Evaluation of the Tindouf Basin Region in Southern Morocco as an Analog Site for Soil Geochemistry on Noachian Mars

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Astrobiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>AST-2016-1557.R3</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Research Articles (Papers)</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>29-Mar-2017</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Oberlin, Elizabeth; Tufts University, Dept. of Chemistry Claire, Mark; University of St. Andrews, Dept. of Earth and Environmental Sciences Kounaves, Samuel; Tufts University, Dept. of Chemistry</td>
</tr>
<tr>
<td>Keyword:</td>
<td>Mars, Analog, Atacama Desert, Mars Meteorites, Planetary Environments</td>
</tr>
<tr>
<td>Manuscript Keywords (Search Terms):</td>
<td>Mars analogs, Antarctica, Morocco, oxyanions, nitrate</td>
</tr>
</tbody>
</table>
Evaluation of the Tindouf Basin Region in Southern Morocco as an Analog Site for Soil Geochemistry on Noachian Mars

Elizabeth A. Oberlin,1 Mark W. Claire,2,3,4 and Samuel P. Kounaves1,5

1 Department of Chemistry, Tufts University, Medford, Massachusetts
2 School of Earth & Environmental Sciences, University of St Andrews, UK
3 Centre for Exoplanet Science, University of St Andrews, UK
4 Blue Marble Space Institute of Science, 1001 4th Ave, Seattle, WA USA
5 Department of Earth Science & Engineering, Imperial College London, UK

Address correspondence to:

Samuel Kounaves
Department of Chemistry
Tufts University
Medford, MA 02155
E-mail: samuel.kounaves@tufts.edu

Running Title: Tindouf Basin Morocco as a Mars Analog
Abstract

Locations on Earth which provide insights into processes that may be occurring or may have occurred throughout martian history are often broadly deemed “Mars analog environments.” As no single locale can precisely represent a past or present martian environment, it is important to focus on characterization of terrestrial processes which produce analogous features to those observed in specific regions of Mars, or if possible specific time periods during Martian history. Here, we report on the preservation of ionic species in soil samples collected from the Tindouf region of Morocco and compare them with the McMurdo Dry Valleys of Antarctica, the Atacama Desert in Chile, the Mars meteorite EETA79001, and the in-situ Mars analyses from the Phoenix Wet Chemistry Laboratory (WCL). The Morocco samples show the greatest similarity with those from Victoria Valley (VV), Beacon Valley (BV) and the Atacama, while being consistently depleted compared to University Valley (UV) and enriched compared to Taylor Valley (TV). The NO$_3$/Cl ratios are most similar to VV and Atacama while the SO$_4$/Cl ratios are similar to those from BV, VV, and the Atacama. While perchlorate in the Morocco samples are typically lower than other analog sites, conditions in the region are sufficiently arid to retain oxychlorines at detectable levels. Our results suggest that the Tindouf Basin in Morocco can serve as a suitable analog for the soil geochemistry and subsequent aridification of the Noachian epoch on Mars.

Keywords or phrases:
Mars analogs, Antarctica, Morocco, oxyanions, perchlorate, nitrate
1. Introduction

The obliquity of Mars has fluctuated throughout the historical martian epochs (Ward, 1973; Touma and Wisdom, 1993; Laskar et al., 2004) causing variations in climate that likely resulted in warmer conditions than are presently observed. Phyllosilicate and evaporite minerals at discrete but globally distributed locations on the surface (Langevin et al., 2005; Mangold et al., 2012; Bibring et al., 2006; Ehlmann et al., 2013; McLennan et al., 2005; Wray et al., 2009; Arvidson et al., 2014; Toon et al., 1980) support the hypothesis that liquid water influenced the martian surface in the past and that the current state of Mars results from the prolonged aridification of the martian environment as aqueous availability decreased with time. The pedogenic processes that occurred during these episodes distributed soluble ionic species that remain as geochemical proxies that can be used to interpret historical climate patterns.

The relative ratios and distribution patterns of salts and their highly soluble anions are commonly examined in order to understand the effects of different degrees of aridity on the geochemical record (Claridge and Campbell, 1977; Cary et al., 1979; Bao et al., 2004; Ewing et al., 2006; Keys and Williams, 1981; Zhu and Yang, 2010; Tamppari et al., 2012; Toner et al., 2013; Jackson et al., 2015). The distribution profiles of accumulated salts in arid soils is a function of their production rates and the duration of aridity. The primary sink for these salts in temperate climates is rainwater flushing of soils to rivers and...
groundwater, while in polar regions, mobilization by snowmelt or deliquescence dominates. Thus, comparing environments with similar production mechanisms (generally atmospheric) but differing degrees of aridity can provide insight into the geochemical mechanisms that may have acted during the prolonged aridification of the martian surface. Here, we compare and contrast the ratios of soluble ions in previously suggested “Mars analog” environments with the Tindouf Basin, Morocco, specifically the region of the strewn field of the Mars meteorite, Tissint (Aoudjehane et al., 2012). In particular, we argue that there is no such thing as a unique terrestrial Mars analog locale – rather that Earth contains multiple locations which may serve as analogs for various specific processes at distinct time periods in martian history.

1.1. Introduction to Terrestrial Environments proposed as “Mars Analogs”

1.1.1. McMurdo Dry Valleys, Antarctica. Due to their prolonged state as cold hyperarid deserts, the McMurdo Dry Valleys (MDV) are the most similar of any terrestrial site to the environmental and geological conditions on Mars (both past and present) and thus have been widely used as geochemical and geological martian analogs (Mahaney, 2001; Dickinson and Rosen, 2003; Tamppari et al., 2012; Stroble et al., 2013). While the dry valleys are named as such due to their complete lack of rainfall, except for a few reported instances in coastal MDV they experience precipitation in the form of snowfall, often blown in by the winds.
Most of this snow sublimates in the summer, but there is transfer between snow/soil/permafrost profiles which influences anion profiles (Toner et al., 2013). The different valleys within the MDV can be classified within three distinct climate regions depending on elevation and distance from the coast, which vary in temperature and aqueous availability (Marchant and Head, 2007). Individual valleys can thus be compared in order to understand the effects of the changing martian climate on soil geochemistry. In this way, the relative concentrations of soluble salts between the lower-elevation Taylor Valley (TV), mid-elevation Beacon Valley (BV), through the highest-elevation University Valley (UV) (Tamppari et al., 2012; Stroble et al., 2013; Jackson et al., 2016), can potentially provide insight into the shift in salt accumulation from the martian Noachian to the early Amazonian epochs. These localized environments, which can serve as geochemical analogs throughout the most abrupt climate change periods on Mars, is a uniquely valuable feature of the MDV. However, their remote location and extreme environment hinders accessibility.

1.1.2. Atacama Desert, Chile. The Atacama Desert is the most arid nonpolar desert on Earth. Sedimentological data suggests that it has existed as a stable arid region for the past 150 Ma (Hartley et al., 2005), with evidence of cyclic variations between arid and hyperarid over the past 14 Ma (Jordan et al., 2014). Although the average temperatures in the Atacama of about 16°C (McKay et al., 2003) are much warmer than modern Mars, the hyperarid core of the
Atacama features Earth’s lowest total precipitation, measured at < 1 mm/yr in the Yungay region (Navarro-González et al., 2003), with even more hyperarid subregions recently identified (Azua-Bustos et al., 2015). The soils found in the Atacama are characterized by high levels of oxyanions such as sulfate (SO$_4^{2-}$), nitrate (NO$_3^-$), and perchlorate (ClO$_4^-$), as the result of atmospheric or volcanic deposition and input from coastal fog in some regions (Jackson et al., 2005; Bao et al., 2004; Michalski et al., 2004). The relative accessibility of the Atacama has yielded key insights into the geochemistry of hyperarid soils and the processes that drive them (Bao et al., 2004; Ewing et al., 2006; Hartley et al., 2005).

1.1.3. Other warm deserts. In order to interpret data from hyperarid soils on Earth in terms of historical martian climates, it is necessary to extend these insights across degrees of aridity. Hyperarid soils on Earth are typically static under relevant timescales. Therefore, it is necessary to characterize environments with similar geologic characteristics but different degrees of aridity for comparison. In this way, we can identify and differentiate the critical processes in these regions and potentially relate soil geochemistry to various martian epochs.

The Moroccan desert has previously been proposed as Mars-relevant for operations testing (Ori et al., 2011). Here, we examine the northern Tindouf basin in southeastern Morocco as a region suitable for use as an analog for soil chemistry and aqueous geochemistry across different martian epochs.
2. Materials and Methods

2.1. Climate and Geology of Sample Site

The study region is located on the northern edge of the Tindouf basin, in the strewn field from which the Tissint Mars meteorite fragments were recovered. The site is located between the El Aglāb mountains to the north and the Hamada Du Drāa desert to the south, near the El Ga’ïdat plateau (centered within a ~ 6 km radius around 29°29'41.29"N, 07°34'50.50"W) (Aoudjehane et al., 2012) (Fig. 1). Broadly speaking, the environment is an inland desert (~220 km inland) free of any evaporitic and sabkha features. The basin, located in the foothills on the southern margin of the Atlas Mountains, feeds into the Draa River (Oued Draa) watershed, which is dry most of the year at this location, consistent with the present day climate of a warm arid desert (Peel et al., 2007). The Tindouf basin contains approximately an 8 km thick base layer of Cambrian to Carboniferous marine sediment with approximately 100 m of Pliocene soils deriving from the Atlas Mountains above it (Selley, 1997) and atmospheric input (this study). The study area is near the border with Algeria, and lies entirely within a restricted-accessed zone controlled by the Moroccan military. The area is uninhabited and historically only used for military patrols along well-defined 4x4 tracks, although it has recently experienced substantial foot traffic by Bedouins seeking fragments of the Tissint meteorite.
We divided the study site into two geographically distinct, but physically proximate regions in order to evaluate the influence of the landform variations on the soluble chemistry of the soils. The Ga‘ïdat region is located at the southern edge of the site at an average elevation of 400 ± 15 m and consists of a plateau exhibiting little fluvial influence with stable well-developed surface features. The Aglâb region is located at the northern edge of the study site at the base of a mountain with an average elevation of 380 ± 0.5 m. The Aglâb region is characterized by alluvial fans, dry river beds, and variable topography indicative of ephemeral streams and other fluvial processes temporarily feeding the River Draa.

2.2. Sampling Procedures

Soil samples were collected from six sites (at 11 pits) in the Aglâb region and from six sites (at 9 pits) in the Ga‘ïdat region (Fig. 1). Sampling sites were chosen in flat surfaced areas at local topographic highs, without vegetation or foot tracks, generally with loose to consolidated desert pavement. At each sampling site two shallow pits were dug to a depth of 20 cm; one at a location in which the soil was covered with desert pavement, and a second at a similar location nearby without substantial pavement (Fig. 2). At each site, any surface cobbles were removed, and a “surface” soil/silt sample from 0-5 cm, and a “depth” sample from 15-20 cm were collected and sealed in pre-sterilized Whirl-Pak® sample bags. The sampling depth was chosen as a layer of caliche was encountered in most
areas beginning at 20-30 cm. This was repeated throughout the sampling field to obtain a well-represented coverage of the area.

2.3. Soluble Content Analysis

Soil samples were returned to the laboratory and split into sand (2 mm-75 µm) and fine (< 75 µm) fractions prior to leaching. A 1.0 g portion of both fractions of each sample was leached at a 1:10 soil:water ratio for 1 hour with rocking on a Thermoline Labquake and an aliquot of each leachate was then diluted to a conductivity of 50 µS/cm. The undiluted samples were analyzed for perchlorate (ClO$_4^-$) and the diluted samples for inorganic anions by ion chromatography using a Dionex ICS2000 under the conditions listed in Table 1. Final concentrations for soil samples were determined by accounting for dilutions and summing the resulting concentrations, weighted by their compositional percentage.

2.4. Comparative Studies

Ionic concentration of samples from this study were compared to soils in five other terrestrial sites of differing aridity and temperature, as well as leachate of the Mars meteorite EETA79001, and the in-situ Mars soil analyses performed by the Wet Chemistry Laboratory (WCL) on board the Mars Phoenix Lander. The soluble ionic distributions in these regions are compared in terms of the differences between preservation potential in these locales, with speculative links to soil geochemistry in different Martian epochs.
3. Results

The measured anion content of the soil for the Aglāb and Gaʾīdat sampling regions is shown in Table 2. In both regions the particle size distributions generally consist of a primarily sandy soil with a tendency for fine grained particles to accumulate on the surface. The average particle distributions for depth and surface samples are 90-95 wt% and 75-90 wt% sand particles respectively. A neutral soil pH is observed across the entire study region with an average pH of 7.1 ± 0.5 across all samples and differences between surface and subsurface pH values ranging from 0.3-2%. The electrical conductivity (EC) is less consistent across samples with the RSD values ranging from 130-200% both within and across regions, suggesting a heterogeneous distribution of salts, consistent with variability in our ionic measurements. The EC and pH values for each pit at each site are listed in Table 3. The ionic concentrations are generally higher at depth than at the surface (Table 2). This is especially notable for perchlorate which is below the limit of detection (LOD) of 2.5×10^{-4} mmol/kg in surface samples, but present at up to 2.5×10^{-3} mmol/kg (250 ppb) at 20cm.

The relative distribution of oxyanions is used to assess the differences between regions by normalizing against total measured anionic content. This allows for the comparison of the relative distribution patterns between samples without the confounding influence of variable salinity due to differential
preservation and transport. Fig. 3 shows the interquartile range (IQR) for the distribution of anions, normalized against the total measured anionic content. Chloride molar fractions exhibit the greatest variability within sampling regions, and nitrate the smallest. However, nitrate molar fractions exhibit the largest difference between samples sites, with a 72% difference in medians and a 39% difference in the IQR between the Aglāb and Ga‘ïdat regions. This is compared to a 48% and 2% difference in median and IQR for chloride and a 2% and 7% difference in median and IQR for sulfate. Surface and depth molar fractions tend to be more consistent between the ions with the median difference of 25%, 10%, and 23% for chloride, sulfate, and nitrate, respectively, while IQR values differed by 20%, 20%, and 15%, respectively. However, differences in IQR for all ions and the difference in median for sulfate, are greater between surface and depth samples, than between sampling regions. Fig. 4 shows the relationship between the concentrations of oxyanions (sulfate, nitrate, and perchlorate) and the chloride for the Moroccan soil samples from this study.

4. Discussion

The relatively similar normalized ionic ratios observed throughout the two sampling regions can be summarized as an overall similarity in terms of salt origin, resulting in a geochemically homogenous area with outlier sample
variations due to disparate localized transport processes. This is supported by a
greater difference in the more soluble nitrate and chloride ions than sulfate, which
would result from the distribution of these highly soluble anions in response to
intermittent precipitation events and diurnal condensation.

The difference in the concentrations between the surface and the subsurface
samples is larger than for the samples from the two regions. This is likely the
result of differences in the availability of water to percolate through the soil and
ubiquitous surface mixing by aeolian processes. The higher elevation, better
devolved soil profiles on the Ga’ïdat plateau are generally less susceptible to
variation, as evidenced by smaller relative standard deviations in both surface and
depth conductivity measurements, likely due to the limited transport processes
occurring in the region. On the other hand, the more complex Aglâb region, with
its input from aqueous discharge from the nearby mountain and channeling from
the surrounding areas in response to the surrounding higher elevation landforms,
results in greater variation depending on sampling location. Geomorphological
differences aside, the regions can be reasonably considered to be the same in
terms of their normalized soluble anion content and are treated as such for further
comparison purposes.

Perchlorate is one the most soluble naturally-occurring salts, so its presence
near the surface implies either an extreme lack of rainfall, or a barrier to vertical
diffusion. At the hyper-arid core of the Atacama Desert, where rainfall averages
less than 1 mm yr\(^{-1}\) (McKay et al. 2003), perchlorate is generally leached from soil profiles to at least 50 cm depth (Jackson et al. 2015), presumably via exceedingly rare large rainfall events. In the Tindouf, significant rainfall events are typical in the winter months, thus we hypothesize the sporadic perchlorate abundances observed at 15-20 cm depth (from LOD to \(2.5 \times 10^{-3}\) mmol/kg), reflect a localized hydrological control dominated by a vertical barrier at the hardpan caliche. In addition to plant uptake (which does not apply to our sample sites), local geomorphological effects have been shown to cause similar heterogeneity in the Armargosa desert (Andraski et al. 2014). There, measured perchlorate deposition fluxes of \(3.4\) ng cm\(^{-2}\) y\(^{-1}\) agree with higher-end theoretical predictions of atmospheric perchlorate production from the Atacama desert (Catling et al. 2010). Assuming these perchlorate production rates apply to the Tindouf, this yields an \(~10^3\) year accumulation time for the \(2.5 \times 10^{-3}\) mmol/kg observed at 20 cm depth. We speculate that the caliche layer plays a role in the concentration of soil anions, absorbing moisture from significant rainfall events followed by extreme evaporation, and that only very significant rainfall years would flush out the entire system into the Draa River.

4.1. Comparison with Other Proposed Mars Analog Sites

On Earth, nitrate, chloride, and perchlorate in arid and semi-arid soils are known to be primarily of atmospheric origin (Michalski et al., 2004; Bao et al.,
288 These ions are also highly water soluble and tend to accumulate in arid
289 and semi-arid environments (Walvoord et al., 2003; Jackson et al., 2015). As a
290 result, the ratio of these ions in desert soils can be used in the interpretation of the
291 aqueous processes in these areas. Fig. 5 shows the correlation between the
292 concentrations of oxyanions and chloride concentrations for sulfate, nitrate, and
293 perchlorate, for samples from Morocco (linear fit lines from Fig. 4) compared to
294 samples, from five terrestrial Mars analog sites (Stroble et al., 2013; Tamppari et
295 al., 2012), the Mars meteorite EETA79001 (Kounaves et al., 2014), and the
296 Mars Phoenix WCL analyses (Kounaves et al., 2010).

4.1.1. Atacama. Samples from the Atacama are similar to Morocco in their
298 NO$_3$/Cl ratios and correlation (Fig. 5a), but differ in their NO$_3$/ClO$_4$ ratio (Fig. 7)
299 which is lower than in Morocco. The prolonged hyper-arid conditions in the
300 Atacama compared to Morocco may explain the lower NO$_3$/ClO$_4$ ratio observed in
301 the Atacama. Since ClO$_4^-$ is highly soluble and is quickly transported in the
302 presence of water, the prolonged hyper-arid conditions in this region would result
303 in the greater accumulation of ClO$_4^-$, reducing the NO$_3$/ClO$_4$ ratio.

4.1.2. Beacon Valley. The Beacon Valley samples have comparable NO$_3$/Cl
304 and SO$_4$/Cl ratios to those observed in the Moroccan samples (Fig. 5b). However,
305 the correlations in both cases demonstrate a greater increase in oxyanion species
306 compared with Cl$^-$ in Beacon Valley. This consistently larger relative increase
307 associated with samples from Beacon Valley indicate a preference for
accumulation of oxyanions compared to chloride. This may be due to the higher

elevation of Beacon Valley which results in less input of Cl\textsuperscript– from ocean spray

and/or a more rapid accumulation of atmospherically derived oxyanion species. Both NO\textsubscript{3}\textsuperscript– and ClO\textsubscript{4}– are highly soluble, and their persistence in an environment is

indicative of the relative absence of aqueous transport processes. The correlation

between NO\textsubscript{3} \textsuperscript–, ClO\textsubscript{4} –, and Cl for Beacon Valley falls in the center when compared

with the other investigated analog environments (Figs 6 and 7) suggesting that

Beacon Valley is an intermediate in terms of the processes driving ionic ratios in

these areas.

4.1.3. University Valley. The University Valley NO\textsubscript{3} \textsuperscript–/ClO\textsubscript{4} – ratios are the

most similar to the Morocco samples (Fig. 7), but no other similarities are

observed between the data sets. In general, oxyanion ratios and correlations are

much larger and steeper in University Valley than other analog sites (Fig. 5c).

This is similar to the observations for Beacon Valley, wherein oxyanions

accumulate and Cl\textsuperscript– input is minimal, but extended to a more arid environment.

4.1.4. Taylor Valley. For Taylor Valley the NO\textsubscript{3} \textsuperscript– is well correlated with Cl\textsuperscript–

\((R^2 = 0.90)\) with a comparable slope to that observed in the Moroccan samples,

but is relatively depleted in NO\textsubscript{3} \textsuperscript– with respect to Cl\textsuperscript– (Fig. 5d). NO\textsubscript{3} \textsuperscript– is similarly

well correlated to ClO\textsubscript{4} – \((R^2 = 0.85)\) with the shallowest slope observed across all

investigated analog sites (Fig. 6), and a two order of magnitude shallower slope

than is observed in Morocco. In general, Oxyanion/Cl ratios are lower and
oxyanions tend to accumulate less compared to Cl\(^-\) in Taylor Valley than in Morocco, with the exception of an enrichment of ClO\(_4\)\(^-\) relative to Cl\(^-\). This may be the result of an increase in Cl\(^-\) compared with NO\(_3\)\(^-\) in Taylor Valley, as a result of input from ocean water spray.

4.1.5. Victoria Valley. The Victoria Valley samples are the most similar of the investigated sites to the Moroccan samples (Fig. 5e). Specifically, comparable ratios are observed between the regions for NO\(_3\)/Cl and NO\(_3\)/ClO\(_4\) (Fig. 7).

However, while NO\(_3\)/ClO\(_4\) ratios exhibit a similar correlation between the regions, Victoria Valley has an order of magnitude steeper slope in NO\(_3\)/Cl correlation compared with Morocco. The similarity in ratios, but difference in linear fit for Victoria Valley samples is likely related to differences in post-depositional processes such as aqueous transport, which may be more complicated in Victoria Valley compared with Morocco in part due to influences from shallow groundwater and permafrost in this polar region (Levy et al., 2011; Marchant and Head, 2007).

4.2. Comparison to Direct Measurements on Mars Samples

Figure 5f shows our results in comparison with two direct measurements of soluble species in martian samples, one from the in-situ WCL analyses of martian soil by the Phoenix Mars Lander (Kounaves et al., 2010) and the other from a carbonate clast in the Mars meteorite EETA79001 (Kounaves et al., 2014). In general, oxyanion species are more concentrated in both the WCL and
EETA79001 samples, while Cl is depleted. Of note is the similarity between the relative \(\text{SO}_4^{2-} \), \(\text{NO}_3^- \), and \(\text{ClO}_4^- \) values in EETA79001 measurements compared to the Moroccan samples. In general, it is observed that \(\text{SO}_4/\text{Cl} \), \(\text{NO}_3/\text{Cl} \) and \(\text{ClO}_4/\text{Cl} \) ratios are consistently and similarly higher in EETA79001. Also, of note is the large concentration of \(\text{ClO}_4^- \) that was measured by the Phoenix WCL compared to EETA79001. This may be indicative of a steady increase in \(\text{ClO}_4^- \) concentration over time as Cl has been shown to be easily oxidized to \(\text{ClO}_4^- \) on mineral surfaces (Carrier and Kounaves, 2015). A similar tendency is noted in the analog sites wherein \(\text{ClO}_4/\text{Cl} \) ratios increase with increasing aridity. This observation supports the proposition that the higher aridity locales such as University Valley can serve as analogs to more recent martian epochs while the less arid Victoria Valley would serve as an analog to earlier epochs.

4.3. Comparison to The Martian Epochs

A summary of the martian epochs and their proposed corresponding terrestrial analogs are shown in Fig. 8. If we consider the MDV as analogs to the different martian epochs depending on the extent of aqueous influence, we find that it decreases in the order University Valley > Beacon Valley > Victoria Valley > Taylor Valley. In this way, University and Beacon Valley can be roughly considered as analogs to the Amazonian/Hesperian epochs, and Taylor and Victoria Valleys to the Hesperian/Noachian epochs. Due to the greater similarities between the lower elevation Victoria Valley and the Moroccan
samples as compared to the higher elevation University Valley samples, and the
likelihood that these similarities are the result of the greater influence of aqueous
processes in these regions, we argue that the Moroccan sample locations are
potential soil geochemistry analogs to the late Noachian epoch on Mars.

5. Conclusions

The utility of the Tindouf Basin region of southeastern Morocco as a more
accessible analog with a similar soil geochemistry to the MDVs is demonstrated
by the relative similarity of the distribution of ionic species between the
Moroccan samples and other Mars analog sites. In general, samples from this
region of Morocco show the greatest similarity with samples from Victoria
Valley, Beacon Valley and the Atacama. Moroccan samples are consistently
depleted in oxyanion species compared to University Valley and enriched
compared with Taylor Valley. Specifically, NO$_3$/Cl ratios are comparable to
many proposed Mars analog sites, with the strongest similarities observed with
Victoria Valley and Atacama samples. The SO$_4$/Cl ratios are likewise similar to
those from Beacon Valley, Victoria Valley, and in the Atacama. While
perchlorate values in Morocco are typically lower than other analog sites,
conditions in the region are sufficiently arid to retain oxychlorines at detectable
levels. Processes that may have preferentially increased the perchlorate in other
regions could include rapid aqueous accumulation and evaporation of the highly
soluble oxychlorines, or the production by direct UV oxidation of chlorine in
chloride-bearing minerals, as has been suggested to occur on Mars (Carrier and Kounaves, 2015). The perchlorate in the Morocco samples is most likely a result of slow accumulation via atmospheric production as occurs over most of the Earth (Catling et al., 2010) though direct UV oxidation cannot be entirely ruled out.

Acknowledgements

We would like to thank Joseph Levy and the anonymous reviewers who helped improve this manuscript. We also thank the Ibn Battuta Centre in particular Gian Gabrile Ori and Kamal Taj-Edine for their assistance with logistics and fieldwork. In addition, we would like to thank the Moroccan military for access as well as Aubrey Zerkle and Gordon Fontaine for their assistance in the field.

Disclosure Statement

No competing financial interests exist.

References

C.D.K., Hewins, R., Jambon, A., Marty, B., Rochette, P., Smith, C.L.,
Martian Meteorite: A Fresh Look at the Interior, Surface, and Atmosphere of

Arvidson, R.E., Squyres, S.W., Bell, J.F., Catalano, J.G., Clark, B.C., Crumpler,
L.S., de Souza, P.A., Fairén, A.G., Farrand, W.H., Fox, V.K., Gellert, R.,
Ghosh, A., Golombek, M.P., Grotzinger, J.P., Guinness, E.A., Herkenhoff,
K.E., Jolliff, B.L., Knoll, A.H., Li, R., McLennan, S.M., Ming, D.W.,
Mittlefehldt, D.W., Moore, J.M., Morris, R.V., Murchie, S.L., Parker, T.J.,
Ancient Aqueous Environments at Endeavour Crater, Mars. Science 343
(6169): 1248097.

Content of the Driest Site of the Hyperarid Atacama Desert, Chile. Environ.

sources and their post-depositional migration in Atacama soils. Earth

Bibring J.P., Langevin Y., Mustard J.F., Poulet F., Arvidson R., Gendrin A.,
Gondet B., Mangold N., Pinet P., Forget F., Berthe M., Bibring J.P., Gendrin
A., Gomez C., Gondet B., Jouget D., Poulet F., Soufflot A., Vincendon M.,
Combes M., Drossart P., Encrenaz T., Fouchet T., Merchiirri R., Belluci G.,
Altieri F., Formisano V., Capaccioni F., Cerroni P., Coradini A., Fonti S.,
Korablev O., Kottsov V., Ignatiev N., Moroz V., Titov D., Zasova L.,
Loiseau D., Mangold N., Pinet P., Doute S., Schmitt B., Sotin C., Hauber E.,
Hoffmann H., Jaumann R., Keller U., Arvidson R., Mustard J.F., Duxbury
history derived from OMEGA/Mars Express data. Science, 312:400-4.

Am. J. 43:3-8.

Catling D.C., Claire M.W., Zahnle K.J., Quinn R.C., Clark B.C., Hecht M.H., and
Kounaves S. (2010) Atmospheric origins of perchlorate on Mars and in the

Claridge, G.G.C., and Campbell, I.B. (1977) The salts in Antarctic soils, their

Table 1: Parameters and reagents used for IC analysis of samples. Columns used for all samples were 250mm x 4mm

<table>
<thead>
<tr>
<th></th>
<th>Anions</th>
<th>Perchlorate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dionex Column</td>
<td>AS16</td>
<td>AS18</td>
</tr>
<tr>
<td>Eluent</td>
<td>KOH</td>
<td>KOH</td>
</tr>
<tr>
<td>Eluent Conc., mM</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>Flor Rate, mL/min</td>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td>Suppressor Current, µS</td>
<td>75</td>
<td>175</td>
</tr>
<tr>
<td>Injection Volumer, µL</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 2: Measured anion concentration data for the Aglâb and Ga’ïdat region samples

<table>
<thead>
<tr>
<th>Region</th>
<th>Sample</th>
<th>Chloride</th>
<th>Sulfate</th>
<th>Nitrate</th>
<th>Chlorate</th>
<th>Perchlorate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(mmol/kg)</td>
<td>(mmol/kg)</td>
<td>(mmol/kg)</td>
<td>(mmol/kg)</td>
<td>(mmol/kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surface (0-5 cm)</td>
<td>Depth (15-20 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloride</td>
<td>Sulfate</td>
<td>Nitrate</td>
<td>Chlorate</td>
<td>Perchlorate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloride</td>
<td>Sulfate</td>
<td>Nitrate</td>
<td>Chlorate</td>
<td>Perchlorate</td>
</tr>
<tr>
<td>Aglâb</td>
<td>1a</td>
<td>3.42 ± 0.123</td>
<td>2.85 ± 0.050</td>
<td>0.57 ± 0.050</td>
<td>0.09 ± 0.010</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>5.63 ± 0.052</td>
<td>5.43 ± 0.111</td>
<td>1.06 ± 0.084</td>
<td>0.39 ± 0.008</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>2a</td>
<td>2.34 ± 0.045</td>
<td>1.55 ± 0.013</td>
<td>0.38 ± 0.015</td>
<td>0.06 ± 0.004</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>2b</td>
<td>2.55 ± 0.008</td>
<td>2.00 ± 0.006</td>
<td>0.26 ± 0.005</td>
<td>0.03 ± 0.002</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>3a</td>
<td>0.87 ± 0.023</td>
<td>1.00 ± 0.007</td>
<td>0.45 ± 0.009</td>
<td>0.04 ± 0.002</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>3b</td>
<td>0.45 ± 0.005</td>
<td>0.23 ± 0.002</td>
<td>0.34 ± 0.002</td>
<td>0.02 ± 0.001</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>4a</td>
<td>44.52 ± 0.395</td>
<td>2.34 ± 0.085</td>
<td>4.69 ± 0.112</td>
<td>0.20 ± 0.025</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>4b</td>
<td>282.47 ± 1.687</td>
<td>36.59 ± 0.331</td>
<td>1.45 ± 0.203</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>5a</td>
<td>26.51 ± 0.073</td>
<td>11.13 ± 0.049</td>
<td>0.87 ± 0.021</td>
<td>0.11 ± 0.009</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>5b</td>
<td>23.97 ± 0.096</td>
<td>11.13 ± 0.024</td>
<td>1.54 ± 0.042</td>
<td>0.12 ± 0.011</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>6a</td>
<td>1.68 ± 0.148</td>
<td>1.94 ± 0.145</td>
<td>0.37 ± 0.027</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>7a</td>
<td>3.86 ± 0.051</td>
<td>0.72 ± 0.012</td>
<td>0.64 ± 0.015</td>
<td>0.06 ± 0.004</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>7b</td>
<td>3.58 ± 0.019</td>
<td>0.14 ± 0.002</td>
<td>0.46 ± 0.003</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>8a</td>
<td>0.31 ± 0.019</td>
<td>0.32 ± 0.005</td>
<td>0.16 ± 0.007</td>
<td>0.03 ± 0.001</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>9a</td>
<td>0.29 ± 0.019</td>
<td>0.22 ± 0.006</td>
<td>0.15 ± 0.008</td>
<td>0.04 ± 0.003</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>10a</td>
<td>0.45 ± 0.020</td>
<td>0.28 ± 0.007</td>
<td>0.27 ± 0.007</td>
<td>0.03 ± 0.002</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>11a</td>
<td>0.34 ± 0.020</td>
<td>0.30 ± 0.008</td>
<td>0.28 ± 0.007</td>
<td>0.05 ± 0.002</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>11b</td>
<td>0.14 ± 0.003</td>
<td>0.13 ± 0.002</td>
<td>0.10 ± 0.002</td>
<td>0.03 ± 0.001</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>11b</td>
<td>20.76 ± 0.170</td>
<td>1.97 ± 0.045</td>
<td>0.76 ± 0.043</td>
<td>0.09 ± 0.013</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>12a</td>
<td>25.31 ± 0.099</td>
<td>1.96 ± 0.017</td>
<td>0.88 ± 0.023</td>
<td>0.10 ± 0.010</td>
<td>ND</td>
</tr>
<tr>
<td>Ga’ïdat</td>
<td>1a</td>
<td>102.89 ± 8.882</td>
<td>4.10 ± 1.316</td>
<td>11.96 ± 1.071</td>
<td>ND</td>
<td>4.7E-04 ± 4.80E-05</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>14.86 ± 0.128</td>
<td>1.31 ± 0.007</td>
<td>1.17 ± 0.019</td>
<td>0.06 ± 0.006</td>
<td>2.56E-04 ± 4.60E-05</td>
</tr>
<tr>
<td></td>
<td>2a</td>
<td>131.89 ± 2.542</td>
<td>60.01 ± 1.256</td>
<td>11.70 ± 0.389</td>
<td>ND</td>
<td>5.04E-04 ± 4.69E-05</td>
</tr>
<tr>
<td></td>
<td>2b</td>
<td>87.41 ± 1.781</td>
<td>11.97 ± 0.199</td>
<td>13.23 ± 0.175</td>
<td>ND</td>
<td>5.20E-04 ± 4.55E-05</td>
</tr>
<tr>
<td></td>
<td>3a</td>
<td>2.67 ± 0.087</td>
<td>3.79 ± 0.104</td>
<td>1.26 ± 0.032</td>
<td>0.06 ± 0.008</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>3b</td>
<td>0.18 ± 0.004</td>
<td>0.11 ± 0.002</td>
<td>0.11 ± 0.003</td>
<td>0.02 ± 0.001</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>4a</td>
<td>89.09 ± 62.724</td>
<td>31.00 ± 2.776</td>
<td>27.87 ± 15.474</td>
<td>ND</td>
<td>1.28E-03 ± 4.56E-05</td>
</tr>
<tr>
<td></td>
<td>4b</td>
<td>1460.84 ± 15.221</td>
<td>231.30 ± 1.165</td>
<td>6.33 ± 0.818</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>5a</td>
<td>151.76 ± 4.374</td>
<td>55.72 ± 1.091</td>
<td>8.80 ± 0.442</td>
<td>ND</td>
<td>4.38E-04 ± 1.23E-04</td>
</tr>
<tr>
<td></td>
<td>5b</td>
<td>55.86 ± 1.682</td>
<td>37.58 ± 1.562</td>
<td>3.26 ± 0.157</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>6a</td>
<td>1.49 ± 0.081</td>
<td>6.70 ± 0.032</td>
<td>0.13 ± 0.025</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>7a</td>
<td>15.03 ± 0.384</td>
<td>1.27 ± 0.106</td>
<td>4.57 ± 0.260</td>
<td>ND</td>
<td>2.50E-03 ± 2.02E-05</td>
</tr>
<tr>
<td></td>
<td>7b</td>
<td>165.20 ± 1.366</td>
<td>24.68 ± 0.071</td>
<td>24.65 ± 0.094</td>
<td>ND</td>
<td>4.25E-04 ± 2.12E-05</td>
</tr>
<tr>
<td></td>
<td>8a</td>
<td>3.17 ± 0.081</td>
<td>3.34 ± 0.039</td>
<td>1.60 ± 0.034</td>
<td>0.07 ± 0.011</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>9a</td>
<td>21.75 ± 0.583</td>
<td>63.88 ± 0.440</td>
<td>7.79 ± 0.241</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>10a</td>
<td>11.08 ± 0.206</td>
<td>14.73 ± 0.316</td>
<td>6.14 ± 0.123</td>
<td>ND</td>
<td>2.72E-04 ± 2.02E-05</td>
</tr>
<tr>
<td></td>
<td>11a</td>
<td>2.71 ± 0.064</td>
<td>3.66 ± 0.042</td>
<td>1.49 ± 0.026</td>
<td>0.01 ± 4.38E-04</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>11b</td>
<td>0.92 ± 0.006</td>
<td>1.03 ± 0.005</td>
<td>0.57 ± 0.003</td>
<td>0.03 ± 0.001</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>12a</td>
<td>980.52 ± 40.339</td>
<td>163.47 ± 10.130</td>
<td>121.07 ± 7.131</td>
<td>0.56 ± 0.148</td>
<td>1.57E-03 ± 3.35E-05</td>
</tr>
<tr>
<td></td>
<td>12b</td>
<td>242.80 ± 12.422</td>
<td>12.85 ± 0.628</td>
<td>21.82 ± 1.211</td>
<td>ND</td>
<td>9.01E-04 ± 4.94E-05</td>
</tr>
</tbody>
</table>
Table 3: pH, conductivity, and grain size distribution data for the Aglāb and Ga'ïdat region samples

<table>
<thead>
<tr>
<th>Region</th>
<th>Sample</th>
<th>pH</th>
<th>EC (µS/cm)</th>
<th>2000-75 µm (wt %)</th>
<th>< 75 µm (wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0-5 cm</td>
<td>15-20 cm</td>
<td>0-5 cm</td>
<td>15-20 cm</td>
</tr>
<tr>
<td>Aglāb samples</td>
<td>1a</td>
<td>6.96</td>
<td>6.87</td>
<td>146.51</td>
<td>1373.16</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>7.64</td>
<td>7.68</td>
<td>480.07</td>
<td>243.56</td>
</tr>
<tr>
<td></td>
<td>2a</td>
<td>7.56</td>
<td>6.92</td>
<td>123.40</td>
<td>2487.04</td>
</tr>
<tr>
<td></td>
<td>2b</td>
<td>7.87</td>
<td>7.08</td>
<td>119.42</td>
<td>1374.29</td>
</tr>
<tr>
<td></td>
<td>3a</td>
<td>6.86</td>
<td>6.81</td>
<td>105.14</td>
<td>209.37</td>
</tr>
<tr>
<td></td>
<td>3b</td>
<td>7.13</td>
<td>7.24</td>
<td>57.23</td>
<td>45.56</td>
</tr>
<tr>
<td></td>
<td>4a</td>
<td>7.34</td>
<td>6.63</td>
<td>594.49</td>
<td>7702.38</td>
</tr>
<tr>
<td></td>
<td>4b</td>
<td>8.04</td>
<td>7.12</td>
<td>4033.56</td>
<td>17484.78</td>
</tr>
<tr>
<td></td>
<td>5a</td>
<td>7.01</td>
<td>6.48</td>
<td>126.12</td>
<td>3178.29</td>
</tr>
<tr>
<td></td>
<td>5b</td>
<td>6.24</td>
<td>6.39</td>
<td>613.24</td>
<td>1418.46</td>
</tr>
<tr>
<td></td>
<td>6a</td>
<td>6.91</td>
<td>9.06</td>
<td>110.68</td>
<td>267.70</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>7.23 ± 0.52</td>
<td>7.12 ± 0.74</td>
<td>591.8 ± 1160.6</td>
<td>3253.1 ± 5204.6</td>
</tr>
<tr>
<td>Ga’ïdat samples</td>
<td>7a</td>
<td>6.91</td>
<td>7.10</td>
<td>70.01</td>
<td>205.79</td>
</tr>
<tr>
<td></td>
<td>7b</td>
<td>7.25</td>
<td>6.90</td>
<td>98.16</td>
<td>955.86</td>
</tr>
<tr>
<td></td>
<td>8a</td>
<td>6.91</td>
<td>7.17</td>
<td>1077.74</td>
<td>346.78</td>
</tr>
<tr>
<td></td>
<td>9a</td>
<td>7.46</td>
<td>7.12</td>
<td>75.53</td>
<td>534.32</td>
</tr>
<tr>
<td></td>
<td>10a</td>
<td>7.45</td>
<td>7.33</td>
<td>59.55</td>
<td>199.91</td>
</tr>
<tr>
<td></td>
<td>11a</td>
<td>7.63</td>
<td>6.84</td>
<td>418.21</td>
<td>330.37</td>
</tr>
<tr>
<td></td>
<td>11b</td>
<td>7.11</td>
<td>7.11</td>
<td>68.08</td>
<td>97.41</td>
</tr>
<tr>
<td></td>
<td>12a</td>
<td>6.44</td>
<td>6.34</td>
<td>540.50</td>
<td>2738.86</td>
</tr>
<tr>
<td></td>
<td>12b</td>
<td>7.72</td>
<td>6.87</td>
<td>508.47</td>
<td>3442.72</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>7.21 ± 0.41</td>
<td>6.97 ± 0.29</td>
<td>324.0 ± 348.3</td>
<td>1321.9 ± 1430.8</td>
</tr>
</tbody>
</table>
Figure Legends

Figure 1: Sampling locations in the Tindouf Basin region in southeastern Morocco.

Figure 2: Image showing the two locations where pits were dug, the first at a location in which the soil was covered with desert pavement (foreground) and a second one nearby without substantial pavement (upper left corner).

Figure 3: The interquartile range (IQR), normalized against the total measured anionic content, for the distribution of (a) Nitrate, (b) Sulfate, and (c) Chloride.

Figure 4: Logarithmic plot showing the linear correlation (line) of the concentrations of sulfate (blue), nitrate (red), and perchlorate (green), with the concentration of chloride for the Moroccan soil samples from this study.

Figure 5: Logarithmic plots of oxyanion vs chloride concentrations for sulfate (blue), nitrate (red), and perchlorate (green), for samples from Morocco (linear fit lines from Fig. 3) compared to samples, from (a) Atacama (b) Beacon Valley (c) University Valley (d) Taylor Valley (e) Victoria Valley (f) Mars, (symbols).

Figure 6: Correlation of nitrate and perchlorate concentrations for all the Mars analog sites in this study.

Figure 7: Correlation of NO$_3$/ClO$_4$ and Cl/NO$_3$ average ratios for each martian analog site.

Figure 8: Proposed martian epochs most relevant to “Mars analog sites”, based on soil anion geochemistry and aridity.
Figure 1

Figure 2
Figure 3

(a) Chloride molar fraction
(b) Sulfate molar fraction
(c) Nitrate molar fraction

Aglab Ga’dat Surface Depth
Figure 4

![Graph showing the relationship between log (oxyanion) and log (Cl). The graph includes multiple data points and trend lines.](image-url)
Figure 5

- Atacama
- Beacon Valley
- University Valley
- Taylor Valley
- Victoria Valley
- Phoenix
- EETA79001

Log (oxygen), mmol/kg vs. log (CI), mmol/kg
Figure 6

![Graph showing the relationship between ClO₄⁻ (mmol/kg) and NO₃⁻ (mmol/kg) for different locations such as University Valley, Beacon Valley, Victoria Valley, Taylor Valley, Morocco, and Atacama. The graph includes logarithmic scales on both axes. Each location is represented by a different symbol and color, indicating the trend and concentration of ClO₄⁻ and NO₃⁻.]
Figure 7

[Graph showing data points and labels for different sites: University Valley, Beacon Valley, Victoria Valley, Taylor Valley, Morocco, Atacama. The x-axis represents Cl⁻/NO₃⁻ (molar ratio), and the y-axis represents NO₃⁻/ClO₄⁻ (molar ratio).]
Figure 8

<table>
<thead>
<tr>
<th></th>
<th>Noachian</th>
<th>Hesperian</th>
<th>Amazonian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morocco</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taylor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Victoria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atacama</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beacon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EETA79001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phx-WCL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>