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Abstract

Recent years have seen a rapid growth in movement research owing to new technologies con-

tributing to the miniaturization and reduced costs of tracking devices. Similar trends have

occurred in how environmental data are being collected (e.g., through satellites, unmanned

aerial vehicles, and sensor networks). However, the development of analytical techniques for

movement research has failed to keep pace with the data collection advances. There is a need

for new methods capable of integrating increasingly detailed movement data with a myriad

of contextual data – termed context aware movement analysis (CAMA). CAMA investigates

more than movement geometry, by including biological and environmental conditions that may

influence movement. However, there is a shortage of methods relating movement patterns to

contextual factors, which is still limiting our ability to extract meaningful information from

movement data. This thesis contributes to this methodological research gap by assessing the

state-of-the art for CAMA within movement ecology and human mobility research, develop-

ing innovative methods to consider the spatio-temporal differences between movement data

and contextual data and exploring computational methods that allow identification of patterns

in contextualized movement data. We developed new methods and demonstrated how they

facilitated and improved the integration between high frequency tracking data and tempo-

rally dynamic environmental variables. One of the methods, multi-channel sequence analysis,

is then used to discover varying human behaviour relative to weather conditions in a large

human GPS tracking dataset from Scotland. The second method is developed for combing

multi-sensor satellite imagery (i.e., image fusion) of differing spatial and temporal resolutions.

This method is applied to a GPS tracking data on maned wolves in Brazil to understand fine-

scale movement behaviours related to vegetation changes across seasons. In summary, this
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thesis provides a significant development in terms of new ideas and techniques for performing

CAMA for human and wildlife movement studies.
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Chapter 1

Introduction

1.1 Motivation

Increased availability of remotely sensed environmental data products and the rapid minia-

turization and reduced costs of tracking devices have led to exponential growth in movement

research (Cagnacci et al., 2010; Kays et al., 2015; Long and Nelson, 2013; Wikelski et al.,

2007). Similar trends have occurred in how environmental data are being collected, but the

development of analytical techniques has been outpaced by technological advancements (Gud-

mundsson and Wolle, 2014; Purves et al., 2014). For this reason, new methods capable of

performing context aware movement analysis (CAMA) are required to integrate increasingly

detailed movement data with a myriad of contextual environmental data.

Context aware movement analysis incorporates not only movement geometry, but also bi-

ological and environmental conditions that might be affecting movement (Ahearn et al., 2016;

Andrienko et al., 2011; Das and Winter, 2016; Demšar et al., 2015; Dodge et al., 2013). In

most studies, individual movement is represented in the form of a trajectory, i.e., the path

taken by a single object moving in space over time. Trajectories are captured as movement

data by a series of chronologically ordered fixes, often GPS (Global Positioning System) points,

which are linked spatial coordinates and time-stamps (Hornsby and Egenhofer, 2002; Lee and

Krumm, 2011). Contextual analysis then refers to methods used to integrate each trajectory

with context, i.e., with any other type of data that can help to characterize the situation a

1



2 CHAPTER 1. INTRODUCTION

moving entity is responding to (Abowd et al., 1999). In movement ecology and human mobility

studies, such data often include environmental variables that are retrieved from meteorological

stations, radars and biologgers (Demšar et al., 2015).

The study of movement behaviour has enhanced our knowledge of individual and popula-

tion dynamics in ecology (Schick et al., 2008) and provided insights into the complex human-

environment interactions associated with, for example, commuting (Beecham et al., 2014; Gong

et al., 2012), tourist behaviour (Meijles et al., 2014; Versichele et al., 2012), and retail choice

decisions (Thakuriah et al., 2016). Nonetheless, simultaneously analysing individual movement

alongside external and internal contextual factors is expected to lead to new discoveries about

how individuals move and interact with the environment. For example, changes in environmen-

tal conditions, such as wind, temperature and precipitation may trigger different movement

behaviours, which are reflected as movement patterns.

Despite the potential of CAMA for advancing the understanding of movement behaviour,

the overwhelming majority of existing movement research over the past two decades have been

geometry-focused (Laube and Purves, 2011). As a consequence, the developments in geometry-

based movement analysis are much more advanced than current methods for performing CAMA

(Laube et al., 2007; Long and Nelson, 2013; Purves et al., 2014). Another issue is that there

have been very few studies that have identified the key challenges in conducting CAMA, such as

the large and complex datasets, the differences in temporal and spatial resolutions of movement

data and contextual data, how to operationally link these datasets, and finally what methods

are most appropriate for extracting meaningful inferences on movement behaviour from linked

data.

The shortage of methods relating movement patterns to environmental contextual factors

is still in many ways limiting our ability to extract meaningful information from movement

data. Further, given the rapid increase in availability of remotely sensed data products de-

scribing environmental conditions, there are significant opportunities to enhance our analysis

of individual movement by linking to these data. However, these new technologies come with

an increasing need for tools capable of looking simultaneously at movement data and data

on the conditions surrounding movement, i.e., geographical data that describe environmental
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conditions that may be influencing individual movement decisions. Therefore, there is a need

to invent and design novel and informative methods that facilitate CAMA, and identify how

those methods can be translated into new insights into movement behaviour across the wide

range of disciplines interested in movement. This thesis contributes to this methodological

research gap.

1.2 Research questions

The goal of this thesis is to contribute towards advancing the field of CAMA by addressing the

following three research questions

1. How can CAMA methods properly account for the temporal dynamics of contextual data

(e.g., contextual factors that change over time)?

In terms of temporal dynamics, wind and temperature are examples of contextual vari-

ables with varied temporal cycles, yet they are often processed using the same interpola-

tion methods, i.e., the interpolation methods are chosen disregarding the characteristics

and scale of each variable. Therefore, in order to better deal with the temporal in-

compatibilities in trajectory annotation (TA), there is a need to compare the current

interpolation methods and their implications, and also search for methods that take into

account the temporal progression of contextual variables in a way more suited to natural

progression of contextual phenomena.

2. How can CAMA methods better address challenges associated with data structures of

contextual data (e.g., issues posed by different spatial and/or temporal resolutions, data

representations, etc.)?

In addition to being collected for different purposes and by diverse means, movement

data are collected point-wise whilst context is collected in a variety of forms, from raster

to point and area data. Current methods disregard the structure of contextual data and

often interpolate at very coarse level in an attempt to deal with the spatial incompati-

bilities between movement data and contextual data. There is a need to find new and
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better ways to deal with the spatial mismatch between the resolutions of movement data

and contextual data.

3. How can we make meaningful inferences about behaviour from contextualized movement

data using modern computational methods?

In order to identify movement patterns that can be linked to behaviour, it is essential to

examine similarities in the data from the contextual perspective. While spatio-temporal

similarity has been thoroughly explored, contextual similarity has remained largely ne-

glected. Context awareness is still a new trend and there are only a few approaches of

using analytical methods to better understand movement behaviour from semantic tra-

jectories, i.e., movement trajectories that have been linked to contextual data. Therefore,

there is a need to find new ways to make meaningful inferences about behaviour from

contextualized movement data within CAMA.

Given the current lack of analytical tools and theoretical background on CAMA, one of the

primary goals of this thesis is to investigate the challenges posed by CAMA and to develop

methods capable of overcoming these challenges. Three research objectives are used to separate

this task into key contributions: 1) assess the state-of-the art for CAMA within movement

ecology and human mobility research; 2) develop innovative methods to take into account

the spatio-temporal differences between movement data and contextual data; and 3) explore

computational methods that allow identification of patterns in contextualized movement data.

1.3 Structure of the thesis

This thesis contains six chapters (including this one) which attempt to assess and understand

the spatial behaviour of people and wildlife using GPS movement data and environmental data

through the development of frameworks for performing CAMA. The core of the thesis consists

of three empirical chapters (Chapters 3, 4 and 5) where movement datasets and contextual data

are analysed through aiming to better understand the movement behaviour of both people and

wildlife. The structure of the thesis is summarised in Figure 1.1.
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Chapter 2: Context-Aware Movement Analysis

In this chapter we examine the state-of-the-art in the field of CAMA for human mobility

and movement ecology studies. We introduce the terminology of movement research, analyse

previous taxonomies for movement context and develop our own. We also discuss the role

played by context in movement, as well as the data types used to represent movement and

context. We focus particularly on movement data from GPS devices and contextual data from

remote sensing and meteorological stations. In addition, we look at how contextual datasets

and movement datasets are currently integrated and what are the challenges to overcome in

this area. We conclude by indicating how this thesis will try to address these challenges.

Chapter 3: Comparing trajectory annotation methods

In this chapter we look at how CAMA considers the context within which movement oc-

curs by using trajectory annotation (TA) to associate environmental and other contextual data

with trajectories. TA depends on spatial and temporal interpolation methods to estimate non-

existent data values. The diversity of temporal and spatial scales and resolutions of environ-

mental data result in uncertainties within interpolation methods and must be assessed before

meaningful information can be extracted. We formalize a TA method, the dynamic trajectory

annotation (DTA), which aims to address the case of temporal mismatch where trajectory

fixes are collected more frequently than environmental data. We compare the performance of

DTA with the following commonly used interpolation methods: NN (nearest neighbour), NB

(neighbour before), NA (neighbour after) and AM (arithmetic mean). The results indicate

that DTA is likely to outperform the NA and NN method, and that the DTA method produces

smoother transitions, being more suitable for visualization purposes, with the burden of added

computational time. Future directions will include expanding DTA for trajectories with coarser

sampling intervals relative to environmental data.

Chapter 4: Seasonal response in the diet of maned wolves: A study using

multi-sensor image fusion and a sequence based behavioural analysis

In this chapter we make use of geospatial data on movement and context to design new

methods to investigate the interactions between maned wolves Chrysocyon brachyurus and sea-

sonal availability of vegetation. Understanding the influence of vegetation on maned wolves is
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of interest for the preservation of this near-threatened species. The effect of vegetation sea-

sonality on movement behaviour can be explored through Context-Aware Movement Analysis

(CAMA), which integrates movement geometry with its context. More specifically, we propose

a new method that uses multi-source remote sensing data to overcome spatio-temporal incom-

patibilities between movement data and contextual data. This is the first time that CAMA for

a particular variable has been attempted by combining data from several satellites. In the sec-

ond part of the analysis we represent a wolf’s movement as a temporal sequence of states that

describe the conditions of the vegetation in the point where a GPS fix was recorded in relation

to the vegetation of the entire home range for that wolf. This moves our data representation

from trajectories to sequences. Movement patterns can then be identified by aligning these

sequences using a new sequence analysis method, the so-called eigenbehaviours, to identify

recurrent behaviour related to vegetation availability.

Chapter 5: Weather effects on human mobility: A study using multi-channel

sequence analysis

In this chapter we propose new methods to investigate the effects of weather conditions

on human movement patterns. Understanding the influence of weather on human behaviour

is of interest for diverse applications, such as urban planning and traffic engineering. The

effect of weather on movement behaviour can be explored through Context-Aware Movement

Analysis (CAMA), which integrates movement geometry with its context. More specifically,

we use multi-channel sequence analysis (MSA) to represent a person’s movement as a multi-

dimensional sequence of states, describing either the type of movement or the state of the

environment throughout time. In contrast with the previous chapter where we used the se-

quence analysis for one variable only, the MSA allows us to investigate the effects of several

meteorological variables at the same time. Similar movement patterns can be identified by

comparing and aligning multi-channel sequences using clustering and other data mining meth-

ods. We used trajectories from a GPS tracking study of commuting in the Scottish town of

Dunfermline and linked them to weather data on wind, temperature and rainfall. We then

converted these contextualised trajectories into multi-channel sequences which were clustered

into groups of similar behaviours under specific weather typologies. Our findings show that
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the CAMA + MSA method can successfully identify the response of commuters to variations

in environmental conditions. We also discuss our findings on how travel modes and time spent

at different places are affected by meteorological conditions, mainly wind, but also rainfall,

daylight duration, temperature, comfort and relative humidity.

Chapter 6: Conclusions

In the final chapter we revisit the research questions and objectives to present the main

conclusions from each of the empirical chapters. We also discuss the implications of this work

for future and current research in the area of CAMA, particularly regarding study designs

when collecting movement data in both human and wildlife research. Finally, we present the

contributions of this thesis to developing a new understanding of the movement behaviour of

humans and animals based on GPS data. We look at the limitations of this empirical work,

and outline a number of directions for the future research.
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Chapter 2

Context-Aware Movement Analysis

2.1 Introduction

Movement is a fundamental attribute of our world, it encompasses animate and inanimate

entities in varied ways and plays a key role in many ecological and evolutionary processes

(Nathan and Giuggioli, 2013). Living organisms in particular, show exceedingly frequent and

diversified motion driven by a set of environmental and biological factors interacting across

multiple spatial and temporal scales (Nathan et al., 2008; Dodge et al., 2013).

In the past two decades, the advances in location based technologies have resulted in greatly

improved quantity and quality of movement data (Demšar et al., 2015). At the same time,

there has been a significant increase on the availability of other sources of data, such as me-

teorological stations, satellites, radars and biologging sensors. This simultaneity brought new

opportunities and challenges to movement research: we can now not only look at movement

itself but also gather insights into the environment and conditions under which movement

happened. In order to gain insights from the now widely available contextual data collected

alongside movement data, we need first to work on the development of methodologies that

accommodate the simultaneous analysis of the moving entity and its environment (Laube and

Purves, 2011; Purves et al., 2014). These methodologies are termed Context-Aware Movement

Analysis (CAMA), where the Context-Awareness represents the simultaneous consideration of

the environmental conditions within which movement occurs (Sharif and Alesheikh, 2017a).

9
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This chapter summarises the current developments in CAMA in the fields of human mobility

and movement ecology. In Section 2.2 we define the key terms in movement research and

propose a taxonomy for the different types of context. In Section 2.3 we explain the main

types of contextual data and explore the importance of simultaneously looking at context and

movement. In section 2.4 we explain how movement data and contextual data are currently

linked. In section 2.5 we use previous studies to showcase the current challenges and potential

of CAMA. We conclude this chapter by indicating how these challenges will be tackled within

the scope of this thesis.

2.2 The terminology of movement research

Movement research is an extremely multidisciplinary field with diverse and perhaps redundant

terminology (Long and Nelson, 2013). This section introduces the terminology relevant to this

thesis with definitions and lists synonymous terms with references in Table 2.1.

• Movement - a continuous process defined by the change of spatial location over time

(Hornsby and Egenhofer, 2002; Long and Nelson, 2013).

• Movement data - a discrete collection of spatial and temporal coordinates describing

samples of the movement of one or more objects, possibly including attributes (Long and

Nelson, 2013).

• Movement database - a database of trajectories of one or more moving entities possibly

with attributes for all records (Long and Nelson, 2013).

• Trajectory - a collection of chronologically ordered spatio-temporal coordinates describ-

ing samples of the movement of one object in geographical space and time (Hu et al.,

2013) within diverse contexts (Gao et al., 2013).

• Point - one spatio-temporal record in a trajectory (Jeung et al., 2011), representing a

single sample of movement.
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• Context - a set of factors, situations, events or information that may be of interest for

an entity because it has an influence upon its behaviour (Bolchini et al., 2009), which

makes that context core to representing and reasoning its movement (Orellana and Renso,

2011). These are factors in the surroundings of a location point that might be affecting

the shape of the trajectory (Demšar et al., 2015). In Section 2.2.1 we will explore this

term and its subdivisions in more detail.

• Contextual data - a collection of chronologically ordered datasets describing one or

more contexts under which an entity was moving.

• Contextual layer - a single record of spatio-temporal data describing a context in which

an entity was moving at a certain time.

• Semantic trajectory - a trajectory annotated with contextual data relevant to the

movement analysis (Alvares et al., 2007).

• Trajectory annotation (TA) - the procedure by which spatial and temporal coordi-

nates are used to link contextual layers to location points within a trajectory, resulting

in a semantic trajectory (Dodge et al., 2013).
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Table 2.1: Synonymous terminologies used in movement research, building on previous work
from Long and Nelson (2013) and Sila-Nowicka (2016).

Adopted term Synonymous Reference

Point

Movement fix Long and Nelson (2013)

trajectory fix Dodge et al. (2009)

location Brillinger et al. (2004)

observation Harris (2001)

record Sila-Nowicka (2016)

fixation Dodge et al. (2008)

anchor Hägerstrand (1970)

Trajectory

Movement path Long and Nelson (2013)

space–time path Hägerstrand (1970)

trip-chain Kondo and Kitamura (1987)

geospatial lifeline Laube et al. (2007)

trace Jiang et al. (2015)

track Brillinger et al. (2004)

Movement Mobility data Sila-Nowicka (2016)

database GPS data Kays et al. (2015)

Context

Context Sharif and Alesheikh (2017a)

influencing factors Dodge et al. (2008)

motivation context Bogorny et al. (2014)

movement context Sharif and Alesheikh (2017a)

modality context Nathan et al. (2008)

geographic context Buchin et al. (2014)

environmental context Demšar et al. (2015)

semantic geographic information Alvares et al. (2007)

biological context Martin et al. (2013)

geographical embedding Laube (2014)

spatio-temporal context Andrienko et al. (2011)
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2.2.1 A taxonomy for context

Defining context is an important step towards the development of context-aware methods for

movement analysis, because it allows a better understanding of the state-of-the-art in CAMA

and underpins future research steps. Perhaps due to its novelty, current literature shows

considerable variety in definitions of context (Sharif and Alesheikh, 2017a), as well as many

subdivisions.

In the current literature, the following definitions have been used for “context”:

• “That part of a situation or data that influences movement or is influenced by movement”

(Sharif and Alesheikh, 2017a, p.19).

• What enables or limits movement (Purves et al., 2014).

• “[...] the locational circumstances of a moving agent, the external factors connected to

the underlying landscape [...] or the surrounding environment [...] in which movement

takes place” (Buchin et al., 2014, p.102).

• “[...] the complex and heterogeneous physical space, in which characteristics vary from

place to place and change over time; complex and heterogeneous physical time, in which

day differs from night, summer from winter, and so on; static and dynamic objects ex-

isting in space, as well as events occurring over time” (Andrienko et al., 2011, p.1347).

• Various influencing factors that impact and constraint movement (Dodge et al., 2008).

We also found the following subdivisions of context:

• internal and external, “[t]he former is any factor that is related to the MPO [moving-point

objects], characteristics, states, and conditions, such as the intention, location, direction,

and speed, while the latter is dedicated to the geographical and environmental conditions

during the move[...]” (Sharif and Alesheikh, 2017a, p.427).

• the ones “[...] com[ing] from additional data collected with trajectories[,] describ[ing] the

space within which movement can occur [and the ones] added by detailed knowledge, and

initial hypotheses, about the process under investigation” Purves et al. (2014, p.4).
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• intrinsic properties of the moving object, spatial constraints, environment against which

the movement takes place and influences of other agents (Dodge et al., 2008).

Sharif and Alesheikh (2017a) was the first study to actually focus on defining and classifying

context by developing a 4M taxonomy. They first divide context into internal and external,

but rename the latter as milieu context and subdivide the former into motivation context,

movement context and modality context, which leads to the 4M’s defined below.

• Motivation context: “ [...] any propellant, driver, or reason [...] or navigation capacity”

(Sharif and Alesheikh, 2017a, p.6).

• Movement context: “ [...] the entities’ quantitative parameters (e.g. speed and accelera-

tion)” (Sharif and Alesheikh, 2017a, p.9).

• Modality context: “ [...] a fundamental property of mobility that relates to the entity’s

condition mode in which something exists or is experienced or expressed [...]” (Sharif

and Alesheikh, 2017a, p.9).

• Milieu context: “ [...] pertains to any external factor” (Sharif and Alesheikh, 2017a,

p.9).

Despite the progress made by Sharif and Alesheikh (2017a), their definitions are still vague,

confusing and data-centred rather than focused on the reality of movement. Also, there is a

huge overlap between the subdivisions and the meaning of the names are not readily apparent.

For the purpose of this thesis we define movement context as follows: one or a set of variables

that can be linked to an entity and might be influencing its behaviour, therefore becoming useful

for understanding, modelling and predicting movement. These variables can be dynamic or

static, depending on the temporal scale of the study and of the variable.

Based on the current literature and in our experience with CAMA, we suggest that move-

ment context can be divided into the following taxonomy, illustrated and related to the work

by Nathan et al. (2008), Dodge et al. (2008) and Sharif and Alesheikh (2017a) in Figure 2.1.
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• Physiological context: variables inherent to the organism’s regular functioning that

can trigger a specific movement pattern. The hunger hormone ghrelin, for example, has

been found to affect stopover decisions of migratory birds (Goymann et al., 2017). In

humans, sex hormones seem to be related to differences in physical activity levels between

genders (Bowen et al., 2011).

• Environmental context: variables inherent to the movement’s surrounding location,

i.e., inherent to the place where movement is happening. The term surrounding here is

purposely vague, because the distance threshold to which environment influences move-

ment is moving entity dependant. For example, in an animal ecology context, eagles can

see clearly as far as three thousand metres whilst rhinos cannot distinguish between a

human and a tree at four metres distance. Thus, the surrounding threshold for an en-

vironmental context that is visually perceived would be fundamentally different between

these two species.

Next we identify different sub-types of environmental variables, which may differ depend-

ing on the application.

– Natural context: variables inherent to the movement’s surrounding location that

describe the landscape and are not man-made, such as wind fields (Safi et al., 2013),

temperature (Edwards et al., 2015), vegetation coverage and state (Pettorelli et al.,

2005).

– Circumstantial context: variables inherent to the movement’s surrounding location

that are not cyclical or permanent at the temporal scale in which movement is being

analysed, such as tsunamis, floods (Pregnolato et al., 2017), earthquakes (Gething

and Tatem, 2011) and road closures (Cole et al., 1997).

– Anthropogenic context: variables inherent to the movement’s surrounding location

that are created by the human presence, such as pollution (Dewulf et al., 2016),

traffic (Javid and Javid, 2018), transportation mode (Dabiri and Heaslip, 2018),

retail and activity options (Si la-Nowicka et al., 2016; Sila-Nowicka, 2018).
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• Demographical context: variables inherent to the organism that allows a direct com-

parison to meaningful groupings of the population and also might explain divergences in

movement patterns amongst those groups.

Next we identify different sub-types of demographical variables, which may differ depend-

ing on the application.

– Biological context: variables inherent to the organisms that do not depend on any

other individual, for example age (Vazquez-Prokopec et al., 2013) and sex (Si la-

Nowicka et al., 2016).

– Sociological context: variables that describe the organisms relation to others or group

belonging, it is more common in human mobility analyses but the same would apply

in terms of ethological variables for animals. Some examples are, community and

group belonging (Bode et al., 2015; Shi et al., 2015; Toole et al., 2015; Yang et al.,

2018), economic status (Kimijima and Nagai, 2017), social interaction (Mollgaard

et al., 2017).

In the recent work by Sharif and Alesheikh (2017a), one controversial issue has been the

use of the term movement context. On the one hand, Sharif and Alesheikh (2017a) argue

that speed, distance, turning angle and acceleration are movement context. On the other

hand, Dodge et al. (2008) contend the same attributes as primary and secondary parameters

of movement. We agree with Dodge et al. (2008) that those are movement parameters and we

use movement context as a general term encompassing all the subdivisions in our taxonomy,

as it can be seen in Figure 2.1. Though we concede that movement parameters can help

modelling movement, we still insist that movement parameters are not context because they

do not full-fill the definition of it. Firstly, movement parameters do not need to be linked to the

moving entity, as they are derived from movement samples. Secondly, these parameters do not

influence behaviour but rather are an integrated and resultant part of it. In fact, movement

parameters are good descriptors but do not fully explain the reasoning and motivation for

movement behaviour, which is a main trait of contextual data.
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We are aware that the boundaries between classes of movement context are, at times, im-

precise but to the best of our knowledge our proposed taxonomy reflects the division between

internal and external factors by Nathan et al. (2008), which is a consensus in the movement

ecology literature. This consensus is also illustrated in Figure 2.1, where we show the relation-

ship between our taxonomy and other divisions of movement context. Different divisions are

shown in distinct colours and dashed lines identify how they relate to each other.

Figure 2.1: Proposed taxonomy for movement context with non-exhaustive examples of vari-
ables and how it relates to the classifications proposed by Nathan et al. (2008) (in orange at
the top), Dodge et al. (2008) (in green at the bottom) and Sharif and Alesheikh (2017a) (in
purple at the bottom). The red rectangle indicates the type of context this thesis focuses on.

In Figure 2.1, at the top in orange, we have the division by Nathan et al. (2008), which comes

from ecology and it is the starting point for the other three classifications of context. In the

second horizontal block of Figure 2.1 we illustrated our taxonomy, in which we classify physio-

logical and demographical-biological context as internal factors, and demographical-sociological

and environmental as external factors. In the third row of Figure 2.1 in green we have the di-

vision by Dodge et al. (2008), in which the external factors by Nathan et al. (2008) are divided

into other agents, equivalent to our demographical-sociological context, and spatial-constraints,

equivalent to our environmental context. In the division by Dodge et al. (2008), intrinsic con-
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text is equivalent to the internal division defined by Nathan et al. (2008). The last horizontal

block of Figure 2.1 shows the classification by Sharif and Alesheikh (2017a), in which as op-

posed to Dodge et al. (2008), the authors rename external context as milieu and create three

types of internal context. However, as said before, their definitions are fundamentally unclear

and for this reason we do not try to relate them to our taxonomy. This thesis focuses on our

definition of environmental context surrounding movement (see red rectangle in Figure 2.1).

2.3 The role played by context

Movement is triggered by a combination of internal and external factors interacting at different

temporal and spatial scales, i.e., it is a product of physiological and environmental variability

over a scale ranging from seconds to years (Nathan et al., 2008). Reproductive calendar, nour-

ishment, circadian cycle and age are a few examples of internal factors that affect the movement

of living organisms, whilst temperature, wind, land cover and the presence of predators are

examples of external factors (Martin et al., 2013). During summer, for example, people are

more likely to feel hot (a physiological change) because of the higher temperatures (an en-

vironmental change), which might trigger more frequent visits to the ice cream shop, a trip

to the beach, a change of the transportation mode or simply an overall increase, or decrease

depending on the typical weather, on time spent outdoors. Similarly, some birds are known

to migrate in response to the changes in intensity of the sunshine and duration of daylight,

which also produce physiological changes, such as the decrease in size of feeding related organs

(Nebel, 2010).

The comprehension of how a specific context triggers different movement patterns is of

vital importance for understanding behaviour, which is of particular interest for biodiversity

conservation (Sutherland et al., 2013), wildlife management (Urbano et al., 2010), epidemiology

(Holden, 2006), human mobility (Gao, 2014) and urban planning (Willis et al., 2004). Unveiling

behavioural mechanisms is the ultimate goal of many movement analyses because the modelling

of behaviour will also allow for its prediction. Solely analysing trajectories enables us to identify

movements, but fail to reveal the reasoning and motivation behind those. In contrast, taking



2.3. THE ROLE PLAYED BY CONTEXT 19

context into consideration can lead to inferences about the drivers of movement, contributing

towards the understanding and prediction of behaviour. Yet, there are still few studies taking

context into account, perhaps due to the technical challenges posed by integrating movement

data and contextual data (Dodge et al., 2008; Laube, 2014). Many of these challenges starts

with the different nature of these data sets, which we explore in the next sections.

2.3.1 Movement data types

The core of any movement data is the collection of positional information through time (Laube,

2014) which has historically been performed with a variety of techniques (Long and Nelson,

2013). At its onset, movement data were collected via rudimentary techniques such as band-

ing/ringing (Knox, 1983), scale clipping (Blanchard and Finster, 1933), manual travel surveys

and travel diaries (Palmer et al., 2013). Currently, most of the data acquisition is performed

remotely (Long and Nelson, 2013) via radio telemetry (Salvatori et al., 1999; Fryxell et al.,

2008; Cagnacci et al., 2010), surveillance radar (Gauthreaux and Belser, 2005), mobile phone

records (Horanont et al., 2013; Louail et al., 2014; Isaacman et al., 2011; Phithakkitnukoon,

Smoreda and Olivier, 2012), bluetooth data (Versichele et al., 2012), satellite tracking systems

such as the ARGOS (Advanced Research and Global Observation Satellite) data collection and

location system (Coyne and Godley, 2005; Prosser et al., 2015), light-level geolocators (Lisovski

et al., 2018) and GPS trackers (Urbano et al., 2010; Cagnacci et al., 2010; Si la-Nowicka et al.,

2016; De Groeve et al., 2016). Of these, data collection via GPS tracking has been increasingly

prevalent in movement studies, both for humans and animals (David et al., 2014; Demšar et al.,

2015; Wikelski et al., 2007; Tomkiewicz et al., 2010) and it is the type on which we will focus

from now onwards.

In contrast to the early methods, trajectory sampling is automated in GPS tracking. How-

ever, there is a trade-off between sampling intervals and duration, which are defined based

on the research goals and device limitations (Johnson and Ganskopp, 2008). The sampling

rate determines the granularity (Hornsby and Egenhofer, 2002) or temporal resolution and

volume of movement data (Cagnacci et al., 2010; Urbano and Cagnacci, 2014). Finer temporal

resolutions are associated with higher sampling rates, bigger volume and provide more certain
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trajectories, while coarser temporal resolutions are related to lower sampling rates, smaller vol-

ume and provide more uncertain trajectories (Long and Nelson, 2013). Sampling frequencies

can vary widely (Urbano and Cagnacci, 2014): from milliseconds (Shamoun-Baranes et al.,

2006), to seconds (Meijles et al., 2014; Elliott et al., 2014; Xiao et al., 2015; Si la-Nowicka et al.,

2016; Roeleke et al., 2018), minutes (Safi et al., 2013; Wang et al., 2015; Shaffer et al., 2017),

hours (Dodge et al., 2013; Davies et al., 2013; De Groeve et al., 2016; Fullman et al., 2017)

and even days (Cagnacci et al., 2010; Urbano and Cagnacci, 2014; Parlin et al., 2018). Ideally

the sampling rate must be higher than the frequency of the behaviour under investigation, but

that is not always possible due to battery constraints (David et al., 2014).

The constraints related to battery life can be reduced by setting the GPS device, so that it is

switched-off when no movement is detected (David et al., 2014). This results in samples being

taken at regular and/or irregular intervals (Calenge et al., 2009), in the first case location points

are spread equally in time producing regular trajectories while in the second case location points

are spread unevenly in time producing irregular trajectories. This strategy is also reasonable

in regards to the biology of organisms, as there is no pattern to be detected when people are

sleeping or during the day for nocturnal animals. Yet, it adds to the already high computational

complexity of trajectories.

Processing trajectories involves many challenges (Laube and Purves, 2011; Laube, 2014;

Shamoun-Baranes et al., 2012), from dealing with very large volumes of data from trajectories

with high temporal resolution to dealing with the uncertainty from trajectories with low tempo-

ral resolution. These challenges, which we will explore more about in Section 2.5, are further

enhanced when contextual data are included in the analysis (Demšar et al., 2015; Cagnacci

et al., 2010; Neumann et al., 2015).

2.3.2 Contextual data types

Context is represented by a variety of data types in the computational environment (Laube,

2014; Dodge et al., 2013), which can be acquired from users, inference systems or sensors (Shaf-

fer et al., 2017). User generated contextual data are primarily employed in human movement re-

search and consists of interviews, questionnaires, Location-Based Social Networks (LBSN) and
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volunteered geographic information (VGI) (Sun et al., 2013), as for example Flickr (Barchiesi

et al., 2015), FourSquare (Agryzkov et al., 2017; Krueger et al., 2014), Facebook (Turk, 2013)

and Twitter (Blanford et al., 2015; Jurdak et al., 2015) data.

Inferred contextual data, such as movement modes (Si la-Nowicka et al., 2016; Dabiri and

Heaslip, 2018; Bolbol et al., 2012), activities (Sila-Nowicka, 2018; Wan and Lin, 2016), places

of interest (POI’s) (Ashbrook and Starner, 2003; Thierry et al., 2013; Jiang et al., 2015; Si la-

Nowicka et al., 2016; Sila-Nowicka, 2018) and density of predators (Block et al., 2011) are

generated by inference algorithms, segmentation methods, classifiers and forecasting models

(Schick et al., 2013).

Sensed contextual data are often used to represent physiological context and/or environ-

mental context. The first is exclusively measured by in-situ co-located sensors (Jeltsch et al.,

2013; Demšar et al., 2015) that simultaneously register movement and physiological variables,

such as heart rate (Louzao et al., 2014; Richardson et al., 2018). The second can be measured

in-situ or remotely and it is the type on which this thesis focuses. More specifically, sensed

environmental context has been acquired in-situ by meteorological stations, particularly for as-

sessing the effect of wind on avian flight and for evaluating human response to weather (Table

2.2), and remotely by satellites, drones, airplanes and camera traps to obtain data on diverse

variables (Neumann et al., 2015), of which we list a few examples in Table 2.2.

2.3.2.1 Contextual data from remote sensing

Remote sensing uses sophisticated sensors to measure the spectral electromagnetic energy, i.e.

the radiance (W/m2sr), emitted/reflected by an object or geographic area without coming into

direct contact with it, to then extract information on the biophysical properties of those objects

(Fussell and Rundquist, 1986; Jensen, 2006). The main advantage of remote sensing comes

from the capability of performing systematic data collection over large areas at a relatively low

cost, which is useful for characterizing the environment in order to understand the mechanisms

behind movement (Pettorelli et al., 2014; Neumann et al., 2015). This is particularly important

for large-scale movements such as animal migration, where environmental conditions cannot

be measured locally because they are needed over very large areas (Dodge et al., 2008).
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Table 2.2: A non-exhaustive list of studies using environmental contextual data in CAMA with
reference and specific variable used.

Variable Reference

Weather

Horanont et al. (2013)
Phithakkitnukoon, Leong, Smoreda and Olivier (2012)

Vanky et al. (2017)
Sila-Nowicka (2018)

Brum-Bastos et al. (2018)

Wind

Safi et al. (2013)
Richardson et al. (2018)

Shamoun-Baranes et al. (2010)
Yoda et al. (2012)

Gutierrez Illan et al. (2017)
Kleyheeg et al. (2017)

Rainfall
Bartlam-Brooks et al. (2013)

Henry et al. (2015)

Surface temperature
Kappes et al. (2015)
Henry et al. (2015)
Howey et al. (2017)

Land cover Fullman et al. (2017)

Snow coverage Cagnacci et al. (2011)

Topography

Getz and Saltz (2008)
Katzner et al. (2012)

Widmann et al. (2015)
Kittle et al. (2015)

Fullman et al. (2017)
Kleyheeg et al. (2017)

Vegetation state

Musiani et al. (2010)
Bartlam-Brooks et al. (2013)

Bohrer et al. (2014)
Buchin et al. (2015)
Henry et al. (2015)

Thorup et al. (2017)

Most remote sensing products are delivered as digital numbers (DN), i.e. integers as-

signed to pixels, which allow the visualisation of images by applying different shades of grey

but do not provide any biophysical information on the objects. Passive remote sensing systems

are further constantly calibrated by also measuring the radiance coming from the Sun, which

allows the calculation of the proportion of the received electromagnetic energy that bounces

back from an object, or the so-called spectral reflectance (Rees, 2001). While DN are af-

fected by diverse factors, reflectance is a property inherent to objects so that different objects
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have specific spectral reflectance curves. Often called spectral signatures, these curves are well

documented and describe how much energy a target reflects in each portion of the electromag-

netic spectrum, which allows us to distinguish between objects in satellite images but also to

extract biophysical information on the targets. The use of reflectance, which can be obtained

by applying sensor-specific equations to the DN, instead of DN is particularly important in

multi-temporal and multi-sensor studies, because of recurrent variations in the illumination of

scenes that make DN incomparable between images of different dates and/or sensors. A forest

patch, for example, may not have the same DN in images from different satellites but it will

have very similar, if not the same, reflectance values in both. One of the reasons for that are

differences between the four resolutions intrinsic to remote sensing.

Remote sensing data are characterised by radiometric resolution, spectral resolution, tem-

poral resolution and spatial resolution (Jensen, 2006; Novo, 2010; Rees, 2001). Radiometric

resolution is measured in bits and defines the levels of quantisation captured by an image,

i.e., it defines how capable a sensor is of discerning between close objects. It also determines

the maximum DN in an image, which is equal to 2n, where n is the radiometric resolution

expressed in number of bits. Common radiometric resolutions are 8 bits (Landsat 4 and 5),

11 bits (QuickBird and IKONOS) and 16 bits (Landsat 8), which yields respectively 256, 2048

and 65536 possible DN. Therefore, the same forest patch on the same day and time will have

a different DN in different remote sensing systems.

Spectral resolution refers to the number and width of bands, i.e. intervals in the electro-

magnetic spectrum, within which reflectance is measured by a remote sensing instrument. It

can vary widely, from one large band in WorldView-I (DigitalGlobe, 2016) to 36 narrower bands

in MODIS (Moderate Resolution Imaging Spectroradiometer) (Toller and Isaacman, 2006), as

the bands are defined based on the spectral signature of the target they are being designed for

monitoring. If a satellite system is designed to monitor vegetation, for example, it will have

bands in the red and near infra-red intervals of the electromagnetic spectrum, because those

intervals are known to capture features that are singular to vegetation. The low reflectance

in the red interval, because of chlorophyll absorbency, combined with the high reflectance in

the near-infrared caused by multiple reflections within the leaves (more specifically within the
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spongy mesophyll) (Figure 2.2) are well known features that allow identifying, assessing and

distinguishing vegetation from other targets, such as water and soil (Figure 2.2) (Ponzoni and

Shimabukuro, 2010). There are trade-offs between the width of the bands, the spatial resolution

which and the temporal resolution.

Figure 2.2: Spectral reflectance curve of vegetation, soil and water from 0.4 µm to 2.5 µm
wavelength. The dominant factors controlling leaf reflectance are the pigments in the palisade
mesophyll (chlorophyll content), the scattering in the spongy mesophyll (leaf structure) and
the amount of water in the plant. Adapted from SEOS (2018)

Temporal resolution refers to the interval of time it will take for a satellite to orbit again

above the same point on Earth, i.e., how long it takes until the next image of the same area is

acquired (Jensen, 2006). Revisiting periods vary from minutes to days, a longer revisit period

is usually related to a higher spatial resolution and fewer bands. On the contrary, shorter

revisiting periods are often related to lower spatial resolution but more bands. For example,

MODIS has 36 multi-spectral bands with spatial resolution varying from 250m to 1km and daily

revisit (Toller and Isaacman, 2006), whilst Landsat OLI (Operational Land Imager) has eight

bands with 30m spatial resolution and 16 days revisit period (USGS, 2016). Higher temporal

resolution is achieved by projecting systems with bigger scene sizes (swatch), which in turn

requires the detectors to be projected over a larger area coarsening the spatial resolution.
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Spatial resolution is often erroneously defined as the pixel size of an image generated by

a remote sensing system. The resolution defines the size of the smallest object that a sensor is

capable of discerning as a single unit, while the pixel size defines the smallest unit with which

an image is being displayed (Figure 2.3). Spatial resolution is unchangeable and inherent to

the system that generated the image (Jensen, 2006; Novo, 2010; Rees, 2001), but the pixel size

can be changed. For example, if a sensor has a spatial resolution of 10 metres and an image

from that sensor is displayed at full resolution, each pixel represents an area of 10m x 10m on

the ground, in which case the pixel size and resolution are the same (see column one and two

of Figure 2.3). However, it is possible to display the same image with a bigger or smaller pixel

size different than the resolution (see column one, three and four of Figure 2.3). Increasing

the pixel size will degrade the discernibility of objects, but decreasing the pixel size will not do

the opposite, because a pixel can not show more than what the spatial resolution is capable of

capturing.

The signal registered at a full resolution pixel is the result of the integration of an weighted

average of the energy reflected/emitted by all the objects within the area delimited by the

spatial resolution (Zhan et al., 2013), this is known as mixture effect (Choodarathnakara et al.,

2012). Coarser spatial resolutions result in higher diversity of signals being registered at the

same pixel (Figure 2.4) and therefore a more intense mixture effect, which becomes problematic

when trying to identify targets and patterns from remote sensing data (Choodarathnakara

et al., 2012; Zhan et al., 2013).

The mixture effect is also increased by resampling remote sensing data to a pixel size differ-

ent from the spatial resolution because it interpolates multiples pixels, i.e., multiple mixtures

of objects, to estimate a new value at a certain location. In that sense, the value of the pixel

which a location falls within is the best estimate for it and no interpolation will improve the

accuracy beyond it. On the other hand, sub-pixel modelling and multi-sensor approaches have

been used in the last years to tackle this problem (Zhan et al., 2013).
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Figure 2.3: Difference between spatial resolution and pixel size. The first column shows an
image grid with an specific resolution overlaying the roof of a house, the other three elements in
the row show how the data registered at that resolution will be displayed in an image generated
with a pixel size equal, smaller and bigger than the resolution. The red line show the equivalent
size of the pixels on the ground.

2.3.2.2 Contextual data from meteorological stations

Each country has established its network of meteorological stations with the purpose of predict-

ing the weather (Day, 1966), a collective phenomena of the atmosphere, that can be monitored

by observing its meteorological elements (Gole, 1970). These elements, namely atmospheric

temperature, atmospheric pressure, relative humidity, precipitation, cloudiness, visibility and
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Figure 2.4: Mixture effect illustrated for images with 90m and 180m spatial resolution over an
urban area. It is clear that there is a higher diversity of objects within a 180m nominal pixel
than within a 90m one.

wind, are measured at least four times a day at the same Greenwich time by weather stations

everywhere in the world (Day, 1966; Gole, 1970; Met Office, 2016).

Weather stations are organised in a network collecting point-wise information at multiple

locations, which ideally have level ground and no trees, buildings or hills around that could

introduce bias (Met Office, 2015). The measurements of the meteorological elements can be

done automatically or manually, depending on the type of station (Met Office, 2016). Manual

stations provide data four times a day, while automatic ones usually provide data at hourly

intervals data and sometimes even sub-hourly intervals (Day, 1966). In the United Kingdom,

for example, there are 200 automatic meteorological stations, which are set up approximately

40 km apart (Met Office, 2016) and collect data at one minute intervals. There are no data

collected in-between stations, which means that the values of any variable measured at a

meteorological station need to be inferred at those locations.

The extrapolation of point-wise meteorological data to other locations is done by apply-

ing spatial interpolation methods, which can be deterministic, probabilistic or mixed (Sluiter,

2008). Deterministic methods use only the geometric properties of the point observations to

create a continuous surface. Probabilistic methods allow the inclusion of the variance in the

interpolation process and also assess the statistical significance of the predictions. Mixed meth-

ods are the ones specially developed for meteorological purposes by combining deterministic

and probabilistic methods (Tveito, 2010; Beek, 1991).
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The Meteorological Interpolation based on Surface Homogenized Data Basis (MISH) (Szen-

timrey et al., 2010) and the Parameter Regression on Independent Slopes Model (PRISM) (Daly

et al., 1997) are examples of mixed methods specially developed for meteorology. These meth-

ods increase accuracy by using information from the climate data series (30 years or more)

to estimate the spatial trend differences and the covariances of the surface being interpolated.

However, they are still not fully understood (Tveito, 2010) and require massive amounts of

data and computational resources.

Kriging is an example of one of the most used probabilistic interpolation methods for

weather variables. It incorporates the concept of randomness by accepting that a continuous

attribute varies too irregularly to be modelled by a simple function, so that its variation is

better described by a stochastic surface with an attribute that respects the concepts of spatial

dependence and spatial autocorrelation (Chatterjee and Chowdhury, 2017). Kriging methods

produce good results for not too sparse data (Sluiter, 2008), but they require prior estimation

and validation of the spatial auto-covariance structure, which can be difficult (Hutchinson,

1995).

Amongst the deterministic methods, Thiessen or Voronoi polygons are the simplest and

perform well for dense measurement networks (Sluiter, 2008). This method draws distance-

based boundaries between data points by creating one polygon centred at each station, i.e.,

it predicts the attributes of unsampled points based on those of the nearest sampled point

(Hartkamp et al., 1999), which results in a collection of polygons delineating zones that are

linked to temporal data-series on the variables measured at the meteorological station. The

Inverse Distance Weighting (IDW), another deterministic method widely used in meteorology,

includes multiple observations by using the distance from each point data as a weight to

estimate the value at a certain location (Tveito, 2010). Other less frequently used deterministic

methods are splines, linear regressions and artificial neural networks.

The choice of the interpolation method should take into account the variability of the me-

teorological variable, the density of the meteorological network and the variations in altitude

across the study site (Hartkamp et al., 1999; Tveito, 2010). Temperature in Europe, for exam-

ple, rarely varies much over regions smaller than 50 x 50 km2 (Beek, 1991) and decreases about
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0.6 ◦C per 100 metres of altitude (Hough and Jones, 1997). Therefore, with stations at intervals

equal or smaller to 50 km and relatively constant altitude, it is not necessary to apply more so-

phisticated interpolation methods and the use of deterministic interpolation, such as Thiessen

polygons, is appropriate. Other similar examples are wind and humidity, which generally show

little variance in a 50 to 150 km radius, except in coastal areas where the wind varies more and

humidity is higher. In contrast, precipitation shows large spatio-temporal variability, not only

in intensity but also in form: rain, hail, sleet or snow (Beek, 1991). Therefore, deterministic

methods do not perform well with this variable, so that it usually requires more sophisticated

methods from probabilistic theory, such as kriging and regression.

The large spatio-temporal variability is one of the reasons why rainfall is frequently moni-

tored also via meteorological radars, which are more capable of retrieving data at sub-hourly

interval for monitoring larger areas. Radar measurements are taken off-nadir which results

on varying spatial resolution across different ranges, i.e., the further away a point is from the

radar, the coarser is the spatial resolution at that point (Jensen, 2006). The accuracy and

suitability of the data for different applications is determined by its spatial resolution, which

is also linked to the interpolation method applied to the raw radar data.

Regardless of the interpolation method the final data set will have zones linked to the value

of the meteorological element and timestamps indicating when they were collected. These zones

and the timestamps from the data-series will determine which values of the weather variable are

attributed to the points in a trajectory in CAMA. The zones are used for spatial intersection,

i.e., trajectory points within a certain Thiessen polygon will receive the values registered at the

meteorological station at the centre of that polygon, and the timestamps are used for temporal

intersection, i.e., ideally trajectory points within a certain Thiessen polygon or grid cell would

receive the values registered at the meteorological station at the centre of that polygon at the

time when the location point was recorded. However, there is a mismatch between movement

data and meteorological data temporal resolutions, whilst the first are commonly sampled at

sub-hourly intervals, the second are sampled at hourly intervals. This asynchrony highlights

the need for methods to deal with the temporal incompatibilities between movement data and

contextual data, which is one of the challenges of performing CAMA (Dodge et al., 2013;
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Demšar et al., 2015).

There are many other characteristics and challenges to remote sensing and meteorological

data, but the aforementioned ones are the most relevant for integrating movement data and

contextual data. The complexity of processing trajectories is increased by adding contextual

information (Demšar et al., 2015; Shamoun-Baranes et al., 2012), the challenge of combining

contextual and movement datasets require an intermediate step to integrate all these diverse

data sources which have different sampling scales in both space and time (Shamoun-Baranes

et al., 2012; Dodge et al., 2013; Coyne and Godley, 2005). The integration is often done via

trajectory annotation (Mandel et al., 2011; Dodge et al., 2013), which we explain in Section

2.4.

2.4 Integration of context

The integration of contextual variables and movement paths is done via trajectory annota-

tion (TA) (Mandel et al., 2011; Dodge et al., 2013), a process by which contextual datasets are

associated with movement trajectories by performing spatio-temporal intersections to add the

value of the contextual variable as an attribute of the points in the trajectory (Safi et al., 2013;

Urbano et al., 2010). Trajectory annotation comes from computer science, more specifically

from web-browsing, an area in which it is used to add data on important variables encountered

through a particular path to the object whose path was recorded (Mandel et al., 2011). Sim-

ilarly in movement research, an annotated path integrates the values of contextual variables

co-located in time and space with the moving organism (Mandel et al., 2011). The annotation

of trajectories results in the so-called semantically enriched trajectories (Parent et al., 2013;

Safi et al., 2013; Yan et al., 2013), which support the understanding of how context affects

movement behaviour.

The extremely large amount of data involved in the process requires TA to be as auto-

mated as possible, which led to the development of systems to support the task (Dodge et al.,

2008). Most of these systems come from movement ecology, where there is a tradition to make

them accessible for other researchers, while systems for TA of human tracking are much more
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individualised and closed, so that the methods are often only accessible to authors themselves.

The Satellite Tracking and Analysis Tool (STAT) (Coyne and Godley, 2005), currently

Wild Life Tracking, was the first freely available web system to provide tools for management,

analysis and integration of environmental data. STAT is primarily focused on data from Argos

(a worldwide satellite based tracking and environmental monitoring system for data collection

and transmission) and provides oceanographic contextual information on bathymetry, sea sur-

face temperature, chlorophyll, sea surface height and currents (Coyne and Godley, 2005). The

Spatial Ecological Analysis of Megavertebrate Animal Populations (OBIS-SEAMAP) (Halpin

et al., 2006, 2009) provides a very similar array of contextual variables and despite being a

multi-species platform, it still exclusively focused on the maritime organisms.

The first platform to focus on terrestrial animals, still single-species and very specialised,

was the EUropean ROe DEER Information System (EURODEER). It was a web-based collab-

orative platform designed to store shared movement data and a wide set of contextual variables,

such as snow coverage and topography (Cagnacci et al., 2011). Another system and the most

popular, the environmental-data automated track annotation (Env-DATA) system is “capable

of managing and analysing movement trajectories linked to large remote sensing, climatic, and

land use datasets will greatly facilitate the next generation of research into movement ecology”

(Dodge et al., 2013, p.13). Very similar in architecture but more recent ZoaTrack (Dwyer

et al., 2015) also provides tools for integrating contextual data into movement analysis but it

is geographically focused on Australasia.

The Env-DATA expanded the capabilities of Movebank (Kranstauber et al., 2011), a free

on-line multi-species database of animal tracking data, to assimilate context in the analysis

of animal movement data (Dodge et al., 2008). The system offers more than twenty con-

textual variables derived from remote sensing data and global reanalysis models, as well as

three different options of spatio-temporal interpolation methods to match contextual data and

movement samples. In addition, DynamoVis (Xavier and Dodge, 2014; Xavier et al., 2018), a

visualization tool has been recently added. DynamoVis uses combinations of visual variables to

animate multivariate representations of movement, so that it can be visualised within context

(Xavier and Dodge, 2014; Xavier et al., 2018). The combination of Env-DATA, MoveBank
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and DynamoVis systems are up-to-date undoubtedly the most advanced in terms of facilitat-

ing CAMA, particularly the use of remote sensing products as contextual data (Dodge et al.,

2013). Yet, CAMA is still a challenging task and it is unclear whether trajectory annotation is

the best approach to perform it because of the differences in spatial and temporal resolutions

of contextual data and trajectories (Demšar et al., 2015). These incompatibilities and the main

challenges to be faced when performing CAMA are explored in Section 2.5.

2.5 Current challenges

2.5.1 The source of the challenges: mismatch in data resolutions

Movement data can be collected with temporal resolutions ranging from miliseconds to days and

at times with sub meter accuracy. Contextual data, on the other hand, might only be available

at best hourly, if from meteorological stations, or half-daily, if from orbital remote sensing, and

with spatial resolution varying from several tens to hundreds of metres (Dodge et al., 2008;

Demšar et al., 2015). The differences in spatial and temporal resolutions of movement data and

contextual data are amongst the most pressing issues in CAMA. Table 2.3 lists a few examples

of recent studies where this spatio-temporal mismatch is found, there are other many examples

in the literature but we do not intend here to create an exhaustive list.

Generally, there are two possible types of temporal incompatibility when performing TA,

in the first one movement data are sampled more frequently than contextual data, while in the

second one movement data are sampled less frequently than contextual data. The first case

can be represented by HH quarter in Figure 2.5, in which there are different phenomena being

tracked at fine scale for humans and wildlife, but there are only coarser sources of contextual

data. The second case can be illustrated by the LL quarter in Figure 2.5, in which there are

different phenomena being tracked at coarser scale for humans and wildlife, but there are only

finer sources of contextual data.
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Figure 2.5: Incompatibilities in spatial and temporal resolutions between movement data and
contextual data after Neumann et al. (2015); Shen and Stopher (2014) and Meekan et al.
(2017). Ellipses show the spatio-temporal range of movement data for different applications,
black dots show the same for free sources of contextual data. The low-left quarter represents
the high temporal and spatial resolution (HH) domain. Clockwise from there, we have the
quarter with low temporal resolution and high spatial resolution (LH), the quarter with low
temporal and spatial resolution (LL), and the quarter with high temporal resolution and low
spatial resolution (HL).

Either mismatch types make the use of pre-processing measures, such as interpolation or

aggregation, necessary. However, while finer contextual data can be generalised or aggregated

without many issues, pre-processing coarser contextual data requires more caution. The reason

for this is that finer contextual data allows to extract trends and cycles at coarser scales than

the contextual data were collected at because the information is already there, while coarser

contextual data requires the use of inference or auxiliary data sets to extract trends at a finer

scale, simply because the information is not in the original data. For example, if we were
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to describe the weather hourly and we know that it was raining at 13:00, 14:00, 15:00, 16:00

and 17:00, it is possible to generalise this information to “it was raining between 13:00 and

17:00”. However, if we only knew that it was raining at 13:00 and at 17:00, it is less possible

to know what happened between those points in time without looking for auxiliary data in the

forecast or inferring from previous experiences. Movement studies have been using interpolation

methods to infer contextual data at unsampled spatio-temporal coordinates and overcome the

mismatch between resolutions before performing TA, which is one of the challenges involved

in performing CAMA.

2.5.2 CAMA challenges

The annotation process starts by finding at least four pixels in the grid of the contextual data

spatially adjacent to the point being annotated (Pi in Figure 2.6 a), at the two timestamps

before (t) and after (t’) the fix to be annotated (Figure 2.6 b). Then, the values of the four

neighbour pixels v1, v2, v3, v4 at t and v’1, v’2, v’3, v’4 at t’ are interpolated in space to

compute the value of the contextual variable at t and t’, which are subsequently interpolated

in time to compute the contextual value at time ti when the fix Pi was collected (Figure 2.6 b).

Current annotation systems, such as STAT and ZoaTrack, offer at least one method for tem-

poral interpolation and multiple ones for spatial interpolation. Env-DATA, the most popular

annotation system, offers the nearest neighbour (NN), bilinear, and inverse distance weighted

(IDW) methods for spatial interpolation, and the NN and IDW for temporal interpolation

(Dodge et al., 2013). For details on these methods see Chapter 3.

In Env-Data, for example, the finest contextual dataset has a spatial resolution of 1 km

(See table 1 in Dodge et al. (2013, p.6)), which means that, in the best case scenario, it would

interpolate from an area of at least 4 km2 to estimate the value of a contextual variable at point

Pi at t and from another 4 km2 to estimate it at t’, and then interpolate the values at t and t’

to estimate the context at ti. Following, resulting semantic trajectories are delivered in comma-

separated values (csv) format that can be visualised in DynamoViz (Dodge et al., 2008; Xavier

et al., 2018). However, none of these systems include any statistical and analytical methods for

knowledge discovery and data mining of the annotated trajectories to perform context-aware
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similarity analysis (CASA).

Figure 2.6: Interpolation in space and time from Dodge et al. (2013). a) The variable data for
track-point Pi is first interpolated in space based on the data from the available pixels in the
contextual dataset native grid around Pi.b) Similar spatial interpolations are conducted at the
two nearest available points in time, the nearest before and nearest after the time-stamp of the
fix Pi. Then, the two interpolated spatial values are interpolated in time to the time-stamp of
Pi.

There are three main problems to be considered in this process :

1. The temporal profile of the context being annotated, i.e., how that contextual variable

progresses or evolves in time and/or space.

2. The spatial structure of contextual data, i.e., issues related to the data collection, such

as the mixture effect in coarse pixels.

3. What to do with semantic trajectories, i.e., once trajectories have been annotated with

contextual data, how can we identify patterns in these trajectories that can be linked with

movement behaviour? This can be for example by looking at movement and contextual

similarity.

2.5.2.1 Interpolation within TA and the temporal profile of contextual data

In terms of temporal profile, rainfall and vegetation phenology, are examples of contextual vari-

ables with different temporal cycles, yet they are often processed using the same interpolation
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methods, i.e., the interpolation methods are chosen disregarding the specificity of each variable

and scale. Perhaps because the implications of using different methods for temporal interpola-

tion of contextual data, prior TA, have not yet been tested nor compared. Therefore, in order

to better deal with the temporal incompatibilities in TA, there is a the need to compare the

current interpolation methods and its implications, but also search for methods

that take into account the temporal progression of contextual variables.

2.5.2.2 Spatial structure of contextual data

Regarding the spatial structure of the data, considering the mixture effect inherent to remote

sensing data (See section 2.3.2.1), which is specially prominent in data with coarse spatial

resolution, and taking into account that “everything is related to everything else, but near things

are more related than distant things” (Tobler, 1970) as stated by the first law of geography, it

is naive to assume that the spatial interpolation of such coarse pixels will, in fact, improve the

accuracy of the contextual data at point Pi. On the contrary, it is only mixing more signals

and adding more noise to the data, since the other four pixels being interpolated are further

away from Pi than the pixel in which Pi falls within, which is already an average o signals from

a 1 km 2 area as discussed in Section 2.3.2.1.

Therefore, there is also the need to find new and better ways to deal with the

spatial mismatch between the resolutions of movement data and contextual data,

particularly for when contextual data are coarser than movement data, which is the

most common case as movement data are collected point-wise whilst context is mostly collected

by areas.

2.5.2.3 How to analyse semantic trajectories

In order to identify patterns in movement that can be linked to movement behaviours, “it

is essential to not only explore the spatial and temporal dimensions of the moving objects but

also examine how identical they are from contextual perspective” (Sharif and Alesheikh, 2017b,

p.428). Yet, while spatio-temporal similarity has been thoroughly explored (Ranacher and

Tzavella, 2014), contextual similarity and a combined contextual-spatio-temporal one, which
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is relevant for CAMA, have remained largely neglected (Sharif and Alesheikh, 2017b), perhaps

because of the complexity of semantic trajectories that require further analytical approaches.

Buchin et al. (2014) presented a method for extending geometric similarity measures to per-

form CAMA. De Groeve et al. (2016) used sequence alignment techniques to cluster animals

according to their types of habitat. Sharif and Alesheikh (2017b) generalised the dynamic time

warping method to a context-based dynamic time warping, in which elements that have similar

contexts can be matched even if they are asynchronous. These methods were able to distin-

guish between moving entities that have a similar spatio-temporal track but within different

contexts. However, these are just a few first approaches of using analytical methods to better

understand movement behaviour from semantic trajectories. Context awareness is still a new

trend (Sharif and Alesheikh, 2017a) and there is the need to keep exploring more options for

performing CAMA.

Therefore, there is also a need to develop innovative methods to perform CAMA,

as for example methods that can handle more than one contextual variable at time and that

also provide a way to visualise context-aware similarity groups.

2.5.3 Moving forward

In Chapter 3 of this thesis we tackle the temporal incompatibilities of CAMA in by exploring

the current interpolation methods used in TA and comparing those with a dynamic trajectory

annotation method (DTA), which we introduce in the same chapter. In Chapter 4 we use

multi-source multiple resolution contextual information from remote sensing, a novel approach

in movement research, to overcome spatial and temporal incompatibilities between movement

data and contextual data. More specifically, we propose that instead of using interpolation,

it is possible to improve contextual data by using multiple sources for one contextual vari-

able instead of only one source so that the best spatial and temporal resolution are preserved.

Further in the same chapter, we introduce a new approach for identification of prevalent be-

haviours from semantic trajectories, the use of Eigen decomposition to look at individuals with

similar behaviour in different seasons. In Chapter 5 we deal with temporal incompatibilities to

contextualise human movement with weather context from meteorological stations and remote
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sensing radar. Further in the same chapter we identify behaviour patterns from semantic tra-

jectories annotated with multiple contextual variables using another new method in movement

research, the Multi-Channel Sequence Alignment analysis.
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Chapter 3

Comparing trajectory annotation

methods

3.1 Introduction

The process by which environmental data are associated with a movement trajectory is termed

trajectory annotation (TA) (Mandel et al., 2011) and results in a so-called semantically enriched

trajectory (Parent et al., 2013; Safi et al., 2013). TA is limited by the mismatch between tem-

poral and spatial resolutions of environmental data and trajectory data. For example, weather

radar data are typically collected at five minute intervals, which is infrequent compared to the

tracking resolution of GPS data for humans and birds whose movement is potentially affected

by precipitation (e.g., 5 seconds, humans, Si la-Nowicka et al. (2016); 125 milliseconds, gulls,

buzzards and swifts, Shamoun-Baranes et al. (2006); 3 minutes, gulls, Stienen et al. (2016).

Many other examples exist (Coyne and Godley, 2005; Dodge et al., 2013, 2014; Palm et al.,

2015; Robinson et al., 2010; Safi et al., 2013; Shamoun-Baranes et al., 2006; Therrien et al.,

2015). The opposite problem of movement being sampled less frequently than environmental

layers is common in movement ecology, where there is a trade-off between the life of the bat-

tery on the GPS tracker and the sampling frequency. In particular, larger mammals are often

tracked at low frequencies (e.g., 3-4 GPS points per day; (Cagnacci et al., 2011), which is less

frequent than available data on weather conditions which can affect wildlife movement patterns.

41
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In terms of spatial resolution, each location recorded in a trajectory data set corresponds to an

exact point, while environmental data are typically represented in the form of a regular grid

(i.e., raster data), with a spatial resolution ranging from centimetres (e.g., with modern drone

systems) to hundreds of kilometres. To summarize, based on differences in temporal resolution

between trajectory and environmental data we have three possible situations: 1) trajectory

data sampled at a finer temporal resolution than environmental data (Figure 3.1 a), 2) trajec-

tory data sampled at a coarser temporal resolution than environmental data (Figure 3.1 b),

and 3) when trajectory data and environmental data are sampled at corresponding temporal

resolutions, which does not pose a temporal mismatch problem. This chapter addresses the

first issue, i.e., temporal interpolation for when trajectory data are sampled at a finer sampling

rate than environmental data.

Figure 3.1: Two main types of mismatches between movement trajectories and environmental
data represented in a space-time cube. Fixes are represented by yellow circles and trajectories
by black lines. a) Trajectory’s fixes are sampled more frequently than environmental data. b)
Trajectory’s fixes are sampled less frequently than environmental data.

We can conceptualise the mismatch between the temporal resolution of a trajectory and
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environmental data as a case of missing data. If trajectories are sampled more frequently than

environmental data values, the unobserved values need to be estimated at the time tn when the

fix was recorded. The unobserved values can be estimated via interpolation methods (Tang

et al., 2016, 2017), such as the nearest neighbour (NN) which is commonly chosen for TA

for being straightforward to compute. NN assigns the nearest environmental record in space

and/or time to the fix (Coyne and Godley, 2005; Dodge et al., 2013). Other common methods

are: the neighbour before (NB), which assigns the data value immediately before to the fix;

the neighbour after (NA), which assigns the data value immediately after to the fix; and the

arithmetic mean (AM), which assigns the sum divided by two of the data values immediately

before and after to the fix.

These methods disregard the continuity inherent to most natural phenomena often consid-

ered in CAMA, such as precipitation, temperature, humidity, wind direction and wind speed.

This means that the environmental variable is not being modelled realistically, creating bias and

possibly introducing spurious relationships between environmental conditions and movement

patterns. In contrast, Dynamic Trajectory Annotation (DTA) can be used to better approxi-

mate the modelled environmental variable as a continuously varying natural phenomenon and

compare its performance against other methods using simulated movement data and real en-

vironmental data. Instead of assigning the closest value in time and space to each fix, DTA

interpolates the environmental variable at the unknown time by estimating intermediate values

between two given environmental layers at two consecutive times. The DTA method aims to

address a common discrepancy between temporal collection scales of trajectories and environ-

mental data, the case where trajectory fixes are collected more frequently than environmental

data.

The novelty of our work resides first in the comparison of these methods for temporal

interpolation for TA and second in the creation of an open Python package (VANJU) with all

TA methods to perform CAMA. Similar TA methods are available in Movebank.org through

Env-DATA (Dodge et al., 2013), but they are limited to the datasets already in MoveBank

and require the movement data to be uploaded to the web. Env-DATA also performs spatial

interpolation before temporal interpolation, main point in which our approaches differ. We see
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spatial interpolation as a pre-processing step, in which the aim is to standardize the different

resolutions from multiple contextual data sources rather than match them to the points in a

trajectory. For this reason, our method focuses on temporal interpolation for TA.

The primary objective of this chapter is to measure and compare the performance of inter-

polation methods most commonly used for TA and DTA. The rest of the chapter is structured

as follows: section 3.2.1 describes and formalizes DTA, section 3.2.2 introduces the interpola-

tion methods most commonly used for TA, namely: NB (Neighbour Before), NA (Neighbour

After), NN (Nearest Neighbour) and AM (Arithmetic Mean); section 3.2.3 describes the data

sets and how we built our simulated trajectories for which we had real accumulated rainfall

data to be used as ground truth; section 3.2.4 describes how we annotated trajectories with

rainfall rates from radar data using five different temporal interpolation methods to calculate

the accumulated rainfall to be compared to the ground truth data (section 3.2.5). In section

3.2.6 we evaluate the performance of each method by analysing the difference between the real

accumulated rainfall and the accumulated rainfall estimate. The results are discussed in section

3.3 and we conclude with some considerations about the potential of the different annotation

methods and some ideas for further use of the DTA method with other environmental vari-

ables for performing CAMA (section 3.4). Parts of this chapter are published as the conference

abstracts: Brum-Bastos et al. (2016) and Brum-Bastos et al. (2015).

3.2 Methods

3.2.1 Dynamic Trajectory Annotation (DTA)

This section describes and formalizes the DTA method, which takes continuity into account

and is applicable when environmental data have coarser temporal resolution than the trajectory

data. Consider two layers of the same environmental variable at times t1 and t2, with values

vt1 and vt2, and a trajectory fix j at tn, where t1 < tn < t2 and tn-t1 < t2-tn. TA using

the NN method assigns vt1 to the fix j, as illustrated in Figure 3.2 a, because vt1 at t1 is the

nearest neighbour of the fix j in time. This process can be misleading because environmental

conditions may have changed considerably between t1 and tn. With DTA the environmental
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values are interpolated as a continuous function between t1 and t2. The simplest interpolation

possible is a linear function, as illustrated in Figure 3.2 b, with more complex functions also

possible, e.g. a cubic spline. We call the linear case DTA:L and the spline version DTA:CS.

Figure 3.2: TA for a trajectory falling within a single pixel of a stack of spatial layers, the
layer is omitted and only the pixel is illustrated for a clearer view. The trajectory is shown in
space-time cubes with geographical space at the bottom and hypothetical environmental data
displayed at corresponding times. a) Trajectory annotation: the value assigned to j is equal to
vt1, the value of the nearest neighbour in time; b) Dynamic trajectory annotation: the value
assigned to j is an interpolated value between vt1 and vt2.

In the simplest approach, DTA:L, the value vtn is calculated assuming that the change rate

between t1 and t2 is linear; for this, a linear function is derived between each pair of subsequent

values of the environmental variable (Equation 3.1).

vtn =

(
vt2 − vt1
t2 − t1

)
tn +

[
vt−1 −

(
vt2 − vt1
t2 − t1

)
t1

]
(3.1)

Most environmental datasets are collected at a regular temporal resolution ∆t; therefore

we can say that t2-t1= ∆t and t1 =0 for any pair of environmental variables so that Equation

3.1 is simplified into Equation 3.2, as follows:

vtn =

(
vt2 − vt1

∆t

)
tn + vt1 (3.2)

In the second and more complex approach, the DTA:CS, the value vtn is calculated by fitting
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piece-wise cubic polynomials which pass through four control points, i.e., four environmental

values: vt0, vt1, vt2 and vt3. The second derivative of each polynomial is set to zero at the

endpoints (t0, vt0) and (t3, vt3) to provide the boundary conditions for the system of two

equations. For the same fix j, we calculate vtn using the second piece of the spline, i.e. vtn =

S2(tn). Each ith piece of the cubic spline can then be represented as follows in Equation 3.3.

Si(tn) = ai + bi(tn − ti) + ci(tn − ti)2 + di(tn − ti)3 (3.3)

Given the set of fixes and environmental values (t0, vt0), (t1, vt1), (t2, vt2) and (t3, vt3)

we need to find the set of three splines vi(t) for i=0, 1, 2 and 3. These splines must satisfy

Equations 3.4, 3.5, 3.6 and 3.7 as follows:

Si(ti) = Vti = Si−1(ti) for i = 1, 2 and 3 (3.4)

S′i(ti) = S′i−1(ti) for i = 1, 2 and 3 (3.5)

S′′i (ti) = S′′i−1(ti) for i = 1, 2 and 3 (3.6)

S′′0 (t0) = S′′3 (t3) = 0 (3.7)

Equations 3.4, 3.5, 3.6 and 3.7 can be rearranged into a symmetric tridiagonal system to

find ai, bi, ci and di (Bartels et al., 1998). Then a2, b2, c2 and d2 are replaced in Equation 3.3

to estimate vtn.

Note however that while we theoretically introduced the DTA:CS method, the computation
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cost for fitting the cubic spline to our data set proved to be too expensive for practical purposes

(see section 3.3 for details). We therefore note the mathematical possibility of using this

method, but it is omitted in our comparative analysis. From here on we also refer to DTA:L

method as simply DTA.

3.2.2 Most commonly used trajectory annotation methods

The equations for each of the five TA methods used in the comparative analysis are described

in Table 3.1. Figure 3.3 illustrates the differences between methods for three hypothetical

trajectories. Hypothetical environmental layers and annotated trajectories are shown in space-

time cubes, that is, volumes where the two bottom dimensions represent the geographic plane

and the third dimension represents time. Trajectories are shown as a polyline in each cube and

a hypothetical environmental variable is shown as horizontal layers at t1 and t2 times. Different

TA methods generated distinct annotated trajectories: for NB, NA and AM the changes in

the environmental variable rate occur where a fix intersects the layer in time, while for NN

changes occur mainly half way between t1 and t2, and for DTA changes are smoother and not

restricted to the intersections.

Table 3.1: Equations and abbreviations for the five Interpolation methods tested.

Interpolation method Abbreviation Equation

Neighbour before NB vtn = vt1

Neighbour after NA vtn = vt2

Nearest neighbour NN

If tn − t1 > t2 − tn :
vtn = vt1

Else :
vtn = vt2

Arithmetic mean AM vtn =
vt1 + vt2

2

Dynamic trajectory annotation DTA vtn =

(
vt2 − vt1

∆t

)
tn + vt1
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Figure 3.3: Interpolation methods applied to a simulated trajectory. Trajectories are shown in
space-time cubes with geographical space at the bottom and hypothetical environmental data
displayed at corresponding times. The colour scale refers to the intensity of the hypothetical
environmental value for a fix and/or layer.

3.2.3 Data description

The five interpolation methods were evaluated against each other using the following data sets

covering the period from 28th of September 2013 to 10th of January 2014. Spatial and temporal

resolutions for all data are given in Table 3.2.

• Observed hourly accumulated precipitation from UK Met Office meteorological stations:

Defined as the accumulated precipitation captured during each hour interval (e.g., 06:00

– 07:00), collected from 78 Met Office meteorological stations as ground truth data. The

accumulated precipitation is registered by rain-gauges that store rainfall only in liquid

form during a one hour period; rain-gauges consist of a circular collector, delineating a

750 cm2 sampling area, and a funnel that conducts the collected rain into an automatic
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measuring mechanism or into a reservoir where it may be measured by a human at a

later time (Met Office, 2015). Figure 3.4a shows their location.

• Rainfall rates from the UK Met Office “Now casting and Initialization for Modelling Using

Regional Observation Data System” (NIMROD) radars: Radar measurements are taken

off-nadir which results on varying spatial resolution across different ranges, i.e., the further

away a point is from the radar, the coarser is the spatial resolution at that point (Jensen,

2006). The spatial resolution, which here varies between 1km, 2km and 5 km, determines

the accuracy and suitability of the data for different applications, for the NIMROD

radar it works as follows. 5 km coverage provides useful qualitative data and a good

overall picture of the extent of precipitation at a regional scale. 2 km coverage provides

good quantitative data and shows more detailed distribution of precipitation intensities.

It is suitable for more demanding rainfall monitoring and hydrological applications. 1

km coverage provides the most detailed quantitative information, down to the scale of

individual clouds. It is designed to assist real-time monitoring of small urban catchments

and sewer systems (Met Office, 2007). Each station was identified with its respective

NIMROD coverage to assess how the degradation of the spatial resolution influences the

accuracy of all interpolation methods (Figure 3.4).

• Simulated trajectories: For each accumulated precipitation interval we created a simu-

lated trajectory at each station that would enable us to test interpolation methods at all

stations. These simulated trajectories are stationary in space and fixes are sampled at

five seconds (Figure 3.4b), following a typical sampling rate used in movement research on

human mobility (Si la-Nowicka et al., 2016). The spatial stationarity of simulated trajec-

tories is important to evaluate the interpolation methods, it allows comparison between

ground truth data (actual accumulated rainfall at each station) and annotated data.

3.2.4 Data preprocessing

The rainfall rates from the Met Office NIMROD radar were used as contextual data to annotate

simulated trajectories. This dataset was chosen because it is possible to derive precipitation
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Table 3.2: Summary of characteristics of datasets used for trajectory annotation.

Data set Type ∆t Spatial resolution Source

Trajectories Point 5 s — Simulated
Rainfall Raster 5 min 1-5 km NIMROD radars

Precipitation Point 1 h — Met Office stations

accumulation from the radar values, which allows a direct comparison to the ground truth

accumulation values from meteorological stations.

Figure 3.4: Visual summary of datasets used for trajectory annotation. a) Location of Met
Office stations and NIMROD coverage with respective resolutions; b) Illustration of 100 seconds
segments of simulated trajectories for three Met Office stations.

Simulated trajectories and the NIMROD data were stored in a PostGIS spatial data base

and a Python script, using Psycopg library, was developed to manipulate the datasets. First we

intersected the NIMROD rainfall data in space and time to annotate each fix with the rainfall

value from the neighbour raster before (NB - t1) and from the neighbour raster after (NA - t2)

in time, i.e., for a fix at 20:53, t1 = 20:50 and t2 = 20:55. Values for the other interpolation

methods were calculated according to equations in section 3.2.2 using the value from the NB
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as vt1 and the value from the NA as vt2 .

The intervals in which the accumulated precipitation was zero and those where there was

a failure in the acquisition of NIMROD data were excluded from the analysis. This procedure

guaranteed that for every station used in testing, there were twelve NIMROD rainfall layers

for each hourly accumulation interval, i.e., one layer at each five minutes; which excluded

potential influences of data failures on the accuracy of annotated values. For each precipitation

accumulation interval we created attributes identifying the meteorological station, start time,

end time and date.

3.2.5 Generating and comparing rainfall rates and cumulative curves

A mass curve of rainfall is a plot of cumulative rainfall against time, from which the total

accumulation and intensity of rainfall at any instant of time can be found. It is always a rising

smooth curve and may have horizontal sections which indicate periods of no rainfall (Raghu-

nath, 2006, p.37). To analyse the performance of each interpolation for visualization and assess

which method had an accumulation curve that was the closest to physical reality, we calcu-

lated the accumulated precipitation (mm) for each accumulation interval for each interpolation

method at each station by applying the trapezoidal rule to integrate annotated rainfall rates

(mm/h) in time. The trapezoidal rule is a technique that calculates a definite integral by ap-

proximating the region under a curve as a trapezoid and calculating its area; we applied it for

each pair of consecutive annotated rainfall rates within a precipitation accumulation interval

and summed these up to estimate the accumulated precipitation for that hour (Figure 3.5).

3.2.6 Validation against ground truth and statistical comparison of interpo-

lation methods

The comparison amongst interpolation methods was based on the difference of the estimated

accumulation from the real accumulated precipitation obtained from the meteorological data.

The difference was calculated by subtracting the accumulated value estimated by the inter-

polation method from the value observed at the respective station and time. We computed

quantiles, average, standard deviation and skewness of the difference for each method. We
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Figure 3.5: Visual explanation of the trapezoidal rule applied to our variables.

tested the distribution of differences of each method for normality and applied the Wilcoxon

rank-sum test to evaluate if the differences from one method were more likely to be larger than

the differences from another method. We also conducted two non-parametric ANOVA tests on

the methods: the first one to analyse if there were differences between groups of stations under

different NIMROD coverages, as coarser spatial resolution could imply poorer performance;

the second one to analyse if there were differences between individual stations, as the accuracy

of measurements in the station gauges can affect the results. We also used the Wilcoxon rank-

sum test to qualify the effect of the spatial resolution of annotated data on the accuracy of the

methods, i.e., if accuracy increases or decreases with the degradation of spatial resolution.

3.3 Results

3.3.1 Generating and comparing rainfall rates and cumulative curves

To illustrate how each method models the accumulated precipitation and the instantaneous

rainfall, we selected a trajectory segment with the maximum rainfall rate registered in our
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database (Figure 3.6). The record is from the 31st of October 2013 at Sutton Bonington

(Nottinghamshire) weather station between 17:55 and 18:15. Figure 3.6 shows how this trajec-

tory was annotated with rainfall rates and accumulated rainfall curves for each interpolation

method. Fixes are coloured accordingly to their rainfall rate and shown in space-time cubes.

The respective accumulated precipitation curve is displayed as the red line on the graphs under

each space-time cube.

The different interpolation methods generated visually distinct annotated trajectories. The

3D graphs in Figure 3.6 show that the changes in rainfall rates were abrupt in all methods

except DTA. This means that the rainfall rate in the annotated trajectories in NB, NA and

NN increased from zero to a 335 mm/h plateau in five seconds and stayed at that level for five

minutes, followed by dropping back to zero. AM resulted in abrupt transitions as well, but the

increment was half that of the first three methods and covering a longer interval of 10 minutes.

The DTA resulted in smoother transitions, while still preserving the 335 mm/h peak and the

0 mm/h borders – a pattern that corresponds much better to the real rainfall progression as

registered by the NIMROD system.

It is also possible to identify differences between the accumulation curves; the DTA curve

(Figure 3.6) is the closest to a continuous smooth growth curve, which is what would be ex-

pected from a real mass curve of rainfall (Raghunath, 2006, p.37). Additionally, the accumu-

lation curve for DTA can be split into at least three sections with different inclinations, which

correspond to moving through precipitation of different strengths and accumulating rainfall at

three different but consistent rates. These sections are not identifiable on the accumulation

charts of the other methods, all which have similar shapes differing only by the starting and

ending time of the accumulation.

3.3.2 Validation against ground truth and statistical comparison of TA meth-

ods

The distribution of differences between estimated and real precipitation accumulation was sim-

ilar for all methods (Figure 3.7). Accuracy ranged from -10 mm to 10 mm of precipitation

with a high precision reported by the mean close to 0 and the standard deviation of approxi-
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Figure 3.6: Five interpolation methods with corresponding rainfall rates and precipitation
(accumulated rainfall) curves for a segment of the stationary trajectory simulated at Sutton
Bonington (Nottinghamshire) weather station. The segment of trajectory is from the 31 st of
October 2013, it is shown in space-time cubes with the rainfall rates displayed by different
colouring of the fixes. The precipitation is displayed by the red line on the graph under each
space-time cube.

mately 0.8 for all methods (Table 3.3). All methods failed the Kolmogorov Smirnov normality

test (α =0.05) and the skewness values (See Table 3.3) indicate a slightly positive asymmet-

rical distribution, which means that all methods are likely to underestimate the accumulated
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rainfall.

Figure 3.7: Difference in mm of rainfall for all methods by interpolation method: pink dots
show outliers; green line represents the median.

Table 3.3: Descriptive statistics and p-values for Kolmogorov-Smirnov normality test for all
methods. All p-values were smaller than 0.01.

Algorithm Skewness Q1 Q2 Q3 Q4 Average StD

NB 0.380 -0.277 0.084 0.308 8.683 0.048 0.870
NA 0.374 -0.279 0.103 0.339 8.674 0.059 0.895
NN 0.373 -0.281 0.094 0.324 8.678 0.053 0.882
AM 0.391 -0.281 0.093 0.323 8.679 0.053 0.880
DTA 0.380 -0.282 0.094 0.324 8.678 0.053 0.881

To check whether the differences from one method were likely to be larger than other

methods we converted the differences to absolute differences, as we wanted to analyse only the

distance to the ground truth value and not if there was an overestimate or underestimate. For

each method, we applied four Wilcoxon rank-sum two-tailed tests and ANOVAs on absolute

differences, which allowed us to do a pair-wise comparison of methods (see Table 3.4 for Z-scores

and significance).

The results indicate that the differences between the NB and NA method were significant

and NB outperformed NA in this case; however the significance can be related to the large
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Table 3.4: Z-scores reported by two tailed Wilcoxon rank-sum test between interpolation meth-
ods. The multiple testing problem was addressed using Bonferroni correction where α’ = α/4.
Significant values are indicated by a star, where p-value<α’ (α=0.05).

NA NN AM DTA

NB -3.18* -1.51 -1.30 -1.43
NA 1.67 1.88 1.75
NN 0.21 0.07
AM -0.13

volume of data used in the test. There were no significant differences between any of the

tests for the NN, AM and DTA methods in terms of absolute differences. The non-parametric

ANOVA tests reported p-values close to zero (See Table 3.5) for all methods, which shows they

all have their accuracy affected by the resolution of the annotated rainfall data (1 km, 2 km

or 5 km, See Figure 3.4) and also by factors related to the individual stations, such as the rain

gauge precision.

Table 3.5: χ values for non-parametric ANOVA tests. All p-values were smaller than 0.01.

by resolution by station

NB 19.02 1101.55
NA 18.58 999.96
NN 20.03 1053.83
AM 19.36 1059.11
DTA 19.79 1056.69

The Wilcoxon rank-sum test between differences under different NIMROD coverages indi-

cated that a coarser spatial resolution negatively influenced accuracy in all cases. The negative

W values with significant p-values indicate that the differences tended to be larger in the second

group than in the first group (See Table 3.6), i.e. the accuracy of all methods was decreased

by the coarsening of the spatial resolution of the annotated data.

3.3.3 Computational cost of trajectory annotation methods

The time spent to perform TA increased with the use of more complex interpolation methods,

Table 3.7 shows the computational complexity and how long the TA process took for each

interpolation method for a database with approximately 140,000,00 fixes. The computational
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Table 3.6: W statistic for Wilcoxon rank-sum test performed between annotated NIMROD
data from different spatial resolution, the value indicate that the difference increases for all
methods with degradation of the spatial resolution of the annotated data. All p-values were
smaller than 0.01.

Resolutions (km) NB NA NN AM DTA

1 - 2 -2.81 -2.80 -2.86 -2.84 -2.85
2 - 5 -2.40 -2.35 -2.49 -2.43 -2.48
1 - 5 -4.26 -4.21 -4.37 -4.29 -4.34

complexity is a measure of how many steps the algorithm will perform in the worst case for

an input of a certain size. The number of steps is measured as a function of that size (Blakey,

2010). The complexities in our table are calculated for annotation and interpolation algorithms

only and do not include pre-processing or intersecting raster and fixes.

Table 3.7: Computational metrics for our algorithms. We present the estimated computational
cost in hours for DTA:CS (based on records updated/min) for our data set (140.000.000 GPS
points) and real computational cost in hours for other methods. We further note the computa-
tional complexity of each algorithm, where u is the number of trajectories and n is the number
of points in the longest trajectory, and description of the computational resources used.

Algorithm Computational Computational Computational system
cost (hours) complexity

NB 5 O(un)
NA 5 O(un) Intel R© Xeon R© CPU X5660
NN 24 O(un) 2.80GHz (2 processors)
AM 24 O(un) 192GB RAM 12 cores

DTA:L 720 O(un)

Intel Xeon R© E5-2686 v4 2.30 GHz
DTA:CS 5000 O(un3) (Broadwell) processors

160 GB RAM 40 cores

The NB and NA method were the less computationally costly, which was expected due to

the simplicity of the calculations behind them. The NN and AM method were approximately

five times costlier then NB and NA whilst the DTA-L was 144 times costlier. The DTA-CS

method was more than 6 times costlier than the DTA-L method, because it not only took more

time but also it was calculated in parallel using forty cores, whilst the DTA-L was performed

using twelve cores. Note also that the estimated running time to calculate the DTA-CS, even

when parallelised onto forty cores, was 5000 hours which is approximately 7 months – too long
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for any practical analysis. While introducing the possibility to use the spline interpolation in

DTA theoretically, based on this running time we decided not to include it in our comparative

analysis. The computational costs indicate whether one method is more suitable than other

according to the size of the movement data, the infrastructure available to process the data

and the time to be spent on the task.

3.4 Discussion

The aim of this chapter was to introduce and evaluate Dynamic Trajectory Annotation (DTA)

methods that enable trajectories and environmental data to be combined to perform CAMA.

We compared the DTA methods with commonly used interpolation methods (NB, NA, NN and

AM) by annotating simulated trajectories with rainfall rates from meteorological radar data,

computing accumulated rainfall values based on the annotated rates and comparing these values

to accumulated precipitation from meteorological stations, which we used as ground truth.

The DTA generates cumulative curves more similar to the expected continuous smooth

growth curve produced by a real mass curve of rainfall (Raghunath, 2006), which indicates

that the DTA is a better model for representing how this rainfall is accumulated along a

trajectory. Further, in terms of visual analysis the changes on rainfall rates were abruptly

represented for all methods but the DTA method. Abrupt transitions and omission of peaks

and valleys, which is present in the other four interpolation methods, may mask relationships

between movement modes and rainfall, which might make the recognition of certain movement

patterns harder. For example, if we were analysing movement that is heavily influenced by

rainfall, such as people exercising outside, discovering the rainfall thresholds that drive the

decision of going out or staying at home would be much harder with the annotated trajectories

from NB, NA, NN and AM. The reason for this is that the other methods do not capture

gradual increases and instead represent rainfall as a binary 0/1 phenomenon at a 5s rate. This

may occasionally happen, however, from meteorological perspective, it is not typically the way

that rain accumulates (Dirk, 2004).

Our visual analysis show that the cumulative curves generated by the NB, NA, NN and
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AM methods are not in accordance with a continuous smooth growth curve, which is expected

from an empirical real mass curve of rainfall derived from in-situ measurements and for which

there is no pre-defined equation (Raghunath, 2006). The DTA curve is closer to a real mass

curve of rainfall, which indicates that the DTA is a better model for representing how this

rainfall is accumulated along a trajectory. Further, in terms of visual analysis the changes

on rainfall rates were abruptly represented for all methods but the DTA method. The DTA

method resulted in smoother transitions preserving peaks, borders, and showing the gradual

increase of the rainfall, which is consistent with meteorological reality. The DTA:CS is likely

to produce an even more realistic curve (Hutchinson, 1995), but with additional computational

burden.

Our quantitative analyses show that all methods are likely to slightly underestimate the

accumulated rainfall. We also found that NN, AM and DTA methods have higher accuracy than

the other methods, but do not differ amongst themselves significantly. Further, all methods

have their accuracy reduced by the coarsening of the spatial resolution of the environmental

data used for annotation. Data with the best possible spatial resolution should therefore be

used for performing CAMA and the accuracy could be further improved by using multiple

sources of data.

There is no significant difference in accuracy between NN, AM and DTA methods but they

perform better than NB and NA when calculating accumulated values, thus the use of one of

the NN, AM and DTA is recommended when performing CAMA. The NN and AM methods

have equally low computational cost and are less time consuming when compared to the DTA

method. However, if a quicker and low computational cost method is the requirement we would

not encourage the use of the AM method because it arbitrarily creates values that were not

in the original data, without considering the behaviour of the variable in real life. It would be

better to stick with the original data values in this case and use the NN method.

The DTA method was superior for modelling the rainfall mass curve and it was as accurate

as the NN method, for this reason it is recommended for CAMA in scenarios where represent-

ing continuously varying phenomenon (like rainfall accumulation) is of high importance. Its

capability of capturing gradual changes and preserving peaks and valleys from the original data
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makes the DTA method a better choice when attempting to elicit the relationships between the

environmental variable and fine-scale movement patterns. This is not restricted to the accu-

mulation of rainfall, and the recommendation can be extended to any environmental variable

whose behaviour between two temporal points can be approximated as a linear function over

time. Other environmental variables may change differently over time and for these, the DTA

can easily be extended from linear interpolation into more complex forms, for example 2nd or

3rd order polynomials, using an appropriate temporal function.

The application of DTA is particularly interesting for movement research within human

mobility and wildlife ecology, where movement behaviour may be contextualised by other dy-

namic environmental variables such as air temperature, vegetation indices, humidity, wind

speed, air pollution and snow coverage (Cagnacci et al., 2011; Horanont et al., 2013; Howarth

and Hoffman, 1984; Phithakkitnukoon, Smoreda and Olivier, 2012; Si la-Nowicka et al., 2016).

These variables are often obtained from remotely sensed data sources for which the temporal

resolution can vary from five minutes to days and in most cases does not match the temporal

resolution of movement data. In addition, it is common in movement research to simultaneously

consider more than one environmental variable, which makes the choice of the interpolation

method for trajectory annotation even more relevant. In such cases, CAMA would have to go

beyond just integrating trajectories with one environmental variable: it would require the inte-

gration of several environmental variables amongst themselves to model how their interaction

is influencing movement. We address this problem in the following two chapters.

In summary, the DTA method is suitable for the annotation of trajectories with continuous

numeric environmental variables. The method is available as an open source Python script on

GitHub and can be accessed through https://github.com/vsbrumb/DTA. We used DTA in a

study of human behaviour (Chapter 5), to link GPS trajectories of commuters with weather

data to explore how temperature, wind speed, humidity and ‘feels like’ temperature (i.e. the

equivalent temperature perceived by humans, when the combined effect of air temperature,

relative humidity and wind speed is taken into account) might influence commuting patterns.

Future work could also include further methodological developments, where we extend the DTA

for the case where trajectory fixes are sampled at a lower rate than environmental data, a case



3.4. DISCUSSION 61

that is common in movement ecology (Cagnacci et al., 2011; De Groeve et al., 2016; Dodge

et al., 2014; Gaston et al., 2016).
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Chapter 4

Seasonal response in the diet of

maned wolves: A study using

multi-sensor image fusion and a

sequence based behavioural analysis

4.1 Introduction

Combining contextual data from remote sensing imagery and GPS tracking data is possible

through context-aware movement analysis (CAMA), a method for performing movement anal-

ysis which had a dramatic rise in the recent years. In the last ten years many studies have

attested the potential of remotely sensed indicators for ecological research (Pettorelli et al.,

2011; Neumann et al., 2015; Kerr and Ostrovsky, 2003; Turner et al., 2003), and in particular

the use of NDVI (Normalized Difference Vegetation Index) (Pettorelli et al., 2005). NDVI

(Rouse et al., 1973) is the most widely applied and calibrated vegetation index (Xue and Su,

2017). The widespread use of NDVI relates to its high correlation with vegetation productivity

and capacity to detect seasonal dynamics (Hurley et al., 2014), sensitivity to canopy structure

and photosynthetic activity (Xue and Su, 2017). The index also correlates with forage quantity

63
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and quality, which has made it extremely valuable for assessing habitat quality (Hurley et al.,

2014).

The most commonly used NDVI datasets are obtained from SPOT (Satellite Pour l’Observation

de la Terre), MODIS (Moderate Resolution Imaging Spectroradiometer) and AVHRR (Ad-

vanced Very High Resolution Radiometer). They are usually available at a temporal resolution

of 10–15 days and spatial resolution between 250 m and 8 km, which adds a lot of uncertainty

to estimate changes on vegetation coverage. There are other satellites that provide higher

spatial resolution data, however they have a low temporal resolution (Pettorelli et al., 2005)

and usually do not offer pre-processed NDVI.

Up to now, the main strategies used to combine data from remote sensing and movement

data were developed by Coyne and Godley (2005) and Dodge et al. (2013). These methods

try to deal with spatial and temporal incompatibilities between contextual data and movement

data by using a set of interpolation methods that are applied in space and time to estimate

the contextual variables at unknown times (temporal resolution) and at the exact point where

the GPS fix was collected (spatial resolution).

Despite representing progress in relation to the previous approaches, these methods dis-

regard the structure of contextual data when performing spatial interpolation. There is a

common misconception between pixel size and spatial resolution when it comes to raster data

produced by remote sensing satellites. The pixel size changes when spatial interpolation is

performed, but the spatial resolution cannot be changed as it is inherent and particular to each

imaging system (See Figure 2.3 in Chapter 2). That said and knowing that the level of detail

in a dataset is determined by its spatial resolution and not by its pixel size, interpolating in

space to find a value at a very specific trajectory point brings no improvement, it actually adds

noise from neighbouring pixels that are less related to the one in analysis. This is especially

problematic when working with coarse resolution data, such a as MODIS dataset (0.5 – 1 km).

In this case it is definitely more appropriate to use the value of the pixel in which the point

fell within, because that value is an integrated average of that area, which is more likely to be

highly correlated with the point we need to measure than neighbouring pixels.

To overcome these spatio-temporal incompatibilities we propose a multi-source disaggre-



4.1. INTRODUCTION 65

gation approach to produce better quality and more accurate contextual datasets for CAMA.

That is, we obtain NDVI data from several satellites with varying spatial and temporal resolu-

tion and design a new methodology to create a fused NDVI data set with increased temporal

resolution and level of detail for CAMA. This approach has not been attempted before in

movement research and the difference between the usual single source approach and ours is

shown in Figure 4.1. Our approach consists of using daily MODIS images with a 250 m spa-

tial resolution and a finer image (with 15 to 30 m spatial resolution) collected fortnightly to

derive daily images with the same spatial resolution as the finer source images. The purpose

of this approach is to create a new disaggregated NDVI data set, which can then be linked to

movement trajectories to detect finer scale movement patterns related to contextual changes.

We have tested this methodology in a case study of maned wolves (Chrysocyon brachyurus),

the largest south American canids which live in the Brazilian Cerrado. Our new methodology

can help explore how change in vegetation leads to dietary changes in manned wolves diet and

how these changes are reflected as different movement patterns that vary with seasons and

availability of vegetation. Maned wolves are omnivorous, their diet is mostly guided by the

availability of prey and vegetation, therefore we expect that changes in NDVI, i.e., changes in

food availability from vegetation, may appear as changes in movement patterns that we can

detect with our proposed methodology.

Our new methodology is a three-step process. In Step 1, we use daily MODIS coarse NDVI

and higher resolution satellite images from seven other sensors to produce daily NDVI data

at higher level of detail and 15 m pixel size. We do this by adapting a downscaling method

proposed by Rao et al. (2015), in which higher resolution NDVI and land cover classification

are used to obtain a temporal NDVI series with higher spatial detail, i.e., at MODIS sub-

pixel level. In Step 2, we use the daily finer detailed NDVI time series to annotate maned

wolves’ trajectories. We first explore the resulting semantic trajectories by looking at the

distribution of NDVI within home ranges compared to the distribution of NDVI values for

the GPS locations. In Step 3, we use a sequence-based method, the so-called Eigenbehaviours

(Eagle and Pentland, 2009) to identify seasonal patterns in the feeding habits of maned wolves

during the study period. We compare these behaviour with already known habitat preferences
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Figure 4.1: Comparison between different approaches for obtaining contextual data on one
variable. Black lines represent trajectories and yellow circles represent fixes in the trajectory.
Horizontal parallelograms with the contextual data and its pixels with different values. A)
Contextual data from only one source. B) Contextual data from multiple sources, the time
interval between datasets is lower. C) Contextual data from multiple sources and disaggregated.
The time interval between datasets is lower and the data sets with finer spatial resolution are
used to add details to the coarser datasets. The green grid represents the new pixels of the
disaggregated products.

and known biology of the species.

4.1.1 Feeding ecology of maned wolves

Maned wolves, the largest South American canids (de Paula and Desbiez, 2014), are savannah-

adapted omnivores found south of the Amazon Forest. More specifically, their range extends

from Bolivia into eastern Brazil, through northern Argentina and Uruguay, to central Paraguay

(Deem and Emmons, 2005) (Figure 4.2A). Considered “vulnerable” until 1996 by IUCN (Inter-

national Union for Conservation of Nature), the species is currently classified as “near threat-

ened” by IUCN (de Paula and DeMatteo, 2015) and it is still considered “vulnerable” by the

Brazilian environmental authorities (ICMBio, 2016) .

The main threat to the species comes from the continuous large scale habitat losses (Noss

and Lima, 2007), which are especially significant in Brazil because of the extensive conversion

of Cerrado (Brazilian savannah) into farmland (Fonseca et al., 1994). Only 20% of Cerrado
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Figure 4.2: A) The range of the maned wolf (Chrysocyon brachyurus) in South America. B)
Borders of Serra da Canastra National Park (CNP) in Minas Gerais state in Brazil, home of
the wolves whose tracking data are used in this study. C) Lobinha “Pup”, a female maned
wolf of approximately two years old, wearing a GPS tracking collar. Lobinha was rescued
from a sugar cane crop by the Chico Mendes Institute for Biodiversity Conservation - Brazilian
Ministry of the Environment (ICMBio) and taken to an enclosure, where this picture was taken,
for re-adaptation prior to reintroduction to the wilderness.

is still covered by native vegetation (Myers et al., 2000) and less than 2.5% of it is protected

by law (Klink et al., 2005). One of the protected areas, the Serra da Canastra National Park

(CNP) (Figure 4.2B) has been key to the preservation of maned wolves.

The CNP is the headquarters of the project “Behavioural biology and conservation of the

maned wolf (Chrysocyon brachyurus) in the Cerrado of Minas Gerais” founded in 2004 by

ten research institutes as a joint effort to protect the species. The extensive conversion of the

park’s surroundings into farmland has exposed the wolves to many anthropogenic threats, such

as road traffic, culling and disease contamination by domestic animals (Deem and Emmons,

2005), all of which can result in large fluctuations in population size, eventually leading to

extinction (de Paula and Desbiez, 2014).

Maned wolves are the main actors in dispersal of various fruits, including the ones endemic



68 CHAPTER 4. SEASONALITY IN THE DIET OF MANED WOLVES

to Cerrado. They provide population and disease control by preying on insects and rats that

are vector of diseases, such as hantavirus infection and leptospirosis (Consorte-McCrea and

Santos, 2013). They are a keystone and umbrella species (de Paula et al., 2013), i.e., they have

a disproportionate effect on their environment and surrounding organisms relative to their

population size (Mills and Doak, 1993) and play a crucial role in maintaining the structure

of the ecological community (Roberge and Angelstam, 2004). The protection of a umbrella

species indirectly protects many other species in the ecological community (Ray, 2005). For

this reason maned wolves are often the targeted species for conservation-related decisions. In

addition, they are an important part of the local cultural heritage and can, with adequate

planning, become a tourist attraction (Consorte-McCrea and Santos, 2013). This may boost

the local economy and generate more motivation to protect the ecosystem.

The indifference, sometimes even antipathy (Consorte-McCrea and Santos, 2013), towards

the species is erroneously founded on the idea that their diet mostly consists of poultry or

livestock (Motta-Junior et al., 2014). Regardless of maned wolf’s preference for wolf’s fruit

(Solanum lycocarpum), miscellaneous fruits and rodents (Queirolo and Motta-Junior, 2007),

the pressures of habitat impoverishment caused by anthropogenic presence might encourage

individuals to venture into human-occupied areas, which leads to conflict and higher mortality

(Motta-Junior et al., 2014). Despite the existence of a few studies on the species, the general

knowledge about its ecology and population dynamics is still insufficient to secure preservation,

which could be done through conservation of habitat, especially in extremely altered landscapes

(de Paula et al., 2008) such as Cerrado.

The cornerstone of any preservation effort is knowing what must be preserved (Rodrigues

et al., 2014). Therefore, understanding feeding ecology and related spatial patterns is of prime

importance, in particular for a species with a seasonal variation of dietary composition (Motta-

Junior et al., 2014). Most studies on feeding habits of maned wolves were performed in captive

population. Only a couple have been done in the wilderness and those are mostly based on

faecal and gastric analysis (Motta-Junior et al., 2014). These studies describe the diet of maned

wolves as largely based on fruits and small mammals, the proportions of which vary according

to seasonal fluctuations in food availability (Motta-Junior et al., 2014).
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Wolf’s fruit and small mammals are more abundant in the dry season, whilst miscellaneous

fruits and arthropods are plenty in the wet season (Motta-Junior et al., 2014; Bueno and

Motta-Junior, 2009). In the CNP, our study area, a previous study by Queirolo and Motta-

Junior (2007) on 399 faeces samples indicates the following dietary breakdown: 29.72% from

miscellaneous fruits, 22.02% from rodents, 12.61% from birds, 9.89% from wolf’s fruit, 9.83%

from grasses and fruit, 7.40% from lizards, 4.32% from insects and arthropods, 1.78% from

snakes, 1.42% from opossums, 0.89% from armadillos and 0.28% from other medium and small

mammals.

Overall, little is known about maned wolves diet in the wild and research on the impact

of environmental changes is essential to identify how fitness and reproduction are affected by

diet composition (Bueno and Motta-Junior, 2009; de Paula et al., 2013). In particular, the diet

variability has been previously studied in terms of the percentage of food types, but its spatial

and temporal patterns have not been explored. The seasonal pattern found in faecal samples

collected by a few studies seems to indicate a diet with a temporal trophic opportunistic pattern

(Motta-Junior et al., 2014).

We propose that the existence of a temporal trophic pattern can be investigated by look-

ing at the NDVI (Normalized Difference Vegetation Index) utilisation distribution within the

home ranges versus the surrounding areas. NDVI is a normalised ratio between the spectral

reflectance in the red and near infra-red portions of the electromagnetic spectrum, which is a

proxy for the content and state of live green vegetation. It is an indicator of vegetation vigour,

and is often used as a surrogate estimator of net primary productivity (NPP) (Xu et al., 2012).

NPP is the difference between the rate at which plants in an ecosystem assimilate carbon to

produce energy and the rate at which they use part of this energy. It determines the amount

of energy available to be transferred from the plants to other trophic levels in the ecosystem

(Chapin et al., 2011). In other words, it directly determines the amount of food available for

the consumption of herbivores and omnivores, and consequently indirectly to the carnivores.

Thus, as maned wolves are omnivorous, NDVI can be used as an indicator of the resources

available for their maintenance in a given environment (Bueno and Motta-Junior, 2009). In

addition, when combined with GPS tracking data NDVI can provide insights into the seasonal
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changes of dietary composition and if those are reflected as specific spatial patterns.

4.2 Methodology

To study the influence of vegetation state and content on seasonal patterns of maned wolves’

diet we used a three-step process (Figure 4.3). In Step 1, we used daily MODIS coarse NDVI

and higher resolution satellite images from seven other sensors to produce daily NDVI data at

a higher level of detail and 15 m pixel size. We did this by adapting a downscaling method

proposed by Rao et al. (2015), in which higher resolution NDVI and land cover classification

are used to obtain a NDVI temporal series with a higher spatial detail, i.e., at MODIS sub-pixel

level. First we performed the absolute calibration of satellite data to guarantee consistency

amongst the measurements from different satellites. Then we extracted NDVI growth rates

from MODIS and performed land cover classification on the finer resolution data, so that

we could compute land cover fractions within a MODIS pixel. The land cover fraction and

the daily NDVI growth rates from MODIS were used to calculate the NDVI growth rate

for each land cover fraction, which was then applied to the finer NDVI data to generate a

time series of daily NDVI with higher level of spatial detail. In Step 2, we use the daily

finer detailed NDVI time series to annotate maned wolves’ trajectories. We explored these

annotated semantic trajectories by looking at the distribution of NDVI within home ranges

compared to the distribution of NDVI values for the GPS locations. In step 3 we transformed

trajectories into temporal sequences that described how each individual is making use of the

vegetation within their home range. These sequences are then analysed using the so-called

eigenbehaviours (Eagle and Pentland, 2009), a method that finds typical movement patterns

in sequential data. This allowed us to identify seasonal structures in the spatial patterns in

the feeding habits of maned wolves.
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4.2.1 Movement data and study area

We analysed a wildlife movement dataset generated by GPS collars attached to 13 maned

wolves (Table 4.1 and Figure 4.4), more specifically the models Pinnacle Lite G5C 275D pro-

duced by Sirtrac, 3300S and Iridium Track 1D produced by Lotek Wireless Inc (de Paula,

2016). The data were collected by our collaborators in the National Carnivorous Mammals

Research and Conservation Center (CENAP) at the Chico mendes Institute for Biodiversity

Conservation(ICMBio). The dataset, collected between March 2007 and July 2015, has the

highest number of total GPS locations (54.196) recorded for this species in the wilderness

(de Paula, 2016). The tracking data included seven females and six males, with the tracking

period varying from 59 to 841 days (Table 4.1).

Table 4.1: Description of tracked individuals, respective sampling rate, duration, start and end
of monitoring period. Names with the same colour indicates a couple (maned wolves take only
one mate for life). White indicates the absence of a mate in the tracking dataset. Source:
Adapted from de Paula (2016).

Name Sex Weight Age at 1st Sampling Monitored GPS Start End
(kg) capture rate (h) days points date date

Amadeu M 29 6 1 - 6 461 3514 20/03/2007 20/10/2008
Lais F 31 6 0.4 - 6 433 3726 03/05/2007 28/07/2008
Bolt M 34 6 1 547 12917 01/10/2013 31/03/2015
Rose F 27 4 1 356 8527 20/07/2014 10/07/2015

Gamba M 30 6 4 98 562 30/04/2009 05/08/2009
Tay F 32 7 2 841 8760 14/03/2007 05/12/2009
Miro M 30 7 2 - 5 382 2687 25/03/2011 29/02/2012
Luna F 30 7 1 295 5775 28/02/2013 19/11/2013

Samurai M 32 4 4 86 496 26/08/2009 19/11/2009
Jurema F 28 3 4 510 2846 03/09/2009 25/01/2011
Henry M 27 3 4 250 1451 12/05/2010 22/01/2011
Loba F 27 3 3 - 11 563 2317 15/06/2012 29/12/2013
Nilde F 27 7 2 59 618 30/03/2011 27/05/2011

Tracking data are part of the project “Behavioural biology and conservation of the maned

wolf (Chrysocyon brachyurus)” and were collected in the Canastra National Park (CNP) and

its surroundings. Figure 4.4 shows the study area, land uses, the boundary of the CNP and

the individual home ranges derived from tracking data. Home ranges (HR) are the areas used

by an individual during its normal activities for foraging, mating and rearing (Burt, 1943). We

defined them by delineating the 95% utilisation distribution (UD) for each individual (Hayne,
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1949; Mohr, 1947) (Figure 4.4), where UD was calculated as a kernel density surface. The

overlay of HRs and land uses show that only two individuals stay completely within the CNP,

five transit between the CNP and its surrounding areas, and the remaining six are based outside

the park in landscapes extremely altered by humans, mainly farmlands (Figure 4.4).

4.2.2 Contextual data

NDVI is a proxy for the content and state of the live green vegetation and its computation

requires information on the spectral reflectance in the red and near infra-red portions of the

electromagnetic spectrum, as shown in Equation 4.1 from Rouse et al. (1973).

NDV I =
NIRρ −Redρ
NIRρ +Redρ

(4.1)

Here NIRρ is the reflectance in near infra-red interval (800 - 1000 nm)1 and Redρ is the

reflectance in the red interval (650 - 700 nm)1.

NDVI values range from -1 to 1. Values smaller than 0.1 are usually related to bare rocks,

sand, or snow; values around 0.2 to 0.5 are related to sparse vegetation such as shrub, grasslands

or senescence crops; values between 0.6 and 1.0 correspond to dense vegetation, such as tropical

forests or crops at their peak growth stage (Rouse et al., 1973; Hurley et al., 2014; Xue and Su,

2017). Information on NDVI can be obtained through ready-to-use satellite products, such as

the daily NDVI data from MODIS (Moderate Resolution Imaging Spectroradiometer), or by

processing raw satellite images to obtain spectral reflectance bands in the red and NIR ranges

and then compute the NDVI.

Most ecological studies have used daily pre-processed NDVI (Pettorelli et al., 2011) from

MODIS, which has a coarse spatial resolution (Table 4.2 and Figure 4.5). In our approach

we integrate MODIS NDVI and higher spatial resolution satellite data in order to minimise

information loss and maximise data availability for performing CAMA. We used the daily

reflectance (MOD09) and cloud masks (MOD33) from Terra - MODIS and raw images from

1Theoretical limit according to Jensen (2006), these limits may vary from satellite to satellite but will stay
within this range.
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Terra - ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), Landsat

4-5-7-8, CBERS 2 (China-Brazil Earth Resources Satellite) and CBERS 2B. Satellite data are

described in detail in Table 4.2, Figure 4.5 shows the distribution of images over the tracking

period and illustrates the differences in spatial and temporal resolutions (Figure 4.5).

Table 4.2: Description of satellite images used to produce NDVI. The letters along with spatial
resolutions are specifying the spectral bands for sensors with multiples spatial resolutions,
sensors without letters have a uniform spatial resolution along the spectral bands. R stands for
red, G for green, B for blue, NIR for near infra-red, VNIR for visible (RGB) and near infra-red,
SWIR for short wavelength infra-red, FI for far infra-red and TIR for thermal infra-red.

Satellite Sensor Temporal Spatial

resolution (days) resolution (m)

CBERS 2-2B High Resolution

CCD Camera (HRCC) 26 20

Landsat 4-5 Thematic Mapper (TM) 16 30

Landsat 7 Enhanced Thematic 16 30

Mapper plus (ETM+)

Landsat 8 Operational Land Imager (OLI) 16 30

Moderate Resolution 250 (R/NIR)

Terra Imaging 1-2 500 (B/G/SWIR)

Spectroradiometer (MODIS) 1000 (VNIR/FI)

Advanced Spaceborne 15(VNIR)

Terra Thermal Emission and 16 30 (SWIR)

Reflection Radiometer (ASTER) 90 (TIR)
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4.2.2.1 Absolute calibration of satellite data

Satellite images are most often provided in digital numbers (DN), which represent the intensity

of the pixel at each scanned location (Jensen, 2006). These values are related to the spectral

solar radiance reflected by the surface and measured by the sensor (Rees, 2001; Novo, 2010).

As opposed to DNs, the spectral solar radiance is a physical quantity that can provide valuable

information on the state of the imaged surface (Jensen, 2006) and can also be used for inter-

calibrating temporal multi-source data series. Inter-calibration is done by converting spectral

radiance to spectral reflectance, which decreases the bias introduced by different atmospheric

conditions and illumination (Rees, 2001) and produces more accurate results when applying

change detection algorithms to temporal series (Ponzoni and Shimabukuro, 2010). In other

words, a DN of five, for example, does not hold the same meaning for images from different

satellites, not even for bands of the same satellite and often not even for images and bands of the

same satellite on different dates. Spectral reflectance, however, is a physical property inherent

to the object being measured, holding the same meaning across satellites and is therefore the

appropriate quantity to use for keeping the consistency and accuracy of measurements in a

multi-source methodology.

The daily spectral reflectance dataset from MODIS (MOD09) has already gone through

absolute calibration prior to being released as a product. Thus, we only had to calibrate the 35

images from the other seven satellites, which was done using sensor-specific scaling parameters

and equations that are provided in the meta data for each image and user’s handbook of

each sensor. Following this step, we resampled all the finer resolution images, i.e. all except

MODIS, to 15 m in order to match the finest spatial resolution in our datasets and keep the

maximum information on the land cover. We used the nearest neighbour method to perform

the resampling, which does not create new values that were not in the original data (Meneses

and Almeida, 2012). This is important when working with biophysical parameters to preserve

the relationship between what was measured on the ground by the satellite and the biophysical

variable being analysed. After absolute calibration the calibrated spectral reflectance bands

were used to computed the fine resolution NDVI, NDWI (Normalized Difference Water Index)



4.2. METHODOLOGY 75

(Gao, 1996) and NDBI (Normalized Difference Built-Up Index)(Zha et al., 2003).

4.2.2.2 Land cover classification and calculation of land cover fractions

The land cover classification on the finer scale must be determined in advance so that the land

cover fractions and the daily NDVI growth rate by land cover can be calculated (Figure 4.3).

Previous studies have used high spatial-resolution land cover maps to obtain the fractions,

however, land cover maps are not always available. In such cases, the land cover map can be

obtained by unsupervised classification of all finer resolution images available. Unsupervised

classification is recommended because it achieves relatively accurate classification results and

keeps the method as automated as possible (Rao et al., 2015). in addition, the use of multiple

land cover maps is important to account for changes in land cover during the study period.

Land cover classification was performed on the resampled spectral reflectance, NDWI, NDVI

and NDBI bands from the finer resolution sensors, i.e., all except MODIS. The inclusion of

radiometric indices often improves the accuracy of the classification, because these indices high-

light the differences between land covers (Jensen, 2006; Ponzoni and Shimabukuro, 2010; Novo,

2010). We performed automatic non-supervised classification by using the BIRCH (Balanced

Iterative Reducing and Clustering using Hierarchies) (Zhang et al., 1996) clustering algorithm,

which is a memory efficient method optimised for large datasets (Xu and Wunsch, 2009).

BIRCH uses the summary statistics of the original dataset instead of the entire data to

identify the clusters, greatly reducing the need for storage and memory (Xu and Wunsch,

2009). The basic representation unit for a cluster in BIRCH is the cluster feature (CF), a

tuple of three elements: the number of data points in the cluster, the linear sum and the

square sum of the data points (Zhang et al., 1996). The CFs are stored in a a tree, the CF

tree, which is built dynamically during the clustering process (Xu and Wunsch, 2009). The

algorithm requires three input parameters: 1) a threshold for the maximum allowed radius for

the cluster resulting from the grouping of a sub cluster and the closest sample, the cluster is

partitioned if the radius is bigger than the chosen threshold; a branching factor that determines

the maximum number of sub clusters in each node, if a new sample is added such that the

number of sub clusters exceeds the branching factor the node is split into two; and the number
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of clusters after the final clustering step, which treats the sub clusters from the leaves as new

samples.

We used a branching factor of 100 for all images, varied the threshold from 0.2 to 0.7 by 0.02

for each image and set the number of clusters to None, which means keeping all sub clusters,

i.e., not pruning the tree. We chose to keep all sub clusters and a higher branching factor

because having different land covers mixed in the same cluster would introduce errors in our

analysis. The threshold range and increment was heuristically chosen after performing a few

tests on one of the images: for each threshold we computed the Calinski-Harabaz Index (CHI)

(Calinski and Harabasz, 1974) to measure the intra and inter quality of our partitions, i.e., land

cover classes, and for each image we kept the threshold that achieved the best performance,

i.e., lowest within-cluster dispersion and highest between-cluster dispersion. Finally, for each of

the 35 land cover classifications (15 m) we calculated the percentage of each land cover within

the correspondent MODIS pixel (250 m) for each pixel, which produced 35 maps of land cover

fractions for our study period. The use of multiple land cover fractions maps is important to

account for possible changes in the land cover within a MODIS pixel between acquisition of

the finer resolution data.

4.2.3 MODIS NDVI growth rate extraction and filtering

NDVI growth rate is a value that represents the change in vegetation for each pixel in a image

between two images captured at different days. The extraction of daily NDVI growth rates

from MODIS images allows the creation of a temporal series describing the vegetation dynamics

within each coarse pixel. The information on the daily dynamics of vegetation can then be

broken-down according to the distribution of different land covers within that pixel, which

comes from the classification of the finer resolution images. Prior to using MODIS NDVI data

however, these need to be filtered. The filtering is important to reduce the impact of outliers

cause by the presence of clouds missed during the masking of images, occasional saturation of

detectors leading to overestimation of NDVI and other factors that can bias the growth rates.

MODIS data have been previously used for extracting growth rates and understanding

vegetation dynamics (Lu et al., 2015; Rao et al., 2015; Eckert et al., 2015). Their high temporal
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resolution allows daily monitoring of changes in vegetation and NDVI growth rates were found

to be well represented by a linear function when constrained to such a short time-spam (Rao

et al., 2015). However, the extraction of accurate NDVI growth rates requires a rigorous

filtering process to de-noise the data series, i.e., to reduce the known interference of clouds,

atmosphere dynamics, variability on the detectors that register reflectance and other factors.

Wavelet transform (WT) is specially efficient in identifying and reducing noise while preserving

useful information in time-series (Lu et al., 2007) and it has been widely used in the extraction

of vegetation patterns via radiometric indices (Sakamoto et al., 2005; Priyadarshi et al., 2017;

Leguizamon et al., 2000; Epinat et al., 2001; Dutta, 2012).

The basic idea behind WT is that a chosen finite function, the mother wavelet (MW), will

be translated and dilated as a base for expanding other functions (Grossmann and Morlet,

1984), i.e., estimating the closest possible function based on the signal samples. A wavelet is a

zero mean finite rapidly decaying wave like oscillation able to capture acute changes in signal.

There are wavelets of various shapes and the choice of a MW must be done in accordance

with the application. WT filters signals in the time-frequency domain by decomposing the

noisy signal, deriving the wavelet coefficients and using the inverse WT to obtain the modified

coefficients and deliver the de-noised signal (Priyadarshi et al., 2017).

There are two main coefficients in WT, scaling and shifting, the first refers to stretching

or shrinking the MW in time to fit the signal samples, while the second refers to delaying or

advancing the MW to align with the signal samples. Stretching helps capturing the slowly

varying changes and compression captures rapid changes. WT allows keeping both levels of

detail by using multiple scale decomposition of the noisy signal.

We used the 3152 MODIS NDVI images to create a temporal profile of NDVI for each

one of the pixels in our study area. For this we first used the cloud mask product (MOD35)

(Strabala, 2018) corresponding to each MODIS NDVI image to remove pixels contaminated by

clouds. In the next step we converted the images into time-series of NDVI values, one time-

series for each pixel, and applied two consecutive WT using the Daubechies 4 (Daubechies,

1990) MW. This MW has been extensively used for de-noising (Leguizamon et al., 2000) and

it is commonly used for NDVI (Kaddar et al., 2017). We performed a four level soft threshold
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WT of the NDVI temporal series for each pixel (3152 samples/pixel) in the MODIS data, then

we reconstructed the series, then repeated the procedure once again to obtain the final filtered

NDVI pixel series. The NDVI daily growth rates were then computed for each pair of MODIS

images by calculating the first derivative for each filtered NDVI pixel time series.

4.2.4 Calculating NDVI growth rates for land cover fractions to generate

the finer NDVI time-series (ENDVI)

The filtered NDVI daily growth rates extracted from MODIS reflect the average of the vege-

tation dynamics within the 62500 m2 covered by each pixel. In order to obtain more detailed

information on the vegetation dynamics within each pixel, we calculated the contribution of

each land cover fraction to the growth rates (Figure 4.6). This is possible by using the 35 land

cover classification based on the finer images. The contribution of each land cover fraction is

then applied to the finer NDVI data to generate daily ENDVI images (Figure 4.6). In the next

step, we plotted the ENDVI values for pixels of coffee crops, which have well defined seasons,

to evaluate if the ENDVI was reporting the vegetation changes within growing and harvesting

times, which in the absence of ground truth data, gave us a proxy of the quality of our ENDVI

estimates.

This section is an adapted summary of the methods for producing finer spatial-resolution

NDVI time series presented by Rao et al. (2015). Despite the complex vegetation dynam-

ics driving NDVI changes, short-term changes in NDVI values can be interpreted as linear.

Between two timestamps this can be expressed as Equation 4.2.

NDV Itn+1 = NDV Itn + k(tn+1 − tn) (4.2)

Here NDV Itn is the NDVI value at the date tn, NDV Itn+1 is the NDVI value at the date

tn+1, and k is the corresponding growth rate between tn+1 and tn. This equation allows the

prediction of NDVI on a given date by using the growth rate in that particular period and one

NDVI observation as baseline. The NDVI growth rate between any two dates can be calculated

using MODIS NDVI time-series data, derived for example from the MODIS daily reflectance
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product (MOD09). However, estimating NDVI growth rates for finer scale pixels from the

growth rate at the MODIS pixel is a more complex issue that must be solved in order to obtain

a finer image-like NDVI prediction. Following Rao et al. (2015) we employed a linear mixing

model (LMM) to solve the issue (Equation 4.3).

NDV I(x, y, t) =

n∑
c=1

fc(x, y, t) ∗NDV Ic(x, y, t) + ε(x, y, t) (4.3)

Here NDV I(x, y, t) is the NDVI value of a MODIS pixel (x, y) at time t, fc(x, y, t) and

NDV Ic(x, y, t) are respectively the fractional coverage and the NDVI value of land cover class

c within the MODIS pixel (x, y) at time t, n is the total number of land cover classes within the

MODIS pixel (x, y) and ε(x, y, t) is the error introduced by LMM. Considering Equation 4.2,

Equation 4.3 and under the assumption that no land cover changes occur between t1 and t2,

we can write the relationship between the growth rate of a MODIS pixel and the corresponding

finer pixels as Equation 4.4.

kMODIS(x, y, t1 → t2) =
n∑
c=1

fc(x, y, t1) ∗ kFINERc (x, y, t1 → t2) (4.4)

Here kMODIS(x, y, t1 → t2) is the growth rate of a MODIS pixel (x, y) from t1 to t2,

kFINERc (x, y, t1 → t2) is the growth rate of land cover c on the finer pixel scale within the

corresponding MODIS pixel from t1 to t2.

There are several land cover classes within a MODIS pixel (Figure 4.7), which means that

the estimate of the unknown parameters, and therefore the computation of the finer scale NDVI

growth rates, requires at least n MODIS pixels (Rao et al., 2015) (Figure 4.7). These MODIS

pixels are arranged in a system of equations, so that there are at least n equations to find the

unknown parameters and the growth rate for each land cover type.

The estimate growth rates by land cover fractions are then computed by solving a linear

system of n+1 equations, where each line express the combination of land covers and respective
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coarse NDVI growth rate for a MODIS pixel neighbouring the target MODIS pixel being

downscaled (Figure 4.7). The neighbours for each downscale were selected by their centroid to

centroid distance to the target pixel (Figure 4.7) and the system was solved using a constrained

least square method with upper and lower boundaries, as shown in Equation 4.5.

kMODIS
min − StD(kMODIS) ≤ kFINERc ≤ kMODIS

max + StD(kMODIS) (4.5)

Here StD(kMODIS), kMODIS
min and kMODIS

max are the standard deviation, the minimum and

the maximum values of the MODIS growth rate for the entire study area at the given date.

The constraints are used to avoid unreasonable rates retrieved by Equation 4.5 that might be

caused by classification errors and noise in the time-series (Rao et al., 2015). Once the LMM is

solved and the estimate growth rates of all land cover classes are calculated at the finer spatial

scale , Equation 4.2 can be used to predict the finer NDVI value at t2 (Equation 4.6).

ENDV Itn+1 = NDV IFINERtn + kn(tn+1 − tn) (4.6)

Here ENDV Itn+1 is the disaggregated NDVI value at the date tn at the finer resolution,

NDV IFINERtn+1
is the NDVI value at the date tn+1 at the finer resolution image, and kn is the

corresponding growth rate between tn+1 and tn for the land cover class n.

We evaluated the ENDVI time-series by selecting points in the study area, classifying them

in accordance to the detailed land cover map (Figure 4.4), extracting their ENDVI temporal

profile and comparing with what would be expected from that specific land cover type. In a

crop of coffee, for example, NDVI values are expected to fall in September when coffee beans

are planted and increase after that when the growing season starts.
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4.2.5 Context integration and seasonal plots

Movement data, MODIS NDVI and the ENDVI contextual data were integrated using trajec-

tory annotation. This method links GPS fixes and contextual information according to their

temporal and spatial coordinates. We applied the nearest neighbour trajectory annotation

which intersects in space the contextual layer which is the closest in time for each fix to find

the value of the contextual variable at the time when the fix was collected (Brum-Bastos et al.,

2016). We also annotated individual home ranges, derived from the GPS points collected dur-

ing the entire period for each wolf (Figure 4.4), with the daily distribution of MODIS NDVI

and ENDVI, i.e., we assigned all the NDVI and ENDVI values within the home range to this

particular home range. This allowed us to compare the vegetation available within the home

range to the vegetation visited by the wolf.

We computed daily skew and kurtosis for the MODIS NDVI and ENDVI distributions

within each home range, which we combined to generate a typology of NDVI distributions to

characterize the state and content of vegetation within the home ranges, so that we could infer

the likelihood of occurrence for higher and lower NDVI values from their empirical density dis-

tributions (EDD). The skewness is a measure of asymmetry relative to the mean, a distribution

can be right-skewed (skew > 2) or left-skewed (skew < -2). A positive skew indicates that the

right tail of the distribution is longer and the mass of the distribution is concentrated to the

left of the mean (Figure 4.8 A). A negative skew indicates that the left tail of the distribution

is longer and the mass of the distribution is concentrated to the right of the mean (Figure 4.8

C). The kurtosis is a measure of the weight of the tail of the distribution relative to a nor-

mal distribution, a distribution can be light-tailed/peaked (kurtosis > 2) or heavily-tailed/flat

(kurtosis < -2). A positive kurtosis indicates that the probability is low at the tails, i.e., less

frequent outliers, and the mass of the distribution is concentrated around the mean (Figure

4.8 D). A negative kurtosis indicates that the probability is higher at the tails, i.e., more fre-

quent outliers, and the mass of the distribution is more dispersed around the mean (Figure 4.8

F). Distributions with skew and kurtosis between -2 and 2 are considered within the range of

normality (George and Mallery, 2010) (Figure 4.8 B and E).
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In comparison to a normal distribution of vegetation state and content, a positive skew

indicates a home range where the occurrence of dense and healthy vegetation (higher NDVI

values) is less likely and a negative skew indicates a home range within which the occurrence

of sparse vegetation and other land covers (lower NDVI values) is more likely. Similarly, in

comparison to a normal distribution a positive kurtosis indicates a home range within which

the land cover is more homogeneous (NDVI values closer to the mean) and a negative kurtosis

indicates a home range within which the land cover is more heterogeneous (NDVI values more

dispersed).

Based on the ranges of skew and kurtosis (Figure 4.8) we defined nine types of NDVI dis-

tributions to characterize the state and content of vegetation within the home ranges, which

we named according to the following convention: the first character in the name of the distri-

bution refers to the skewness, it can be “L” for low (skew > 2), “H” for high (skew < -2) or

“N” for “normal” (-2 ≤ skew ≥ 2). The character after the dash refers to the kurtosis of the

distribution, it can be “P” for “peaked” (kurtosis > 2), “F” for “flattened” (kurtosis < 2) or

absent for when it is similar to the normal distribution (-2 ≤ kurtosis ≥ 2). The second and

third character are always “NH” and stand for “NDVI in the Home range”. The nine types of

NDVI distribution are illustrated in Figure 4.9 and described here in terms of vegetation state

and content:

• LNH-P (Low NDVI home range - Peaked): Homogeneous home range with pre-

dominantly lower NDVI values, i.e., predominance of barren rocks, shrub, grasslands and

presence of very few patches of dense vegetation.

• LNH-F (Low NDVI home range - Flattened): Heterogeneous home range with pre-

dominantly lower NDVI values, i.e., predominance of barren rocks, shrub and grasslands

and more noticeable presence of dense vegetation

• LNH (Low NDVI home range - Normal): Homogeneous home range with predom-

inantly lower NDVI values, i.e., predominance of barren rocks, shrub, grasslands and

presence of almost no dense vegetation
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• HNH-P (High NDVI home range - Peaked): Homogeneous home range with pre-

dominantly higher NDVI values, i.e., predominance of densely vegetated areas such as

crops and forests, with very few patches of barren rocks and grasslands.

• HNH-F (High NDVI home range - Flattened): Heterogeneous home range with

predominantly higher NDVI values, i.e., predominance of densely vegetated areas such

as crops and forests, with more noticeable presence of barren rocks and grasslands.

• HNH (High NDVI home range): Homogeneous home range with predominantly

higher NDVI values, i.e., predominance of densely vegetated areas such as crops and

forests, with almost no barren rocks and grasslands.

• NNH-P (Normal NDVI home range - Peaked): Homogeneous home range with

predominantly average NDVI values, i.e., grasslands, with almost no barren rocks or

dense vegetation.

• NNH-F (Normal NDVI home range - Flattened): Heterogeneous home range

with predominantly average NDVI values, i.e., grasslands, some barren rocks and dense

vegetation.

• NNH (Normal NDVI home range): Homogeneous home range with predominantly

average NDVI values, i.e., grasslands, with very few barren rocks and dense vegetation.

For each day we further identified which of the nine types was the best fit of NDVI distri-

bution within each home range. In the next step we used the distribution to compute Z-scores

for each ENDVI and MODIS NDVI values where GPS points were registered on that day, i.e.,

locations the maned wolf visited on that day. Visited locations with Z-scores higher than 1.28

indicate preference for areas with higher NDVI, i.e. the wolf is choosing areas with higher

NPP. Conversely, locations with Z-scores lower than -1.28 indicate preference for areas with

lower NDVI, i.e., the wolf is choosing areas with lower NPP. We plotted the Z-scores for each

wolf along with the availability of MODIS NDVI and the number of fixes to evaluate the

representativeness of the obtained Z-scores (See Figure 4.14 for example).
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Figure 4.3: The overview of our framework for producing a daily detailed NDVI time series
(ENDVI) and using it as contextual data to perform CAMA (Context-Aware Movement Anal-
ysis) on maned wolves’ trajectories to identify seasonal patterns in their diet. Blue ellipses
show inputs, grey rectangles show processing steps, yellow rectangles are secondary outputs
and green rectangles show primary outputs, i.e., the final products.
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Figure 4.4: Home ranges (95% utilization distribution) for each individual and Canastra Na-
tional Park (CNP) limits overlayed on top of land use classes. Home ranges of the two individ-
uals in each couple (Table 4.1) intersect to a large extent. The land use map was produced by
de Paula (2016) based on automatic and supervised multi-temporal classification (2009 - 2011)
of RapidEye images with 5 m spatial resolution.
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Figure 4.5: The trade-off between the spatial and the temporal resolutions. Panel A) shows
a time-line covering the GPS tracking period, where horizontal dashes indicate availability
of satellite images after removing the ones covered by clouds. The type of satellite image is
specified by the colour of the bar shown in the legend. MODIS images are plotted on the right
time-line, whilst the others are plotted on the left time-line. Panel B) shows scaled pixel sizes
overlaying an image from a portion of the study area, highlighting how the heterogeneity of
environmental conditions might be camouflaged by the spatial resolution of MODIS. A MODIS
pixel covers 250000 m2, a Landsat pixel covers 900 m2, a CBERS pixel covers 400 m2 and an
ASTER pixel covers 225 m2.
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Figure 4.6: The filtered NDVI growth rate extracted from each pixel from MODIS data is com-
bined with land cover data from the finer spatial resolution images to produce a disaggregated
NDVI (ENDVI), which has the temporal resolution of MODIS and the spatial details from
the finer images. The land cover is used to find the NDVI growth rate for each pixel at the
finer images. Growth rates are then applied to the available finer NDVI images to create the
temporal series of ENDVI.

Figure 4.7: The spatially neighbouring pixels of a target MODIS pixel being downscaled and
land cover composition in a MODIS pixel classified from available LANDSAT, ASTER or
CBERS images (adapted from Rao et al. (2015)). The neighbourhood shape and size varies
for each MODIS pixel being downscaled because it is determined by the number of land cover
classes within the targeted MODIS pixel.
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Figure 4.8: Changes in the shape of the probability density function (PDF) according to
different ranges of skew and kurtosis. All distributions are plotted within the same x and y
limits. The reference range for normality is between -2 and 2 (George and Mallery, 2010).
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4.2.6 Eigenbehaviour analysis: Identifying seasonal structure in habitat use

Contextualised movement data sets are highly dimensional and as such can be difficult to vi-

sualize and interpret. However, often not all of the variables are necessary to understand the

movement patterns linked to behaviour because there often exists a smaller intrinsic dimension-

ality in the data set that explains most of the variance (Demšar et al., 2013). Therefore, it is

often of interest to reduce the dimensionality of the data in order to understand it better, which

can be done via principal components analysis (PCA) techniques such as Eigen decomposition.

Eigendecomposition has been used in many applications in computer science (Eagle and

Pentland, 2009), such as object and face recognition (Turk and Pentland, 1991), shape and

movement description (Pentland and Sclaroff, 1991), data interpolation (Pentland, 1992) and

computer animation (Pentland and Williams, 1989). The repeating structures behind animal

behaviour can also be retrieved with this method: commonly repeated behavioural patterns

can be found by identifying eigenbehaviours, i.e., the principal components of an individual’s

behavioural dataset (Eagle and Pentland, 2009).

The Eigenbehaviours are a set of vectors that characterize the variation in the behaviour

of an entity during a time period. These vectors are eigenvectors of the covariance matrix,

or Principal Components (PC’s) of behaviour data. Eigenvectors with the highest eigenvalues

usually represent a repeated behaviour, such as using greener areas during dawn for forage. A

linear combination of an individual’s eigenvectors can precisely reconstruct the behaviour from

each day in the data, also making possible to accurately predict an individual’s subsequent

behaviour based on its eigenvectors (Eagle and Pentland, 2009; Hurley et al., 2014). For more

details on the mathematics and calculation of eigenvectors/PCs please refer to Jolliffe (2002).

In the context of movement, eigenbehaviour analysis has been used on sequential data

representing people’s daily behaviours (Eagle and Pentland, 2009). We adapt this method to

investigate repeated behaviours of maned wolves. For this, their semantic trajectories first

need to be converted into sequences, because eigenbehaviour analysis requires regularly sam-

pled categorical behavioural data indicating the possible states for an individual (Eagle and

Pentland, 2009).



4.2. METHODOLOGY 91

As most trajectories were sampled more than once a day but with different temporal reso-

lutions, we computed daily average Z-scores for each wolf to make our data regularly sampled.

We then classified the average Z-scores into high ENDVI (H), low ENDVI (L) and average

ENDVI (A). So that, for each day of each wolf we had a description of their choice of vegetated

area in relation to the vegetation available in their entire home range. This produced codified

sequences at daily temporal resolution describing the habitat use preference for each wolf dur-

ing the study period. These sequences were then evaluated in terms of contextual data quality

and representativeness of the Z-score. Sequences with long data gaps in which there were less

than 1/5 of MODIS data were excluded of further analysis, as well as the ones with less than

10 fixes recorded per day.

The remaining sequences were ordered according to what we called a wolf year, starting on

the 1st of July and ending on the 30th of June. This year corresponds to a cycle in wolf ecology

and starts at the time when the whelping rate peaks in the year cycle. This cycle consists of

the following parts:

1. Whelping : between June and September (dry season)

2. Non-reproductive: between October and February (wet season)

3. Breeding : between March and June (dry season)

Each wolf year was treated as a different sequence, even when there were multiple se-

quences/years linked to the same wolf. Then, we characterized all the wolves by B(x, y), a

two-dimensional W by 365 array, where W is the total number of wolf years in the study and

365 is the number of days within a year, leap years had the extra day disregarded. B contains

n classes of ENDVI Z-score, one for each day of the year, which in our case corresponded to the

four wolf behaviours relative to the vegetation: high ENDVI (H), low ENDVI (L) and average

ENDVI (A) and a no data class (N). We converted the B into B′ a W by 365Xn array of

binary values (Figure 4.10).

In order to obtain the repetitive behaviours of wolves during the study period, we ap-

plied eigendecomposition to the B′ matrix of states. This resulted in a 1460X1460 matrix of
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Figure 4.10: Transformation from B to B′. The plot on the left, B(x, y), corresponds to the
wolves behaviour over the course of 365 days for four states. The plot on the right, B′(x, y),
represents the same data in the form of a binary matrix of 365 days by 1460 (which is 365
multiplied by the four possible states (n).

eigenvectors that can are ranked according to their eigenvalue. The vectors with the highest

eigenvalues are considered an individual’s primary eigenbehaviours (Eagle and Pentland, 2009).

We calculated the percentage of variance explained (PVE) by each eigenvector in a scree plot

and used it as our criteria for dimensionality reduction. We plotted the PVE and used the

point where the graph levelled off as the threshold for selecting the eigenbehaviours to be kept

and interpreted (Jolliffe, 2002). This is important as it is not feasible to interpret 1460 different

eigenbehaviours and the components with low eigenvalues reflect individual behaviour, which

is not our focus. The eigenvectors with higher eigenvalues reflect behaviours that are common

to most wolves in the study, i.e., population behaviour and are the ones we are interested in

keeping.
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4.3 Results

4.3.1 Calculating NDVI growth rates for land cover fractions to generate

finer NDVI time-series (ENDVI)

As we did not have access to temporal ground-truthing data, we plotted the ENDVI time se-

ries to visualise if the ENDVI was reporting the seasonal changes on vegetation in a reasonable

manner. For this we selected pixels from areas where the multi-temporal land cover classifica-

tion by de Paula (2016) indicated a specific crop type instead of a generic “farmland” area. The

reason for this choice is that the knowledge of the crop type allows the comparison between the

agricultural calendar (harvest, plating, growing) for that specific crop in that region and the

ENDVI values. The only specified crop in the area was coffee fields, which have well defined

seasons.

The average ENDVI time series from three pixels from different coffee crops is shown in

Figure 4.11, the time axis covers the same period for which we had a verified land cover map

(Figure 4.4). The knowledge of the land cover allowed us to compare the ENDVI curve to the

expected NDVI pattern for that specific land cover, taking into account dry and rainy seasons

or harvesting and planting seasons. In addition to being the only specified farmland, coffee

crops have a well known NDVI signature which has been used for mapping coffee fields in Brazil

(Alves et al., 2016; Bernardes et al., 2012) and allowed us to verify if our ENDVI product was

in accordance with the land cover dynamics.

The ENDVI was able to capture the seasonal variations in the phenology of the coffee crops.

As expected the lower values are found around the planting season, which is coherent with the

field being bare soil during that period and therefore having the lowest ENDVI responses. The

highest ENDVIs are found immediately before the harvest season, reflecting the productive

peak of the plant. There is a spike in ENDVI values after October 2011, which is a result of the

lack of higher resolution images between August 2011 and July 2012, a result of malfunctioning

of the Landsat 5 and 7 satellites during that period. This indicates a high sensitivity of the

model to the absence of higher resolution images. Therefore a series of more higher resolution

NDVI images spread evenly across the study period is preferred and more likely to produce
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Figure 4.11: Average ENDVI time series from three pixels from different coffee crops, the time
axis covers the same period for which we had a verified land cover map. The crop seasons are
shown by background colours explained in the legend.

more accurate ENDVI.

Despite this sensitivity to the lack of high resolution images, the ENDVI preserved the

seasonal trends, i.e., seasonal changes were still preserved even where absolute values were not

as accurate. Since the changes and trends are more relevant for our study than the absolute

values of ENDVI, as they give us information on the dynamics of the landscape in which maned

wolves were moving, this did not pose a particular problem.

4.3.2 Context integration and seasonal plots

This section shows the results for the seasonal plots derived from the semantic trajectories and

annotated home ranges. Figure 4.12 shows the frequencies for different values of skew and kur-

tosis computed for the daily ENDVI distributions within the home ranges. The distributions

are predominantly positively skewed (Figure 4.12 A) and show only positive kurtosis (Figure

4.12 B), which means that only six out of the nine distributions (Figure 4.9) characterising the

vegetation within the home ranges were possible. The absence of negative kurtosis indicates

that the home ranges are predominantly homogeneous in terms of vegetation, and the pre-

dominance of positive skewness indicates that home ranges have mostly lower NDVI, therefore

predominance of grasslands and sparse vegetation, which is in agreement with the phenology

of the Brazilian Savannah.
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Figure 4.12: Frequency of different values of skew and kurtosis for the ENDVI distributions
within the annotated home ranges. The total number of ENDVI distributions is 67631.

The home ranges showed ENDVI distributions of type NNH, NNH-P, LNH-P and rarely

HNH-P (Figure 4.13). HNH-P distributions were observed between November and December

of 2009 for the couple Samurai (Figure B.6) and Jurema (Figure 4.15). Generally the Z-scores

of the areas used by the wolves showed almost a cyclic rhythm in terms of transitioning from

high Z-scores to medium and the low Z-scores. Overall, it was also possible to see that the use

of the ENDVI gives a more complete picture of the landscape dynamics, as the distributions

are changed from NDVI to ENDVI and the latter ones are more compatible with what would

be expected from that landscape. In addition, the ENDVI product was able to retrieve data

where there was cloud coverage and no MODIS NDVI image available.
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Figure 4.13: Types of probability density function (PDF) according to different ranges of skew
and kurtosis that were actually observed in the annotated home ranges. The first character in
the name of the distribution refers to the skewness, it can be “L” for low (skew > 2), “H” for
high (skew < -2) or “N” for “normal” (-2 ≤ skew ≥ 2). The character after the dash refers to
the kurtosis of the distribution, it can be “P” for “peaked” (kurtosis > 2), “F” for “flattened”
(kurtosis < 2) or absent for when it is similar to the normal distribution (-2 ≤ kurtosis ≥ 2).
The second and third character are always “NH” and stand for “NDVI in the home range”.

We selected the seven wolves with the best data quality to present here, their results are

shown in Figures 4.14 to 4.20. The results for the remaining wolves can be found in Appendix

B. The figures show the type of distribution for the MODIS NDVI versus the Z-score for the

wolf’s locations (top panel), the type of distribution for the ENDVI versus the Z-score for the

wolf’s locations (middle panel), and the data quality in terms of number of fixes registered on
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that day and the average number of MODIS images in a five-day window (bottom panel). In

the next paragraphs, we analyse these graphs for the selected seven wolves in more detail.

The wolf Bolt established his home range inside the CNP area. His home range is covered

mostly by heath with no more than three small patches of young forest at the South-West

border (Figure 4.4). This wolf was tracked between the end of 2013 and 2015, the period in

within which the study area was going trough an intense drought His results are shown in

Figure 4.14. The ENDVI time series shows a clear pattern of landscape transitioning from

a higher net primary productivity (NNH), to a medium net primary productivity (NNH-P)

and finally to a low net primary productivity (LNH-P). However, the proportion of time in

which the landscape is HNH is lower compared with that of a year without drought. As the

landscape transitions into a state of lower NPP there is a change in the periodicity of Bolt’s

visits to locations with higher Z-scores of ENDVI, i.e., locations with more food availability.

This periodicity seems to change from daily/every other day visits, in the NNH period, to five

to seven day intervals between visits in the LNH-P period, reaching a maximum of 15 days

interval at the end of the dry season in March 2015.

The wolf Jurema established her home range outside the CNP. Her home range is covered

mostly by pasture and heath, a big patch of farmland and very few patches of mature forest

(Figure 4.4). This wolf was tracked between 2009 and 2011. Her results are shown in Figure

4.15. The ENDVI time series show a clearer pattern in terms of landscape transitioning from

a higher NPP (NNH) in the dry season, to a medium NPP (NNH-P) and finally to a low

NPP(LNH-P) int he wet season. As the landscape transitions into a state of lower NPP there

is a change in the periodicity of visits to locations with higher Z-scores of ENDVI, i.e., location

with more food availability. It seems to transition from daily/every other day visits, in the

NNH home range, to five to seven days intervals in the LNH-P home range. However, the

quality of contextual data is rather unstable which can affect the results in the graph.

The wolf Lais, Amadeo’s partner, established her home range in the CNP border, her home

range is covered mostly by heath, some pasture and few patches of young forest (Figure 4.4).

This wolf was tracked between 2007 and 2008, period in which the state of Minas Gerais was

going through an intense drought. Her results are shown in Figure 4.16. The ENDVI time
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Figure 4.14: The top panel shows the temporal series of Z-scores of the locations used by Bolt
in relation to MODIS NDVI distributions within the home range (n = 2569 pixels of 250 m).
The colours in the Z-score plots indicate the type of NDVI or ENDVI distribution (Figure 4.9)
for the day. The middle panel shows the temporal series of Z-scores of the locations used by
Bolt in relation to the ENDVI distributions within the home range (n = 599292 pixels of 15
m). Red dashed lines indicate the 10% confidence interval, points above that show that the
animal was selecting areas amongst the 10% more vegetated in the home range. The bottom
panel shows the number of fixes collected each day in the period and the average number of
MODIS images available at each day within a 5 days moving window. The beige background
indicates when the data quality criteria were fully met, i.e., more than 10 fixes and more than
0.2 MODIS images in a 5 days window.



4.3. RESULTS 99

Figure 4.15: The top panel shows the temporal series of Z-scores of the locations used by
Jurema in relation to MODIS NDVI distributions within the home range (n = 881 pixels of
250 m). The middle panel shows the temporal series of Z-scores of the locations used by Jurema
in relation to the ENDVI distributions within the home range (n = 204670 pixels of 15 m). Red
dashed lines indicate the 10% confidence interval, points above that show that the animal was
selecting areas amongst the 10% more vegetated in the home range. The bottom panel shows
the number of fixes collected each day in the period and the average number of MODIS images
available at each day within a 5 days moving window. The beige background indicates when
the data quality criteria were fully met, i.e., more than 10 fixes and more than 0.2 MODIS
images in a 5 days window.

series show a clearer pattern in terms of landscape transitioning from a higher NPP (NNH), to a

medium NPP (NNH-P) and finally to a low NPP (LNH-P). As the landscape transitions into a
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state of lower NPP there is a change in the periodicity of visits to locations with higher Z-scores

of ENDVI, i.e., location with more food availability. It seems to transition from daily/every

other day visits, in the NNH home range, to five to seven days intervals in the LNH-P home

range. However, the data quality was low in the middle months of the tracking period.

The wolf Loba, established her home range within the CNP area. Her home range is covered

mostly by heath, very few pasture and young forest patches and two patches of mature forest

(Figure 4.4). This wolf was tracked between 2012 and 2014, period in which the state of MG

was going trough an intense drought in 2014. Her results are shown in Figure 4.17. The

ENDVI time series show a clearer pattern in terms of landscape transitioning from a higher

NPP (NNH), to a medium NPP (NNH-P) and finally to a low NPP (LNH-P). As the landscape

transitions into a state of lower NPP there is a change in the periodicity of visits to locations

with higher Z-scores of ENDVI, i.e., location with more food availability. It seems to transition

from daily/every other day visits, on the NNH home range, to five to seven days intervals on

the LNH-P home range. However, the data quality was very poor during the tracking period.

The wolf Luna, established her home range outside the CNP area, her home range is covered

mostly by heath and pasture, with very few patches of shrubland and coffee crops (Figure 4.4).

This wolf was tracked during 2013, a typical year in terms of climate in the region. He results

are shown in Figure 4.18. The ENDVI time series show a very clear pattern where the dry

season has a LNH-P distribution of ENDVI and the beginning of the wet season has a NNH

distribution, i.e., higher NPP during the wet season. As the landscape transitions into a state

of lower NPP there is a change in the periodicity of visits to locations with higher Z-scores of

ENDVI, i.e., location with more food availability. It seems to transition from daily/every other

day visits, in the NNH home range, to five to seven days intervals in the LNH-P home range.

However, the data quality was very poor during the tracking period.

The wolf Rose, Bolt’s partner, established her home range inside the CNP area, her home

range is covered mostly by heath with no more than three small patches of young forest at the

South-West border (Figure 4.4). This wolf was tracked between 2014 and 2015. Her results are

shown in Figure 4.19.The ENDVI time series show a very clear pattern where the wet season

has a NNH and NNH-P distribution of ENDVI and the dry season has a LNH-P distribution,
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Figure 4.16: The top panel shows the temporal series of Z-scores of the locations used by
Lais in relation to MODIS NDVI distributions within the home range (n = 1926 pixels of 250
m).The colours in the Z-score plots indicate the type of NDVI or ENDVI distribution (Figure
4.9) for the day. The middle panel shows the temporal series of Z-scores of the locations used
by Lais in relation to the ENDVI distributions within the home range (n = 450967 pixels of
15 m). Red dashed lines indicate the 10% confidence interval, points above that show that the
animals was selecting areas amongst the 10% more vegetated in the home range. The bottom
panel shows the number of fixes collected each day in the period and the average number of
MODIS images available at each day within a 5 days moving window. The beige background
indicates when the data quality criteria were fully met, i.e., more than 10 fixes and more than
0.2 MODIS images in a 5 days window.
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Figure 4.17: The top panel shows the temporal series of Z-scores of the locations used by
Loba in relation to MODIS NDVI distributions within the home range (n = 1732 pixels of 250
m).The colours in the Z-score plots indicate the type of NDVI or ENDVI distribution (Figure
4.9) for the day. The middle panel shows the temporal series of Z-scores of the locations used
by Loba in relation to the ENDVI distributions within the home range (n = 404485 pixels of
15 m). Red dashed lines indicate the 10% confidence interval, points above that show that the
animals was selecting areas amongst the 10% more vegetated in the home range. The bottom
panel shows the number of fixes collected each day in the period and the average number of
MODIS images available at each day within a 5 days moving window. The beige background
indicates when the data quality criteria were fully met, i.e., more than 10 fixes and more than
0.2 MODIS images in a 5 days window.
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Figure 4.18: The top panel shows the temporal series of Z-scores of the locations used by Luna
in relation to MODIS NDVI distributions within the home range (n = 550 pixels of 250 m).
The colours in the Z-score plots indicate the type of NDVI or ENDVI distribution (Figure 4.9)
for the day. The middle panel shows the temporal series of Z-scores of the locations used by
Luna in relation to the ENDVI distributions within the home range (n = 128873 pixels of 15
m). Red dashed lines indicate the 10% confidence interval, points above that show that the
animals was selecting areas amongst the 10% more vegetated in the home range. The bottom
panel shows the number of fixes collected each day in the period and the average number of
MODIS images available at each day within a 5 days moving window. The beige background
indicates when the data quality criteria were fully met, i.e., more than 10 fixes and more than
0.2 MODIS images in a 5 days window.
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i.e., higher NPP during the dry season. As the landscape transitions into a state of lower NPP

there is a change in the periodicity of visits to locations with higher Z-scores of ENDVI, i.e.,

location with more food availability. It seems to transition from daily/every other day visits,

on the NNH home range, to five to seven days intervals on the LNH-P home range.

The wolf Tay, Gamba’s partner, established her home range in the CNP border. Her home

range is covered mostly by heath and pasture, with scattered islands of shrubland and some

farmland (Figure 4.4). This she wolf was tracked between 2007 and 2010, period in which the

study area was going trough an intense drought in 2008. Her results are shown in Figure 4.20.

The ENDVI time series show a very clear pattern where the wet season has a NNH and NNH-P

distribution of ENDVI and the dry season has a LNH-P distribution, i.e., higher NPP during

the dry season. As the landscape transitions into a state of lower NPP there is a change in the

periodicity of visits to locations with higher Z-scores of ENDVI, i.e., location with more food

availability. It seems to transition from daily/every other day visits, in the NNH home range,

to five to seven days intervals in the LNH-P home range.
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Figure 4.19: The top panel shows the temporal series of Z-scores of the locations used by Rose
in relation to MODIS NDVI distributions within the home range (n = 1655 pixels of 250 m).
The colours in the Z-score plots indicate the type of NDVI or ENDVI distribution (Figure 4.9)
for the day. The middle panel shows the temporal series of Z-scores of the locations used by
Rose in relation to the ENDVI distributions within the home range (n = 387349 pixels of 15
m). Red dashed lines indicate the 10% confidence interval, points above that show that the
animals was selecting areas amongst the 10% more vegetated in the home range. The bottom
panel shows the number of fixes collected each day in the period and the average number of
MODIS images available at each day within a 5 days moving window. The beige background
indicates when the data quality criteria were fully met, i.e., more than 10 fixes and more than
0.2 MODIS images in a 5 days window.
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Figure 4.20: The top panel shows the temporal series of Z-scores of the locations used by Tay
in relation to MODIS NDVI distributions within the home range (n = 584 pixels of 250 m).
The colours in the Z-score plots indicate the type of NDVI or ENDVI distribution (Figure 4.9)
for the day. The middle panel shows the temporal series of Z-scores of the locations used by
Tay in relation to the ENDVI distributions within the home range (n = 138140 pixels of 15
m). Red dashed lines indicate the 10% confidence interval, points above that show that the
animals was selecting areas amongst the 10% more vegetated in the home range. The bottom
panel shows the number of fixes collected each day in the period and the average number of
MODIS images available at each day within a 5 days moving window. The beige background
indicates when the data quality criteria were fully met, i.e., more than 10 fixes and more than
0.2 MODIS images in a 5 days window.

4.3.3 Eigenbehaviours: Identifying seasonal structure in habitat use

This section describes the results obtained by applying eigen decomposition to the sequences of

maned wolf behaviour that were generated from the semantic trajectories. Figure 4.21 shows
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all the annotated trajectories sequenced in different wolf years, which resulted in a total of 28

sequences of wolf years for which there was information on the choice of vegetated areas by the

wolves. Twenty two of those were selected for the analysis of eigenbehaviours, because six of

the sequences were either too short or with too low quality contextual data, or both.

Figure 4.21: The real tracking period for each wolf is shown in the top panel and the translation
of these data into wolf years is shown in the bottom panel. Each wolf is represented by a
different colour and white gaps represent missing data that was accounted for as no data.

We kept the eigenbehaviours that explained most of the variance in the dataset, which we

evaluated based on the percentage of variance explained by the eigenvalues. For this we created

a scree plot (Figure 4.22) which is a plot of the number of eigenvalues vs the percentage of

variance each vector contributes. A heuristic way of performing dimensionality reduction is to

select the eigenvectors until the point where the scree plot plateaus. The first eigenbehaviour

explained 45% of the variance in the data, the second explained 31.6%, the third explained

5.08%, the fourth explained 4.08% and the fifth explained 2.57%. The percentage of variance

explained plateaus from the 6th eigenbehaviour forwards around 1%, for that reason we kept

only the first five eigenbehaviours that accounted in total for 88.33% of the variance in the

whole dataset.
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Figure 4.22: Eigenvalues ranks and percentage of variance explained by each. The total number
of ranks was 1460, however the graph plateaus after the 6th rank.

The eigenvectors with the highest eigenvalues represent behaviours that are common to

most wolves in the study, i.e., the primary eigenbehaviours. Figure 4.23 shows the five first

eigenbehaviours with respective absolute eigenvector values. Higher eigenvector values (red)

show a higher contribution of the state at that point in time and lower eigenvector values

(white) show lower contribution of the behavioural state at that point in time (panels H, L

and A in the B′ matrix in Figure 4.10). The first eigenbehaviour corresponds to years where

wolves stay in areas of average ENDVI before and during the wet season and start to choose

areas with higher NPP at the end of the wet season onwards. The second eigenbehaviour

show the opposite trend, where wolves stay in areas of average ENDVI after and during the

dry season and preferentially select areas of high ENDVI at the middle of the wet season.

The third eigenbehaviour corresponds to years where wolves stay in areas of average ENDVI

intermittently, before and during the second half of the wet season and start to choose areas

of higher ENDVI at the first half of the wet season and at the beginning of the dry season.
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The fourth eigenbehaviour corresponds to years where wolves stay in areas of average ENDVI

for the first half of the year and particularly before the wet season, and choose areas of higher

ENDVI at the middle of the first dry season as well as during the entirety of the second dry

season. The fifth eigenbehaviour corresponds to years where wolves choose areas of higher

ENDVI the entire year and then stay within areas of average ENDVI between the end of wet

season and the beginning of the dry season.

The second row shows that there seems to be a persistent trend of choosing areas of low

ENDVI at very specific times of the year, this can be seen in all eigenbehaviours.
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We combined the computed eigenbehaviours into sequences of three behavioural states by

taking the state with the highest eigenvector coefficients at any given time. This resulted in

the sequences shown in Figure 4.24. The first eigenbehaviour shows a preferential selection

of high ENDVI areas after the wet season, the second one shows less preferential selection of

high ENDVI areas and only in the first half of the wet season, the third one shows preferential

selection of high ENDVI in the first half of wet season and less so at the beginning of the dry

season. The fourth eigenbehaviour shows preferential selection of high ENDVI areas from the

middle of the wet season onwards and the fifth shows preferential selection of high ENDVI

areas during the entire year. The second, third and fourth eigenbehaviours show a pattern of

preferential selection of low ENDVI areas in the second third of the wet season and at the end

of the dry season.

Figure 4.24: Sequences of states summarising the five first eigenbehaviours. Sequences were
generated by selecting the state with the highest eigenvector coefficient at each time during
the wolf year for each eigenvector.The letters in the horizontal axis indicate the seasons, D for
dry and W for Wet.
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4.4 Discussion

The recent widespread availability and quality of geospatial data on movement and context

presents new challenges and opportunities for developing innovative methods to understand the

interactions between wildlife movement and environment. We were interested in developing a

multi-source disaggregation approach to produce contextual datasets with higher temporal

resolution and level of detail for CAMA. We did that by using daily MODIS images with 250

meters spatial resolution and finer images (15 to 30 m spatial resolution) collected fortnightly

to derive daily images with the same spatial resolution as the finer source images. This method-

ology allowed us to produce not only a series of contextual data with better temporal coverage

than the original MODIS and finer resolution data, but also with a higher level of spatial detail

on the contextual variable.

Whilst some contextual variables, such as built-up area, can be considered static over a large

period of time, many contextual variables relevant for CAMA, such as vegetation phenology,

have an inherent temporal variability (Urbano and Cagnacci, 2014). This temporal variability

is best represented by dynamic contextual information that corresponds as close as possible to

the conditions encountered by an individual moving across the landscape (Moorcroft, 2012) and

the use of static data, in this case, not only introduces bias but also limits statical inference

(Basille et al., 2013). High temporal resolution series of remote sensing data can provide

dynamic contextual data of medium to low spatial resolution and have been extensively used

for CAMA (Pettorelli et al., 2006; Remelgado et al., 2018; Pettorelli et al., 2011; Dodge et al.,

2014; Urbano and Cagnacci, 2014; Neumann et al., 2015). Traditionally, these spatially coarse

datasets have been used when temporal variability is a key component of the study, because

of their high temporal resolution (Basille et al., 2013). Yet, the spatial resolution of these

datasets (250 m for MODIS, 1 km for SPOT, 8 km for AVHRR) does not match the current

average error of less than 20 m (Frair et al., 2010), in GPS tracking, which leads to a mismatch

between tracking data and contextual layers (Urbano and Cagnacci, 2014).

Remote sensing data have become a standard source of contextual data, however the com-

bination of multiple sensors is still not a routine. This disregards opportunities to capitalise
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on the different characteristics of varied satellites (Bühne and Pettorelli, 2017), such as their

high temporal resolution or high spatial resolution. The approach we proposed in this thesis

capitalises on the strengths of multiple satellites by using data fusion to produce a series of

contextual layers for CAMA. This is the first time that contextual data from multiple satellites

are used to annotate trajectories and perform CAMA. Usually, studies are restricted to a single

source of contextual data, which is commonly a pre-processed contextual variable (Urbano and

Cagnacci, 2014; Bühne and Pettorelli, 2017). The higher level of spatial detail alongside the

better coverage produced by our method enabled us to capture the seasonal fluctuations of

context within the home ranges, which was particularly interesting for analysing the values of

the contextual variable that were used in comparison to the ones available in the area.

Analysing contextualised trajectories is a cumbersome task and most algorithms disregard

contextual data in the process, which is one of the current drawbacks of methods for movement

analysis (Buchin et al., 2012). The most common approaches for exploring semantic trajectories

are the use of map animation or space-time cubes, which are both limited in the number of

trajectories it can show, the time period it can cover, and the ability to represent contextual

variables (Andrienko et al., 2011). This chapter suggests the use of eigendecomposition as an

alternative approach to perform CAMA. This method does not have a limitation on the number

of trajectories or the time period to be covered in the analysis. In addition, this method is less

sensitive to gaps in the trajectories, as the PC’s are calculated at each time and by behavioural

state. This means that the “no data” sections are shown as separate dimensions and can be

excluded without hindering the identification of the relevant behavioural patterns.

We used the seasonality in the diet of maned wolves to test our hypothesis that our approach

would enable the detection of finer scale movement patterns linked to contextual changes. More

specifically, we wanted see if we can identify the diet with a temporal trophic opportunistic

pattern indicated by previous studies. Our results seem to support this hypothesis, as all

wolves showed higher interval between visits to high-NDVI locations when the home range

distribution showed lower food availability, and more frequent visits when food availability was

higher.

We also found that most wolves will choose greener areas during the dry season, which
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agrees with the current literature in which wolves have special preference for wolf’s fruit in

the dry season. These fruit grow on a flowering shrub with height up to 5 m and large leaves,

which has a higher NDVI response than most vegetation in the Cerrado, such as the heath

and grasslands. In addition, even though the dietary habits of maned wolf are unknown in

wild, most wolves double their food intake during breeding season as nourishment is a key

factor for successful reproduction (Sillero-Zubiri and Gottelli, 1995). This seems to match with

our results that show that wolves are choosing areas with higher ENDVI during the breeding

season, i.e., they are actively choosing greener areas in a period of low food availability and

when they require more energy to ensure successful reproduction.

It is possible that visits to areas of low Z-scores may be linked to denning, as typically

wolves choose rocky areas as for this purpose and those have lower NDVI. More specifically,

we believe that the ones happening during the dry season are related to whelping, mainly the

ones for which we found female wolves decreasing the distance they cover in a day at that

exact time of the year (See C.1 in Appendix C). On the other hand, visits to areas with higher

NDVIs, i.e., higher Z-scores may be linked to feeding and foraging since these animals eat

not only fruits but also small mammals that are often found in vegetated areas. In addition,

considering that vegetation phenology is mostly driven by precipitation and that in the CNP

there are two very well-defined dry and wet seasons, it makes sense that most of the ENDVI

plots show the existence of two, sometimes three types of distribution within the home ranges.

As the landscape transitions into a state of lower NPP there is a change in the periodicity

of wolves visits to locations with higher Z-scores of ENDVI, i.e., locations with more food

availability. The frequency seems to transition from daily/every other day visits, when food

availability is higher, to 5 days or even 15 days, when food availability is lower. This exact

feeding pattern (feast-famine) has been reported in the literature for other species of wolf

(Stahler et al., 2006).

Some wolves like Jurema and Samurai, showed preference for higher NDVI areas during

unexpected periods, considering the natural phenology of their landscape. However, these

wolves were mostly in highly anthropic areas, and particularly had their home ranges in areas

with large patches of farmland. The second eigenbehaviour seem to match the harvest and
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planting season for the crops that are found in that region (soy, sugar-cane, coffee and beans),

which may mean that the presence of farmland could be interfering with the natural cycle of

the species and consequently with the reproductive success. The avoidance periods showed

by this eigenbehaviour seem to be related to whelping. The period of the year when this

eigenbehaviour occurs and the decreased distance covered by female wolves point to the same

possibility.

To summarise, the multi-source image fusion allows taking advantage of complementary

information produced by different satellites (Bühne and Pettorelli, 2017). It is a new analysis

tool for CAMA where contextual data is required at higher temporal resolution and level of

detail than readily available. The main advantage of this approach is that it is general and

can be applied for other species and other contextual variables derived from remote sensing

data, such as marine net primary productivity, land surface temperature, humidity, air pol-

lution or snow coverage. It is common in movement research to simultaneously need daily,

even hourly contextual data, but also high spatial resolution, particularly for studies in areas

with heterogeneous environments. The use of eigenbehaviours showed potential for studying

contextualised trajectories, however there is the need for more studies where the patterns found

can be compared to observational data on behaviour.
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Chapter 5

Weather effects on human mobility:

A study using multi-channel

sequence analysis

5.1 Introduction

The spread of geolocated smartphones and the decreasing price of GPS devices have contributed

towards the production of large amounts of data on human movement of unprecedented spatio-

temporal quality (Meekan et al., 2017; Stanley et al., 2018). New human mobility studies

attempt to link such movement data with contextual information (such as points of interest)

to gather insights into, for example, commuting behaviour (Beecham et al., 2014; Gong et al.,

2012), tourist behaviour (Meijles et al., 2014; Versichele et al., 2012), or retail choice decisions

and human activities (Si la-Nowicka et al., 2016). However, integrating high resolution GPS

trajectories and dynamic spatio-temporal contextual information remains an underexplored

approach for studying the effects of weather on human movement, despite its relevance for

urban planning (Givoni, 1974; Ng, 2012), traffic engineering (Dunne and Ghosh, 2013), retail

planning (Thakuriah et al., 2016), tourism (de Freitas, 2003), health (Tucker and Gilliland,

2007), psychology (Nerlich and Jaspal, 2014) and epidemiology (Horowitz, 2002).

117
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Specific weather conditions often trigger changes in human behaviour, for example, higher

temperatures increase aggressiveness (Anderson, 2001; Carlsmith and Anderson, 1979) and

lower temperatures contribute to irritability and combativeness (Schneider et al., 1980; Worfolk,

1997). Different components of weather have different magnitudes of importance, for example,

air temperature, direct solar radiation and wind speed have a more significant influence on

human behaviour than humidity (de Montigny et al., 2012). However, it is challenging to

understand how weather influences human behaviour because the responses are partially a

result of individual preferences (de Freitas, 2015). Some individuals are more responsive to

the thermal component of weather, i.e. the combined effects of air temperature, humidity and

solar radiation, while some are more receptive to physical components like rain, and others are

more greatly affected by the aesthetic components, such as cloud coverage and sunshine. Yet,

most individuals do respond to the combination of all three of these components (de Freitas,

1990).

Traditionally, these interactions have been explored through questionnaires and multidimen-

sional scaling methods within the field of human biometeorology (Cabanac, 1971; de Freitas,

1990; Manu et al., 2016; Stanley et al., 2018). With the increased availability of tracking and

environmental data we however propose that the effect of weather on movement behaviour can

be explored through Context-Aware Movement Analysis (CAMA), which integrates movement

geometry with its context, i.e. with the surrounding biological and environmental conditions

that might be affecting movement (Andrienko et al., 2011; Demšar et al., 2015; Dodge et al.,

2013). More specifically we use multi-channel sequence analysis (MCSA) to represent a per-

son’s movement as a sequence of states, describing either the type of movement or the state of

the environment throughout time. Similar movement patterns can then be identified (termed

context aware similarity analysis) by comparing and aligning mobility sequences.

Similarity analysis is one of the most common tasks in movement analytics and consists

of using distance measures and grouping methods to split trajectories (Demšar et al., 2015)

into groups of elements more similar amongst them than to other groups (Jain et al., 1999),

which followed by clustering allows the identification of spatio-temporal movement patterns

that might be linked to behaviour (Dodge et al., 2014). Similarity is often established based on
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geometry or physical attributes; geometrical similarity solely relies on measures of spatial and

temporal distances, and physical similarity relies on movement attributes such as speed, turning

angle, acceleration and direction (Demšar et al., 2015). Context-aware similarity is based on

multiple attributes (Andrienko et al., 2011; Demšar et al., 2015; Sharif and Alesheikh, 2017a)

describing the conditions within which the movement took place.

Context-awareness is a recent trend (Sharif and Alesheikh, 2017b), as a result there are

few context-aware methods for assessing similarity between trajectories. Sharif and Alesheikh

(2017a) generalized the dynamic time warping (DTW) to develop a context-based dynamic time

warping (CDTW) method, which matches trajectories with contextual similarity even if they

are not concurrent. This method is highly dependent on arbitrary weights for the contextual

variables, restricted to numeric context and disregards changes of context between two points in

time. i.e., same contexts are considered similar even when they are not concurrent. De Groeve

et al. (2016) uses single channel sequence alignments and hamming distance to understand

the temporal variation of habitat use by roe deer; the similarity is measured by the cost to

transform a sequence of habitat use into another. This method is able to handle only one

contextual variable at time, therefore it is not able to handle the interactive effects of multiple

contextual variables on movement. Buchin et al. (2014) modified existing similarity measures

to make them context-aware, more specifically they defined the distance between two points

as the sum of their contextual and spatial distances. The transition costs between contexts are

defined by the user and the method is restricted to contextual data in the form of polygonal

divisions.

We propose the use of multi-channel sequence analysis (MCSA) to perform context-aware

similarity analysis (CASA) and cluster trajectories into groups of similar behaviour. MCSA

is a new analysis tool for movement data where contextual information can now be readily

combined with detailed tracking datasets. The main advantage of this approach is that it

is also possible to consider as many channels (contextual variables) as desired at once. It is

common in movement research to simultaneously consider multiple environmental variables,

which makes MCSA particularly relevant for studying human mobility, traffic, transportation

and wildlife ecology; areas in which movement behaviour may be contextualised by other
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dynamic environmental variables such as air temperature, vegetation indices, humidity, wind

speed, air pollution and snow coverage. Single channel analysis has been used before to explore

spatio-temporal patterns on the activity of visitors in Akko’s Old city – Israel (Shoval and

Isaacson, 2007) and to analyse sequential habitat use by roe deer in North-East Italy (De

Groeve et al., 2016). Shoval and Isaacson (2007) focused on sequences of locations, i.e. the

movement itself, while De Groeve et al. (2016) emphasized sequences of habitat use classes,

i.e. the context surrounding movement. Horanont et al. (2013) looked at GPS traces from

mobile phone users, coarse scale movement data, hourly temperature, rainfall and wind speed

to explore the independent effects of each variable on people’s activity patterns. We innovate

by applying MCSA, for the very first time, to perform CAMA of fine scale human movement

data to simultaneously consider movement and context by looking at the combined and single

effects of six meteorological variables.

Despite the novelty of MCSA in movement research, sequence analysis has been consis-

tently used in medical and social sciences, particularly within bioinformatics and life courses

research (Idury and Waterman, 1995; Abbott, 1995; Abbott and Tsay, 2000). In bioinfor-

matics, a sequence represents the DNA molecule as a string of characters (which stand for

specific nucleotides), between a precise start and end point; the comparison of similarities and

differences between those strings allows the identification of nucleotide sequences related to

genetic diseases and traits. We propose that the same principle can be applied to movement

trajectories for identifying groups of people with similar movement patterns, i.e., clusters of

similar behaviour Billari (2001). Further, we propose to not only represent the trajectories

with one sequence only, but to use multi-channel sequence analysis (MCSA), which allows for

comparison of sequences consisting of several dimensions (channels) (Gauthier et al., 2010).

For this, we link data from a GPS tracking study to weather data and convert the information

into multi-channel sequences in a first fully data-driven attempt to explore weather effects on

human movement patterns.

The primary objective of this chapter is using multi-channel sequence analysis (MCSA) to

perform context-aware similarity analysis (CASA) and cluster trajectories into groups of similar

behaviour. The rest of the chapter is structured as follows: section 5.2.1 describes the GPS
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tracking data; section 5.2.2 describes the meteorological data used in our analysis, explains

how they were combined with the GPS tracking data and finally converted into sequences;

sections 5.2.4.1 and 5.2.4.2 describe how multi-channel sequence analysis was applied to identify

changes in group movement patterns related to weather. The results are presented in section

5.3 and discussed in section 5.4. We conclude with some considerations about our findings, the

potential of this methodology and ideas for future research (section 5.4). Parts of this chapter

are published as the journal article: Brum-Bastos et al. (2018).

5.2 Methodology

To study the influence of weather on human mobility behaviour we used a five-step process

(Figure 5.1). In Step 1, we integrate trajectories with contextual data by using trajectory an-

notation to link GPS points to weather variables, which resulted in contextualized trajectories.

In Step 2, we transform those trajectories into multi-channel sequences by creating alphabets

with codes for each weather variable, travel mode and places. In Step 3, we use optimal

matching distances (Abbott and Tsay, 2000) to calculate a dissimilarity matrix describing the

degree of difference between each pair of multi-channel sequences in our dataset. In Step 4, we

use Ward’s clustering (Murtagh and Legendre, 2011) algorithm to partition the sequences into

similarity based groups, which represent groups of people showing similar movement behaviour

under particular weather conditions. In Step 5, we perform statistical tests to validate and

understand differences between groups.

Trajectory annotation and sequencing were performed using PostgreSQL 9.4 database man-

ager, VANJU library and its dependencies under Python 2.7, for more details refer to (Brum-

Bastos et al., 2016). The MCSA, including optimal matching distances, Ward’s clustering and

statistical tests, was performed using TraMineR 1.8-9 and cluster 1.14.4 libraries under R 3.4.1,

for more details on the equations used by these libraries please refer to Gabadinho et al. (2009)

and Maechler et al. (2018) respectively.
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Figure 5.1: The overview of our framework for identification of groups of similar movement
behaviour under specific weather conditions. The framework has two analyses running in
parallel: analysis of places and analysis of travel modes. Blue shapes marks travel mode, green
shapes marks places, white ellipses represent dataset’s sources, rectangles represent variables,
beige arrows represent processing steps and hexagons derived results in each step.

5.2.1 Movement data

We analysed a human movement dataset where GPS devices were carried by volunteers from

the Kingdom of Fife – UK (Figure 5.2a) (Si la-Nowicka et al., 2016). The data were collected

between the 28th of September 2013 and the 10th of January 2014 as part of the GEOCROWD
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project (Si la-Nowicka et al., 2016), in which 6000 individuals were randomly selected by post-

code from the voting registry (focusing on the three major towns in Fife) and invited via letter

to participate in the study. In total, 206 individuals accepted the invitation and provided usable

data whereby they were tracked for two consecutive weeks within the study time spam. GPS

devices recorded participant positions every five seconds, representing a very high-resolution

trajectory of participant locations. The GPS trackers were coupled with accelerometers, which

turned off the GPS when the individual was not moving (Oshan et al., 2014). The aim of

the GEOCROWD project was to develop new movement analytics methods that would allow

researchers to find out as much as possible from the actual GPS data while participants were

asked to do as little as possible (i.e. the only task was to carry a GPS device and mail it

back after two weeks). Therefore, very little auxiliary data were collected and beyond gender

and age of the participants, which were sourced from the electoral register together with the

address of each participant, no other demographic or ground truth data were collected. For

more details on data collection refer to Oshan et al. (2014).

In this chapter we re-analyse the GEOCROWD data from the town called Dunfermline

(Figure 5.2a), which had the highest number of participants (n=91), of which 23 were female,

41 were male, and 27 did not declare their gender. Looking at the ages of our participants: 10

were between 21 and 34 years old, 46 were between 35 and 60 years old, 8 were between 61 and

65 years old, and 27 did not declare their age. As stated above, apart from their home address,

gender, and age, no further information about participants or their activities were available for

our secondary data analysis.

The participant trajectories were classified into movement classes (Walk, Train, Bus and

Vehicle, Traffic Stop, Bus Stop, Train Stop) and stop classes (Home, Work, Shopping, Uniden-

tified Stop) (Figure 5.2b) (Si la-Nowicka et al., 2016). The classification achieved 85% accuracy,

which was assessed by comparing a 200 m range from the recorded home addresses with the

home location found by the classification algorithm (for more details on data segmentation and

classification refer to Si la-Nowicka et al. (2016)).
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Figure 5.2: a) East coast of Scotland where the GPS data were collected, and trajectories
represented by light blue lines. The green and the red ellipses represent the locations of the
Tay and Forth road bridges respectively. b) Sample of two movement travel modes overlaid by
the Thiessen polygons used to interpolate MIDAS (Met Office Integrated Data Archive System)
data and one pixel of a NIMROD (Met Office’s nowcasting system) product for comparison.
The frame in the right upper corner illustrates a trajectory sample classified into movement
modes and displayed in a space-time cube with rainfall data for a one-hour period.

5.2.2 Contextual data and context integration

We linked meteorological data from ground stations and orbital satellites to movement data

through linear dynamic trajectory annotation (DTA-L) (chapter 3), a method that estimates

the contextual variable at the time when the GPS point was collected by interpolating the val-

ues of the contextual variable chronologically before and after the point. The DTA-L method

accounts for the rate-of-change between contextual layers, producing more realistic values for

interpolated meteorological data, and it also deals with the difference between temporal reso-

lutions of the datasets. We collated multiple sources of contextual data on weather (Table 5.1),

including the Weather Cam (UK Weather, 2013), NIMROD (Met Office’s nowcasting system)

(MetOffice, 2003) and MIDAS (Met Office Integrated Data Archive System) (Met Office, 2012)

datasets.
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Table 5.1: Summary of contextual datasets with respective sources and specifications.

Source Variables Data type Geometry Temporal Spatial
resolution resolution

Weather Cam Daylight Categoric Point 24 h —
(UK Weather, 2013)

NIMROD Rainfall Numeric Raster 5 m 1-5 km
(MetOffice, 2003)

Temperature,
MIDAS Relative humidity, Numeric Point 1 h —

(Met Office, 2012) Wind speed,
Wind direction

We associated MIDAS data with trajectory points using Thiessen Polygons around each

meteorological station (n = 109, Figure 5.2b). From the MIDAS meteorological variables we

also derived the apparent temperature (AT) using Equation 5.1, which considers the combined

effects of temperature, humidity and wind (Steadman, 1994).

AT = Ta+ 0.33e− 0.70Ws− 4 (5.1)

Here Ta is the air temperature in ◦C, e is the water vapour pressure in hPa calculated from

the relative humidity and temperature, and Ws is the wind speed in m/s.

The Weather Cam data was used to calculate dusk, sunset, sunrise and dawn times (for a

central location in the study area) as at this latitude daylight length varies by approximately 4.5

hours from September to January. Daylight categories were annotated to trajectories according

to the following rules: Morning Twilight (MT) for GPS points recorded in the period between

dawn and sunrise, Day Light (DL) for GPS points recorded between sunrise and sunset, Evening

Twilight (ET) for GPS points recorded between sunset and dusk, Night (NI) for GPS points

recorded between dusk and dawn.
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5.2.3 Trajectory sequencing

Sequence analysis requires a finite alphabet, in which each letter originally represents genomic

nucleotides (Idury and Waterman, 1995). In single channel sequence analysis, a sequence is

a one dimensional ordered list of characters from one alphabet, representing successive states

(Abbott and Tsay, 2000). However, most phenomena are multidimensional and require multiple

alphabets. This means that each dimension gets its own bespoke alphabet and instead of

having the data object represented as one sequence, the object now has as many different

sequences as there are dimensions, which are called channels (therefore the name Multi-Channel

Sequence Analysis). The alignment, i.e. similarity, then needs to be calculated across all

channels (Gauthier et al., 2010). This multi-channel approach is therefore a shift from looking

at individual units towards analysing context, connections and events (Abbott, 1995).

We created several bespoke alphabets, one for movement mode (e.g., walking and driving)

and one for each weather variable in our data. For this, we had to translate the GPS track of

each participant into a multi-channel sequence consisting of time units, to which the characters

were assigned (Figure 5.3). Weather conditions were categorized to create weather-based alpha-

bets (Table 5.2). Rainfall was classified based on the UK Met Office scale for rainfall intensity,

wind Speed according to an adaptation of the Beaufort scale (Royal Meteorological Society,

2017), wind direction according to the cardinal and collateral points, apparent temperature

according to the (VDI, 2008) thermal perception scale, humidity and temperature according

to the 1991-2000 seasonal climate normals for Dunfermline from Jenkins et al. (2009). Climate

normals are a three-decade average of weather variable commonly used to characterize local

climates (Ayoade, 1986).

The multi-channel sequences were then generated for each volunteer and day (illustrated in

Figure 5.3) by taking the modal weather condition (for each variable described in Table 5.2) and

movement mode for each 1-minute interval for each participant. To each time unit we assigned

descriptors for the weather variables and the respective movement mode, which are linked

to the descriptor for the following time unit building multiple chronologically arranged strips.

These sequences can be analysed alongside strips of contextual variables to understand not only
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the responses to specific variables, but also to different combinations of those variables and the

identification of patterns relative for specific age groups, gender or other profiling information.

The number of channels in a MCSA is defined by the number of variables under consideration,

in our case eight variables therefore, eight channels by definition. The use of modal attributes

for each 60 second segment (as the data were collected at a 5 second frequency) filtered out

possible noise from the raw data and represents an appropriate scale of analysis for studying

human movement.

Figure 5.3: A multi-channel sequence for a participant over a five-minute period, each channel
relates to one of the meteorological variables and movement modes for that minute of the day.

We calculated the entropy index (EI) for the movement mode channel for all sequences of at

each minute (Billari, 2001). The EI is a measure of the complexity induced by the distribution of

states in a group of sequences (Gabadinho et al., 2009), which in our case can be used to observe

the diversity of places and travel modes across the week and hours of the day. In our analysis,

an EI closer to one indicates an even distribution of a contextual variable across movement

modes (alphabet states), while an EI closer to zero indicates a high level of association with

one mode. We also looked at the average time expenditure at home, socialising, shopping,

walk, public transport and vehicle by gender and on each day of the week. The average time
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expenditure was calculated by first computing the amount of time spent in each movement

mode and dividing it by the total GPS active time for each participant, keeping in mind that

each state in our sequences corresponded to one minute. Following this, we calculated the

mean for the gender of participants (male, female).
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5.2.4 Context-Aware Similarity Analysis (CASA)

5.2.4.1 Multi-channel Sequence Analysis (MCSA)

We divided our analysis into two streams, by separately analysing travel modes (walk, public

transport and vehicle) and places (home, social places and shopping), since the choice of travel

mode and of staying in a place are not necessarily affected in the same way by weather (Derrick

Sewell et al., 1968). When the destination is obligatory, such as work, people are more likely

to change their travel mode, for example, driving to work instead of walking under heavy rain;

however, if the destination is linked to leisure, such as shopping, people might simply postpone

the task instead of changing the travel mode to get there (Connolly, 2008; Zivin, 2014). We

further split the analysis into weekdays and weekends to reflect different movement motiva-

tions (for example, travel to work during workdays is usually obligatory regardless of weather

conditions while people have more voluntary choices about their mobility during weekends).

Sequence analysis requires cost matrices, which were computed separately for travel modes

and places and for weekends and weekdays. We used the optimal matching (OM) distance

to compute similarity between sequences as this method has shown potential for identifying

groups with matching movement behaviour De Groeve et al. (2016). The distance between

two sequences is assessed by quantifying their differences based on a matrix with the costs

for substituting, deleting or inserting letters to transform one sequence into the other. The

substitution costs are given by symmetrical matrices that represent the costs of transitioning

between each pair of states in the alphabet (Gabadinho et al., 2009). In our case, the costs

for transitions between the states of travel modes, places, wind speed and wind direction were

computed using transition rates calculated from the sequences for computing the cost matrices,

as shown in Equation 5.2.

F (i, j) = 1− P (i, j)− P (j, i) (5.2)

Here F (i, j) is the substitution cost and P (i, j) is the transition rate from state i to j.

The costs for transitions between the states of thermal comfort, temperature, humidity,
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daylight and rainfall were defined by ordering the classes of each variable (alphabets) by their

intensity and calculating the cost to replace one class by another with Equation 5.3.

F (in, jn+1) =
|n− (n+ 1)|

(z − 1)
(5.3)

Here F (in, jn+1) is the cost between the classes i and j with intensity order n and n+1, and

z is the number of classes for that variable (size of the alphabet). The cost for replacing null

values by any other class (insertion) was zero and likewise to substitute any other class by null

(deletion), because for our study they are related to periods for which we had no information on

the participant’s movement. This procedure resulted in ten cost matrices, one for each weather

variable, two for travel modes and two for places (weekdays and weekend). The cost matrices

are then used to calculate the optimal match (OM) score, for example, given an alphabet A

with size Z, pick sequences I and J based on alphabet A. The sequences are aligned in time

and the OM cost is calculated by summing up the costs of substitutions (CSiSj ), deletions

and insertions (d) needed to modify the sub sequences of J , so that it turns into I. The OM

is the less costly and is computed using Equation 5.4, in which each line defines a possible

OM score for two sub sequences, depending on which of the procedures, insertion, deletion or

substitution, is cheaper (Gauthier et al., 2010).

F (i, j) = min


F (i− 1, j − 1) + CSiSj

F (i− 1, j) + d

F (i, j − 1) + d

(5.4)

Here F (i−1, j−1) represents the OM score of a subsequence containing the 1 to i−1 characters

of sequence I against a subsequence containing 1 to j−1 in sequence J (Gabadinho et al., 2009;

Gauthier et al., 2010). The OM cost is computed for each channel between all multi-channel

sequences and the cost between two multi-channel sequences is the summed costs between

their channels. We calculated the OM distances simultaneously considering three channels for

wind: movement mode, wind speed and wind direction; and two channels for the remaining
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weather conditions, where the places or the travel modes were always the first channel and the

variables were considered in turns as the second channel. A k by k dissimilarity matrix, where

k is the number of sequences, represents the level of alignment between each two multi-channel

sequences, i.e., a similarity measure between two moving people.

5.2.4.2 Cluster analysis and typology

The dissimilarity matrix can be used to find whether people were showing similar movement

behaviour under certain weather conditions. For this we apply a clustering algorithm to the

dissimilarity matrix for each weather variable for both travel modes and places. We used

Ward’s clustering, a hierarchical bottom-up algorithm that computes dissimilarities between

two groups as the increase in the error sum of squares after merging those groups. The algorithm

starts with each sequence as their own group and successively merges them into clusters based

on the minimum increase in the error sum of squares, until it becomes a single cluster (Murtagh

and Legendre, 2011). For selecting the optimal number of clusters, we used the Calinski-

Harabaz Index (CHI) (Calinski and Harabasz, 1974) that considers the within and between

groups dispersion as shown in Equation 5.5.

CHI =
trace(B)

trace(W )
(5.5)

Here W and B are the within and between group dispersion matrices, the trace of W is the sum

of the within cluster variance and the trace of B is the sum of the between cluster variances; a

higher CHI indicates a better data partition (Ahmed, 2012), because it shows that the within

group distances are lower and the between groups distances are higher. We varied the number

of clusters from the number of sequences (i.e. the maximum possible number of clusters, if every

sequence is allocated to its own cluster) to one and used the configuration with highest CHI,

except where the maximum CHI resulted in individuals’ clusters, to assign the multi-channel

sequences into their final clusters. The combination of values of weather and movement modes

in each cluster then defined a type of the group. Note that the types are not consistent between

variables, i.e., we found different clusters for each weather variable, thus the typology is specific
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for each variable.

We then looked at the distribution of the proportion of time spent in different travel modes

and places for the weather conditions associated with each cluster. We expected this would

give insights into the different behavioural patterns in individuals related to weather (i.e., an

overall picture of the effects of the weather conditions within each cluster on movement modes).

We tested the significance of the differences using Kruskal-Wallis and Levene’s tests and we

assumed that a statistically significant difference between medians or variances of each cluster

was enough evidence to support the existence of different behavioural groups. We further used

discrepancy analysis to verify if and how behavioural groups were related to age and gender.

This method evaluates the strength of the association between the groups of sequences and a

categorical covariate (Studer et al., 2011) by calculating the share of discrepancy according to

Equation 5.6 and looking at its p-value.

SD =
SSB
SST

(5.6)

Here SD is the share of discrepancy, SSB is the sum of square distances within the age or

gender groups, and SST is the total sum of square distances between all sequences (Batagelj,

1988).

5.3 Results

5.3.1 Trajectory sequencing

The different movement modes for each participant for each day of the week are shown in

Figure 5.4, most sequences start between six and eight in the morning and have a minimum of

58% and a maximum of 98% of missing data, i.e., minutes for which the GPS tracker was off

and movement modes are unknown (white gaps in Figure 5.4). The entropy index (EI) (5.5)

provides some insight into participants daily movement behaviour. The EI increases between

4:00 am and 7:00 am on weekdays, but only rises between 8:00 am and 10:00 am on weekends,

indicating higher diversity of movement modes earlier on weekdays. Sunday has the highest



134 CHAPTER 5. WEATHER EFFECTS ON HUMAN MOBILITY

EI and similarly to Saturday, it drops and rise between 3:00 pm and 6:00 pm.

The average time spent (AVTS) walking did not change substantially across weekdays

and between genders (Figure 5.6). The AVTS at home varied throughout the week, being

the highest on Sunday and lowest on Wednesday for both genders (dashed orange lines on

Figure 5.6). The low values on Wednesday might be related to the higher average time spend

socializing in comparison to other days of the week (dashed red lines on Figure 5.6). Moreover,

women seem to spend more time socializing and to concentrate social activities on Tuesdays,

Wednesdays and Saturdays; while men socialise very little on Tuesdays and keep a steady, but

lower than women, average from Wednesday to Monday.
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5.3.2 Context-Aware Similarity Analysis (CASA)

5.3.2.1 Cluster analysis and typology

Overall the CHI was higher on weekdays for all weather variables for travel modes and places

(Figure 5.7) indicating the existence of a clear division amongst behavioural groups and a

more homogeneous movement behaviour within these groups regarding the weather effects in

comparison to the weekend. This could also be reflective of the higher diversity of activities

during the weekends shown by the higher EI; more variety might lead to lower separability

between groups and higher within group distances making more difficult to identify group’s

responses to weather. This usually results in a higher optimum number of cluster, as seen

on the weekend chart (Figure 5.7 right). On weekdays the CHI followed a similar pattern for

travel modes and places for all weather variables but relative humidity, for which the index was

about two times higher for travel modes (Figure 5.7 left). This indicates a stronger distinction

between the two behavioural groups regarding travel modes and relative humidity on weekdays,

which might be related to people using relative humidity as a proxy for rainfall to plan their

journeys. Relative humidity, rain and comfort showed the highest discernibility for travel

mode differences during the week, while for places the highest discernibility was associated

with temperature, rain and comfort during the weekend.

Next, we present our findings while the remaining set for each meteorological variable.

The typologies are specific for each variable, i.e., Type 1 for wind is not the same as type 1

for rainfall. The analysis of shared discrepancy did not show significant correlation between

the behavioural clusters and gender or age groups, all SD were lower than 0.01 with non-

significant p-values (α = 0.1). Significant values for Levene’s (L) and Kruskal-Wallis’ tests (K)

are reported on the heading of each graph on the pictures by the following symbology: *** for

α = 0.001, ** for α = 0.01, * for α = 0.5, . for α = 0.1.

5.3.2.2 Wind

Figure 5.8 shows the clusters for MCSA on wind on weekdays (Figure 5.8A) and weekends

(Figure 5.8B). The top box-plot shows the distribution of the GPS active time spent under wind
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Figure 5.7: Calinski-Harabaz index (solid line) and optimal number of clusters (dashed line) for
MCSA performed on weather variables for travel modes (green) and places (red) on weekdays
and on weekend. The reported CHI is divide by ten and refers to the number of clusters used
to split the sequences.

blowing from each direction and the middle one shows the distribution of the GPS active time

spent under different wind intensities. Both box-plot panels are divided into Type 1 and Type

2, which refer to the two clusters found by the MCSA analysis and for which the distribution

of the GPS active time in different travel modes is shown on the box-plot panel at the bottom.

This box-plot shows the difference between groups with different distribution of time spent

on travel modes, while the remaining panels describe the wind conditions encountered within

those groups. There were no significant differences on the average time spent on different travel

modes on weekdays under different wind conditions (Figure 5.8A), on the weekend however we

found significant differences on the average time expenditure in public transport and vehicle

(Figure 5.8B). CASA clustering showed a significantly lower use of public transportation with

concurrent increase on the use of vehicles under more windy conditions coming from North-

East, North-West and South-West (Type 2).

Figure 5.9 shows the clusters for MCSA on wind on weekdays (Figure 5.9A) and weekends
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Figure 5.8: Clusters for MCSA on wind speed, wind direction and travel modes on weekdays
(A) and weekends (B). The four top panels describe the wind conditions within each cluster
(Types) and the respective proportions of GPS active time spent under the classes of wind
speed and direction. The two panels at the bottom show box-plots with the distribution of
proportional GPS active time spent on each travel mode by the wind types described on the
panels above. The dashed line on box-plots show the average and the continuous line the
median. L reports significance from Levene’s test and K from Kruskal-Wallis’ test.

(Figure 5.9B). The top boxplot shows the distribution of the GPS active time spent under

wind blowing from each direction and the middle one shows the distribution of the GPS active

time spent under different wind intensities. Both box-plot panels are divided into five types

on weekdays and two types on weekends, which refer to the clusters found by the MCSA

analysis and for which the distribution of the GPS active time in different activities is shown

on the box-plot panel at the bottom. This boxplot shows the difference between groups with

different distribution of time spent on activities, while the remaining panels describe the wind
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conditions encountered within those groups. For places, there were significant differences in

the average time expenditure at home and shopping during the week, and in socialising on the

weekend (Figure 5.9). There were five clusters based on wind during weekdays, but Type 1,

Type 3 and Type 4 are very similar in terms of time spent at places and they do not show

any pattern in terms of wind direction and strength. We are not able to draw conclusions

about Type 5 because of its small number of participants (n = 7); Type 2 however, showed

a lower proportion of time spent at home with concurrent increase of time spent shopping

under more windy conditions. CASA clustering on weekend showed a significant decrease on

the proportional time spent socialising under more windy conditions coming from NE, NW

and SW (Type 2). Whereas weekend Type 1 does not show any prevailing direction and its

strength alternates between calm and gale for around 88% of the time.

5.3.2.3 Rain

Figure 5.10 shows the clusters for MCSA on rainfall on weekdays (Figure 5.10A) and weekends

(Figure 5.10B). The top box-plot shows the distribution of the GPS active time spent under

different rainfall intensities. The box-plot panel is divided into three types on weekdays and

four types on weekends, which refer to the clusters found by the MCSA analysis and for which

the distribution of the GPS active time in different travel modes is shown on the box-plot panel

at the bottom. This box-plot shows the difference between groups with different distribution

of time spent on travel modes, while the remaining panels describe the rainfall conditions

encountered within those groups. There were no significant differences in the average time

expenditure for different travel modes on weekends under different rain conditions (Figure

5.10B), on weekdays however we found significant differences in the average time spent in

public transport (Figure 5.10A). CASA clustering showed that in comparison to more drier

conditions (Type 1 and Type 2), public transport is significantly less used under heavy rainfall

(Type 3) with a concurrent, but not statistically significant, increase on the use of vehicles and

decrease on walking.

Figure 5.11 shows the clusters for MCSA on rainfall on weekdays (Figure 5.11A) and week-

ends (Figure 5.11B). The top box-plot shows the distribution of the GPS active time spent
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Figure 5.9: Clusters for MCSA on wind speed, wind direction and places on weekdays (A) and
weekends (B). The four top panels describe wind conditions within each cluster (Types) and
respective proportions of GPS active time spent under the classes of wind speed and direction.
The two panels at the bottom show box-plots with the distribution of proportional GPS active
time spent on places by the wind types described on the panels above. The dashed line on
box-plots show the average and the continuous line the median. L reports significance from
Levene’s test and K from Kruskal-Wallis’ test.

under different rainfall intensities. The box-plot panel is divided into three types on weekdays

and six types on weekends, which refer to the clusters found by the MCSA analysis and for

which the distribution of the GPS active time in different activities is shown on the box-plot

panel at the bottom. This box-plot shows the difference between groups with different distri-

bution of time spent on activities, while the remaining panels describe the rainfall conditions

encountered within those groups. The only significant difference for places was on the average

time expenditure at home on weekends and weekdays under different rain conditions (Figure
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Figure 5.10: Clusters for MCSA on rain and travel modes on weekdays (A) and weekends (B).
The two top panels describe the rain conditions within each cluster (Types) and the respective
proportions of GPS active time spent under the rainfall classes. The two panels at the bottom
show box-plots with the distribution of proportional GPS active time spent on each travel
mode by the rain type described on the panel above. The dashed line on box-plots show the
average and the continuous line the median. L reports significance from Levene’s test and K
from Kruskal-Wallis’ test.

5.11 ). On weekdays we found one cluster with predominantly dry conditions (Type 1), a sec-

ond cluster with dry conditions but an even distribution of time amongst the other rain states

(Type 2) and a third cluster with violent rain (Type 3). As expected, people spend more time

at home under violent rain (Type 3), but surprisingly people also spend more time at home

under predominantly dry conditions (Type 1) in comparison when there is a mix of dry and

different rain conditions (Type 2).

On weekends, Type 5 and Type 6 have such a sparse number of members that we considered

them outliers. Under heavy rainfall (Type 3) there is a higher average time expenditure at

home, while less time is spent at home under predominantly dry conditions, even with the



144 CHAPTER 5. WEATHER EFFECTS ON HUMAN MOBILITY

Figure 5.11: Clusters for MCSA on rain and places on weekdays (A) and weekends (B). The
two top panels describe the rain conditions within each cluster (Types) and the respective
proportions of GPS active time spent under the rainfall classes. The two panels at the bottom
show box-plots with the distribution of proportional GPS active time spent on places by the
rain type described on the panel above. The dashed line on box-plots show the average and
the continuous line the median. L reports significance from Levene’s test and K from Kruskal-
Wallis’ test.

remaining time being almost evenly distributed amongst the other rain conditions (Type 2 and

Type 4); the driest conditions (Type 1) showed the higher time expenditure at home.

5.3.2.4 Daylight

Figure 5.12 shows the clusters for MCSA on daylight on weekdays (Figure 5.12A) and weekends

(Figure 5.12B). The top box-plot shows the distribution of the GPS active time spent under

different light conditions. The box-plot panel is divided into three types on weekdays and two

types on weekends, which refer to the clusters found by the MCSA analysis and for which the

distribution of the GPS active time in different travel modes is shown on the box-plot panel
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at the bottom. This box-plot shows the difference between groups with different distribution

of time spent on travel modes, while the remaining panels describe the daylight conditions

encountered within those groups. There were no significant differences on the average time

expenditure for different travel modes on weekends nor on weekdays under different daylight

conditions (Figure 5.12).

Figure 5.12: Clusters for MCSA on daylight and travel modes on weekdays (A) and weekends
(B). The two top panels describe daylight conditions within each cluster (Types) and respective
proportions of GPS active time spent under the classes of daylight. The two panels at the
bottom show box-plots with the distribution of proportional GPS active time spent on each
travel mode by the daylight type described above. The dashed line on box-plots show the
average and the continuous line the median. L reports significance from Levene’s test and K
from Kruskal-Wallis’ test.

Despite not being statistically significant, less daylight time resulted in less time walking

(Type 3) compared to more time walking under more daylight hours (Type 1 and Type 2).
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A similar decrease is observed on the time expenditure in public transport, with a concurrent

increase on time expenditure in vehicles. This trend reverses on weekends, in which walking

and public transport are more prominent than the use of vehicle in a group exposed to more

night hours (Type 2), while the use of vehicles prevails in a group with more daylight hours

(Type 1).

Figure 5.13 shows the clusters for MCSA daylight on weekdays (Figure 5.13A) and weekends

(Figure 5.13B). The top box-plot shows the distribution of the GPS active time spent under

different light conditions. The box-plot panel is divided into three types on weekdays and two

types on weekends, which refer to the clusters found by the MCSA analysis and for which the

distribution of the GPS active time in different activities is shown on the box-plot panel at the

bottom. This box-plot shows the difference between groups with different distribution of time

spent on activities, while the remaining panels describe the daylight conditions encountered

within those groups. The analysis for daylight and places, was significant for all places both

on weekend and weekdays. There are 3 daylight types on weekdays, Type 1 has more daylight,

Type 2 is the one with more night time and Type 3 is an almost even mix of day and night

(Figure 5.13). Type 1 has less time spent at home than Type 2, however we are unsure why

the time expenditure at home is the lowest for Type 3. There is less shopping and socialising

in the group with more night hours (Type 2). On weekends (Figure 5.13B). more time is spent

at home under brighter conditions (Type 2), while under lower light conditions (Type 1) more

time is spent shopping and socialising.

5.3.2.5 Comfort

Figure 5.14 shows the clusters for MCSA on comfort on weekdays (Figure 5.14 A) and weekends

(Figure 5.14 B). The top box-plot shows the distribution of the GPS active time spent under

different comfort conditions. The box-plot panel is divided into two types, which refer to

the clusters found by the MCSA analysis and for which the distribution of the GPS active

time in different travel modes is shown on the box-plot panel at the bottom. This box-plot

shows the difference between groups with different distribution of time spent on travel modes,

while the remaining panels describe the thermal comfort conditions encountered within those
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Figure 5.13: Clusters for MCSA on daylight and places on weekdays (A) and weekends (B).
The two top panels describe daylight conditions within each cluster (Types) and respective
proportions of GPS active time spent under daylight classes. The two panels at the bottom show
box-plots with the distribution of proportional GPS active time spent on places by the daylight
type described above. The dashed line on box-plots show the average and the continuous line
the median. L reports significance from Levene’s test and K from Kruskal-Wallis’ test.

groups. The only significant difference for comfort and travel modes happened on weekdays

for the average time spent in vehicles under different comfort conditions (Figure 5.14). Slightly

uncomfortable conditions (Type 2) were associated with significant higher use of vehicles, less

walking and less use of public transport. For the weekend participants were split into one large

group and an individual, therefore limiting interpretation. There were no significant differences

or meaningful visual patterns from the average time expenditure on different places both on

weekdays and weekends under different comfort levels (Figure 5.15).
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Figure 5.14: Clusters for MCSA run on comfort and travel modes on weekdays (A) and week-
ends (B). The two top panels describe comfort conditions within each cluster (Types) and
respective proportions of GPS active time spent under comfort classes. The two panels at the
bottom show the distribution of proportional GPS active time spent on each travel mode by
the comfort type described above. The dashed line on box-plots show the average and the con-
tinuous line the median. L reports significance from Levene’s test and K from Kruskal-Wallis’
test.

5.3.2.6 Humidity

Figure 5.16 shows the clusters for MCSA on relative humidity on weekdays (Figure 5.16A)

and weekends (Figure 5.16B). The top box-plot shows the distribution of the GPS active time

spent under different relative humidity conditions. The box-plot panel is divided into types,

which refer to the clusters found by the MCSA analysis and for which the distribution of the

GPS active time in different travel modes is shown on the box-plot panel at the bottom. This

box-plot shows the difference between groups with different distribution of time spent on travel
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Figure 5.15: Clusters for MCSA run on comfort and places on weekdays (A) and weekends
(B). The two top panels describe comfort conditions within each cluster (Types) and respective
proportions of GPS active time spent under comfort classes. The two panels at the bottom show
box-plots with the distribution of proportional GPS active time spent on places by comfort
type described above. The dashed line on box-plots show the average and the continuous line
the median. L reports significance from Levene’s test and K from Kruskal-Wallis’ test.

modes, while the remaining panels describe the meteorological conditions encountered within

those groups. The only significant difference for relative humidity and travel modes happened

on weekdays on the average time spent walking under different relative humidity (Figure 5.16).

It seems that more humid conditions (Type 1) were associated with a significantly higher time

expenditure walking. On weekends the time spent in public transport is visually higher when

humidity is lower (Type 2).

Figure 5.17 shows the clusters for MCSA relative humidity on weekdays (Figure 5.17A)

and weekends (Figure 5.17B). The top box-plot shows the distribution of the GPS active time
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Figure 5.16: Clusters for MCSA run on relative humidity and travel modes on weekdays (A)
and weekends (B). The two top panels describe relative humidity conditions within each cluster
(Types) and respective proportions of GPS active time spent under relative humidity classes.
The two panels at the bottom show box-plots with the distribution of proportional GPS active
time spent on each travel mode by relative humidity type described above. The dashed line
on box-plots show the average and the continuous line the median. L reports significance from
Levene’s test and K from Kruskal-Wallis’ test.

spent under different relative humidity conditions. The box-plot panel is divided into two types,

which refer to the two clusters found by the MCSA analysis and for which the distribution of

the GPS active time in different activities is shown on the box-plot panel at the bottom.

This box-plot shows the difference between groups with different distribution of time spent

on activities, while the remaining panels describe the meteorological conditions encountered

within those groups. For the analysis on places (Figure 5.17), there were significant differences

on time spent at home and socialising on the weekend. Also, when relative humidity is lower
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(Type 2), more time is spent at home and less time is spent socialising, while it goes the

other way around for Type 1, for which the relative humidity is higher. We believe that these

patterns are more related to rain than to relative humidity, as higher humidity is closely related

to probability of rain.

Figure 5.17: Clusters for MCSA run on relative humidity and places on weekdays (A) and
weekends (B). The two top panels describe relative humidity conditions within each cluster
(Types) and respective proportions of GPS active time spent under relative humidity classes.
The two panels at the bottom show box-plots with the distribution of proportional GPS active
time spent on places by relative humidity type described above. The dashed line on box-plots
show the average and the continuous line the median. L reports significance from Levene’s test
and K from Kruskal-Wallis’ test.
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5.3.2.7 Temperature

Figure 5.18 shows the clusters for MCSA on temperature on weekdays (Figure 5.18A) and

weekends (Figure 5.18B). The top box-plot shows the distribution of the GPS active time

spent under different temperature conditions. The box-plot panel is divided into two types,

which refer to the clusters found by the MCSA analysis and for which the distribution of the

GPS active time in different travel modes is shown on the box-plot panel at the bottom. This

box-plot shows the difference between groups with different distribution of time spent on travel

modes, while the remaining panels describe the meteorological conditions encountered within

those groups. For temperature and travel modes the only significant differences happened on

weekdays for the average time spent walking and on weekends on public transport (Figure

5.19). Higher temperatures on weekdays (Type 1) led to a significant higher time expenditure

walking, and slightly less time spent on public transport under temperatures close to the

average historical maximum (Type 2). On the other hand, extremely elevated temperatures

(Type 1) show more time spent on public transport. Types 3, 4 and 5 had a low number of

trajectories (n<9) assigned to them and were considered outliers on which we cannot not draw

conclusions.

5.4 Discussion

The recent widespread availability and quality of geospatial data on movement and context

presents opportunities for developing new methods to understand the interactions between

movement behaviour and environment. We were interested on how weather affects human

movement, in particular the choice of travel mode and time spent on activities. Our methodol-

ogy was efficient in identifying groups of specific behaviour under certain weather conditions,

and it can be expanded to other types of movement and contextual data. We investigated the

impact of wind (strength and direction), rainfall, daylight, comfort, relative humidity and tem-

perature, on the proportion of GPS active time spent on travel modes (walk, public transport,

vehicles) and places (home, shopping, socialising). Differences were observed between the time

expenditure on different travel modes and places across the day, week and between genders.
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Figure 5.18: Clusters for MCSA run on temperature and travel modes on weekdays (A) and
weekends (B). The two top panels describe temperature conditions within each cluster (Types)
and respective proportions of GPS active time spent under temperature classes. The two panels
at the bottom show box-plots with the distribution of proportional GPS active time spent on
each travel mode by temperature type described above. The dashed line on box-plots show the
average and the continuous line the median. L reports significance from Levene’s test and K
from Kruskal-Wallis’ test.

The analysis of the entropy index (EI) showed a high diversity of movement modes in the early

morning on weekdays and weekends, with a positive shift of three hours on weekends. Hora-

nont et al. (2013) found the same entropy pattern, despite analysing weekdays and weekends

together, when using GPS traces from mobile phone to explore the effects of weather on daily

routine. We found that during weekdays there is a drop with subsequent rise on the EI, which

does not exist on weekends because the EI is higher from 10 am throughout the afternoon.

Horanont et al. (2013) found a very similar variation for specific extreme weather conditions,
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Figure 5.19: Clusters for MCSA run on temperature and travel modes on weekdays (A) and
weekends (B). The two top panels describe temperature conditions within each cluster (Types)
and respective proportions of GPS active time spent under temperature classes. The two panels
at the bottom show box-plots with the distribution of proportional GPS active time spent on
places by temperature type described above. The dashed line on box-plots show the average
and the continuous line the median. L reports significance from Levene’s test and K from
Kruskal-Wallis’ test.

according to meteorological information provided by the authors, which they attributed to the

weather conditions. However, we believe it is related to similar differences to the ones we found

between weekdays and weekend, and that it is more likely that the extreme weather events

reported by Horanont et al. (2013) took place on a weekend. Similarly to Ryan et al. (2010),

we found that people have more varied activities on weekends, which was shown by the highest

EI on Sunday and Saturday. This happens because people have more scope for freedom of

action on weekends, in contrast to the external controls imposed on weekdays by work and
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school (Ryan et al., 2010).

The average time spent (AVTS) walking did not change substantially across weekdays and

between genders (Figure 5.6). The AVTS at home varied throughout the week, being the

highest on Sunday and lowest on Wednesday for both genders (dashed orange lines on Figure

Similarly to Stover et al. (2012), we found that the wind strength and direction exerted

considerable influence on weekends on the use of public transport and vehicles, which is possibly

related to traffic restrictions at the Tay and Forth bridges (See dashed ellipses in Figure 5.2A)

under high winds, which are more likely to come from NW, SW and NE in the Central Belt

of Scotland. There were at least ten occasions during our data collection during which the

bridges were either closed or had restrictions on the type of vehicle and speed limits because of

high winds (Traffic Scotland (@trafficscotland), 2017). It is possible that these restrictions are

reflected in our findings during these windy periods, since the participants in our study were

mostly commuters from Fife to Edinburgh or Dundee (Si la-Nowicka et al., 2016) and therefore

typically have to cross one of these two bridges daily.

As opposed to what Guo et al. (2007) found in Chicago, rain during the weekend had no

key role on travel modes, but heavy rain decreases the use of public transport during the week.

This could be explained by the fact that discretionary passengers are more affected by rain

than commuters (Changnon, 1996), i.e., people are obliged to go out for their daily duties on

weekdays and therefore might adapt their travel modes, while on weekends they can opt to

stay at home under heavy rain. In addition, similarly to what Chen et al. (2017) found when

studying the impact of rainfall on taxi use, we also found a trend of more vehicular use under

rainy weather, and less walking in heavier rain.

We found that daylight length seems to factor into mobility decisions differently on weekends

in comparison to weekdays. During the week, less daylight hours were linked to less walking

and less public transport use, but more vehicular use; on weekends the same daylight conditions

resulted in the opposite pattern It is not clear why this may be. In addition, daylight seems to

play a major role on time expenditure at certain places; weekdays with more dark hours are

more likely to be spent at home, while more time is spent at home on weekends under more

daylight hours. Temperature increase seems to have a positive effect on walking (Cools et al.,
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2010; Tucker and Gilliland, 2007), which makes sense in Scotland because the temperate and

oceanic climate gives people more opportunities for outdoor activities during summer. It is

likely that in places with more tropical climates the temperature effect would be different, in

the USA for example, areas with a more tropical weather showed a decline in physical activity

on hotter months, while areas with cold weather showed an increase on warmer months (Tucker

and Gilliland, 2007).

The application of multi-channel sequence analysis on semantic trajectories was efficient

for identification of movement patterns. Even though our method does not use the exact co-

ordinates, the multi-channel sequences keep the spatial component through places and travel

modes, which allows us to link movement patterns to environmental conditions and identify

responses. Our methodology works both with categorical and numerical contextual data, con-

siders the change of context between two timestamps, is able to handle multiple contextual

variables and their interactions at once, and can deal with contextual data in any the form.

These capabilities make it more able to deal with complex contextual situations than previous

methodologies, such as those established by Sharif and Alesheikh (2017a); De Groeve et al.

(2016); Buchin et al. (2014).

MCSA clusters are useful for simplifying the increasingly large and complex tracking datasets,

the creation of typologies allows the generalization and reduction of thousands of trajectories

to a few representative trajectories. In addition, MCSA can help with the recent increasing

demand for Context-Aware methods, as it is able to perform similarity analysis taking context

into account and also allows for visualization of movement patterns and contextual variables

simultaneously along the time axis. Another advantage here is that the time units are flexible,

i.e., the sequences can be arranged at daily, weekly, monthly or hourly scale, which allows for

multi-scale detection of movement patterns.

To summarise, multi-channel sequence analysis represents a new analysis tool for move-

ment data where contextual information can now be readily combined with detailed tracking

datasets. The main advantage of this approach is that it also is possible to consider as many

channels (variables) as desired at once. It is common in movement research to simultane-

ously consider multiple environmental variables, which makes MCSA particularly relevant for
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studying human mobility, traffic, transportation and wildlife ecology; areas in which movement

behaviour may be contextualised by other dynamic environmental variables such as air tem-

perature, vegetation indices, humidity, wind speed, air pollution and snow coverage. MCSA

can help performing Context-Aware Similarity Analysis (CASA), which improves our under-

standing of how movement is affected by the combination of multiple contextual variables.

In addition, MCSA is a good approach to summarise large movement dataset into clusters

expressing specific typologies, i.e., a group of similar movement patterns.
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Chapter 6

Conclusions

In this thesis we have attempted to contribute towards advancing the field of CAMA by inves-

tigating its challenges and developing methods capable of overcoming them. Specifically, we

asked the following three questions:

1. How can CAMA methods properly account for the temporal dynamics of contextual data

(e.g., contextual factors that change over time)?

2. How can CAMA methods better accommodate issues associated with data structures in

contextual data (e.g., challenges posed by different spatial and/or temporal resolutions,

data representations, etc.)?

3. How can we make meaningful inferences on behaviour from contextualized movement data

using modern computational methods?

Aiming to answer these questions, we addressed three related research objectives: 1) as-

sess the state-of-the art for CAMA within movement ecology and human mobility research;

2) develop innovative methods to take into account the spatio temporal differences between

movement data and contextual data; and 3) explore computational methods that allow for

meaningful inferences from contextualized movement data.

We tackled these research objectives by combining the concepts covered in Chapters 2 and

3 with methods from other research areas, which we then used to analyse movement data in

159
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Chapters 4 and 5.

6.1 Key findings

How can CAMA methods properly account for the temporal dynamics of contextual data?

In order to answer this question, we designed a comparative experiment amongst temporal

interpolation methods used for TA within CAMA. First we formalized a dynamic trajectory an-

notation (DTA), which was then compared to interpolation methods which are most commonly

used for TA, namely: NB (Neighbour Before), NA (Neighbour After), NN (Nearest Neighbour)

and AM (Arithmetic Mean). The comparison was based on the annotation of simulated trajec-

tories with rainfall data from meteorological radars, for which we had real accumulated rainfall

data to be used as ground truth.

The DTA method was superior for modelling rainfall mass curves and it was as accurate

as the NN method. We therefore recommend it for CAMA in scenarios where representing

continuously varying phenomenon is of high importance. Its capability of capturing gradual

changes and preserving peaks and valleys from the original data makes the DTA method a

good choice when attempting to elicit the relationships between the environmental variable

and fine-scale movement patterns. This is not restricted to the accumulation of rainfall, and

the recommendation can be extended to any environmental variable whose behaviour between

two temporal points can be approximated as a linear function over time. Other environmental

variables may change differently over time and for these, the DTA can be extended from linear

interpolation into more complex forms, for example 2nd or 3rd order polynomials, using an

appropriate temporal function. However, our research was limited to one contextual variable,

rainfall, and the application of DTA to other variables might require further validation.

CAMA methods can properly account for the temporal dynamics of contextual data by

using more complex interpolation methods that are capable of modelling the progression of

the contextual variable. Simpler methods, such as NN and AM are well suited for situations

where absolute values are more relevant than progression, or when the differences between the

values of the contextual variable are more pronounced. In addition, the choice of interpolation
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method should take into account not only the behaviour of the contextual variable being

modelled, but also the structure in which this variable has been recorded and represented, and

how this variable will be considered in the movement analysis. These considerations, along

with computational costs, should guide the choice of the most appropriate TA method for the

analysis.

How can CAMA methods better accommodate issues associated with data structures in con-

textual data?

In order to answer this question, we developed a multi-source disaggregation approach for

remotely sensed data to produce contextual datasets with a higher temporal resolution and

level of detail for CAMA. That is, we obtained NDVI data from several satellites with varying

spatial and temporal resolution and designed a new methodology to create a fused NDVI data

with increased temporal resolution and level of detail for CAMA. This approach has not been

attempted before in movement research and consists of using daily MODIS images with a 250 m

spatial resolution and a finer image (with a 15 to 30 m spatial resolution) collected fortnightly

to derive daily images with the same spatial resolution as the finer source images. The purpose

of this approach is to create a new disaggregated NDVI data, which can then be linked to

movement trajectories to detect finer scale movement patterns linked to contextual changes.

We have tested this methodology in a case study of maned wolves Chrysocyon brachyurus,

the largest south American canids which live in the Brazilian Cerrado. We explored the sea-

sonality in the diet of maned wolves to test the hypothesis that our approach would enable

the detection of finer scale movement patterns linked to contextual changes. More specifically,

we wanted to see if we could identify from our semantically enriched movement data the diet

with a temporal trophic opportunistic pattern indicated by previous studies. Our results seem

to support this hypothesis, as all wolves showed higher interval between visits to high-NDVI

locations when the home range distribution showed lower food availability, and more frequent

visits when food availability was higher.

The approach we proposed in this thesis capitalises on the strengths of multiple satellites by

using data fusion to produce a series of contextual layers for CAMA. This is the first time that

contextual data from multiple satellites is used to annotate trajectories and perform CAMA.
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Usually, studies are restricted to a single source of contextual data, which is commonly a pre-

processed contextual variable (Urbano and Cagnacci, 2014; Bühne and Pettorelli, 2017). A

higher level of spatial detail alongside a better coverage produced by our method enabled us

to capture the seasonal fluctuations of context within the home ranges of individual wolves,

which was particularly interesting for analysing the values of the contextual variable that were

used in comparison to the ones available in the area.

Analysing contextualised trajectories is a cumbersome task and most algorithms disregard

contextual data in the process, which is one of the current drawbacks of methods for movement

analysis (Buchin et al., 2012). The most common approaches for analysis of semantic trajecto-

ries are the use of map animation or space-time cubes, which are both limited in the number

of trajectories it can show, the time period it can cover, and the ability to represent contextual

variables (Andrienko et al., 2011). This chapter suggests the use of eigendecomposition as an

alternative approach for analysis of contextualised trajectories, a sequence-method that uses a

principal components analysis disaggregation to identify the most important sequences in the

data (which in movement context correspond to the most frequent behaviour patterns). This

method does not have a limitation on the number of trajectories nor on time period to be

covered in the analysis. In addition, this method is less sensitive to gaps in the trajectories,

as the PC’s are calculated at each time and by behavioural state, which means that the “no

data” sections will are kept as a separate dimension, without hindering the identification of

the relevant behavioural patterns.

Capturing the seasonal fluctuations of context within the home ranges, which was particu-

larly interesting for analysing the values of the contextual variable that were used in comparison

to the ones available in the entire area. In that sense, the use of a typology for the distribution

of the contextual variable and the transformation of the used values into Z-scores was efficient

to assess whether individuals were using certain areas as a choice or only resource. It is also

encouraging that the patterns we identified seem to correspond to what is know about maned

wolves’ diet from ecological studies. However more work is needed to confirm our results,

potentially through other CAMA studies or traditional ecological observational research.

Multi-source image fusion is a new analysis tool for CAMA where contextual data is required
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at higher temporal resolution and level of detail than readily available. The main advantage

of this approach is that it can be applied to other species and other contextual variables,

such as marine net primary productivity, land surface temperature, humidity, air pollution

and snow coverages, which minimises information loss in that dimensions. It is common in

movement research to simultaneously need daily, even hourly contextual data, but also high

spatial resolution, particularly for studies in areas with heterogeneous environments.

CAMA methods can better accommodate issues associated with data structures in contex-

tual data by looking beyond the pre-processed available products and exploring other sources

of contextual data. We propose the use of multiple sources as the way forward for movement

analysis where high spatial and temporal resolution are required. This work represents a novel

contribution to movement ecology research by demonstrating the potential of multi-source im-

age fusion for capturing fine scale environmental responses in animal tracking data. These

methods are well developed in other research areas (e.g., forest monitoring, climate modelling)

but remain limited in their application to movement modelling.

How can we make meaningful inferences on behaviour from contextualized movement data

using modern computational methods?

In order to answer this question, we adapted techniques from other research fields and used

them to perform CAMA. More specifically, we used a different representation paradigm of

movement: instead of traditional representation of movement as trajectories we used the con-

textual information along with the temporal information from trajectories to create sequences

that represented behavioural states of each individual. We then used two sequence analysis

methods, the multi-channel sequence analysis (MCSA) to explore the effect of multiple weather

variables on human movement, and the eigendecomposition to identify seasonal patterns in the

use of vegetated areas and dietary composition of maned wolves. Such sequence methods are

commonly used in longitudinal studies in demography (Abbott and Tsay, 2000) and in hu-

man behaviour (Eagle and Pentland, 2009), but this thesis is one of the first attempts of their

application in the context of movement analysis.

The use of MCSA to explore how weather affects human movement, in particular the choice

of travel mode and time spent on activities, was efficient in identifying groups of specific be-
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haviour under certain weather conditions, and it can be expanded to other types of movement

and contextual data. We investigated the impact of wind (strength and direction), rainfall, day-

light, comfort, relative humidity and temperature, on the proportion of GPS active time spent

on travel modes (walk, public transport, vehicles) and places (home, shopping, socialising).

The application of MCSA on semantic trajectories was further efficient for identification

of movement patterns. Even though our method does not use the exact coordinates, the

multi-channel sequences keep the spatial component through places and travel modes, which

allows us to link movement patterns to environmental conditions and identify responses. Our

methodology works both with categorical and numerical contextual data, considers the change

of context between two timestamps, is able to handle multiple contextual variables and their

interactions at once, and can deal with contextual data in any the form. These capabilities

make it more able to deal with complex contextual situations than previous methodologies.

MCSA clusters are useful for simplifying the increasingly large and complex tracking datasets,

the creation of typologies allows the generalization and reduction of thousands of trajectories

to a few representative trajectories. In addition, MCSA can help with the recent increasing

demand for Context-Aware methods, as it is able to perform similarity analysis taking context

into account and also allows for visualization of movement patterns and contextual variables

simultaneously along the time axis. Another advantage here is that the time units are flexible,

i.e., the sequences can be arranged at daily, weekly, monthly or hourly scale, which allows for

multi-scale detection of movement patterns.

The use of eigendecomposition allowed us to find patterns in how wolves use vegetated

areas according to different seasons. It also reflected a well-known feeding habit for wolves,

the so-called feast-famine regimen. The use of eigenbehaviours showed potential for studying

contextualised trajectories, and the patterns we found are supported by current literature on

the species. However there is a need for more studies where the patterns found can be com-

pared to observational data on behaviour, so that the methodology can be validated. The use

eigenbehaviours is a good approach to contextualise and summarise large movement datasets

in order to enhance the understanding of how animals choose to use resources according to

their availability.
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6.2 Limitations

Despite contributing towards advancing the field of CAMA, the investigation conducted in

this thesis has four main limitations. First, our studies are limited in number of contextual

variables. In developing innovative methods to take into account the spatio temporal differences

between movement data and contextual data, we only explored a few contextual variables but

we believe that it would be beneficial to test our methods for the variables commonly used

in the latest CAMA research, such as snow coverage (Therrien et al., 2015; Leblond et al.,

2015), land cover (Ladin et al., 2018), atmospheric pressure (Liechti et al., 2018), wind fields

(Safi et al., 2013; Shamoun-Baranes et al., 2004). There are at least 17 contextual variables

that we did not cover in this thesis and are routinely available for trajectory annotation in

Movebank (Dodge et al., 2008), therefore understanding how these variables behave under our

methodology is relevant.

Second, the use of the methods developed in this study might be limited by their complexity.

This is both in terms of computational complexity (i.e. time required to run the methods) and

perceptual complexity, a factor that often prevents methods to be used by techincally less-savy

users. As a an example of the first problem, the more sophisticated annotation methods, DTA:L

and DTA:C, introduce extra computational costs, which might be a limitation for users with

less powerful hardware and/or huge datasets and time constraints to analyse it. As an example

of the latter problem, we are aware that the intricacy of some steps, such as the ones related

to image fusion or absolute calibration of remote sensing images, can be off putting. Single

source CAMA already requires the choice of appropriate spatio-temporal scales, interpolation

techniques, data sources, formats, projection systems and data transformations, which are a

challenge that limits many users from performing CAMA (Dodge et al., 2008). The addition

of multiple sources of contextual data and more advanced remote sensing techniques tops-up

the challenges, yet it is highly beneficial for movement studies (Neumann et al., 2015; Bühne

and Pettorelli, 2017; Dodge et al., 2008) as such data and procedures are capable of enhancing

the quality of semantic trajectories, which in turn will facilitate the identification of patterns

of movement as a response to changes in context.
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Third, our inferences on human and animal behaviour were limited by the lack of ground-

truthing observational data. In exploring computational methods that allow for meaningful

inferences from contextualized movement data, we found movement patterns which we hy-

pothesized to be linked to specific events for humans or wildlife. We used events from the

newspapers and behaviours previously reported in the literature to validate our findings. How-

ever without the appropriate observational data, we can only create hypotheses based on our

findings and literature, which is not particularly helpful for development of new methodologies

as their accuracy then cannot be easily assessed.

Fourth, our analysis was limited by the irregularity and uneven coverage of tracking data.

For both case studies, humans and maned wolves, the tracking data were not consistent amongst

individual and sometimes not even for the same individual. This was not a major issue for the

wildlife study case, as we normalised the contextual variables for each day by the occurrence of

that context in the home range. For the human mobility study, however, there was not a clear

way to normalise the context during different days. We tried using climatological parameters

for that, yet it is unclear how effective that was and maybe that is the reason why we had

some clusters of outliers. Another issue was the irregularity of GPS trajectories in the wildlife

studies, which limited our inferences to a daily scale. As not all individuals had sub-hourly

data, we could not explore the within day patterns of how maned wolves use vegetation, only

seasonal patterns were analysed.

6.3 Future research

Considering the aforementioned limitations, we propose that future research should focus on

testing our methodologies for a wider range of contextual variables to assess their suitability

and accuracy. Once these tests are performed, it might be possible to start working towards

decreasing the complexity of these methods, so that they are accessible to a wider range of

users.

The complexity of the methodologies can be tackled by using specialised software for pre

processing remote sensing data and developing scripts and libraries to run the data fusion for
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movement analysis. There is also a potential of adding the remote sensing disaggregation tools

into the already existing systems. For example, movebank.org provides not only a repository

for animal tracking data, but also a set of tools for analysis of these, including a tool for

trajectory annotation (Env-DATA, (Dodge et al., 2008)). Our proposed multi-source tool

could be linked to that. Further, to make sure that these types of new methods are relevant

to the actual problems in the application community (e.g. movement ecology), this would

require the integration of remote sensing researchers and animal movement ecologists. This

would provide a new application area for remote sensing research and it would give access to

a whole new toolbox for data processing and information extraction for movement research.

It is important to support this integration by not only using remote sensing data, but also

publishing in journals that provide such integration, such as the “Remote Sensing in Ecology

and Conservation” and developing multidisciplinary projects.

In order to better validate methods for inferences on human and animal behaviour, we need

to produce tracking data with appropriate ground-truthing observational data, so that we are

able to confirm the patterns found in our analyses. In the future, small pilot studies using GPS

data and observational data may be able to bridge this gap. We believe that the use of daily

logs for humans and observational notes for animals will be of great help to understand how

movement patterns and contextual data are shown in CAMA.

Analysing movement data alongside contextual variables is still a recent trend in movement

analysis, which can bring new insights into the behaviour of different species according to

variations in the surrounding environment. We believe these tools must be sought in other

research areas, in which similar data complexity is recurrent. Remote sensing, in particular,

has a lot to contribute in terms of enhancing and capitalising products to obtain the best

possible representation of contextual variables. There are plenty of research on how to improve

remote sensing data spatio-temporal resolutions for the most varied applications, which could

be replicated for movement research. Yet, the complexity of such methods require a higher

integration between remote sensing community and movement researchers, so that knowledge

can be transferred both ways and a new fruitful partnership between those areas can flourish.

We also believe that the definition of which contextual variables will be considered in the
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analysis should happen before the data collection. A lot of GPS data collection is still happening

without the appropriate definition of sampling rates, or even a description of the equipment

set-up, which adds more challenges on the pile of issues to be dealt with when performing

CAMA. More specifically, different sampling rates and equipment set up have a direct effect

on the reliability of the inferences performed on a dataset via CAMA. However, contextual

variables are still not a main consideration when design GPS data collection, when they should

be normal practice.

These challenges can be foreseen and reduced if the research team is multidisciplinary and

takes part in all the design of data collection (Sedlmair et al., 2012). We believe that ideally,

movement research studies should count with at least an ecologist/social scientist (the expert

on the moving entity) and a remote sensing/ data scientist (the expert on the contextual data

and movement data), so that the most can be made of the data analysis but also that it can

be confirmed or tested in terms of the real movement in analysis.
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Appendix B

Results for the remaining wolves -

Chapter 4

This appendix includes the results for the remaining wolves that were not analysed within

Chapter 4.

The wolf Amadeo established his home range in the CNP border, his home range is covered

mostly by heath, some pasture and few patches of young forest (Figure 4.4). This wolf was

tracked between 2007 and 2008, period in which the state of MG was going trough an intense

drought. His results are shown in Figure B.1. The ENDVI time series show a clearer pattern

in terms of landscape transitioning from a higher NPP (NNH), to a medium NPP (NNH-P)

and finally to a low NPP (LNH-P). As the landscape transitions into a state of lower NPP

there is a change in the periodicity of visits to locations with higher Z-scores of ENDVI, i.e.,

location with more food availability. It seems to transition from daily/every other day visits,

on the NNH home range, to five to seven days intervals on the LNH-P home range. However,

the data quality threshold was met only in the first six months of tracking.
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Figure B.1: The top panel shows the temporal series of Z-scores of the locations used by
Amadeo in relation to MODIS NDVI distributions within the home range (n = 2162 pixels of
250 m). The colours in the Z- score plots indicate the type of NDVI or ENDVI distribution
(Figure 4.9) for the day. The middle panel shows the temporal series of Z-scores of the locations
used by Amadeo in relation to the ENDVI distributions within the home range (n = 506822
pixels of 15 m). Red dashed lines indicate the 10% confidence interval, points above that
show that the animals was selecting areas amongst the 10% more vegetated in the home range.
The bottom panel shows the number of fixes collected each day in the period and the average
number of MODIS images available at each day within a 5 days moving window. The beige
background indicates when the data quality criteria were fully met, i.e., more than 10 fixes and
more than 0.2 MODIS images in a 5 days window.

The wolf Gamba established his home range in the CNP border, his home range is covered
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mostly by heath and pasture, with scattered islands of shrubland and some farmland (Figure

4.4). This wolf was tracked during 2009, period in which the state of MG was going trough an

intense drought. His results are shown in Figure B.2. The ENDVI time series does’nt show a

clear pattern for this home range, because the tracking period is mostly during the dry season.

As the landscape transitions into a state of lower NPP there seem to have a change in the

periodicity of visits to locations with higher Z-scores of ENDVI, i.e., location with more food

availability. It seems to transition from daily/every other day visits,ion the NNH home range,

to five to seven days intervals in the LNH-P home range.
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Figure B.2: The top panel shows the temporal series of Z-scores of the locations used by Gamba
in relation to MODIS NDVI distributions within the home range (n = 850 pixels of 250 m).
The colours in the Z- score plots indicate the type of NDVI or ENDVI distribution (Figure
4.9) for the day. The middle panel shows the temporal series of Z-scores of the locations used
by Gamba in relation to the ENDVI distributions within the home range (n = 199398 pixels of
15 m). Red dashed lines indicate the 10% confidence interval, points above that show that the
animals was selecting areas amongst the 10% more vegetated in the home range. The bottom
panel shows the number of fixes collected each day in the period and the average number of
MODIS images available at each day within a 5 days moving window. The beige background
indicates when the data quality criteria were fully met, i.e., more than 10 fixes and more than
0.2 MODIS images in a 5 days window.
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The wolf Henry established his home range outside the CNP, his home range is covered

mostly by pasture, some coffee crops and farmland, heath and very few patches of young forest

(Figure 4.4). The colours in the Z- score plots indicate the type of NDVI or ENDVI distribution

(Figure 4.9) for the day. This wolf was tracked between 2010 and 2011. His results are shown in

Figure B.3. The ENDVI time series show a clearer pattern in terms of landscape transitioning

from a higher NPP (NNH), to a medium NPP (NNH-P) and finally to a low NPP (LNH-P).

As the landscape transitions into a state of lower NPP there is a change in the periodicity of

visits to locations with higher Z-scores of ENDVI, i.e., location with more food availability. It

seems to transition from daily/every other day visits, on the LNH-P home range, to five to

seven days intervals on the HNH home range, which is the opposite behaviour when compared

to most wolves in the study.

The wolf Miro, Luna’s partner, established his home range outside the CNP area, his home

range is covered mostly by heath and pasture, with very few patches of shrubland and coffee

crops (Figure 4.4). This wolf was tracked between 2011 and 2012. His results are shown in

Figure B.4. The ENDVI time series show a clearer pattern in terms of landscape transitioning

from a higher NPP (NNH), to a medium NPP (NNH-P) and finally to a low NPP (LNH-P).

As the landscape transitions into a state of lower NPP there is a change in the periodicity of

visits to locations with higher Z-scores of ENDVI, i.e., location with more food availability. It

seems to transition from daily/every other day visits, in the NNH home range, to five to seven

days intervals in the LNH-P home range. However, the data quality was very poor during the

tracking period.

The wolf Nilde, established her home range outside the CNP area, her home range is

covered mostly by heath and pasture, with very few patches of farmland and and shrubland

(Figure 4.4). This she-wolf was tracked during 2011. Her results are shown in Figure B.5. The

ENDVI time series show a very clear pattern where the wet season has a LNH-P distribution

of ENDVI and the dry season has a NNH distribution, i.e., higher NPP during the dry season.

As the landscape transitions into a state of lower NPP there is a change in the periodicity of

visits to locations with higher Z-scores of ENDVI, i.e., location with more food availability. It

seems to transition from daily/every other day visits, in the NNH home range, to five to seven
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Figure B.3: The top panel shows the temporal series of Z-scores of the locations used by Henry
in relation to MODIS NDVI distributions within the home range (n = 765 pixels of 250 m).
The colours in the Z- score plots indicate the type of NDVI or ENDVI distribution (Figure
4.9) for the day. The middle panel shows the temporal series of Z-scores of the locations used
by Henry in relation to the ENDVI distributions within the home range (n = 177976 pixels of
15 m). Red dashed lines indicate the 10% confidence interval, points above that show that the
animals was selecting areas amongst the 10% more vegetated in the home range. The bottom
panel shows the number of fixes collected each day in the period and the average number of
MODIS images available at each day within a 5 days moving window. The beige background
indicates when the data quality criteria were fully met, i.e., more than 10 fixes and more than
0.2 MODIS images in a 5 days window.
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Figure B.4: The top panel shows the temporal series of Z-scores of the locations used by Miro
in relation to MODIS NDVI distributions within the home range (n = 764 pixels of 250 m).
The colours in the Z- score plots indicate the type of NDVI or ENDVI distribution (Figure
4.9) for the day. The middle panel shows the temporal series of Z-scores of the locations used
by Miro in relation to the ENDVI distributions within the home range (n = 179254 pixels of
15 m). Red dashed lines indicate the 10% confidence interval, points above that show that the
animals was selecting areas amongst the 10% more vegetated in the home range. The bottom
panel shows the number of fixes collected each day in the period and the average number of
MODIS images available at each day within a 5 days moving window.The beige background
indicates when the data quality criteria were fully met, i.e., more than 10 fixes and more than
0.2 MODIS images in a 5 days window.
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days intervals in the LNH-P home range.

Figure B.5: The top panel shows the temporal series of Z-scores of the locations used by Nilde
in relation to MODIS NDVI distributions within the home range (n = 764 pixels of 250 m).
The colours in the Z- score plots indicate the type of NDVI or ENDVI distribution (Figure
4.9) for the day. The middle panel shows the temporal series of Z-scores of the locations used
by Nilde in relation to the ENDVI distributions within the home range (n = 174347 pixels of
15 m). Red dashed lines indicate the 10% confidence interval, points above that show that the
animals was selecting areas amongst the 10% more vegetated in the home range. The bottom
panel shows the number of fixes collected each day in the period and the average number of
MODIS images available at each day within a 5 days moving window. The beige background
indicates when the data quality criteria were fully met, i.e., more than 10 fixes and more than
0.2 MODIS images in a 5 days window.



179

The wolf Samurai, Jurema’s partner, established his home range outside the CNP, his

home range is covered mostly by pasture and heath, a big patch of farmland and very few

patches of mature forest (Figure 4.4). This wolf was tracked during 2009. His results are

shown in Figure B.6. The ENDVI time series does not show any clear pattern and the time

series is also limited and with a varying quality.
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Figure B.6: The top panel shows the temporal series of Z-scores of the locations used by
Samurai in relation to MODIS NDVI distributions within the home range (n = 761 pixels of
250 m). The colours in the Z- score plots indicate the type of NDVI or ENDVI distribution
(Figure 4.9) for the day. The middle panel shows the temporal series of Z-scores of the locations
used by Samurai in relation to the ENDVI distributions within the home range (n = 177753
pixels of 15 m). Red dashed lines indicate the 10% confidence interval, points above that
show that the animals was selecting areas amongst the 10% more vegetated in the home range.
The bottom panel shows the number of fixes collected each day in the period and the average
number of MODIS images available at each day within a 5 days moving window. The beige
background indicates when the data quality criteria were fully met, i.e., more than 10 fixes and
more than 0.2 MODIS images in a 5 days window.
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Distance covered by wolf vs

eigenbehaviour

This appendix includes the plot of the distance covered vs eigenbehaviour mentioned in the

discussion of Chapter 4.

The distance covered by an individual wolf during each day is represented by a black line

plot overlaying the five primary eigenbehaviours for low NDVI, i.e., choosing areas with lower

ENDVI Chapter. These areas may be linked to denning and more specifically to whelping if the

behaviour occurs during the dry season. During whelping and in subsequent days, the distance

covered by the female is expected to drop dramatically. The areas indicated by a red circle

in Figure C.1, where there are lower distances covered by a female wolf with a simultaneous

high contribution of green avoidance, may indicate successful reproduction of that female. It

is also interesting to note that at the same time Luna show a decrease in distance covered and

simultaneously high contribution of green avoidance, her partner Miro shows an increase in the

distance covered in those days. The literature states that male maned wolves are responsible

for hunting and providing food for the mother and pups during whelping and in the subsequent

days (de Paula et al., 2013), which is what we might be seeing in our results. However, more

tracking data and detailed behavioural observations would be needed to confirm this hypothesis.
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Figure C.1: Distance covered by day vs five primary eigenbehaviours for wolves where there
was a match between the decrease in distance covered per day and a higher contribution of the
low ENDVI state. Red circles indicate where the match happens. Green rectangle indicates
the only couple for which we had simultaneous data, and in which the red circle highlights the
increased activity of the male.
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Ecology 3(1), 30.

URL: http://www.movementecologyjournal.com/content/3/1/30

Wikelski, M., Kays, R. W., Kasdin, N. J., Thorup, K., Smith, J. A. and Swenson, G. W.

(2007), ‘Going wild: what a global small-animal tracking system could do for experimental

biologists.’, The Journal of experimental biology 210(2), 181–186.

URL: http://www.ncbi.nlm.nih.gov/pubmed/17210955

Willis, A., Gjersoe, N., Havard, C., Kerridge, J. and Kukla, R. (2004), ‘Human movement



224 BIBLIOGRAPHY

behaviour in urban spaces: implications for the design and modelling of effective pedestrian

environments’, Environment and Planning B: Planning and Design 31(6), 805–828.

URL: http://www.envplan.com/abstract.cgi?id=b3060

Worfolk, J. B. (1997), ‘Keep Frail Elders Warm! The thermal instabilities of the old have not

received sufficient at- tention in basic educational programs’, Geriatric Nursing 18(1), 7–11.

URL: http://www.gnjournal.com/article/S0197-4572(97)90123-3/pdf

Xavier, G. and Dodge, S. (2014), An exploratory visualization tool for mapping the relation-

ships between animal movement and the environment, in ‘Proceedings of the 2nd ACM

SIGSPATIAL International Workshop on Interacting with Maps - MapInteract ’14’, ACM

Press, New York, New York, USA, pp. 36–42.

URL: http://dx.doi.org/10.1145/2483669.2483682

Xavier, G., Dodge, S. and Wong, W. Y. (2018), ‘DynamoVis - Dynamic Visualization of Animal

Movement Data.’, Retrieved from the Data Repository for the University of Minnesota .

URL: https://doi.org/10.13020/D6PH49

Xiao, G., Juan, Z. and Zhang, C. (2015), ‘Travel mode detection based on GPS track data and

Bayesian networks’, Computers, Environment and Urban Systems 54, 14–22.

URL: https://www.sciencedirect.com/science/article/pii/S0198971515000587

Xu, C., Li, Y., Hu, J., Yang, X., Sheng, S. and Liu, M. (2012), ‘Evaluating the difference

between the normalized difference vegetation index and net primary productivity as the in-

dicators of vegetation vigor assessment at landscape scale’, Environ Monit Assess 184, 1275–

1286.

Xu, R. and Wunsch, D. C. (2009), Clustering, John Wiley & Sons, Ltd., New Jersey.

Xue, J. and Su, B. (2017), ‘Significant Remote Sensing Vegetation Indices: A Review of

Developments and Applications’, Journal of Sensors 2017, 1–17.

URL: http://www.agrotic.org/blog/wp-content/uploads/2017/07/Significant-Remote-

Sensing-Vegetation-Indices.pdf https://www.hindawi.com/journals/js/2017/1353691/



BIBLIOGRAPHY 225

Yan, Z., Chakraborty, D., Parent, C., Spaccapietra, S. and Aberer, K. (2013), ‘Semantic tra-

jectories’, ACM Transactions on Intelligent Systems and Technology 4(3), 1.

URL: http://dx.doi.org/10.1145/2483669.2483682

Yang, C., Xiao, M., Ding, X., Tian, W., Zhai, Y., Chen, J., Liu, L. and Ye, X. (2018), ‘Exploring

human mobility patterns using geo-tagged social media data at the group level’, Journal of

Spatial Science pp. 1–18.

URL: https://www.tandfonline.com/doi/full/10.1080/14498596.2017.1421487

Yoda, K., Tajima, T., Sasaki, S., Sato, K. and Niizuma, Y. (2012), ‘Influence of local wind

conditions on the flight speed of the great cormorant phalacrocorax carbo’, International

Journal of Zoology 2012, 1–7.

URL: http://www.hindawi.com/journals/ijz/2012/187102/

Zha, Y., Gao, J. and Ni, S. (2003), ‘Use of normalized difference built-up index in automat-

ically mapping urban areas from TM imagery’, International Journal of Remote Sensing

24(3), 583–594.

URL: http://www.tandfonline.com/doi/abs/10.1080/01431160304987

Zhan, W., Chen, Y., Zhou, J., Wang, J., Liu, W., Voogt, J., Zhu, X., Quan, J. and Li, J. (2013),

‘Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy,

issues, and caveats’, Remote Sensing of Environment 131(19), 119–139.

URL: http://linkinghub.elsevier.com/retrieve/pii/S0034425712004804

Zhang, T., Ramakrishnan, R. and Livny, M. (1996), BIRCH: An efficient clustering method for

very large databases, in ‘Proceedings of the 1996 ACM SIGMOD international conference

on Management of data - SIGMOD ’96’, Vol. 25, ACM Press, New York, New York, USA,

pp. 103–114.

URL: http://portal.acm.org/citation.cfm?doid=233269.233324

Zivin, J. G. (2014), ‘Temperature and the Allocation of Time: Implications for Climate

Change’, Journal of Labor Economics 32(1).

URL: https://www.journals.uchicago.edu/doi/pdfplus/10.1086/671766


