Astrobiology

Astrobiology Manuscript Central: http://mc.manuscriptcentral.com/astrobiology

Evaluation of the Tindouf Basin Region in Southern Morocco as an Analog Site for Soil Geochemistry on Noachian Mars

1	Astrophistory
Journal:	Astrobiology
Manuscript ID	AST-2016-1557.R3
Manuscript Type:	Research Articles (Papers)
Date Submitted by the Author:	29-Mar-2017
Complete List of Authors:	Oberlin, Elizabeth; Tufts University, Dept. of Chemistry Claire, Mark; University of St. Andrews, Dept. of Earth and Environmental Sciences Kounaves, Samuel; Tufts University, Dept. of Chemistry
Keyword:	Mars, Analog, Atacama Desert, Mars Meteorites, Planetary Environments
Manuscript Keywords (Search Terms):	Mars analogs, Antarctica, Morocco, oxyanions, nitrate

SCHOLARONE[™] Manuscripts

Astrobiology

Submitted to Astrobiology (Special Issue)

Evaluation of the Tindouf Basin Region in Southern Morocco as an Analog Site for Soil Geochemistry on Noachian Mars

Elizabeth A. Oberlin,¹ Mark W. Claire,^{2,3,4} and Samuel P. Kounaves^{1,5}

¹ Department of Chemistry, Tufts University, Medford, Massachusetts

² School of Earth & Environmental Sciences, University of St Andrews, UK

³ Centre for Exoplanet Science, University of St Andrews, UK

⁴ Blue Marble Space Institute of Science, 1001 4th Ave, Seattle, WA USA

4 eth Α Imperial ⁵ Department of Earth Science & Engineering, Imperial College London, UK

Address correspondence to: Samuel Kounaves

- Department of Chemistry
- Tufts University
- Medford, MA 02155
- *E-mail:* samuel.kounaves@tufts.edu

- - Running Title: Tindouf Basin Morocco as a Mars Analog

2 3

Abstract

Locations on Earth which provide insights into processes that may be occurring or may have occurred throughout martian history are often broadly deemed "Mars analog environments." As no single locale can precisely represent a past or present martian environment, it is important to focus on characterization of terrestrial processes which produce analogous features to those observed in specific regions of Mars, or if possible specific time periods during Martian history. Here, we report on the preservation of ionic species in soil samples collected from the Tindouf region of Morocco and compare them with the McMurdo Dry Valleys of Antarctica, the Atacama Desert in Chile, the Mars meteorite EETA79001, and the in-situ Mars analyses from the Phoenix Wet Chemistry Laboratory (WCL). The Morocco samples show the greatest similarity with those from Victoria Valley (VV), Beacon Valley (BV) and the Atacama, while being consistently depleted compared to University Valley (UV) and enriched compared to Taylor Valley (TV). The NO₃/Cl ratios are most similar to VV and Atacama while the SO_4/Cl ratios are similar to those from BV, VV, and the Atacama. While perchlorate in the Morocco samples are typically lower than other analog sites, conditions in the region are sufficiently arid to retain in .quent oxychlorines at detectable levels. Our results suggest that the Tindouf Basin in Morocco can serve as a suitable analog for the soil geochemistry and subsequent aridificiation of the Noachian epoch on Mars.

Kew words or phrases:

Mars analogs, Antarctica, Morocco, oxyanions, perchlorate, nitrate

Astrobiology

Submitted to Astrobiology (Special Issue)

1. Introduction

61	The obliquity of Mars has fluctuated throughout the historical martian epochs
62	(Ward, 1973; Touma and Wisdom, 1993; Laskar et al., 2004) causing variations
63	in climate that likely resulted in warmer conditions than are presently observed.
64	Phyllosilicate and evaporite minerals at discrete but globally distributed
65	locations on the surface (Langevin et al., 2005; Mangold et al., 2012; Bibring et
66	al., 2006; Ehlmann et al., 2013; McLennan et al., 2005; Wray et al., 2009;
67	Arvidson et al., 2014; Toon et al., 1980) support the hypothesis that liquid water
68	influenced the martian surface in the past and that the current state of Mars
69	results from the prolonged aridification of the martian environment as aqueous
70	availability decreased with time. The pedogenic processes that occurred during
71	these episodes distributed soluble ionic species that remain as geochemical
72	proxies that can be used to interpret historical climate patterns.
73	The relative ratios and distribution patterns of salts and their highly soluble
74	anions are commonly examined in order to understand the effects of different
75	degrees of aridity on the geochemical record (Claridge and Campbell, 1977;
76	Cary et al., 1979; Bao et al., 2004; Ewing et al., 2006; Keys and Williams,
77	1981; Zhu and Yang, 2010; Tamppari et al., 2012; Toner et al., 2013; Jackson et
78	<i>al.</i> , 2015). The distribution profiles of accumulated salts in arid soils is a
79	function of their production rates and the duration of aridity. The primary sink
80	for these salts in temperate climates is rainwater flushing of soils to rivers and
	3 Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

81	groundwater, while in polar regions, mobilization by snowmelt or deliquescence
82	dominates. Thus, comparing environments with similar production mechanisms
83	(generally atmospheric) but differing degrees of aridity can provide insight into
84	the geochemical mechanisms that may have acted during the prolonged
85	aridification of the martian surface. Here, we compare and contrast the ratios of
86	soluble ions in previously suggested "Mars analog" environments with the
87	Tindouf Basin, Morocco, specifically the region of the strewn field of the Mars
88	meteorite, Tissint (Aoudjehane et al., 2012). In particular, we argue that there is
89	no such thing as a unique terrestrial Mars analog locale – rather that Earth
90	contains multiple locations which may serve as analogs for various specific
91	processes at distinct time periods in martian history.
92	
93	1.1. Introduction to Terrestrial Environments proposed as "Mars Analogs"
94	1.1.1. McMurdo Dry Valleys, Antarctica. Due to their prolonged state as
95	cold hyperarid deserts, the McMurdo Dry Valleys (MDV) are the most similar of
96	any terrestrial site to the environmental and geological conditions on Mars (both
97	past and present) and thus have been widely used as geochemical and geological
98	martian analogs (Mahaney, 2001; Dickinson and Rosen, 2003; Tamppari et al.,
99	2012; Stroble <i>et al.</i> , 2013). While the dry valleys are named as such due to their
100	complete lack of rainfall, except for a few reported instances in coastal MDV they
101	experience precipitation in the form of snowfall, often blown in by the winds.
	4
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Astrobiology

Submitted to Astrobiology (Special Issue)

102	Most of this snow sublimates in the summer, but there is transfer between
103	snow/soil/permafrost profiles which influences anion profiles (Toner et al., 2013).
104	The different valleys within the MDV can be classified within three distinct
105	climate regions depending on elevation and distance from the coast, which vary in
106	temperature and aqueous availability (Marchant and Head, 2007). Individual
107	valleys can thus be compared in order to understand the effects of the changing
108	martian climate on soil geochemistry. In this way, the relative concentrations of
109	soluble salts between the lower-elevation Taylor Valley (TV), mid-elevation
110	Beacon Valley (BV), through the highest-elevation University Valley (UV)
111	(Tamppari et al., 2012; Stroble et al., 2013; Jackson et al., 2016), can potentially
112	provide insight into the shift in salt accumulation from the martian Noachian to
113	the early Amazonian epochs. These localized environments, which can serve as
114	geochemical analogs throughout the most abrupt climate change periods on Mars,
115	is a uniquely valuable feature of the MDV. However, their remote location and
116	extreme environment hinders accessibility.
117	1.1.2. Atacama Desert, Chile. The Atacama Desert is the most arid
118	nonpolar desert on Earth. Sedimentological data suggests that it has existed as a
119	stable arid region for the past 150 Ma (Hartley et al., 2005), with evidence of
120	cyclic variations between arid and hyperarid over the past 14 Ma (Jordan et al.,
121	2014). Although the average temperatures in the Atacama of about 16°C (McKay
122	et al., 2003) are much warmer than modern Mars, the hyperarid core of the
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

123	Atacama features Earth's lowest total precipitation, measured at < 1 mm/yr in the
124	Yungay region (Navarro-González et al., 2003), with even more hyperarid
125	subregions recently identified (Azua-Bustos et al., 2015). The soils found in the
126	Atacama are characterized by high levels of oxyanions such as sulfate $(SO_4^{=})$,
127	nitrate (NO ₃ ⁻), and perchlorate (ClO ₄ ⁻), as the result of atmospheric or volcanic
128	deposition and input from coastal fog in some regions (Jackson et al., 2005; Bao
129	et al., 2004; Michalski et al., 2004). The relative accessibility of the Atacama has
130	yielded key insights into the geochemistry of hyperarid soils and the processes
131	that drive them (Bao et al., 2004; Ewing et al., 2006; Hartley et al., 2005).
132	1.1.3. Other warm deserts. In order to interpret data from hyperarid soils
133	on Earth in terms of historical martian climates, it is necessary to extend these
134	insights across degrees of aridity. Hyperarid soils on Earth are typically static
135	under relevant timescales. Therefore, it is necessary to characterize environments
136	with similar geologic characteristics but different degrees of aridity for
137	comparison. In this way, we can identify and differentiate the critical processes in
138	these regions and potentially relate soil geochemistry to various martian epochs.
139	The Moroccan desert has previously been proposed as Mars-relevant for
140	operations testing (Ori et al., 2011). Here, we examine the northern Tindouf
141	basin in southeastern Morocco as a region suitable for use as an analog for soil
142	chemistry and aqueous geochemistry across different martian epochs.
143	

Astrobiology

Submitted to Astrobiology (Special Issue)

2. Materials and Methods

2.1. Climate and Geology of Sample Site

The study region is located on the northern edge of the Tindouf basin, in the strewn field from which the Tissint Mars meteorite fragments were recovered. The site is located between the El Aglâb mountains to the north and the Hamada Du Drâa desert to the south, near the El Ga'ïdat plateau (centered within a ~ 6km radius around 29°29'41.29"N, 07°34'50.50"W) (Aoudjehane et al., 2012) (Fig. 1). Broadly speaking, the environment is an inland desert (~220 km inland) free of any evaporitic and sabkha features. The basin, located in the foothills on the southern margin of the Atlas Mountains, feeds into the Draa River (Oued Draa) watershed, which is dry most of the year at this location, consistent with the present day climate of a warm arid desert (Peel *et al.*, 2007). The Tindouf basin contains approximately an 8km thick base layer of Cambrian to Carboniferous marine sediment with approximately 100 m of Pliocene soils deriving from the Atlas Mountains above it (Selley, 1997) and atmospheric input (this study). The study area is near the border with Algeria, and lies entirely within a restricted-accessed zone controlled by the Moroccan military. The area is uninhabited and historically only used for military patrols along well-defined 4x4 tracks, although it has recently experienced substantial foot traffic by Bedouins seeking fragments of the Tissint meteorite.

164	We divided the study site into two geographically distinct, but physically
165	proximate regions in order to evaluate the influence of the landform variations on
166	the soluble chemistry of the soils. The Ga'ïdat region is located at the southern
167	edge of the site at an average elevation of 400 ± 15 m and consists of a plateau
168	exhibiting little fluvial influence with stable well-developed surface features. The
169	Aglâb region is located at the northern edge of the study site at the base of a
170	mountain with an average elevation of 380 ± 0.5 m. The Aglâb region is
171	characterized by alluvial fans, dry river beds, and variable topography indicative
172	ephemeral streams and other fluvial processes temporarily feeding the River Draa.
173	2.2. Sampling Procedures
174	Soil samples were collected from six sites (at 11 pits) in the Aglâb region and
175	from six sites (at 9 pits) in the Ga'ïdat region (Fig. 1). Sampling sites were
176	chosen in flat surfaced areas at local topographic highs, without vegetation or foot
177	tracks, generally with loose to consolidated desert pavement. At each sampling
178	site two shallow pits were dug to a depth of 20 cm; one at a location in which the
179	soil was covered with desert pavement, and a second at a similar location nearby
180	without substantial pavement (Fig. 2). At each site, any surface cobbles were
181	removed, and a "surface" soil/silt sample from 0-5 cm, and a "depth" sample from
182	15-20 cm were collected and sealed in pre-sterilized Whirl-Pak® sample bags.
183	The sampling depth was chosen as a layer of caliche was encountered in most
	8
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Astrobiology

184	areas beginning at 20-30 cm. This was repeated throughout the sampling field to
185	obtain a well-represented coverage of the area.
186	2.3. Soluble Content Analysis
187	Soil samples were returned to the laboratory and split into sand (2 mm-75
188	μ m) and fine (< 75 μ m) fractions prior to leaching. A 1.0 g portion of both
189	fractions of each sample was leached at a 1:10 soil:water ratio for 1 hour with
190	rocking on a Thermoline Labquake and an aliquot of each leachate was then
191	diluted to a conductivity of 50 μ S/cm. The undiluted samples were analyzed for
192	perchlorate (ClO_4) and the diluted samples for inorganic anions by ion
193	chromatography using a Dionex ICS2000 under the conditions listed in Table 1.
194	Final concentrations for soil samples were determined by accounting for dilutions
195	and summing the resulting concentrations, weighted by their compositional
196	percentage.
197	2.4. Comparative Studies
198	Ionic concentration of samples from this study were compared to soils in five
199	other terrestrial sites of differing aridity and temperature, as well as leachate of
200	the Mars meteorite EETA79001, and the in-situ Mars soil analyses performed by
201	the Wet Chemistry Laboratory (WCL) on board the Mars Phoenix Lander. The
202	soluble ionic distributions in these regions are compared in terms of the
203	differences between preservation potential in these locales, with speculative links
204	to soil geochemistry in different Martian epochs.
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

205	
206	3. Results
207	The measured anion content of the soil for the Aglâb and Ga'ïdat sampling
208	regions is shown in Table 2. In both regions the particle size distributions
209	generally consist of a primarily sandy soil with a tendency for fine grained
210	particles to accumulate on the surface. The average particle distributions for
211	depth and surface samples are 90-95 wt% and 75-90 wt% sand particles
212	respectively. A neutral soil pH is observed across the entire study region with an
213	average pH of 7.1 ± 0.5 across all samples and differences between surface and
214	subsurface pH values ranging from 0.3-2%. The electrical conductivity (EC) is
215	less consistent across samples with the RSD values ranging from 130-200% both
216	within and across regions, suggesting a heterogeneous distribution of salts,
217	consistent with variability in our ionic measurements. The EC and pH values for
218	each pit at each site are listed in Table 3. The ionic concentrations are generally
219	higher at depth than at the surface (Table 2). This is especially notable for
220	perchlorate which is below the limit of detection (LOD) of 2.5×10^{-4} mmol/kg in
221	surface samples, but present at up to 2.5×10^{-3} mmol/kg (250 ppb) at 20cm.
222	The relative distribution of oxyanions is used to assess the differences
223	between regions by normalizing against total measured anionic content. This
224	allows for the comparison of the relative distribution patterns between samples
225	without the confounding influence of variable salinity due to differential
	10
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Astrobiology

Submitted to Astrobiology (Special Issue)

226	preservation and transport. Fig. 3 shows the interquartile range (IQR) for the
227	distribution of anions, normalized against the total measured anionic content.
228	Chloride molar fractions exhibit the greatest variability within sampling regions,
229	and nitrate the smallest. However, nitrate molar fractions exhibit the largest
230	difference between samples sites, with a 72% difference in medians and a 39%
231	difference in the IQR between the Aglâb and Ga'ïdat regions. This is compared
232	to a 48% and 2% difference in median and IQR for chloride and a 2% and 7%
233	difference in median and IQR for sulfate. Surface and depth molar fractions tend
234	to be more consistent between the ions with the median difference of 25%, 10%,
235	and 23% for chloride, sulfate, and nitrate, respectively, while IQR values differed
236	by 20%, 20%, and 15%, respectively. However, differences in IQR for all ions
237	and the difference in median for sulfate, are greater between surface and depth
238	samples, than between sampling regions. Fig. 4 shows the relationship between
239	the concentrations of oxyanions (sulfate, nitrate, and perchlorate) and the chloride
240	for the Moroccan soil samples from this study.

4. Discussion

The relatively similar normalized ionic ratios observed throughout the two sampling regions can be summarized as an overall similarity in terms of salt origin, resulting in a geochemically homogenous area with outlier sample

246	variations due to disparate localized transport processes. This is supported by a
247	greater difference in the more soluble nitrate and chloride ions than sulfate, which
248	would result from the distribution of these highly soluble anions in response to
249	intermittent precipitation events and diurnal condensation.
250	The difference in the concentrations between the surface and the subsurface
251	samples is larger than for the samples from the two regions. This is likely the
252	result of differences in the availability of water to percolate through the soil and
253	ubiquitous surface mixing by aeolian processes. The higher elevation, better
254	developed soil profiles on the Ga'ïdat plateau are generally less susceptible to
255	variation, as evidenced by smaller relative standard deviations in both surface and
256	depth conductivity measurements, likely due to the limited transport processes
257	occurring in the region. On the other hand, the more complex Aglâb region, with
258	its input from aqueous discharge from the nearby mountain and channeling from
259	the surrounding areas in response to the surrounding higher elevation landforms,
260	results in greater variation depending on sampling location. Geomorphological
261	differences aside, the regions can be reasonably considered to be the same in
262	terms of their normalized soluble anion content and are treated as such for further
263	comparison purposes.
264	Perchlorate is one the most soluble naturally-occurring salts, so its presence
265	near the surface implies either an extreme lack of rainfall, or a barrier to vertical
266	diffusion. At the hyper-arid core of the Atacama Desert, where rainfall averages
	12
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Astrobiology

Submitted to Astrobiology (Special Issue)

	267	less than 1 mm yr ⁻¹ (McKay et al. 2003), perchlorate is generally leached from
,	268	soil profiles to at least 50 cm depth (Jackson et al. 2015), presumably via
	269	exceedingly rare large rainfall events. In the Tindouf, significant rainfall events
,	270	are typical in the winter months, thus we hypothesize the sporadic perchlorate
,	271	abundances observed at 15-20 cm depth (from LOD to 2.5×10^{-3} mmol/kg), reflect
,	272	a localized hydrological control dominated by a vertical barrier at the hardpan
,	273	caliche. In addition to plant uptake (which does not apply to our sample sites),
,	274	local geomorphological effects have been shown to cause similar heterogeneity in
,	275	the Armargosa desert (Andraski et al. 2014). There, measured perchlorate
,	276	deposition fluxes of 3.4 ng cm ⁻² y ⁻¹ agree with higher-end theoretical predictions
,	277	of atmospheric perchlorate production from the Atacama desert (Catling et al.
	278	2010). Assuming these perchlorate production rates apply to the Tindouf, this
	279	yields an $\sim 10^3$ year accumulation time for the 2.5×10 ⁻³ mmol/kg observed at 20
,	280	cm depth. We speculate that the caliche layer plays a role in the concentration of
,	281	soil anions, absorbing moisture from significant rainfall events followed by
,	282	extreme evaporation, and that only very significant rainfall years would flush out
,	283	the entire system into the Draa River.
,	284	
,	285	4.1. Comparison with Other Proposed Mars Analog Sites
,	286	On Earth, nitrate, chloride, and perchlorate in arid and semi-arid soils are

287 known to be primarily of atmospheric origin (Michalski et al., 2004; Bao et al.,

288	2004). These ions are also highly water soluble and tend to accumulate in arid
289	and semi-arid environments (Walvoord et al., 2003 ; Jackson et al., 2015). As a
290	result, the ratio of these ions in desert soils can be used in the interpretation of the
291	aqueous processes in these areas. Fig. 5 shows the correlation between the
292	concentrations of oxyanions and chloride concentrations for sulfate, nitrate, and
293	perchlorate, for samples from Morocco (linear fit lines from Fig. 4) compared to
294	samples, from five terrestrial Mars analog sites (Stroble et al., 2013; Tamppari et
295	al., 2012), the Mars meteorite EETA790001 (Kounaves et al., 2014), and the
296	Mars Phoenix WCL analyses (Kounaves et al., 2010).
297	4.1.1. Atacama. Samples from the Atacama are similar to Morocco in their
298	NO ₃ /Cl ratios and correlation (Fig. 5a), but differ in their NO ₃ /ClO ₄ ratio (Fig. 7)
299	which is lower than in Morocco. The prolonged hyper-arid conditions in the
300	Atacama compared to Morocco may explain the lower NO ₃ /ClO ₄ ratio observed in
301	the Atacama. Since ClO_4^- is highly soluble and is quickly transported in the
302	presence of water, the prolonged hyper-arid conditions in this region would result
303	in the greater accumulation of ClO_4^- , reducing the NO ₃ /ClO ₄ ratio.
304	4.1.2. Beacon Valley. The Beacon Valley samples have comparable NO_3/Cl
305	and SO ₄ /Cl ratios to those observed in the Moroccan samples (Fig. 5b). However,
306	the correlations in both cases demonstrate a greater increase in oxyanion species
307	compared with Cl ⁻ in Beacon Valley. This consistently larger relative increase
308	associated with samples from Beacon Valley indicate a preference for
	14
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

3

5 6

Astrobiology

Submitted to Astrobiology (Special Issue)

309	accumulation of oxyanions compared to chloride. This may be due to the higher
310	elevation of Beacon Valley which results in less input of Cl ⁻ from ocean spray
311	and/or a more rapid accumulation of atmospherically derived oxyanion species.
312	Both NO_3^- and ClO_4^- are highly soluble, and their persistence in an environment is
313	indicative of the relative absence of aqueous transport processes. The correlation
314	between NO_3^- , ClO_4^- , and Cl for Beacon Valley falls in the center when compared
315	with the other investigated analog environments (Figs 6 and 7) suggesting that
316	Beacon Valley is an intermediate in terms of the processes driving ionic ratios in
317	these areas.
318	4.1.3. University Valley. The University Valley NO_3/ClO_4 ratios are the
319	most similar to the Morocco samples (Fig. 7), but no other similarities are
320	observed between the data sets. In general, oxyanion ratios and correlations are
321	much larger and steeper in University Valley than other analog sites (Fig. 5c).
322	This is similar to the observations for Beacon Valley, wherein oxyanions
323	accumulate and Cl ⁻ input is minimal, but extended to a more arid environment.
324	4.1.4. Taylor Valley. For Taylor Valley the NO_3^- is well correlated with Cl ⁻
325	$(R^2 = 0.90)$ with a comparable slope to that observed in the Moroccan samples,
326	but is relatively depleted in NO_3^- with respect to Cl^- (Fig. 5d). NO_3^- is similarly
327	well correlated to ClO_4^- ($R^2 = 0.85$) with the shallowest slope observed across all
328	investigated analog sites (Fig. 6), and a two order of magnitude shallower slope
329	than is observed in Morocco. In general, Oxyanion/Cl ratios are lower and
	15
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

		Astrobiology	Page 16 of 38
		Submitted to Astrobiology (Special Issue)	
	220	ovvenions tend to accumulate loss compared to CL in Taylor Valley than in	
	221	$\mathbf{M}_{\text{areases}} \text{ with the execution of an enrichment of ClO}^{-}$ relative to Cl ⁻ . This may	
)	331	Morocco, with the exception of an enrichment of ClO_4 relative to Cl . This may	
2	332	be the result of an increase in CI compared with NO ₃ in Taylor Valley, as a result	
5	333	of input from ocean water spray.	
) /	334	4.1.5. Victoria Valley. The Victoria Valley samples are the most similar of	
3	335	the investigated sites to the Moroccan samples (Fig. 5e). Specifically, comparable	
)	336	ratios are observed between the regions for NO_3/Cl and NO_3/ClO_4 (Fig. 7).	
<u>/</u> }	337	However, while NO ₃ /ClO ₄ ratios exhibit a similar correlation between the regions,	
5	338	Victoria Valley has an order of magnitude steeper slope in NO ₃ /Cl correlation	
, }	339	compared with Morocco. The similarity in ratios, but difference in linear fit for	
)	340	Victoria Valley samples is likely related to differences in post-depositional	
2	341	processes such as aqueous transport, which may be more complicated in Victoria	
5	342	Valley compared with Morocco in part due to influences from shallow	
) 7 }	343	groundwater and permafrost in this polar region (Levy et al, 2011; Marchant and	
)	344	Head, 2007).	
	345	4.2. Comparison to Direct Measurements on Mars Samples	
) 	346	Figure 5f shows our results in comparison with two direct measurements of	
) ,	347	soluble species in martian samples, one from the in-situ WCL analyses of martian	
3))	348	soil by the Phoenix Mars Lander (Kounaves et al., 2010) and the other from a	
2	349	carbonate clast in the Mars meteorite EETA79001 (Kounaves et al., 2014). In	
} 	350	general, oxyanion species are more concentrated in both the WCL and	
, ,			
})		40	
)		٦٥ Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801	
		,,,,	

Astrobiology

Submitted to Astrobiology (Special Issue)

351	EETA79001 samples, while Cl ⁻ is depleted. Of note is the similarity between the
352	relative $SO_4^{2^-}$, NO_3^{-} , and ClO_4^{-} values in EETA79001 measurements compared to
353	the Moroccan samples. In general, it is observed that SO ₄ /Cl, NO ₃ /Cl and
354	ClO ₄ /Cl ratios are consistently and similarly higher in EETA79001. Also, of note
355	is the large concentration of ClO_4^- that was measured by the Phoenix WCL
356	compared to EETA79001. This may be indicative of a steady increase in ClO_4^-
357	concentration over time as Cl^{-} has been shown to be easily oxidized to ClO_{4}^{-} on
358	mineral surfaces (Carrier and Kounaves, 2015). A similar tendency is noted in
359	the analog sites wherein ClO ₄ /Cl ratios increase with increasing aridity. This
360	observation supports the proposition that the higher aridity locales such as
361	University Valley can serve as analogs to more recent martian epochs while the
362	less arid Victoria Valley would serve as an analog to earlier epochs.
363	4.3. Comparison to The Martian Epochs
364	A summary of the martian epochs and their proposed corresponding
365	terrestrial analogs are shown in Fig. 8. If we consider the MDV as analogs to the
366	different martian epochs depending on the extent of aqueous influence, we find
367	that it decreases in the order University Valley > Beacon Valley > Victoria Valley
368	> Taylor Valley. In this way, University and Beacon Valley can be roughly
369	considered as analogs to the Amazonian/Hesperian epochs, and Taylor and
370	Victoria Valleys to the Hesparian/Noachian epochs. Due to the greater
371	similarities between the lower elevation Victoria Valley and the Moroccan
	17
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

372 samples as compared to the higher elevation University Valley samples, and the
373 likelihood that these similarities are the result of the greater influence of aqueous
374 processes in these regions, we argue that the Moroccan sample locations are
375 potential soil geochemistry analogs to the late Noachian epoch on Mars.

5. Conclusions

The utility of the Tindouf Basin region of southeastern Morocco as a more accessible analog with a similar soil geochemistry to the MDVs is demonstrated by the relative similarity of the distribution of ionic species between the Moroccan samples and other Mars analog sites. In general, samples from this region of Morocco show the greatest similarity with samples from Victoria Valley, Beacon Valley and the Atacama. Moroccan samples are consistently depleted in oxyanion species compared to University Valley and enriched compared with Taylor Valley. Specifically, NO₃/Cl ratios are comparable to many proposed Mars analog sites, with the strongest similarities observed with Victoria Valley and Atacama samples. The SO₄/Cl ratios are likewise similar to those from Beacon Valley, Victoria Valley, and in the Atacama. While perchlorate values in Morocco are typically lower than other analog sites, conditions in the region are sufficiently arid to retain oxychlorines at detectable levels. Processes that may have preferentially increased the perchlorate in other regions could include rapid aqueous accumulation and evaporation of the highly soluble oxychlorines, or the production by direct UV oxidation of chlorine in

Astrobiology

chloride-bearing minerals, as has been suggested to occur on Mars (Carrier and Kounaves, 2015). The perchlorate in the Morocco samples is most likely a result of slow accumulation via atmospheric production as occurs over most of the Earth (Catling *et al.*, 2010) though direct UV oxidation cannot be entirely ruled out. Acknowledgements We would like to thank Joseph Levy and the anonymous reviewers who helped improve this manuscript. We also thank the Ibn Battuta Centre in particular Gian Gabrile Ori and Kamal Taj-Edine for their assistance with logistics and fieldwork. In addition, we would like to thank the Moroccan military for access as well as Aubrey Zerkle and Gordon Fontaine for their assistance in the field. Disclosure Statement No competing financial interests exist. References Andraski, B. J., W. A. Jackson, T. L. Welborn, J. K. Böhlke, R. Sevanthi, and D.A. Stonestrom. (2014) Soil, Plant, and Terrain Effects on Natural Perchlorate Distribution in a Desert Landscape. J. Environ. Qual. 43:980-994 Aoudjehane, H.C., Avice, G., Barrat, J-A., Boudouma, O., Chen, G., Duke, M.J. M., Franchi, I.A., Gattacceca. J., Grady, M.M., Greenwood, R.C., Herd,

413	C.D.K., Hewins, R., Jambon, A., Marty, B., Rochette, P., Smith, C.L.,
414	Sautter, V., Verchovsky, A., Weber, P., and Zanda, B. (2012) Tissint
415	Martian Meteorite: A Fresh Look at the Interior, Surface, and Atmosphere of
416	Mars. Science 338:785-788.
417	Arvidson, R.E., Squyres, S.W., Bell, J.F., Catalano, J.G., Clark, B.C., Crumpler,
418	L.S., de Souza, P.A., Fairén, A.G., Farrand, W.H., Fox, V.K., Gellert, R.,
419	Ghosh, A., Golombek, M.P., Grotzinger, J.P., Guinness, E.A., Herkenhoff,
420	K.E., Jolliff, B.L., Knoll, A.H., Li, R., McLennan, S.M., Ming, D.W.,
421	Mittlefehldt, D.W., Moore, J.M., Morris, R.V., Murchie, S.L., Parker ,T.J.,
422	Paulsen, G, Rice, J.W., Ruff, S.W., Smith, M.D., and Wolff, M. J. (2014)
423	Ancient Aqueous Environments at Endeavour Crater, Mars. Science 343
424	(6169): 1248097.
425	Azua-Bustos, A., Caro-Lara, L., and Vicuna, R. (2015) Discovery and Microbial
426	Content of the Driest Site of the Hyperarid Atacama Desert, Chile. Environ.
427	Microbio.Rep. 7:388-394.
428	Bao H., Jenkins K.A., Khachaturyan M., and Díaz G.C. (2004) Different sulfate
429	sources and their post-depositional migration in Atacama soils. Earth
430	Planet. Sci. Lett. 224:577-587.
431	Bao H., and Gu B. (2004) Natural Perchlorate Has a Unique Oxygen Isotope
432	Signature. Environ. Sci. Technol., 38:5073-5077.

Astrobiology

Submitted to Astrobiology (Special Issue)

433	Bibring J.P., Langevin Y., Mustard J.F., Poulet F., Arvidson R., Gendrin A.,
434	Gondet B., Mangold N., Pinet P., Forget F., Berthe M., Bibring J.P., Gendrin
435	A., Gomez C., Gondet B., Jouglet D., Poulet F., Soufflot A., Vincendon M.,
436	Combes M., Drossart P., Encrenaz T., Fouchet T., Merchiorri R., Belluci G.,
437	Altieri F., Formisano V., Capaccioni F., Cerroni P., Coradini A., Fonti S.,
438	Korablev O., Kottsov V., Ignatiev N., Moroz V., Titov D., Zasova L.,
439	Loiseau D., Mangold N., Pinet P., Doute S., Schmitt B., Sotin C., Hauber E.,
440	Hoffmann H., Jaumann R., Keller U., Arvidson R., Mustard J.F., Duxbury
441	T., Forget F., and Neukum G. (2006) Global mineralogical and aqueous mars
442	history derived from OMEGA/Mars Express data. Science, 312:400-4.
443	Carrier B.L., and Kounaves S.P. (2015) The origins of perchlorate in the Martian
444	soil. Geophys. Res. Lett. 42:3739-3745.
445	Cary, J.W., Papendick, R.I., and Campbell, G.S. (1979) Water and Salt Movement
446	in Unsaturated Frozen Soil: Principles and Field Observations. Soil Sci. Soc.
447	Am. J. 43:3-8.
448	Catling D.C., Claire M.W., Zahnle K.J., Quinn R.C., Clark B.C., Hecht M.H., and
449	Kounaves S. (2010) Atmospheric origins of perchlorate on Mars and in the
450	Atacama. J. Geophys. Res. 115:E00E11.
451	Claridge, G.G.C., and Campbell, I.B. (1977) The salts in Antarctic soils, their
452	distribution and relationship to soil processes. <i>Soil Science</i> , 123:377-384.

		Astrobiology	Page 22 of 38
		Submitted to Astrobiology (Special Issue)	
	152	Diskingon W.W. and Roson M.R. (2002) Antaratia Parmafrast: An Analogua	
	455	Dickinson, w.w., and Rosen, M.K. (2005) Antarctic Fermanost. An Analogue	
)	454	for Water and Diagenetic Minerals on Mars. Geology 31:199-202.	
1 2 3	455	Ehlmann, B.L., Berger, G., Mangold, N., Michalski, J.R., Catling, D.C., Ruff,	
5 4 5	456	S.W., Chassefière, E., Niles, P.B., Chevrier, V., and Poulet, F. (2013)	
5 7	457	Geochemical Consequences of Widespread Clay Mineral Formation in Mars'	
3 9)	458	Ancient Crust. Space Sci. Rev. 174:329-364.	
1 2	459	Ewing, S.A., Sutter, B., Owen, J., Nishiizumi, K., Sharp, W., Cliff, S.S., Perry,	
3 4 5	460	K., Dietrich, W., McKay, C.P., and Amundson, R. (2006) A threshold in soil	
5 6 7	461	formation at Earth's arid-hyperarid transition. Geochim. Cosmochim. Acta,	
3 9	462	70:5293-5322.	
1 2	463	Hartley, A.J., Chong, G., Houston, J., and Mather, A.E. (2005) 150 Million Years	
3 4 5	464	of Climatic Stability: Evidence from the Atacama Desert, Northern Chile. J.	
5 6 7	465	Geol. Soc. 162:421-424.	
3 9)	466	Jackson, W.A., Davila, A.F., Böhlke, J.K., Sturchio, N.C., Sevanthi, R., Estrada,	
1 2	467	N., Brundrett, M., Lacelle, D., McKay, C.P., Poghosyan, A., Pollard, W., and	
3 4 5	468	Zacny, K. (2016) Deposition, accumulation, and alteration of Cl^{-} , NO_{3}^{-} ,	
5 6 7	469	ClO_4^- and ClO_3^- salts in a hyper-arid polar environment: Mass balance and	
3 9	470	isotopic constraints. Geochim. Cosmochim. Acta 182:197-215.	
1 2	471	Jackson, W.A., Böhlke, J. K., Andraski, B. J., Fahlquist, L., Bexfield, L., Eckardt,	
3 4 5	472	F.D., Gates, J.B., Davila, A.F., McKay, C.P., Rao, B., Sevanthi, R.,	
6 7			
>))		22	
,		Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801	

Astrobiology

Submitted to Astrobiology (Special Issue)

473	Rajagopalan, S., Estrada, N., Sturchio, N., Hatzinger, P.B., Anderson, T.A.,
474	Orris, G., Betancourt, J., Stonestrom, D., Latorre, C., Li, Y., and Harvey,
475	G.J. (2015) Global patterns and environmental controls of perchlorate and
476	nitrate co-occurrence in arid and semi-arid environments. Geochim.
477	Cosmochim. Acta 164:502-522.
478	Jackson, W.A., Anderson, T.A., Tian, K., and Tock, R.W. (2005) The Origin of
479	Naturally Occurring Perchlorate : The Role of Atmospheric Processes.
480	Environ. Sci. 39:1569-1575.
481	Jordan, T.E., Kirk-Lawlor, N.E., Blanco, P.N., Rech, J.A., and Cosentino, N.J.
482	(2014) Landscape Modification in Response to Repeated Onset of Hyperarid
483	Paleoclimate States since 14 Ma, Atacama Desert, Chile. Bull. Geol. Soc.
484	<i>Am.</i> 126:1016-1046.
485	Keys J.R., and Williams K. (1981) Origin of crystalline, cold desert salts in the
486	McMurdo region, Antarctica. Geochim. Cosmochim. Acta 45:2299-2309.
487	Kounaves, S.P., Hecht, M.H., Kapit, J., Gospodinova, K., DeFlores, L., Quinn,
488	R.C., Boynton, W.V., Clark, B.C., Catling, D.C., Hredzak, P., Ming, D.W.,
489	Moore, Q., Shusterman, J., Stroble, S., West, S.J., and Young, S.M.M.
490	(2010) Wet Chemistry experiments on the 2007 Phoenix Mars Scout Lander
491	mission: Data analysis and results. J. Geophys. Res., 115:E00E10.
492	Kounaves, S.P., Carrier, B.L., O'Neil, G.D., Stroble, S.T., and Claire, M.W.
	23
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

		Astrobiology	Page 24 of 38
		Submitted to Astrobiology (Special Issue)	
	493	(2014) Evidence of martian perchlorate, chlorate, and nitrate in Mars	
	101	meteorite EET A 70001: Implications for oxidants and organics. <i>Learns</i>	
)	405	220-206 212	
3	493	229.200-213.	
4 5	496	Langevin, Y., Poulet. F., Bibring. JP., and Gondet. B. (2005) Sulfates in the	
6 7	497	North Polar Region of Mars Detected by OMEGA/Mars Express. Science,	
3))	498	307:1584-1586.	
2 2	499	Laskar, J., A. C. M. Correia, M. Gastineau, F. Joutel, B. Levrard, and P. Robutel	
3 1 5	500	(2004), Long term evolution and chaotic diffusion of the insolation quantities	
2 7	501	of Mars, <i>Icarus</i> , 170:343-364.	
3))	502	Levy J.S., Fountain A.G., Gooseff M.N., Welch K.A., and Lyons W.B. (2011)	
2 2	503	Water tracks and permafrost in Taylor Valley, Antarctica: Extensive and	
3 1 5	504	shallow groundwater connectivity in a cold desert ecosystem. Geological	
5 7	505	Society of America Bulletin, 123:2295-2311.	
3))	506	Mahaney, W. (2001) Morphogenesis of Antarctic Paleosols: Martian Analogue.	
 2 3	507	Icarus, 154:113-130.	
5 1 5	508	Mangold, N., Carter, J., Poulet, F., Dehouck, E., Ansan, V., and Loizeau, D.	
5 7	509	(2012) Late Hesperian Aqueous Alteration at Majuro Crater, Mars. Planet.	
))	510	<i>Space Sci.</i> 72:18-30.	
 <u>2</u> 3	511	Marchant, D.R., and Head, J.W. (2007) Antarctic dry valleys: Microclimate	
4 5	512	zonation, variable geomorphic processes, and implications for assessing	
5 7 }			
)		24	
		Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801	

Astrobiology

Submitted to Astrobiology (Special Issue)

513	climate change on Mars. Icarus, 192:187-222.
514	McKay C.P., Friedmann E.I., Gómez-Silva B., Cáceres-Villanueva L., Andersen
515	D.T., and Landheim R. (2003) Temperature and Moisture Conditions for
516	Life in the Extreme Arid Region of the Atacama Desert: Four Years of
517	Observations Including the El Niño of 1997–1998. Astrobiology, 3:393-406.
518	McLennan, S.M., Bell, S.F., Calvin, W.M., Christensen, P.R., Clark, B.C., de
519	Souza, P.A., Farmer, J., Farrand, W.H., Fike, D.A., Gellert, R., Ghosh, A.,
520	Glotch, T.D., Grotzinger, J.P., Hahn, B., Herkenhoff, K.E., Hurowitz, J.A.,
521	Johnson, J.R., Johnson, S.S., Jolliff, B., Klingelhofer, G., Knoll, A.H.,
522	Learner, Z., Malin. M.C., McSween, Jr H.Y., Pocock, J., Ruff, S.W.,
523	Soderblom, L.A., Squyres, S.W., Tosca, N.J., Watters, W.A., Wyatt, M., and
524	Yen, A. (2005) Provenance and Diagenesis of the Evaporite-Bearing Burns
525	Formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240:95-121.
526	Michalski, G., Böhlke, J.K., and Thiemens, M. (2004) Long term atmospheric
527	deposition as the source of nitrate and other salts in the Atacama Desert,
528	Chile: New evidence from mass-independent oxygen isotopic compositions.
529	Geochim. Cosmochim. Acta, 68:4023-4038.
530	Navarro-González, R., Rainey, F.A., Molina, P., Bagaley, D.R., Hollen, B.J., de la
531	Rosa, J., Small, A.M., Quinn, R.C., Grunthaner, F.J., Cáceres, L., Gomez-
532	Silva, B., and McKay, C.P. (2003) Mars-Like Soils in the Atacama Desert,
	25 Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

		Astrobiology	Page 26 of 38
		Submitted to Astrobiology (Special Issue)	
	533	Chile, and the Dry Limit of Microbial Life. Science, 302:1018-1021.	
	534	Ori, G.G., Taj-Eddine, K., and Dell'Arciprete, I. (2011) The Ibn Battuta Centre	
) >	535	(Marrakech, Morocco) for Testing Lander Science, Operations and Landing	
- 3 4	536	Systems, in Analogue Sites for Mars Missions: MSL and Beyond, LPI	
5 7	537	Contribution No. 161, Abstract 6006.	
3	538	Peel, M.C., Finlayson, B.L., and McMahon, T.A. (2007) Updated World Map of	
) <u>2</u>	539	Köppen-Geiger Climate Classification. Hydrol. Earth Sys. Sci. 11:1633-44.	
3 1 5	540	Selley, R.C. (1997) Chapter 1 The Sedimentary Basins of Northwest Africa, In	
5 7 3	541	Sedimentary Basins of the World Vol. 3: African Basins, 3-16.	
) 	542	Stroble, S.T., McElhoney, K.M., and Kounaves, S.P. (2013) Comparison of the	
 <u>2</u> 3	543	Phoenix Mars Lander WCL soil analyses with Antarctic Dry Valley soils,	
4 5	544	Mars meteorite EETA79001 sawdust, and a Mars simulant. Icarus, 225:933-	
3 7 3	545	939.	
))	546	Tamppari, L.K., Anderson, R.M., Archer, P.D., Douglas, S., Kounaves, S.P.,	
2	547	McKay, C.P., Ming, D.W., Moore, Q., Quinn, J.E., Smith, P.H., Stroble, S.,	
4 5	548	and Zent, A.P. (2012) Effects of extreme cold and aridity on soils and	
) 7	549	habitability: McMurdo Dry Valleys as an analogue for the Mars Phoenix	
))	550	landing site. Antarctic Science, 24:211-228.	
 <u>2</u> 3	551	Toner, J.D., Sletten, R.S., and Prentice, M.L. (2013) Soluble salt accumulations in	
4 5	552	Taylor Valley, Antarctica: Implications for paleolakes and Ross Sea Ice	
3			
)		26	
		Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801	

Astrobiology

553	Sheet dynamics. J. Geophys. Res. Earth Sur. 118:198-215.
554	Toon, O.B., Pollack, J.B., Ward, W., Burns, J.A., and Bilski, K. (1980) The
555	Astronomical Theory of Climatic Change on Mars. <i>Icarus</i> 44:552-607.
556	Touma, J, and Wisdom, J. (1993) The Chaotic Obliquity of Mars. Science
557	259:1294-1297.
558	Walvoord M.A., Phillips F.M., Stonestrom D.A., Evans R.D., Hartsough P.C.,
559	Newman B.D., and Striegl R.G. (2003) A Reservoir of Nitrate Beneath
560	Desert Soils. Science, 302:1021-1024.
561	Ward, W. (1973) Large-Scale Variations in the Obliquity of Mars. Science
562	181:260-262.
563	Wray, J.J., Noe Dobrea, E.Z., Arvidson, R.E., Wiseman, S.M., Squyres, S.W.,
564	McEwen, A.S., Mustard, J.F., and Murchie, S.L. (2009) Phyllosilicates and
565	sulfates at Endeavour Crater, Meridiani Planum, Mars. Geophys. Res. Lett.,
566	36:L21201.
567	Zhu B., and Yang X. (2010) The origin and distribution of soluble salts in the
568	sand seas of northern China. <i>Geomorphology</i> , 123:232-242.
569	
	27 Mary Ann Liebert Inc. 140 Huguenot Street New Rochelle, NY 10801

Astrobiology

Submitted to Astrobiology (Special Issue)

Table 1: Parameters and reagents used for IC analysis of samples. Columns used for all samples were 250mm x 4mm

573

Astrobiology

574	Table 2: Measured anion concentration data for the Aglâb and Ga'ïdat region
575	samples

		Surfac	e (0-5 cm) Ion Co	ncentration (m	nmol/kg)	
Region	Sample	Chloride	Sulfate	Nitrate	Chlorate	Perchlorate
	1a	3.42 ± 0.123	2.85 ± 0.050	0.57 ± 0.050	0.09 ± 0.010	ND
	1b	5.63 ± 0.052	15.43 ± 0.111	1.06 ± 0.084	0.090 ± 0.008	ND
	2a	2.34 ± 0.045	1.55 ± 0.013	0.38 ± 0.015	0.06 ± 0.004	ND
	2b	2.55 ± 0.008	0.20 ± 0.006	0.26 ± 0.005	0.03 ± 0.002	ND
	3a	0.87 ± 0.023	1.00 ± 0.007	0.45 ± 0.009	0.04 ± 0.002	ND
Aglâb	3b	0.45 ± 0.005	0.23 ± 0.002	0.34 ± 0.002	0.02 ± 0.001	ND
	4a 🔇	44.52 ± 0.395	2.34 ± 0.085	4.69 ± 0.112	0.20 ± 0.025	ND
	4b	282.47 ± 1.687	36.59 ± 0.331	1.45 ± 0.203	ND	ND
	5a	26.51 ± 0.073	11.13 ± 0.049	0.87 ± 0.021	0.11 ± 0.009	ND
	5b	23.97 ± 0.096	11.13 ± 0.024	1.54 ± 0.042	0.12 ± 0.011	ND
	6a	1.68 ± 0.148	1.94 ± 0.145	0.37 ± 0.027	ND	ND
	7a	3.86 ± 0.051	0.72 ± 0.012	0.64 ± 0.015	0.06 ± 0.004	ND
	7b	3.58 ± 0.019	0.14 ± 0.002	0.46 ± 0.003	ND	ND
	8a	0.31 ± 0.019	0.32 ± 0.005	0.16 ± 0.007	0.03 ± 0.001	ND
	9a	0.29 ± 0.019	0.22 ± 0.006	0.15 ± 0.008	0.04 ± 0.003	ND
Ga'ïdat	10a	0.45 ± 0.020	0.28 ± 0.007	0.27 ± 0.007	0.03 ± 0.002	ND
	11a	0.34 ± 0.020	0.30 ± 0.008	0.28 ± 0.007	0.05 ± 0.002	ND
	11b	0.14 ± 0.003	0.13 ± 0.002	0.10 ± 0.002	0.03 ± 0.001	ND
	12a	20.76 ± 0.170	1.97 ± 0.045	0.76 ± 0.043	0.09 ± 0.013	ND
	12b	25.31 ± 0.099	1.96 ± 0.017	0.88 ± 0.023	0.10 ± 0.010	ND
		•				
		Depth	(15-20 cm)Ion Co	oncentration (n	nmol/kg)	
Region	Sample	Chloride	Sulfate	Nitrate	Chlorate	Perchlorate
	1a	102.89 ± 8.882	4.10 ± 1.316	11.96 ± 1.071	ND	4.7E-04 ± 4.80E-05
	1b	14.86 ± 0.128	1.31 ± 0.007	1.17 ± 0.019	0.06 ± 0.006	2.56E-04 ± 4.60E-05
	2a	131.89 ± 2.542	60.01 ± 1.256	11.70 ± 0.389	ND	5.04E-04 ± 4.69E-05
	2b	87.41 ± 1.781	11.97 ± 0.199	13.23 ± 0.175	ND	5.20E-04 ± 4.55E-05
	3a	2.67 ± 0.087	3.79 ± 0.104	1.26 ± 0.032	0.06 ± 0.008	ND
Aglâb	3b	0.18 ± 0.004	0.11 ± 0.002	0.11 ± 0.003	0.02 ± 0.001	ND
	4a	89.09 ± 62.724	31.00 ± 2.776	27.87 ± 15.474	ND	1.28E-03 ± 4.56E-05
	4b	1460.84 ± 15.221	231.30 ± 1.165	6.33 ± 0.818	ND	ND
	5a	151.76 ± 4.374	55.72 ± 1.091	8.80 ± 0.442	ND	4.38E-04 ± 1.23E-04
	5b	55.86 ± 1.682	37.58 ± 1.562	3.26 ± 0.157	ND	ND
	6a	1.49 ± 0.081	6.70 ± 0.032	0.13 ± 0.025	ND	ND
	7a	15.03 ± 0.384	1.27 ± 0.106	4.57 ± 0.260	ND	2.50E-03 ± 2.02E-05
	7b	165.20 ± 1.366	24.68 ± 0.071	24.65 ± 0.094	ND	4.25E-04 ± 2.12E-05
	8a	3.17 ± 0.081	3.34 ± 0.039	1.60 ± 0.034	0.07 ± 0.011	ND
	9a	21.75 ± 0.583	63.88 ± 0.440	7.79 ± 0.241	ND	ND
Ga'ïdat	10a	11.08 ± 0.206	14.73 ± 0.316	6.14 ± 0.123	ND	2.72E-04 ± 2.02E-05
	11a	2.71±0.064	3.66 ± 0.042	1.49 ± 0.026	0.01 ± 4.83E-04	ND
	11b	0.92 ± 0.006	1.03 ± 0.005	0.57 ± 0.003	0.03 ± 0.001	ND
	12a	980.52 ± 40.339	163.47 ± 10.130	121.07 ± 7.713	0.56 ± 0.148	1.57E-03 ± 3.35E-05
	12b	242.80 ± 12.422	12.85 ± 0.628	21.82 ± 1.211	ND	9.01E-04 ± 4.94E-05

78	Table 3.	nН	conductivity	and	argin	ci70	distribution	data f	or the	Λ alâh	and
0	Table J.	pn,	conductivity,	and	gram	SILC	uistitution	uata r	or the	ngiau a	anu

Ga'ïdat region samples

Desien	Consula	р	н	EC (μ	ıS/cm)	2000-75 µ	ւm (wt %)	< 75 μm	(wt %)
Region	Sample	0-5 cm	15-20 cm	0-5 cm	15-20 cm	0-5 cm	15-20 cm	0-5 cm	15-20 cm
	1a	6.96	6.87	146.51	1373.16	82.7%	95.0%	17.3%	5.0%
	1b	7.64	7.68	480.07	243.56	87.4%	90.0%	12.6%	10.0%
	2a	7.56	6.92	123.40	2487.04	74.8%	96.0%	25.2%	4.0%
	2b	7.87	7.08	119.42	1374.29	86.9%	90.7%	13.1%	9.3%
	3a	6.86	6.81	105.14	209.37	79.9%	91.2%	20.1%	8.8%
Aglâb	3b	7.13	7.24	57.23	45.56	93.0%	94.0%	7.0%	6.0%
samples	4a	7.34	6.63	594.49	7702.38	87.9%	92.0%	12.1%	8.0%
	4b	8.04	7.12	4033.56	17484.78	92.2%	92.3%	7.8%	7.7%
	5a	7.01	6.48	126.12	3178.29	84.6%	94.1%	15.4%	5.9%
	5b	6.24	6.39	613.24	1418.46	81.6%	92.5%	18.4%	7.5%
	6a	6.91	9.06	110.68	267.70	78.5%	88.4%	21.5%	11.6%
	average	7.23 ± 0.52	7.12 ± 0.74	591.8 ± 1160.6	3253.1 ± 5204.6	84.5% ± 5.7%	92.4% ± 2.3%	15.5% ± 5.7%	7.6% ± 2.3%
	7a	6.91	7.10	70.01	205.79	82.8%	95.1%	17.2%	4.9%
	7b	7.25	6.90	98.16	955.86	87.7%	93.2%	12.3%	6.8%
	8a	6.91	7.17	1077.74	346.78	73.9%	90.2%	26.1%	9.8%
	9a	7.46	7.12	75.53	534.32	77.5%	89.4%	22.5%	10.6%
Ga'ïdat	10a	7.45	7.33	59.55	199.91	74.2%	90.1%	25.8%	9.9%
samples	11a	7.63	6.84	418.21	3330.37	84.4%	91.9%	15.6%	8.1%
	11b	7.11	7.11	68.08	97.41	83.6%	85.3%	16.4%	14.7%
	12a	6.44	6.34	540.50	2783.86	81.7%	89.2%	18.3%	10.8%
	12b	7.72	6.87	508.47	3442.72	87.0%	92.2%	13.0%	7.8%
	average	7.21 ± 0.41	6.97 ± 0.29	324.0 ± 348.3	1321.9 ± 1430.8	81.4% ± 4.8%	90.7% ± 2.8%	18.6% ± 5.1%	9.3% ± 2.8%
				30					
ľ	Mony An								

Astrobiology

Submitted to Astrobiology (Special Issue)

583	Figure Legends
505	rigure Legenus

584 Figure 1: Sampling locations in the Tindouf Basin region in southeastern585 Morocco.

Figure 2: Image showing the two locations where pits were dug, the first at a
location in which the soil was covered with desert pavement (foreground) and a
second one nearby without substantial pavement (upper left corner).

589 Figure 3: The interquartile range (IQR), normalized against the total measured 590 anionic content, for the distribution of (a) Nitrate, (b) Sulfate, and (c) Chloride

591 Figure 4: Logarithmic plot showing the linear correlation (line) of the

592 concentrations of sulfate (blue), nitrate (red), and perchlorate (green), with the

593 concentration of chloride for the Moroccan soil samples from this study.

594 Figure 5: Logarithmic plots of oxyanion vs chloride concentrations for sulfate

595 (blue), nitrate (red), and perchlorate (green), for samples from Morocco (linear fit

596 lines from Fig. 3) compared to samples, from (a) Atacama (b) Beacon Valley (c)

597 University Valley (d) Taylor Valley (e) Victoria Valley (f) Mars, (symbols).

598 Figure 6: Correlation of nitrate and perchlorate concentrations for all the Mars599 analog sites in this study.

Figure 7: Correlation of NO_3/CIO_4 and CI/NO_3 average ratios for each martian analog site.

Figure 8: Proposed martian epochs most relevant to "Mars analog sites", basedon soil anion geochemistry and aridity .

7

Astrobiology

Submitted to Astrobiology (Special Issue)

Figure 3 609

Submitted to Astrobiology (Special Issue)

Astrobiology

Astrobiology

Submitted to Astrobiology (Special Issue)

	Noachian	Hesperian	Amazonian
Morocco			
Taylor			
Victoria			
Atacama			
Beacon			
University			
EETA79001			
Phx-WCL			
Mary An	n Liebert Inc. 140 L	38 Iuguenot Street	Jew Rochelle, NV 10801
wary An	in Liebert, Inc., 140 F	iuguenot Street, M	New Rochelle, NY 10801