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On the Rate of Convergence

of
( ‖f‖p

‖f‖∞

)p
as p → ∞

L. Olsen

Abstract. Let (X, E , µ) be a measure space and let f : X → R be a
measurable function such that ‖f‖p < ∞ for all p ≥ 1 and ‖f‖∞ > 0.

In this paper, we describe the rate of convergence of (
‖f‖p

‖f‖∞ )p as p → ∞.
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1. Statement of Results

Let (X, E , μ) be a measure space and let f : X → R be a measurable function
such that ‖f‖p < ∞ for all p ≥ 1 and ‖f‖∞ > 0. There are many results
describing the limiting behaviour of ‖f‖p as p → ∞. For example, it is well-
known that

‖f‖p

‖f‖∞
→ 1 as p → ∞;

see [2, p. 201] for a proof of this and some related results. However, other
limiting behaviours may also be of interest. For example, in the study of
the regularity of solutions to the Navier–Stokes equation, it is sometimes of
interest to know the limiting behaviour of the p’th power of ‖f‖p

‖f‖∞
, i.e. it is of

interest to know how ( ‖f‖p

‖f‖∞
)p behaves for large values of p; see, for example,

[5, Equation (38)] for a more detailed discussion of this. We first note that it
is not difficult to show that ( ‖f‖p

‖f‖∞
)p converges as p → ∞. More precisely, if

we let

Ef =
{|f | = ‖f‖∞

}
, (1.1)

i.e. Ef is the extremum set of f , then
(

‖f‖p

‖f‖∞

)p

→ μ(Ef ) as p → ∞. (1.2)
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Indeed, to see this, note that if we write Ff = {|f | < ‖f‖∞}, then

‖f‖p
p =

∫

Ef

|f |p dμ +
∫

Ff

|f |p dμ = ‖f‖p
∞ μ(Ef ) +

∫

Ff

|f |p dμ ,

and so
(

‖f‖p

‖f‖∞

)p

= μ(Ef ) +
∫

Ff

(
|f |

‖f‖∞

)p

dμ. (1.3)

However, clearly ( |f |
‖f‖∞

)p 1Ff
→ 0 pointwise as p → ∞. Also, ( |f |

‖f‖∞
)p 1Ff

≤
|f |

‖f‖∞
for all p ≥ 1 and

∫ |f |
‖f‖∞

dμ = ‖f‖1
‖f‖∞

< ∞. It follows immediately from
this and the Dominated Convergence theorem that

∫

Ff

(
|f |

‖f‖∞

)p

dμ → 0 as p → ∞. (1.4)

Finally, (1.2) follows immediately from (1.3) and (1.4).
We will now show that it is, in fact, possible to compute the rate of

convergence in (1.2). This is the main result in this note and the statement
of Theorem 1.1 below.

Theorem 1.1. Let (X, E , μ) be a measure space and let f : X → R be a
measurable function such that ‖f‖p < ∞ for all p ≥ 1 and ‖f‖∞ > 0. Write

af = lim inf
r↘0

log μ
({

1 − r < |f |
‖f‖∞

< 1
})

log r
,

af = lim sup
r↘0

log μ
({

1 − r < |f |
‖f‖∞

< 1
})

log r
.

(1.5)

If we put

Δf (p) =

∣
∣
∣
∣
∣

(
‖f‖p

‖f‖∞

)p

− μ(Ef )

∣
∣
∣
∣
∣
, (1.6)

where Ef is defined in (1.1), then

af ≤ lim inf
p→∞

log Δf (p)
− log p

≤ lim sup
p→∞

log Δf (p)
− log p

≤ af .

The proof of Theorem 1.1 is given in Sect. 2.

Remark. Theorem 1.1 shows that for each ε > 0, there is a number pε ≥ 1,
such that

p−af −ε ≤ Δf (p) ≤ p−af +ε,

for all p ≥ pε. In particular, if af = af = af , then

p−af −ε ≤ Δf (p) ≤ p−af +ε.

Loosely speaking, this says that Δf (p) behaves roughly like p−af for large
values of p, i.e. the rate at which ( ‖f‖p

‖f‖∞
)p converges to μ(Ef ) is roughly equal

to p−af .
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Remark. Let (X, E , μ) be a measure space. In Theorem 1.1 we assume that
the function f : X → R satisfies the following two conditions: (1) ‖f‖p < ∞
for all p ≥ 1 and (2) ‖f‖∞ > 0. We will now briefly discuss what happens if
these conditions are not satisfied.

Regarding condition (2). Of course, if condition (2) is not satisfied, i.e.,
if ‖f‖∞ = 0, then f is the null function, whence ‖f‖p = ‖f‖∞ = 0 for all
p ≥ 1, and it follows from this that the ratio ‖f‖p

‖f‖∞
equals 0

0 for all p ≥ 1. In

particular, we conclude that the ratio ‖f‖p

‖f‖∞
is undefined for all p ≥ 1, and

the problem of computing the rate of convergence of
( ‖f‖p

‖f‖∞

)p

as p → ∞ is
meaningless.

Regarding condition (1). It is not difficult to see that the conclusion in
Theorem 1.1 remains valid even if condition (1) is replaced by the following
slightly weaker condition: there is a real number p0 ≥ 1 such that ‖f‖p < ∞
for all p ≥ p0. If this condition is not satisfied, i.e., if there is no number
p0 ≥ 1 such that ‖f‖p < ∞ for all p ≥ p0, then it is not difficult to see
that ‖f‖p = ∞ for all sufficiently large real numbers p ≥ 1. However, simple
examples show that ‖f‖∞ can be either finite or infinity (for example, let
X = R and let μ be Lebesgue measure; if the function f : R → R is defined
by f(x) = 1 for all x ∈ R, then ‖f‖p = ∞ for all real numbers p ≥ 1, but
‖f‖∞ = 1 < ∞, and if the function f : R → R is defined by f(x) = x for
all x ∈ R, then ‖f‖p = ∞ for all real numbers p ≥ 1, but ‖f‖∞ = ∞).
If ‖f‖∞ < ∞, then it follows that ‖f‖p

‖f‖∞
= ∞ for all sufficient large real

numbers p, whence
( ‖f‖p

‖f‖∞

)p

= ∞ for all sufficient large real numbers p, and

the problem of computing the rate of convergence of
( ‖f‖p

‖f‖∞

)p

as p → ∞ is,
therefore, trivial. On the other hand, if ‖f‖∞ = ∞, then it follows that the
ratio ‖f‖p

‖f‖∞
equals ∞

∞ for all sufficiently large real numbers p. In particular,

we conclude that if ‖f‖∞ = ∞, then the ratio ‖f‖p

‖f‖∞
is undefined for all

sufficiently large real numbers p, and the problem of computing the rate of
convergence of

( ‖f‖p

‖f‖∞

)p

as p → ∞ is meaningless.

In several important and natural cases the numbers af and af can be
computed explicitly. This is the content of the next corollary.

Corollary 1.2. Let X be an open subset of R and let μ denote the Lebesgue
measure on X. Let f : X → R be a measurable function such that ‖f‖p < ∞
for all p ≥ 1 and ‖f‖∞ > 0, and let Ef and Δf (p) be defined in (1.1) and
(1.6), respectively.

If Ef = {x1, . . . , xn} is finite and that there are polynomials Pi and Qi

for i = 1, . . . , n and a positive number δ > 0 such that

Pi(xi − x) ≤ f(xi) − f(x) ≤ Qi(xi − x),
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for all i and all x ∈ B(xi, δ)∩X (i.e. near xi, the graph of f is “sandwiched”
between the graphs of Pi and Qi), then

1
maxi deg Qi

≤ lim inf
p→∞

log Δf (p)
− log p

≤ lim sup
p→∞

log Δf (p)
− log p

≤ 1
maxi deg Pi

.

In particular, if Ef = {x0} consists of just one element and there are
polynomials P and Q with deg P = deg Q = N and a positive number δ > 0
such that

P (x0 − x) ≤ f(x0) − f(x) ≤ Q(x0 − x),

for all x ∈ B(x0, δ) ∩ X, then

lim
p→∞

log Δf (p)
− log p

=
1
N

.

Proof. In this case, it is not difficult to see that af = 1
maxi deg Qi

and af =
1

maxi deg Pi
where the numbers af and af are defined in (1.5), and the result

therefore follows immediately from Theorem 1.1. �
Remark. The statement in Theorem 1.1 is related to local dimensions of
measures. If λ a Borel probability measure on R

d and x ∈ R
d, then the lower

and upper local dimensions of λ at x are defined by

dimloc(λ;x) = lim inf
r↘0

log λ(B(x, r))
log r

,

and

dimloc(λ;x) = lim sup
r↘0

log λ(B(x, r))
log r

,

respectively. If the lower and upper local dimension of λ at x coincide, then
we write dimloc(λ;x) for the common value, i.e. we write

dimloc(λ;x) = lim
r↘0

log λ(B(x, r))
log r

,

provided the limit exists. The detailed study of the local dimensions of mea-
sures is known as multifractal analysis and has received enormous interest
during the past 20 years; the reader is refereed to the texts by Falconer [1] or
Pesin [6] for a more thorough discussion of this. It is now generally believed
by experts that local dimensions provide important information about the
geometric properties of measures.

We will now describe the relation between the statement in Theorem 1.1
and local dimensions of measures. Let (X, E , μ) be a measure space and let
f : X → R be a measurable function such that ‖f‖p < ∞ for all p ≥ 1 and
‖f‖∞ > 0. Define the function Φf : X → R by

Φf =
|f |

‖f‖∞
1{|f |<‖f‖∞},

and let μf denote the distribution of Φf , i.e. μf is the Borel probability
measure on R defined by

μf (B) = μ(Φ−1
f (B)),
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for Borel subsets B of R. It is clear that if r > 0, then

μ

({

1 − r <
|f |

‖f‖∞
< 1

})

= μ(Φ−1
f B(1, r)) = μf (B(1, r)) ,

and the statement in Theorem 1.1, therefore, says that

dimloc(μf ; 1) ≤ lim inf
p→∞

log Δf (p)
− log p

≤ lim sup
p→∞

log Δf (p)
− log p

≤ dimloc(μf ; 1).

In particular, if the local dimension dimloc(μf ; 1) of μf at 1 exists, then

lim
p→∞

log Δf (p)
− log p

= dimloc(μf ; 1).

2. Proof of Theorem 1.1

We first prove two auxiliary results that will be used in the proof of The-
orem 1.1, namely Lemmas 2.2 and 2.4. Lemma 2.2 provides an alternative
expressing for the p’th moment of a measure. This expression will allow us
to bound Δf (p) by an integral of the form

∫ 1

1−δ
pup(1 − u)a du for suitable

choices of δ and a, and Lemma 2.4 establishes the asymptotic behaviour of
the integral

∫ 1

1−δ
pup(1−u)a du as p → ∞. Before stating and proving the first

main auxiliary result, namely Lemma 2.2, we recall the following well-known
result from analysis:

Lemma 2.1. Let X be a separable metric space and let m be a Borel measure
on X. If f : X → [0,∞) is a positive Borel function, then

∫
f dm =

∫ ∞

0

m({f ≥ t}) dt.

Proof. This result is proven in [3, Theorem 1.15]. �

Lemma 2.2. Let μ be a Borel probability measure on [0, 1]. Fix 0 < δ < 1.
Then there is a function h : [1,∞) → R such that

∫
xp dμ(x) =

∫ 1

1−δ

pup−1 μ([u, 1]) du + h(p)

and |h(p)| ≤ (1 − δ)p for all p ≥ 1.

Proof. It now follows from Lemma 2.1 that
∫

xp dμ(x) =
∫ ∞

0

μ
({x ∈ [0, 1] |xp ≥ t})

dt =
∫ ∞

0

μ
({x ∈ [0, 1] |x ≥ t

1
p })

dt.

(2.1)

Introducing the substitution u = t
1
p into the integral in (2.1), it now follows

that
∫

xp dμ(x) =
∫ ∞

0

pup−1 μ
({x ∈ [0, 1] |x ≥ u}) du ,
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and the assumption suppμ ⊆ [0, 1], therefore, implies that
∫

xp dμ(x) =
∫ 1

0

pup−1 μ([u, 1]) du , (2.2)

It follows immediately from (2.2) that
∫

xp dμ(x) =
∫ 1

1−δ

pup−1 μ([u, 1]) du + h(p) ,

where h(p) =
∫ 1−δ

0
pup−1 μ([u, 1]) du. In particular, we conclude that |h(p)| ≤

∫ 1−δ

0
pup−1 du = (1 − δ)p for all p ≥ 1. �

Next, we state and prove the second main auxiliary result, namely
Lemma 2.4. In order to prove Lemma 2.4 we first prove Lemma 2.3 below.

Lemma 2.3. Fix 0 < δ < 1 and a > 0. Then there are functions f, g :
[1,∞) → R and a real number c such that

∫ 1

1−δ

pup−1(1 − u)a du = c f(p) p−a + g(p)

and f(p) → 1 as p → ∞ and |g(p)| ≤ (1 − δ)p for all p ≥ 1.

Proof. Define the function f : [1,∞) → R and the real number c by f(p) =
pa Γ(p+1)

Γ(p+a+1) and c = Γ(a + 1), and note that it follows from [4, p. 119] that
f(p) → 1 as p → ∞.

Also, define the function g : [1,∞) → R by g(p) = − ∫ 1−δ

0
pup−1(1 −

u)a du, and note that |g(p)| ≤ ∫ 1−δ

0
pup−1(1 − u)a du ≤ ∫ 1−δ

0
pup−1 du =

(1 − δ)p for all p ≥ 1.
Finally, observe that it follows from [4, p. 36, (1.10)] that

∫ 1

0
up−1(1 −

u)a du = Γ(p)Γ(a+1)
Γ(p+a+1) , whence

∫ 1

1−δ

pup−1(1 − u)a du =
∫ 1

0

pup−1(1 − u)a du −
∫ 1−δ

0

pup−1(1 − u)a du

= p
Γ(p)Γ(a + 1)
Γ(p + a + 1)

+ g(p)

=
Γ(p + 1)Γ(a + 1)

Γ(p + a + 1)
+ g(p)

= c f(p) p−a + g(p),

for all p ≥ 1. �

Lemma 2.4. Fix 0 < δ < 1, a > 0. Let h : [1,∞) → R be a function and
assume that |h(p)| ≤ (1 − δ)p for all p ≥ 1. Then

lim
p→∞

log

(
∫ 1

1−δ
pup−1(1 − u)a du + h(p)

)

− log p
= a.
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Proof. It follows from Lemma 2.3 there are functions f, g : [1,∞) → R and
a real number c such that

∫ 1

1−δ

pup−1(1 − u)a du = c f(p) p−a + g(p),

and f(p) → 1 as p → ∞ and |g(p)| ≤ (1− δ)p for all p ≥ 1. In particular, this
shows that

∫ 1

1−δ

pup−1(1 − u)a du + g(p) = c f(p) p−a + g(p) + h(p) = p−a ϕ(p),

where the function ϕ : [1,∞) → R is defined by ϕ(q) = c f(p) + pag(p) +
pah(p), and so

log

(
∫ 1

1−δ
pup−1(1 − u)a du + h(p)

)

− log p
= a − log ϕ(p)

log p
. (2.3)

However, we clearly have |pag(p)| ≤ pa(1 − δ)p → 0 as p → ∞ and
|pah(p)| ≤ pa(1 − δ)p → 0 as p → ∞, and so ϕ(p) = c f(p) + pag(p) +
pah(p) → c as p → ∞. The desired result follows from this and (2.3). �

We now turn towards the proof of Theorem 1.1.

Proof of Theorem 1.1. Note that it follows from (1.3) that

Δf (p) =

∣
∣
∣
∣
∣

(
‖f‖p

‖f‖∞

)p

− μ(Ef )

∣
∣
∣
∣
∣
=

∫

{|f |<‖f‖∞}

(
|f |

‖f‖∞

)p

dμ. (2.4)

Next, as in the remark following the statement of Corollary 1.2, define Φf :
X → R by Φf = |f |

‖f‖∞
1{|f |<‖f‖∞} , and let μf denote the distribution of Φf ,

i.e., μf is the Borel probability measure on R defined by μf (B) = μ(Φ−1
f (B))

for Borel subsets B of R. It now follows from (2.4) and the definition of μf

that μf is a Borel probability measure on [0, 1] with

Δf (p) =
∫

{|f |<‖f‖∞}

(
|f |

‖f‖∞

)p

dμ =
∫

Φp
f dμ =

∫
xp dμf (x), (2.5)

and

μ

({

1 − r <
|f |

‖f‖∞
< 1

})

= μ(Φ−1
f B(1, r)) = μf (B(1, r)), (2.6)

for r > 0. Also, recall (see the Remark following the statement of Corol-
lary 1.2) that the lower and upper local dimension of μf at 1 are defined
by

dimloc(μf ; 1) = lim inf
r↘

log μf (B(1, r))
log r

,

and

dimloc(μf ; 1) = lim sup
r↘

log μf (B(1, r))
log r

,
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respectively. It follows from (2.5) and (2.6) that the statement in Theorem 1.1
can be reformulated as

dimloc(μf ; 1) ≤ lim inf
p→∞

log
∫

xp dμf (x)
− log p

≤ lim sup
p→∞

log
∫

xp dμf (x)
− log p

≤ dimloc(μf ; 1). (2.7)

We will now prove (2.7). Fix ε > 0 with 0 < ε < dimloc(μf ; 1), and note
that we can choose δε > 0 such that

dimloc(μf ; 1) − ε ≤ log μf (B(1, r))
log r

≤ dimloc(μf ; 1) + ε, (2.8)

for all 0 < r < δε. It now follows from Lemma 2.2 that there is a function
hε : [1,∞) → R such that

∫
xp dμf (x) = Iε(p) + hε(p), (2.9)

where

Iε(p) =
∫ 1

1−δε

pup−1 μf ([u, 1]) du,

and |hε(p)| ≤ (1 − δε)p for all p ≥ 1.
We will now estimate Iε(p). For brevity we write αε = dimloc(μ;1) − ε

and αε = dimloc(μ;1) + ε. Observe that if u ∈ (1 − δε, 1), then 1 − u ≤ δε,
whence (using (2.8)) αε = dimloc(μf ; 1)−ε ≤ log μf (B(1,1−u))

log(1−u) ≤ dimloc(μf ; 1)−
ε = αε and so μf ([u, 1]) = μf (B(1, 1 − u)) ≤ (1 − u)αε and μf ([u, 1]) =
μf (B(1, 1 − u)) ≥ (1 − u)αε . This clearly implies that

Iε(p) =
∫ 1

1−δε

pup−1 μf ([u, 1]) du ≤
∫ 1

1−δε

pup−1 (1 − u)αε du ,

Iε(p) =
∫ 1

1−δε

pup−1 μf ([u, 1]) du ≥
∫ 1

1−δε

pup−1 (1 − u)αε du.

(2.10)

Combining (2.9) and (2.10) yields

∫
xp dμf (x) ≤

∫ 1

1−δε

pup−1 (1 − u)αε du + hε(p) ,

∫
xp dμf (x) ≥

∫ 1

1−δε

pup−1 (1 − u)αε du + hε(p) ,

(2.11)
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where |hε(p)| ≤ (1 − δε)p for all p ≥ 1, and αε, αε > 0. It therefore follows
from Lemma 2.4 and 2.11 that

lim inf
p→∞

log
∫

xp dμf (x)
− log p

≥ lim
p→∞

log

(
∫ 1

1−δε
pup−1 (1 − u)αε du + hε(p)

)

− log p

= αε = dimloc(μf ; 1) − ε,

and

lim sup
p→∞

log
∫

xp dμf (x)
− log p

≤ lim
p→∞

log

(
∫ 1

1−δε
pup−1 (1 − u)αε du + hε(p)

)

− log p

= αε = dimloc(μf ; 1) + ε

for all ε > 0. Letting ε ↘ 0 now gives the desired result. �
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