 298 K): δ (ppm) = 7.51 – 7.42 (m, 2H, CHAr), 7.32 – 7.24 (m, 

2H, CHAr), 3.53 (s, 2H, CH2), 2.52 (q, J = 7.1 Hz, 4H, CH2), 1.05 (t, J = 7.1 Hz, 3H, CH3). 

Data were found to match literature.6  
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1H NMR (CDCl3, 400 MHz, 298 K) 

4,5-bis[bis(4-((diethylamino)methyl)phenyl)phosphino]-10,10’-dimethylxanthene, 

xantham (9c) 

 

At room temperature,  a solution of (4-bromobenzyl)diethylamine (7.26 g, 30 mmol, 5.85 

mL) in THF (30 mL) was added dropwise to a stirred mixture of magnesium turnings (1.75 

g, 72 mmol) activated with 1,2-dibromoethane (0.54 mL) in THF (16 mL), the reaction was 

followed by GCMS and after 3 hours the product was filtered and added dropwise to a stirred 

solution of 9-dimethyl-4,5-bis(dichlorophosphino)xanthene  (2.76 g, 6 mmol) in THF (54 

mL) at 0 °C, then allowed to warm to room temperature and stirred overnight., the reaction 

mixture was hydrolyzed with 0.15 M H2SO4 (100 mL). The aqueous phase was separated, 

washed with CH2Cl2 (3x50 mL), toluene (2x50 mL) and neutralized with a saturated solution 

of NaHCO3. Extraction with CH2Cl2 (4x50 mL) and evaporation of the combined organic 

phases resulted in a yellowish powder which was crystallized from acetonitrile giving a white 

powder. Yield 90% (4.1 g).  

1H NMR (C6D6, 400 MHz, 298 K): δ (ppm) = 7.57 – 7.50 (m, 8H, CHAr), 7.31 (d, J = 8.0 

Hz, 8H, CHAr), 7.08 (dd, J = 7.8, J = 1.5 Hz, 2H, CHAr), 6.99 (dd, J = 7.5, J = 1.6 Hz, 2H, 
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CHAr), 6.78 (t, J = 7.6 Hz, 2H, CHAr), 3.41 (s, 8H, CH2), 2.39 (q, J = 7.1 Hz, 16H, CH2), 1.36 

(s, 6H, CH3), 0.91 (t, J = 7.1 Hz, 24H, CH3). 

13C-{1H} NMR (C6D6, 100 MHz, 298 K): δ (ppm) = 153.1 (s, Cq), 141.2 (s, Cq), 136.5 (t, J 

= 7.1 Hz, Cq), 134.6 (t, J = 9.9 Hz, CHAr), 132.6 (s, CHAr), 130.2 (s, Cq), 129.0 (t, J = 3.6 Hz, 

CHAr), 126.6 (s, CHAr), 123.7 (s, CHAr), 58.0 (s, CH2), 47.1 (s, CH2), 34.2 (HMBC, Cq), 31.9 

(s, CH3), 12.3 (s, CH3), 1Cq missing.  

31P-{1H} NMR (C6D6, 162 MHz, 298 K): δ (ppm) = -19.3 (s). Data was found to match with 

literature.6 

mp: 287-288oC. 

1H NMR (400 MHz, C6D6, 298 K) 
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13C-{1H} NMR (100 MHz, C6D6, 298 K) 

 

31P-{1H} NMR (162 MHz, C6D6, 298 K) 
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Synthesis of complexes 

[Cu(neocuproine)(p-CF3 xantphos)]BF4 (1) 

 

 [Cu(MeCN)4]BF4 (0.11 mmol, 34.6 mg) was dissolved in CH2Cl2 (5 mL) in an Schlenk flask 

equipped with a magnetic stirrer. Then a solution of p-CF3 xantphos ligand (0.11 mmol, 100 

mg) in CH2Cl2 (5 mL) was added dropwise at -78 °C (dry ice/acetone bath), the whole 

procedure was carried out at this temperature. The mixture was stirred for two hours resulting 

in a colorless solution. Then, a solution of neocuproine (0.11 mmol, 22.9 mg) in CH2Cl2 (7 

mL) was added dropwise and the resulting yellow solution was stirred for two hours. The 

resulting solution was filtered through celite in inert atmosphere. Solvents were evaporated 

and the complex redissolved in 2 mL of CH2Cl2 and precipitated by the addition of 25 mL of 

Et2O. The mixture was stirred for two hours. The yellow precipitate was washed with Et2O. 

The complex was recrystallized by slow diffusion of Et2O in a saturated solution of the 

complex in CH2Cl2. The pale yellow crystals were washed with pentane and dried under 

vacuum overnight providing a pale orange powder. Yield: 110 mg, 78%. 

1H NMR (400 MHz, CD2Cl2, 298 K): δ (ppm) = 8.36 (d, J = 8.3 Hz, 2H, CHAr), 7.87 (s, 2H, 

CHAr), 7.78 (dd, J = 7.9 Hz, J = 1.5 Hz, 2H, CHAr), 7.58 (d, J = 8.2 Hz, 2H, CHAr), 7.32 (d, J 

= 8.2 Hz, 8H, CHAr), 7.28 (t, J = 7.8 Hz, 2H, CHAr), 7.18-7.11 (m, 8H, CHAr), 6.88-6.81 (m, 

10H, CHAr), 2.26 (s, 6H, CH3), 1.79 (s, 6H, CH3). 

13C-{1H} NMR (100 MHz, CD2Cl2, 298 K): δ (ppm) = 159.1 (s, Cq), 155.4 (t, J = 6.6 Hz, 

Cq), 143.2 (s, Cq), 138.9 (s, CHAr), 136.0 (t, J = 15.2 Hz, Cq), 134.8 (t, J = 1.8 Hz, Cq), 133.9 

(t, J =  8.1 Hz, Cq), 132.8 (q, J = 33.1 Hz, Cq), 130.8 (s, CHAr), 129.3 (s, CHAr), 128.5 (s, Cq), 

126.8 (s, CHAr), 126.7 (t, J = 2.1 Hz, CHAr), 126.2 (s, CHAr), 126.1 (s, CHAr), 124.0 (q, J = 

272.8 Hz, Cq), 119.6 (t, J =  14.1 Hz, Cq), 36.8 (s, Cq), 28.8 (s, CH3), 27.9 (s, CH3). 

31P-{1H} NMR (162 MHz, CD2Cl2, 298 K): δ (ppm) = -12.59 (br s). 

19F-{1H} NMR (282 MHz, CD2Cl2, 298 K): δ (ppm) = -62.64 (s), - 153.28 (s). 
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Anal. Calcd C57H40BCuF16N2OP2: C, 56.62; H, 3.33 N, 2.32 Found: C, 56.52; H, 3.48 N, 

2.52.  

HRMS (ESI) m/z: [M-BF4]
+ Calcd for C57H40CuF12N2OP2: 1121.1713; Found 1121.1713.  

ATR-IR ν (cm-1): 1409 (w), 1322 (m), 1124 (w), 1059 (m), 1013 (w), 831 (w), 697 (w), 600 

(w), 510 (w), 411 (vw). 

1H NMR (400 MHz, CD2Cl2, 298 K)  

 

13C-{1H} NMR (100 MHz, CD2Cl2, 298 K)  
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31P-{1H} NMR (162 MHz, CD2Cl2, 298 K)  

 

19F-{1H} NMR (282 MHz, CD2Cl2, 298 K)  

 
[Cu(neocuproine)(p-F xantphos)]BF4 (2) 

 

[Cu(MeCN)4]BF4 (0.15 mmol, 47.1 mg) was dissolved in CH2Cl2 (5 mL) in a Schlenk flask 

provided with a magnetic stirrer. Then a solution of p-F xantphos ligand (0.15 mmol, 100 

mg)  in CH2Cl2 (5 mL) was added dropwise at room temperature. The mixture was stirred for 

two hours resulting in a colorless solution. Then, a solution of neocuproine (0.15 mmol, 31.2 

mg) in CH2Cl2 (7 mL) was added dropwise and the resulting yellow solution was stirred for 

two hours. The resulting solution was filtered through celite in inert atmosphere. Solvents 

were evaporated and the complex redissolved in 2 mL of CH2Cl2 and precipitated by the 
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addition of 25 mL of Et2O. The mixture was stirred for two hours. The yellow precipitate 

was washed with Et2O. The complex was recrystallized by slow diffusion of Et2O in a 

saturated solution of the complex in CH2Cl2. The pale yellow crystals were washed with 

pentane and dried under vacuum overnight providing a yellow powder. Yield: 125 mg, 81%.  

1H NMR (400 MHz, CD2Cl2, 298 K): δ (ppm) = 8.37 (d, J = 8.3 Hz, 2H, CHAr), 7.91 (s, 2H, 

CHArCHAr), 7.71 (dd, J = 7.8 Hz, J = 1.5 Hz, 2H, CHAr), 7.55 (d, J = 8.2 Hz, 2H, CHAr), 7.23 

(t, J = 7.8 Hz, 2H, CHAr), 7.04-6.95 (m, 8H, CHAr), 6.82-6.74 (m, 10H, CHAr), 2.23 (s, 6H, 

CH3), 1.76 (s, 6H, CH3). 

13C-{1H} NMR (100 MHz, CD2Cl2, 298 K): δ (ppm) = 164.4 (d, J = 254.1 Hz, Cq), 159.4 

(s, Cq), 155.4 (t,  J = 6.6 Hz, Cq), 143.4 (s, Cq), 138.6 (s, CHAr), 135.6 (q, J = 8.5 Hz, CHAr), 

134.6 (s, Cq), 130.6 (s, CHAr), 128.4 (s, CHAr), 127.4 (td, J = 17.5 Hz, J = 3.8 Hz, Cq), 126.7 

(s, CHAr), 126.2 (t, J = 2.3 Hz , CHAr), 125.9 (s, CHAr), 121.6 (t, J = 13.5 Hz, Cq), 116.6 (dt, 

JF-C = 21.4 Hz, J = 5.0 Hz, CHAr), 36.7 (s, Cq), 28.6 (s, CH3), 27.7 (s, CH3). 1Cq missing. 

31P-{1H} NMR (162 MHz, CD2Cl2, 298 K): δ (ppm) = -13.89 (br s). 

19F-{1H} NMR (282 MHz, CD2Cl2, 298 K): δ (ppm) = -110.05 (m), -153.22 (s), -153.28 (s) 

Anal. Calcd C53H40BCuF8N2OP2: C, 63.08; H, 4.00; N, 2.78 Found: C, 62.90; H, 3.84; N, 

2.84.  

HRMS (ESI) m/z: [M-BF4]
+ Calcd for C53H40CuF4N2OP2: 921.1840; Found 921.1840.  

ATR-IR ν (cm-1): 1590 (w), 1495 (w), 1405 (m), 1221 (m), 1162 (w), 1049 (m), 858 (w), 

829 (m), 753 (w), 532 (w), 515 (m), 452 (w), 442 (w), 389 (w). 
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1H NMR (400 MHz, CD2Cl2, 298 K)  

13C-{1H} NMR (100 MHz, CD2Cl2, 298 K) 
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31P-{1H} NMR (162 MHz, CD2Cl2, 298 K)  

 

19F-{1H} NMR (282 MHz, CD2Cl2, 298 K)  

 
[Cu(neocuproine)(xantphos)]BF4 (3) 

 

 [Cu(MeCN)4]BF4 (0.17 mmol, 53.4 mg) was dissolved in CH2Cl2 (5 mL) in a Schlenk flask 

equipped with a magnetic stirrer. Then a solution of xantphos (0.17 mmol, 100 mg) in CH2Cl2 

(5 mL) was added dropwise at room temperature. The mixture was stirred for two hours 

resulting in a colorless solution. Then, a solution of neocuproine (0.17 mmol, 35.4 mg) in 

CH2Cl2 (7 mL) was added dropwise and the resulting yellow solution was stirred for two 
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hours. The resulting solution was filtered through celite under inert atmosphere. Solvents 

were evaporated and the complex dissolved in 2 mL of CH2Cl2 and precipitated by the 

addition of 25 mL of Et2O. The mixture was stirred for two hours. The yellow precipitate 

was washed with Et2O. The complex was recrystallized by slow diffusion of Et2O in a 

saturated solution of the complex in CH2Cl2. The pale yellow crystals were washed with 

pentane and dried under vacuum overnight obtaining a yellow powder. Yield: 133 mg, 82%.  

1H NMR (500 MHz, CD2Cl2, 298 K): δ (ppm) = 8.26 (d, J = 8.3 Hz, 2H, CHAr), 7.80 (s, 2H, 

CHAr), 7.68 (dd, J = 8.0 Hz, J = 1.5 Hz, 2H, CHAr), 7.48 (d, J = 8.3 Hz, 2H, CHAr), 7.25-7.17 

(m, 6H, CHAr), 7.08-6.98 (m, 16H, CHAr), 6.94-6.88 (m, 2H, CHAr), 2.26 (s, 6H, CH3), 1.74 

(s, 6H, CH3). 

13C-{1H} NMR (126 MHz, CD2Cl2, 298 K): δ (ppm) = 159.2 (s, Cq), 155.6 (s, Cq), 143.4 (s, 

Cq), 138.1 (s, CHAr), 134.4 (s, Cq), 133.5 (t, J = 7.8 Hz, CHAr), 132.0 (t, J = 16.5 Hz, Cq), 

130.9 (s, CHAr), 130.4 (s, Cq), 129.1 (t, J = 4.1 Hz, CHAr), 128.3 (s, Cq), 128.1 (s, CHAr), 

126.4 (s, CHAr), 125.8 (s, CHAr), 125.6 (s, CHAr), 121.9 (s, Cq), 35.5 (HMBC, Cq), 28.8 (s, 

CH3), 27.6 (s, CH3). 

31P-{1H} NMR (202 MHz, CD2Cl2, 298 K): δ (ppm) = -12.76 (br s). 

19F-{1H} NMR (470 MHz, CD2Cl2, 298 K): δ (ppm) = -153.40 (s), -153.45 (s). 

Anal. Calcd C53H44BCuF4N2OP2: C, 67.92; H, 4.73; N, 2.99 Found: C, 67.81; H, 4.67; N, 

2.95.  

HRMS (ESI) m/z: [M-BF4]
+ Calcd for C53H44CuN2OP2: 849.2215; Found 849.2215. 

ATR-IR ν (cm-1): 1434 (w), 1402 (m), 1224 (w), 1048 (m), 857 (w), 742 (m), 693 (m), 512 

(m), 456 (m). 
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1H NMR (500 MHz, CD2Cl2, 298 K)  

 

13C-{1H} NMR (126 MHz, CD2Cl2, 298 K) 
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31P-{1H} NMR (202 MHz, CD2Cl2, 298 K) 

 

19F-{1H} NMR (470 MHz, CD2Cl2, 298 K)  

 
[Cu(neocuproine)(p-Me xantphos)]BF4 (4) 

 

[Cu(MeCN)4]BF4 (0.15 mmol, 47.1 mg) was dissolved in CH2Cl2 (5 mL) in a Schlenk flask 

equipped with magnetic stirrer. Then a solution of p-Me xantphos ligand (0.15 mmol, 100 

mg) in CH2Cl2 (5 mL) was added dropwise at room temperature. The mixture was stirred for 

two hours resulting in a colorless solution. Then, a solution of neocuproine (0.15 mmol, 31.2 

mg) in CH2Cl2 (7 mL) was added dropwise and the resulting yellow solution was stirred for 

two hours. The resulting solution was filtered through celite under inert atmosphere. Solvents 
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were evaporated, the complex redissolved in 2 mL of CH2Cl2 and precipitated by the addition 

of 25 mL of Et2O. The mixture was stirred for two hours. The yellow precipitate was washed 

with Et2O. The complex was recrystallized by slow diffusion of Et2O in a saturated solution 

of the complex in CH2Cl2. The pale yellow crystals were washed with pentane and dried 

under vacuum overnight obtaining a dark yellow powder. Yield: 140 mg, 89%.  

1H NMR (500 MHz, CD2Cl2, 298 K): δ (ppm) = 8.28 (d, J = 8.2 Hz, 2H, CHAr), 7.81 (s, 2H, 

CHAr), 7.64 (dd, J = 7.9 Hz, J = 1.4 Hz, 2H, CHAr), 7.47 (d, J = 8.2 Hz, 2H, CHAr), 7.17 (t, J 

= 7.8 Hz, 2H, CHAr), 6.92-6.85 (m, 10H, CHAr), 6.81 (d, 3J = 7.5 Hz, 8H, CHAr), 2.23 (s, 

18H, CH3), 1.74 (s, 6H, CH3). 

13C-{1H} NMR (126 MHz, CD2Cl2, 298 K): δ (ppm) = 159.2 (s, Cq), 155.5 (t, J = 6.6 Hz, 

Cq), 143.4 (s, Cq), 140.7 (s, Cq), 137.9 (s, CHAr), 134.3 (s, Cq), 133.4 (t, J = 8.3 Hz, CHAr), 

130.7 (s, CHAr), 129.7 (t, J = 4.5 Hz, CHAr), 128.6 (t, J = 17.8 Hz, Cq), 128.2 (s, Cq), 127.8 

(s, CHAr), 126.2 (s, CHAr), 125.6 (s, two signals overlap, CHAr), 122.5 (t, J = 12.6 Hz, Cq), 

36.6 (s, Cq), 28.8 (s, CH3), 27.6 (s, CH3), 21.5 (s, CH3). 

31P-{1H} NMR (202 MHz, CD2Cl2, 298 K): δ (ppm) = -13.67 (br s). 

19F-{1H} NMR (470 MHz, CD2Cl2, 298 K): δ (ppm) =-153.37 (s), -153.42 (s). 

Anal. Calcd C57H52BCuF4N2OP2: C, 68.92; H, 5.28; N, 2.82 Found: C, 68.86; H, 5.18; N, 

2.97.  

HRMS (ESI) m/z: [M-BF4]
+ Calcd for C57H52CuN2OP2: 905.2848; Found 905.2848. 

ATR-IR ν (cm-1): 1403 (m), 1224 (m), 1048 (m), 857 (m), 803 (m), 750 (m), 730 (m), 616 

(m), 507 (m), 444 (m). 
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1H NMR (500 MHz, CD2Cl2, 298 K) 

13C-{1H} NMR (126 MHz, CD2Cl2, 298 K)  
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31P-{1H} NMR (202 MHz, CD2Cl2, 298 K)  

19F-{1H} NMR (470 MHz, CD2Cl2, 298 K)  

 

 [Cu(neocuproine)(p-OMe xantphos)]BF4 (5) 

 

[Cu(MeCN)4]BF4 (0.14 mmol, 44 mg) was dissolved in CH2Cl2 (5 mL) in a Schlenk flask 

equipped with a magnetic stirrer. Then a solution of p-OMe xantphos ligand (0.14 mmol, 100 

mg) in CH2Cl2 (5 mL) was added dropwise at -78 °C (dry ice/acetone bath), the whole 

procedure was carried out at this temperature. The mixture was stirred for two hours resulting 

in a colorless solution. Then, a solution of neocuproine (0.14 mmol, 29.1 mg) in CH2Cl2 (7 

mL) was added dropwise and the resulting yellow solution was stirred for two hours. The 

resulting solution was filtered through celite under inert atmosphere. Solvents were 

evaporated and the complex redissolved in 2 mL of CH2Cl2 and precipitated by the addition 

of 25 mL of Et2O. The mixture was stirred for two hours. The yellow precipitate was washed 
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with Et2O. The complex was recrystallized by slow diffusion of diethyl ether into a saturated 

solution of the complex in CH2Cl2. The pale yellow crystals were washed with pentane and 

dried under vacuum overnight obtaining a light yellow powder. Yield: 121 mg, 80%.  

1H NMR (400 MHz, CD2Cl2, 298 K): δ (ppm) = 8.31 (d, J = 8.2 Hz, 2H, CHAr), 7.86 (s, 2H, 

CHAr), 7.64 (dd, J = 7.8 Hz, J = 1.5 Hz, 2H, CHAr), 7.50 (d, J = 8.2 Hz, 2H, CHAr), 7.17 (t, J 

= 7.8 Hz, 2H, CHAr), 6.96-6.88 (m, 8H, CHAr), 6.85-6.79 (m, 2H, CHAr), 6.56-6.51 (m, 8H, 

CHAr),  3.71 (s, 12H, OCH3), 2.23 (s, 6H, CH3), 1.74 (s, 6H, CH3). 

13C-{1H} NMR (100 MHz, CD2Cl2, 298 K): δ (ppm) = 161.4 (s, Cq), 159.4 (s, Cq), 155.5 (s, 

Cq), 143.5 (s, Cq), 138.1 (s, CHAr), 135.0 (t, J = 8.5 Hz, CHAr), 134.3 (s, Cq), 130.6 (s, CHAr), 

128.3 (s, Cq), 127.6 (s, CHAr), 126.4 (s, CHAr), 125.7 (m, two signals overlap, CHAr), 123.2 

(t, J = 12.0 Hz, Cq), 122.8 (t, J = 18.6 Hz, Cq), 114.6 (t, J = 5.0 Hz, CHAr), 55.7 (s, OCH3), 

36.6 (s, Cq), 28.6 (s, CH3), 27.6 (s, CH3). 

31P-{1H} NMR (162 MHz, CD2Cl2, 298 K): δ (ppm) = -14.29 (br s). 

19F-{1H} NMR (282 MHz, CD2Cl2, 298 K): δ (ppm) = -153.43 (s). 

Anal. Calcd C57H52BCuF4N2O5P2: C, 64.75; H, 4.96; N, 2.65 Found: C, 64.76; H, 4.72; N, 

2.29. 

HRMS (ESI) m/z: [M-BF4]
+ Calcd for C57H52CuN2O5P2: 969.2642; Found 969.26355 

ATR-IR ν (cm-1): 1593 (w), 1499 (m), 1404 (m), 1285 (w), 1251 (m), 1179 (m), 1097 (m), 

1055 (m), 1023 (m), 826 (w), 797 (w), 752 (w), 534 (m), 433 (w). 
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1H NMR (400 MHz, CD2Cl2, 298 K)  

 

13C-{1H} NMR (100.6 MHz, CD2Cl2, 298 K)  
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31P-{1H} NMR (162 MHz, CD2Cl2, 298 K)  

19F-{1H} NMR (282 MHz, CD2Cl2, 298 K)  

 
[Cu(neocuproine)(p-CH2N(Et)2 xantphos)]BF4 (IX) 

 

[Cu(MeCN)4]BF4 (0.15 mmol, 47.1 mg) was dissolved in CH2Cl2 (5 mL) in a Schlenk flask 

equipped with a magnetic stirrer. Then a solution of p-CH2N(Et)2 xantphos ligand (0.15 

mmol, 137,88 mg) in CH2Cl2 (5 mL) was added dropwise at room temperature. The mixture 
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was stirred for two hours resulting in a colorless solution. Then, a solution of neocuproine 

(0.15 mmol, 31.2 mg) in CH2Cl2 (7 mL) was added dropwise and the resulting green-yellow 

solution was stirred for two hours. The resulting solution was filtered through celite under 

inert atmosphere. Solvents were evaporated and the complex redissolved in 2 mL of CH2Cl2 

and precipitated by the addition of 25 mL of Et2O. The mixture was stirred for two hours. 

Solvents were removed by syringe and 25 mL of hexanes were added, the complex was 

sonicated for 20 minutes. The green-yellow precipitate was washed with Et2O. It was not 

possible to obtain crystals suitable for X-ray analysis. The product was finally washed with 

pentane and dried under vacuum overnight obtaining a green-yellow powder. Yield: 145 mg, 

76%.  

1H NMR (500 MHz, CD2Cl2, 298 K): δ (ppm) = 8.29 (d, J = 8.3 Hz, 2H, CHAr), 7.81 (s, 2H, 

CHAr), 7.69 (dd, J = 7.7 Hz, J = 1.4 Hz, 2H, CHAr), 7.51 (d, J = 8.3 Hz, 2H, CHAr), 7.23 (t, J 

= 7.8 Hz, 2H, CHAr), 7.07-6.97 (m, 18H, CHAr), 3.48 (s, 8H, CH2), 2.49 (q, J = 7.3 Hz, 16H, 

CH2), 2.29 (s, 6H, CH3), 1.77 (s, 6H, CH3), 1.01 (t, J = 7.3 Hz, 24H, CH3). 

13C-{1H} NMR (126 MHz, CD2Cl2, 298 K): δ (ppm) = 158.6 (s, Cq), 155.1 (t, J = 6.5 Hz, 

Cq), 142.8 (s, Cq), 137.4 (s, CHAr), 133.8 (s, Cq), 132.8 (t, J = 8.1 Hz, CHAr), 130.3 (s, CHAr), 

129.6 (m, Cq), 128.6 (s, CHAr), 127.5 (s, Cq), 127.3 (s, CHAr), 125.7 (s, CHAr), 125.1 (s, 

CHAr), 122.0 (m, Cq), 57.0 (s, CH2), 46.8 (s, CH2), 36.1 (s, Cq), 28.3 (s, CH3), 27.0 (s, CH3), 

11.5 (s, CH3). 1 CHAr and 1 Cq missing. 

31P-{1H} NMR (202 MHz, CD2Cl2, 298 K): δ (ppm) = -14.23 (br s). 

19F-{1H} NMR (470 MHz, CD2Cl2, 298 K): δ (ppm) =- 152.80 (s). -152.83 (s). 

Anal. Calcd C73H88BCuF4N6OP2 + 1CH2Cl2: C, 65.03; H, 6.66; N, 6.17 Found: C, 65.00; 

H, 6.31; N, 6.16. 

HRMS (ESI) m/z: [M-BF4]
+ Calcd for C73H88BCuF4N6OP2: 1189.5779; Found 1189.5779. 
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1H NMR (500 MHz, CD2Cl2, 298 K) 

13C-{1H} NMR (126 MHz, CD2Cl2, 298 K) 
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31P-{1H} NMR (202 MHz, CD2Cl2, 298 K) 

 

19F-{1H} NMR (470 MHz, CD2Cl2, 298 K) 

[Cu-bis(xantphos)]BF4, homoleptic xantphos complex (10) 

 

[Cu(MeCN)4]BF4 (0.17 mmol, 54.2 mg) was dissolved in CH2Cl2 (10 mL) in a Schlenk flask 

equipped with magnetic stirrer. Then a solution of xantphos (0.34 mmol, 200 mg) in CH2Cl2 
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(5 mL) was added dropwise at room temperature. The reaction mixture was refluxed 

overnight resulting in a colorless solution. The solution was filtered through celite under inert 

atmosphere to remove any fine precipitate which sometimes forms. Solvents were evaporated 

and the complex suspended in 2 mL of CH2Cl2 and the remaining solute precipitated by 

addition of 25 mL of Et2O. The white precipitate was washed with Et2O. The complex was 

suspended in a 1:1 mixture CH2Cl2/THF. The supernatant was removed by syringe and n-

hexane was added to it (1:1 mixture) to crystalize the product by slow diffusion. The white 

crystals were washed with pentane and dried under vacuum overnight obtaining a white 

powder. Yield: 388 mg, 86%. This compound is not soluble in hexanes, pentanes, DMSO, 

Et2O, toluene, H2O, CH3OH, benzene and ethyl acetate and poorly soluble in CH2Cl2 and 

THF. 

31P-{1H} NMR (162 MHz, CD2Cl2, 298 K): δ (ppm) = -15.01 (br s). 

Anal. Calcd C78H64CuO2P4: C, 71.65; H, 4.93 Found: C, 71.66; H, 4.89. 

HRMS (ESI) m/z: [M-BF4]
+ Calcd for C78H64CuO2P4: 1219.3158; Found 1219.3187 

ATR-IR ν (cm-1): 1565 (vw), 1478 (w), 1433 (w), 1404 (m), 1360 (vw), 1312 (vw), 1225 

(m), 1199 (vw), 1158 (vw), 1090 (w), 1056 (m), 1030 (m), 997 (w), 875 (w), 848 (vw), 791 

(w), 777 (vw), 742 (m), 694 (m), 666 (w), 607 (w), 587 (vw), 534 (w), 512 (m), 497 (m), 454 

(m), 411 (w). 

mp: 343-344 °C (dec.)  

31P-{1H} NMR (162 MHz, CD2Cl2, 298 K) 
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IR spectra of copper complexes  

[Cu(neocuproine)(p-CF3 xantphos)]BF4 (1) 

 

 [Cu(neocuproine)(p-F xantphos)]BF4 (2) 
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[Cu(neocuproine)(xantphos)]BF4 (3) 

 

[Cu(neocuproine)(p-Me xantphos)]BF4 (4) 
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[Cu(neocuproine)(p-OMe xantphos)]BF4 (5) 

 

[Cu-bis(xantphos)]BF4, homoleptic xantphos complex (10) 
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X-Ray characterization 

Crystals of 1, 2, 3 and 4 were obtained by vapor diffusion of diethyl ether into a solution of 

the compound in dichloromethane. Crystals of 5 were obtained from a solution of the 

compound in dichloromethane. X-ray diffraction data for compounds 1–5 were collected at 

173 K using a Rigaku FR-X Ultrahigh Brilliance Microfocus RA generator/confocal optics 

with XtaLAB P200 diffractometer [Mo Kα radiation (λ = 0.71075 Å)]. Intensity data were 

collected using ω steps accumulating area detector images spanning at least a hemisphere of 

reciprocal space. Data for all compounds analyzed were collected and processed (including 

correction for Lorentz, polarization and absorption) using CrystalClear7 or CrysAlisPro.8 

Structures were solved by direct methods (SIR20119 and SIR200410) and refined by full-

matrix least-squares against F2 (SHELXL-201811). Non-hydrogen atoms were refined 

anisotropically, and hydrogen atoms were refined using a riding model. All calculations were 

performed using the CrystalStructure12 interface. For compound 10 data were collected on a 

Bruker Kappa APEX II Duo diffractometer. The structure was solved by direct methods 

(SHELXS-97)14 and refined by full-matrix least-squares procedures on F2 (SHELXL-

2014).15 The τ4 parameters were calculated using the method of Houser et al.13 Selected 

crystallographic data are presented in Table 2. CCDC 1844671-1844675 contains the 

supplementary crystallographic data for this thesis. The data can be obtained free of charge 

from The Cambridge Crystallographic Database. 
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Figure 1. Thermal ellipsoid representation of complex [Cu(neocuproine)(p-

CF3 xantphos)]BF4 (1). Anion, hydrogen atoms and co-crystallized solvent molecules have 

been omitted for clarity. Displacement ellipsoids correspond to 50% probability.  

 

Figure 2. Thermal ellipsoid representation of complex [Cu(neocuproine)(p-F xantphos)]BF4  

(2).Anion, hydrogen atoms and co-crystallized solvent molecules have been omitted for 

clarity. Displacement ellipsoids correspond to 50% probability.  
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Figure 3. Thermal ellipsoid representation of complex [Cu(neocuproine)(xantphos)]BF4 (3) 

Anion, hydrogen atoms and co-crystallized solvent molecules have been omitted for clarity. 

Displacement ellipsoids correspond to 50% probability.  

 

Figure 4. Thermal ellipsoid representation of complex [Cu(neocuproine)(p-Me 

xantphos)]BF4 (4). The second independent molecule, anions, hydrogen atoms and co-

crystallized solvent molecules have been omitted for clarity. Displacement ellipsoids 

correspond to 50% probability.  



Chapter V: Experimental section 

 

 
222 

 

 

Figure 5. Thermal ellipsoid representation of complex [Cu(neocuproine)(p-OMe 

xantphos)]BF4  (5).Anion, hydrogen atoms and co-crystallized solvent molecules have been 

omitted for clarity. Displacement ellipsoids correspond to 50% probability.  

 

Figure 6. Thermal ellipsoid representation of complex [Cu-bis(xantphos)]BF4, homoleptic 

xantphos complex (10). Anion, hydrogen atoms and co-crystallized solvent molecules have 

been omitted for clarity. Displacement ellipsoids correspond to 50% probability. 
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Table 1. Selected bond lengths (Å) and angles (°) for complexes 1-5 with estimated standard deviations in parenthesis. 

Complex p-R Cu-P1 Cu-P2 Cu-N1 Cu-N2 N2-Cu-N1 N2-Cu-P1 N1-Cu-P1 N2-Cu-P2 N1-Cu-P2 P1-Cu-P2 

1  CF3 2.3274(9) 2.2562(9) 2.080(3) 2.106(3) 80.66(12) 98.05(8) 102.57(8) 129.74(8) 120.40(9) 117.54(3) 

2  F 2.2792(6) 2.2928(6) 2.1130(16) 2.1013(16) 80.56(6) 120.55(5) 113.58(4) 112.67(5) 115.76(4) 110.88(2) 

3  H 2.2812(16) 2.2680(16) 2.127(4) 2.081(5) 80.7(2) 115.69(14) 111.10(14) 116.29(15) 117.47(14) 112.17(6) 

4  Me 2.2957(10) 2.2670(10) 2.115(3) 2.091(3) 80.33(11) 110.42(8) 102.10(8) 120.85(8) 124.45(8) 113.61(4) 

 5  OMe 2.2623(14) 2.2964(16) 2.092(4) 2.121(5) 80.19(18) 122.35(13) 120.53(12) 107.39(13) 103.70(12) 116.38(6) 
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Table 2. Selected crystallographic data. 

 1 2 3 4 5 10 

empirical formula  C62H52BCl2CuF16N2

O2P2 

C53H40BCuF8N2

OP2 

C58H56BCl2CuF4N2O

2P2 

C58H54BCl2CuF4N2

OP2 

C59H56BCl4CuF4N2O

5P2 

C78H64BCuF4O2P4 

fw  1368.29 1009.20 1096.30 1078.28 1227.21 1307.52 

crystal description orange prism yellow platelet yellow prism yellow platelet yellow prism colorless prism 

crystal size [mm3] 0.26×0.12×0.10 0.18×0.06×0.01 0.24×0.12×0.09 0.39×0.36×0.03 0.09×0.04×0.03 0.36×0.24×0.23 

space group  P21/n  P1̅ P1̅ P1̅ P1̅ Pbcn 

a [Å] 11.3020(13) 11.7321(17) 11.3777(4) 16.5704(15) 11.9350(16) 18.4171(11) 

b [Å] 20.369(2) 12.9600(17) 15.0152(4) 18.1146(11) 14.3801(16) 18.2925(11) 

c [Å] 27.981(3) 16.476(2) 18.1082(5) 19.5207(15) 18.621(3) 18.6510(12) 

α [°]  94.2324(17) 109.384(2) 66.953(5) 109.354(10) 90 

β [°] 99.268(3) 104.489(3) 92.589(3) 89.911(8) 105.071(17) 90 

γ [°]  109.042(2) 111.203(3) 78.794(7) 96.740(14) 90 

vol [Å]3 6357.4(12) 2259.4(5) 2672.23(16) 5270.9(8) 2838.0(8) 6283.4(7) 

Z 4 2 2 4 2 4 

ρ (calc) [g/cm3] 1.429 1.486 1.362 1.359 1.436 1.382 

μ [mm-1] 0.568 0.631 0.627 0.633 0.693 0.511 

F(000) 2784 1032 1136 2232 1264 2712 

reflections collected 136743 28024 34800 128778 34650 168877 

independent reflections (Rint) 15373 (0.0356) 8223 (0.0213) 11646 (0.0355) 19250 (0.0509) 10351 (0.0542) 7599 (0.0614) 

data/restraints/parameters 15373/21/797 8223/0/617 11646/0/655 19250/0/1295 10351/0/711 7599/2/375 

GOF on F2 1.084 1.013 1.129 1.059 1.053 1.257 

R1 [I > 2σ(I)] 0.0694 0.0306 0.0891 0.0602 0.0764 0.0660 

wR2 (all data) 0.2239 0.0820 0.2689 0.1717 0.2369 0.1530 

largest diffraction peak/hole 

[e/Å3] 

2.09, -1.03 0.32, -0.26 2.27, -0.95 1.67, -0.97 1.52, -0.68 0.69/-0.57 

τ4 0.78 0.88 0.89 0.81/0.82 0.83 0.93 
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Stability experiments  

250 μL of a 0.012 M solution of triphenylphosphine oxide in CH2Cl2 was added to a 

solution of the complex (0.003 mmol) in 300 μL of deuterated CH2Cl2. Quantitative 31P 

NMR was measured each hour for a period of eight hours at room temperature.  

 

Figure 7. Stability experiment performed by quantitave 31P NMR with 

triphenylphosphine oxide as internal standard during a period of eight hours in deuterated 

dichloromethane at room temperature. Integrals: 1.00 for internal standard (I.S.) at 27.69 

ppm, 1.01 for complex 5 at -14.29 ppm, remained unchanged during the experiment. 

Representative example complex 5. 

Photocatalysis 

General procedure for the photoinduced cross-dehydrogenative coupling (CDC) reaction 

of nitromethane with tetrahydroisoquinoline: A 15 mL Pyrex tube equipped with a rubber 

septum and a magnetic stirring bar was charged with [Cu(neocuproine)(p-R 

xantphos)]BF4 complex (0.003 mmol), 2-phenyl-1,2,3,4-tetrahydroisoquinoline (41.85 

mg, 0.2 mmol), and nitromethane (10 mL). Oxygen was bubbled through the mixture for 

30 min. The tube was provided with a balloon filled with oxygen and irradiated with a 

300 W xenon lamp MAX 303 at ambient temperature (25 °C), wavelength 300-600 nm. 
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After irradiation, the solvent was removed under vacuum and the residue dissolved in 

deuterated dichloromethane using naphthalene as internal standard for quantitative 1H 

NMR analysis of the crude mixture. For kinetic profiles samples were taken by syringe. 

 

Figure 8. Set up for photocatalysis. 
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Reaction profiles of the photocatalysis (VIS region) 

 

Figure 9. Kinetic profiles for the CDC reaction using a long pass filter Cut-On 420 nm.  

CDC of 1,2,3,4-tetrahydro-2-phenyl isoquinoline with nitromethane photocatalyzed by 

[Cu(P^P)(dmp)]BF4 complexes with a long pass filter Cut-On 420 nm. Reaction 

conditions: 11 (0.2 mmol), [Cu]+ (0.003 mmol, 1.5 mol%), CH3NO2 (10 mL), O2 

atmosphere. Reaction profiles taken within 4 hours and yields were determined by 

quantitave 1H NMR of the crude reaction mixture using naphthalene as external standard. 

Conversions are based on 11. Irradiation: 300 W xenon lamp at ambient temperature (25 

°C). Wavelength: 420-600 nm. 

Emission quenching experiments 

Steady state emission spectra were recorded using a Cary Eclipse Fluorescence 

spectrophotometer (Agilent Technologies) with an excitation wavelength of 390 nm, a 

slit width of 10 nm for excitation and of 20 nm for emission and an averaging time of 0.1 

s. The studies were performed in a sealable 10x10 mm quartz glass cuvette. The oxygen 

amount was adjusted by addition of the corresponding amount of an O2-saturated 

acetonitrile solution (2.6 mM O2)
16 to the solution of 5.  
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Figure 10. Steady state emission spectra of 5 in the absence of any quencher (black), in 

the presence of 2.6 mM 11 (red) and in the presence of 2.6 mM O2 (blue). Note that in the 

presence of O2, almost all of the emission is quenched. 
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5.2 Chapter III: Modified xantphos ligands for lignin 

depolymerization in ionic liquid media 

General information 

All reactions were carried out using standard Schlenk techniques under argon atmosphere. 

All glassware was dried at 130 oC overnight prior to use. Gas chromatography was 

performed on a Thermo Scientific Trace 1300 system (split/split less injector) equipped 

with a Restek Rxi® 1-ms column (100% dimethyl polysiloxane, 30m x 0.25mm x 0.1µm 

dimensions, carrier gas – He, F.I.D. detector).  Infrared spectra (vmax) were recorded on 

a Shimadzu Fourier transform IR Affinity-1 infrared spectrophotometer using the 

MIRacleTM single reflection horizontal ATR accessory from Pike (ANSe single crystal). 

Only the characteristic peaks are quoted. Samples were directly placed on the crystal 

(ATR). 1H, 13C-{1H} and 31P-{1H} Nuclear Magnetic Resonance (NMR) spectra were 

recorded at 298 K on either Bruker Avance 400 Ultrashield or Bruker Avance 500 

Ultrashield spectrometer using the residual solvent peak for 1H and 13C-{1H} as reference. 

All NMR shifts are reported as δ in parts per million (ppm). Mass spectra were recorded 

from a Micromass LCT, which is a high performance orthogonal acceleration reflecting 

TOF mass spectrometer, coupled to a Water 2795 HPLC and Water 2996 photodiode 

array detector. A Gallenkamp melting point apparatus was used to determine melting 

points. Toluene and TMEDA were distilled from sodium, THF and diethyl ether were 

distilled from sodium/benzophenone, hexanes from sodium/benzophenone/triglyme and 

dichloromethane and acetonitrile from calcium hydride. Diethylamine was dried over 

KOH powder. Aqueous reagents were degassed by argon bubbling before use for a 

minimum period of four hours. All reagents were purchased from commercial suppliers 

and used as received, unless otherwise noted. Elemental analysis was conducted at 

London Metropolitan University using a Carlo Erba Flash 2000 Elemental Analyzer and 

at Leibniz-Institut Für Katalyse e. V. (LIKAT, Rostock). The internal standard, 1,2,4,5- 

tetramethylbenzene (Durene) used in the GC analysis for catalytic tests, was 

recrystallized from dichloromethane/ethanol. Ionic liquids were dried for two days at 80 

ºC under vacuum, degassed overnight by bubbling argon thought the liquids and  stored 

under argon. All reactions performed in this chapter require strict inert conditions. It has 

been observed that optimal results are obtained with freshly distilled solvents and that 

solvents from the SPS (Solvent purification system) can affect the yields for some 

synthetic procedures. 
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Synthesis and characterization of compounds  

2,8-dimethyl-10-phenoxaphosphino chloride, POP-Cl (42) 

 

A mixture of p-tolyl ether (5.0 g, 25.2 mmol) and phosphorus trichloride (3.3 ml, 37.8 

mmol) was prepared. To this solution, anhydrous aluminium chloride (5.1 g, 37.8 mmol) 

was added portion-wise. The mixture was heated overnight under gentle reflux. Residual 

phosphorus trichloride was then removed under vacuum.17 Toluene (10 mL) was added 

with vigorous stirring and removed under vacuum. Toluene (20 mL) was then added again 

and pyridine (5.1 mL, 63.6 mmol) added dropwise at -20 oC (ice-water/NaCl bath). After 

slow warming to room temperature the resulting Lewis-adduct precipitate was removed 

and the crude product washed with toluene (3x40 mL). The yellow-white crystalline 

product (4.5 g, 17.1 mmol, 68%) was isolated.  

1H NMR (C6D6, 400 MHz, 298 K): δ (ppm) = 7.42 (dd, J = 10.9, J = 1.1 Hz, 2H, CHAr), 

7.06 (d, J = 8.4 Hz, 2H, CHAr), 6.85 (dd, J = 8.4, J = 2.2 Hz, 2H, CHAr), 1.93 (s, 6H, CH3).  

31P-{1H} NMR (C6D6, 162 MHz, 298 K): δ (ppm) = 35.5 (s). 

1H NMR  (C6D6, 400 MHz,298 K) 
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31P-{1H} NMR (C6D6, 162 MHz, 298 K) 

2,7-bis(5-bromopentanoyl)-9,9-dimethylxanthene  (34) 

 

At -20 oC AlCl3 (10 g, 75 mmol) was added slowly to a stirred solution of 9,9-

dimethylxanthene (6.82 g, 32.5 mmol) and 5-bromovaleric chloride (10 mL, 75.10 mmol) 

in CH2Cl2 (100 mL).18 After overnight stirring, the reaction mixture was slowly poured 

into an ice–saturated solution of potassium sodium tartrate (Rochelle Salts) (80 mL) and 

extracted with CH2Cl2 (3 × 60 mL), washed with NaHCO3 (2 x 60 mL). Next, then 

NaHCO3 aqueous phase was extracted with CH2Cl2 (2 × 60 mL). Subsequently, the 

organic layer was dried over Na2SO4. The solvents were removed under vacuum and the 

resulting light green solid was washed with hexanes providing pale yellow crystals. Yield: 

16.4 g, 95%. 

1H NMR (CDCl3, 400 MHz, 298 K): δ (ppm) = 8.11 (d, J = 2.1 Hz, 2H, CHAr), 7.84 (dd, 

J = 8.5, J = 2.1 Hz, 2H, CHAr), 7.12 (d, J = 8.5 Hz, 2H, CHAr), 3.47 (t, J = 6.4 Hz, 4H, 

CH2), 3.00 (t, J = 6.9 Hz, 4H, CH2), 2.05 – 1.85 (m, 8H, CH2), 1.70 (s, 6H, CH3).  

13C-{1H} NMR (CDCl3, 100 MHz, 298 K): δ (ppm) = 198.2 (s, Cq), 153.4 (s, Cq), 132.9 

(s, Cq), 130.1 (s, Cq), 128.3 (s, CHAr), 127.3 (s, CHAr), 116.8 (s, CHAr), 37.4 (s, CH2), 34.3 

(s, Cq), 33.5 (s, CH2), 33.0 (s, CH3), 32.3 (s, CH2), 23.0 (s, CH2). Data were found to 

match the literature.18 

mp: 83-84 oC. 
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1H NMR (CDCl3, 400 MHz, 298 K) 

 

13C-{1H} NMR (CDCl3, 100 MHz, 298 K) 

2,7-bis(5-bromopentyl)-9,9-dimethylxanthene  (35) 

 

In a three neck bottom flask at -20 °C, 2,7-bis(5-bromopentanoyl)-9,9-dimethylxanthene 

(5.2 g, 9.69 mmol) was dissolved with (3.5 g, 94.15 mmol) of sodium borohydride in 

THF (90 ml), then AlCl3 anhydrous (7.0 g, 52.79 mmol) was added portion wise to the 

mixture. This step has to be handled carefully as the reaction is violent and highly 

exothermic, making sure the solvent does not evaporate during the refluxing time and that 
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addition of AlCl3 is slow. The reaction mixture was allowed to reach room temperature 

and then refluxed for 5 hours.19 The reaction mixture was cooled down and quenched 

slowly with ice-cold saturated solution of potassium sodium tartrate (Rochelle Salts) (150 

mL). The product was extracted with CH2Cl2 (3x100 mL) and EtOAc (1x50 mL), the 

organic layers were dried over Na2SO4 and filtered through 40 g of silica affording a 

colorless oil. Yield: 4.7 g, 97%.  

1H NMR (CD2Cl2, 500 MHz, 298 K): δ (ppm) = 7.21 (d, J = 2.0 Hz, 2H, CHAr), 6.99 

(dd, J = 8.2, J = 2.1 Hz, 2H, CHAr), 6.91 (d, J = 8.2 Hz, 2H, CHAr), 3.41 (t, J = 6.8 Hz, 

2H, CH2), 2.63 – 2.56 (m, 4H, CH2), 1.93 – 1.83 (m, 4H, CH2), 1.67 – 1.57 (m, 4H, CH2), 

1.60 (s, 6H, CH3), 1.51 – 1.42 (m, 4H, CH2).  

13C-{1H} NMR (CD2Cl2, 126 MHz, 298 K): δ (ppm) = 148.6 (s, Cq), 135.9 (s, Cq), 129.7 

(s, Cq), 127.2 (s, CHAr), 126.0 (s, CHAr), 116.2 (s, CHAr), 35.2 (s, CH2), 34.1 (s, CH2), 

34.0 (s, Cq), 32.8 (s, CH2), 32.2 (s, CH3), 30.9 (s, CH2), 27.8 (s, CH2). Data were found 

to match literature.18 

Anal. Calcd for C25H32Br2O: C, 59.05; H, 6.42; Found: C, 59.12; H, 6.40. 

1H NMR  (CD2Cl2, 500 MHz, 298 K) 

 

 

 

 

 



Chapter V: Experimental section 

 

 
234 

 

13C-{1H} NMR  (CD2Cl2, 126 MHz, 298 K) 

4,5-dibromo-2,7-bis(5-bromopentyl)-9,9-dimethylxanthene  (36) 

 

To a -78 °C cooled solution of 2,7-bis-5-bromopentyl-9,9-dimethylxanthene20 (3 g, 5.6 

mmol) dissolved in CH2Cl2 (25 mL) and Br2 was added slowly using a gas tight syringe 

(0.84 mL, 16.5 mmol) (The reaction was performed in a Schlenk tube and elemental 

bromine was previously cooled down to -20 ºC in an ice-water/NaCl bath in order to 

handle it easily). The reaction mixture was allowed to warm to room temperature, covered 

with aluminium foil and stirred overnight. After addition of elemental bromine the 

Schlenk vessel was closed and disconnected from the Schlenk line in order to avoid the 

leaking of bromine vapor. The excess of Br2 was then quenched with a saturated solution 

of aqueous Na2SO3, and the aqueous phase extracted with CH2Cl2 (3×50 mL) and EtOAc 

(1x80). Subsequently, the organic layer was dried over Na2SO4 and filtered through silica 

affording a white-yellow powder that was washed with pentanes. Yield: 3.85 g, 98%.  

1H NMR (CD2Cl2, 500 MHz, 298 K): δ (ppm) = 7.35 (d, J = 2.0 Hz, 2H, CHAr), 7.21 (d, 

J = 2.0 Hz, 2H, CHAr), 3.46 (t, J = 6.8 Hz, 4H, CH2), 2.68 – 2.59 (m, 4H, CH2), 1.97 – 

1.88 (m, 4H, CH2), 1.72 – 1.62 (m, 4H, CH2), 1.64 (s, 6H, CH3), 1.56 – 1.47 (m, 4H, 

CH2).  

https://www.google.com/search?q=schlenk&tbm=isch&tbo=u&source=univ&sa=X&ved=2ahUKEwiwvJmTxYjeAhVI3aQKHbHABGYQsAR6BAgFEAE
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13C-{1H} NMR (CD2Cl2, 126 MHz, 298 K): δ (ppm) = 145.4 (s, Cq), 138.7 (s, Cq), 131.6 

(s, Cq), 130.9 (s, CHAr), 125.1 (s, CHAr), 110.2 (s, Cq), 35.4 (s, Cq), 34.9 (s, CH2), 34.0 (s, 

CH2), 32.6 (s, CH2), 31.7 (s, CH3), 30.6 (s, CH2), 27.7 (s, CH2). Data were found to match 

literature.18 

HRMS (ESI) m/z: [M+H]+ Calcd for 662.90; Found 662.97. 

mp: 66-68 oC. 

1H NMR (CD2Cl2, 500 MHz, 298 K) 

13C-{1H} NMR (CD2Cl2, 126 MHz, 298 K) 
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2,7-bis(5-bromopentyl)-9,9-dimethyl-4,5-bis(2,8-dimethyl-10-phenoxaphosphino) 

xanthene (37) 

 

Any xanthene synthetic precursor has been azeotropically dried three times with toluene 

under vacuum prior to lithiation. At -71 oC (ethanol/dry ice bath), 0.4 mL of n-

butyllithium (2.5 M in hexanes, 0.98 mmol) was added dropwise to a stirred solution of 

azeotropically dried 4,5-dibromo-2,7-bis(5-bromopentyl)-9,9-dimethylxanthene (0.3 g, 

0.45 mmol) in THF (8 mL). The resulting solution was stirred for 2.5 h. Subsequently, a 

suspension of 2,8-dimethyl-10-chlorophenoxaphosphine (0.25 g, 0.98 mmol) in toluene 

(3 mL) was added dropwise. The reaction mixture was slowly warmed to room 

temperature and stirred overnight. Next the THF was removed under vacuum and the 

mixture was diluted with CH2Cl2 (15 mL) and hydrolyzed with a 10% HCl aqueous 

solution (5 mL). The organic layer was removed and additional CH2Cl2 was added to the 

aqueous layer (extraction repeated 2 times). The organic layers were combined and dried 

over Na2SO4 and filtered using a cannula. The reaction mixture was then concentrated, 

washed with hexanes and concentrated again. The crude mixture was dissolved in a 

minimum amount of toluene and then isopropanol was gently layered on top (1:1). The 

mixture was allowed to slowly diffuse to give a white solid, which was isolated by 

filtration and dried under vacuum. Yield: 0.38 g, 88%.  

1H NMR (500 MHz, CD2Cl2, 298 K): δ (ppm) = 7.93 (d, J = 6.7 Hz, 4H, CHAr), 7.21 

(dd, J = 8.3 Hz, J = 1.4 Hz, 4H, CHAr), 7.14-7.09 (m, 6H, CHAr), 6.49 (s, 2H, CHAr), 3.35 

(t, J = 7 Hz, 4H, CH2), 2.39 (t, J = 7.5 Hz, 4H, CH2), 2.35 (s, 12H, CH3), 1.77(p, J = 7 

Hz, 4H, CH2), 1.53 (s, 6H, CH3), 1.41 (p, J = 7.5 Hz, 4H, CH2), 1.33-1.24 (m, 4H, CH2). 

13C NMR (126 MHz, CD2Cl2, 298 K): δ (ppm) =154.5 (s, Cq), 150.5 (HMBC, Cq), 137.6 

(s, Cq), 135.9 (t, J = 21.8 Hz, CHAr), 133.6 (t, J = 5.3 Hz, Cq), 132.1 (s, CHAr), 131.9 (s, 

CHAr), 130.5 (s, Cq), 127.7 (s, CHAr), 118.4 (s, Cq), 117.9 (s, CHAr), 35.3 (s, CH2), 35.0 

(s, Cq), 34.5 (s, CH2), 33.2 (s, CH2), 32.7 (s, CH3), 30.7 (s, CH2), 28.0 (s, CH2), 20.9 (s, 

CH3). 1Cq missing.  
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31P NMR (202 MHz, CD2Cl2, 298 K): δ (ppm) = -71.7 (s). Data were found to match 

literature.18 

Anal. Calcd C59H54Br2O3P2: C, 66.26; H, 5.67 Found: C, 66.38; H, 5.502.  

mp: 206-207 °C. 

1H NMR (CD2Cl2, 500 MHz, 298 K) 

13C-{1H} NMR (CD2Cl2, 126 MHz, 298 K) 

 



Chapter V: Experimental section 

 

 
238 

 

31P-{1H} NMR (CD2Cl2, 202 MHz 298 K) 

2,7-bis(5-bromopentyl)-9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (43) 

 

Any xanthene synthetic precursor prior lithiation has been azeotropically dried three 

times with toluene under vacuum. At -71 oC (ethanol/dry ice bath), 2.13 mL of n-

butyllithium (2.5 M in hexanes, 5.32 mmol) was added dropwise to a stirred solution of 

azeotropically dried 4,5-dibromo-2,7-bis(5-bromopentyl)-9,9-dimethylxanthene (1.72 g, 

2.58 mmol) in THF (86 mL). The resulting solution was stirred for 2.5 h. Subsequently, 

a solution of chlorodiphenylphosphine (0.96 mL, 5.35 mmol, density for 

chlorodiphenylphosphine: 1.229 g/mL) in THF (3.71 mL) was added dropwise. The 

reaction mixture was slowly warmed to room temperature and stirred overnight. Next, the 

THF was removed under vacuum and the mixture was diluted with CH2Cl2 (50 mL) and 

hydrolyzed with a 10% HCl aqueous solution (20 mL). The organic layer was removed 

and additional CH2Cl2 was added to the aqueous layer (extraction repeated 2 times). The 

organic layers were combined, dried over Na2SO4 and filtered using a cannula. The 

reaction mixture was then concentrated, washed with hexanes and concentrated again. 

The crude mixture was dissolved in a minimum amount of chloroform and then 

isopropanol was gently layered on top (1:1). The mixture was allowed to slowly diffuse 
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to give a white solid, which was isolated by filtration and dried under vacuum. Yield: 1.4 

g, 65%. The compound was used without further purification. 

1H NMR (400 MHz, CD2Cl2, 298 K): δ (ppm) = 7.36-7.11 (m, 22H, CHAr), 6.35 (q, J = 

1.9 Hz, 2H, CHAr), 3.35 (t, J = 6.8 Hz, 4H, CH2), 2.43 (t, J = 7.5 Hz, 4H, CH2), 1.2-1.71 

(m, 4H, CH2), 1.63 (s, 6H, CH3), 1.49-1.40 (m, 4H, CH2), 1.36-1.26 (m, 4H, CH2). 

13C NMR (101 MHz, CD2Cl2, 298 K): δ (ppm) = 151.3 (t, J = 9.8 Hz, Cq), 137.9 (s, Cq), 

137.5 (t, J = 6.0 Hz, Cq), 134.4 (t, J = 12.8z Hz, CHAr), 132.3 (s, CHAr), 130.3 (s, Cq), 

128.9 (t, J = 3.5 Hz, CHAr), 128.7 (s, CHAr), 127.1 (s, CHAr), 35.50 (s, CH2), 35.03 (s, 

Cq), 34.55 (s, CH2), 33.15 (s, CH2), 32.23 (s, CH3), 30.91 (s, CH2), 27.97 (s, CH2). 1 Cq 

missing. 

31P NMR (162 MHz, CD2Cl2, 298 K): δ (ppm) = - 17.9 (s). 

Anal. Calcd C49H50Br2OP2: C, 67.13; H, 5.75 Found: C, 67.13; H, 5.599.  

mp: 111-112 °C. 

1H NMR  (CD2Cl2, 400 MHz, 298 K)
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13C-{1H} NMR (CD2Cl2, 101 MHz, 298 K) 

31P-{1H} NMR (CD2Cl2, 162 MHz 298 K) 

2,7-bis(5-(3-methylimidazolium)pentyl)-9,9-dimethyl-4,5-bis(2,8-dimethyl-10-

phenoxaphosphino)xanthene bromide (38) 

 

2,7-bis(5-bromopentyl)-9,9-dimethyl-4,5-bis(2,8-dimethyl-10-phenoxaphosphino) 

xanthene (0.104 mmol, 100 mg) and 0.7 mL of 1-methylimidazole (8.78 mmol, 720 mg, 

85 eq.) were dissolved in freshly distilled toluene (7 mL) in a Schlenk tube equipped with 
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a magnetic stirrer and a condenser. The reaction was then warmed to 80 ºC for 48 hours.21 

Formation of shiny white crystals was observed. The reaction mixture was cooled down. 

The supernatant was removed by syringe and the product extensively washed with 

toluene, diethyl ether and n-pentane. The compound was dried under vacuum at 40 ºC.  

Yield: 107 mg, 92%. A low quality single crystal was obtained (Figure 11).  

 

Figure 11. Thermal ellipsoid representation of ligand 38. Hydrogen atoms have been 

omitted for clarity. Displacement ellipsoids correspond to 20% probability. 

1H NMR (300 MHz, CDCl2, 298 K): δ (ppm) = 10.55 (s, 2H, CHAr), 7.96 (d, J = 7.2 Hz, 

4H, CHAr), 7.25-7.06 (m, 14H, CHAr) 6.49 (q, J = 2.0 Hz, 2H, CHAr), 4.20 (t, J = 7.5 Hz, 

4H, CH2), 3.99 (s, 6H, CH3), 2.39 (t, J = 7.5 Hz, 4H, CH2), 2.35 (s, 12H, CH3), 1.83 (p, J 

= 7.5 Hz, 4H, CH2), 1.51 (s, 6H, CH3), 1.46 (p, J = 7.5 Hz, 4H, CH2), 1.22 (p, J = 7.5 Hz, 

4H, CH2). 

13C NMR (126 MHz, CD2Cl2, 298 K): δ (ppm) = 154.6 (s, Cq), 151.2 (HMBC, Cq), 

138.6 (s, CHAr), 137.5 (s, Cq), 135.9 (t, J = 22.5 Hz, CHAr), 133.6 (t, J = 6.5 Hz, Cq), 132.2 

(s, CHAr), 131.8 (s, CHAr), 130.8 (s, Cq), 127.7 (s, CHAr), 123.4 (s, CHAr), 122.0 (s, CHAr), 

118.5 (t, J = 2.9 Hz, Cq), 117.9 (s, CHAr), 50.3 (s, CH2), 37.0 (s, CH3), 35.3 (s, CH2), 32.4 

(s, CH3), 30.7 (s, CH2), 30.4 (s, CH2), 30.2 (s, Cq), 25.7 (s, CH2), 20.9 (s, CH3). 1 Cq 

missing. 

31P NMR (202 MHz, CD2Cl2, 298 K): δ (ppm) = - 71.6 (s). Data were found to match 

literature.18 

Anal. Calcd C61H66N4O3P2: C, 65.13; H, 5.91; N, 4.98 Found: C, 65.18; H, 5.692; N, 

5.440.  
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HRMS (ESI) m/z: [M-2Br]2+ Calcd for C61H66N4O3P2: 482.2310; Found 482.2312. 

mp: 240-241°C. 

1H NMR (300 MHz, CDCl2, 298 K) 
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13C NMR (126 MHz, CD2Cl2, 298 K) 

31P NMR (202 MHz, CD2Cl2, 298 K) 
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2,7-bis(5-(3-methylimidazolium)pentyl)-9,9-dimethyl-4,5-bis(2,8-dimethyl-10-phenoxa 

phosphino)xanthene hexafluorophosphate (31) 

 

Potassium hexafluorophosphate (0.18 mmol, 33.86 mg, 2.1 eq.) and 2,7-Di(5-(3-

methylimidazolium)pentyl)-9,9-dimethyl-4,5-di-(2,8-dimethyl-10-phenoxaphosphino) 

xanthene bromide (0.08 mmol, 100 mg) were dissolved in MeCN (3 mL) at room 

temperature in a Schlenk tube equipped with a magnetic stirrer. The reaction mixture was 

stirred overnight. Subsequently, 12 mL of CH2Cl2 were added and the product was filtered 

through celite. The celite was washed with CH2Cl2/MeCN (1:3) 5 times and CH2Cl2/THF 

(3:1) once. The solvents were removed and the compound was dried under vacuum at 40 

ºC giving a white powder. Yield: 95 mg, 85%. Data were found to match literature.18 

1H NMR (400 MHz, CD3CN, 298 K): δ (ppm) = 8.61 (s, 2H, CHAr), 7.96 (d, J = 7.0 Hz, 

4H, CHAr), 7.34 (s, 4H, CHAr), 7.26 (dd, J = 7.8 Hz, J = 2.3 Hz, 4H, CHAr), 7.23 (d, J = 

2.3 Hz, 4H, CHAr), 7.13 (m, 2H, CHAr), 4.07 (t, J = 7.6 Hz, 4H, CH2), 3.82 (s, 6H, CH3), 

2.39-2.31 (m, 4H, CH2), 2.34 (s, 12H, CH3), 1.75 (p, J = 7.6 Hz, 4H, CH2), 1.49 (s, 6H, 

CH3), 1.40 (p, J = 7.6 Hz, 4H, CH2), 1.23-1.13 (m, 4H, CH2). Data were found to match 

the literature.18 

19F NMR (377 MHz, CD2Cl2, 298 K): δ (ppm) = -72.82 (d, J = 710.2 Hz). 

31P NMR (162 MHz, CD3CN, 298 K): δ -71.97 (s), -144.62 (sept, J = 710.2 Hz). 

HRMS (ESI) m/z: [M-2PF6]
2+ Calcd for C61H66N4O3P2: 482.2310; Found 482.2292. 

HRMS (ESI, negative ion mode) m/z: [M]- Calcd for F6P: 144.9642; Found: 144.9646. 

mp: 221-222 ºC. 
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1H NMR (400 MHz, CD3CN, 298 K) 

19F NMR (377 MHz, CD2Cl2, 298 K) 
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31P NMR (162 MHz, CD3CN, 298 K) 
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2,7-bis(5-(3-methylimidazolium)pentyl)-9,9-dimethyl-4,5-bis(2,8-dimethyl-10-phenoxa 

phosphino)xanthene trifluoromethanesulfonate (45) 

 

Potassium trifluoromethanesulfonate KOTf (0.18 mmol, 34.62 mg, 2.1 eq.) and 2,7-bis(5-

(3-methylimidazolium)pentyl)-9,9-dimethyl-4,5-di(2,8-dimethyl-10-phenoxaphosphino) 

xanthene bromide (0.08 mmol, 100 mg) were dissolved in MeCN (3 mL) at room 

temperature in a Schlenk tube equipped with a magnetic stirrer. The reaction mixture was 

stirred overnight. Subsequently, 12 mL of CH2Cl2 were added and the product was filtered 

through celite. The celite was washed with CH2Cl2/MeCN (1:3) 5 times and CH2Cl2/THF 

(3:1) once. The solvents were removed and the compound was dried under vacuum at 40 

ºC giving a white powder. Yield: 75 mg, 69%. 

1H NMR (500 MHz, CD2Cl2, 298 K): δ (ppm) = 8.46 (s, 2H, CHAr), 7.97 (d, J = 6.5 Hz, 

4H, CHAr), 7.21 (dd, J = 8.3 Hz, J = 1.8 Hz, 4H, CHAr), 7.15 (bt, J = 1.8 Hz, 2H, CHAr), 

7.13-7.09 (m, 8H, CHAr), 6.50 (s, 2H, CHAr), 4.05 (t, J = 7.4 Hz, 4H, CH2), 3.83 (s, 6H, 

CH3), 2.39 (t, J = 7.6 Hz, 4H, CH2), 2.35 (s, 12H, CH3), 1.77 (p, J = 7.8 Hz, 4H, CH2), 

1.45 (s, 12H, CH3), 1.20 (p, J = 7.8 Hz, 4H, CH2). 

13C NMR (126 MHz, CD2Cl2, 298 K): δ (ppm) = 154.7 (s, Cq), 150.8 (HMBC, Cq), 137.5 

(s, Cq), 136.3 (s, CHAr), 135.9 (t, J = 22.3 Hz, CHAr), 133.7 (t, J = 5.8 Hz, Cq), 132.2 (s, 

CHAr), 131.7 (s, CHAr), 130.8 (s, Cq), 127.6 (s, CHAr), 124.0 (s, CHAr), 122.7 (s, CHAr), 

120.4 (q, J = 321.7 Hz, Cq), 118.4 (t, J = 2.4 Hz, Cq), 117.9 (s, CHAr), 50.5 (s, CH2), 36.9 

(s, CH2), 35.2 (s, CH3), 35.0 (s, Cq), 32.2 (s, CH2), 30.6 (s, CH2), 30.2 (s, CH3), 25.6 (s, 

CH2), 20.9 (s, CH3).  

31P NMR (202 MHz, CD2Cl2, 298 K): δ (ppm) = -71.5(s). 

19F NMR (470 MHz, CD2Cl2, 298 K): δ (ppm) = -79.5 (s). 

HRMS (ESI) m/z: [M-2OTf]2+ Calcd for C61H66N4O3P2: 482.2310; Found 482.2312. 

HRMS (ESI, negative ion mode) m/z: [M]- Calcd for CF3O3S: 148.9520; Found: 

148.9523. 

mp: 177-178 °C. 



Chapter V: Experimental section 

 

 
248 

 

1H NMR (500 MHz, CD2Cl2, 298 K)

13C NMR (126 MHz, CD2Cl2, 298 K) 
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31P NMR (202 MHz, CD2Cl2, 298 K) 

19F NMR (470 MHz, CD2Cl2, 298 K) 
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2,7-bis(5-(3-methylimidazolium)pentyl)-9,9-dimethyl-4,5-bis(2,8-dimethyl-10-phenoxa 

phosphino)xanthene trifluoromethanesulfonimide (46) 

 

Sodium trifluoromethanesulfonimide (0.18 mmol, 55.77 mg, 2.1 eq.) and 2,7-bis(5-(3-

methylimidazolium)pentyl)-9,9-dimethyl-4,5-di(2,8-dimethyl-10-phenoxa phosphino) 

xanthene bromide (0.08 mmol, 100 mg) were dissolved in MeCN (3 mL) at room 

temperature in a Schlenk tube equipped with a magnetic stirrer. The reaction mixture was 

stirred overnight. Subsequently, 12 mL of CH2Cl2 was added and the product was filtered 

through celite. The celite was washed with CH2Cl2/MeCN (1:3) 5 times and CH2Cl2/THF 

(3:1) once. Solvents were removed and the compound was dried under vacuum at 40 ºC 

giving a white powder. Yield: 102 mg, 75%. 

1H NMR (500 MHz, CD2Cl2, 298 K): δ (ppm) = 8.94 (s, 2H, CHAr), 7.97 (d, J = 6.6 Hz, 

4H, CHAr), 7.21 (dd, J = 8.4 Hz, J = 1.6 Hz, 4H, CHAr), 7.17 (bt, J = 1.6 Hz, 2H, CHAr), 

7.14-7.08 (m, 8H, CHAr), 6.49 (s, 2H, CHAr), 4.07 (t, J = 7.4 Hz, 4H, CH2), 3.86 (s, 6H, 

CH3), 2.39 (t, J = 7.5 Hz, 4H, CH2), 2.34 (s, 12H, CH3), 1.78 (p, J = 7.6 Hz, 4H, CH2), 

1.50 (s, 12H, CH3), 1.45 (p, J = 7.5 Hz, 4H, CH2), 1.20 (p, J = 7.6 Hz, 4H, CH2). 

13C NMR (126 MHz, CD2Cl2, 298 K): δ (ppm) = 154.6 (s, Cq), 151.2 (t, J = 10.7 Hz, 

Cq), 137.5 (s, Cq), 137.3 (s, CHAr), 135.9 (t, J = 22.6 Hz, CHAr), 133.7 (t, J = 5.7 Hz, Cq), 

132.2 (s, CHAr), 131.7 (s, CHAr), 130.8 (s, Cq), 127.6 (s, CHAr), 127.4 (s, Cq), 123.8 (s, 

CHAr), 122.4 (s, CHAr), 118.5 (t, J = 2.1 Hz, Cq), 117.9 (s, CHAr), 50.5 (s, CH2), 36.9 (s, 

CH2), 35.2 (s, CH3), 35.0 (s, Cq), 32.3 (s, CH2), 30.7 (s, CH2), 30.2 (s, CH3), 25.7 (s, CH2), 

20.9 (s, CH3). 1 Cq missing. 

31P NMR (202 MHz, CD2Cl2, 298 K): δ (ppm) = -71.6 (s). 

19F NMR (470 MHz, CD2Cl2, 298 K): δ (ppm) = -79.1 (s). 

HRMS (ESI) m/z: [M-2NTf2]
2+ Calcd for C61H66N4O3P2: 482.2310; Found 482.2290. 

HRMS (ESI, negative ion mode) m/z: [M]- Calcd for C2F6NO4S2: 279.9173; Found: 

279.9284. 

mp: >350 °C. 
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1H NMR (500 MHz, CD2Cl2, 298 K) 

13C NMR (126 MHz, CD2Cl2, 298 K) 
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31P NMR (202 MHz, CD2Cl2, 298 K) 

19F NMR (470 MHz, CD2Cl2, 298 K) 
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2,7-bis(5-(3-methylimidazolium)pentyl)-9,9-dimethyl-4,5-bis(diphenylphosphino) 

xanthene bromide (44) 

 

2,7-bis(5-bromopentyl)-9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (0.22 mmol, 

200 mg) and 4.63 mL of 1-methylimidazole (58.17 mmol, 4.7 g, 255 eq.) were dissolved 

in freshly distilled toluene (14 mL) in a Schlenk tube equipped with a magnetic stirrer and 

a condenser. The reaction mixture was then warmed to 100 ºC for 8 days. Formation of 

an insoluble pale pink oil was observed. The reaction mixture was cooled down. The 

supernatant was removed by syringe and the product extensively washed with toluene, 

diethyl ether and n-pentane. The product was stirred overnight in 70 mL of diethyl ether 

with good stirring, washed again three times with 20 mL of this solvent. The compound 

was washed three times with n-pentane. Finally, the compound was dried under vacuum 

at 40 ºC.  The compound was washed with hexanes and dried under vacuum at 40 ºC 

giving a white powder.  Yield: 202 mg, 84%. The compound was used without further 

purification. 1-methylimidazole has to be previously distilled under inert conditions. If 

the compound is still pink extraction of impurities can be achieved with a mixture 

THF/Isopropanol (1:1).  

1H NMR (300 MHz, CD2Cl2, 298 K): δ (ppm) = 10.63 (s, 2H, CHAr), 7.32 -7.07 (m. 

26H, CHAr), 6.33 (q, J = 1.9 Hz, 2H, CHAr), 4.21 (t, J = 7.5 Hz, 4H, CH2), 4.01 (s, 6H, 

CH3), 2.43 (t, J = 7.5 Hz, 4H, CH2), 1.83 (p, J = 7.5 Hz, 4H, CH2), 1.62 (s, 6H, CH3), 

1.48 (p, J = 7.5 Hz, 4H, CH2), 1.34-1.16 (m, 4H, CH2). 

13C NMR (126 MHz, CD2Cl2, 298 K): δ (ppm) = 151.6 (t, J = 10.4 Hz, Cq), 138.6 (s, 

CHAr), 137.9 (t, J = 6.5 Hz, Cq), 137.3 (s, Cq), 134.4 (t, J = 9.1 Hz, CHAr), 132.2 (s, CHAr), 

130.6 (s, Cq), 128.9 (s, CHAr), 128.7 (t, J = 3.4 Hz, CHAr), 127.1 (s, CHAr), 125.7 (t, J = 

9.7 Hz, Cq), 123.4 (s, CHAr), 122.0 (s, CHAr), 50.4 (s, CH2), 37.7 (HMBC, Cq), 37.0 (s, 

CH3), 35.4 (s, CH2), 31.9 (s, CH3), 31.1 (s, CH2), 30.4 (s, CH2), 25.8 (s, CH2). 

31P NMR (202 MHz, CD2Cl2, 298 K): δ (ppm) = -18.3 (s). 

HRMS (ESI) m/z: [M-2Br]2+ Calcd for C57H62N4OP2: 440.2204; Found 440.2193. 

mp: 86-87 ºC. 
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1H NMR (300 MHz, CD2Cl2, 298 K 

13C NMR (126 MHz, CD2Cl2, 298 K) 
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31P NMR (202 MHz, CD2Cl2, 298 K) 
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2,7-bis(5-(3-methylimidazolium)pentyl)-9,9-dimethyl-4,5-bis(2,8-dimethyl-10-phenoxa 

phosphino)xanthene trifluoromethanesulfonate (47) 

 

Potassium trifluoromethanesulfonate KOTf (0.20 mmol, 37.82 mg, 2.1 eq.) and 2,7-bis(5-

(3-methylimidazolium)pentyl)-9,9-dimethyl-4,5-bis(diphenylphosphino) xanthene 

bromide (0.09 mmol, 100 mg) were dissolved in MeCN (3 mL) at room temperature in a 

Schlenk tube equipped with a magnetic stirrer. The reaction mixture was stirred 

overnight. Subsequently, 12 mL of CH2Cl2 was added and the product was filtered 

through celite. The celite was washed with CH2Cl2/MeCN (1:3) 5 times and CH2Cl2/THF 

(3:1) once. Solvents were removed and the compound was dried under vacuum at 40 ºC 

giving a white powder. Yield: 70 mg, 64%. 

1H NMR (400 MHz, CD3OD, 298 K): δ (ppm) = 7.55 (d, J = 1.8 Hz, 2H, CHAr), 7.52 

(d, J = 1.8 Hz, 2H, CHAr), 7.32-7.21 (m, 14H, CHAr), 7.15-7.09 (m, 8H, CHAr), 6.29 (q, J 

= 1.8 Hz, 2H, CHAr), 4.12 (t, J = 8.0 Hz, 4H, CH2), 3.88 (s, 6H, CH3), 2.44 (t, J = 6.8 Hz, 

4H, CH2), 1.80 (p, J = 7.6 Hz, 4H, CH2), 1.62 (s, 6H, CH3), 1.48 (p, J = 8.2 Hz, 4H, CH2), 

1.29-1.17 (m, 4H, CH2). 

13C NMR (101 MHz, CD3OD, 298 K): δ (ppm) = 152.2 (t, J = 10.1 Hz, Cq), 138.7 (t, J 

= 6.1 Hz, Cq), 138.2 (s, Cq), 134.9 (t, J = 10.4 Hz, CHAr), 132.7 (s, CHAr), 131.3 (s, CHAr), 

129.5 (s, Cq), 129.3 (t, J = 3.6 Hz, CHAr), 127.6 (s, CHAr), 126.6 (t, J = 10.4 Hz, Cq), 124.9 

(s, CHAr), 123.4 (s, CHAr), 120.2 (s, CHAr), 50.6 (s, CH2), 36.4 (s, CH3), 36.0 (s, CH2), 

35.7 (s, Cq), 32.0 (s, CH3), 31.8 (s, CH2), 30.8 (s, CH2), 26.5 (s, CH2). 1 Cq missing. 

31P NMR (162 MHz, CD3OD, 298 K): δ (ppm) = -18.1 (s). 

19F NMR (282 MHz, CD3OD, 298 K): δ (ppm) = -80.1 (s). 

Anal. Calcd: C, 60.09; H, 5.30; N, 4.75 Found: C, 60.60; H, 5.842; N, 5.038.  

HRMS (ESI) m/z: [M-2OTf]2+ Calcd for C57H62N4OP2: 440.2204; Found 440.2198. 

HRMS (ESI, negative ion mode) m/z: [M]- Calcd for CF3O3S: 148.9520; Found: 

148.9520. 
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1H NMR (400 MHz, CD3OD, 298 K) 

13C NMR (101 MHz, CD3OD, 298 K) 
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31P NMR (162 MHz, CD3OD, 298 K) 

 

19F NMR (282 MHz, CD3OD, 298 K) 

4,6-bis(diphenylphosphino)-10-propyl-methylimidazolium-phenoxazine chloride. 

Imidazolium-tagged nixantphos ligand (32). 

 

This compound was synthesized according to the procedure reported by Cole-Hamilton 

and co-workers. Data were found to match literature.21  

1H NMR (300 MHz, CD3OD, 298 K): δ (ppm) = 7.55 (d, J = 1.8 Hz, 1H, CHAr), 7.35-

7.25 (m, 12H, CHAr), 7.22-7.12 (m, 9H, CHAr), 6.75 (t, J = 7.8 Hz, 2H, CHAr), 6.73 (d, J 

= 7.8 Hz, 2H, CHAr), 6.00 (dq, J = 7.5 Hz, J = 1.6 Hz, 2H, CHAr), 4.35 (t, J = 6.6 Hz, 2H, 

CH2), 3.81 (t, J = 6.6 Hz, 2H, CH2), 3.66 (s, 3H, CH3), 2.33 (q, J = 6.6 Hz, 2H, CH2). 
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31P NMR (122 MHz, CD3OD, 298 K): δ (ppm) = -20.0 (s). 

1H NMR (300 MHz, CD3OD, 298 K) 

31P NMR (122 MHz, CD3OD, 298 K) 

Model compound 

2-phenoxy-1-phenylethan-1-one (I) 

 

A round bottom flask equipped with a reflux condenser was charged with 2-

bromoacetophenone (20.12 g, 100 mmol), potassium carbonate (20.70 g, 150 mmol), 
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phenol (11.80 g, 125 mmol), and acetone (45 ml, 0.6 mol). The resulting suspension was 

stirred and heated to reflux for four hours, after which it was filtered through celite and 

solvents were removed under vacuum. The resulting solid was crystallized from diethyl 

ether, filtered and dried under vacuum (16.54 g, 78 mmol, 78%). Data were found to 

match the literature.22 

1H NMR (500 MHz, CDCl3, 298 K): δ (ppm) = 8.01 (d, J = 7.2 Hz, 2H, CHAr), 7.62 (t, 

J = 7.4 Hz, 1H, CHAr), 7.50 (t, J = 7.8 Hz, 2H, CHAr), 7.30 (t, J = 7.5 Hz, 2H, CHAr), 6.99 

(t, J = 7.8 Hz, 1H, CHAr), 6.96 (d, J = 7.8 Hz, 2H, CHAr), 5.28 (s, 2H, CH2). Data were 

found to match the literature.22 

mp: 71-72 °C. 

1H NMR (CDCl3, 500 MHz, 298 K) 

2-Phenoxy-1-phenylethan-1-ol (19) 

 

A sample of the intermediate ketone 2-phenoxy-1-phenylethan-1-one (4.50 g, 21 mmol) 

was dissolved in a solution with a 4:1 ratio of tetrahydrofuran (60 ml) and water (15 mL). 
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Sodium borohydride (1.60 g, 42 mmol) was added portion-wise with stirring. The 

reaction mixture was then stirred at room temperature for four hours, after which the 

mixture was quenched using saturated aqueous ammonium chloride (10 mL) and diluted 

with water (50 mL). The aqueous phase was extracted with diethyl ether (3x30 mL). The 

combined organic extracts were washed twice with brine (10 mL) and dried over 

magnesium sulfate. After removal of the drying agent by filtration the solvents were 

removed under vacuum providing a white crystalline product (3.91 g, 18 mmol, 87%).  

1H NMR (500 MHz, CDCl3, 298 K): δ (ppm) = 7.47 (d, 3JH-H = 8.5 Hz, 2H, CHAr), 7.44-

7.39 (m, 2H, CHAr), 7.38-7.33 (m, 1H, CHAr), 7.32-7.28 (m, 2H, CHAr), 6.99 (t, J = 7.4 

Hz, 1H, CHAr), 6.94 (d, J = 8.7 Hz, 2H, CHAr), 5.14 (dt, J = 8.8 Hz, J = 2.4 Hz, 1H, CH), 

4.12 (dd, J = 9.6 Hz, J = 3.1 Hz, 1H, CH2), 4.02 (t, J = 9.2 Hz, 1H, CH2), 2.86 (d, J = 2.5 

Hz, 1H, OH). Data were found to match the literature.22 

mp: 60-61 °C. 

1H NMR  (CDCl3, 500 MHz, 298 K) 

 

Catalytic experiments 

General procedure for catalytic C-O cleavage of 2-Phenoxy-1-phenylethan-1-ol 

0.25 mmol of 2-phenoxy-1-phenylethan-1-ol with 10 mol% catalyst loading (0.025 mmol 

of RuH2CO(PPh3)3, 0.025 mmol of xantphos ligand and 0.125 mmol of 1,2,4,5-

tetramethylbenzene as the internal standard were dissolved in 2 mL of the selected ionic 

liquid in a closed microwave vial equipped with a magnetic stirrer. The reaction mixture 

was sealed and heated to 150 °C for 45 minutes after which the reaction mixture was 
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cooled to room temperature, washed with 5 mL of toluene, 5 mL of diethyl ether and 5 

mL of ethyl acetate. The yield was determined by gas chromatography. Results presented 

are the averages of reactions carried out in triplicate. 
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5.3 Chapter IV: Photocatalytic CO2 reduction in ionic liquid 

media 

General information 

For the synthesis of ligands and complexes all reactions were carried out using standard 

Schlenk techniques under argon atmosphere. All glassware was dried at 130 oC overnight 

and cooled under vacuum prior to use. 1H, 13C{1H} and 31P{1H} Nuclear Magnetic 

Resonance (NMR) spectra were recorded at 298 K on Bruker Avance 300, Avance II 400 

and Bruker Avance II 500 spectrometers using the residual solvent peak for 1H and 

13C{1H} as reference. All NMR shifts are reported as δ in parts per million (ppm). A 

Gallenkamp melting point apparatus was used to determinate melting points. Toluene and 

TMEDA were distilled from sodium, THF and diethyl ether were distilled from 

sodium/benzophenone, hexanes from sodium/benzophenone/triglyme and 

dichloromethane and acetonitrile from calcium hydride. Diethylamine was dried over 

KOH powder. Aqueous reagents were degassed by a stream of argon before use for a 

minimum period of four hours. All reagents were purchased from commercial suppliers 

and used as received, unless otherwise noted. Mass spectrometry was carried out at 

National Mass Spectrometry Facility (NMSF-Swansea) and Leibniz Institute for 

Catalysis – LIKAT. Elemental analysis was carried out in the facilities at London 

Metropolitan University and Leibniz Institute for Catalysis – LIKAT. All reactions 

performed in this chapter require strict inert conditions. 

Synthesis of ligands and complexes 

4,5-bis(2,8-dimethyl-10-phenoxaphosphino)-9,9-dimethylxanthene (POP-xantphos) 

(I) 

 

Any xanthene synthetic precursor prior lithiation has been azeotropically dried three 

times with toluene under vacuum. 9,9-Dimethylxanthene (150 mg, 0.25 mmol) was dried 

azeotropically with dry toluene before being dissolved in diethyl ether (8 mL) and cooled 

to -78 °C. TMEDA (1 mL, 0.65 mmol) and n-BuLi ((2.5 M in hexanes, 0.29 mL, 0.65 

mmol) were added dropwise to give a pale yellow solution. The reaction mixture was 

stirred overnight, allowing it to warm to room temperature. The reaction mixture was then 

cooled to -78 °C and a solution of 2,8-dimethyl-10-chloro-penoxaphosphine (POP-Cl) 
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(170.7 mg, 0.65 mmol) in 8 mL of toluene was added dropwise. The reaction mixture was 

stirred overnight, while slowly warming to room temperature. Solvents were removed 

under vacuum and then the reaction mixture was dissolved in 30 mL of CH2Cl2. 

Subsequently, the reaction mixture was hydrolyzed with 10% HCl (aq) (10 mL). The 

organic layer was removed and additional CH2Cl2 was added to the aqueous layer 

(extraction repeated 4 times). The organic layers were combined and dried over Na2SO4. 

The crude mixture was then concentrated, washed with hexanes and concentrated again. 

The crude mixture was dissolved in a minimum amount of toluene and then isopropanol 

was gently layered on top (1:1). The mixture was allowed to slowly diffuse overnight to 

give a white solid, which was filtered and dried under vacuum (150 mg, 89%). 

1H NMR (400 MHz, CD2Cl2, 298 K): δ (ppm) = 7.99-7.94 (m, 4H, CHAr), 7.32 (dd, J = 

7.8 Hz, J = 1.6 Hz, 2H, CHAr), 7.22 (ddd, J = 8.4 Hz, J = 2.3 Hz, J = 0.6 Hz, 4H, CHAr), 

7.12 (d, J = 8.4 Hz, 4H, CHAr), 6.90 (t, J = 7.6 Hz, 2H, CHAr), 6.72(ddd, J = 7.6 Hz, J = 

2.0 Hz, J = 1.6 Hz, 2H, CHAr), 2.35 (s, 12H, CH3), 1.54 (s, 6H, CH3). 

13C NMR (101 MHz, CD2Cl2, 298 K): δ (ppm) = 154.5 (s, Cq), 152.6 (HMBC, Cq), 135.9 

(t, J = 21.8 Hz, CHAr), 133.6 (t, J = 6.3 Hz, Cq), 132.3 (s, CHAr), 132.2 (s, CHAr), 130.8 

(s, Cq), 127.7 (s, CHAr), 124.1 (s, CHAr), 118.4 (t, J = 2.6 Hz, Cq), 117.9 (s, CHAr), 34.9 

(s, Cq), 32.7 (s, CH3), 20.9 (s, CH3). 1 Cq missing. 

31P NMR (162 MHz, CD2Cl2, 298 K): δ (ppm) = -72.2 (s). Data were found to match 

literature.23 

HRMS (ESI) m/z: [M+H]+ Calcd for C43H36OP2: 663.2218; Found 663.2240. 

mp: 286-287 °C. 
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1H NMR (400 MHz, CD2Cl2, 298 K)  

13C NMR (101 MHz, CD2Cl2, 298 K)
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31P NMR (162 MHz, CD2Cl2, 298 K) 

[Cu(bathocuproine)( 4,5-bis((2,8-dimethyl-10-phenoxa phosphino)-9,9-

dimethylxanthene)]hexaflurophosphate (2) 

 

[Cu(MeCN)4]PF6 (0.15 mmol, 56.2 mg) and POP-xantphos (0.15 mmol, 100 mg) were 

dissolved in CH2Cl2 (10 mL) at room temperature in a Schlenk flask equipped with a 

magnetic stirrer. The reaction mixture was refluxed overnight resulting in a colorless 

solution. Subsequently, the reaction mixture was cooled down to room temperature and a 

solution of bathocuproine (0.15 mmol, 54.3 mg) in CH2Cl2 (5 mL) was added dropwise. 

The reaction turned red and it was refluxed until the solution turned fluorescent yellow 

(two hours). The crude mixture was filtered through celite under inert atmosphere. The 

solvents were evaporated and the complex was redissolved in 2 mL of CH2Cl2 and 

precipitated by the addition of 25 mL of n-hexane. The fluorescent yellow precipitate was 

washed with n-hexane. The product was recrystallized by slow diffusion of n-hexane in 

a saturated solution of the complex in CH2Cl2. The fluorescent yellow crystals were 

filtered, washed with pentane and dried under vacuum overnight obtaining a fluorescent 

yellow bright powder. Yield: 160 mg, 84%.  
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1H NMR (400 MHz, CD2Cl2, 298 K): δ (ppm) = 7.79 (s, 2H, CHAr), 7.71 (dd, J = 7.8 

Hz, J = 1.4 Hz, 4H, CHAr), 7.64-7.57 (m, 6H, CHAr), 7.54-7.49 (m, 6H, CHAr), 7.23 (t, J 

= 7.8 Hz, 4H, CHAr), 7.06 (ddd, J = 8.4 Hz, J = 2.3 Hz, J = 0.6 Hz, 4H, CHAr), 6.98-6.87 

(m, 10H, CHAr), 2.25 (s, 6H, CH3), 1.98 (s, 12H, CH3), 1.78 (s, 6H, CH3). 

13C NMR (101 MHz, CD2Cl2, 298 K): δ (ppm) = 158.5 (s, Cq), 156.1 (HMBC, Cq), 153.7 

(s, Cq), 150.9 (s, Cq), 144.2 (HMBC, Cq), 137.0 (s, Cq), 134.9 (t, J = 2.6 Hz, Cq), 134.3 (t, 

J = 5.3 Hz, Cq), 132.9 (s, CHAr), 132.1 (t, J = 8.0 Hz, CHAr), 131.0(s, CHAr), 130.0 (s, 

CHAr), 129.9 (s, Cq), 129.5 (s, CHAr), 128.9 (s, CHAr), 126.0 (s, CHAr), 125.9 (t, J = 12.0 

Hz, CHAr), 124.0 (s, CHAr), 121.4 (HMBC, Cq), 118.3 (s, CHAr), 113.8 (t, J = 17.8 Hz, 

Cq), 36.8 (HMBC, Cq), 29.0 (s, CH3), 27.3 (s, CH3), 20.9 (s, CH3). 

31P NMR (162 MHz, CD2Cl2, 298 K): δ (ppm) = -53.46 (br s), -144.53 (sept) 

19F NMR (282 MHz, CD2Cl2, 298 K): δ (ppm) = -73.64 (d, J = 710.1 Hz) 

Anal. Calcd for C69H56O3N2P2Cu: C, 67.29; H, 4.58; N, 2.27; Found: C, 67.26; H, 

4.681; N, 2.049.  

HRMS (ESI) m/z: [M-2PF6]
+ Calcd for C69H56O3N2P2Cu: 1085.3068; Found 1085.3063. 

ATR-IR ν (cm-1): 1617.1 (vw), 1567.8 (vw), 1488.3 (vw), 1466.5 (w), 1403.2 (m), 

1308.0 (vw), 1268.6 (w), 1219.9 (w), 1139.0 (vw), 1073.7 (vw), 903.9 (vw), 874.8 (vw), 

839.7 (s), 776.6 (m), 752.5 (w), 731.9 (w), 704.5 (m), 632.3 (w), 610.2 (vw), 556.5 (m), 

514.3 (w), 500.2 (m), 486.7 (m), 462.5 (w), 423.5 (w). 

mp: 305 °C (dec.). 
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1H NMR (400 MHz, CD2Cl2, 298K) 

13C NMR (101 MHz, CD2Cl2, 298K) 
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31P NMR (162 MHz, CD2Cl2, 298K)

19F NMR (282 MHz, CD2Cl2, 298K) 
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[Cu(bathocuproine)(2,7-bis(5-(3-methylimidazolium)pentyl)-9,9-dimethyl-4,5-bis(2,8-

dimethyl-10-phenoxa phosphino)xanthene)] hexafluorophosphate (3) 

 

[Cu(MeCN)4]PF6 (0.04 mmol, 17.7 mg) and imidazolium-tagged xantPOP (31) (Section 

5.2) (0.04 mmol, 60 mg) were dissolved in CH2Cl2 (10 mL) at room temperature in a 

Schlenk flask equipped with a magnetic stirrer. The reaction mixture was refluxed 

overnight resulting in a colorless solution. Subsequently, the reaction mixture was cooled 

down to room temperature and a solution of bathocuproine (0.04 mmol, 17.2 mg) in 

CH2Cl2 (3 mL) was added dropwise. The reaction turned red and then it was refluxed 

until the solution turned dark yellow (two hours). The crude mixture was filtered through 

celite under inert atmosphere, the celite was extensively washed with CH2Cl2. The 

solvents were evaporated and the complex was dissolved in 2 mL of CH2Cl2 (suspension) 

and precipitated by the addition of 25 mL of cold n-pentane. The dark yellow precipitate 

was filtered and washed with cold n-pentane. The product was recrystallized by slow 

diffusion of n-hexane in a saturated solution of the complex in CH2Cl2. The fluorescent 

yellow crystals were washed with pentane, filtered and dried under vacuum overnight 

providing a fluorescent yellow bright powder. Yield: 50 mg, 56%.  

31P NMR (162 MHz, CD2Cl2, 298 K): δ (ppm) = -52.90 (br s), -144.50 (m) 

HRMS (ESI) m/z: [M-3PF6]
3+ Calcd for C87H83O3N6P2Cu: 462.5179; Found: 462.5150. 

HRMS (ESI, negative ion mode) m/z: [M]- Calcd for F6P: 144.9642; Found: 144.9642. 

ATR-IR ν (cm-1): 1569.7 (w), 1487.3 (w), 1465.4 (m), 1424.9 (m), 1387.1 (w), 1267.7 

(m), 1227.4 (m), 1018.7 (m), 836.1 (s), 730.5 (s), 622.4 (m), 556.1(m), 480.2 (s). 

mp: 332 °C (dec.). 



Chapter V: Experimental section 

 

 
271 

 

31P NMR (162 MHz, CD2Cl2, 298 K) 

 

IR spectra of complexes  

[Cu(bathocuproine)( 4,5-bis((2,8-dimethyl-10-phenoxa phosphino)-9,9-

dimethylxanthene)]hexaflurophosphate (2) 
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[Cu(bathocuproine)(2,7-bis(5-(3-methylimidazolium)pentyl)-9,9-dimethyl-4,5-bis(2,8-

dimethyl-10-phenoxa phosphino)xanthene)] hexafluorophosphate  (3)

 

 

Photocatalytic experiments 

General considerations 

Anhydrous 1-methylpyrrolidin-2-one (NMP) was obtained from Sigma-Aldrich or 

AcrosOrganics (Extra Dried by storage over Molecular Sieve 4 Å), degassed and stored 

over activated molecular sieves (3 or 4 Å). Triethanolamine (TEOA) was obtained from 

Sigma-Aldrich, degassed and stored under argon. [Cu(CH3CN)4]PF6, bathocuproine and 

xantphos were obtained from TCI. Carbon dioxide was obtained from Linde (4.8 grade). 

Ionic liquids were purchased from Iolitec and were dried for two days at 80 ºC under 

vacuum, degassed overnight by bubbling argon steam, stored under argon. All 

commercially available compounds were used without further purification. Compounds 

Knölker complex24, [Cu(bathocuproine)(xantphos)]PF6
25 and BIH26 were prepared 

according to literature procedures. These compounds were provided for the project by the 

group of Professor Matthias Beller/Henrick Junge.  

Photocatalytic reactions were performed using LumatecSuperlite 400 Hg-lamps. The 

irradiation intensity of the lamps was adjusted prior to the reaction using a Laserpoint 

Plus power meter. All procedures described here require strict inert conditions. 
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Data analysis 

The headspace of the photocatalytic reactions was analyzed via gas chromatography 

using the following GC systems: 

1) Agilent Technologies 7890A, HP Plot Q / FID – hydrocarbons, Carboxen / TCD – Ar 

carrier gas. 

2) Agilent Technologies 6890N, HP Plot Q / FID – hydrocarbons, Carboxen / TCD – He 

carrier gas. 

3) Agilent Technologies 6890N, Carboxen 1000 /TCD / Methanizer / FID – He carrier 

gas. 

For gas chromatographic analysis, 5 mL of the sample were injected under isobaric 

conditions.  

NMR spectra were recorded on Bruker Avance 300 and Bruker Avance 400 

spectrometers. 1H NMR spectra were referenced using the solvent residual signal and 

converting the spectra to the TMS scale.27 31P NMR shifts are given relative to 85% 

H3PO4 (external standard). Formate concentration in the reaction mixture of the 

photocatalytic reactions was determined by 1H NMR, using benzene (10 µL) as an 

internal standard.  

General procedure for photocatalytic CO2 reduction reactions 

Photocatalytic reactions in NMP/TEOA mixture were performed according to a literature 

procedure.5 Photocatalytic reactions in the presence of ionic liquid were conducted using 

modification of a literature procedure.28 

Three-necked, double-walled photoreactors (total volume of 70-80 mL) were equipped 

with a gas inlet tube, a Teflon-coated stirring bar, and a Teflon-coated rubber septum. 

The reactors were connected to a Lauda thermostat set to 25 °C. Three vacuum-argon 

cycles, followed by three vacuum-CO2 cycles were performed for preparation of the CO2 

atmosphere. BIH (150 mg), TEOA (1.5 mL), the copper complex dissolved/suspended in 

ionic liquid (5 mL), and the Fe catalyst dissolved/suspended in ionic liquid (1 mL) were 

consecutively added to the reactors. It is important to clarify that all compounds were 

dissolved in ionic liquids by sonicating each mixture for 20 minutes prior to addition to 

the reactor. The mixture was stirred and purged with CO2 for 30 min. The valve 
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connecting the reactor and the septum was closed and the gas inlet tube replaced by a 

glass stopper. The reaction mixture was illuminated through a plain borosilicate-glass 

wall at 400-700 nm (1.50 W) for 5 h. Gas samples were taken via the septum and analyzed 

by gas chromatography. 1H NMR spectroscopy was applied for analysis of the liquid 

phase. The amount of evolved CO and H2 was calculated via the van der Waals molar 

volume for H2 (24.48068 mol/L) and CO (24.44323 mol/L) at 25 °C and 101325 Pa using 

the concentrations of the gas phase determined by GC. TONs for H2 and CO were 

calculated using equation 1. 

 TON(gas) =
𝑛(gas)

𝑛(Fe complex)
 (1) 

Photocatalytic CO2 reduction using the in situ CuPS system 

The reaction was performed according to a general procedure for photocatalytic CO2 

reductions.5 Instead of the molecular CuPS, solutions/suspensions of Cu(CH3CN)4PF6 in 

IL (0.62 mL), xantphos ligand in IL (2.5 mL), bathocuproine in IL (2.0 mL), and Knölker 

complex1 in IL (1.0 mL) were consecutively added.  

High-purity conditions 

In the high-purity photocatalytic CO2 reduction set up used for these experiments (Figures 

11 and 12), stainless steel components suitable for ultra-high vacuum applications were 

used including the gas carrying piping system. Every connection was realized using VCR 

fittings to ensure a grease-free sealing of all interconnecting parts. Two mass flow 

controllers (MFC) were used to feed the gas to the reaction chamber. A 200 W Hg/Xe 

lamp (Newport Oriel) emitting UV and visible light was used as the irradiation source. A 

water-based filter is used for IR radiation removal from the lamp to avoid sample heating. 

In this work, a 420 nm cut-off filter was also used to prevent structural damage to the 

tested samples. The product analysis was performed using a Shimadzu Tracera GC 2010 

plus gas chromatograph (GC) equipped with a barrier ionization discharge detector (BID) 

and a flame ionization detector (FID). 

The sample (1 mL) containing Knölker complex (1 μmol), [Cu(dmp)(xantPOP)]PF6 

(5 μmol), BIH (150 mg) and TEOA was introduced in the reactor using a quartz plate 

under continuous argon flow (10 mL min-1) to displace oxygen from the reaction 

chamber. The sample was irradiated (under constant stirring) using a 200 W Hg/Xe lamp. 

In a typical experiment, the reaction chamber is filled up to a final pressure of 1500 mbar 
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with the desired gas mixture (in this case argon or CO2). The sample is irradiated and a 

chromatogram is collected every 45 min for a total time of six hours.  

Baseline measurements 

To ensure that the sample remains intact under the reaction conditions and that no 

products are formed without the presence of CO2, baseline measurements took place 

under argon atmosphere. Under the regular irradiation conditions (200 W Hg/Xe lamp 

including UV and visible wavelengths) peaks were identified by the FID detector 

indicating that the material decomposed or changed structurally. As the UV part of the 

irradiation spectrum might influence the sample, a 420 nm cut-off filter was used. With 

use of the cut-off filter and running the experiment under argon the sample kept its 

original color.  

CO2 reduction to CO 

The reaction chamber was flushed with CO2 for one hour before it was filled up to final 

pressure of 1500 mbar. The sample was irradiated with the 200 W Hg/Xe lamp equipped 

with a 420 nm cut-off filter and a chromatogram was collected every 45 min for a total of 

six hours. 
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Figure 11. High-purity conditions set up. Reaction chamber and gas chromatograph (GC) 

equipped with a barrier ionization discharge detector (BID) and a flame ionization 

detector (FID). 
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Figure 12. High-purity conditions set up. Reaction chamber. 
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