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ABSTRACT. Obtaining accurate information on the distribution, density, and abundance of animals is an important first step toward
their conservation. Methodological approaches using automatic acoustic recorders for species that communicate acoustically are gaining
increased interest because of their advantages over traditional sampling methods. In this study, we created and evaluated a protocol to
estimate population density, which can be used to compute abundance of terrestrial sound-producing animals from single automatic
acoustic recorders and using an automatic detection algorithm. The protocol uses cue rates from the target species, environmental
conditions, and an estimate of the distance of the individual to the recorder based on the power of the received sound. We applied our
protocol to estimate the density of a Hawaiian forest bird species (Hawaiˊi ˊAmakihi [Chlorodrepanis virens]) on the island of Hawaiˊi,
USA. We validated our approach by comparing our density estimates with those calculated at the same stations using a traditional
point-transect distance sampling method based on human observations. Overall density estimates based on recorded signals were lower
than those based on human observations, but 95% confidence intervals of the two density estimates overlapped. This study presents a
relatively simple but effective protocol for estimating animal density using single automatic acoustic recorders. Our protocol may easily
be adapted to other sound-emitting terrestrial animals.

Densité d'animaux terrestres émettant des sons estimée au moyen d'enregistreurs audios
automatiques et d'échantillonnage fondé sur la distance
RÉSUMÉ. L'obtention de données précises sur la répartition, la densité et l'abondance d'animaux est une première étape importante
en vue de leur conservation. Les approches méthodologiques qui utilisent des enregistreurs audios automatiques pour les espèces
communiquant par sons gagnent en intérêt en raison de leurs avantages par rapport aux méthodes d'échantillonnage traditionnelles.
Dans la présente étude, nous avons créé et évalué un protocole visant à estimer la densité de population, laquelle peut ensuite être
utilisée pour calculer, au seul moyen d'enregistreurs audios automatiques et d'un algorithme de détection automatique, l'abondance
d'animaux terrestres émettant des sons. Le protocole repose sur le taux de signaux enregistrés d'espèces cibles, les conditions
environnementales et une estimation de la distance de l'individu à l'enregistreur fondée sur la puissance du signal enregistré. Nous avons
appliqué notre protocole pour estimer la densité d'une espèce d'oiseau forestière hawaïenne (Amakihi familier [Chlorodrepanis virens]),
sur l'île d'Hawaii, aux États-Unis. Nous avons validé notre approche en comparant les estimations de densités avec celles calculées aux
mêmes stations au moyen d'une méthode d'échantillonnage traditionnelle de points d'écoute et de transects fondée sur la distance
(données récoltées par des personnes). Les estimations de densité basées sur les signaux enregistrés étaient globalement plus faibles que
celles fondées sur les observations obtenues par des personnes, mais les intervalles de confiance à 95 % des deux types d'estimations se
chevauchaient. Notre étude présente un protocole relativement simple mais efficace pour estimer la densité d'animaux au seul moyen
d'enregistreurs audios automatiques. Ce protocole peut facilement être adapté pour d'autres animaux terrestres qui émettent des sons.
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INTRODUCTION
Wildlife management and conservation is increasingly important
as animal populations continue to decline across the globe. To
develop effective management strategies for a given species, it is
necessary to have accurate information on its distribution and

abundance. The estimation of absolute abundance of animals is
a topic that has received much attention by both researchers and
managers (Burnham et al. 1980, Seber 1986, Buckland et al. 2015).
Having accurate information on the population size of a species
is the first step to tracking population trends and assessing the
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need and direction of management actions. Several methods have
been developed to produce accurate abundance estimates and
account for methodological problems, especially imperfect
detection (MacKenzie and Kendall 2002, Kellner and Swihart
2014, Dénes et al. 2015). This is critical because imperfectly
detecting animals can result in biased density estimates (Verner
1985, Marques et al. 2017) and lead to inappropriate conservation
and management strategies.  

Distance sampling is a widely used methodology for the estimation
of animal population size (Buckland 2006, Camp et al. 2009).
Because the probability of detecting an animal decreases with
distance from an observer, functions that describe the probability
of detection for each species of interest given its distance are
modeled. This allows density and abundance estimation even when
not every individual is detected in the sampling area (Buckland et
al. 2001, 2015). The point-transect method, whereby an observer
estimates the radial distance to each individual at points along a
transect for a predetermined period of time, is a commonly used
form of distance sampling (Buckland 2006). However, this method
is sensitive to the experience and knowledge of the observer
(Alldredge et al. 2007, 2008), and getting sufficient experienced
observers to perform surveys can be challenging, especially for
long-term monitoring programs. In addition, many animals
inhabit remote areas that are difficult and expensive to access. This
may severely limit the frequency of surveys and underdetect species
whose activity levels do not coincide with the limited survey
periods, especially species that are uncommon or rare, thereby
resulting in a reduced sample size of detections to levels below what
are required for reliable density estimation. An alternative to point-
transects based on human detections that has become recently
available is passive acoustic monitoring (e.g., Celis-Murillo et al.
2009, Dawson and Efford 2009, Marques et al. 2013, Shonfield
and Bayne 2017). Many animals, including birds, cetaceans,
amphibians, and insects, communicate primarily with sound and
are more often detected by their sound rather than visually,
especially forest birds (Camp et al. 2016); thus, acoustic cues may
be used to determine animal density in sound-producing animal
species.  

Passive acoustic monitoring systems present several advantages
over human observers (Marques et al. 2013). First, they are highly
amenable to automated data collection over multiple points in time
at a location, and therefore may be better able to detect uncommon
species and species whose activity levels vary within and among
days. Second, some factors that affect detection probability by
automated systems may be less variable than those related to
human observers, given the large variability in detection associated
with different observers (Faanes and Bystrak 1981). Thus,
automatic detectors may provide more comparable estimates
among sampling units that are replicated either temporally or
spatially. Also, unlike most visual surveys, passive acoustic surveys
are able to operate under any light condition (e.g., both day and
night, or when visibility is restricted, such as in fog) and in difficult
working environments for human observers (e.g., remote locations
or hazardous areas). Third, the acoustic information collected by
the recorders can be quantified more objectively and data can be
revisited. Lastly, automatic acoustic monitoring may be less
invasive and disruptive to animals than other methods because
humans are not present while data are being collected. All these
characteristics make passive acoustic systems excellent candidates

for long-term and large-scale monitoring of animal populations.
However, there are still difficulties that have prevented their
widespread use beyond simple estimates of presence–absence. For
example, acoustic recording generates massive amounts of data
that are very time-consuming to manually process. Even though
estimating the number of temporal revisits needed for detection
probability can reduce manual processing, this approach and the
design of algorithms that automatically identify target species are
often beyond the capability of many managers (e.g., Celis-Murillo
et al. 2009, Dawson and Efford 2009).  

Density estimation using passive acoustic recorders has received
much attention for aquatic species (e.g., Van Paijs et al. 2009,
Marques et al. 2013). Several approaches have been taken in the
marine environment to estimate detection probabilities using
single sensors, including using static data loggers (Kyhn et al.
2012), fixed sensors (Küsel et al. 2011), or echolocation clicks
(Hildebrand et al. 2015). However, studies focusing on terrestrial
species are scarce. Previous studies that have aimed to estimate
terrestrial animal density using passive acoustic monitoring have
used different approaches such as deploying an array of recorders
(see the review by Blumstein et al. 2011), using a capture-recapture
approach (Dawson and Efford 2009, Stevenson et al. 2015),
pairing point count data from humans and acoustic recorders
(van Wilgenburg et al. 2017), or using calibration exercises, where
a model of the number of detected cues as a function of density
(using areas where the density is known) is applied to estimate
density in new areas (Oppel et al. 2014). However, the first two
methods require several recording devices per site, and the last
method requires areas with known animal density. Our main
objective is to create and evaluate a protocol to estimate the
density of sound-producing animals from single automatic
acoustic recorders (see also Harris et al. 2013, van Wilgenburg et
al. 2017) using an automatic detection algorithm. As a case study,
we applied our protocol to the density estimation of a Hawaiian
forest bird on the island of Hawaiˊi, USA. We examined the
effectiveness of our approach by comparing our density estimates
with those calculated using standard human-based point-transect
counts conducted at the same location and time.

METHODS

Study area and species
Our study was performed in two native forests on the island of
Hawaiˊi, USA. The first was located on Mauna Loa Volcano (19°
39‛ N, 155°21‛ W) in an area comprised of dozens of similarly
aged forest fragments (i.e., kīpuka) that were isolated by lava flows
approximately 150 years ago. The second study area was located
within the Hakalau Forest National Wildlife Refuge (hereafter
Hakalau forest; 19°47' N, 155°19' W). Both areas are native
evergreen forests dominated by tall-statured (15–25 m) ˊōhiˊa
(Metrosideros polymorpha) and koa (Acacia koa) trees. Density
estimates were performed only on the data from Hakalau forest,
while data from Mauna Loa forest was used to calibrate the model
(see Step I); however, the habitat is the same in both areas, and
the forest structure is very similar (Sebastián-González et al.
2018).  

We studied a native Hawaiian forest bird species that is widely
distributed across the study areas. The Hawaiˊi ˊAmakihi
(Chlorodrepanis virens) is a generalist honeycreeper that consumes
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nectar, fruits, and invertebrates (Lindsey et al. 1998). Like other
oscine passerines, it learns song primarily through cultural
transmission (Lynch 1996). Its most common call is very similar
between different populations within the island (authors, personal
observations). This call is short (duration: 0.48 ± 0.11 s), has a
peak frequency ranging from 4087 to 5402 Hz (Sebastián-
González et al. 2018) (Fig. 1), and is produced by both sexes year-
round. ˊAmakihi occur in high densities in some areas of the
island, which facilitates data collection for this species and makes
it a good study model for our objective.

Fig. 1. Picture and spectrogram of an ˊamakihi at the study
area.

Density estimation using human surveys
Field surveys
Bird density estimation by field observers was accomplished using
point-transect distance sampling methods along a linear transect
in the Hakalau forest (see Camp et al. 2016 for details). This
transect is part of a sampling network in an area that has been
surveyed annually since 1987. Surveys were conducted at eight
independent stations separated by 150 m. On 27 and 31 July 2015,
five experienced bird surveyors performed 8-min counts at each
station between 0700 and 1100 hours. Surveyors identified the
distance to each individual and the method of identification
(visually or aurally). To increase the number of surveys, each
station was surveyed several times the same day by different
observers (between four and six times), with a minimum time
difference between surveys of 30 min to ensure independence.
Each station was surveyed 9–10 times over the two survey days
(Table A1.1).

Statistical analysis
Density estimates using all data (auditory and visual) and the
auditory-only detections from the standard point-transect counts
were obtained using methods described in Camp et al. (2016).
Per-station sampling effort equaled the number of times the
station was surveyed. A species-specific detection function was
modeled with program DISTANCE, version 7.1, release 1
(Thomas et al. 2010). The probability of detection was used to
estimate bird density (birds ha−1). Candidate models for the
detection function were limited to half- normal and hazard-rate
detection functions with expansion series of order two (Buckland
et al. 2001) (half-normal was paired with cosine and Hermite
polynomial adjustments, and hazard-rate was paired with cosine

and simple polynomial adjustments). Each detectability model in
the candidate set was evaluated using information theoretic
methods, where we selected the model with the lowest Akaike
information criterion corrected for small sample sizes (AICc).
Variances and confidence intervals were derived using bootstrap
methods with 999 replicates. Buckland et al. (2001, 2004, 2015)
and Thomas et al. (2010) describe distance-sampling procedures
and analyses in detail.

Density estimation using bioacoustics
Our procedure for estimating bird density using bioacoustics had
six steps (Fig. 2). To summarize, we recorded the acoustic signals
and eliminated files with unfavorable weather conditions. Next,
we automatically detected the calls or songs of our target species
from the recordings using a published algorithm with measured
performance (Sebastián-González et al. 2015). Then, we
estimated the distance from the vocalizing individual to the
recorder using field data on the relationship between the power
of the sound (dB) and its distance to the bird (e.g., Efford et al.
2009) while taking into account weather variables. Finally, we
used this information along with the cue rate (i.e., number of
vocalizations per time unit) to calculate bird density using a
similar approach to the point-transect distance sampling method
outlined in the section Density estimation using human surveys 
(Gates and Smith 1972, Buckland 2006).

Fig. 2. Methodological steps suggested to estimate density from
sound-emitting species.

Step I: Acoustic recording
We collected acoustic data using automatic acoustic recorders
(Songmeter SM2, Wildlife Acoustics Inc.) between 27 July and
17 August 2015 (see table A1.1 for acoustic sample sizes).
Although the recording period was longer than the period when
the human-driven surveys were done, ˊamakihi are not known to
change the frequency or timing of their vocalizations during this
time. The recorders were stationed between 1.5 and 2 m from the
ground and were located at the same points where the human-
based point-count surveys were conducted. The Songmeters
recorded daily from 0700 to 1100 hours in 5-min on–off duty
cycles, matching the sampling period of the human-based surveys.
The focal species starts vocalizing earlier in the day, but recorders
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were set to intentionally avoid the dawn chorus, where there is an
increased overlap in acoustic cues from our target species and
other species, which increases the error in the automatic detection
algorithm (see Step III). Recordings were made in .wav file format
at a sampling rate of 44.1 kHz using a single omnidirectional
microphone (SMX-II: Wildlife Acoustics) with a sensitivity of
-35 dBV/pa and frequency response of 20–20,000 Hz.  

The recordings at the Mauna Loa Volcano field sites were taken
on different days and locations during spring 2015, and were used
to train the automatic detection algorithm (see Step III). These
recordings were made using the same automatic acoustic
recorders, which were also stationed in trees between 1.5 and 2 m
from the ground. From those recordings, we selected files that
contained the cue type and species of interest. Further details
about these training data can be found in Table A1.2.

Step II: Weather data
Both rain and wind may affect sound propagation and, in turn,
density estimation using automatic acoustic recorders. Thus, we
placed a weather station (ACU RITE Professional Weather
Station, model 01036) proximate to the survey stations to collect
automated measurements of the climatic conditions. The weather
station recorded measurements of rain (mm) and wind (km/h)
every 12 min. We paired the 5-min recordings to the closest
measurement from the weather station. We classified total rain
and average wind per 12-min interval independently into three
classes as follows: for rain, Class 0: < 0.5 mm, Class 1: 0.5–1 mm,
Class 2: > 1 mm; for wind, Class 0: < 15 km/h, Class 1: 15–30 km/
h, Class 2: > 30 km/h. Because we needed to be able to assess the
rain and wind class in the field while taking the cue rate and the
power–distance measurements (see Step IV and Step V), we
selected classes that were different enough that could be easily
identified in the field. Because strong rain and wind completely
saturate the recordings (i.e., spectrograms are totally black and
all other sounds are obscured, prohibiting identification), we
excluded files with rain and wind Class 2 from our analyses.

Step III: Automatic detection algorithm
We used the algorithm described in Sebastián-González et al.
(2015) to identify cues (i.e., vocalizations) of the target species
from the automatic recordings. This algorithm has two phases:
training and detecting. The (1) training phase uses known cues
(in this study, data from the Mauna Loa Volcano; see Step I) to
train a data classification tool (e.g., a Support Vector Machine)
(Cortes and Vapnik 2009) that is used in the (2) detecting phase
to identify cues from the target species. The algorithm first selects
candidate cues (called “selections”; N = 13,256) that are within
the time length and frequency of the target species using the Band
Limited Energy Detector (Mills 2000) from the Raven 1.5 software
(Bioacoustics Research Program 2014). Next, candidate cues are
manually sorted to identify which cues correspond to the target
species. Selections from target species are then used to train the
classification tool and to calculate true/false positives/negatives
(see Step III). The accuracy of the detector was calculated using
the Balanced Accuracy metric (BAC) (Féret and Asner 2012) (Eq.
1): 
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where tp are true positives, and tn are true negatives. Following the
recommendations in Knight et al. (2017), we also calculated the

precision, which is the proportion of true detections of the target
species (Eq. 2): 
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where fp are the false positives; recall, or the proportion of target
vocalizations detected (Eq. 3): 
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where fn are the false negatives; and finally, we calculated a metric
that combines both recall and precision: the F-score (Eq. 4): 
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where β is a parameter that is changed depending on the
importance given to the precision or the recall (here, β = 1.5); tp,
 tn, fp, and fn were calculated using a cross-validation approach.
We randomly separated 70% of the data as a training set and 30%
as validation set. Training files were not used for the validation,
and validation files were also never used in the training analysis.
The training set was used to predict binary classes (presence or
absence of the target species), and the validation set was used to
evaluate the model performance. We repeated this procedure 1000
times by random selection of the training and validation of the
data set, and subsequently, we calculated the mean values and SE
for each parameter. These analyses were performed using R 3.4.1
(R Development Core Team 2017). See Sebastián-González et al.
(2015) for further details on the detector.  

Similar to the training phase, in the detecting phase we identified
candidate cues in the recordings from the area where we wanted
to estimate density using the Band Limited Energy Detector from
Raven. Then, we used the classification tool to select only the cues
from the target species. After running the detectors, we had a list
of cues per 5-min recording.

Step IV: Distance–power relationship
The probability of detecting a cue (i.e., vocalization) is related to
the distance of the species vocalizing to the recorder, among other
factors. We therefore estimated the distance from the individual
vocalizations to the recorder and used this information in the
calculation of the detection probability for our density estimation.
Because the power (i.e., sound energy) of an onmidirectional
sound depends on the distance from the source, we estimated the
distance from the recorder to the bird using the power of the cue.
To measure the relationship between the power of the cues (dB)
and the distance to vocalizing individuals, we collected data from
the two study areas using a songmeter SM2 to record the
vocalizations, and a range finder (Nikon Forestry 550) to measure
the distance (m) to each vocalizing individual. We haphazardly
walked through the forest and stopped when we detected an
individual of the focal species. Then, we recorded the
vocalizations and measured the distance to the individual bird,
given that it was visually detected and its position could be
determined with precision. We tried to maximize the range of
distances measured by approaching or walking away from an
individual when possible. We collected data until we had a fair
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coverage of the possible distance and power values. Also, to
reduce the chances that the same individual was recorded twice,
we surveyed different areas every day, and after monitoring one
individual, we walked about 50 m before monitoring a different
one. The microphone of the recorder was always oriented in the
same direction (up) as those placed at the sampling stations. We
also noted the sampling conditions (i.e., weather and noise). These
measurements were taken in 2015 (8, 9, 23, 24 June and 1, 7, 13
July). We included information on 62 vocalizations from at least
15 individuals.  

After data collection, we used generalized linear models to
examine the relationship among the power of the calls measured
using Raven software (predictor) and the distance to the
vocalizing bird measured in the field (response variable). Since
sound may be affected by the climatic conditions, we also tested
the effect of wind strength and rain intensity on the relationship
by including them as covariates in the model. We used a Gaussian
distribution with a log-link, and we selected the model with the
best fit using AICc (see model diagnostics in Fig A1.2). We
considered that a model was better than another if  the difference
in their AICc was > 2. We computed all possible combinations of
univariate and multivariate models including one or both
covariates. We calculated the proportion of explained deviance
as a measure of fit of the model. To investigate the accuracy of
this estimate, we also used the model to estimate the predicted
distances for the set of observations for which we had measured
the real distance to the bird. Then, we related the measured
distance with the predicted one using a linear model. As a final
step, we used the selected model and the power of the detected
cues to calculate the distances from the recorder to the vocalizing
birds.

Step V: Cue rate
We calculated the cue rate of the target species in July–August
2015 as the number of cues (i.e., calls) per minute. To do so, we
searched for individuals at the two field sites by walking quietly
through the forest. When individuals were visually located, we
waited 5 s, then counted the number of cues until we lost visual
contact with the individual. For each observation, we also noted
the climatic conditions (rain and wind, similar to Step IV), the
time of the day, and the total time of observation (in s). Because
the total observation time needs to be very large to calculate an
accurate cue rate, we monitored all visually located individuals,
even if  the same individual was potentially monitored more than
one time. Then, we used nonparametric Kruskall-Wallis and
Mann-Whitney tests in R to determine if  the cue rates differed
among climatic conditions and among times during the day.
Preliminary analyses revealed that cue rates were not affected by
wind and rain Classes 0 to 1, study area, or time of the day (see
Results); therefore, we calculated the cue rate using all data.
Following Marques et al. (2009), we estimated the average cue
rate as a weighted average of the individual cue rates, with weights
corresponding to the amount of time an individual was followed.
Variance of the weighted average cue rate was calculated using
Cochran‛s approximation (Marques et al. 2009). We analyzed
only calls because ˊamakihi did not produce their characteristic
song trill during the mid-summer study period.

Step VI: Density estimation
We estimated bioacoustics-based bird density following the same
approach as for the human-based point- transect counts, but by

using the detections and power-based distance estimates from the
acoustic recordings. We estimated the density across all recording
dates, where per-station sampling effort equaled the total number
of 5 -min intervals the station was surveyed (Table A1.1). Marques
et al. (2013) provide the description and parameterization of cue-
count methods and analyses, including best practices for
estimating the proportion of false positive detections, and a
multiplier (in this case, cue rate) to convert cue density to an
estimated bird density using Eq. 5: 
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where n is the number of vocalizations, fp is the estimated
proportion of false positive detections, pv is the estimated
probability of detecting a vocalization within the area a, and r is
the estimated cue rate. Note that K, T, and a are constants: a is
the area covered by each point-transect (a = πw2, where w is the
truncation distance); K is the number of points the recordings
were made over, and T is the time spent recording in each point
(measured in the same units as the cue rate). In Step III, we
describe how we calculated the proportion of detections that were
false positives, and the number of bird cues per 5-min interval.
All parameters were quantified from data that were gathered in
the same location, environment, and time as acoustic sampling.
The bioacoustics-based detection probability was modeled with
program DISTANCE, version 7.1, release 1 (Thomas et al. 2010),
following guidance by Marques et al. (2013). We used the delta
method to estimate the density coefficient of variation (CV) as
the square root of the combined squared CVs of the false
positives, cue rate, and cue density, assuming independence of the
components. The confidence interval was computed by the two-
sided α-level t-distribution percentile where the degrees of
freedom were computed using the Satterthwaite method (see
Buckland et al. 2001:89). All the data used in this study are
available on ScienceBase: https://doi.org/10.5066/F7PZ571Q.

RESULTS

Detection algorithm, distance-power
relationship, and cue rate
We used 13,256 selections to train the automatic detection
algorithm (1015 of them included an ˊamakihi call). The error of
the Raven Band Limited Energy Detector (i.e., the proportion of
ˊamakihi calls that were not selected by the detector) was 6.1%
(see Table A1.2), the BAC of the automatic detection algorithm
was 92.3 ± 0.9 (mean ± SD), the precision was 0.86, the recall was
0.81, and the F- score was 0.57.  

The power of the cue was significantly related to the distance of
the vocalizing individual (GLM, coefficient ± SE = -0.048 ± 0.009,
Intercept ± SE = 5.077 ± 0.406, t-value = -5.221, DF = 60, P <
0.001, explained deviance = 37.45%) (Fig. 3, Fig. A1.1). This
relationship was not affected by the presence of rain or wind
(variables not included in the model with the lowest AIC). Also,
the measured distance was significantly related to the predicted
one (LM, coefficient ± SE = 1.043 ± 1.04, Intercept ± SE = -0.807
± 3.085, P < 0.001, R2 = 0.36) (Fig. A1.2).  

The cue rate was 0.63 calls/min (Table 1), calculated using all the
observation time (4.74 h) and all the recorded calls (number of



Avian Conservation and Ecology 13(2): 7
http://www.ace-eco.org/vol13/iss2/art7/

Table 1. Parameters estimated for this study (mean and SE) and samples sizes of the data used to
calculate them.
 
Description Estimated value SE N

Proportion of false-positive detections 0.014 0.001 3976
Probability of detecting a vocalization within area “a”: acoustic recorder 0.848 0.005 6830
Human visual+acoustic 0.451 0.040 257
Human acoustic 0.494 0.044 227
Cue rate (cues/minute) 0.630 0.043 206

Fig. 3. Relationship between power and distance to the
vocalizing bird. We also represent the regression line from the
model used to estimate the distances.

calls = 179; number of recorded individuals = 206), including data
from nonvocalizing individuals (N = 141). The cue rate was not
affected by wind and rain classes, and did not change among study
areas or times of the day (Kruskall-Wallis and Mann-Whitney
tests; all p > 0.27).

Acoustic versus human density estimation
For density estimation, we used 6903 ˊamakihi detections out of
266.25 h of acoustic recordings, 261 detections from the eight
human-based audio-only counts, and 289 detections from the
eight human-based audio and visual counts. Truncation distances
were selected specific to the individual data sets: acoustic-based
truncation was 22.9 m, human-based audio-only at 47.8 m, and
human-based audio and visual detections at 48.0 m. For each data
set, a hazard rate detection function model without adjustment
terms or covariates was selected (Table A1.3, Fig. A1.3).
Detection probability for the acoustic-based detections was 0.848
(95% CI 0.837–0.859), while for the human-based audio-only
detections, it was 0.494 (95% CI 0.415–0.587), and for the human-
based audio and visual detections, it was 0.451 (95% CI 0.379–
0.537).  

In general, the density estimates using bioacoustics were lower
than those based on point-counts by field observers; however,
they were closer to the human-based survey that included only
acoustic detections than to those that included both acoustic and
visual detections (Table 2). The density for ˊamakihi was 29%
lower using automatic acoustic recorders than estimates from
human-based acoustic survey (6.02 versus 8.48 individuals/ha).
Both confidence intervals substantially overlapped each other and

Table 2. Comparison of the Hawaiˊi ˊAmakihi mean density
(individuals/ha) at all the stations calculated with human and
acoustic-based surveys. We also include the lower and upper 95%
confidence intervals (CI) and the standard error (SE) computed
from bootstrap methods.
 
Method Type Density SE L 95% CI U 95% CI

Human Visual+
acoustic

10.50 1.52 8.25 13.89

Human Acoustic 8.48 1.09 6.85 11.02
Acoustic Call 6.02 1.58 3.73 8.31

 

nearly bracketed the point estimates, where the coefficient of
variation for the human-based audio-only density was about half
that of the acoustic recorder (%CV of 12.85 and 27.40,
respectively).

DISCUSSION
In this study, we describe and test a protocol for using single (i.e.,
not arrays) automatic acoustic recorders to estimate the density
of sound-producing animals in terrestrial ecosystems. Our
protocol uses information such as sampling conditions, estimates
of the cue rate (i.e., number of cues per minute) of the focal species,
and the relationship between the power of the cues and the
distance to the recorder. Climatic conditions are easy to gather,
but both cue rates and the distance–power relationship require
that individuals of the species be easily detected in the field. Thus,
this protocol is generalizable to other species, including birds,
arthropods, or amphibians, given that this information can be
collected.  

By following our protocol, we could estimate similar densities
with overlapping CIs using automatic sound recorders to those
estimated from human observations. Our estimates were higher
when the surveys were performed by humans than when density
was estimated with acoustic recorders (as in van Wilgenburg et
al. 2017). There are a couple of possible explanations for this
pattern. The first is that human surveys are based on both aural
and visual cues (Buckland 2006, Camp et al. 2009) where
nonvocalizing birds can be detected, which is not possible in the
acoustic-based estimates. With the correct cue rate, this should
not cause a bias, but if  the individuals selected for cue rate
estimation are more vocal than individuals on average, a bias
could occur. This may happen, for example, if  the cue rate varies
with pairing success (Gibbs and Wenny 1993). Given that we tend
to locate animals aurally at first, and if  these individuals are more
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vocal than others, then this will bias cue rates up, and consequently
bias density down. The second reason is that the human-based
surveys are much more prone to violating the assumption that
animals are detected by observers prior to animals detecting and
responding to the observer (Turnock and Quinn 1991, Buckland
2006). Even if  the movement were at random (and worse, if
directional toward the observer), density estimates would be
biased up. It would be interesting to determine if  human-based
estimates are biased up or acoustic recorder estimates are biased
down. However, that would be possible only by evaluating the
methods under a known population scenario (i.e., all the
individuals of the population are known and marked).  

Further, the two density estimation methods we employed have
different associated estimation errors. For example, the estimation
of the distance to a singing bird by field observers depends largely
on the ability of the person performing the surveys (Alldredge et
al. 2007, 2008, Kühl and Burghardt 2013), while the automatic
estimation is based on the physical properties of the sound
transmission; thus, it does not include the subjectivity coming
from different observers. Moreover, the proportion of false
positives and false negatives can be more precisely estimated in
automated surveys than in surveys performed by humans
(Guschanski et al. 2009, Miller et al. 2012). We note in passing
that false negatives are intrinsically dealt with in distance
sampling by the detection function. Provided there are no false
positives at/near the point, the detection probability corrects for
the calls missed. Automatic surveys also allow much larger
effective sample sizes (i.e., sampling during longer time periods),
thereby facilitating modeling the detection function and thus
improving the signal-to-noise ratio. The overall density estimate
is computed as an average of the densities in each sampling
station, weighted by the sampling effort (i.e., the number of times
each sampler was surveyed). Thus, even though density estimates
using automatic and human surveys differed, we cannot consider
either method to be more accurate. In our study system, both
estimates were reasonably similar; therefore, long-term
monitoring studies based on one or the other method may
presumably be used to reliably compare density estimates and
track trends over time.  

In this study, we estimated the cue rate and the relationship
between the distance of the individuals and the power of the
sound in the same area and time of the surveys, thus reducing
errors associated with temporal (e.g., due to seasonality) and
spatial (e.g., due to between-population differences) variability in
cue rates (LaPerriere and Haugen 1972, McShea and Rappole
1997, Marques et al. 2013). It is important that future studies
using this method or a similar one also use data taken in the same
conditions and at the same time. Another important factor comes
from the presence of nonvocalizing individuals because the
automatic acoustic recorder does not detect them. We tried to
minimize this effect when estimating the cue rates by looking for
nonvocalizing individuals and including the time they were
observed in our estimates. However, our cue rates are unavoidably
biased because it is easier to find an individual that is vocalizing
than one that is not. Also, several studies have already indicated
that sampling conditions may affect the density estimation (e.g.,
Baumgartner and Fratantoni 2008, Marques et al. 2011). Birds
may change their cue rates with strong wind or rain, and the noise
produced by wind and rain may obscure some cues, particularly

quiet or distant vocalizations. Pairing the automatic acoustic
recordings with a weather station was useful to account for the bias
in the estimates produced by climatic conditions because it
provided us with very simple corrections for the acoustic rates and
for the distance estimates. This also allowed us to a priori drop the
sampling periods when detections were not optimal, which
minimizes variability.  

Another source of variability in the density estimation may come
from the calculation of the distance from the bird to the recorder.
The true distances recorded for ́ amakihi were made with relatively
little measurement error (see Fig. 3). As the true distance increases,
the variation in power decreases; calls from far away always arrive
with lower power, while calls from close by will typically but not
always have higher power. The consequence is that for an observed
low power of 40 dB, we predict a distance of about 25 m, when in
fact the observed distances were mixed, occurring at small (e.g., 4
m), moderate (e.g., 20 m), and large distances (e.g., 49 m). One of
the causes of this variability may come from the orientation of the
vocalizing individual because it may modify acoustic parameters
of the cue (Patricelli et al. 2008), but our method assumes signal
propagation occurs uniformly across all directions. However, if  all
cues are oriented randomly with respect to the recorder, the
variability in the estimation of the distance will be larger, but the
differences in the sound parameters due to the bird orientation will
average over all the positions, and the mean prediction will be
unbiased. Source level or transmission loss patterns (temporal or
spatial) will also cause the same received level to represent several
different ranges. In addition, confidence intervals are too narrow
when measurement errors are ignored, and when measurement
errors are substantial, it may be difficult to fit the distance data
adequately, resulting in model misspecification (Borchers et al.
2010). It is important to note that the details on the power–distance
relationship shown here are valid only for our species and study
system. Other vocalizations may be affected differently by climatic
conditions and sound degradations. Also, animal vocalizations
degrade with distance much faster in areas with dense vegetation
than in open areas (Forrest 1994). Thus, our data can be applied
only to areas with similar vegetation structure.  

With cue-rate surveys, as with the closely related point-transect
methods, even relatively small amounts of measurement error may
become problematic. When measurement error is small (coefficient
of variation approximately 10%), density and variance estimates
are nearly unbiased, and it may be safe to ignore measurement
error stemming from the model to predict distance from received
levels (Borchers et al. 2010). This condition is unlikely using single
automatic acoustic recorders. Incorporating measurement error
might be required to reduce bias. Density estimates could be
multiplied by a bias correction factor for the effect of measurement
error (following the approach proposed by Marques 2004) or in a
likelihood framework by Borchers et al. (2010). The former
method, however, does not perform well for point-transect
methods and by extension, cue-rate surveys. The latter approach
of modeling measurement error as a likelihood performs better for
point- transect surveys, has practical advantages associated with
maximum likelihood estimator theory, and employs standard
regression methods and freely available software using generalized
linear models and/or generalized additive models in R. Finally,
another possibility to include bias is to use posterior estimates from
Bayesian methods. While we obtained a model to estimate distance
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from detected power, we have not propagated the variance
associated with this model through to the density estimates. This
perhaps allows a fairer comparison with the human observers
(where the distances estimated with errors are also used as true
distances); however, our confidence intervals might be too narrow.
Therefore, if  the goal was more than a proof-of-concept and
comparison with the human observers, it would be desirable to
propagate the variance in the distance estimation model. That
should be straightforward using a nonparametric bootstrap to
estimate the distances at each bootstrap iteration.  

Our methods will work better when source sound level has lower
variability. If  the original source levels were highly variable, say
across individuals, then there is a confounding between the
original sound level and distance in the observed received level.
Similarly, the more ominidirectional the source, the more
“distance” can be explained by the received sound level. These
two characteristics of the species of interest will be determinant
in identifying when the methods might work or when there might
be too little information on sound level to infer distance; hence,
other bypass methods that require ranges might be preferable.
Under such contexts, spatially explicit capture-recapture methods
(e.g., as in Dawson and Efford 2009) might be useful, but they
come at the additional cost of requiring multiple sensors across
which detections would have to be matched. Finally, we
intentionally avoided the dawn chorus in our sampling to increase
the performance of the automatic detection algorithm; however,
this may also be a source of bias in the results that should be
considered by the users of the protocol (Streby et al. 2012).
However, if  the density estimates will be compared with others
where the dawn chorus is also avoided, the comparisons should
be correct.  

It is also important to note that our spatial sample size was
relatively small (eight stations, one transect). This study was
designed to be a proof-of-concept for the protocol and has served
to identify strengths and weaknesses of the method. Thus, our
results should be taken with caution, and further studies are
required for a more accurate and generalizable application of the
protocol. In summary, we demonstrated that it is possible to use
single automatic acoustic recorders to obtain fairly accurate
abundance estimates for terrestrial species that communicate
acoustically. This may be useful for collecting large-scale and long-
term information on animal populations, particularly those that
are rare or that live in remote areas that are difficult to access.
Moreover, we identified potential limitations to the approach, and
suggested methods to minimize their effect. Our approach can
also be easily adapted for use on other sound-producing taxa such
as mammals, amphibians, and arthropods.

Responses to this article can be read online at: 
http://www.ace-eco.org/issues/responses.php/1224
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Appendix 1. Supplementary tables and figures 

 

 

Table A1.1. Sample sizes for the different recording stations for both human and acoustic 

samples. 

Station Human samples Acoustic samples 

1 9 405 

2 10 419 

3 10 101 

4 10 456 

5 9 657 

6 9 437 

7 9 655 

8 9 392 

 

  



Table A1.2. Details on the configuration of the Band Limited Energy Detector in Raven. 

SNRt: Sound to Noise Ratio. Occupancy: the minimum proportion of pixels that are 

above the SNR level. Block size: Width of block size used to calculate background noise. 

Hop size: Space between noise calculations. Percentage: Percentage of the ranked noise 

accounted as background. 

 

Minimum frequency (Hz) 1800 

Maximum frequency (Hz) 9500 

Minimum time (s) 0.108 

Maximum time (s) 1 

Minimum delta time (s) 0.102 

SNRt 6 

Occupancy 30 

Block size 2.0 

Hop size 0.5 

Percentage 20 

 

 

  



Table A1.3. Model parameters and model-selection results for Hawai‘i ʻamakihi for 

human-based surveys (audio-only and audio+visual detections) and acoustic recorder 

surveys. Models were sorted by differences in second-order Akaike’s information 

criterion corrected for small sample size (∆AICc) between each candidate model and the 

model with the lowest AICc value. Models examined included half-normal (HN) and 

hazard-rate (HR) key detection functions. None of the models incorporating series 

expansions converged. Preliminary analysis revealed that covariates did not improve 

AICc values. The number of estimated parameters (# Params), and negative log-

likelihood (-LogL) are presented. 

 

Detection function # Params -LogL AICc ∆AICc 

Human-based Audio-only 

  HR 2 830.76 1665.57 0 

HN 1 836.66 1675.34 9.77 

     Human-based Audio+Visual 

  HR 2 945.45 1894.96 0 

HN 1 951.01 1904.04 9.08 

     Acoustic recorder-based 

  HR 2 19810.26 39624.52 0 

HN 1 20097.11 40196.22 571.7 

  



 

 

 

Fig A1.1. Model diagnostics for the relationship between the power of the sound (m) and 

the distance to the vocalizing bird (m) represented in Fig. 3.  

  



 

 

 

 

Figure A1.2. Graph showing the relationship between the measured distance from the 

recorder to the bird and the distance predicted by the model. We also show the regression 

between the two variables (black line) and the 1:1 relationship (red line). 

 



 

Figure A1.3. Detection probability and probability density plots overlaid on detection 

distance histogram for fitted detection function model to (A) acoustic-based with 

truncation at 22.9 m, (B) human-based audio-only with truncation at 47.8 m, and (C) 

human-based audio and visual data with truncation at 48.0 m. For each data set a hazard 

rate model without adjustment terms or covariates was selected (AICc values were 

571.70, 9.77 and 9.06 units better than next best approximating model, respectively). 
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