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Abstract
We study dimensions of sumsets and iterated sumsets and provide natural conditions which
guarantee that a set F ⊆ R satisfies dimBF + F > dimBF or even dimH nF → 1. Our
results apply to, for example, all uniformly perfect sets, which include Ahlfors–David regular
sets. Our proofs rely on Hochman’s inverse theorem for entropy and the Assouad and lower
dimensions play a critical role.We give several applications of our results including an Erdős–
Volkmann type theorem for semigroups and new lower bounds for the box dimensions of
distance sets for sets with small dimension.

Keywords Sumset · Assouad dimension · Box dimension · Hausdorff dimension · Distance
set

Mathematics Subject Classification Primary 28A80; Secondary 11B13

1 Introduction

Studying the behaviour of sets under addition and multiplication with themselves has been
of interest for many years, providing a multitude of fascinating results. Given F ⊆ R

d , we
are interested in relating the ‘size’ of the sumset F + F = {a1 +a2 | a1, a2 ∈ F} and iterated
sumsets

nF = F + F + · · · + F = {a1 + a2 + · · · + an | ai ∈ F,∀ i ∈ {1, 2, . . . , n}} (n ≥ 2)
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with the ‘size’ of F .When F is finite, one interprets ‘size’ as cardinality and the question falls
under additive combinatorics, see [38] for an extensive introduction.Wewill also be interested
in inhomogeneous sumsets F+G = {a1+a2 | a1 ∈ F, a2 ∈ G} and inhomogeneous iterated
sumsets F1 + F2 + · · · + Fn = {a1 + a2 + · · · + an | ai ∈ Fi ,∀ i ∈ {1, 2, . . . , n}}.

If F is infinite, then ‘size’ can be interpreted as ‘dimension’, and many natural questions
arise. For F ⊂ R one might naïvely expect that ‘generically’ dim nF = min{1, n dim F} or
that at least dim nF → 1 as n → ∞, provided dim F > 0, or that dim F + F > dim F ,
provided dim F ∈ (0, 1). However, these naïve expectations certainly do not hold in general.
Kőrner [25] and Schmeling–Shmerkin [35] proved that for any increasing sequence {αn}∞n=1
with 0 ≤ αn ≤ 1 for all n, there is a set E ⊂ R such that dimH nE = αn for all n ≥ 1. This
set can also be made to have specific upper and lower box dimensions {βn} and {γn} given
certain technical restrictions on these sequences. Schmeling and Shmerkin construct explicit
sets with these properties. The main purpose of this paper is to identify natural conditions
on F which guarantee that the sumsets behave according to the naïve expectations described
above.

A related problem is the Erdős–Volkmann ring conjecture which states that any Borel
subring of R must have Hausdorff dimension either 0 or 1. This was solved by Edgar and
Miller [5] where they not only showed that a Borel subring F of R must have Hausdorff
dimension either 0 or 1, but also if dimH F = 1 then F = R. Edgar and Miller also showed
that any Borel subring F ⊆ C has Hausdorff dimension 0, 1 or 2. On a related note, Erdős
and Volkmann [6] proved that for every 0 ≤ s ≤ 1, there is an additive Borel subgroup
G(s) ≤ R such that dimH G(s) = s. Therefore the fact that rings have both an additive and
multiplicative structure is essential in obtaining the dimension dichotomy.

One can also consider specific classes of sets and hope to get stronger results concerning
their sumsets. Indeed, one of themain inspirations for this workwas a result of Lindenstrauss,
Meiri and Peres [26], which implies that for compact ×p invariant subsets F of the circle
with dimH F > 0, one has dimH nF → 1. This follows from a stronger result which states
that if {Ei } is a sequence of compact ×p invariant sets which satisfy

∑

i

dimH Ei

| log dimH Ei | = ∞,

then dimH(E1 + · · · + En) → 1. See our Corollary 2.3 for a result related to this.
Recentwork byHochman [17–19] has used ideas from additive combinatorics and entropy

to make important contributions to the dimension theory of self-similar sets, in particular
the overlaps conjecture, see [32]. The techniques in our proofs will use some of the ideas
developed by Hochman which will be summarised in Sect. 3.

In this paper we will consider several different dimensions, namely the Hausdorff, box,
Assouad and lower dimensions. We define all of these dimensions here except for the Haus-
dorff dimension, since we will not use this definition directly. For a definition of Hausdorff
dimension and more information on the box dimension one can check [8]. For any bounded
set E ⊂ R

d , we define N (E, r) to be the smallest number of dyadic cubes of side lengths
r > 0 needed to cover E . The upper box dimension of a set F ⊂ R

d is defined to be

dimBF = lim sup
r→0

log N (F, r)

− log r

and the lower box dimension dimBF is found by taking the liminf.When these limits coincide
we simply talk about the box dimension dimB F . The definitions of the box dimensions
described above only apply for bounded sets, since for unbounded sets the covering number
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is always infinite. However, we modify the definition for convenience as follows. The upper
and lower box dimensions of an unbounded set F ⊂ R are defined to be

dimBF = sup
K⊂F :K bounded

dimBK

and

dimBF = sup
K⊂F :K bounded

dimBK .

This definition also applies to bounded sets as well and in this case it clearly coincides with
the usual definition.

For any set F ⊆ R
d , the Assouad dimension of F is

dimA F = inf

{
s ≥ 0 : (∃C > 0) (∀ R > 0) (∀r ∈ (0, R)) (∀x ∈ F)

N (B(x, R) ∩ F, r) ≤ C

(
R

r

)s}

where B(x, R) denotes the closed ball of centre x and radius R. Similarly the lower dimension
is

dimL F = sup

{
s ≥ 0 : (∃C > 0) (∀ R ∈ (0, diam(F)) (∀r ∈ (0, R)) (∀x ∈ F)

N (B(x, R) ∩ F, r) ≥ C

(
R

r

)s}

where diam(·) denotes the diameter of a set. In order to force the lower dimension to be
monotone, one often considers the modified lower dimension dimML F = sup{dimL E :
E ⊆ F}. We omit further discussion of this but point out that throughout this paper one may
replace lower dimension by modified lower dimension simply by working with subsets. For
further details concerning the Assouad and lower dimensions, we suggest [10,27,33] for a
general introduction. Roughly speaking Assouad dimension provides information on how
‘locally dense’ the set can be whilst the lower dimension tells us how ‘locally sparse’ it can
be. One of the main themes of this paper is that these notions turn out to be critical in the
study of sumsets. It is useful to keep in mind that for any set F

dimH F ≤ dimBF ≤ dimBF ≤ dimA F and dimL F ≤ dimBF

and if F is closed, then one also has dimL F ≤ dimH F .

2 Results

2.1 Dimension growth for sumsets and iterated sumsets

We first derive general conditions which force the dimensions of the sumset to strictly exceed
the dimensions of the original set. It follows from recent work of Dyatlov and Zahl (private
communication, see also [4]) that if F ⊂ R is Ahlfors–David regular with dimension strictly
between 0 and 1, then dimBF < dimB2F (this is even true for lower box dimension). This
result can be interpreted as ‘regularity implies dimension growth’. If a set is Ahlfors–David
regular, then the lower, Hausdorff, box and Assouad dimensions all coincide and, as such, our
results below apply to amuch larger class of sets whereAhlfors–David regularity is weakened
to only requiring that either the lower dimension is strictly positive or the Assouad dimension
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is strictly less than 1. This is natural since, for example, sets with Assouad dimension strictly
less than 1 are precisely the sets which uniformly avoid arithmetic progressions [12,13], and
arithmetic progressions tend to cause the sumset to be small.

Theorem 2.1 Let F1, F2 ⊂ R with dimBF1, dimBF2 ∈ (0, 1). If either dimA F1 < 1 or
dimL F2 > 0, then

dimBF1 < dimB(F1 + F2).

This theorem will be proved in Sect. 4.1 and the proof will rely on the inverse theorem
of Hochman as described in Sect. 3. We learned after writing this paper that the Assouad
dimension part of this result can be derived from [20, Theorem 5], which is stated in terms
of measures. We obtain the following corollary in the symmetric case.

Corollary 2.2 Let F ⊂ R with 0 < dimBF < 1. If either dimA F < 1 or dimL F > 0, then

dimBF < dimB2F .

Notice that we only need the upper box dimension condition here and so the result is not
a direct corollary of the statement above. However, a careful check of the proof shows that if
the two sets are the same, then only information about the upper box dimension is required.
This will be commented on during the proof of Theorem 2.1.

We also obtain a corollary about sumsets of sequences of sets which should be compared
to the result of Lindenstrauss, Meiri and Peres concerning ×p invariant sets mentioned in
the introduction.

Corollary 2.3 Let {Ei } be a sequence of subsets of R which satisfy dimL Ei > 0 for all i .
Then dimB(E1 + · · · + En) forms a strictly increasing sequence in n unless it reaches 1, in
which case it becomes constantly equal to 1 from then on.

Proof This follows immediately from Theorem 2.1 where for each n we take F1 = E1 +
· · · + En and F2 = En+1. �


Corollary 2.3 is stronger than the result of Lindenstrauss, Meiri and Peres in that the sets
Ei need not be dynamically invariant, and the assumption dimL Ei > 0 for all i allows
dimH Ei to converge to 0 at any rate. However, it is also weaker since we obtain a much
weaker form of dimension growth: strict increase rather than convergence to 1.

Following [11], we obtain an Assouad dimension version of Corollary 2.2 by passing the
problem to the level of tangents.

Corollary 2.4 Let F ⊆ R. If 0 < dimA F < 1, then

dimA F < dimA 2F .

This corollary will be proved in Sect. 4.2. Corollary 2.4 is particularly interesting because it is
a statement only about the Assouad dimension and is false if Assouad dimension is replaced
by Hausdorff, or upper or lower box dimension, due to the examples in [35].

Remark 2.5 Similar results actually hold for F − F instead of 2F . To see this, it is sufficient
to observe that F and−F have the same associated tree, T , up to reflection, where associated
trees will be defined in Sect. 3.

Next we derive general conditions which force the dimensions of the iterated sumset to
approach 1 in the limit.
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Theorem 2.6 Let F ⊆ R. If dimL F > 0, then

lim
n→∞ dimL nF = 1.

In particular, if F is closed, or even if F has a closed subset with positive lower dimension,
then

lim
n→∞ dimH nF = 1.

This theorem will be proved in Sect. 4.3, again relying on Hochman’s inverse theorem.
Note that since the lower dimension is a lower bound for lower and upper box dimension
and Assouad dimension we see that dim nF → 1 for these dimensions also. Theorem 2.6
applies to Ahlfors–David regular sets with dimension strictly between 0 and 1 and therefore
answers a question posed to us by Josh Zahl by showing that the Hausdorff dimension of
iterated sumsets of Ahlfors regular sets approaches 1. Corollary 2.3 shows that, in the setting
of Theorem 2.6, dimBnF is strictly increasing in n while it is less than 1. Theorem 2.6
should also be compared with the results in [26], in particular the corollary discussed in our
introduction concerning homogeneous iterated sumsets.

There exist sets of zero lower dimension and positive Hausdorff dimension for which the
box dimension of the iterated sumsets does not approach 1, see [35]. Thus Theorem 2.6 is
sharp in the sense that lower dimension cannot be replaced by one of the other dimensions
discussed in this paper. We note that the Assouad dimension of the set does not influence
Theorem 2.6. The work of Astels [1] is related to Theorem 2.6. In particular, [1, Theorem
2.4] proves that if a Cantor set C satisfies a certain ‘thickness condition’, then nC contains
an interval for some n.

If a set has positive Fourier dimension then the Hausdorff dimension of the iterated
sumset will approach 1 (in fact it will contain an interval after finitely many steps, see
[29, Proposition 3.14]). However, lower dimension and Fourier dimension are incomparable
and deterministic examples of sets with positive Fourier dimension are somewhat rare. For
example, being Ahlfors–David regular does not imply positive Fourier dimension but does
imply positive lower dimension. Indeed, the middle third Cantor set is well-known to have
Fourier dimension 0. However, sets with positive lower dimension (or at least a subset with
positive lower dimension) are more prevalent. For example, uniformly perfects has positive
lower dimension. Such sets include self-similar sets, self-conformal sets, self-affine sets, and
limit sets of geometrically finite Kleinian groups.

Hochman [19] has also extended the inverse theorems to higher dimensions. This provides
a platform for us to generalise our results on sumsets to higher dimensions, but we do not
pursue the details. The same approach and arguments apply, but the results are slightly differ-
ent to accommodate the higher dimensional phenomenon that dimension can get ‘trapped’
in a subspace.

2.2 An Erdos–Volkmann type theorem for semigroups

In Sect. 1 we briefly mentioned a dichotomy for the Hausdorff dimension of Borel subrings
of R (it can only be 0 or 1). This dichotomy fails for subgroups, but if we consider the box
dimension instead, a similar dichotomy holds. In fact, if F ⊂ R is an additive group then F
is dense in R or F is uniformly discrete. We say a set is uniformly discrete if inf |x − y| > 0
where the infimum is taken over all pairs of distinct elements x, y in the set. We recall that a
dense set has full box dimension whilst a uniformly discrete set has 0 box dimension, even
when unbounded.
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A natural extension of this kind of problem is to remove even more structure and so we
consider additive semigroups. (Nonempty) semigroups can of course be uniformly discrete,
e.g. Z or N, or dense, e.g. Q, but there are three further possibilities:

(1) the semigroup is somewhere dense, but not dense, e.g. [1,∞)∩Q or (−∞,−2)∪{−1},
(2) the semigroup is discrete, but not uniformly discrete, e.g. the semigroup generated by

{1, α} where α > 0 is irrational,
(3) the semigroup is nowhere dense, but not discrete, e.g. the semigroup generated by the

set {2 − 1/n : n ∈ N}.
Note that in the three ‘new’ cases, the semigroup is necessarily contained in either [0,∞)

or (−∞, 0]. The only interesting case from a dimension point of view is (3), noting that in
case (1) the box dimensions are trivially 1 and in case (2) they are trivially 0. In case (3) we
obtain the following result as a consequence of our main results.

Corollary 2.7 If F ⊂ R is an additive semigroup with dimBF ∈ (0, 1), then dimL F = 0
and at least one of the following holds:

(i) dimA F ∩ I = 1 for some bounded interval I ⊂ R

(ii) dimBF ∩ [−2n, 2n] < dimBF ∩ [−2n+1, 2n+1] for all sufficiently large integers n.
Note that every additive subsemigroup of R (apart from {0} and ∅) contains an infinite

arithmetic progression and therefore has full Assouad dimension, see [12], and so the interest
of the conclusion (ii) is that this dimension is obtained in a bounded component. Also note
that additive semigroups with dimBF ∈ (0, 1) exist and can be constructed by generating a
semigroup by a suitable translate of one of the sets E constructed by Schmeling–Shmerkin
[35] for which dimBnE does not approach 1, but dimBE > 0.

Proof The fact that dimL F = 0 follows immediately from Theorem 2.6 since nF ⊂ F
for all n and so dimL F > 0 would guarantee that dimBF = 1. Assume without loss of
generality that F ⊆ [0,∞) and decompose F as follows

F ∩ [0,∞) = (F ∩ [0, 1]) ∪
⎛

⎝
⋃

i≥0

F ∩ [2i , 2i+1]
⎞

⎠ =
⋃

i≥−1

Fi ,

where F−1 = F ∩ [0, 1] and Fi = F ∩ [2i , 2i+1] for i ≥ 0. We denote the partial union by
Gk = ⋃k

i=−1 Fi . Since F is a semigroup, 2Gk ⊂ Fk+1 ∪ Gk and therefore

dimB2Gk ≤ max
{
dimBGk, dimBFk+1

}
.

By Corollary 2.2 we see that either dimBGk = 0 or dimA Gk = 1 or dimBFk+1 > dimBGk .
Since we assume dimBF ∈ (0, 1), there exists an integer k0 such that dimBGk ∈ (0, 1) for all
k ≥ k0. Therefore, either dimA Gm = 1 for somem in which casewe are in (i) and can choose
I = [0, 2m] or dimA Gm < 1 for allm, in which case dimBF ∩[0, 2n] < dimBF ∩[0, 2n+1]
for all n ≥ k0 and we are in case (ii). �


2.3 Dimension estimates for distance sets

Sumsets F + F are related to difference sets F − F and distance sets |F − F | and so we can
use our techniques to get results for these sets too. The distance set of F ⊂ R

d is

D(F) = {|x − y| : x, y ∈ F}.
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For example, it follows immediately from Corollary 2.4 that for a set F ⊂ R of Assouad
dimension strictly between 0 and 1 we have

dimA D(F) > dimA F .

Geometric properties of distance sets have been studied extensivelywithmuch effort focusing
on Falconer’s distance set conjecture, which stemmed from [7]. One version of this asserts
that if a Borel set F ⊂ R

d has Hausdorff dimension strictly larger than d/2, then the distance
set should have positive Lebesgue measure. A related problem, concerning dimension only
is as follows.

Conjecture 2.8 (Falconer’s conjecture) Let dim denote one of the Hausdorff, packing, box or
Assouad dimensions. If F ⊂ R

d satisfies dim F > d/2, then dim D(F) = 1.

The above conjecture has been proved for Ahlfors–David regular sets in R
2 for packing

dimension [30] and, more recently, for Hausdorff dimension for Borel sets in R2 with equal
Hausdorff and packing dimension [36]. It has also been resolved in R

2 for the Assouad
dimension [11].

Instead of looking for a condition ensuring the distance set has full dimension, we obtain
a lower estimate for the dimension of the distance set as a function of the dimension of the
original set. We also restrict ourselves to the Assouad and upper box dimension of sets for
this section. A recent result by Fraser [11] provides lower bounds for the Assouad dimension
of the distance set for sets of large Assouad dimension. The following result complements
these bounds by providing lower bounds for sets with small dimension.

Theorem 2.9 Let F ⊂ R
d be such that 0 < dimA F < d. Then

dimA D(F) >
dimA F

d
.

This bound is new for sets with small Assouad dimension and for sets with large Assouad
dimension the bound

dimA D(F) ≥ max

{
6 dimA F + 2 − 3d

4
, dimA F − d − 1

2

}

from [11] is better, see Fig. 1 below for a depiction of the case when d = 3.
We also obtain a similar result for the upper box dimension.

Theorem 2.10 For F ⊂ R
d , we have

dimBD(F) ≥ dimBF

d
.

Moreover, if dimBF > 0 and dimA D(F) < 1, then

dimBF < (d − 1)dimBD(F) + dimA D(F).

Depending on the Assouad dimension of the distance set, the second inequality can be better
or worse than the first one. Curiously, if one considers the distance set with respect to the
supremum norm, where the unit ball is a square, our methods show that if dimBF > 0 and
dimA D(F) < 1, then

dimBD(F) >
dimBF

d
.
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Fig. 1 Lower bounds for the Assouad dimension of the distance set

3 Hochman’s inverse theorem and entropy

To properly state Hochman’s inverse theorem some definitions are needed, notably entropy
and the uniformity and atomicity of measures. Thereafter several technical lemmas relating
entropy and covering numbers will be discussed.

Definition 3.1 (Dyadic intervals and restrictions of measures) For any integer n ≥ 0, the set
of level n dyadic intervals is

Dn = {
Dn(k) = [k2−n, (k + 1)2−n) : k ∈ N, 0 ≤ k ≤ 2n − 1

}
.

For any measure μ on the real line, x ∈ [0, 1) and n ∈ N, define D(x, n) to be the
unique dyadic interval of level n which contains x and T D(x,n) to be the unique orientation
preserving affine map taking D(x, n) to [0, 1]. For x, n such that μ(D(x, n)) > 0, we write

μD(x,n) = μx,n = 1

μ(D(x, n))
μ|D(x,n)

and

μD(x,n) = μx,n = T D(x,n)μD(x,n).

We will use both μD(x,n) and μx,n interchangeably, often the choice of notation will be
picked to emphasise the object studied, be it a point or an interval.

Definition 3.2 (Entropy) Given a probability measure μ on [0, 1], we define the n-level
entropy to be

H(μ,Dn) = −
∑

E∈Dn

μ(E) logμ(E),
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where we assume 0 log 0 to be 0. The averaged n-level entropy is then defined to be

Hn(μ) = 1

n log 2
H(μ,Dn).

Definition 3.3 For a probability measureμ on [0, 1] and two numbers, ε ∈ [0, 1] andm ∈ N,
we say that μ is (ε,m)-uniform if

Hm(μ) ≥ 1 − ε.

We say that μ is (ε,m)-atomic if

Hm(μ) ≤ ε.

Hochman’s inverse theorem can now be stated as introduced in [17]. This result and its
proof are discussed in further detail in the survey [18] and the lecture notes [34].

Theorem 3.4 (Theorem 4.11 [17]) For any ε > 0 and integer m, there exists δ = δ(ε,m)

and n0 = n0(ε,m, δ) such that for any n > n0 and any probability measures μ, ν on
[0, 1], either Hn(μ ∗ ν) ≥ Hn(μ) + δ or there exist disjoint subsets I , J ⊂ {0, . . . , n} with
#(I ∪ J ) ≥ (1 − ε)n and

μ({x ∈ [0, 1] : μx,k is (ε,m)-uniform}) > 1 − ε, if k ∈ I

ν({x ∈ [0, 1] : νx,k is (ε,m)-atomic}) > 1 − ε, if k ∈ J .

We wish to study sets, not measures. To do this we need to link the entropy of a measure
to the covering number of the support of the measure. We will do this in two ways. The
first idea is to find an analogous definition for (ε,m)-uniformity of a set. This is possible
since compact subsets of R are in 1-1 correspondence with subsets of the full binary tree
in a canonical way which we describe below. The second will be to consider the covering
number of a set supposing that the uniform measure is sufficiently full branching or atomic.

We identify Dn(i) with the i th vertex at the nth level of the standard infinite binary tree
(where we count vertices in a given level from left to right). Observe that if Dn(i) ∩ F �= ∅
then at least one of the dyadic intervals Dn+1(2i) or Dn+1(2i + 1) intersects F and all of
the dyadic intervals containing Dn(i) also intersect F . Therefore the vertices of the infinite
binary tree for which Dn(i)∩ F �= ∅ give rise to a subtree T which describes the distribution
of F . We say a dyadic interval Dn(i) is a descendant of another dyadic interval Dm( j) if
Dn(i) ⊂ Dm( j) and pass this terminology to the vertices of T by the above association.
Similarly a vertex is a level n vertex if it is associated with a dyadic interval Dn(i) for some
i . We shall call T the tree associated with F and denote it by TF . Understanding properties
of this tree will give us direct information about coverings of F by dyadic intervals.

The analogue of (ε,m)-uniform in terms of our tree is the following. We say T is (ε,m)-
full branching at vertex Dk(i) if Dk(i) has at least 2(1−ε)m descendants m levels below, that
is, F intersects at least 2(1−ε)m many level k + m dyadic intervals contained in Dk(i). An
analogue of (ε,m)-atomic does exist, however it is not needed in this paper since we consider
more regular sets when looking at (ε,m)-atomic measures and the measure will thus provide
direct information about the covering number, see Lemma 4.3.

We will now show how full branching for measures implies full branching for sets. To
do so we need the following result, which will be used extensively in this article and can be
found in [3].
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Lemma 3.5 Let A be a finite set then for any probability measure μ on A we have the
following inequality

0 ≤ −
∑

a∈A

μ({a}) logμ({a}) ≤ log #A.

The maximal value is attained when μ is uniform on its support, that is

μ({a}) =
{

1
#A a ∈ A

0 otherwise

The minimal value 0 is attained when μ is supported on a single point.

Let ε,m be as in Definition 3.3, x ∈ R and k ∈ N and i be such that x ∈ Dk(i). If a
measure μ is such that μx,k is (ε,m)-uniform then by definition Hm(μx,k) ≥ 1 − ε. So

−
∑

D∈Dm

μx,k(D) logμx,k(D) ≥ m(1 − ε) log 2

and by Lemma 3.5

m(1 − ε) log 2 ≤ −
∑

D∈Dm

μx,k(D) logμx,k(D) ≤ log N (supp(μx,k), 2−m).

Thus N (supp(μx,k), 2−m) ≥ 2(1−ε)m and the tree associated with the support of μ is (ε,m)-
full branching at Dk(i).

Thus high entropy implies high covering number. The other direction is in general not
true.Whenμ is (ε,m)-atomic, N (supp(μ), 2−m) can be large. However, the measure at scale
2−m must be very non-uniform.

The following lemma is the key to our second idea, heuristically saying that if entropy is
low (or large) on a sufficient portion of scales then the covering number of the whole set at
one specific scale will be low (or large).

Lemma 3.6 (Entropy and covering number) Let F be a 2−n-separated finite subset of [0, 1],
ε ∈ [0, 1] and m ∈ N. Let μ be the uniform probability measure on F and suppose that

μ({x ∈ [0, 1] : μx,i is (ε,m)-atomic}) > 1 − ε

for all i ∈ I ⊂ {0, . . . , n} with #I ≥ (1 − ε)n. Then

N (F, 2−n) ≤ 25εn .

Similarly, suppose that

μ({x ∈ [0, 1] : μx,i is (ε,m)-uniform}) > 1 − ε

for i ∈ J ⊂ {0, . . . , n} with #J ≥ (1 − ε)n. Then we have

N (F, 2−n) ≥ 2(1−ε)3n .

Proof We assume μ satisfies the first condition and shall compute H(μ,Dn). First notice
that

H(μ,Dn) = H(μ,D0) +
n−1∑

i=0

(H(μ,Di+1) − H(μ,Di )).
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Write H(μ,Di+1|Di ) = H(μ,Di+1) − H(μ,Di ) for the conditional entropy. When i ∈ I
we see that

i+m−1∑

j=i

H(μ,Di+1|Di ) =
∫

H(μx,i ,Dm)dμ(x)

=
∫

x : H(μx,i ,Dm )≤ε

H(μx,i ,Dm)dμ(x)

+
∫

x : H(μx,i ,Dm )>ε

H(μx,i ,Dm)dμ(x).

Notice that H(μx,i ,Dm) ≤ m log 2 for all x . Then we see that

i+m−1∑

j=i

H(μ,Di+1|Di ) ≤ εμ({x : H(μx,i ,Dm) ≤ ε}) + m log 2
(
μ({x : H(μx,i ,Dm) > ε})

)

and by our assumption

εμ({x : H(μx,i ,Dm) ≤ ε}) + m log 2
(
μ({x : H(μx,i ,Dm) > ε})

)
< ε + mε log 2.

When i /∈ I we only have the following trivial bound

H(μ,Di+1|Di ) ≤ log 2.

Now we can cover I with disjoint intervals of form [i, i +m] for i ∈ I by a greedy covering
procedure. Let i1 be the smallest number in I and we pick the interval [i1, i1 + m]. Then
we choose the smallest number i2 in I which is larger than i1 + m and we pick the interval
[i2, i2 +m]. We can iteratively apply the above argument until we have covered all elements
in I . There are atmost n/m+1 intervals needed in this cover. The cardinality of the uncovered
subset of [1, . . . , n] is bounded above by the cardinality of [1, . . . , n]\I , so is at most εn.
Therefore we see that

H(μ,Dn) ≤
( n

m
+ 1

)
(ε + εm log 2) + εn log 2 ≤ 5εn log 2.

As μ is uniform on F and F is 2−n separated we see that

log N (F, 2−n) = log #F = H(μ,Dn) ≤ 5εn log 2.

Therefore

N (F, 2−n) ≤ 25εn .

This proves the first part of the lemma.
The second part can be proved in a similar manner by breaking the integral in the following

slightly different way. For each i ∈ J we have the following equality,

i+m−1∑

j=i

H(μ,Di+1|Di ) =
∫

H(μx,i ,Dm)dμ(x)

=
∫

x :H(μx,i ,Dm )≤m(1−ε)

H(μx,i ,Dm)dμ(x)

+
∫

x :H(μx,i ,Dm )>m(1−ε)

H(μx,i ,Dm)dμ(x).
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The first term on the right can be trivially bounded below by 0 and the second term can be
bounded from below by (1 − ε)2m log 2. Then we can cover J with disjoint intervals of the
form [i, i +m] with i ∈ J as above, using at least (1− ε)n/m intervals for this cover. From
here the result follows since

H(μ,Dn) ≥ (1 − ε)n

m
(1 − ε)2m log 2 = (1 − ε)3n log 2

and therefore N (F, 2−n) ≥ 2(1−ε)3n , which completes the proof. �

Finally note that we will often consider finite approximations of sets. Given a set F ⊂ [0, 1]
and an integer n, we define the 2−n discretization of F to be the following set

F(n) = {a : [a, b) ∈ Dn and [a, b) ∩ F �= ∅} .

Notice that F(n) might not be a subset of F . However, their associated trees coincide up to
level n and N (F(n), 2−n) = N (F, 2−n). Moreover, for two sets F1, F2 ⊂ [0, 1], F1(n) +
F2(n) is 2−n separated and

1

2
N (F1 + F2, 2

−n) ≤ #(F1(n) + F2(n)) ≤ 2N (F1 + F + 2, 2−n).

Due to this, #(F1(n) + F2(n)) is useful for estimating the box dimensions of F1 + F2.

4 Proofs

We start by proving Theorem 2.1 in Sect. 4.1, followed by Corollary 2.4 in Sect. 4.2. In
Sect. 4.3 we prove Theorem 2.6. In Sects. 4.4 and 4.5 we will prove Theorems 2.9 and 2.10
respectively, which concern distance sets. The final section of the paper discusses several
examples, including Sect. 5.1 which handles various dynamically invariant sets.

4.1 Proof of Theorem 2.1: strict increase

We break the proof down into a few lemmas, from which the conclusion of Theorem 2.1
immediately follows.

Lemma 4.1 Let F1, F2 ⊂ [0, 1] with dimBF1 + F2 = dimBF1, then either dimBF2 = 0 or
dimA F1 = 1.

Proof For the upper box dimension it is convenient to introduce observing scales defined to
be any sequence of real numbers 0 < ri < 1 such that

lim
i→∞

log N (F1, ri )

− log ri
= dimBF1 and lim

i→∞ ri = 0.

The existence of such sequences comes directly from the definition of upper box dimen-
sion. Moreover, we can assume the observing scales are dyadic, that is, we can find a strictly
increasing integer sequence ni such that 2−ni are observing scales. Fix a set of dyadic observ-
ing scales and let δ ∈ (0, 1). For all sufficiently large i , we have

#(F1 + F2)(ni ) ≤ 2N (F1 + F2, 2
−ni ) ≤ N (F1, 2

−ni )1+δ = #F1(ni )
1+δ.

If this were not true, then we would have dimBF1 + F2 ≥ (1+ δ)dimBF1 which contradicts
our assumption that dimBF1 + F2 = dimBF1.
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Let ε > 0 be arbitrary and choosem = m(ε) = [log 1/ε]. (This choice ofm(ε) is not that
important, in fact any function f (ε)which monotonically goes to∞ as ε goes to 0 will serve
equally well.) Apply Theorem 3.4 to obtain a δ ∈ (0, 1) and an n0 ∈ N. Then for any ni ≥ n0
we define the measures μ and ν to be the uniform counting measures on F1(ni ) and F2(ni )
respectively. Thus, if these measures satisfy the entropy condition in Theorem 3.4 then we
can partition the levels {0, 1, 2, . . . , ni } into sets I , J and K such that #(I ∪ J ) ≥ (1− ε)ni
and the measures μ, ν are as stated in Theorem 3.4.

We wish to check the condition Hni (μ ∗ ν) ≤ Hni (μ) + δ given #(F1(ni ) + F2(ni )) ≤
#F1(ni )1+δ . As μ, ν are uniform counting measures we see that

Hni (μ) = 1

ni log 2
log #F1(ni )

Hni (ν) = 1

ni log 2
log #F2(ni ).

Then

Hni (μ ∗ ν) ≤ 1

ni log 2
log #(F1(ni ) + F2(ni )) by Lemma 3.5

≤ 1

ni log 2
log #F1(ni )

1+δ

= Hni (μ) + δHni (μ)

≤ Hni (μ) + δ since Hni (μ) ≤ 1.

If for all ni large enough, the set I from the theorem is empty, then dimB F2 will be very
small because #J ≥ (1 − ε)ni and we can apply Lemma 3.6 to ν. This leads to

N (F2, 2
−ni ) ≤ 25εni . (1)

It follows that

dimBF2 ≤ 5ε.

Since ε > 0 can be chosen arbitrarily small we conclude that dimBF2 = 0. Note that we
only get information about the lower box dimension here since the scales 2−ni were chosen
to be observing scales for F1, not F2. If F1 = F2 = F then we can deduce dimBF = 0. This
is needed to obtain Corollary 2.2.

Therefore, if dimBF2 > 0, then for all ε > 0 small enough and m = [log 1/ε] there
is a k ∈ {0, . . . , n} (where n is some large integer) and an x ∈ [0, 1] such that μx,k is
(ε,m)-uniform. This then implies that there exists a (ε,m)-full branching subtree of length
m somewhere in T1 by our discussion in Sect. 3 and this clearly implies that dimA F1 = 1. �


We wish to show a dual result for the lower dimension. In the previous proof we relied on
large entropy implying large covering number. As already mentioned, small entropy does not
necessarily imply a small covering number. However if the set is sufficiently homogeneous
then this is true.

In order to tackle this problem we make the following observation: sets with positive
lower dimension contain nearly homogeneous subsets. We start by introducing the following
version of Moran constructions. Let k be a positive integer. We first take the unit interval
[0, 1] as our zeroth generation. Then for the first generation we take k disjoint intervals Ii
all of length l1 > 0 such that the distance between the intervals is at least l1. For the second
generation, we take each Ii from the first generation and split it into k disjoint intervals all
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of length l2 with separation l2 as well. We do this construction for a sequence of positive
numbers {ln}n∈N and in the endwe obtain a compact set F ∈ [0, 1]which is the intersection of
all intervals from all generations. We call such F Moran constructions with strong separation
condition and uniform branching number k.

Lemma 4.2 Let F ⊂ [0, 1] be compact with dimL F = s > 0. Then for any ε > 0, we can
find a subset F ′ ⊂ F which is a Moran construction with strong separation condition and
uniform branching number and dimL F ′ ≥ s − ε.

Proof As dimL F = s, we can find an integer m such that for all x ∈ F and all pairs of
numbers R, r with 0 < r < 2mr ≤ R < 1 we have the following inequality

N (B(x, R), r) ≥
(
R

r

)s−ε

.

That is to say, the binary tree T associated with F has the property that any full subtree T ′ of
height m contains at least 2(s−ε)m many level m vertices. A subtree T ′ is full if it is maximal
in the sense that we can not join any new vertex from T to T ′ without increasing the height
of T ′.

We now construct a Moran construction inside F . For the first step we start at the root
of T and take the full subtree of length m from that vertex. By dropping at most half of the
vertices we can assume that the associated dyadic intervals are 2−m-separated. Then we can
take any collection of �2(s−ε)m−1� level m vertices and iterate this procedure on all chosen
vertices. We can continue this process, and the resulting subtree T ′ of T is regular in the
sense that any subtree of T ′ of height m has roughly 2(s−ε)m−1 level m vertices. The tree T ′
is associated to a set F ′ in the previously described way. F is compact so closed and thus
F ′ ⊂ F . Then it is easy to see that F ′ has lower dimension at least s − ε and it is a Moran
construction with strong separation condition and uniform branching number. �


One can see that all the dimensions considered in this paper coincide for Moran sets but
more information is needed. The following lemma will formalise the homogeneity of Moran
constructions.

Lemma 4.3 Let F ⊂ [0, 1] be a Moran construction with strong separation condition and
uniform branching number of positive lower dimension. Then there is a probability measure
ν supported on F and numbers ε > 0,m > 0 such that for all x ∈ F, i ∈ N, νx,i is not
(ε,m)-atomic.

Proof Let F be a Moran construction of dimension s > 0 and assign mass one to F ∩ [0, 1].
We then split themeasure equally between [0, 1/2]∩F and [1/2, 1]∩F so if F intersects both
halves then F ∩ [0, 1/2] has measure 1/2 but if F ∩ [0, 1/2] = ∅ then the whole measure is
on F∩[1/2, 1]. This procedure is iterated over all dyadic intervals, equally splitting the mass
of any dyadic interval between its descendants that intersect F . This procedure produces a
measure ν on F . We shall now show that ν has the required property.

Let T be the tree associated with F . Let ε > 0 be small and m be a large integer. We can
find a constant C > 0 such that for any vertex a of T and integer n ≥ m, the number of
descendants at level n is bounded between C−12sn and C2sn . This follows from the Moran
construction. Also when m is large, C can be chosen close to 1. Then due to the construction
of ν we see that there exist m, ε such that the level m entropy of νx,i is sm log 2. Thus νx,i

is not (ε,m)-atomic for all x ∈ F, i ∈ N. �
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We are now able to prove the final lemma. The proof will follow the proof of Lemma 4.1
with the added Moran construction needed for more control in the final step.

Lemma 4.4 Let F1, F2 ⊂ [0, 1] with dimBF1 + F2 = dimBF1, then either dimBF1 = 1 or
dimL F2 = 0.

Proof We can assume that F1 and F2 are compact. If not, we can take the closure and
the Assouad, box and lower dimensions will not change. Also it is easy to see that the
closure of F1 + F2 is the same as the sumset of the closures of F1 and F2. Assume
dimBF1 + F2 = dimBF1 and dimL F2 > 0, then we want to show that dimBF1 = 1.
Furthermore by Lemma 4.2 we assume that F2 is a Moran construction with strong sepa-
ration condition and uniform branching number. Any Moran construction subset F ′

2 of F2
satisfies our assumptions:

dimBF1 ≤ dimBF1 + F ′
2 ≤ dimBF1 + F2 = dimBF1

and

dimL F ′
2 > 0.

Thus if we can show dimBF1 = 1 when F2 is aMoran construction then the result will follow
for any set F2 of positive lower dimension.

Fix a set of dyadic observing scales 2−ni for F1 as before and let δ ∈ (0, 1) which can be
chosen arbitrarily. We can conclude that for all sufficiently large i , we have

#(F1 + F2)(ni ) ≤ 2N (F1 + F2, 2
−ni ) ≤ N (F1, 2

−ni )1+δ = #F1(ni )
1+δ.

Let ε > 0 be arbitrary, m = m(ε) = [log 1/ε] and apply Theorem 3.4 to obtain constants
δ = δ(ε,m) and n0. Using the same method as in Lemma 4.1 we can show that the entropies
of the uniform measure μ on F1(n) and the measure ν, constructed in Lemma 4.3, on F2(n)

satisfy the conditions for the inverse theorem. Thus, for ni large enough there is a partition
of {0, . . . , ni } into sets I , J and W with the properties stated in Theorem 3.4.

If for large enough ni ≥ n0 the set J from the theorem is empty, then dimBF1 should be
very large because in this case #I ≥ (1 − ε)ni and so ‘most’ measures μx,k , for x ∈ [0, 1]
and k ∈ I , will be (ε,m)-uniform. Then by Lemma 3.6 we deduce that

N (F1, 2
−ni ) ≥ 2(1−ε)3ni .

It follows that

dimBF1 ≥ (1 − ε)3 → 1

as ε → 0 and hence dimBF1 = 1.
Therefore, if dimBF1 < 1, then for all ε > 0 small enough and m = [log 1/ε] there

exists x ∈ [0, 1] and k ∈ {0, . . . , n} (for some large n) such that νx,k is (ε,m)-atomic.
However by Lemma 4.3, since F2 is a Moran construction of positive lower dimension with
strong separation condition and uniform branching number, ν cannot have any (ε,m)-atomic
subtrees which is a contradiction. �
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4.2 Proof of Corollary 2.4

Weak tangents were first introduced by Mackay and Tyson [28] and play a key role in
calculating the Assouad dimension. Let K(Rd) be the set of non-empty compact subsets of
R
d equipped with the Hausdorff metric dH defined by

dH(A, B) = inf {ε ≥ 0 : A ⊆ [B]ε and B ⊆ [A]ε}
where [A]ε is the closed ε-neighbourhood of a non-empty set A.

Definition 4.5 Let X , E be compact subsets ofRd with E ⊆ X and F be a closed subset ofRd .
Suppose there exists a sequence of similarity maps Tk : Rd → R

d such that Tk(F)∩ X → E
in the Hausdorff metric. Then the set E is called a weak tangent to F .

For simplicity and without loss of generality we will assume X = [0, 1]d for the rest
of this paper unless stated otherwise. The importance of weak tangents can be seen in the
following propositions.

Proposition 4.6 [28, Proposition 6.1.5] Let E, F ⊆ R
d , E compact, F closed and suppose

E is a weak tangent to F. Then dimA F ≥ dimA E.

Lemma 4.7 [11,22, Propositions 5.7–5.8] Let F ⊂ R
d be any nonempty closed set. Then

there is a weak tangent E to F such that dimH E = dimA F.

Lemma 4.7 follows originally from Furstenberg’s work in [14], see also [15]. This work
was translated to our setting in [22, Propositions 5.7–5.8] and [11]. Applying weak tangents
to sumsets we have the following lemma.

Lemma 4.8 Let F ⊂ R
d be any nonempty closed set. Then for any weak tangent E to F, 2E

is a subset of a weak tangent to 2F.

Proof This proof of this lemma is similar to the proof of [11, Lemma 3.1] but we include it
for completeness. Assume E is a weak tangent to F . This means that there is a sequence of
similar copies Fi of F (under similarities Ti ) such that limi→∞ dH(Fi ∩ [0, 1]d , E) = 0. It
follows that

lim
i→∞ dH(2(Fi ∩ [0, 1]d), 2E) = 0.

We also note that

2(Fi ∩ [0, 1]d) ⊆ 2(Fi ) ∩ [0, 2]d = (2F)i ∩ [0, 2]d ,
where (2F)i is the similar copy of 2F under Ti . As (K([0, 2]d), dH) (the space of non-empty
compact subsets of [0, 2]d under theHausdorffmetric) is compact, there exists aweak tangent
G to 2F under the similarities Ti . Thus we have the following

2E ← 2(Fi ∩ [0, 1]d) ⊂ (2F)i ∩ [0, 2]d → G

and, again as (K([0, 2]d), dH) is compact, 2E ⊆ G as desired. �


We are now ready to complete the proof of Corollary 2.4.
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Proof Let F ⊂ R be such that 0 < dimA F < 1. Then by Lemma 4.7 there is a weak tangent
E to F (the closure of F) with dimH E = dimA F = dimA F (since Assouad dimension is
stable under taking closure). Therefore,

0 < dimH E = dimB E = dimA E = dimA F < 1.

By Lemma 4.8 and Proposition 4.6 we see that

dimA 2F = dimA 2F ≥ dimA 2E ≥ dimB2E .

Finally as 0 < dimBE < 1, we can apply Lemma 4.1 to get

dimB2E > dimB E = dimA F

as required. �


4.3 Proof of Theorem 2.6: convergence to 1

Proof We can clearly assume F is bounded and, as before, we can further assume F is
compact, since taking the closure does not effect the lower dimension. Let dimL F = s > 0
then by our discussion in Sect. 4.1, we can assume that F is a Moran construction with strong
separation condition and uniform branching number. Let ν be the probability measure on F
such that the measure of any dyadic interval D intersecting F is split equally between the
next level dyadic intervals contained in D and intersecting F (so the measure defined in the
proof of Lemma 4.3). As dimL F > 0, we can find ε > 0 and m > 0 such that νx, j is never
(ε,m)-atomic for every integer j and x ∈ F . We note that ε can be chosen arbitrarily small.

Now letμ be any measure on [0, 1]. Suppose that dimL supp(μ∗ν) = s′ and by definition
of the lower dimension, for any small γ > 0, we can find dyadic intervals Ei ∈ Dni with a
sequence {ni }i∈N and a sequence mi → ∞ such that μ ∗ ν(Ei ) > 0 and

N
(
supp(μ ∗ ν)Ei , 2−mi

)
= N

(
supp(μ ∗ ν) ∩ Ei , 2

−(ni+mi )
)

≤ 2(s′+γ )mi . (2)

As μ ∗ ν(Ei ) > 0 we can find dyadic intervals F1,i , F2,i ∈ Dni+1 such that μ(F1,i ) >

0, ν(F2,i ) > 0 and F1,i +F2,i ⊂ Ei .Otherwise, by definition of the convolution,μ∗ν(Ei ) =
0. Similarly we see that

μF1,i ∗ νF2,i � (μ ∗ ν)Ei .

We denote μi = μF1,i and νi = νF2,i . Now we estimate the entropy Hmi (μi ∗ νi ). We can
apply Theorem 3.4 with ε,m and obtain constants δ = δ(ε,m), n0 = n0(ε,m). As νx, j is
never (ε,m)-atomic, the same holds for ν

x, j
i . Thus we see that for any n > n0 there exists a

subset In ⊂ {1, . . . , n} with cardinality at least (1 − ε)n such that either

Hn(μi ∗ νi ) ≥ Hn(μi ) + δ

or

μi ({x ∈ [0, 1] : μ
x,k
i is (ε,m)-uniform}) > 1 − ε, if k ∈ In .

In the latter case we see from the proof of Lemma 3.6 that

Hn(μi ,Dn) ≥ (1 − ε)3n.

This in turn implies that there exists a constant C depending only on m such that

N (supp(μi ∗ νi ), 2
−n) ≥ N (supp(μi ), 2

−n) ≥ C2(1−ε)3n .
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When the above holds at scale n = mi , for all large enough i , we obtain the following

N (supp(μ ∗ ν)Ei , 2−mi ) ≥ C2(1−ε)3mi .

Thus by Eq. (2) we see that s′ ≥ (1− ε)3 −γ . Otherwise we are in the first case for infinitely
many i such that n = mi . Then we have

Hn(μi ∗ νi ) ≥ Hn(μi ) + δ,

and so for such mi

N (supp(μ ∗ ν)Ei , 2−mi ) ≥ 2mi Hmi (μi∗νi ) ≥ 2mi (Hmi (μi )+δ).

Again by Eq. (2), this implies that for infinitely many i

s′ ≥ Hmi (μi ) + δ − γ.

We have so far not made any assumptions about μ. As the lower dimension of F is positive,
the lower dimension of kF is also positive for any integer k. Thus we can consider a Moran
construction subset of kF , denoted G and define μ to be the measure on G such that the
measure of a dyadic interval is equally distributed among its next level descendants.

Then sinceG is aMoran construction as inLemma4.2,we see that Hmi (μi ) ≥ dimL G−γ

when i is large enough. Thus

s′ ≥ dimL G + δ − 2γ.

Combining the two cases, as γ > 0 can be arbitrarily chosen, we see that

dimL(k + 1)F ≥ dimL F + G = s′ ≥ min{dimL G + δ, (1 − ε)3}.
As a result we see that

dimL (k + 1)F ≥ (1 − ε)3

or

dimL (k + 1)F ≥ dimL kF + δ.

Here we see that δ does not depend on k, therefore for all k large enough

dimL (k + 1)F ≥ (1 − ε)3.

But now we can choose ε → 0 so we see that

lim
n→∞ dimL nF = 1

as required. �


4.4 Assouad dimension of distance sets

We begin by proving a weaker version of Theorem 2.9, where one does not have the strict
inequality. This result is simpler to prove, although the method is philosophically similar and
so this proof will shed light on the proof of the stronger result which follows.

Lemma 4.9 If F ⊆ [0, 1]d , then

dimA D(F) ≥ 1

d
dimA F .
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Proof We first deal with the 2-dimensional case, and then our method will be generalised to
higher dimensions.

Let F ⊆ [0, 1]2, s = dimA D(F) and ε > 0. Let x ∈ F and 0 < r < R < 1. We
wish to construct an r -cover of F ∩ B(x, R) using the distance set. The Assouad dimension
tells us roughly how many intervals of length r are needed to cover part of the distance set.
If an interval, say [a, a + r ], is needed in the cover of D(F) then there is a point x ∈ F
such that the annulus {y : |y − x | ∈ [a, a + r ]} intersects F at least once. For x ′ ∈ R

2 and
a,	 ∈ [0, 1] we define the annulus around x ′ with width 	 and inner radius a by

S(x ′, a,	) = {
y ∈ R

2 : |y − x ′| ∈ [a, a + 	]} .

In fact we will only use annuli of the form S(x ′, i	,	) for some 	 and i = 0, 1, 2, . . ..
We first ask, how many of the annuli of this form can intersect F . Let I ⊂ N be the set of
integers i such that

D(F) ∩ [ir , (i + 1)r ] �= ∅.

It follows that

#

(
I ∩

[
0,

R

r

])
≤ C

(
R

r

)s+ε

where C = C(ε) > 0 is the constant coming from the definition of the Assouad dimension
of D(F). Suppose i ∈ I is such that F ∩ S(x, ir , r) �= ∅ and i ≥ 10. Choose y ∈ F ∩
S(x, ir , r) and consider annuli S(y, jr , r) around y for j = 0, 1, 2, . . .. Observe that if
S(x, ir , r) ∩ S(y, jr , r) ∩ F �= ∅, then j ∈ I . Moreover, if jr < 1.9ir then S(x, ir , r) ∩
S(y, jr , r) can be covered by a uniform constant C ′ many balls of radius r . It remains to
cover F ∩ S(x, ir , r)\B(y, 1.9ir). If this is empty, then we are done, and if it is not empty
then fix z ∈ F ∩ S(x, ir , r)\B(y, 1.9ir) and cover the remaining portion as above using z
in place of y. It follows that

N (S(x, ir , r) ∩ F) ≤ 2C ′#
(
I ∩

[
0,

R

r

])
≤ 2C ′C

(
R

r

)s+ε

.

Since B(x, 10r) can be covered by a constant C ′′ many r -balls, we conclude

N (B(x, R) ∩ F, r) ≤ C ′′ + 2C ′C
(
R

r

)s+ε

× #

(
I ∩

[
10,

R

r

])
≤ C ′′ + 2C ′C2

(
R

r

)2s+2ε

which proves that dimA F ≤ 2s + 2ε and letting ε → 0 yields dimA D(F) ≥ dimA F/2 as
required.

The d-dimensional case follows precisely from the above argument plus an observationwe
call ‘dimension reduction’. Themain idea abovewas to divide the plane into two collections of
r -thin annuli so that the intersection of two annuli (one from each collection) was essentially
an r -ball. We do the same thing in the d-dimensional case, but this time the intersection of
two annuli is essentially a (d − 1)-dimensional annulus which is also r -thin. This dimension
reduction strategy is iterated (d − 2)-times until we end up with 2-dimensional annuli and
then our previous covering argument applies. We end up estimating

N (B(x, R) ∩ F, r) ≤ C(d)#

(
I ∩

[
0,

R

r

])d

≤ C(d)Cd
(
R

r

)ds+dε

,

whereC(d) is a constant depending on the ambient spatial dimension. This proves the desired
result. �
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Fig. 2 Decomposing an annulus into rectangles

Adapting this proof to obtain the strict inequality in Theorem 2.9 is non-trivial but follows
the same idea with an additional application of the inverse theorem.

Proof of Theorem 2.9 Again we start with the planar case and assume dimA D(F) = s ∈
(0, 1), noting that if dimA D(F) = 1, the result is trivial. Let ε ∈ (0, 1/2) and fix x ∈ F and
0 < r < R < 1. Follow the argument and notation above exactly, until it comes to covering
S(x, ir , r). Here, instead of decomposing this annulus into balls of radius r we use relatively
long and thin rectangles and then cover each rectangle separately.

First we cover S(x, ir , r) by an optimal number of equally spaced 2r by r
√
2i − 1 rect-

angles as illustrated in Fig. 2. Suppose i ∈ I is such that F ∩ S(x, ir , r) �= ∅ and i ≥ 10.
Choose y ∈ F ∩ S(x, ir , r) and consider distances from y to points in S(x, ir , r) as above.
It follows that there is an absolute constant A such that at most

A

(
R√
ir

)s+ε

of the previously defined rectangles covering S(x, ir , r) can intersect F∩S(x, ir , r).Wewill
cover the part of F lying inside each of these rectangles separately using the natural partition
of the rectangle into squares of sidelength 2r oriented with the rectangle. Fix a rectangle and
denote the associated collection of 2r -squares which optimally cover the part of F inside this
rectangle by S. Also let D = D(F ∩ S) ⊆ D(F) ∩ [0, r√2i − 1].

For each S ∈ S we write xS to denote the centre of the square S and let X be the set of all
xS . Then

B(xS1 − xS2 , 4 × 2r) ∩ (F − F) �= ∅
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for all S1, S2 ∈ S. Therefore there is a point y ∈ D such that |y − |xS1 − xS2 || ≤ 4 × 2r .
From this fact we see that the difference set X − X and the set of distances D are closely
related in that

N (D, 4 × 2r) ≤ N (X − X , 2r) ≤ 4N (D, 4 × 2r).

All the points in X lie on the same straight line segment and therefore we can consider them as
a subset of the unit interval and thus use Hochman’s inverse theorem. The tree TD associated
to D is a subtree of TD(F) and by our assumption that D(F) does not have full Assouad
dimension, there exists ε1 > 0,m0 > 0 such that TD(F) (and therefore TD) does not have
any (ε1,m)-branching subtrees with m greater than or equal to m0. We can choose ε1 to be
arbitrarily small.

Recall the inverse theorem. For any pair of numbers m, ε1, there is a δ(ε1,m) > 0 and a
ρ0 ∈ (0, 1) such that whenever ρ < ρ0, for any finite set K ⊆ [0, 1], by formula (1) from
the proof of Lemma 4.1 either N (K − K , ρ) > N (K , ρ)1+δ or TK contains (ε1,m)-full
branching subtrees or

N (K , ρ) ≤ 2−5ε1 log ρ.

Now we can properly choose our parameters ε1 and m. Since s > 0 we can choose ε1 such
that

5ε1 <
s + ε

δ + 1
(*)

and m = [log2 1/ε1] > 2m0 + 1, where δ is the δ(ε1,m) from the inverse theorem. When
choosing our ε1, the δ will shrink as ε1 does so there always exists an ε1 satisfying the
inequality. From now on ε1 and m shall be considered as constants. As a consequence, δ and
ρ0 can be considered as constants as well.

In the following, we shall assume that i is large enough so that 1√
2i−1

< ρ0. This will not

cause any loss of generality (for example we can replace the condition i ≥ 10 by i ≥ ρ−10
0 ).

The tree TX associated with X cannot have any full branching subtrees of heightm as this
would imply there exists a full branching subtree of height at leastm0 in TD which contradicts
the assumption that TD(F) does not have (ε1,m)-full branching subtrees with m greater than
or equal to m0. We scale our set X by (r

√
2i − 1)−1 to obtain a set X ′ ⊂ [0, 1], noting that

such rescaling will not change the tree structure and therefore applying the inverse theorem
to X ′ as we did with K above, with ρ = 2/

√
2i − 1, we see that either

N

(
X ′, 2√

2i − 1

)1+δ

< N

(
X ′ − X ′, 2√

2i − 1

)

or

N

(
X ′, 2√

2i − 1

)
≤

(
2√

2i − 1

)−3ε1
.

Scaling covers back to the original set X , we see that either

N (X , 2r)1+δ < N (X − X , 2r) ≤ 4N (D, 4 × 2r) ≤ 4Cε

(
r
√
2i − 1

4 × 2r

)s+ε

= 4Cε

(√
2i − 1

8

)s+ε

or

N (X , 2r) ≤
(

2√
2i − 1

)−5ε1
.
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Recalling (*), this guarantees that there is a constant A′ such that, for each rectangle S ∈ S,
we have

N (S ∩ F, 2r) ≤ A′√i
s+ε
1+δ .

This holds for all i ≥ max

{
C2

ε , 1
ρ10
0

, 10

}
=: i0. For smaller values of i we only need a

constant C(ε, ρ0) of balls to cover the rectangles. In conclusion

N (B(x, R) ∩ F, r) ≤ 4A′A
∑

i∈I∩[i0,R/r ]

√
i
s+ε
1+δ

(
R

r
√
i

)s+ε

+ C(ε, ρ0).

We bound this sum using the following simple general inequality. Let Z ⊂ Z
+ be a finite set

of positive integers and t ∈ (0, 1). Then

∑

i∈Z
i−t ≤

#Z∑

i=1

i−t ≤
∫ #Z

0
x−t dx = 1

1 − t
(#Z)−t+1.

Applying this inequality in our setting, where we have t = s+ε
2 ( 1

1+δ
− 1) ∈ (0, 3/4), yields

∑

i∈I∩[i0,R/r ]
i
s+ε
2 ( 1

1+δ
−1) ≤ 4 (#I ∩ [i0, R/r ])

s+ε
2 ( 1

1+δ
−1)+1

and therefore

N (B(x, R) ∩ F, r) ≤ A′′
(
R

r

)(s+ε)( s+ε
2 ( 1

1+δ
−1)+2)

+ C(ε, ρ0)

for a uniform constant A′′. This proves that

dimA F ≤ (s + ε)

(
s + ε

2

(
1

1 + δ
− 1

)
+ 2

)

and letting ε → 0 yields

dimA F ≤ 2s − s2δ

2(1 + δ)
< 2s

as required.
For sets inRd we use the dimension reduction technique introduced in the previous lemma

and then use the rectangles from this proof instead of picking two points in an annulus. This
gives us

dimA F ≤ (d − 2)(s + ε) + (s + ε)

(
s + ε

2

(
1

1 + δ
− 1

)
+ 2

)

and the right hand side is strictly less than ds for small enough ε, concluding the proof. �


4.5 Box dimension of distance sets

In this section we show that a similar distance set result holds for the upper box dimen-
sion. Unlike the Assouad dimension, which is ‘local’, the box dimensions are ‘global’. This
prevents the distance set cutting method introduced in the previous section from working.
Instead, we use the pigeonhole principle iteratively to reduce the dimension down to the
1-dimensional case and then we can apply the inverse theorem.
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Proof of Theorem 2.10 Let r = 2−n for some integer n > 0. Let CF (r) and CD(F)(r) be the
collections of cubes in the standard r -meshes which intersect F and D(F), respectively, and
write N (F, r) and N (D(F), r) as the cardinalities of CF (r) and CD(F)(r), respectively.

There are N (F, r)2 pairs of cubes in CF (r) and for each pair (i, j), i, j ∈ CF (r), the set
of distances between the points of F in one cube and the points in the second, denoted as
D(i, j), is contained in an interval of length cdr where cd is a constant depending only on
d . Clearly D(i, j) ⊂ D(F).

For each cube K ∈ CD(F)(r), let

nK = # {(i, j) ∈ CF (r) × CF (r) : D(i, j) ∩ K �= ∅} .

We have the following inequality
∑

K∈CD(F)(r)

nK ≥ N (F, r)2

and theremust exist at least one K0 ∈ CD(F)(r) such that nK0 ≥ N (F,r)2

N (D(F),r) . By the pigeonhole
principle there exists at least one i ∈ CF (r) such that

# { j ∈ CF (r) : D(i, j) ∩ K0 �= ∅} ≥ nK0

N (F, r)
.

In other words, there exists an x ∈ F and y ∈ D(F) such that the annulus S(x, y, cdr)
intersects at least

nK0
N (F,r) many cubes in CF (r). We assume y is ‘large’ compared to r , say

y > Mr , for otherwise the number of cubes intersected by the annulus is bounded above by
a constant

nK0

N (F, r)
≤ Md .

Here M is a constant which will be specified later.
Wewish to further decompose this annulus. An easy first step is to split it into 2d quadrants,

that is, we perform a change of basis so that x is the origin and regroup elements of the annulus
whose coordinates all have the same signs, so α = (α1, . . . , αd) and β = (β1, . . . , βd) are
in the same quadrants if sign αi = sign βi for all i = 1, . . . , d . Again by the pigeonhole
principle at least one of these quadrants will intersect at least

N1 = 2−d nK0

N (F, r)

many cubes from CF (r). This reduction will ensure a certain transversality condition holds
below.

Now we iterate the above argument. In the chosen quadrant there are N 2
1 many pairs of

cubes that intersect S(x, y, cdr) and F . The distances between points in these cubes are all
contained within a cdr -interval, and by the same pigeon hole strategy as above we find a
point x2 ∈ F ∩ S(x, y, cdr) and a y2 ∈ D(F) such that S(x2, y2, cdr) intersects at least

N 2
1

N1N (D(F), r)

many cubes which are in CF (r) and at the same time intersect S(x, y, cdr). The intersection
of two specific d-dimensional r -thin annuli is contained in a c′

dr -neighbourhood of a (d −
2)-sphere, for some constant c′

d depending only on d . Decompose the sphere into 2d−1
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‘quadrants’ as before (where we think of the centre of the sphere as the origin), and we can
find a quadrant intersecting at least

N2 = 2−d+1 N 2
1

N1N (D(F), r)

many cubes in CF (r).
We can perform the above ‘dimension reduction’ argument (d − 1) times to end up with

(a piece of) a 1-sphere whose c′
dr neighbourhood intersects at least

c′′
d

nK0

N (D(F), r)d−2N (F, r)

many cubes in CF (r). Here c′′
d is another constant depending on d . Also if for some m, we

have ym < Mr , then

nK0

N (D(F), r)m
≤ Md .

In the case that each ym is larger than Mr , we end up with a piece of a 1-sphere whose
c′
dr -neighbourhood (which is just an annulus) contains a large number of cubes in CF (r).
Our first observation is that there exists an absolute constant ad > 0 such that for all r small
enough we have the following inequality

nK0

N (D(F), r)d−2N (F, r)
≤ ad N (D(F), r). (†)

To see this, recall that in the last of the above iterations we found disjoint r cubes. Those
cubes are contained in a neighbourhood of radius cdr of a (piece of a) 1-sphere.We enumerate
these cubes by {C1,C2, . . . ,CZ } for a suitable integer Z , and choose xi ∈ F ∩ Ci for all
i ∈ {1, . . . , Z}. Consider the following set

X = {|x1 − x2|, . . . , |x1 − xZ |}.
It is not hard to show that there exists an absolute constant vd > 0 such that X is a vdr -
separated set. Also it is clear that X ⊂ D(F). From here we see that inequality (†) follows.
Then we see that, by the choice of K0, the following inequalities hold

c′′
d

N (F, r)

N (D(F), r)d−1 ≤ c′′
d

nK0

N (D(F), r)d−2N (F, r)
≤ ad N (D(F), r).

This implies that for all r small enough

N (F, r) ≤ ad
c′′
d
N (D(F), r)d ,

and therefore

dimBF ≤ d dimBD(F).

This concludes the first part of this theorem. To see the second part we shall use the circle
decomposition as well as the inverse theorem as in the proof of Theorem 2.9. We want to
make use of the arithmetic structure of the set Y = {x1, . . . , xZ }.However, Y has ‘curvature’
and so we cannot directly apply the inverse entropy theorem for Y − Y . As in the proof of
Theorem 2.9 we first decompose Y into almost straight pieces and use the inverse entropy
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theorem for each straight piece. Then we see that for all small enough r > 0, if y ∈ D(F)

and y > cr then the covering number N (Y , r) can be bounded from above by

CN
(
D(F) ∩ [0,√yr ], r) 1

1+δ N (D(F) ∩ [0, 2π y],√yr),

where c, δ,C > 0 are constants that depend on F . We now fix M = c above. We see that for
a constant c′′′

d > 0

c′′′
d

nK0

N (D(F), r)d−2N (F, r)
≤ N (Y , r).

Let ε > 0. Appealing directly to the box dimension and Assouad dimension of D(F), we
can find an absolute constant C ′ = C ′(ε) > 0 such that

N (D(F) ∩ [0,√yr ], r) ≤ C ′(
√
y/r)dimA D(F)+ε,

N (D(F) ∩ [0, 2π y],√yr) ≤ C ′(
√
y/r)dimA D(F)+ε

and

N (D(F), r) ≤ C ′(1/r)dimBD(F)+ε.

Combining these estimates with the inequality established above yields

c′′′
d

N (F, r)

N (D(F), r)d−1 ≤ c′′′
d

nK0

N (D(F), r)d−2N (F, r)

≤ CC ′2(
√
y/r)(dimA D(F)+ε)/(1+δ)(

√
y/r)dimA D(F)+ε

and this implies that

N (F, r) ≤ CC ′d+1c′′′
d

−1
(1/r)(d−1)(dimBD(F)+ε)(

√
y/r)(dimA D(F)+ε)/(1+δ)(

√
y/r)dimA D(F)+ε

≤ CC ′d+1c′′′
d

−1
(
1

r

)(d−1)dimBD(F)+(1+1/(1+δ)) dimA D(F)/2+dε

.

Therefore we see that

dimBF ≤ (d − 1) dimBD(F) + 1 + (1 + δ)−1

2
dimA D(F) < (d − 1) dimBD(F) + dimA D(F)

as required. �


5 Further comments and examples

As we proved in Corollary 2.2, if a set F ⊂ R satisfies

dimB2F = dimBF,

then either dimBF = 0 or dimA F = 1. A partial converse also holds trivially. If dimBF = 0
then

dimB2F = dimBF = 0 and dimBD(F) = dimBF = 0.

ForAssouad dimension, the situation is rather different. Concerning distance sets, [11, Exam-
ple 2.6] provides an example of a F ⊂ [0, 1] with dimA F = 0 and dimA D(F) = 1 and we
can easily use this example to build similar examples for sumsets. Let F1 = F ∪ (−F), and
observe that dimA F1 = 0 and 2F1 ⊃ D(F), and so dimA 2F1 = 1.
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Positive lower dimension is not a necessary condition for the box dimensions of the
iterated sum sets to approach 1. We demonstrate this by considering a simple example where
F = {1/k}k∈N. Clearly, the lower (and modified lower) dimension of nF is 0 for all n, but
we can show that dimBnF → 1 (even at an exponential rate).

Proposition 5.1 For F = {1/k}k∈N and n ≥ 1, we have

dimBnF ≥ 1 − 2−n .

Proof Given δ > 0 we say a set E is δ-dense in a closed interval I if every point in I is
at distance less than δ from some point in E . Suppose E is δ-dense in [0, t] for some small
t ∈ (0, 1). Choose k ∈ N such that 1/k <

√
t ≤ 1/(k − 1). It follows that

√
t − 1/k ≤ t

and so E + F must be δ-dense in [0, √t]. Since F is easily seen to be δ-dense in [0, √δ] it
follows by induction that nF is δ-dense in [0, δ2−n ]. Therefore

N (nF, δ) ≥ δ2
−n

/δ

and so dimBnF ≥ 1 − 2−n as required. �


5.1 Self-similar sets

If one considers restricted families of sets, thenoftenmoreprecise information canbeobtained
concerning the sumsets. A particular setting which has received a lot of attention is that of
self-similar sets, see [8, Chapter 9] for basic definitions and background on iterated function
systems (IFSs). In [31] it was shown that if F ⊆ [0, 1] is a self-similar set where two of the
defining contraction ratios r1, r2 satisfy

log ri
log r j

/∈ Q then

dimH 2F = min{1, 2 dimH F}.
Takahashi [37] proved that if the sum of the dimensions of two self-similar Cantor sets
exceeds 1, then one can find new Cantor sets, arbitrarily close to the original ones, such
that there is an interval in the sumset. Other related papers where the problem of finding an
interval in the sumset or iterated sumsets of Cantor sets include [1,2,16].

We provide a simple argument demonstrating that the dimensions of the iterated sumsets
of a self-similar set reach 1 in finite time.

Proposition 5.2 Let F ⊆ R be a self-similar set which is not a singleton. Then for some
n ≥ 1, the iterated sumset nF contains an interval and therefore has Hausdorff, box and
Assouad dimensions equal to 1.

This result obviously extends to sets containing non-singleton self-similar sets, which
include (non-singleton) graph-directed self-similar sets, subsets of self-similar sets generated
by irreducible subshifts of finite type, and many examples of ×p invariant subsets of S1.

Proof of Proposition 5.2 Suppose F ⊆ [0, 1] is a self-similar set which is not a singleton.
Then it necessarily contains a self-similar set which is generated by an IFS consisting of two
orientation preserving maps with the same contraction ratio and which satisfies the strong
separation condition. To see this, choose two maps with distinct fixed points and iterate each
an even number of times until the images of some large interval under the two iterated maps
are disjoint. Composing these two maps with each other in the two possible orders yields
an IFS with the desired properties. We may also renormalise so that the maps fix 0 and 1
respectively. Since sumsets are monotone in the sense that E ⊆ F ⇒ nE ⊆ nF for all
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n, it suffices to prove the result for self-similar sets generated by IFSs � = {φ1, φ2} where
φ1, φ2 : [0, 1] → [0, 1] are defined by φ1(x) = r x and φ2(x) = r x + (1 − r) where
r ∈ (0, 1/2) is a common contraction ratio. We write X(�) for the attractor of � and k� to
denote the IFS with common contraction ratio r but with translations taking all values in the
iterated sumset kT where T = {0, 1− r} is the set of translations associated with �. We also
write X(k�) for the attractor of this IFS and observe that for any integer k, kX(�) = X(k�).

Note that diam(X(k�)) = k and so

diam(φi (X(k�))) = rk

where φi is any map in k�. The set of translations defining k� is

k {0, (1 − r)} = {n(1 − r) : n = 0, 1, . . . , k}
and therefore for all distinct φi , φ j ∈ k� we see that |φi (0) − φ j (0)| ≥ 1 − r (independent
of k). Thus there are k + 1 maps in k�, and the IFS satisfies the strong separation condition
as long as rk < 1 − r . However, for k ≥ (1 − r)/r , the interval [0, k] is invariant under k�
which implies X(k�) = [0, k] completing the proof. �
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