

RANDOMNESS AS A COMPUTATIONAL STRATEGY: ON MATRIX
AND TENSOR DECOMPOSITIONS

N. Benjamin Erichson

A Thesis Submitted for the Degree of PhD
at the

University of St Andrews

2017

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Identifiers to use to cite or link to this thesis:

DOI: https://doi.org/10.17630/10023-16693
http://hdl.handle.net/10023/16693

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
https://doi.org/10.17630/10023-16693
http://hdl.handle.net/10023/16693

Randomness as a
Computational Strategy:

On Matrix and Tensor Decompositions

N. Benjamin Erichson

This thesis is submitted in partial fulfilment for the degree
Doctor of Philosophy

at the
University of St Andrews

July 2017

Dedicated to my Father and Gabriela.

“Love many things, for therein lies the true
strength, and whosoever loves much performs
much, and can accomplish much, and what is
done in love is done well."

— Vincent van Gogh

Declaration

Candidate’s declaration

I, N. Benjamin Erichson, hereby certify that this thesis, which is approxi-
mately 45000 words in length, has been written by me, and that it is the
record of work carried out by me, or principally by myself in collaboration
with others as acknowledged, and that it has not been submitted in any
previous application for a higher degree.

I was admitted as a research student in October 2013 and as a can-
didate for the degree of PhD also in October 2013; the higher study for
which this is a record was carried out in the University of St Andrews
between 2013 and 2018.

Date:
Signature of candidate:

Supervisor’s declaration

I hereby certify that the candidate has fulfilled the conditions of the
Resolution and Regulations appropriate for the degree of PhD in the
University of St Andrews and that the candidate is qualified to submit
this thesis in application for that degree.

Date:
Signature of supervisor:

Permission for publication

In submitting this thesis to the University of St Andrews I understand that
I am giving permission for it to be made available for use in accordance
with the regulations of the University Library for the time being in force,

vi |

subject to any copyright vested in the work not being affected thereby.
I also understand that the title and the abstract will be published, and
that a copy of the work may be made and supplied to any bona fide
library or research worker, that my thesis will be electronically accessible
for personal or research use unless exempt by award of an embargo as
requested below, and that the library has the right to migrate my thesis
into new electronic forms as required to ensure continued access to the
thesis. I have obtained any third-party copyright permissions that may
be required in order to allow such access and migration, or have requested
the appropriate embargo below.

The following is an agreed request by candidate and supervisor re-
garding the publication of this thesis:

PRINTED COPY

Embargo on all or part of print copy for a period of two years on the
following ground(s):

• Publication would preclude future publication.

ELECTRONIC COPY

Embargo on all or part of electronic copy for a period of two years on the
following ground(s):

• Publication would preclude future publication.

Supporting statement for electronic embargo request: The abil-
ity to publish work found within this thesis may be compromised if it is
not embargoed.

Date:
Signature of candidate:
Signature of supervisor:

N. Benjamin Erichson
July 2017

Acknowledgements

I would like to thank all the incredible people who I have met and who
have supported me during the last three years. Most notably, I would like
to thank my advisor Carl Donovan for making this endeavor possible and
for his support. One of the most enjoyable parts of my PhD program has
been the opportunity to travel. I spent half a year in Auckland and almost
a year in Seattle. During this time, I have been incredibly fortunate to
work with an amazing group of collaborators: J. Nathan Kutz, Steven L.
Brunton, Cameron Walker, and Krithika Manohar. Much of this thesis
is built upon work with these collaborators and could not have been
done without them. My special thanks goes to Nathan, whose inspiration
and guidance was invaluable as well as for the many fantastic coffees he
prepared. Finally, I must thank my wonderful friends for motivating and
supporting me over the years: Daniel, Ardita, Yeannie, Quentin, Mikkel,
Sophie, Ingrid, Livia and Tim, with whom I had my best study breaks.
In particular, I would like to thank Claire for being there when I needed
you the most. Most importantly, I want to express my gratitude to my
sister, who was always there for me and who encouraged me so much.

Abstract

Matrix and tensor decompositions are fundamental tools for finding struc-
ture and data processing. In particular, the efficient computation of
low-rank matrix approximations is an ubiquitous problem in the area
of machine learning and elsewhere. However, massive data arrays pose
a computational challenge for these techniques, placing significant con-
straints on both memory and processing power. Recently, the fascinating
and powerful concept of randomness has been introduced as a strategy to
ease the computational load of deterministic matrix and data algorithms.
The basic idea of these algorithms is to employ a degree of randomness as
part of the logic in order to derive from a high-dimensional input matrix
a smaller matrix, which captures the essential information of the original
data matrix. Subsequently, the smaller matrix is then used to efficiently
compute a near-optimal low-rank approximation. Randomized algorithms
have been shown to be robust, highly reliable, and computationally ef-
ficient, yet simple to implement. In particular, the development of the
randomized singular value decomposition can be seen as a milestone in the
era of ‘big data’. Building up on the great success of this probabilistic strat-
egy to compute low-rank matrix decompositions, this thesis introduces
a set of new randomized algorithms. Specifically, we present a random-
ized algorithm to compute the dynamic mode decomposition, which is
a modern dimension reduction technique designed to extract dynamic
information from dynamical systems. Then, we advocate the randomized
dynamic mode decomposition for background modeling of surveillance
video feeds. Further, we show that randomized algorithms are embar-
rassingly parallel by design and that graphics processing units (GPUs)
can be utilized to substantially accelerate the computations. Finally, the
concept of randomized algorithms is generalized for tensors in order to
compute the canonical CANDECOMP/PARAFAC (CP) decomposition.

Table of contents

List of Figures xv

List of Tables xxv

Some Nomenclature xxvii

1 Introduction 1
1.1 The Big Picture . 1
1.2 Some Notation and Preliminaries 3
1.3 Low-Rank Approximations 4
1.4 Probabilistic Framework 6

1.4.1 Computational Considerations 8
1.4.2 Theoretical Performance 11
1.4.3 Test Matrices . 12

1.5 Overview and Contributions 13

2 Randomized Singular Value Decomposition 17
2.1 Introduction . 17
2.2 Singular Value Decomposition 19

2.2.1 Brief Historical Overview 19
2.2.2 Conceptual Overview 20
2.2.3 Randomized Algorithm 22

2.3 Principal Component Analysis 26
2.3.1 Conceptual Overview 27
2.3.2 Randomized Algorithm 31

2.4 Robust Principal Component Analysis 33
2.4.1 Conceptual Overview 33
2.4.2 Randomized Algorithm 36

2.5 The rsvd Package . 37
2.5.1 The rsvd() Function 38

xii | Table of contents

2.5.2 The rpca() Function 39
2.5.3 The rrpca() Function 41

2.6 Numerical Results . 42
2.6.1 SVD Example: Image Compression 43
2.6.2 PCA Example: Eigenfaces 46
2.6.3 Robust PCA Example: Foreground/Background

Separation . 50
2.6.4 Computational Performance 52

2.7 Conclusion . 54

3 Randomized Dynamic Mode Decomposition 57
3.1 Introduction . 57
3.2 Deterministic DMD . 61

3.2.1 Conceptual Overview 61
3.2.2 Deterministic Algorithm 62

3.3 Compressed DMD . 65
3.3.1 Conceptual Overview 65
3.3.2 Compressed Algorithm 67

3.4 Randomized DMD . 70
3.4.1 Conceptual Overview 70
3.4.2 Randomized Algorithm 70
3.4.3 Blocked Randomized Algorithm 74

3.5 The DMDpack Package 76
3.5.1 The dmd() Function 76
3.5.2 The cdmd() Function 77
3.5.3 The rdmd() Function 78

3.6 Numerical Results . 79
3.6.1 Numerical Results 79
3.6.2 Computational Performance 86

3.7 Conclusion . 87

4 Dynamic Mode Decomposition for Background Modeling 89
4.1 Introduction . 89
4.2 Video Interpretation of the DMD 94
4.3 Real-Time Background Modeling 98
4.4 Evaluation Measures . 100
4.5 Numerical Results . 101

4.5.1 Evaluation Settings 102

Table of contents | xiii

4.5.2 Evaluation Using the CD Dataset 102
4.5.3 Evaluation Using the BMC Dataset 107
4.5.4 Computational Performance 108

4.6 Conclusion . 110

5 GPU Accelerated Randomized Algorithms 115
5.1 Introduction . 115
5.2 Background: GPU Computing 117
5.3 The scikit-CUDA Package 118
5.4 Numerical Results . 119

5.4.1 Randomized Singular Value Decomposition 119
5.4.2 Randomized Dynamic Mode Decomposition 121

5.5 Conclusion . 122

6 Randomized CP Decomposition 125
6.1 Introduction . 125
6.2 Some Tensor Notation 128
6.3 Deterministic CP Decomposition 129
6.4 Randomized Tensor Algorithm 131
6.5 Randomized CP Decomposition 135

6.5.1 Conceptual Overview 135
6.5.2 Randomized Algorithm 136

6.6 The rTensor Package . 139
6.7 Numerical Results . 142

6.7.1 Computational Performance 142
6.7.2 Numerical Examples 144

6.8 Conclusion . 160

7 Conclusion 163
7.1 Randomness as a Computational Strategy 163
7.2 Summary of the contributions 164
7.3 Perspectives . 165

7.3.1 Short-Term Perspectives 165
7.3.2 Long-Term Perspectives 166

References 167

Appendix A Proof of Theorem 1 181

List of Figures

1.1 First, randomness is used as computational strategy to
derive a smaller matrix B from A. This smaller matrix
can then be used to compute an approximate matrix de-
composition. Finally, the near-optimal (high-dimensional)
factors may be reconstructed. 2

1.2 Geometric illustration of the orthogonal projection operator
P. A vector x ∈ Rm is restricted to the range of A, where
Px ∈ col(A). 7

1.3 Points in a high-dimensional space are projected into low-
dimensional space, while the geometric structure is pre-
served in an Euclidean sense. 8

1.4 Singular value spectrum of 1000 random Gaussian matrices
of dimension 100× 100. Adding random columns decreases
the variation in the singular value spectrum. 10

1.5 Singular value spectrum of a matrix before and after the
computation of power iterations. 11

2.1 A timeline of major singular value decomposition develop-
ments. 19

2.2 Conceptual architecture of the randomized singular value
decomposition. First, a natural basis is computed in order
to derive the smaller matrix B. Then, the SVD is efficiently
computed using this smaller matrix. Finally, the left singu-
lar vectors Uk may be reconstructed from the approximate
singular vectors Ũl by the expression in Eq. (2.5). 22

2.3 Schematic architecture of the randomized singular value
decomposition. 23

xvi | List of Figures

2.4 Illustration of PCA seeking to find a new set of uncorrelated
variables. The top plot shows the data and its two principal
directions are shown. The bottom plot shows the new
principal component variables, indicating that the first
component accounts for most of the variation in the data. 28

2.5 Principal component analysis can be formulated either as
a variance maximization or as a least square minimization
problem. Both views are equivalent. 29

2.6 Geometrical relationship between the two views of PCA.
From the Pythagorean theorem it follows that the principal
components can be obtained by either maximizing the
variance or minimizing the unexplained variance (squared
residuals). 29

2.7 Conceptual architecture of the randomized principal com-
ponent analysis. The data are first compressed via right
multiplication by a sampling matrix Ω, and a natural basis
Q is formed. Then, the smaller matrix B is derived. Next,
the eigenvalue decomposition of the outer product BB⊤

is computed. Finally, the rotation matrix Wk may be
reconstructed from the compressed rotation matrix W̃k by
the expression in Eq. (2.5). 32

2.8 Toy example of a grossly corrupted data matrix. Subplot
(a) shows the perturbed torus as a superposition of the half
torus (b) and spike noise (c). 35

2.9 Subplot (a) and (b) show the separation of the grossly
corrupted torus in Figure 2.8 using robust PCA. The low-
rank component captures the original torus faithfully, and
the reconstruction error is as low as 0.0003%. In contrast,
the approximation performance of the the low-rank SVD
is poor, shown in subplot (c). The reconstruction error is
about 1.81%. 36

List of Figures | xvii

2.10 Image compression using the SVD. Subplot a) shows the
original image. Subplot (b) shows the reconstructed im-
age using the dominant k = 100 singular vectors obtained
via the deterministic SVD algorithm. The following sub-
plots (c,d,e,f) show the approximation results using the
randomized SVD algorithm. The reconstruction quality
using q = 1 subspace iterations is insignificant compared
to the deterministic SVD algorithm. 45

2.11 Dominant log-scaled singular value spectrum of the image
‘tiger’. 46

2.12 Image denoising using the singular value decomposition.
Both the deterministic and randomized SVD reduce the
error by about 15%. 47

2.13 The upper plot shows the explained variance (eigenvalues)
in decaying order. The middle plot shows the cumulative
proportion of the explained variance, and the lower plot
shows the proportion explained by the principal compo-
nents. 48

2.14 Dominant six eigenfaces computed with both the prcomp()
and rpca() functions. Subplot (a) and (c) show the grayscale
and (b) and (c) the colored eigenfaces using the colormap
cm.colors(255). Note that some of the randomized eigen-
faces are sign flipped. 49

2.15 Standard deviations for the deterministic and randomized
PCA algorithm. 50

2.16 Foreground/background separation of a video using rrpca().
Subplot (a) shows the actual video frame, which is sepa-
rated into its two components. The low-rank component
represents the background, and the sparse component cap-
tures the foreground objects. 51

2.17 Convergences of the rrpca() function using both the deter-
ministic and randomized SVD algorithm. 52

xviii | List of Figures

2.18 Computational performance of singular value decomposi-
tion routines for dense matrices in R. The left column shows
the median computational time and the right column shows
the relative reconstruction error over varying target-ranks
k. The rsvd() outperforms in terms of the computational
time. Further, the error of the rsvd() algorithm can be
controlled by the parameter p and q. 53

2.19 Computational performance of singular value decompo-
sition routines for sparse matrices in R. The left column
shows the median computational time and the right column
shows the relative reconstruction error over varying target-
ranks k. The two partial SVD algorithms propack.svd()
and svds() are competitive for computing the dominant
singular values and vectors of large sparse or structured
matrices. 55

3.1 Illustration of the dynamic mode decomposition for a given
snapshot sequence describing a dynamical system. . . . 58

3.2 Conceptual architecture of the compressed dynamic mode
decomposition (cDMD). First, a smaller matrix Y = CX is
computed using a random test matrix C. Then, the DMD
is efficiently computed using this smaller (low-dimensional)
snapshot matrices. Finally, the dominant DMD modes Φk

may be reconstructed from the approximate modes Φ̃k by
the expression in Eq. (3.20). 66

3.3 Video compression using a sparse measurement matrix.
The compressed matrix faithfully captures the essential
spectral information of the video. 67

3.4 Conceptual architecture of the randomized dynamic mode
decomposition. First, a natural basis is computed in or-
der to derive the smaller snapshot matrices BL and BR.
Then, the DMD is efficiently computed using this smaller
matrices. Finally, the dominant DMD modes Φk may be
reconstructed from the approximate DMD modes by the
expression in Equation (3.28). 71

3.5 Snapshots of the fluid flow behind a cylinder at time points
t = {1, 50, 100}. 79

List of Figures | xix

3.6 Dominant 15 dynamic modes of a fluid flow behind a cylin-
der. By visual inspection there are no distinct differences
between the DMD modes computed using the deterministic
and randomized algorithm. 81

3.7 DMD eigenvalues are faithfully captured by the randomized
DMD eigenvalues. 82

3.8 Relative error over 100 runs. The randomized algorithm
shows to be more precise and accurate. 82

3.9 Singular values of the fluid flow behind a cylinder in ab-
sence and presence of additive white noise (SNR=10). The
complex-conjugate pairs reflecting the physics of the cylin-
der wake. 83

3.10 DMD eigenvalues captured in presence of additive white
noise (SNR=10). The deterministic algorithm achieves
the best results. Randomized DMD, however, shows to be
more robust than compressed DMD. 84

3.11 Dominant 15 dynamic modes of a fluid flow behind a
cylinder in presence of additive white noise (SNR=10). By
visual inspection there are no distinct differences between
the first 9 DMD modes computed by the deterministic and
randomized algorithm. However, the randomized algorithm
shows difficulties to recover the following modes as good
as the deterministic algorithm does. 85

3.12 Error of the different DMD algorithms averaged over 100
runs for varying signal-to-noise ratios. The randomized
DMD algorithm with q = {1, 2} power iterations achieves
near-optimal results. 86

3.13 Computational performance of DMD algorithms. The
probabilistic algorithms outperform the deterministic al-
gorithms. For target ranks k < 30 the randomized DMD
algorithm is even faster than the compressed DMD algo-
rithm. 87

4.1 Illustration of background subtraction 90
4.2 Algorithmic flow of the computational stages involved in

obtaining a foreground mask. 90

xx | List of Figures

4.3 Subplot (a) shows three frames of the video sequence ‘ca-
noe’, which is part of the change detection benchmark
dataset. Subplot (b) and (c) show the continuous-time
eigenvalues and the temporal evolution of the amplitudes.
The modes corresponding to the amplitudes with the high-
est variance are capturing the dominant foreground object
(canoe), while the zero mode captures the dominant struc-
ture of the background. Modes corresponding to high
frequency amplitudes capture other dynamics in the video
sequence like waves. 96

4.4 The F-measure shows the improved performance of the
sparsity-promoting approach over using only the zero mode.103

4.5 Visual results showing frames of the ‘Highway’, ‘Canoe’ and
‘Park’ video. The top row shows the grayscale frames, and
the second row the corresponding true foreground masks.
The third row shows the differencing between the frames
and the background model. The fourth and fives row show
the thresholded, and median filtered foreground masks. 105

4.6 BMC dataset: Example frames of the 9 real videos. . . . 108
4.7 Visual results for fife frames corresponding to the BMC

Videos: ‘002’, ‘003’, ‘006’, ‘007’ and ‘009’. The top row
shows the original grayscale images. The second row shows
the differencing between the background model and the
video frame. The third and fourth row show the thresholded
and the median filtered foreground mask. 109

5.1 Illustration of the CPU and GPU architecture. Compared
to the CPU, the GPU consist of many arithmetic logic
units (green) which enable massive parallel processing. . 116

5.2 Illustration of the data parallelism in matrix-matrix mul-
tiplications. The entries of the resulting matrix can be
computed as independent dot products in parallel. 117

5.3 Average runtime of the CPU and GPU accelerated random-
ized singular value decomposition for varying target ranks.
Here, the low-rank matrix decomposition is performed on
a 5000× 5000 square matrix. 120

List of Figures | xxi

5.4 Average runtime of the CPU and GPU accelerated random-
ized singular value decomposition for varying target ranks.
Here, the low-rank matrix decomposition is performed on
a 10000× 10000 square matrix. 120

5.5 Average runtime of CPU and GPU accelerated randomized
singular value decomposition for varying matrix dimensions.
Break-even point is given by matrices of dimension about
3000× 3000. 121

5.6 Average runtime of CPU and GPU accelerated randomized
dynamic mode decomposition for varying target ranks.
Here, the low-rank matrix decomposition is performed on
a 100000× 200 square matrix. 122

5.7 Average runtime of CPU and GPU accelerated randomized
dynamic mode decomposition for varying target ranks.
Here, the low-rank matrix decomposition is performed on
a 200000× 500 square matrix. 122

5.8 Average runtime of the CPU and GPU DMD algorithms for
varying video resolutions. Here, 200 frames are used and
the low-rank approximation is computed with target-rank
k = 25. 123

6.1 Schematic of the CP decomposition. 130
6.2 Compression ratio of the CP singular value decomposi-

tion for varying rank-R approximations. The achieved
compression rate of the CP decomposition is substantial. . 131

6.3 Schematic of the randomized CP decomposition architec-
ture. The tensor X is first compressed using random
projections. Then the CP decomposition is performed on
the small tensor B. Finally, the factor matrices A, B and
C are recovered from the compressed factor matrices Ã, B̃
and C̃ using Eq. (6.10). 136

6.4 Average relative error, plotted on a log scale, against in-
creasing signal to noise ratio. The analysis is performed
on a rank R = 50 tensor of dimension 100 × 100 × 100.
Power iterations improve the the approximation accuracy
considerably. 143

xxii | List of Figures

6.5 Random tensor approximation and performance for rank
R = 50 tensors: rCP methods achieve speedups by 1-
2 orders of magnitude and the same accuracy as their
deterministic counterpart. Speedups rise sharply with
increasing dimensions. 144

6.6 Random tensor approximation and performance for a 4-way
rank R = 20 tensor of dimension 100× 100× 100× 100. 145

6.7 Algorithm runtimes and speedups for target rank k = 20
approximation for varying tensor dimensions. The runtime
savings increase with the tensor size. 145

6.8 Illustration of the multiscale toy video. The system is
governed by four spatial modes experiencing intermittent
oscillations in the temporal direction. The bottom subplot
shows the noisy signal with a signal-to-noise ratio of 2. . . 147

6.9 Toy video decomposition results. Randomized CP with
q = 2 successfully reconstructs the original spatiotemporal
dynamics from noise-corrupted data, while SVD and rCP
without subspace iterations yield poor reconstruction results.150

6.10 Normalized spectrum. The SVD and (r)CP BCD decompo-
sitions successfully capture pairs of characteristic frequen-
cies in the low-rank cylinder flow. 151

6.11 Fluid flow decomposition, no noise. Both methods capture
the same dominant frequencies from the time dynamics,
while randomized CP requires more rank-1 outer products
in x and y to represent single frequency spatial dynamics. . 154

6.12 Fluid flow decomposition noisy (SNR=2). Randomized CP
modes are robust to additive noise and SVD spatial modes
are corrupted by noise. 155

6.13 Fluid snapshots, and randomized CP and SVD approxi-
mations of the snapshot are pictured in the first, second
and third rows, respectively. The randomized CP better
recovers the true signal (top left) from noise-corrupted flow
(top right). 156

6.14 Mean sea surface temperature field. The dashed rectangle
indicates the area under consideration. 157

List of Figures | xxiii

6.15 Sea Surface Temperature decomposition. El Niño (red)
and La Niña (blue) events occur when the time dynamics
fall above and below the dashed thresholds, respectively,
with strong El Niño events indicated in bold red. 159

A.1 Given both a third and fourth order random low-rank R =
25 tensor, and assuming a fixed oversampling parameter
p = 2, the performance of the theoretical upper bound for
varying target ranks is bounding the average error faithfully. 183

A.2 Given a low-rank J/2 tensor of dimension J × J × J , and
assuming an oversampling parameter p = 2 and a fixed
target rank k = 20, the performance of the theoretical
upper bound is slightly overcautious with an increasing
ratio between the intrinsic and target rank. 183

List of Tables

2.1 Summary of algorithms runtime and errors. The random-
ized routines achieve a substantial speedup, while attaining
similar reconstruction errors with q ≥ 1. 44

2.2 Computational time for the deterministic and randomized
PCA algorithm. The randomized algorithms achieves an
about 10 fold speed-up, while attaining near-optimal results. 50

2.3 Computational time for the deterministic and randomized
RPCA algorithm. Note, that the deterministic algorithm
is induced by setting svdalg="svd". 52

3.1 Computational performance of the deterministic and proba-
bilistic DMD algorithms (target rank is k = 15) in absence
of noise. The results are averaged over 100 runs. 80

3.2 Computational performance of the deterministic and proba-
bilistic DMD algorithms (target rank is k = 15) in presence
of white noise (SNR=10). The results are averaged over
100 runs. 84

4.1 Evaluation results of eight real videos from the CD dataset.
For comparison, the results of two algorithms from the CD
ranking are presented. 106

4.2 Algorithms runtime for obtaining the background model for
varying video resolutions. Here a sequence of 200 frames is
decomposed using target rank k = 25, and the parameters
p = 10, q = 1 and c = 1000 for the probabilistic algorithms. 110

xxvi | List of Tables

4.3 Evaluation results of nine real videos from the BMC dataset.
For comparison, the results of three leading robust PCA
algorithms are presented, adapted from Bouwmans et al.
(2016b). 112

4.4 Evaluation results of ten synthetic videos from the BMC
dataset. For comparison, the results of three leading RPCA
algorithms are presented, adapted from Bouwmans et al.
(2016b). 113

6.1 Summary of the computational results for the noisy toy
video. 149

6.2 Summary of the computational results for the noise-free
cylinder flow. 152

6.3 Summary of the computational results for the noise-corrupted
cylinder flow. 153

6.4 Summary of the computational results for the sea surface
temperature data. 158

Some Nomenclature

Roman Symbols

A Matrix of dimension m× n.

Ak Best rank k approximation of dimension m× k.

B Smaller matrix of dimension k × n.

C Correlation matrix.

F F-measure.

k Target rank.

L Denotes both the loading and low-rank matrix.

p Sampling parameter equal to l = k + p.

M Linear map.

M̃ Projected linear map.

P Orthogonal projector.

p Oversampling parameter.

Q Orthonormal basis matrix of dimension m× k.

q Power iteration parameter.

r Numerical rank.

S Sparse matrix.

U Left singular vectors.

xxviii | Some Nomenclature

V Right singular vectors.

W Eigenvectors.

x Vector of dimension n.

Y Samples matrix of dimension m× k.

Z Principal components.

Greek Symbols

Λ Diagonal matrix containing the eigenvalues.

λ Eigenvalue.

Ω Random test matrix of dimension k × n.

ω Random vector.

Φ Dynamic Modes.

Σ Diagonal matrix containing the singular values.

σ Singular value.

Subscripts

2 Spectral norm.

F Frobenius norm.

i, j Indices of matrix/vector elements.

t Time indice.

Other Symbols

B Smaller (Compressed) Tensor.

L Lagrangian function.

V Vandermonde matrix.

X Tensor.

Some Nomenclature | xxix

Acronyms / Abbreviations

ALS Alternating Least Squares.

BCD Block Coordinate Decent.

BMC Background Models Challenge.

CD Change Detection Dataset.

CP CANDECOMP/PARAFAC.

CPD CANDECOMP/PARAFAC Decomposition.

ALU Arithmetic Logic Unit.

CPU Central Processing Unit.

DMD Dynamic Mode Decomposition.

FPS Frames Per Second.

GPU Graphical Processing Unit.

HD High Definition.

MKL Intel Math Kernel Library.

NRMSE Normalized Root Mean Squared Error.

PCA Principal Component Analysis.

PC Principal Components.

RPCA Robust Principal Component Analysis.

rPCA Randomized Principal Component Analysis.

rRPCA Randomized Robust Singular Value Decomposition.

rSVD Randomized Singular Value Decomposition.

SVD Singular Value Decomposition.

Chapter 1

Introduction

“Truth is much too complicated to allow
anything but approximations."

— John von Neumann

1.1 The Big Picture

Randomness is a fascinating and powerful concept, deeply embedded in
nature. Certainly, the vast and amazing variety of life would be unlikely
without the element of randomness (Monod, 1971). However, randomness
also plays an indispensable role in science. The whole body of inferential
statistics is based on the assumption of randomness as well as modern
cryptography and computer simulations. Moreover, randomness can be
used as an effective strategy for designing better algorithms. This is
achieved by the deliberate introduction of randomness into computa-
tions (Motwani and Raghavan, 1995). Randomized algorithms have not
only shown to outperform some of the best deterministic methods, they
also have enabled the computation of previously infeasible problems. The
Monte Carlo method, invented by Stan Ulam, John von Neumann and
Nick Metropolis, is certainly one of the most prominent randomized meth-
ods in computational statistics as well as one of the ‘best’ algorithms of
the 20th century (Cipra, 2000). In the area of optimization, a prominent
example of a randomized algorithm is the stochastic gradient descent
method, which is indispensable for large-scale machine learning (Bottou,
2010). Further, randomness plays an important role in neural networks, a

2 | Introduction

powerful learning technique in the area of machine learning (Scardapane
and Wang, 2017).

Over the past two decades, randomness has also become popular
as a computational strategy to compute low-rank approximations (see
Section 1.3). In particular, modern data analysis and scientific comput-
ing largely relies on low-rank approximations, since low-rank matrices
are ubiquitous throughout the social, physical, and biological sciences.
However, in the era of ‘big data’, the emergence of massive data poses a
significant computational challenge for traditional (deterministic) algo-
rithms. This has forced a shift towards modern computational concepts
to face these challenges. The basic idea of these randomized algorithms is
to employ a degree of randomness as part of the logic in order to derive
a smaller matrix from a high-dimensional input matrix, which captures
the essential information of the original data matrix. This smaller matrix
is then used to compute a near-optimal low-rank approximation, using
a standard deterministic matrix factorization algorithm. The principal
concept is sketched in Figure 1.1. The ideas behind this approach, are

A factors

B approximated
factors

deterministic method

deterministic method

Probabilistic
strategy to find
a smaller repre-
sentation.

Recover near-
optimal factors.

Data Decomposition

‘B
ig

’
‘S

m
al

l’

Fig. 1.1 First, randomness is used as computational strategy to derive
a smaller matrix B from A. This smaller matrix can then be used to
compute an approximate matrix decomposition. Finally, the near-optimal
(high-dimensional) factors may be reconstructed.

1.2 Some Notation and Preliminaries | 3

originated in both theoretical computer science and applied mathematics.
Initially, the focus of the early research was on computing the near-optimal
low-rank singular value decomposition (SVD), which is likely to be one
of the most important algorithms in machine learning, signal processing,
and statistical computing. More recently, the field around randomized
algorithms for low-rank matrix and data approximations has evolved into
the broader field of randomized numerical linear algebra (RNLA). This
is now an intense area of research, and comprehensive surveys of the
field of research are provided by Mahoney (2011), Drineas and Mahoney
(2016), Woodruff (2014), Halko et al. (2011b) and Martinsson (2016).

1.2 Some Notation and Preliminaries

In the following we give a brief overview of some notations used throughout
this thesis. We have tried to remain as consistent as possible with
terminology used in the area of matrix decompositions.

Scalars are denoted by lower case letters x, and vectors both in Rn

and Cn are denoted as bold lower case letters x = [x1, x2, ..., xn]. The
standard norm we use for vectors is the Euclidean norm

∥x∥2 =
√√√√ n∑

j=1
|xj|2,

denoted by the subscript 2. Both real Rm×n and complex Cm×n matrices
are denoted by bold capitals A, and its entry at row ith and column jth is
denoted as Aij. Often it is more convenient to refer to entries using the
following notation A(i, j). This is, because this notation is convenient
for matrix slicing, for instance, A(1 : i, :) extracts the first 1, 2, ..., i rows,
and A(:, 1 : j) extracts the first 1, 2, ..., j columns. The transpose of a
real matrix is denoted as A⊤. More generally, the Hermitian transpose
of a complex matrix is denoted as A∗. Without loss of generality, we
restrict most of the discussion in the following to real matrices. The
spectral or operator norm of a matrix is defined as the largest singular
value σmax of A, i.e., the square root of the largest eigenvalue λmax of the

4 | Introduction

positive-semidefinite matrix A⊤A

∥A∥2 =
√

λmax(A⊤A) = σmax(A) = max
x ̸=0

∥Ax∥2

∥x∥2
.

The Frobenius norm is defined as the square root of the sum of the
absolute squares of its elements, which is equal to the square root of the
matrix trace of A⊤A

∥A∥F =
√√√√ m∑

i=1

n∑
j=1
|Aij|2 =

√
trace(A⊤A),

denoted by the subscript F . The column space (range) of A is denoted as
col(A), and the row space as row(A). Further, E[·] denotes the expected
value of a random variable.

1.3 Low-Rank Approximations

Assume that a matrix A ∈ Rm×n has intrinsic rank r. Then, in general,
the objective of a low-rank matrix approximation is to find two smaller
matrices

A ≈ E F,

m× n m× r r × n
(1.1)

such that the matrix E ∈ Rm×r span the column space, and the rows of
the matrix F ∈ Rr×n span the row space of A. The factors E and F can
then be used to summarize or to reveal some interesting structure in the
data. Further, the factors can be used to efficiently store the large data
matrix A. Specifically, while A requires mn words of storage, E and F
require only mr + nr words of storage.

In practice most data matrices do not feature a precise rank r. Rather
we are commonly interested in finding a rank k matrix Ak ∈ Rm×n which
is as close as possible to an arbitrary input matrix A in the least-square
sense. We refer to k as the target rank in the following. More formally,
this can be expressed as a minimization problem, where the cost function
measures the fit between A and Ak, subject to the constraint that the

1.3 Low-Rank Approximations | 5

approximating matrix Ak has reduced rank k

Ak := argmin
A′

k
:rank(A′

k
)≤k

∥A−A′
k∥2. (1.2)

The Eckart-Young theorem (Eckart and Young, 1936) states that the
low-rank singular value decomposition provides the optimal rank-k recon-
struction of a matrix in the least-square sense, both in the spectral and
Frobenius norms

Ak = UkΣkV⊤
k := argmin

A′
k

:rank(A′
k

)≤k

∥A−A′
k∥. (1.3)

Here, Uk and Vk are orthonormal matrices whose columns are the first k

left and right singular vectors of A, and Σk is a diagonal matrix containing
the singular values in descending order. The reconstruction error in both
the spectral and Frobenius norms is given by

∥A−Ak∥2 = σk+1 and ∥A−Ak∥F =

√√√√√min(m,n)∑
j=k+1

σ2
j . (1.4)

Now, from this follows, that the best rank k approximation Ak can be
found by projecting A onto the span of its top k left singular vectors

Ak = UkU⊤
k A. (1.5)

However, finding the best orthonormal basis Uk becomes computationally
expensive with increasing dimensions of the input matrix. Instead, of
using a deterministic algorithm to construct the orthonormal basis, it has
been shown that the near-optimal orthonormal basis Q ∈ Rm×k can be
efficiently constructed using randomized algorithms, while satisfying

∥A−QQ⊤A∥2 ≤ (1 + ϵ)∥A−UkU⊤
k A∥2, (1.6)

where ϵ denotes some error.

6 | Introduction

1.4 Probabilistic Framework

In the following, we advocate the probabilistic framework formulated
by (Halko et al., 2011b) in order to compute a near-optimal low-rank
approximation. Specifically, this framework splits the computational task
into two logical stages:

• Stage A: Construct a low dimensional subspace that approximates
the range of A ∈ Rm×n. Specifically, it is the aim to find a matrix
Q ∈ Rm×k with orthonormal columns, where k denotes the target
rank, such that A ≈ QQ⊺A is satisfied.

• Stage B: Form a smaller matrix B ∈ Rk×n by restricting the high-
dimensional input matrix to the low-dimensional space spanned by
the near-optimal basis Q. This smaller matrix can then be used to
compute a desired low-rank approximation.

The first computational stage is where randomness comes actually into
the play, while the second stage is purely deterministic. Let us consider
the two stages in somewhat more detail, now.

Stage A: Computing a Near-Optimal Basis

Recall, the aim is to find a near-optimal basis Q ∈ Rm×k for the input
matrix A ∈ Rm×n such that

A ≈ QQ⊤A (1.7)

is satisfied. The desired target rank is denoted as k, and is assumed to be
k ≪ (m, n). Specifically, P = QQ⊤ is a (linear) orthogonal projector. A
projection operator corresponds to a linear subspace, and transforms any
vector to its orthogonal projection on the subspace. This is illustrated in
Figure 1.2, where a vector x is confined to the column space col(A).

Now, in order to efficiently construct such a orthogonal projector, we
use the concept of random projections to sample the range (column space)
of the input matrix A. Specifically, a set of k random vectors {ωi}i=1,...,k

is drawn from a sub-Gaussian distribution. Now, note that probability
theory guarantees that random vectors are linearly independent with high

1.4 Probabilistic Framework | 7

origin

x̂ = Px

x

col(A)

Fig. 1.2 Geometric illustration of the orthogonal projection operator P.
A vector x ∈ Rm is restricted to the range of A, where Px ∈ col(A).

probability. Hence, a new set of random projections {yi}i=1,...,k can be
computed to quickly sample the range of A as

yi = Aωi for i=1,2,....,k . (1.8)

Equation (1.8) can be efficiently executed in parallel as well as using matrix
operations. Therefore, let us define the random test matrix Ω ∈ Rm×k,
which is generated again from a sub-Gaussian distribution. Then, the
sampling matrix Y ∈ Rm×k is simply obtained by post-multiplying the
input matrix by the test matrix as

Y = AΩ. (1.9)

Once Y is obtained, we only need to orthonormalize the columns in order
to form a natural basis Q ∈ Rm×k. This can be efficiently achieved using
the QR-decomposition Y = QR. Then, it follows that Equation (1.7) is
satisfied.

Stage B: Compute a Smaller Matrix

Now, given the near-optimal basis Q, we aim to find a smaller matrix
B ∈ Rk×n. Therefor, we simply project the high-dimensional input matrix
A to the low-dimensional space as

B = Q⊤A. (1.10)

8 | Introduction

Geometrically, this is a projection (i.e, a linear transformation) which
takes points in a high-dimensional space into corresponding points in a
low-dimensional space, illustrated in Figure 1.3. This process preserves

Rm

projection

Rk

Fig. 1.3 Points in a high-dimensional space are projected into low-
dimensional space, while the geometric structure is preserved in an
Euclidean sense.

the geometric structure in an Euclidean sense, because inner products are
preserved (Trefethen and Bau III, 1997). Further, due to the invariance
of inner products the angles between vectors are preserved as well as their
length |Qa|2 = |a|2. Substituting Equation (1.10) into (1.7) yields then
the following low-rank approximation

A ≈ Q B.

m× n m× k k × n
(1.11)

This decomposition is also referred to as the QB decomposition in the
following. Subsequently, the smaller matrix B can be used to approxi-
mately compute a matrix decomposition using a traditional deterministic
algorithm.

1.4.1 Computational Considerations

The outlined probabilistic framework can be used as a computational
strategy to tackle the challenge of approximating massive matrices. The
decomposition in Equation (1.11) has a time complexity of about O(mnk).
However, more importantly, the outlined procedure requires only two
passes over the input matrix A. By passes we refer to the number of
sequential reads of the entire input matrix. This aspect is, in particular,
crucial in the area of ‘big data’. Specifically, we often face massive data

1.4 Probabilistic Framework | 9

matrices which are to big to fit into fast memory, and the time to read
the data from the hard-drive into the fast memory can be substantially
more expensive then the theoretical costs of the actual algorithm would
suggest. Hence, the probabilistic framework has a fundamental advantage
in practice. Recently, Tropp et al. (2016) have introduced an interesting
set of new single pass algorithms, reducing the communication costs even
further.

Moreover, the computational steps required to compute the QB de-
composition are simple to implement in any programing language which
provides some numerical linear algebra routines. The procedure is robust,
and allows by design to exploit modern computational architectures, e.g.,
multithreading or parallelized and distributed computing. It is also inter-
esting to note that the actual quality of the random numbers does not
play a significant role as long as the pseudo-random numbers appear to
be ‘random enough’ in a certain sense (Halko et al., 2011b). Thus, the
randomized algorithms described here are more reliable than some other
Monte-Carlo methods.

In addition, the approximation error ∥A−QQ⊤A∥2 can be controlled
by introducing the two computational improvements as outlined in the
following.

Oversampling.

Most real data matrices do not feature exact rank, which means that
the singular values {σi}n

i=k+1 of the input matrix A are non-zero. As a
consequence the sampled matrix Y is likely to not span a good basis for
the column space. However, this issue can be overcome by oversampling,
i.e., using l = k +p samples instead of just k in order to obtain the sample
matrix Y. Here, p denotes the number of additional samples and in most
situations small values p = {5, 10} are sufficient to obtain a good basis
that is comparable to the best possible basis (Martinsson, 2016).

The intuition behind the oversampling scheme is the following. The
sample matrix Y is a random variable, as it depends on the drawing of a
random test matrix Ω. Specifically, oversampling decreases the variation
in the singular value spectrum of the random test matrix, and subsequently
improves the quality of the sample matrix. This is illustrated in Figure 1.4,

10 | Introduction

which shows the distribution of the singular value spectrum of a Gaussian
test matrix Ω ∈ R100×100. Now oversampling, i.e., stacking additional
columns to the test matrix, substantially decreases the variation of the
inverse of the smallest singular values.

18 19 20 21 22

σmax

100

101

102

103

104

105

1/
σ
m
in

p=0

p=5

p=10

Fig. 1.4 Singular value spectrum of 1000 random Gaussian matrices of
dimension 100× 100. Adding random columns decreases the variation in
the singular value spectrum.

Power Scheme

The second method to improve the quality of the basis Q involves the
use of power sampling iterations (Gu, 2015; Halko et al., 2011b; Rokhlin
et al., 2009). Instead of obtaining the sampling matrix Y directly, the
data matrix A is first preprocessed as

A(q) = (AA⊤)qA, (1.12)

where q is an integer specifying the number of power iterations. Let, A =
UΣV⊤, then it is simple to show that A(q) = (AA⊤)qA = UΣ2q+1V⊤.
Here, U and V are orthonormal matrices whose columns are the left, and
right singular vectors of A, and Σ is a diagonal matrix containing the
singular values in descending order. Hence, for q > 0, the modified matrix
A(q) has a relatively fast decay of singular values even when the decay

1.4 Probabilistic Framework | 11

in A is modest. This is illustrated in Figure 1.5, showing the singular
values of a 50× 50 matrix before (red) and after computing q = {1, 2, 3}
power iterations. Now, substituting Equation (1.12) into (1.9) yields an

0 10 20 30 40 50
Singular values, σi

0.0

0.5

1.0

M
a
g
n
it

u
d
e

q=0

q=1

q=2

q=3

Fig. 1.5 Singular value spectrum of a matrix before and after the compu-
tation of power iterations.

improved sampling matrix

Y = A(q)Ω =
(
(AA⊤)qA

)
Ω. (1.13)

The drawback, of course, is that q additional passes over the input matrix
are required. However, when the singular values of the data matrix decay
slowly, about q = {1, 2} power iterations can considerably improve the
approximation. In a practical implementation subspace iterations are used
instead of power iterations for numerical stability. Some implementation
details are discussed in more detail in Section 2.2.

1.4.2 Theoretical Performance

Both the concept of oversampling and the power scheme allow to con-
trol the quality of low-rank approximation. Martinsson (2016) provides
the following description of the average case behavior of the outlined

12 | Introduction

probabilistic framework: 1

E∥A−QQ⊤A∥2 ≤

1 +
√

k

p− 1 + e
√

l

p
·

√
min{m, n} − k

 1
2q+1

σk+1(A).

Here it is assumed that the oversampling parameter p ≥ 2. The operator
E denotes the expectation with respect to a Gaussian test matrix Ω, and
σk+1(A) denotes the smallest possible error achievable with any basis
matrix Q. Thus, both oversampling and the computation of additional
power iterations drive the approximation error down.

1.4.3 Test Matrices

An essential computational step of the above described probabilistic
framework is the construction of the random test matrix Ω. Specifically,
we seek a test matrix which insures that its randomly generated columns
are linearly independent with high probability.

Dense Random Test Matrices

The most prominent choice is to construct a test matrix with independent
identically distributed (i.i.d.) standard normal entries N (0, 1). This
is mainly due to the attractive theoretical properties of the Gaussian
distribution. In practice, uniform random measurements are sufficient,
while less expensive to generate. Thus, for the practical implementation
of the algorithms we favor random test matrices with i.i.d. standard
uniform entries U(−1, 1).

The drawback is that matrix operations are becoming increasingly
expensive for large dense matrices. However, BLAS (Basic Linear Algebra
Subprograms) operations tend to be highly scalable, and computations
can be substantially accelerated using parallel computing. In Chapter 5
we describe how graphics processing units (GPUs) can be utilized for this.

1Note, that this is a simplified version of one of the key theorems presented by
Halko et al. (2011b), who provide a detailed error analysis of the outlined probabilistic
framework.

1.5 Overview and Contributions | 13

Structured Random Test Matrices

Woolfe et al. (2008) proposed a more computationally efficient approach,
exploiting the properties of structured random matrices. Specifically, it
was shown that the computational costs can be reduced from O(mnk) to
O(mn log(k)) using a subsampled random Fourier transform (SRFT) test
matrix

Ω = RFD (1.14)

were R ∈ Ck×n draws k random rows (without replacement) from the
identity matrix I ∈ Cn×n. F ∈ Cn×n is the unnormalized discrete Fourier
transform with the following entries F(j, v) = exp(−2πi(j − 1)(v− 1)/m)
and D ∈ Cn×n is a diagonal matrix with independent random diagonal el-
ements uniformly distributed on the complex unit circle. While the SRFT
sensing matrix comes with nice theoretical properties, the improvement
from O(k) to O(log(k)) is not necessarily significant if the target rank k

is small. Further, the efficient implementation of random structured test
matrices is quite subtle in practice.

1.5 Overview and Contributions

As outlined, the efficient computation of low rank matrix approximations
is an ubiquitous problem in machine learning and elsewhere. Massive
data pose a computational challenge for traditional (deterministic) matrix
algorithms, placing significant constraints on both memory and processing
power. Recently, randomized matrix algorithms have been established
as some of the most competitive methods to overcome some of these
computational challenges. Randomized algorithms are robust, reliable
and computationally efficient. Specifically, this thesis is based on the
concepts of randomized matrix algorithms as introduced by Martinsson
et al. (2011) and Halko et al. (2011b). The main contribution of this thesis
is the development of new randomized algorithms, and their application
for video processing and fluid dynamics as well as the generalization of
the probabilistic framework to tensors. In the following we give a brief
overview of each chapter and outline the contributions.

14 | Introduction

• Chapter 2: Randomized Singular Value Decomposition.
This chapter reviews the concept of randomness as a computational
strategy to accelerate the computations of the singular value decom-
position (SVD) and principal component analysis (PCA). Further,
it is demonstrated how the randomized SVD can be used to ac-
celerate the computation of robust principal component analysis
(RPCA). The main contribution of this Chapter is the corresponding
R software package rsvd, which provides efficient implementations
of the presented methods (Erichson, 2015) in R. The corresponding
source code of the rsvd package is available via the GIT reposi-
tory: https://github.com/Benli11/rSVD. Several numerical exam-
ples demonstrate the substantial computational savings by using the
powerful concept of randomness. This includes examples of image
compression, eigenfaces, and foreground/background decomposition
as well as the evaluation of the computational performance on both
dense and sparse matrices.

This chapter is based on the paper by Erichson et al. (2016c) (under
review with the Journal of Statistical Software), which is written in
joint work with Sergey Voronin, Steven L. Brunton and J. Nathan
Kutz.

• Chapter 3: Randomized Dynamic Mode Decomposition.
The dynamic mode decomposition (DMD) is a modern dimension-
ality reduction technique designed to extract dynamic information
from dynamical systems based on a sequence of snapshots (time
series of data). However, the dynamic mode decomposition is com-
putationally demanding, in particular, for high-dimensional data
such as fluid flows or video feeds. This chapter presents a novel
randomized algorithm for computing the dynamic mode decompo-
sition. We show that the randomized accelerated algorithm can
substantially reduce the computational costs, while being robust
and obtaining near optimal decomposition results. The algorithm is
compared with the deterministic algorithm to compute the DMD as
well as with the previously introduced compressed DMD algorithm.

https://github.com/Benli11/rSVD

1.5 Overview and Contributions | 15

The accompanying software package DMDpack provides
implementations of the outlined algorithms in Python.
The source code is available via the GIT repository:
https://github.com/Benli11/DMDpack.

This chapter is based on the paper by Erichson et al. (2016a)
and Erichson et al. (2017) which are written in joint work with
Steven L. Brunton and J. Nathan Kutz.

• Chapter 4: Dynamic Mode Decomposition for Background
Modeling.
Background modeling for foreground detection is one of the funda-
mental computational steps in many computer vision applications.
While there are numerous methods for modeling the background of
surveillance videos, a great demand remains for high-performance
algorithms capable of real-time processing. In particular, the rapidly
increasing resolution of sensors pose a computational burden for
several traditional techniques. Here, we advocate the method of
randomized dynamic mode decomposition (rDMD) for background
modeling. While the principal application of the DMD is in the
area of fluid dynamics, the method has been successfully used for
background modeling of surveillance videos previously. We present
several numerical results using standard benchmark datasets includ-
ing synthetic and real surveillance video feeds.

This chapter is based on the paper by Erichson and Donovan (2016)
which is written in joint work with Carl Donovan as well as on the
paper by Erichson et al. (2016a) which is written in joint work with
Steven L. Brunton and J. Nathan Kutz.

• Chapter 5: GPU Accelerated Randomized Algorithms.
The outlined probabilistic framework for computing low-rank matrix
approximations is embarrassingly parallel. Here, we utilize graphics
processing units (GPUs) to accelerate the computations. GPUs
becoming increasingly popular for general-purpose high-performance
computing. Specifically, we demonstrate the advantage of parallel
computing for obtaining the singular value and dynamic mode
decomposition.

https://github.com/Benli11/DMDpack

16 | Introduction

The GPU accelerated algorithms are implementations as contribu-
tion to the Python software package scikit-cuda, which is authored
and maintained by Lev E. Givon. Specifically, we have provided
routines to compute the deterministic, randomized and compressed
DMD as well as the randomized SVD. Further contributions are
routines for computing the eigendecomposition, the QR decomposi-
tion, and a function for constructing the Vandermonde matrix in
GPU memory. The source code is available via the GIT repository:
https://github.com/lebedov/scikit-cuda.

• Chapter 6: Randomized CP Decomposition
Classical matrix factorizations can become inadequate when deal-
ing with tensors. This is, because reshaping multi-modal data
into matrices can fail to reveal important structures in the data.
Tensor decompositions can overcome this issue of information loss.
The CANDECOMP/PARAFAC (CP) decomposition is particularly
suitable for data-driven discovery since it expresses a tensor as a
sum of rank-one tensors. This chapter presents a novel random-
ized algorithm for computing the CP Decomposition. In particular
the concept of power iterations is crucial in order to achieve a
near-optimal decomposition quality. Theorem 1 characterizes the
average-case behavior of the randomized tensor algorithm. The
proof is sketched in Appendix A. Further, the accompanying Python
software package ctensor provides implementations of the standard
and randomized CP decomposition using different optimization
strategies. The corresponding source code is available via the GIT
repository: https://github.com/Benli11/ctensor. The performance
of this highly efficient algorithm is demonstrated using artificial and
real world data.

This chapter is based on the paper by Erichson et al. (2016b) (under
review) which is written in joint work with Krithika Manohar,
Steven L. Brunton and J. Nathan Kutz.

https://github.com/lebedov/scikit-cuda
https://github.com/Benli11/ctensor

Chapter 2

Randomized Singular Value
Decomposition

“Begin with the simplest examples."

— David Hilbert

Note: The work described in this chapter was carried out in collaboration with
Professors J. Nathan Kutz and Steven L. Brunton of University of Washington
and Dr. Sergey Veronin of the Tufts University. It is submitted to the Journal of
Statistical Software under the title: ‘Randomized Matrix Decompositions using
R’. My contributions involve conceptualizing the project idea, implementing
the routines, running the simulations as well as writing the original draft.

2.1 Introduction

Matrix decompositions are fundamental mathematical tools, extensively
used in the area of machine learning, statistical computing, computer
vision and engineering. The singular value decomposition is among the
most ubiquitous and powerful methods for linear dimensionality reduction
and data processing in the computational era. Indeed, it is the workhorse
algorithm behind principal component analysis, linear discriminant anal-
ysis, and canonical correlation analysis. However, the emergence of ‘big
data’ has severely challenged our ability to compute the singular value
decomposition, placing significant constraints on both memory and pro-
cessing power. At the same time, methods for dimensionality reduction are
becoming increasingly important in order to deal with high-dimensional

18 | Randomized Singular Value Decomposition

data produced by modern sensors or social networks. Interestingly though,
many high-dimensional signals have low intrinsic rank relative to the di-
mension of the ambient measurement space. This means these data carry
redundant information, which are unnecessary to understand, or describe
an underlying process. Prominent examples of high-dimensional data
featuring a natural low-rank structure are, for instance, structured sig-
nals like audio, images or video footage (Davenport and Romberg, 2016).
Recently, it has been impressively demonstrated that randomization can
be utilized as a computational strategy to substantially ease the logistic
and computational challenges involved in obtaining an approximate low-
rank singular value decomposition. This is interesting, in particular, for
massive matrices where traditional deterministic algorithms fail.

Motivation and Overview

In the following we demonstrate how the singular value decomposition and
the principal component analysis can be embedded into the probabilistic
framework presented in Chapter 1, Section 1.4. While, this has been dis-
cussed in great detail in theory and applications elsewhere, our motivation
and contribution was the development of the R software package rsvd.
This package implements the methods discussed in the following, and is
as far as we are aware the first R package providing these randomized
routines. Section 2.2 briefly reviews the singular value decomposition,
followed by presenting a randomized algorithm for computing the SVD.
Section 2.3 reviews the principal component analysis, and establishes the
connection to the SVD. Then, a fast randomized algorithm for computing
the near optimal dominant principal components is shown. Section 2.4
discusses how the randomized singular value decomposition can be used
to accelerate the computation of the robust principal component analysis.
The interface of the rsvd package and some implementation details are
presented in Section 2.5. Section 2.6 presents numerical results using
the rsvd package. Examples include image compression, eigenfaces, and
foreground/background decomposition of video footage. Then, the com-
putational performance is evaluated for both dense and sparse matrices.
Finally, concluding remarks and a roadmap for further developments of
the rsvd package are outlined in Section 2.7.

2.2 Singular Value Decomposition | 19

2.2 Singular Value Decomposition

The SVD provides a numerically stable matrix decomposition that can be
used to obtain low-rank approximations, to compute the pseudo-inverses
of non-square matrices, and to find the least-squares and minimum norm
solutions of a linear model. For a comprehensive technical overview we
refer to Golub and Van Loan (1996), Demmel (1997), and Watkins (2002).

2.2.1 Brief Historical Overview

While the origins of the SVD can be traced back to the late 19th century,
the field of randomized matrix algorithms is relatively young. Figure 2.1
shows an incomplete time-line of some major developments of the singular
value decomposition. Stewart (1993) gives an excellent historical review
of the five mathematicians who developed the fundamentals of the SVD,
namely Eugenio Beltrami (1835-1899), Camille Jordan (1838-1921), James
Joseph Sylvester (1814-1897), Erhard Schmidt (1876-1959) and Hermann
Weyl (1885-1955). The development and fundamentals of modern high-
performance algorithms to compute the SVD is related to the seminal
work of Golub and Kahan (1965) and Golub and Reinsch (1970).

Fig. 2.1 A timeline of major singular value decomposition developments.

Modern singular value decomposition algorithms are largely based on
Krylov methods. These methods are accurate and in particular powerful
for approximating structured or sparse large-scale matrices (Martinsson,
2016). A modern and prominent state-of-the-art algorithm, based on the
Lanczos algorithm, is the PROPACK SVD algorithm (Larsen, 1998). As
well as the partial SVD (svds) algorithm based on the ARPACK software

20 | Randomized Singular Value Decomposition

package (Lehoucq et al., 1998), used in MATLAB or Python for sparse
matrices.

Randomized matrix algorithms for computing low-rank matrix ap-
proximations have gained prominence over the past two decades. Frieze
et al. (2004) introduced the ‘Monte Carlo’ SVD, a rigorous approach to
efficiently compute the approximate low-rank SVD based on non-uniform
row and column sampling. Sarlos (2006) and Martinsson et al. (2011)
introduced a more robust approach based on random projections. Specifi-
cally, the properties of random vectors are exploited to efficiently build
a subspace that captures the column space of a matrix. Woolfe et al.
(2008) further improved the computational performance by leveraging the
properties of highly structured matrices which enable fast matrix multi-
plications. Eventually, the seminal work by Halko et al. (2011b) unified
and expanded the work on the randomized singular value decomposition
(rSVD) and introduced state-of-the-art prototype algorithms to compute
the near-optimal low-rank singular value decomposition.

2.2.2 Conceptual Overview

Given an arbitrary real 1 matrix A ∈ Rm×n, where m ≥ n without loss of
generality, we seek a decomposition, such that

A = UΣV⊤. (2.1)

The matrices U = [u1, ..., um] ∈ Rm×m and V = [v1, ..., vn] ∈ Rn×n are
orthonormal so that U⊤U = I and V⊤V = I. The first r left singular
vectors in U provide a basis for the range and the first r right singular
vectors in V a basis for the domain of the matrix A, whereby r denotes
the rank of the data matrix. The rectangular diagonal matrix Σ ∈ Rm×n

contains the corresponding non-negative singular values σ1 ≥ ... ≥ σr,
describing the spectrum of the data. If the rank r of the matrix X is smaller
then the number of columns (i.e., r < n), then the last m − r singular
values {σi : i ≥ r + 1} are zero. The so called ‘economic’ or ‘compact’
SVD computes only the singular vectors corresponding to the non-zero

1Without loss of generality, the concept applies to complex matrices using the
Hermitian transpose instead.

2.2 Singular Value Decomposition | 21

singular values U = [u1, ..., ur] ∈ Rm×r and V = [v1, ..., vr] ∈ Rn×r

respectively. In many cases, the numerical rank r̄ of the matrix is smaller
than it’s mathematical rank. That is, many of the last min(m, n) − r̄

singular values can be close to machine precision. Since the corresponding
singular vectors are not in the span of the data, it is often desirable to
compute only a reduced version of the SVD. The matrix can be well
approximated by including only those singular vectors which correspond
to singular values of a significant magnitude. This number k can be
much smaller than min(m, n) depending on the value of r̄. Choosing an
optimal target rank k is highly dependent on the task, i.e., whether one
is interested in a highly accurate reconstruction of the original data or in
a very low dimensional representation of dominant features in the data.
The low-rank SVD of rank k takes the form:

Ak = UkΣkVk = [u1, ..., uk]diag(σ1, . . . , σk)[v1, ..., vk]⊤. (2.2)

Nevertheless, computing the low-rank singular value decomposition is
computationally demanding, and massive data pose a computational
challenge for traditional algorithms. Specifically, the computational cost
of computing the truncated SVD Ak using a deterministic algorithm
for an m × n matrix is of the order O(mn2), from which the first k

components can then be extracted to form Ak. Modern SVD algorithms
are largely based on Krylov methods. These methods are accurate and
in particular powerful for approximating structured or sparse large-scale
matrices (Martinsson, 2016). A modern and prominent state-of-the-art
algorithm, based on the Lanczos algorithm, is the PROPACK SVD
algorithm (Larsen, 1998). As well as the partial SVD (svds) algorithm
based on the ARPACK software package (Lehoucq et al., 1998), used in
MATLAB or Python for sparse matrices. These algorithms can be used
to obtain an approximate rank k singular value decomposition at a cost
of O(mnk). While the randomized algorithm for computing the low-
rank SVD comes with the same theoretical costs, it has several practical
advantages. In particular, the randomized algorithm is more robust, i.e.,
the algorithm can better cope with ill-condition matrices. Further, the

22 | Randomized Singular Value Decomposition

randomized algorithm is easier to implement and embarrassingly parallel
compared to Krylov methods.

2.2.3 Randomized Algorithm

Assume that we seek the low-rank SVD for a data matrix A ∈ Rm×n,
where m ≥ n without loss of generality, such that

A = UkΣkV⊤
k , (2.3)

where k denotes the target rank. Now, instead of computing the singular
value decomposition directly, we embed the SVD into the probabilistic
framework presented in Chapter 1, Section 1.4. The principal concept is
sketched in Figure 2.2 and 2.3. Specifically, we first compute the near-

A Uk, Σk, V⊤
k ,

Q

B Ũl, Σl, V⊤
l ,

svd()

svd()

[Q,∼] = qr(AΩ)

B = Q⊤A

Eq. (2.5)

Data Decomposition

‘B
ig

’
‘S

m
al

l’

Fig. 2.2 Conceptual architecture of the randomized singular value decom-
position. First, a natural basis is computed in order to derive the smaller
matrix B. Then, the SVD is efficiently computed using this smaller
matrix. Finally, the left singular vectors Uk may be reconstructed from
the approximate singular vectors Ũl by the expression in Eq. (2.5).

optimal basis Q ∈ Rm×l, and the relatively small (if l ≪ m, n) matrix
B ∈ Rl×n. Note, that we allow for oversampling, i.e., l = k + p. Recall,
we first generate a random test matrix Ω ∈ Rn×l to sample the range

2.2 Singular Value Decomposition | 23

Fig. 2.3 Schematic architecture of the randomized singular value decom-
position.

of the input matrix as Y = AΩ. Then, orthonormalizing the columns
of Y yields the natural basis. This can be efficiently achieved using the
QR decomposition Y = QR. Next, the small matrix B is obtained by
projecting the input matrix to the low-dimensional subspace as B = Q⊤A.
Once this is achieved, the approximate SVD is computed using a standard
(deterministic) algorithm so that we attain the following decomposition

B = ŨΣV⊤. (2.4)

Thus, we efficiently obtain the first l right singular vectors V ∈ Rn×l

as well as the corresponding singular values Σ ∈ Rl×l. It then remains
to recover the left singular vectors U ∈ Rm×l from the approximate left
singular vectors Ũ ∈ Rl×l. This can be simply achieved by pre multiplying
Ũ by Q as follows

U ≈ QŨ. (2.5)

24 | Randomized Singular Value Decomposition

The justification for the randomized SVD can be sketched as follows

A ≈ QQ⊤A
≈ QB
≈ QŨΣV⊤

≈ UΣV⊤.

(2.6)

Note, that if an oversampling parameter p > 0 has been specified, the
desired rank k approximation is simply obtained by truncating the left
and right singular vectors as well as the singular values.

Further, we have suggested that in addition to oversampling the
accuracy of the natural basis Q can be improved by the use of power
sampling iterations (Gu, 2015; Halko et al., 2011b; Rokhlin et al., 2009).
Recall, the improved sampling matrix is computed as Y =

(
(AA⊤)qA

)
Ω.

Now, this enforces a more rapid decay of singular values in the pre
processed matrix sampled from. A direct implementation of the power
iteration scheme could be implemented as follows

(1) Y = AΩ
(2) for j = 1, . . . , q

(3) Y = A⊤Y
(4) Y = AY
(5) end for

However, this direct implementation of the method is numerically
unstable due to potential round-off errors. Instead, we improve the
numerical stability of the procedure by orthogonalizing the sampling
matrix in between each computational step. This leads to the following
improved scheme of subspace iterations

2.2 Singular Value Decomposition | 25

(1) Y = AΩ
(2) for j = 1, . . . , q

(3) [Q,∼] = qr(Y)
(4) Z = A⊤Q
(5) [Q,∼] = qr(Z)
(6) Y = AQ
(7) end for

Rokhlin et al. (2009) has proposed a slightly modified approach,
which is avoiding the repeated computation of the QR decomposition.
Here the pivoted LU decomposition is used instead, which is slightly less
expensive to obtain. This scheme of normalized power iterations can be
sketched as follows

(1) Y = AΩ
(2) for j = 1, . . . , q

(3) [L,∼] = lu(Y)
(4) Z = A⊤L
(5) [L,∼] = lu(Z)
(6) Y = AL
(7) end for

Algorithm 1 presents an implementation which allows for oversam-
pling as well as the computation of additional subspace iterations.
In Algorithm 1 we compute the full SVD of B, so it follows that
∥A−QB∥ = ∥A−UkΣkV⊤

k ∥, and Ak = UkΣkV⊤
k . Martinsson (2016)

presents the following simplified error bound quantifying the performance
of the algorithm

E∥A−Ak∥2 ≤
[
1 +

√
k

p− 1 + e
√

k + p

p
· d

] 1
2q+1

σk+1, (2.7)

where d =
√

min(m, n)− k. Thus an increasing number of power itera-
tions q drives the approximation error down, i.e., the bound approaches
the theoretically optimal value of σk+1 with increasing q.

26 | Randomized Singular Value Decomposition

Algorithm 1 A randomized SVD algorithm.
function [U, Σ, V] = rsvd(A, k, p, q)

(1) l = k + p slight oversampling
(2) Ω = rnorm(n, l) generate sampling matrix
(3) Y = AΩ draw range samples
(4) for j = 1, . . . , q perform optional subspace iterations
(5) [Q,∼] = qr(Y)
(6) Z = A⊤Q

(7) [Q,∼] = qr(Z)
(8) Y = AQ

(9) end for

(10) [Q,∼] = qr(Y) form orthonormal samples matrix
(11) B = Q⊤A project to smaller space
(12) [Ũ, Σ, V] = svd(B) compact SVD of smaller matrix B

(13) U = QŨ recover left singular vectors
(14) U = U(:, 1 : k) extract k components
(15) Σ = Σ(1 : k, 1 : k) extract k components
(16) V = V(:, 1 : k) extract k components

2.3 Principal Component Analysis

Originally formulated by Pearson (1901), principal component analysis
(PCA)2 still plays an important role in modern statistics due to its
simple geometric interpretation. Specifically, it is widely used for feature
extraction and visualization of big datasets comprising many interrelated
variables. A classical statistical text on PCA is Jolliffe (2002), while
more modern views and extensions are presented by Hastie et al. (2009),
Murphy (2012) and Izenman (2008). Further, we want to point out the
excellent review by Abdi and Williams (2010) and the recent seminal
paper on linear dimensionality reduction by Cunningham and Ghahramani
(2015).

2Also commonly known as Hotelling transform, Karhunen Loève, or proper orthog-
onal decomposition (POD).

2.3 Principal Component Analysis | 27

2.3.1 Conceptual Overview

The essential idea of PCA is to find a new set of uncorrelated variables
that retain most of the information (total variation) present in the data.
Figure 2.4 illustrates this for a two-dimensional example. The upper
plot shows some fairly correlated data. The arrows indicate the principal
directions of the data. It can be seen that the first arrow points into the
direction which explains most of the variance, while the second arrow
is orthogonal to the first one. Together, they span a new coordinate
system so that the first axis accounts for most of the variance and the
second for the remaining variance in the data. The lower plot shows
the original data in this new coordinate system, represented by a new
set of uncorrelated variables the so called principal components. The
values of these new variables are called principal component scores or
coordinates. The histograms indicate that most information (variation)
is now captured by just the first principal component (PC).

To be more formal, assume a data matrix X ∈ Rn×p with n observa-
tions and p variables (column-wise, mean-centered). Then, the principal
components can be expressed as a linear combination

zi = Xwi, (2.8)

where zi ∈ Rn denotes the i’th principal component and the i’th principal
direction is represented by the vector wi ∈ Rp, where the elements of
wi = (w1, ..., wp)⊤ are the corresponding principal component coefficients
or weights.

In summary, we seek that the first principal component explains most
of the total variation in the data. Subsequent PCs are required to be
orthogonal to the previous components, and capturing the remaining vari-
ance in descending order. Mathematically, this problem can be formulated
either as a least square minimization or as a variance maximization prob-
lem (Cunningham and Ghahramani, 2015). The two views are illustrated
in Figure 2.5. Geometrically, the relationship between the two approaches
can be explained by utilizing the Pythagorean theorem (Jolliffe, 2002).
Specifically, the total variance equals the sum of the explained and un-
explained variance, as illustrated in Figure 2.6. Thus, both views are

28 | Randomized Singular Value Decomposition

Fig. 2.4 Illustration of PCA seeking to find a new set of uncorrelated
variables. The top plot shows the data and its two principal directions are
shown. The bottom plot shows the new principal component variables,
indicating that the first component accounts for most of the variation in
the data.

equivalent and boil down to an eigenvalue problem (Murphy, 2012). Here,
we follow the latter approach, i.e., maximizing the variance of the first
principal component subject to the normalization constraint ∥w∥2

2 = 1 as
follows

w1 = argmax
∥w∥2

2=1
VAR(Xw) ∝ argmax

∥w∥2
2=1
∥Xw∥2

2, (2.9)

where VAR denotes the variance of a random variable. The last term can
then be expanded as

w1 = argmax
∥w∥2

2=1
w⊤(X⊤X)w. (2.10)

2.3 Principal Component Analysis | 29

Maximize
variance

Minimize
residuals

Fig. 2.5 Principal component analysis can be formulated either as a
variance maximization or as a least square minimization problem. Both
views are equivalent.

origin

data point

projection

total
variance unexplained

variance

explained
variance

principal component

Fig. 2.6 Geometrical relationship between the two views of PCA. From
the Pythagorean theorem it follows that the principal components can be
obtained by either maximizing the variance or minimizing the unexplained
variance (squared residuals).

Considering that we constrained ∥w∥2
2 = w⊤w = 1 to be a unit vector,

Eq. (2.10) can be rewritten as

w1 = argmax
w

w⊤Cw
w⊤w

, (2.11)

where C is a symmetric positive definite matrix, e.g., the covariance or
correlation matrix. Specifically, the sample covariance matrix is defined
as

C = 1
n− 1X⊤X. (2.12)

Finally, the method of Lagrange multipliers can be used to solve the
problem

L(w1, λ1) = max
w1,λ1

(w⊤
1 Cw1 − λ1(w⊤

1 w1 − 1)), (2.13)

30 | Randomized Singular Value Decomposition

which leads to the well known eigenvalue problem

Cw1 = λ1w1. (2.14)

Hence, the first principal direction for the mean centered matrix X is
given by the dominant eigenvector w1. More generally, the principal
directions of the covariance matrix C are the columns of the eigenvector
matrix W ∈ Rp×p and the corresponding eigenvalues λ are the diagonal
elements of Λ ∈ Rp×p. Interestingly, the eigenvalues express exactly the
amount of variation explained by the principal components

CW = ΛW. (2.15)

More compactly, we can compute the principal components Z ∈ Rn×p as

Z = XW. (2.16)

Hence, the matrix W can also be interpreted as a projection matrix that
maps the original observations to the new coordinates in the eigenspace.
Since the eigenvectors have unit norm, the projection should be purely
rotational without any scaling; thus, the matrix W is also denoted as a
rotation matrix. However, we want to stress that the term ‘loading’ in
general refers to the scaled eigenvectors

L = WΛ0.5 (2.17)

which, in some situations, provide a more insightful interpretation of the
principal components.3 The loading matrix L ∈ Rn×p has the properties:

• The squared column sums equal the eigenvalues.

• The squared row sums equal the amount of a variable’s variance.

In practice, we are often interested in a useful low-dimensional rep-
resentation to reveal the coherent structure of the data. However, the
number of principal components to retain is subtle and often domain

3Technically, the eigenvectors can be seen as direction cosines, while the corre-
sponding eigenvalues describe the magnitude. By construction, the loading matrix
aggregates both.

2.3 Principal Component Analysis | 31

specific. Many different heuristics, like the scree plot, have been pro-
posed (Jolliffe, 2002). A mathematically more refined approach is the
method of the optimal hard threshold for singular values, which was
recently introduced by Gavish and Donoho (2014).

Note that the analysis of variables, which are measured in different
units, can be misleading and cause undesirable interpretations. This is
because the eigenvectors are not scale invariant. Thus, it is favorable to
use the correlation matrix instead of the covariance matrix in general.

The singular value decomposition to compute PCA. In practice
the explicit computation of the covariance or correlation matrix for massive
datasets can be expensive. A more computationally efficient approach to
compute the principal components is the singular value decomposition,
which avoids the (often) costly computation of the Gram matrix X⊤X.
Specifically, the eigenvalue decomposition of the inner and outer dot
product of X = UΣV⊤ can be related to the singular value decomposition
as follows

X⊤X = (VΣU⊤)(UΣV⊤) = VΛV⊤ (2.18a)

XX⊤ = (UΣV⊤)(VΣU⊤) = UΛU⊤ (2.18b)

where the eigenvalues Λ are equal to the squared singular values Σ2, i.e.,
Λ = Σ2. The eigenvectors of XX⊤ are given by the left singular vectors
U and the eigenvectors of X⊤X are given by the right singular vectors
V of the matrix X. Thus, from the SVD of X we recover the rotation
matrix W and eigenvalues Λ of the covariance matrix C as Λ = 1

n−1Σ2

and W = V. Moreover, the principal component scores can be computed
as

Z = XW = UΣV⊤W = UΣ. (2.19)

2.3.2 Randomized Algorithm

The information in the data is often explained by just the first few
dominant principal components, and thus the randomized singular value
decomposition provides an efficient and fast algorithm for computing
the first k principal components. This approach is denoted randomized

32 | Randomized Singular Value Decomposition

principal component analysis (rPCA) as introduced by Rokhlin et al.
(2009), and Halko et al. (2011a). See also Szlam et al. (2014) for some
interesting implementation details. However, instead of using Algorithm 1
directly, we use a slightly modified Algorithm. Instead of computing
the SVD of B, the eigendecomposition of the smaller BB⊤ matrix is
computed. The concept is depicted in Figure 2.7.

X Wk, Λk

Q

BB⊤ W̃k, Λk

via svd()

via eigen()

[Q,∼] = qr(AΩ)

B = Q⊤A

Eq. (2.26)

Data Decomposition

‘B
ig

’
‘S

m
al

l’

Fig. 2.7 Conceptual architecture of the randomized principal component
analysis. The data are first compressed via right multiplication by a
sampling matrix Ω, and a natural basis Q is formed. Then, the smaller
matrix B is derived. Next, the eigenvalue decomposition of the outer
product BB⊤ is computed. Finally, the rotation matrix Wk may be
reconstructed from the compressed rotation matrix W̃k by the expression
in Eq. (2.5).

Specifically, for use in PCA, we compute the approximate randomized
low-rank eigenvalue decomposition of X⊤X given the rectangular mean
centered matrix X. Note that if X = UΣV⊤, then

X⊤X = VΣ2V⊤ ≈ VkΣ2
kV⊤

k , (2.20)

and
XX⊤ = UΣ2U⊤ ≈ UkΣ2

kU⊤
k . (2.21)

2.4 Robust Principal Component Analysis | 33

Performing such an eigendecomposition for an m× n matrix with many
columns would be expensive, since X⊤X is n×n. On the other hand, the
first k singular vectors and values of X are approximately captured by

B = Q⊤X, (2.22)

where Q is such that
QQ⊤X ≈ X. (2.23)

The l × n matrix B could still be large, so instead we can work with the
l× l matrix BB⊤. Notice that if B = ŨΣV⊤, which we do not compute,
then

BB⊤ = ŨΣ2Ũ⊤. (2.24)

Now, suppose that we instead construct the eigendecomposition of

BB⊤ = W̃ΛW̃⊤. (2.25)

Then, we note that from A = UΣV⊤ it follows that V⊤ = Σ−1U⊤A.
Further, we have that Ũ = W̃, and thus the eigenvectors (right singular
vectors) are approximately recovered via

W = V = B⊤W̃Λ−0.5. (2.26)

The procedure is summarized in Algorithm 2.

2.4 Robust Principal Component Analysis

2.4.1 Conceptual Overview

In the previous two sections we have summarized two closely related meth-
ods for dimensionality reduction, namely the singular value decomposition
and principal component analysis. In Section 2.6, we show that these
two methods can be used for noise reduction/removal, if the data are
corrupted by independent identically distributed (i.i.d.) Gaussian noise,
and if the signal-to-noise ratio is sufficiently large. However, in many
practical applications we face data with arbitrarily corrupted observations,

34 | Randomized Singular Value Decomposition

Algorithm 2 A randomized PCA algorithm.
function [Λ, W] = reigen(X, k, p, q)

(1) l = k + p slight oversampling
(2) Ω = rnorm(n, l) generate sampling matrix
(3) Y = XΩ draw range samples
(4) for j = 1, . . . , q perform optional subspace iterations
(5) [Q,∼] = qr(Y)
(6) Z = X⊤Q
(7) [Q,∼] = qr(Z)
(8) Y = XQ
(9) end for
(10) [Q,∼] = qr(Y) form orthonormal samples matrix
(11) B = Q⊤X project to smaller space
(12) BBt← BB⊤ compute outer product
(13) BBt← 0.5 ∗ (BBt + BBt⊤) ensure symmetry
(14) [Λ, W̃] = eigen(BBt) compact eigendecomposition
(15) W = B⊤W̃Λ−0.5 recover right singular vectors
(16) W = W(:, 1 : k) extract k components
(17) Λ = Λ(1 : k, 1 : k) extract k components

e.g., shadows in images or moving objects in videos. In this case the
resulting low-rank approximations can be poor, even if only a very few
observations are corrupted. Figure 2.8 presents a toy example of such
a possible situation. Subplot (a) shows a grossly corrupted data matrix
as the superposition of a half torus (b) and spike noise (c). Specifically,
the corrupted data matrix here is superimposed of a low-rank component
(r = 3) and a sparse component. The question arises, whether a corrupted
data matrix A ∈ Rm×n can be robustly separated into a low-rank matrix
L ∈ Rm×n and sparse matrix S ∈ Rm×n

A = L + S (2.27)

so that S captures the perturbations. Indeed, Candès et al. (2011) proved
that it is possible to exactly separate such a data matrix into both
its low-rank and sparse components, under rather broad assumptions.
This is achieved by solving a convenient convex optimization problem,
called principal component pursuit (PCP). The objective is to minimize
a weighted combination of the nuclear norm ∥ · ∥∗ := ∑

i σi (sum of the

2.4 Robust Principal Component Analysis | 35

(a) Grossly corrupted
torus.

(b) Original half torus. (c) Sparse (spiked)
noise.

Fig. 2.8 Toy example of a grossly corrupted data matrix. Subplot (a)
shows the perturbed torus as a superposition of the half torus (b) and
spike noise (c).

singular values) and and the ℓ1 norm ∥ · ∥1 := ∑
ij |mij| as follows

min
L,S
∥L∥∗ + γ∥S∥1 subject to A− L− S = 0. (2.28)

The arbitrary balance parameter, γ > 0, is typically chosen to be γ =
1/

√
max(n, m). Hence, the key to achieving such a matrix decomposition

is ℓ1 optimization. The PCP concept is mathematically sound and has
been applied successfully to images and videos (Wright et al., 2009). More
generally the concept of robustly separating corrupted matrices is denoted
as robust principal component analysis (RPCA). The method achieves an
exact separation of the corrupted half torus into the low-rank and sparse
components, shown in Figure 2.9. The reconstruction error is nearly
negligible, while in comparison the low-rank SVD approximation contains
substantial defects. Its remarkable ability to separate high-dimensional
matrices into low-rank and sparse component makes robust principal
component analysis an invaluable tool for data science.

36 | Randomized Singular Value Decomposition

(a) Low-rank
component L.

(b) Sparse component
S.

(c) SVD
approximation.

Fig. 2.9 Subplot (a) and (b) show the separation of the grossly corrupted
torus in Figure 2.8 using robust PCA. The low-rank component captures
the original torus faithfully, and the reconstruction error is as low as
0.0003%. In contrast, the approximation performance of the the low-rank
SVD is poor, shown in subplot (c). The reconstruction error is about
1.81%.

However, its biggest challenge is computational efficiency, especially
given the iterative nature of the optimization required. Bouwmans et al.
(2016b) have identified more then 30 related algorithms to the original
PCP approach, aiming to overcome the computational complexity and to
generalize the original algorithm.

2.4.2 Randomized Algorithm

The inexact augmented Lagrange multiplier method (Lin et al., 2011)
is a popular choice, due to its favorable computational properties. This
method essentially formulates the following Lagrangian function

L(L, S, Y, µ) = ∥L∥∗ +γ∥S∥1 + ⟨Y, A−L−S⟩+ µ

2∥A−L−S∥2
F (2.29)

where µ is a positive scalar and the matrix Y is the Lagrange multiplier.
We omit here a detailed discussion of the computational steps required to
obtain the decomposition, and refer instead to Lin et al. (2011). However,
the singular value decomposition lies at the heart of the algorithm, and
accounts for the majority of the computational load. Now, replacing the
deterministic by the randomized SVD algorithm leads to substantial com-
putational savings. Further, the randomized algorithm has the interesting

2.5 The rsvd Package | 37

property that it introduces a natural regularization step through the
oversampling parameter p. Thus, the convergence is often more smooth.

2.5 The rsvd Package

The presented randomized matrix algorithms are becoming increasingly
popular and implementations are now available in a variety of program-
ming languages, and machine learning libraries (IBM Reseach Division,
2014; Liutkus, 2014; Okanohara, 2011; Pedregosa et al., 2011; Voronin
and Martinsson, 2015). However, as far as we are aware, there has been
no previous package for the programming language R. The rsvd package
aims to fill the gap, and is available on the Comprehensive R Archive
Network (CRAN). Specifically, the package provides the following core
functions:

• Randomized singular value decomposition: rsvd().
• Randomized principal component analysis: rpca().
• Randomized robust principal component analysis: rrpca().

For installation instructions visit the GIT repository
https://github.com/Benli11/rSVD. See also the package manual,
as all package functions are fully documented.

The interface of the rsvd() and rpca() functions is designed similar
to the corresponding R base functions svd() and prcomp(). The latter
function (based on the singular value decomposition) is the preferred
routine for computing the principal component analysis in R. This is
because, using the SVD is computationally more efficient in general
than using the eigenvalue decomposition, like the princomp() function
does (Venables and Ripley, 2002). The rpca() function can be used
as a plug-in function for the prcomp() functions to benefit of the fast
randomized algorithm, while providing the familiar summary statistics
and plots. In addition, also fancy plot functions are provided to visualize
the results of the principal component analysis. The rrpca() functions
computes the robust principal component analysis using the augmented
Lagrange multiplier method Lin et al. (2011). This function is designed so
that the user can choose between either the randomized or deterministic
SVD algorithm. All functions are based on the underlying LAPACK

https://github.com/Benli11/rSVD

38 | Randomized Singular Value Decomposition

software package (Anderson et al., 1999). These routines are numerical
stable and highly accurate (full double precision).

2.5.1 The rsvd() Function

The base function for computing the SVD in R is the function svd().
This function provides an interface to the underlying LAPACK SVD rou-
tines (Anderson et al., 1999). These routines are known to be numerical
stable and highly accurate, but computationally demanding. Specifi-
cally, the computational time required to approximate large-scale data
is tremendous. In many applications, the full SVD is not necessary;
only the truncated factorization is required. Thus, an alternative for
constructing low-rank approximations of large-scale data are partial sin-
gular value decomposition algorithms. As far as we are aware, only the
svd (Korobeynikov and Larsen, 2016) and Rspectra (Qiu et al., 2016)
packages provide competitive functions for computing the partial singular
value decomposition in R. The former package provides a wrapper for the
PROPACK SVD algorithm (Larsen, 1998). The latter package is inspired
by the software package ARPACK (Lehoucq et al., 1998) and provides a
fast partial SVD and eigendecomposition algorithm. Both packages are
in particular powerful for computing the singular value decomposition of
large and sparse or structured matrices.

The function rsvd provides a efficient routine for computing the
partial singular value decomposition using Algorithm 1. Specifically, the
randomized singular value decomposition function rsvd() gains a very
significant speedup when one seeks a low-rank approximation with a small
rank relative to the ambient matrix dimension. The interface of the rsvd()
functions follows the base svd() function

obj <- rsvd(A, k = NULL, nu = NULL, nv = NULL, p = 10, q = 1,
sdist = "unif", vt = FALSE)

Thus, it can be simply used as plug-in function. The first mandatory
argument A passes the m× n input data matrix. The second argument k
sets the target rank, and it is assumed that k is smaller then the ambient
dimensions of the input matrix k ≤ min(m, n). If no target rank is
specified, then the SVD is computed using the deterministic algorithm.

2.5 The rsvd Package | 39

Similar to the svd() function the arguments nu and nv can be used to
specify the number of left and right singular vectors to be computed. Most
important are the two tuning parameters p and q in order to control the
accuracy of the algorithm. The former parameter is used to oversample
the basis, and is set by default to p=10. This setting guarantees a good
basis with high probability in general. The parameter q can be used to
compute additional power iterations (subspace iterations). By default
this parameter is set to q=1 which shows a good performance in our
numerical experiments. The default values show a optimal trade-off
between speed and accuracy in standard situations. If the singular value
spectrum of the input matrix is slowly decaying, more power iterations
are desirable. However, in practice we have not encountered a situation
which requires more then three subspace iterations (q > 3). Further, the
rsvd() routine allows to choose between a Gaussian and uniform test
matrix. The different options can be selected via the optional argument
sdist=c("normal", "uniform"). While there is no significant practical
difference in terms of accuracy, the generation of uniform samples is
slightly more computationally efficient. The resulting model object, obj,
is itself a list. It contains the following components:

• d: k-dimensional vector containing the singular values.
• u: m× k matrix containing the left singular vectors.
• v: n×k matrix containing the right singular vectors. Note, that v is

not returned in its transposed form as it often in other programing
languages.

More details are provided in the corresponding documentation, see ?rsvd.

2.5.2 The rpca() Function

The base function for computing the PCA in R is the function prcomp(),
which is based on the singular value decomposition. This function is
more efficient in general then using the eigenvalue decomposition, like the
princomp() function does (Venables and Ripley, 2002).

The rpca() function provides an efficient routine for computing the
dominant principal components using either Algorithm 1 or Algorithm 2.

40 | Randomized Singular Value Decomposition

The interface of the rpca() function is natural and follows the prcomp()
function

obj <- rpca(A, k = NULL, center = TRUE, scale = TRUE,
loading = FALSE, retx = FALSE, svdalg = "auto",
p = 10, q = 1, ...)

The first mandatory argument A passes the m×n input data matrix. The
second argument k sets the target rank, and it is assumed that k is smaller
then the ambient dimensions of the input matrix k ≤ min(m, n). If no
target rank is specified, then the PCA is computed using a deterministic
algorithm, i.e., it is using the same algorithm as the prcomp() function
does. By default it is not assumed that the input matrix is centered or
scaled. This is done internally, and can be controlled via the arguments
center and scale. By default both parameters are set to true, so that the
analysis is based on the correlation matrix. The covariance matrix can be
used instead, by setting scale = FALSE. The argument loading can be set
to TRUE in order to unit scale the eigenvectors, i.e., scale the eigenvectors
by the square root of the eigenvalues. The argument retx is indicating
whether the rotated variables should be returned. This is required, for
instance, to display the biplot. The argument svdalg allows the user to
choose between the underlying Algorithms 1 and 2. From a computational
perspective, the latter algorithm is slightly favorable for large matrices. By
default the rpca() routine automatically chooses between the algorithms,
and if k is larger then k > min(n, m)/1.5, then the deterministic SVD
algorithm svd() is used. This is, because the randomized algorithms have
no computational advantage over the deterministic SVD algorithm, if the
target rank is relatively large compared to the ambient dimensions of the
input matrix. The resulting model object, obj, is a list and contains the
following components:

• rotation: n× k matrix containing the rotations (eigenvectors).
• eigvals: k-dimensional vector containing the eigenvalues.
• sdev: k-dimensional vector containing the standard deviations of

the principal components, i.e., the square root of the eigenvalues.
• x: if retx=TRUE, then a m×k matrix containing the scores (rotated

data) is returned.

2.5 The rsvd Package | 41

• center, scale: the numeric centering and scalings used (if any).

Utility functions

Like prcomp(), the rpca() routine comes with various generic functions
that can be used to summarize and display the model information.

The summary() function provides information about the explained
variance, standard deviations, proportion of variance as well as the cumu-
lative proportion of the computed principal components. These results
can also be informatively displayed using the corresponding plot() func-
tion. In addition to the standard plot functions, also pretty plots are
provided using ggplot (Wickham, 2009).

The print() function can be used to print the rotations (eigenvectors).
Further a correlation plot can be displayed using the ggcorplot()

function as well as a biplot ggbiplot().

2.5.3 The rrpca() Function

Robust principal component analysis (RPCA) is a method for the robust
separation of a data matrix into a low-rank component L and a sparse
component S. The rrpca() function is implementing a randomized routine
based on the inexact augmented Lagrange multiplier method (IALM).
Specifically, it is replacing the deterministic by the randomized SVD.
While the randomized algorithm is faster, it also has the effect of implicitly
regularizing the approximation. The interface of the rrpca() function is
as follows

obj <- rrpca(A, k = NULL, lamb = NULL, gamma = 1.25,
rho = 1.5, maxiter = 50, tol = 0.001, svdalg = "auto",
p = 10, q = 1, trace = FALSE, ...)

The first mandatory argument A passes the m×n input data matrix. The
second argument k sets the target rank, and it is assumed that k is smaller
then the ambient dimensions of the input matrix k ≤ min(m, n). If, no
target rank is specified, then k is set equal to 2. The arguments lamb,
gamma and rho are tuning parameters. These parameters are described
in detail in (Lin et al., 2011), and we recommend using the default values.

42 | Randomized Singular Value Decomposition

The arguments maxiter and tol can be used to control the maximum
numbers of iterations and the desired approximation accuracy. The
argument trace can be set to TRUE to print the progress of the iterative
process. Further the argument svdalg can be used to chose between the
deterministic and the randomized SVD algorithm, i.e., svdalg = c("rsvd",
"svd"). The resulting model object, obj, is a list and contains the following
components:

• L: m× n matrix containing the low-rank component.
• S: m× n matrix containing the sparse component.
• k: integer denoting the target rank used for the final iteration.
• err: vector which contains the Frobenious error achieved in each

iteration.
For more details we refer to the documentation, see ?rrpca.

2.6 Numerical Results

In this section, we demonstrate the usage of randomized matrix algorithms
within the programing language R. We illustrate the performance of our
routines using several standard examples and compare the results to the
corresponding deterministic R functions. Section 2.6.1 starts with a classic
example showing how the randomized singular value decomposition func-
tion rsvd() can be used for image compression. Section 2.6.2 demonstrates
the randomized principal component analysis routine rpca() for computing
eigenfaces. Section 2.6.3 shows how the randomized robust principal com-
ponent analysis function rrpca() can be used for foreground/background
separation of videos. Finally, Section 2.6.4 investigates the performance
of the rsvd() function, showing speed-ups ranging from 5 to 150 times.

A workstation with an Intel Xeon CPU E5-2620 2.4GHz, 32GB DDR3
memory, and the operating-system Ubuntu 16.04 LTS is used for all
following computations and the microbenchmark package is utilized for
evaluating the computational runtime of the algorithms (Mersmann et al.,
2015).

2.6 Numerical Results | 43

2.6.1 SVD Example: Image Compression

The singular value decomposition can be used to obtain a low-rank
approximation to high-dimensional data. Image compression is a simple
and illustrative example of this.4 Although images often feature a high-
dimensional ambient space, the underlying structure can be represented by
a very sparse model. This means that most natural images can be faithfully
recovered from a relatively small set of basis functions. For demonstration
a 1600× 1200 grayscale image is used in the following. A grayscale image
may be thought of as a real-valued matrix A ∈ Rm×n, where m and n are
the number of pixels in the vertical and horizontal directions, respectively.
To compress the image we must first decompose the image. The singular
vectors and values provide a hierarchical representation of the image in
terms of a new coordinate system defined by dominant correlations within
the image. Thus, the number of singular vectors used for approximation
poses a trade-off between the compression rate (i.e., the number of singular
vectors to be stored) and the image details.

We use the rsvd() function to compute the first k = 100 singular
values and vectors. Specifically, we use the default settings for the
oversampling parameter p = 10, while varying the number of power
iterations. Figure 2.10 presents the results. First, we see that the
truncated deterministic svd() function achieves an error as low as 0.121.
Indeed, the result illustrates that in general natural images feature a very
compact representation. Here, the normalized root mean squared error
(NRMSE) is used to quantify the error, which is a common measure for
the reconstruction quality of images (Fienup, 1997).

Next, we see that the rsvd() routines achieves near-optimal approxima-
tions. By visual inspection no significant difference can be seen between
(b) and (d,e,f). However, it can be seen that the quality slightly suffers by
excluding the computation of at least one subspace iteration (c). Using
the default tuning parameters, i.e., p = 10, and q = 1 the reconstruction
error is about 0.125. However, the randomized algorithm is substantially
faster. Specifically, we gain a speedup by a factor of about 7.

4Among the many strategies to compress or denoise images, the singular value
decomposition is one prominent tool, although it is certainly not the most effective.

44 | Randomized Singular Value Decomposition

The results are summarized in Table 2.1. In addition, here the median
elapsed run-time for other fast SVD algorithms in R are shown. The
svds() function of the Rspectra package achieves a speedup of about 4.2,
while the propack.svd() function only achieves a marginal speedup of
about 1.1. Note, that the computational gain of the randomized algorithm
becomes more pronounced with increased matrix dimension, e.g., images
with higher resolution.

Table 2.1 Summary of algorithms runtime and errors. The randomized rou-
tines achieve a substantial speedup, while attaining similar reconstruction
errors with q ≥ 1.

Method Parameters Time (s) Speedup Error

svd() 1.05 - 0.121
propack.svd() neig=100 0.94 1.11 0.121
svds() k=100 0.25 4.21 0.121
rsvd() k=100, q=0 0.08 12.80 0.163

k=100, q=1 0.15 7.05 0.125
k=100, q=2 0.22 4.86 0.122
k=100, q=3 0.29 3.62 0.121

Figure 2.11 shows the corresponding singular values and it can be
seen that the randomized algorithm faithfully captures the true singular
values with q = {1, 2} subspace iterations. However, without computing
subspace iterations, the singular values decay slightly.

The singular value decomposition is also a numerically reliable tool
for extracting a desired signal from noisy data. The central idea is that
the small singular values mainly represent the noise, while the dominant
singular values represent a filtered (less noisy) signal. Thus, the low-rank
SVD approximation can be used to denoise data matrices. To demonstrate
this concept, the original image is first corrupted with additive white
noise. Then, the underlying image (signal) is approximated using again
the first k = 100 singular vectors, illustrated in Figure 2.12. The NRMSE
indicates an improvement by about 15%.

2.6 Numerical Results | 45

(a) Original image. (b) SVD.
(NRMSE=0.121)

(c) rSVD using q = 0.
(NRMSE=0.163)

(d) rSVD using q = 1.
(NRMSE=0.125)

(e) rSVD using q = 2.
(NRMSE=0.122)

(f) rSVD using q = 3.
(NRMSE=0.121)

Fig. 2.10 Image compression using the SVD. Subplot a) shows the original
image. Subplot (b) shows the reconstructed image using the dominant
k = 100 singular vectors obtained via the deterministic SVD algorithm.
The following subplots (c,d,e,f) show the approximation results using
the randomized SVD algorithm. The reconstruction quality using q = 1
subspace iterations is insignificant compared to the deterministic SVD
algorithm.

46 | Randomized Singular Value Decomposition

2

3

4

5

6

0 25 50 75 100
k

Lo
g−

sc
al

ed
 s

in
gu

la
r

va
lu

es
SVD, k=100
rSVD, k=100, p=10, q=0
rSVD, k=100, p=10, q=1
rSVD, k=100, p=10, q=2

Fig. 2.11 Dominant log-scaled singular value spectrum of the image ‘tiger’.

2.6.2 PCA Example: Eigenfaces

One of the most striking demonstrations of PCA are eigenfaces, first
studied by Kirby and Sirovich (1990). The aim is to extract the most
dominant correlations between different faces from a large set of facial
images. Specifically, the resulting columns of the rotation matrix (i.e.,
the eigenvectors) represent ‘shadows’ of the faces, the so-called eigenfaces.
Specifically, the eigenfaces reveal both inner face features (e.g., eyes, nose,
mouth) and outer features (e.g., head shape, hairline, eyebrows). These
features can then be used for facial recognition and classification as first
shown by Turk and Pentland (1991).

In the following we use the downsampled cropped Yale face database
B (Georghiades et al., 2001). The dataset comprises 2410 grayscale images
of 38 different people, cropped and aligned. For computational convenience
the 96× 84 faces images are stored as column vectors. We approximate
the first k = 20 dominant eigenfaces using the rpca() function. Here, the
analysis is performed on the correlation matrix by setting the argument
scale = TRUE. The summary (using summary()) is as follows

R> PC1 PC2 PC3 ...
R> Explained variance 2901.539 2706.699 388.053 ...
R> Standard deviations 53.866 52.026 19.699 ...
R> Proportion of variance 0.360 0.336 0.048 ...
R> Cumulative proportion 0.360 0.695 0.744 ...

2.6 Numerical Results | 47

(a) Noisy image.
(NRMSE=0.351)

(b) SVD.
(NRMSE=0.200)

(c) rSVD using q = 0.
(NRMSE=0.268)

(d) rSVD using q = 1.
(NRMSE=0.207)

(e) rSVD using q = 2.
(NRMSE=0.203)

(f) rSVD using q = 3.
(NRMSE=0.202)

Fig. 2.12 Image denoising using the singular value decomposition. Both
the deterministic and randomized SVD reduce the error by about 15%.

48 | Randomized Singular Value Decomposition

R> Eigenvalues 2901.539 2706.699 388.053 ...

Just the first 3 PCs explain about 74% of the total variation in the data,
while the first 20 PCs explain more then 88%. The summary can be
visualized, as shown in Figure 2.13.

0

1000

2000

3000

5 10 15 20

PCs

E
xp

la
in

ed
 v

ar
ia

n
ce

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

PCs

C
u

m
m

u
la

ti
ve

 p
ro

p
o

rt
io

n

0.0

0.1

0.2

0.3

5 10 15 20

PCs

P
ro

p
o

rt
io

n
 o

f
va

ri
an

ce

Fig. 2.13 The upper plot shows the explained variance (eigenvalues) in
decaying order. The middle plot shows the cumulative proportion of the
explained variance, and the lower plot shows the proportion explained by
the principal components.

Finally, the eigenvectors can be visualized as eigenfaces, e.g., the first
eigenvector (eigenface) is displayed as an image. Figure 2.14 shows the
first six dominant eigenfaces, computed with both the prcomp() and the
rpca() function. The eigenfaces encode the facial features as well as the

2.6 Numerical Results | 49

illumination. To better contextualize the key features different color maps
can be used. The first eigenface characterizes the facial shapes, while
the second shows illumination variations. The third and fifth eigenface
feature the nose and eyebrows. Note that the color maps for some of
the eigenfaces are flipped. This is because the signs of the columns
of the rotation matrix are arbitrary and differ between different PCA
implementations.

(a) Eigenfaces. (b) Colored eigenfaces.

(c) Randomized eigenfaces. (d) Colored randomized eigenfaces.

Fig. 2.14 Dominant six eigenfaces computed with both the prcomp() and
rpca() functions. Subplot (a) and (c) show the grayscale and (b) and
(c) the colored eigenfaces using the colormap cm.colors(255). Note that
some of the randomized eigenfaces are sign flipped.

Figure 2.15 shows the standard deviations (eigenvalues) for the
prcomp() and rpca() function. The randomized algorithm faithfully
approximates the eigenvalues. The corresponding computational timings
and errors are summarized in Table 2.2. The randomized algorithm
achieves a speedup of about 10, while attaining a similar approximation
error.

50 | Randomized Singular Value Decomposition

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

s prcomp
rPCA, k=20, p=10, q=1
rPCA, k=20, p=10, q=2

Fig. 2.15 Standard deviations for the deterministic and randomized PCA
algorithm.

Table 2.2 Computational time for the deterministic and randomized PCA
algorithm. The randomized algorithms achieves an about 10 fold speed-up,
while attaining near-optimal results.

Method Parameters Time (s) Speedup Error

prcomp() 19.13 - 0.228
rpca() k=20, q=1 1.90 10.05 0.232

k=20, q=2 2.11 9.08 0.229

2.6.3 Robust PCA Example: Foreground/Back-
ground Separation

In the following we demonstrate the randomized RPCA algorithm for
video foreground/background separation, a problem studied widely in the
computer vision community (Bouwmans and Zahzah, 2014; Bouwmans
et al., 2016b). Background modeling is a fundamental task in computer
vision to detect moving objects in a given video stream from a static
camera. The key idea is that dynamic pixels in successive video frames
are considered foreground objects, whereas static pixels are considered
part of the background. Thus the foreground can be found in a video
by removing the background. However, background estimation is a chal-
lenging task due to the presence of foreground objects and variability in
the background itself, e.g., waving trees, water fountains or illumination
changes. One way to tackle this challenge is to exploit the low-rank struc-
ture of the background, while considering foreground objects as outliers.

2.6 Numerical Results | 51

A solution to this problem is provided by robust principal component
analysis, which separates a matrix into a low-rank (background) and
sparse component (representing the activity in the scene).5 An example
surveillance video (Goyette et al., 2012) containing 200 grayscale frames
of size 176 × 144 is used in the following. Each frame is stored as a
flattened column vector of the input data matrix, and we assume that the
background is the low-rank component of this matrix. This assumption
is reasonable since the camera is fixed and the background only gradually
changes over time.

The rrpca() function returns two arrays: L and S. The first array
contains the low-rank component and the latter the sparse component.
Thus, the results can be illustrated by displaying an example frame of both
arrays, shown in Figure 2.16. It clearly can be seen that the algorithm
treats the foreground objects as sparse components, representing outlying
entries in the data matrix. Thus the algorithm faithfully separates
the video into its two components. Figure 2.17 shows the convergence

(a) Video frame. (b) Low-rank
component L.

(c) Sparse component
S.

Fig. 2.16 Foreground/background separation of a video using rrpca().
Subplot (a) shows the actual video frame, which is separated into its two
components. The low-rank component represents the background, and
the sparse component captures the foreground objects.

performance of the rrpca() function using both the deterministic and the
randomized SVD algorithm. Without subspace iterations, the randomized
algorithm converges after about 22 iterations. Using the deterministic
SVD algorithm requires slightly fewer iterations, however, each iteration
is substantially more expensive. The timings are shown in Table 2.3.

5A general drawback of RPCA methods is that they rely on one or more tuning
parameters, although, the default values are suitable in general.

52 | Randomized Singular Value Decomposition

Interestingly, the convergence profile of the randomized algorithm can
be often smoother. This is due to the implicit regularization of the
oversampling parameter p. Moreover, we stress that the randomized
RPCA algorithm only achieves accurate results if the singular value
spectrum is rapidly decaying, i.e., the data must exhibit low-rank structure.

0.0

0.2

0.4

0 5 10 15 20
Iteration

E
rr

o
r

RPCA k=10

rRPCA k=10, p=5, q=0

rRPCA k=10, p=5, q=1

Fig. 2.17 Convergences of the rrpca() function using both the deterministic
and randomized SVD algorithm.

Table 2.3 Computational time for the deterministic and randomized RPCA
algorithm. Note, that the deterministic algorithm is induced by setting
svdalg="svd".

Method Parameters Time (s) Iterations Error

rrpca() k=10, svdalg="svd" 14.34 18 6.18e-04
rrpca() k=10, p=5, q=0 6.47 22 6.68e-04

k=10, p=5, q=1 7.32 19 5.99e-04

2.6.4 Computational Performance

The time complexity of classic deterministic SVD algorithms is O(mn2),
where it is assumed that m ≥ n. Modern partial SVD algorithms reduce
the time complexity to O(mnk) (Demmel, 1997). Randomized SVD,
as presented here, comes also with asymptotic costs of O(mnk). The
key difference, however, is that the randomized SVD algorithm (without
subspace iterations) requires only two passes over the input matrix. Each

2.6 Numerical Results | 53

additional subspace iteration requires one more pass over the data matrix.
Hence, from a practical point of view, the algorithm is computationally
more efficient.

Figure 2.18 shows the computational evaluation of the base svd(),
as well as the propack.svd() from the svd package, the svds() from the
Rspectra package, and the rsvd() function. Here two different dense
random matrices are presented. In each situation the singular values
decaying linearly from 1 to 0.001. The computational time and the relative
reconstruction errors are computed over a sequence of different target-
ranks k. In particular, the rsvd() function achieves a substantial speedup

(a) Dense matrix of size 2000× 2000.

(b) Dense matrix of size 5000× 2000.

Fig. 2.18 Computational performance of singular value decomposition
routines for dense matrices in R. The left column shows the median
computational time and the right column shows the relative reconstruction
error over varying target-ranks k. The rsvd() outperforms in terms of
the computational time. Further, the error of the rsvd() algorithm can
be controlled by the parameter p and q.

for very low-dimensional approximations of dense matrices. The advantage
of the randomized algorithm becomes pronounced with an increased

54 | Randomized Singular Value Decomposition

matrix dimension. Hence, the randomized SVD algorithm enables the fast
decomposition of large dense data matrices, while achieving competitive
reconstruction errors. It is shown that the reconstruction error can be
improved by performing more subspace iterations. This allows the user
to control the trade-off between computational time and accuracy.

Figure 2.19 shows the computational evaluation on a sparse matrix
with only 5% non-zero elements. The two partial SVD algorithms are
specifically designed for large sparse and structured matrices, and show
here a significant computational improvement over the dense matrix of
the same dimension. Although, the rsvd() algorithm is still competitive,
the advantage of the propack.svd() and svds() functions is notable with
about 1% non-zero elements for computing the dominant singular values
and vectors.

2.7 Conclusion

Due to the tremendous increase of high-dimensional data produced by
modern sensors and social networks, data methods for dimensionality
reduction are becoming increasingly important. However, despite modern
computer power, massive datasets pose a tremendous computational chal-
lenge for traditional algorithms. Probabilistic algorithms can substantially
ease the logistic and computational challenges in obtaining approximate
matrix decompositions. This advantage becomes pronounced with an
increasing matrix dimension. Randomized algorithms are feasible for
even massive matrices where traditional deterministic algorithms fail.
The randomized singular value decomposition is the most prominent and
ubiquitous randomized algorithm. Its popularity is due to the strong the-
oretical error bounds and the advantage that the error can be controlled
by oversampling and subspace iterations.

The R package rsvd provides computational efficient randomized rou-
tines for the singular value decomposition, principal component analysis
and robust principal component analysis. The package is particularly
useful for computing the approximate low rank decompositions when the
rank k is substantially smaller than the matrix dimensions. The routines
are intuitive and the performance evaluation shows that the randomized

2.7 Conclusion | 55

(a) Sparse matrix of size 5000× 2000, with 5% non-zero entries.

(b) Very sparse matrix of size 5000× 2000, with 1% non-zero entries.

Fig. 2.19 Computational performance of singular value decomposition
routines for sparse matrices in R. The left column shows the median
computational time and the right column shows the relative reconstruction
error over varying target-ranks k. The two partial SVD algorithms
propack.svd() and svds() are competitive for computing the dominant
singular values and vectors of large sparse or structured matrices.

algorithm provides an efficient framework to reduce the computational de-
mands of the traditional (deterministic) algorithms. Substantial speedups
are gained over other fast (partial) SVD and PCA implementations in R,
while achieving a competitive reconstruction error.

The applications of the randomized matrix algorithms are ubiquitous
and can be utilized for all methods relying on the computation of (gener-
alized) eigenvalue problems. Future developments of the rsvd package
will apply this concept to compute linear discriminant analysis, principal
component regression, and canonical correlation analysis. Another impor-
tant direction is to provide more efficient routines for large-scale sparse
matrices using the Matrix package (Bates and Maechler, 2016).

Chapter 3

Randomized Dynamic Mode
Decomposition

“Important thing in science is not so much to
obtain new facts as to discover new ways of
thinking about them."

— Sir William Bragg

Note: The work described in this chapter was carried out in collaboration with
Professors J. Nathan Kutz and Steven L. Brunton of University of Washington.
My contributions involve conceptualizing the project idea, implementing the
routines, running the simulations as well as writing the original draft.

3.1 Introduction

The dynamic mode decomposition (DMD) is a modern dimensionality
reduction technique, originally introduced in the field of fluid dynamics
by Schmid (2010) and Rowley et al. (2009). Specifically, the method
attempts to extract dynamic information from dynamical systems based on
a sequence of snapshots (time series of data). Therefore, a decomposition
in space and time is created, as schematically depicted in Figure 3.1. In
contrast to traditional dimensionality reduction methods like principal
component analysis, the DMD finds a set of modes (components) which
contain the spatial structure, but are not orthogonal. While the imposed
orthogonality restrictions of PCA are mathematically convenient, they are
not always empirically plausible. Indeed, PCA often fails to accurately

58 | Randomized Dynamic Mode Decomposition

Fig. 3.1 Illustration of the dynamic mode decomposition for a given
snapshot sequence describing a dynamical system.

capture the temporal behaviors in time series data. Thus, DMD is
capable of providing a set of more physically meaningful modes which are
associated with a damped sinusoidal behavior in time. This is possible
because the DMD integrates both the Fourier transforms and the singular
value decomposition.

Brief Historical Overview

The origins of the dynamic mode decomposition can be traced back
to Koopman (1931). However, it had limited early impact since com-
puters had not yet been invented and only analytic results, for simple
problems, could be obtained. The work of Koopman was revived by
Mezić and co-workers starting in 2004 (Mezić and Banaszuk, 2004),
when both a deep theoretical understanding of dynamical systems theory
and modern computers were available. In short, Koopman’s theory is
a dynamical systems tool that provides complete information about a
nonlinear dynamical system via an associated infinite-dimensional linear
operator. Specifically, it provides a theoretical characterization that is
readily interpretable in terms of standard methods of dynamical systems.
The dynamic mode decomposition is a special case of Koopman’s the-
ory where the so-called Koopman observables are just the state space
itself (Kutz et al., 2016a). Schmid (2010) proposed the DMD architecture
for modeling complex flows, and the connection with Koopman’s theory

3.1 Introduction | 59

was only made theoretically rigorous by the subsequent work of Rowley
et al. (2009). The connection between the works of Mezić, Schmid and
Rowley and their co-workers between 2004-2010 laid the foundations for
DMD as a transformative mathematical architecture.

Innovations and Applications

In the last few years alone, the dynamic mode decomposition has seen
tremendous development in both theory and application. In theory, DMD
has seen innovations around:

• Multi-resolution analysis: Kutz et al. (2016b) proposed the
multi-resolution DMD, which integrates techniques used in multires-
olution analysis. This enables the extraction of DMD modes and
eigenvalues from data sets containing multiple timescales.

• Sparsity: Jovanović et al. (2014) proposed sparsity promoting
techniques as procedures to select DMD modes. Specifically, the
approach uses a ℓ1 norm penalty to identify a smaller set of important
DMD modes.

• Control theory: Proctor et al. (2016) proposed the DMD with
control which is, in particular, designed for data obtained from input
output systems. Specifically, this approach is able to disambiguate
between the underlying dynamics and the effects of actuation.

• Compressive architectures: Brunton et al. (2015) proposed com-
pressive sampling strategies for computing the DMD. They showed
that the DMD modes and eigenvalues can be extracted from heavily
subsampled data.

See also Kutz et al. (2016a) for a comprehensive overview of innova-
tions around the dynamic mode decomposition. In addition to continued
progress in fluid dynamics, the DMD has also been applied to several
new domains including Neuroscience (Brunton et al., 2016), Epidemiol-
ogy (Proctor and Echhoff, 2015), and video processing (Erichson and
Donovan, 2016; Erichson et al., 2016a; Grosek and Kutz, 2014; Kutz et al.,
2015).

60 | Randomized Dynamic Mode Decomposition

Motivation and Overview

Computing the dynamic mode decomposition is computational challeng-
ing, in particular, for high-dimensional data like fluid flows. In order
to ease the computational load the following two probabilistic strategies
have been proposed previously:

(a) Erichson and Donovan (2016), and later Bistrian and Navon (2016)
have presented an algorithm utilizing the randomized singular value
decomposition (rSVD). While this approach is robust to noise, and
reliable, only the computation of the SVD is accelerated. Subse-
quent computational steps involved in computing the DMD remain
relatively expensive. Hence, this approach is not entirely qualified
to handle massive data.

(b) Brunton et al. (2015), and later Erichson et al. (2016a) have pre-
sented the compressed dynamic mode decomposition, an algorithm
which forms a smaller (sketched) sequence of snapshots from a small
number of random linear combinations of the rows of the high-
dimensional sequence of snapshots. Subsequently, the approximate
dynamic modes and eigenvalues are obtained from the sketched
representation. This approach achieves substantial speedups over
(a), and has been shown to be successful for high-performance com-
puting in the area of fluid flows, and video; however, the algorithm
is less reliable, and is relatively sensitive to noise.

In the following, we propose a novel randomized algorithm for com-
puting the near-optimal dynamic mode decomposition. Specifically, we
embed the DMD into the probabilistic framework presented in Chapter
1. This new algorithm achieves considerable speedups over (a) as well as
it is more robust, and reliable then (b). Specifically, the approximation
error can be controlled via oversampling and additional power iterations.
This allows the user to choose a suitable trade-off between computational
time and accuracy.

Section 3.2 briefly reviews the deterministic algorithm for computing
the dynamic mode decomposition. Section 3.3 outlines the compressed
dynamic mode decomposition algorithm. Then, Section 3.4 presents

3.2 Deterministic DMD | 61

the randomized algorithm for computing the DMD. Section 3.5 gives an
overview of the DMDpack package which provides implementations of
the discussed algorithms in Python. Section 3.6 presents numerical results
using the DMDpack package. Finally, concluding remarks and further
research directions are outlined in Section 3.7.

3.2 Deterministic DMD

3.2.1 Conceptual Overview

Given a sequence of snapshots x0, x1, ..., xn ∈ Rm, separated in time
by a constant step ∆t, the dynamic mode decomposition aims to find
the eigenvectors and eigenvalues of the time-independent linear map
M : Rm → Rm which approximately relates a given snapshot xt with a
subsequent one xt+1 as

xt+1 = Mxt + et, (3.1)

where e denotes the residual (Schmid, 2010). Specifically, the eigenvalues
λj and eigenvectors ϕj of M characterize the system dynamics. The
ultimate goal in the DMD algorithm is to optimally construct the matrix
M so that the error between the observed and approximated snapshot
sequence is minimal in a least-square sense. Of course, the approximation
holds only over the sampling window where M is constructed, but the
approximate solution can be used to not only make future state predictions,
but also to decompose the dynamics into various time-scales since the ωj

are prescribed.
There are two methods for constructing the linear map M. Originally,

the DMD were computed using an Arnoldi-like algorithm, which treats the
linear map as a companion matrix (Rowley et al., 2009). This approach
is, in particular, useful for theoretical analysis due to its connection
with Krylov methods. The modern formulation of the DMD algorithm
is based on the singular value decomposition (SVD). This approach is
computationally more robust to noise in the data and to numerical errors.

62 | Randomized Dynamic Mode Decomposition

We advocate here the SVD based algorithm, which is described in more
detail below.

3.2.2 Deterministic Algorithm

Following Tu et al. (2014), the deterministic algorithm for computing the
dynamic mode decomposition proceeds by first separating the snapshot
sequence x0, x1, ..., xn ∈ Rm into two overlapping sets of data

XL =

x0 x1 · · · xn−1

 , XR =

x1 x2 · · · xn

 . (3.2)

XL ∈ Rm×n and XR ∈ Rm×n are called the left and right snapshot matrix,
respectively. Next, we reformulate Equation (3.1) in matrix notation

[x1|x2| · · · |xn] ≈ [Mx0|Mx1| · · · |Mxn−1], (3.3)

and more compact we have

XR ≈MXL. (3.4)

In order to find an estimate for the matrix M we face the following
least-squares problem

M̂ = argmin
M

∥XR −MXL∥2
F . (3.5)

This is a well-studied problem, and an estimator for M̂ ∈ Rm×m is given
by

M̂ = XRX†
L. (3.6)

Here, the Moore-Penrose pseudoinverse, denoted as †, produces a regres-
sion that is optimal in a least-square sense. In practice, this estimator
may be intractable to compute, in particular, when the input data are
high-dimensional, i.e., m is large. However, for a sufficiently large time
series of data, we can assume that the snapshots eventually become
linearly dependent, and thus feature a low-rank structure. Hence, the

3.2 Deterministic DMD | 63

DMD algorithm circumvents the computation of M̂ by considering a
rank-reduced representation M̃. This is achieved by using the similarity
transform, i.e., projecting the linear map on the dominant left singular
vectors. Typically, we aim to make use of the low-rank structure of the
data as well. Thus, we project the linear map only onto the subspace
spanned by the dominant k ≤ min(n, m) left singular vectors. This yields
the relatively small matrix M̃ ∈ Rk×k. However, choosing the target rank
k is subjective and often problem dependent.

The DMD algorithm proceeds by first computing the SVD of XL

XL = UΣV⊤. (3.7)

If k ≤ min(n, m) we truncate the SVD, so that we yield U ∈ Rm×k,
Σ ∈ Rk×k and V ∈ Rn×k. Note, that the computation of the SVD is the
computational bottleneck of the algorithm. The computation of the SVD
might be intractable for a massive snapshot matrix. The computational
load can be reduced using modern partial SVD algorithm, which allow
to compute the first k dominant singular vectors and values only. For
instance, SVD algorithms based on Krylov methods or the randomized
SVD are reasonable choices. The latter approach, using the randomized
SVD for computing the DMD was proposed by Erichson and Donovan
(2016), and later by Bistrian and Navon (2016). M̃, the k × k projection
of the full matrix M̂ onto the dominant left singular vectors, is computed
as

M̂ = XRX†
L = XRVΣ−1U⊤

=⇒ M̃ = U⊤M̂U = U⊤XRVΣ−1. (3.8)

The DMD modes and eigenvalues, containing the spatial and temporal
information, are then obtained by computing the eigendecomposition of
the linear map as

M̃W = WΛ, (3.9)

where columns of W ∈ Ck×k are eigenvectors ϕj and Λ ∈ Ck×k is
a diagonal matrix containing the corresponding eigenvalues λj. The
continuous-time eigenvalues are given by ωj = log(λj)/∆t. Finally, we

64 | Randomized Dynamic Mode Decomposition

may reconstruct the eigendecomposition of M̂ from W and Λ. Specifi-
cally, it follows from the similarity transform, that the eigenvalues of M̂
are given by Λ. Further, the DMD modes (eigenvectors) are given by
columns of Φ ∈ Cm×k

Φ = XRVΣ−1W. (3.10)

Note that Equation (3.10) from Tu et al. (2014) differs from the formula
Φ = UW from Schmid (2010), although these will tend to converge if XL

and XR have the same column spaces. Finally, the left snapshot matrix
XL can be approximately reconstructed by noting that the snapshots can
be represented as a linear combination (Kutz et al., 2016a)

xt ≈
k∑

j=1
bjϕjλ

t
j. (3.11)

Since the amplitudes bi are time independent x0 reduces to

x0 ≈
k∑

i=1
biϕi = Φb. (3.12)

The parameter vector b ∈ Ck can be estimated by using simply the
method of least squares. To summarize, the dynamic mode decomposition
yields the following low-rank factorization of the left snapshot sequence

XL ≈ ΦBV =

ϕ11 ϕ1p · · · ϕ1k

...
ϕi1 ϕip · · · ϕik

...
ϕm1 ϕmp · · · ϕmk

b1
. . .

bp

. . .
bk

1 λ1 · · · λn−1
1

...
1 λp · · · λn−1

p
...
1 λk · · · λn−1

k

, (3.13)

where B ∈ Ck×k is a diagonal matrix of the amplitudes, and V ∈ Ck×n−1

is the Vandermonde matrix of the eigenvalues. The Vandermonde matrix
describes the temporal evolution of the DMD modes. Specifically, each
DMD mode, retrieved by the DMD, corresponds to a single (distinct)
frequency. The computational steps are summarized in Algorithm 3.

3.3 Compressed DMD | 65

Algorithm 3 Dynamic Mode Decomposition.
Given a matrix X ∈ Rm×n containing the snapshots, and a target rank
k, this procedure computes the approximate low-rank dynamic mode
decomposition, where columns of Φ ∈ Cm×k are the DMD modes, b ∈ Ck

are the amplitudes, and V ∈ Ck×n is the Vandermonde matrix describing
the temporal evolution. It is required that m ≥ n, integer k ≥ 1.

function [Φ, b,V] = dmd(X, k)

(1) XL, XR = X Left/right snapshot sequence.
(2) U, Σ, V = svd(XL, k) Truncated SVD.
(3) M̃ = U⊤XRVΣ−1 Least squares fit.
(4) W, Λ = eig(M̃) Eigenvalue decomposition.
(5) Φ← XRVΣ−1W Compute full-state modes Φ.
(6) b = lstsq(Φ, x0) Comp. amplitudes with init. cond. x0.
(7) V = vander(diag(Λ)) Vandermonde matrix (optional).

Remark 1. An alternative to the predefined target-rank k is the recent
hard-thresholding algorithm of Gavish and Donoho (2014). This method
can be combined with step 2 to automatically determine the optimal
target-rank.

3.3 Compressed DMD

3.3.1 Conceptual Overview

Brunton et al. (2015) proposed the compressed dynamic mode decom-
position to overcome of the computational challenges of computing the
dynamic mode decomposition. Specifically, they showed that the domi-
nant DMD modes and eigenvalues can be obtained from massively under-
sampled or compressed data. The method was originally devised to
reconstruct high-dimensional, full-resolution DMD modes from sparse,
and undersampled measurements by leveraging compressed sensing. How-
ever, it was quickly realized that if full-state measurements are available,
many of the computationally expensive steps in DMD may be computed
on a compressed representation of the data, providing dramatic computa-
tional savings. While Brunton et al. (2015) embedded their algorithm into
the theory of compressed sensing, later Erichson et al. (2016a) noticed

66 | Randomized Dynamic Mode Decomposition

that the algorithm can be motived using the concept ot matrix sketching
as well. The procedure is sketched in Figure 3.2.

XL, XR Φk, Λk

YL, YR Φ̃k, Λk

dmd()

cdmd()

Y = CX Eq. (3.20)

Data Decomposition
‘B

ig
’

‘S
m

al
l’

Fig. 3.2 Conceptual architecture of the compressed dynamic mode decom-
position (cDMD). First, a smaller matrix Y = CX is computed using
a random test matrix C. Then, the DMD is efficiently computed using
this smaller (low-dimensional) snapshot matrices. Finally, the dominant
DMD modes Φk may be reconstructed from the approximate modes Φ̃k

by the expression in Eq. (3.20).

Matrix sketching forms a smaller matrix, a so called sketch, from a
small number of random linear combinations of the rows of the high-
dimensional input matrix (Liberty, 2013).1 While, compressed sensing
provides a theoretical framework to reconstruct high-dimensional signals
from low-dimensional measurement (Baraniuk, 2007; Candès and Wakin,
2008; Donoho, 2006), matrix sketching provides a framework to construct
low-dimensional representations from high-dimensional data (Woodruff,
2014). The latter case is often the more relevant in the context of the
DMD. This is because the full data are available. Hence, we favor matrix
sketching, because this framework poses less restrictive assumptions on
the input matrix than the compressed sensing framework.

1Note, that this is somewhat different from the probabilistic framework outlined in
Chapter 1, which forms a small number of random linear combinations of the columns
of the input matrix.

3.3 Compressed DMD | 67

3.3.2 Compressed Algorithm

The compressed DMD algorithm starts by constructing a smaller matrix,
illustrated in Figure 3.3. Specifically, the sketch is formed from a small

Fig. 3.3 Video compression using a sparse measurement matrix. The
compressed matrix faithfully captures the essential spectral information
of the video.

number of random linear combinations of the rows of the left and right
snapshot matrices as follows

YL = CXL, YR = CXR. (3.14)

C ∈ Rc×m is a random test matrix, and c denotes the number of samples.
Instead of sketching the left and right snapshot sequence individually, it
is computationally more efficient to compute a sketch of X directly. Then,
the resulting sketch can be split into the two low-dimensional overlapping
sets of data

YL =

y0 y1 · · · yn−1

 , YR =

y1 y2 · · · yn

 . (3.15)

YL ∈ Rc×n and YR ∈ Rc×n. If m is large, then the random test matrix
C becomes expensive to construct as well as the computation of the
sketch is costly. However, if the information are uniformly distributed
across the input data, then the low-dimensional sequences of snapshots
can be simply constructed by randomly selecting rows, which leads to an

68 | Randomized Dynamic Mode Decomposition

computationally efficient algorithm. Note, that in order to compute the
first k dominant DMD modes and eigenvalues the sampling parameter
c is required to be larger then k. However, the disadvantage of the
method is that there is no good heuristic to chose an optimal number of
samples c. But, since random row sampling is cheap we chose in practice
(depended on the problem) simply a reasonable large value for c. Once
the compressed snapshot matrices are obtained, the algorithm proceeds
similar to the previous described deterministic DMD algorithm.

First, the truncated singular value decomposition of the compressed
left snapshot matrix is computed

YL = UYΣYV⊤
Y, (3.16)

where the matrices U ∈ Rc×k, and V ∈ Rn×k are the truncated left
and right singular vectors. The diagonal matrix Σ ∈ Rk×k has the
corresponding singular values as entries. Here k is the target rank of the
truncated SVD approximation. Note that the subscript Y is included to
explicitly denote computations involving the compressed data Y. Then,
the linear map MY which approximately relates the left and right snapshot
matrix is computed similar to the previously described deterministic
algorithm. Specifically, we compute the low-dimensional model projected
onto the left singular vectors

M̃Y = U⊤
YM̂YUY (3.17a)

= U⊤
YYRVYΣ−1

Y . (3.17b)

Since this is a similarity transform, the eigenvectors and eigenvalues can
be obtained from the eigendecomposition of M̃Y ∈ Rk×k

M̃YWY = WYΛY, (3.18)

where columns of WY ∈ Ck×k are eigenvectors ϕj and ΛY ∈ Ck×k is
a diagonal matrix containing the corresponding eigenvalues λj. The
similarity transform implies that Λ ≈ ΛY . The compressed DMD modes

3.3 Compressed DMD | 69

ΦY ∈ Cc×k are consequently given by

ΦY = YRVYΣ−1
Y WY. (3.19)

Finally, the full DMD modes Φ ∈ Cm×k are recovered using

Φ = XRVYΣ−1
Y WY. (3.20)

Note that the compressed DMD modes in Equation (3.20) make use of
the full data XR as well as the linear transformations obtained using the
compressed data YL and YR. The expensive SVD on XL is bypassed, and
it is instead performed on YL. The computational steps are summarized
in Algorithm 4.

Algorithm 4 Compressed Dynamic Mode Decomposition.
Given a matrix X ∈ Rm×n containing the snapshots, this procedure com-
putes the approximate low-rank dynamic mode decomposition, where
columns of Φ ∈ Cm×k are the DMD modes, b ∈ Ck are the amplitudes,
and V ∈ Ck×n is the Vandermonde matrix describing the temporal evo-
lution. The procedure can be controlled by the two parameters k and c,
the target rank and the number of samples respectively. It is required
that m ≥ n, integer k, c ≥ 1 and k ≪ n and c ≥ k.

function [Φ, b,V] = cdmd(X, k, c)

(1) XL, XR = X Left/right snapshot sequence.
(2) C = rand(c, m) Draw c×m test matrix.
(3) YL, YR = CD Sketch input matrix.
(4) U, Σ, V = svd(YL, k) Truncated SVD.
(6) M̃ = U⊤YRVΣ−1 Least squares fit.
(7) W, Λ = eig(M̃) Eigenvalue decomposition.
(8) Φ← XRVΣ−1W Compute full-state modes Φ.
(9) b = lstsq(Φ, x0) Comp. amplitudes with init. cond. x0.
(10) V = vander(diag(Λ)) Vandermonde matrix (optional).

Remark 2. The computational performance heavily depends on the mea-
surement matrix used to construct the compressed matrix. For a practical
implementation sparse or single pixel measurements (random row selec-
tion) are favored, see Erichson et al. (2016a) for a detailed discussion.

70 | Randomized Dynamic Mode Decomposition

3.4 Randomized DMD

3.4.1 Conceptual Overview

The compressed dynamic mode decomposition presented in the previous
section is a highly computationally efficient algorithm to compute the
dynamic modes. However, the algorithm is less precise2, and relatively sen-
sitive to noise. In the following we present a novel randomized algorithm,
which is as computationally efficient, but more robust. The advantage is
that the approximation error can be controlled via both oversampling and
power iterations. The key difference to the compressed DMD algorithm
lies in the concept for obtaining the smaller (low-dimensional) sequence
of snapshots. Therefor, we utilize the probabilistic framework introduced
in Chapter 1. Hence, instead of premultiplying the data matrix by a
measurement matrix C ∈ Rc×m, we now postmultiply the data matrix
by a random test matrix Ω ∈ Rn×l in order to sample the range of high-
dimensional sequence of snapshots. Then, a natural basis is computed
and the data are projected to low-dimensional space. The idea is depicted
schematically in Figure 3.4.

3.4.2 Randomized Algorithm

Given a sequence of snapshots x0, x1, ..., xn ∈ Rm, we first compute the
near-optimal basis Q ∈ Rm×l. Then, we project the data onto the low-
dimensional space, so that we obtain the low-dimensional sequence of
snapshots b0, b1, ..., bn ∈ Rl. Here, l = k + p, where k denotes the desired
target rank, and p the oversampling parameter. Specifically, we first
sample the range as

Y = XΩ, (3.21)

where Ω is the random test matrix. Then, the orthonormal basis Q ∈
Rm×l is obtained via the QR-decomposition Y = QR, such that

X ≈ QQ⊤X
2Note that random sampling introduces a slight error.

3.4 Randomized DMD | 71

XL, XR Φk, Λk

Q

BL, BR Φ̃k, Λk

dmd()

rdmd()

[Q,∼] = qr(XΩ)

B = Q⊤X

Eq. (3.28)

Data Decomposition

‘B
ig

’
‘S

m
al

l’

Fig. 3.4 Conceptual architecture of the randomized dynamic mode decom-
position. First, a natural basis is computed in order to derive the smaller
snapshot matrices BL and BR. Then, the DMD is efficiently computed
using this smaller matrices. Finally, the dominant DMD modes Φk may
be reconstructed from the approximate DMD modes by the expression in
Equation (3.28).

is satisfied. Finally, X is projected to low-dimensional space

B = Q⊤X,

where B ∈ Rl×n.
Once the low-dimensional matrix B is obtained, the standard pro-

cedure to obtain the DMD modes can be applied. Therefore, we first
separate the data into two overlapping sets of data

BL =

b0 b1 · · · bn−1

 , BR =

b1 b2 · · · bn

 , (3.22)

72 | Randomized Dynamic Mode Decomposition

where BL ∈ Rl×n and BR ∈ Rl×n. Then, the estimator for the linear map
MY is defined as

M̂B = BRB†
L (3.23a)

= BRVΣ−1U⊤, (3.23b)

The pseudo-inverse B†
L is computed using the SVD:

BL = UΣV⊤, (3.24)

where the matrices U ∈ Rk×k, and V ∈ Rn×k are the truncated left
and right singular vectors. The diagonal matrix Σ ∈ Rk×k has the
corresponding singular values as entries. Here k is the target-rank of the
truncated SVD approximation to BL. As in the standard DMD algorithm,
we typically do not compute the matrix M̂B, but instead compute the
low-dimensional model projected onto the left singular vectors

M̃B = U∗M̂U (3.25a)

= U∗BRVΣ−1. (3.25b)

Subsequently, the eigenvectors and eigenvalues can be obtained from the
eigendecomposition of M̃B

M̃BWB = WBΛ, (3.26)

where columns of WB are eigenvectors ϕj and ΛB is a diagonal matrix
containing the corresponding eigenvalues λj . The approximate randomized
DMD modes are consequently given by

ΦB = BRVΣ−1WB. (3.27)

Finally, the near-optimal high-dimensional DMD modes are recovered as

Φ = QΦB = QBRVΣ−1WB. (3.28)

Algorithm 5 is summarizing the computational steps.

3.4 Randomized DMD | 73

Algorithm 5 Randomized Dynamic Mode Decomposition.
Given a snapshot matrix X ∈ Rm×n, this algorithm computes the near-
optimal low-rank dynamic mode decomposition, where k denotes the
target rank. The approximation quality can be controlled via the over-
sampling parameter p, and the number of power iterations denoted by
the parameter q.

function [Φ, b,V] = rdmd(X, k, p, q)

(1) l = k + p Slight oversampling.
(2) Ω = rand(n, l) Generate random matrix.
(3) Y = XΩ Compute sampling matrix.
(4) for j = 1, . . . , q Subspace iterations (optional).
(5) [Q,∼] = qr(Y)
(6) [Z,∼] = qr(X⊤Q)
(7) Y = XZ
(8) end for
(9) [Q,∼] = qr(Y) Orthonormalize sampling matrix.
(10) B = Q⊺X Project matrix to smaller space.
(11) BL, BR = B Left/right small snapshot sequence.
(12) U, Σ, V = svd(BL, k) Truncated SVD.
(13) M̃ = U⊤BRVΣ−1 Least squares fit.
(14) W, Λ = eig(M̃) Eigenvalue decomposition.
(15) Φ← QBRVΣ−1W Compute full-state modes Φ.
(16) b = lstsq(Φ, x0) Comp. amplitudes with init. cond. x0.
(17) V = vander(diag(Λ)) Vandermonde matrix (optional).

Justification

In the following we outline some justification for the proposed algorithm.
Let us assume that we have an orthogonal basis Q so that

XL ≈ QQ⊤XL (3.29a)

XR ≈ QQ⊤XR, (3.29b)

is satisfied. Now, we show that the eigendecomposition of M̃ is ap-
proximately equivalent to the eigendecomposition of M̃B. Starting with

74 | Randomized Dynamic Mode Decomposition

Equation (3.23a), we have that

WBΛBW⊤
B = M̂B = BRB†

L = BRVΣ−1Ũ⊤. (3.30)

Now, note that we defined the projections to the low-dimensional subspace
as BL := Q⊤XL and BR := Q⊤XR. Hence, we yield the following
equivalent expression of Equation (3.30) by substitution

WBΛBW⊤
B = (Q⊤XR)(Q⊤XL)† = (Q⊤XR)VΣ−1Ũ⊤. (3.31)

Next, pre and post multiplying by the basis Q and Q⊤ gives

QWBΛBW⊤
BQ⊤ = Q(Q⊤XR)(Q⊤XL)†Q⊤ = Q(Q⊤XR)VΣ−1Ũ⊤Q⊤.

(3.32)
We note that QQ⊤XR ≈ XR and that VΣ−1Ũ⊤Q⊤ ≈ X†

L. Thus, it
follows that

M̂ = WΛW⊤ ≈ QWBΛBW⊤
BQ⊤, (3.33)

where W ≈ QWB and Λ ≈ ΛB. It is then easy to verify that the same
result holds for M̃B = Ũ⊤M̂BŨ, i.e., the linear map M̂B projected onto
the left singular vectors. Specifically, we have

Ũ⊤WBΛBW⊤
BŨ = Ũ⊤M̂BŨ = Ũ⊤BRB†

L = Ũ⊤BRVΣ−1. (3.34)

Then we define W̃B := Ũ⊤WB, and similar to the previous reasoning it
follows that

M̃ = WΛW⊤ ≈ QŨW̃BΛBW̃⊤
BŨ⊤Q⊤. (3.35)

Thus, we see that the eigenvalue decomposition of the small linear map
M̃B can be used to approximate the eigenvalues and eigenvectors of the
linear map M̃ which relates the high-dimensional snapshots.

3.4.3 Blocked Randomized Algorithm

When dealing with massive fluid flows too big to read into the fast
memory, the extension to distributed and parallel computing might be

3.4 Randomized DMD | 75

inevitable. In particular, it might be necessary to distribute the data
across processors which have no access to a shared memory to exchange
information. Voronin and Martinsson (2015) proposed a blocked scheme
to compute the QB decomposition in parallel. In the following, we briefly
outline this scheme as it is beneficial for computing the dynamic mode
decomposition as well. The basic idea is that a given high-dimensional
sequence of snapshots x0, x1, ..., xn ∈ Rm is subdivided into n smaller
blocks along the rows. The submatrices can then be sent off to be
processed in n independent streams of calculations. Here, n is assumed
to be a power of two, and zero padding can be used in order to divide
the data into blocks of the same size. Now, assume for simplicity that we
aim to distribute the snapshot sequence across n = 2 processors. Using
matrix notation, we have

X =
X1

X2

 . (3.36)

Next, given a target-rank k, the QB decomposition (Equation 1.11) is
computed on each block so that we yield

X ≈

Q1B1

Q2B2

 =
Q1 0

0 Q2

 B1

B2

 . (3.37)

Now, the two smaller matrices Bi ∈ Rk×n can be collected and stacked
together as

K1 =
B1

B2

 . (3.38)

Subsequently, we compute the the QB decomposition of K1 ∈ R2k×n and
obtain

K1 = Q12B12. (3.39)

The small matrix B12 ∈ Rk×n can then be used to compute the dy-
namic mode decomposition as described above. Once the approximate
dynamic modes ΦB ∈ Rk×k are obtained, the high-dimensional modes are
reconstructed as follows

Φ ≈

Q1 0
0 Q2

 Q12ΦB, (3.40)

76 | Randomized Dynamic Mode Decomposition

where Φ ∈ Rm×k. This scheme can be simply generalized to split the
input matrix into more then just n = 2 blocks. In Python this algorithms
can be implemented using the message passing interface (MPI), see for
instance, Dalcin et al. (2005).

3.5 The DMDpack Package

We provide implementations of the presented deterministic and proba-
bilistic dynamic mode decomposition algorithms in Python. Specifically,
the DMDpack package provides the following core functions:

• Dynamic Mode Decomposition: dmd().
• Compressed Dynamic Mode Decomposition: cdmd().
• Randomized Dynamic Mode Decomposition: rdmd().
• Randomized Singular Value Decomposition: rsvd().

For installation instructions visit the GIT repository
https://github.com/Benli11/DMDpack. See also the package manual,
as all package functions are fully documented. In addition, the package
comes with a set of test functions.

The interface of the functions are designed in NumPy style, the fun-
damental package for scientific computing with Python. All functions are
based on routines provided by the NumPy and SciPy library. In particu-
lar these scientific libraries, provide several linear algebra functions, which
rely on the LAPACK software package (Anderson et al., 1999). Moreover,
SciPy provides by default the Intel Math Kernel Library (Intel MKL)
accelerated high performance implementation of BLAS and LAPACK.
In the following we will briefly introduce the dmd(), cdmd() and rdmd()
functions. Note that the design of the interfaces is similar; the only
difference are additional arguments, which can be passed to control the
probabilistic algorithms.

3.5.1 The dmd() Function

The standard function for computing the DMD using the deterministic
algorithm is the dmd() function, as outlined in Algorithm 3. The basic
interface is

https://github.com/Benli11/DMDpack

3.5 The DMDpack Package | 77

F, b, V, omega <- dmd(A, dt = 1, k=None,
return_amplitudes=False, return_vandermonde=False, ...)

The first mandatory argument A passes the m × n snapshot matrix.
The columns of the input matrix are assumed to contain the flattened
snapshots, ordered in time. The algorithm is then separating the snapshot
matrix into the left and right snapshot matrix using a pointer. The second
argument specifies the time difference between the snapshots. This is used
to rescale the DMD eigenvalues, and by default set to ∆t = 1. The third
argument k sets the target rank. If no target rank is provided the full
dynamic mode decomposition is computed, i.e., all n dynamic modes are
returned. Otherwise, the low-rank DMD is computed by truncating the
singular value decomposition. Note, that with the additional argument
svd ={"rsvd", "partial", "truncated"} the randomized singular value
decomposition or a modern partial SVD algorithm can be selected. These
algorithms are more efficient for computing the low-rank DMD than
computing the truncated SVD. The arguments return_amplitudes and
return_vandermonde can be used to compute in addition to the dynamic
modes and eigenvalues the amplitudes and the Vandermonde matrix. By,
default these are not computed. The function finally returns the following
objects:

• F: m× n or m× k matrix containing the dynamic modes.
• b: (optional) n or k-dimensional vector which has the amplitudes,

corresponding to the modes, as its entries.
• V: (optional) n× n or k × n Vandermonde matrix.
• omega: n or k-dimensional vector which contains the (scaled) DMD

eigenvalues.

3.5.2 The cdmd() Function

The cdmd() function allows to compute the dynamic mode decomposition
using the compressed algorithm. It follows Algorithm 4, and the basic
interface is

F, b, V, omega <- cdmd(A, dt = 1, k=None, c=None,
sdist="spixel", sf=0.9, return_amplitudes=False,
return_vandermonde=False, ...)

78 | Randomized Dynamic Mode Decomposition

The first three arguments are similar to the dmd() function. The only
difference is that this algorithm requires a target rank k, and it is supposed
that k ≪ n. Next, the argument c determines the number of samples used
to sketch the input matrix. It is required that c > k. The disadvantage of
this algorithm is that there is no clear guidance how to chose a good value.
However, numerical results show that only a small number of samples
relative to the ambient dimension of the snapshot matrix are required. By,
default no explicit random test matrix is constructed. Rather c random
rows are uniformly selected. This is computationally efficient, and achieves
good results as long as the information are uniformly distributed across
the matrix. When dealing with fluid flows or videos, this assumption is
most often met. The argument sdist can alternatively set to "unif" in
order to construct a dense random test matrix. However, this can become
computational expensive if the dimension m is large. A third option is
to construct a spare random test matrix using "sparse". This option is a
good trade-off between the dense test matrix and random row sampling.
Using routines for fast sparse matrix multiplications allows to efficiently
compute the sketch, while capturing more information then row sampling
does. The sparsity factor can be controlled via the argument "sf".

3.5.3 The rdmd() Function

The third function to compute the dynamic mode decomposition is the
novel randomized DMD algorithm. It follows Algorithm 5, and the basic
interface of the function is

F, b, V, omega <- rdmd(A, dt = 1, k=None, p=10, q=1,
return_amplitudes=False, return_vandermonde=False, ...)

Again, the first three arguments are similar to the dmd() function. The
argument k, is however, required to be k ≪ n. The algorithm achieves a
good performance gain, in particular, if k < min{m,n}

2 . The random test
matrix is constructed by sampling from the uniform distribution. A future
version will provide the option to use structured random test matrices
as well. The arguments p and q are used to control the accuracy of the
algorithm. The former parameter is used to oversample the basis, and is
set by default to p=10. This setting guarantees a good basis with high

3.6 Numerical Results | 79

probability in general. The parameter q can be used to compute additional
power iterations (subspace iterations). By default this parameter is set
to q=1 which shows a good performance in our numerical experiments.
The default values show an optimal trade-off between speed and accuracy
in standard situations. If the singular value spectrum of the input matrix
is slowly decaying, more power iterations are desirable. However, in
practice we have not encountered a situation which requires more then
three subspace iterations (q > 3).

3.6 Numerical Results

In the following we present some numerical results demonstrating and
comparing the performance of the proposed randomized algorithm for
computing the dynamic mode decomposition. All computations are
performed on a standard notebook with Intel Core i7-5500U 2.4GHz, and
8GB DDR3 memory.

3.6.1 Numerical Results

As a canonical example we use a fluid flow behind a cylinder (Noack
et al., 2003). Specifically, the data are constructed as a sequence of
151 snapshots of fluid vorticity fields behind a stationary cylinder on an
equispaced 449 × 199 grid.3 The flow features a periodically shedding
wake structure at Reynolds number Re = 100, and is inherently low-rank.
Figure 3.5 shows three example snapshots of the fluid flow.

−15−10 −5 0 5 10 15 −15−10 −5 0 5 10 15 −15−10 −5 0 5 10 15

Fig. 3.5 Snapshots of the fluid flow behind a cylinder at time points
t = {1, 50, 100}.

3 The data are obtained by solving the two-dimensional Navier-Stokes equations
using the publicly available code at https://github.com/cwrowley/ibpm, based on the
immersed boundary projection method in a fast multi-domain solver (Colonius and
Taira, 2008; Taira and Colonius, 2007).

https://github.com/cwrowley/ibpm

80 | Randomized Dynamic Mode Decomposition

In the following we are interested to evaluate the different DMD
algorithms in absence and in presence of additive white noise. In particular
the latter case shows distinct differences between the algorithms.

Noise-Free Case

First, we compute the k = 15 dominant DMD modes and eigenvalues
of the fluid flow. Here, we compute the randomized DMD using the
recommended default settings for the oversampling parameter p = 10.
However, knowing that the data are inherently low-rank we omit the
computation of additional power iterations. Figure 3.6 shows the dominant
DMD modes computed using both the deterministic and the randomized
DMD algorithm. Note, that the data are not mean centered. Hence,
the first mode does not change over time, and corresponds to the zero
frequency DMD eigenvalue. The randomized algorithm faithfully reveals
the coherent structures, while requiring considerably less computational
resources. Specifically, a 6 fold speedup is achieved over the deterministic
algorithm. The reconstruction error of the deterministic algorithm is
5.11e− 03, while the randomized algorithm achieves an error as low as
5.17e−03. The dominant DMD eigenvalues are shown in Figure 3.7, and it
can be seen that the deterministic DMD eigenvalues are faithfully captured
by the randomized DMD eigenvalues as well as by the compressed DMD
algorithm. Table 3.1 summarizes the results. The proposed randomized
DMD algorithm outperforms the compressed DMD algorithm. The main
advantage of the randomized DMD algorithm is that the approximation
quality can be controlled via oversampling and power iterations. Further,
the randomized algorithm is more precise, i.e., the standard deviation
(SD) of the reconstruction error over 100 runs is smaller.

Table 3.1 Computational performance of the deterministic and probabilis-
tic DMD algorithms (target rank is k = 15) in absence of noise. The
results are averaged over 100 runs.

Method Parameters Time (s) Speedup Error SD

Deterministic DMD - 1.32 - 5.11e-03 -
Compressed DMD c=500 0.28 4.7 8.07e-03 1.18e-03
Randomized DMD p=10, q=0 0.21 6.3 5.17e-03 7.02e-05

3.6 Numerical Results | 81

(a) Deterministic DMD modes.

(b) Randomized DMD modes.

− 15 − 10 − 5 0 5 10 15

(c) Colorbar.

Fig. 3.6 Dominant 15 dynamic modes of a fluid flow behind a cylinder.
By visual inspection there are no distinct differences between the DMD
modes computed using the deterministic and randomized algorithm.

82 | Randomized Dynamic Mode Decomposition

1 0 1
Real

1

0

1

Im
ag

in
ar

y

True
Deterministic DMD
Compressed DMD
Randomized DMD

Fig. 3.7 DMD eigenvalues are faithfully captured by the randomized DMD
eigenvalues.

Figure 3.8 shows a histogram of the relative reconstruction errors over
100 runs, which further contextualize the higher precision and accuracy of
the randomized DMD algorithm compared to the compressed algorithm.

0.00510 0.00515 0.00520 0.00525
Error

0

2

4

6

8

10

12

Fr
eq

ue
nc

y

(a) Randomized DMD.

0.004 0.006 0.008 0.010 0.012
Error

0

5

10

15

Fr
eq

ue
nc

y

(b) Compressed DMD.

Fig. 3.8 Relative error over 100 runs. The randomized algorithm shows
to be more precise and accurate.

3.6 Numerical Results | 83

Noisy Case

Next, the analysis of the same flow is repeated in presence of noise.
Specifically, the fluid flow is perturbed with additive white noise using
a signal-to-noise (SNR) ratio of 10. Here, we compute the randomized
DMD using two addition power iterations q = 2. This is because the
added noise prevents the singular values from a vast decay. Figure 3.9
shows the first 60 singular values of the fluid flow in absence and presence
of noise. The characteristic frequencies of flow oscillations occur in
pairs, reflecting the complex-conjugate pairs of eigenvalues that define
sine and cosine temporal dynamics. However, it can be seen that this
structure is clearly effected by the additive white noise. Only the first
fife complex-conjugate pairs remain in order. Figure 3.11 shows the

0 20 40 60
Singular values

10-4
10-3
10-2
10-1
100
101
102
103
104

M
ag

ni
tu

de

noise-free
noisy

Fig. 3.9 Singular values of the fluid flow behind a cylinder in absence and
presence of additive white noise (SNR=10). The complex-conjugate pairs
reflecting the physics of the cylinder wake.

dominant DMD modes computed using both the deterministic and the
randomized DMD algorithm. Here, the performance of the randomized
algorithm is slightly worse than the deterministic algorithm. While, both
algorithms are able to recover the structure of the first nine modes, the
deterministic algorithm provides a better description of the remaining
modes. Figure 3.10 shows the DMD eigenvalues, computed by using the
different algorithms. Indeed, the performance of the different algorithms
is distinct in the presence of noise. The deterministic algorithm performs
best, capturing the first 11 eigenvalues, which are describing the physics
of the fluid flow. The randomized DMD algorithm captures faithfully the

84 | Randomized Dynamic Mode Decomposition

first 9 eigenvalues. The compressed DMD algorithm performs slightly
worse, using the sampling parameter c = 500, however, the accuracy
could be improved using a larger sampling parameter, e.g., c = 5000. But,
this comes with higher computational costs. Table 3.2 summarizes the
results. Again, the randomized DMD algorithm features the best trade-off
between computational performance and approximation quality. The
results show that the randomized DMD algorithm is more robust, and
not as sensitive as the cDMD algorithm is to noise in the data. Further,
the standard deviation (SD) of the reconstruction error over 100 runs
indicates that the randomized algorithm is the more reliable algorithm.

Table 3.2 Computational performance of the deterministic and probabilis-
tic DMD algorithms (target rank is k = 15) in presence of white noise
(SNR=10). The results are averaged over 100 runs.

Method Parameters Time (s) Speedup Error SD

Deterministic DMD - 1.32 - 7.99e-02 -
Compressed DMD c=500 0.28 4.7 1.84e-01 7.57e-03
Randomized DMD p=10, q=2 0.35 3.7 8.43e-02 1.36e-03

1 0 1
Real

1

0

1

Im
ag

in
ar

y

True
Deterministic DMD
Compressed DMD
Randomized DMD

Fig. 3.10 DMD eigenvalues captured in presence of additive white noise
(SNR=10). The deterministic algorithm achieves the best results. Ran-
domized DMD, however, shows to be more robust than compressed DMD.

3.6 Numerical Results | 85

(a) Deterministic DMD modes.

(b) Randomized DMD modes.

− 15 − 10 − 5 0 5 10 15

(c) Colorbar.

Fig. 3.11 Dominant 15 dynamic modes of a fluid flow behind a cylinder
in presence of additive white noise (SNR=10). By visual inspection there
are no distinct differences between the first 9 DMD modes computed by
the deterministic and randomized algorithm. However, the randomized
algorithm shows difficulties to recover the following modes as good as the
deterministic algorithm does.

Figure 3.12 shows the average reconstruction error of the different
algorithms for varying signal-to-noise ratios. The target rank is set to

86 | Randomized Dynamic Mode Decomposition

k = 15, again. The error of the randomized DMD algorithm computed
with additional power iterations is converging towards the results of the
deterministic algorithm. In contrast, the compressed DMD algorithm
and the randomized DMD algorithm without power iterations exhibit a
considerable bias. Note that the randomized algorithm with oversam-
pling parameter p = 10 is performing nearly as good as the compressed
algorithm with oversampling parameter c = 500.

0 100 200 300 400 500 600 700 800 900 1000

SNR

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

Deterministic DMD

Compressed DMD (c=500)

Compressed DMD (c=5000)

Randomized DMD (q=0)

Randomized DMD (q=1)

Randomized DMD (q=2)

Fig. 3.12 Error of the different DMD algorithms averaged over 100 runs
for varying signal-to-noise ratios. The randomized DMD algorithm with
q = {1, 2} power iterations achieves near-optimal results.

3.6.2 Computational Performance

The computational savings of the compressed and randomized DMD
algorithms are mainly achieved by avoiding the expensive computation of
the singular value decomposition. Figure 3.13 shows the computational
performance of the algorithms for two matrices of different dimensions.
Both the randomized and the compressed DMD algorithm can gain
considerable savings for computing the low-rank approximation. Despite
the additional computational costs of subspace iterations, the savings
remain substantial.

3.7 Conclusion | 87

(a) Matrix of dimension 20000× 500.

10 20 30 40 50 60 70 80 90 100

Target rank, k

10-1

100

101

T
im

e
 i
n
 s

(b) Matrix of dimension 100000× 500.

Fig. 3.13 Computational performance of DMD algorithms. The proba-
bilistic algorithms outperform the deterministic algorithms. For target
ranks k < 30 the randomized DMD algorithm is even faster than the
compressed DMD algorithm.

3.7 Conclusion

The dynamic mode decomposition is an emerging dimensionality reduction
technique with a variety of applications across disciplines. However, the
deterministic algorithm to compute the DMD modes and eigenvalues is
computationally demanding and not suitable for real-time applications.
In particular, in the area of fluid dynamics there is a need for highly
efficient algorithms.

The proposed randomized algorithm can substantially decrease the
computational load. In particular, the numerical results show that our
algorithms has computational advantages over previously suggested prob-
abilistic algorithms. In particular, the presented algorithms is computa-

88 | Randomized Dynamic Mode Decomposition

tionally more efficient than the DMD algorithms using the randomized
singular value decomposition (Bistrian and Navon, 2016; Erichson and
Donovan, 2016). While, the compressed DMD algorithm (Brunton et al.,
2015) is highly competitive in terms of the computational speed, the
randomized algorithm is more robust and reliable. This is mainly, because
the approximation quality of the randomized algorithms can be controlled
using the concept of oversampling and the power scheme. The time
complexity of the algorithm can be reduced even further from O(mnk)
to O(mn · log(k)) by using structured random test matrices to sample
the range of the high-dimensional snapshot sequence. Moreover, the
presented algorithm is embarrassingly parallel. Thus, the computational
performance can benefit from a GPU accelerated implementation as
demonstrated in Chapter 5. If we deal with massive data which are to
big to fit into the fast memory, the algorithm can be reformulated using a
blocked scheme. This allows to take advantage of distributed computing
architectures.

Future research will investigate how other innovations around the
dynamic mode decomposition can be embedded into the probabilistic
framework as well.

Chapter 4

Dynamic Mode
Decomposition for
Background Modeling

“Prediction is very difficult, especially about the
future."

— Niels Bohr

Note: The work described in this chapter was carried out in collaboration with
Professors J. Nathan Kutz and Steven L. Brunton of University of Washington
and Dr. Carl Donovan of the University of St Andrews. Parts of the work
appeared in the Journal of Computer Vision and Image Understanding under
the title: ‘Randomized low-rank dynamic mode decomposition for motion
detection’ and in the Journal of Real-Time Image Processing under the title
’Compressed dynamic mode decomposition for background modeling’. My con-
tributions involve conceptualizing the project idea, implementing the routines,
running the simulations as well as writing the original draft.

4.1 Introduction

The demand for video processing is rapidly increasing, driven by greater
numbers of sensors with greater resolution, new types of sensors, new
collection methods and an ever wider range of applications. For example,
video surveillance, vehicle automation or wild-life monitoring, with data
gathered in visual/infra-red spectra or SONAR, from multiple sensors

90 | Dynamic Mode Decomposition for Background Modeling

being fixed or vehicle/drone-mounted etc. The overall result is an ex-
plosion in the quantity of high dimensional sensor data. At the most
basic level, moving objects can be found in a video by subtracting the
background and applying some thresholding, as illustrated in Figure 4.1.
Background modeling is often the fundamental building block for more

video frame

background model

foreground mask

threshold

(•)dvideo

stream
τ

Fig. 4.1 Illustration of background subtraction

complex video processing and computer vision applications, e.g., object
tracking or human behavior analysis. More generally, the task can be
embedded into a framework of computational stages as illustrated in
Figure 4.2.

Input Preprocessing Background
Modeling

Foreground
Detection

Post-
processing

Foreground
Mask

Fig. 4.2 Algorithmic flow of the computational stages involved in obtaining
a foreground mask.

While there are many different types of sensors giving input data
suitable for object extraction, we focus here on video data provided by
static optical cameras. The first computational stage aims to preprocess
the raw input video frames so that the data are in a suitable format for
the subsequent stages. This involves simple tasks like reshaping the data,
or converting a color into a grayscale image. However, the preprocessing
stage can also involve more subtle tasks such as denoising or image
registration between successive frames.

4.1 Introduction | 91

The next computational stage aims to find a suitable model for the
background, or to update the previous estimated model. This is a chal-
lenging task in practice. Indeed, the list of challenges is significant and
includes camera jitter, illumination changes, shadows and dynamic back-
grounds. Hence, algorithms for background modeling are required to be
both robust and adaptive. There is no single method currently available
that is capable of handling all the challenges in real-time without suffering
performance failures. Moreover, one of the great challenges in this field is
to efficiently process high-resolution video streams, a task that is at the
edge of performance limits for state-of-the-art algorithms.

Once the background model is obtained, foreground objects can be
detected by background subtraction. Specifically, the distance of pixels
between the video frame and the estimated background is computed.
Then, outlying pixels are considered as foreground objects, i.e., pixels
who exceed a pre-defined threshold. However, the challenge hereby is
to distinguish between intensity changes related to moving foreground
objects and intensity changes due to background noise, i.e., dynamic and
complex backgrounds. Indeed, different threshold functions can yield
distinctly different results as demonstrated by Benezeth et al. (2010).

Finally, post-processing techniques can be applied in order to improve
the accuracy of the foreground mask. Standard post-processing techniques,
for instance, are median or morphological filters. We refer to Sen-Ching
and Kamath (2004) for a more detailed discussion of the computational
stages involved in obtaining a suitable foreground mask for a video
sequence.

Challenges and State-of-the-Art Methods

The task of finding a good estimate for the background model is difficult.
This is, because surveillance videos face a large number of challenges:

• Dynamic backgrounds: The background in real scenarios if often
highly dynamic. Objects like moving clouds, waving trees, water
fountains or waves on a river behave like foreground objects, yet
a good background model must be able to distinguish between

92 | Dynamic Mode Decomposition for Background Modeling

these and actual foreground objects in order to achieve a sufficient
accuracy.

• Illumination changes: In long-time surveillance it is likely that
illumination changes occur. This is, in particular, a problem in
outdoor scenes were the light gradual changes over time. In indoor
scenes illumination changes can be caused by a light switch, for
instance. Thus, a ‘good’ background model is required to be flexible
enough to adapt to these challenges.

• Bad weather: Detecting foreground objects in outdoor surveillance
streams can be challenging, if the scene is disturbed by weather
effects like snow or rain. It is even more critical, if the visibility is
affected by fog or smog.

• Shadows: To distinguish between foreground objects and shadows
is subtle. Hence, shadows are often misclassified as foreground
objects, even by state-of-the-art machine vision algorithm.

• Camouflage: Foreground objects which share color features with
the background are difficult to detect. This is, in particular, a
problem in grayscale videos. Multi-feature algorithms are able to
ease this challenge.

• Night scenes: An extreme form of illumination change is posed
by night scenes. Specifically, the signal-to-noise ratio is very low
in these video feeds. Thus, it is difficult to discriminate between
foreground and background objects.

• Camera jitter: In theory, background models often assume a fixed
(static) camera. In practice, however, the background model needs
to deal with a certain amount of camera jitter, which can be caused
by external physical effects.ns.

Given the importance of background modeling, a variety of mathematical
methods and algorithms have been developed over the past decade to face
these issues. Comprehensive overviews of traditional and state-of-the art
methods are provided by Bouwmans (2011), Sobral and Vacavant (2014)
and Xu et al. (2016).

4.1 Introduction | 93

Traditional methods aim to exploit the spatio-temporal variations of
each pixel or regions of pixels. These methods include probabilistic models
like Gaussian mixture-models and its variants (Pham et al., 2010; Shi-
mada et al., 2006; Stauffer and Grimson, 1999; Zivkovic, 2004). Another
interesting approach are fuzzy background models and nonparametric
algorithm (Bouwmans, 2014). Among the best performing universal
background subtraction algorithms are the ViBe algorithm (Barnich and
Van Droogenbroeck, 2011), the IUTIS-5 algorithm (Bianco et al., 2015),
and the PAWCS algorithm (St-Charles et al., 2015). These letter methods
are highly specialized for the task of background subtraction and integrate
a variety of innovations in order to estimate, maintain and update the
background model.

Another (more general) recent direction is the research on decomposi-
tion into low-rank plus sparse matrices. The use of robust low-rank and
sparse matrix decompositions for background modeling is discussed in
detail by Bouwmans and Zahzah (2014) and Bouwmans et al. (2016a,b).

The most impressive background modeling performance is currently
achieved by a supervised approach, which is based on a convolutional
neural network (CNN) (Wang et al., 2016b). While this algorithm requires
some human interaction (i.e. manually outlining a small number of
moving objects), the algorithm achieves near human precision in detecting
foreground objects.

Motivation and Overview

In the following, we advocate the method of randomized dynamic mode
decomposition (rDMD) for background modeling. While the principal
application of the DMD is in the area of fluid dynamics, the method has
been successfully used for background modeling of surveillance videos pre-
viously (Grosek and Kutz, 2014; Kutz et al., 2015). In particular Erichson
and Donovan (2016) and later Erichson et al. (2016a) have presented fast
probabilistic DMD algorithms to reduce the computational costs. The
former paper uses the randomized SVD to compute the DMD, while the
latter paper advocates the compressed DMD algorithm, which shows to
be extremely computationally efficient for background modeling. This
chapter, evaluates the new rDMD algorithm, described in Section 3.4, for

94 | Dynamic Mode Decomposition for Background Modeling

background modeling. While, we do not expect a significant gain in terms
of accuracy compared to the previous proposed DMD algorithms, it is still
of interest to evaluate the performance of the rDMD algorithm for this
task. We are confident that the randomized dynamic mode decomposition
establishes the new standard among the probabilistic DMD algorithms.
This is because the randomized algorithm is more robust, and reliable
than the compressed algorithm, and computationally more efficient than
using the randomized SVD for computing the DMD (Erichson et al.,
2017).

First, Section 4.2 presents a video interpretation of the dynamic
mode decomposition. Then, Section 4.3 outlines how the DMD can be
used for real-time background modeling. In particular it is shown that
the optimal mode selection for background modeling can be formulated
as a sparsity-constrained sparse coding problem. Section 4.4 presents
the measures which are used to evaluate the detection performance of
the DMD algorithm. Finally, Section 4.5 shows some numerical results
using standard background modeling benchmark datasets, which include
real and synthetic surveillance videos. Concluding remarks and further
research directions are outlined in Section 4.6.

4.2 Video Interpretation of the DMD

Surveillance videos are an appropriate application for the DMD, because
a sequence of video frames forms a spatio-temporal grid. Further, video
frames are equally spaced in time. For computational convenience the
flattened grayscale video frames (snapshots) of a given video stream
are stored, ordered in time, as column vectors x1, x2, . . . , xn of a matrix
X ∈ Rm×n. Here m denotes the number of pixels per frame, and n is the
number of video frames taken. The matrix element xit corresponds to
a pixel intensity in space and time. The video frames can be thought
of as snapshots of some underlying dynamics. Each video frame xt+1

at time t + 1 is assumed to be connected to the previous frame xt by
the linear map M : Rm → Rm. Mathematically, the linear map M is
a time-independent operator which constructs the approximate linear

4.2 Video Interpretation of the DMD | 95

evolution
xt+1 ≈Mxt. (4.1)

The objective of the dynamic mode decomposition is to find an estimate
for the matrix M and its eigenvalue decomposition that characterizes the
system dynamics. For more details we refer to Chapter 3.

Once the dynamic modes and eigenvalues for a given snapshot sequence
are obtained, the method can attempt to reconstruct any given frame, or
even possibly future frames. Specifically, a video frame xt at time points
t ∈ 1, ..., m is approximately reconstructed as follows

x̃t =
k∑

j=1
bjϕjλ

t−1
j . (4.2)

Notice that the DMD mode ϕj is a m× 1 vector containing the spatial
structure of the decomposition, while the eigenvalue λt−1

j describes the
temporal evolution. The scalar bj is the amplitude of the corresponding
DMD mode. Further, we make use of the intrinsic low-rank structure
of videos and compute only the first k dominant dynamic modes and
eigenvalues.

At time t = 1, Equation (4.2) reduces to x̃1 = ∑k
j=1 bjϕj, because

λ0
j = 1. Since the amplitude is time-independent, bj can be obtained by

solving the following least-square problem using the first video frame x1

as initial condition
b̂ = argmin

b
∥x1 −Φb∥2

F , (4.3)

where the columns of Φ contains the dominant DMD modes, and b̂ is the
estimator for the amplitudes. It becomes apparent that any portion of
the first video frame that does not change in time, or changes very slowly
in time, must have an associated continuous-time eigenvalue

ωj = log(λj)
∆t

(4.4)

that is located near the origin in complex space: |ωj| ≈ 0 or equivalent
|λj| ≈ 1. This fact becomes the key principle to separate foreground
elements from background information. Figure 4.3 shows the dominant
continuous-time eigenvalues for a video sequence. Subplot (a) shows three

96 | Dynamic Mode Decomposition for Background Modeling

0 50 100 150 200 250 300

0

50

100

150

200

0 50 100 150 200 250 300

0

50

100

150

200

0 50 100 150 200 250 300

0

50

100

150

200

(a) Example frames (t = 0, 150, 300) of video sequence.

Background

mode

Slow varying foreground objects

Other dynamics

real

im
a

g
in

a
ry

0.000-0.005 0.005

-0.1

0.1

0.0

(b) Dominant continuous-time eigenvalues ωj .

Other dynamics

Slow varying

foreground

objects

Time (frame index)

Background mode

a
m

p
li

tu
d

e
s

0 50 100 150 200 250 300

-2000

2000

0

4000

(c) Amplitudes over time.

Fig. 4.3 Subplot (a) shows three frames of the video sequence ‘canoe’,
which is part of the change detection benchmark dataset. Subplot (b) and
(c) show the continuous-time eigenvalues and the temporal evolution of the
amplitudes. The modes corresponding to the amplitudes with the highest
variance are capturing the dominant foreground object (canoe), while the
zero mode captures the dominant structure of the background. Modes
corresponding to high frequency amplitudes capture other dynamics in
the video sequence like waves.

4.2 Video Interpretation of the DMD | 97

sample frames from this video sequence that includes a canoe. Here
the foreground object (canoe) is not present at the beginning and the
end of the video sequence. The dynamic mode decomposition factorizes
this sequence into modes describing the different dynamics present. The
analysis of the continuous-time eigenvalue ωj and the amplitudes over
time BV (i.e. the amplitudes multiplied by the Vandermonde matrix)
can provide interesting insights, shown in subplot (b) and (c). First, the
amplitude for the prominent zero mode is constant over time, indicating
that this mode is capturing the dominant (static) content of the video
sequence, i.e., the background. The next pair of modes correspond to
the canoe, a foreground object slowly moving over time. The amplitude
reveals the presence of this object. Specifically, the amplitude reaches
its maximum at about the frame index 150, when the canoe is in the
center of the video frame. At the beginning and end of the video the
canoe is not present, indicated by the negative values of the amplitude.
The subsequent modes describe other dynamics in the video sequence,
e.g., the movements of the canoeist and the waves. For instance, the
modes describing the waves have high frequency and small amplitudes
(not shown here). Hence, a theoretical viewpoint we will build upon
with the DMD methodology centers around the recent idea of low-rank
and sparse matrix decompositions. Following this approach, background
modeling can be formulated as a matrix separation problem into low-rank
(background) and sparse (foreground) components. This viewpoint has
been advocated, for instance, by Candès et al. (2011) in the framework of
robust principal component analysis (RPCA). For a thorough discussion
of robust low-rank approximation techniques for background modeling,
we refer to Bouwmans and Zahzah (2014), Bouwmans et al. (2016a) and
Bouwmans et al. (2016b). The connection between DMD and RPCA
was first established by Grosek and Kutz (2014). Specifically, the DMD
provides a set of background modes corresponding to continuous-time
eigenvalues {ωp : |ωp| ≈ 0} and a set of modes that corresponds to
eigenvalues bounded away from 0 such as {ωj ̸=p : |ωj ̸=p| ≫ 0}. Then,

98 | Dynamic Mode Decomposition for Background Modeling

Equation (4.2) can be re-expressed in the following form

X̂ = L + S
=

∑
p

bpϕpλt−1
p︸ ︷︷ ︸

Background Video

+
∑
j ̸=p

bjϕjλ
t−1
j︸ ︷︷ ︸

Foreground Video

, (4.5)

where t = [1, ..., m] is a 1 × m time vector and X̂ ∈ Cm×n.1 Hence,
the DMD provides an approximate matrix decomposition of the form
X̂ = L + S, where the low-rank matrix L will render the video of just
the background, and the sparse matrix S will render the complementary
video of the moving foreground objects. We can interpret these DMD
results as follows: stationary background objects translate into highly
correlated pixel regions from one frame to the next, which suggests a
low-rank structure within the video data. Thus the DMD algorithm can
be thought of as an RPCA method. The advantage of the DMD method
and its sparse/low-rank separation is the computationally efficiency of
achieving Equation (4.5), especially when compared to the optimization
methods of RPCA. The analysis of the time evolving amplitudes provide
interesting opportunities. Specifically, learning the amplitudes’ profiles
for different foreground objects allows automatic separation of video
feeds into different components. For instance, it could be of interest to
discriminate between cars and pedestrians in a given video sequence.

4.3 Real-Time Background Modeling

When dealing with high-resolution videos, the standard DMD approach
is expensive in terms of computational time and memory, because the
whole video sequence is reconstructed. Instead a ‘good’ static background
model is often sufficient for background subtraction. This is because
background dynamics can be filtered out or thresholded. The challenge
remains to automatically select the modes best describing the background.
This is essentially a bias-variance trade-off. Using just the zero mode
(background) leads to an under-fitted background model, while a large set

1Note that by construction X̂ is complex, while pixel intensities of the original video
stream are real-valued. Hence, only the the real part is considered in the following.

4.3 Real-Time Background Modeling | 99

of modes tends to overfit. Motivated by the sparsity-promoting variant of
the DMD algorithm introduced by Jovanović et al. (2014), we formulate a
sparsity-constrained sparse coding problem for mode selection. The idea
is to augment Equation (4.3) by an additional term that penalizes the
number of non-zero elements in the vector b

β̂ = argmin
β
∥x1 −Φβ∥2

F such that ∥β∥0 < K, (4.6)

where β is the sparse representation of b, and ∥ · ∥0 is the ℓ0 pseudo
norm which counts the non-zero elements in β. Solving this sparsity
problem exactly is NP-hard. However, the problem in Equation (4.6) can
be efficiently solved using greedy approximation methods. Specifically, we
utilize orthogonal matching pursuit (OMP) as formulated by Mallat and
Zhang (1993) and Tropp and Gilbert (2007). A highly computationally
efficient algorithm was later proposed by Rubinstein et al. (2008) and is
implemented in the scikit-learn software package (Pedregosa et al., 2011).
The greedy OMP algorithm works iteratively, selecting at each step the
mode with the highest correlation to the current residual. Once a mode
is selected the initial condition x1 is orthogonally projected on the span
of the previously selected set of modes. Then the residual is recomputed
and the process is repeated until K non-zero entries are obtained. If no
priors are available, the optimal number of modes K can be determined
using cross-validation. Finally, the background model is computed as

x̂BG = Φβ̂. (4.7)

The disadvantage of this approach is, however, that the quality depends
on the frame which is used as initial condition. If x1 is heavily crowded,
then the method tends to overfit. Thus, to avoid degenerated results, the
previous modeled background x̂BG frame can be used as initial condition
instead. Alternatively, the median frame can be used as well.

Finally, a binary foreground mask X can be obtained by thresholding
the distance between the pixels of a given video frame and the correspond-
ing background model. Thus, we yield the following binary classification

100 | Dynamic Mode Decomposition for Background Modeling

problem

Xt(j) =

 1 if d(xjt, x̂j) > τ,

0 otherwise
(4.8)

where xjt denotes the j-th pixel of the t-th video frame and x̂j denotes the
corresponding pixel of the modeled background. Pixels which exceed the
threshold parameter τ are classified as foreground objects, i.e., they are set
to 1 and 0 otherwise. Due to its simplicity, the Euclidean metric is often
used to compute the distance d() between pixels in practice (Benezeth
et al., 2010).

4.4 Evaluation Measures

Assuming that the true foreground mask is known, a confusion matrix
can be formed to assess the performance of the background model as
follows

Truth
0 1

Prediction
0 TN FN #pred neg
1 FP TP #pred pos

#true neg #true pos

(4.9)

TP denotes the (number of) true positive predictions, i.e. pixels which are
correctly classified as belonging to a moving foreground object. Similarly
TN denotes the (number of) true negative predictions, i.e., pixels which
are correctly classified as background. False Positive (FP) and false
negative (FN) are the respective misclassifications for foreground and
background elements. Based on the confusion matrix we can compute
the following common evaluation measures: recall, precision and the
F-measure. Among others, these three are the most common measures to
evaluate the background performance in the literature (Bouwmans et al.,
2016b; Sobral and Vacavant, 2014; Xu et al., 2016).

Recall (also called sensitivity, true positive rate or hit rate) measures
the algorithm’s ability to correctly detect pixels belonging to foreground
objects. It is computed as the ratio of predicted true positives to the

4.5 Numerical Results | 101

total number of true positive foreground pixels

Recall = TP
TP + FN . (4.10)

Precision (also called false alarm rate or true positive accuracy) mea-
sures how confident we can be that a positive classified pixel actually
belongs to a foreground object. It is computed as the ratio of predicted
true positives to the total number of pixels predicted as foreground objects

Precision = TP
TP + FP . (4.11)

The F-measure combines recall and precision as their harmonic mean,
weighting both measures evenly, defined as

F = 2× Recall× Precision
Recall + Precision . (4.12)

4.5 Numerical Results

In this section we evaluate the computational performance and the suit-
ability of the randomized dynamic mode decomposition for background
modeling, using both syntactic and real benchmark videos. Specifically,
the performance is evaluated using the change detection (CD) and the
background models challenge (BMC) benchmark datasets (Vacavant et al.,
2013; Wang et al., 2014b). In particular, the following complex situations
are encountered:

• Illumination: Gradual change of pixel intensities caused by illumi-
nation conditions, e.g., fog and sun, as well as bad light conditions,
e.g., night videos.

• Bad weather: Small moving objects related to weather conditions,
e.g., snow and rain.

• Dynamic backgrounds: Moving objects belonging to the back-
ground, e.g., waving trees, fountains, water surfaces and clouds.

• Sleeping foreground objects: Objects that are becoming mo-
tionless and moving again at a later point in time.

102 | Dynamic Mode Decomposition for Background Modeling

4.5.1 Evaluation Settings

The following settings have been used in order to obtain reproducible
results. For a given video sequence, the randomized dynamic mode decom-
position is computed using a fixed target rank k = 25, an oversampling
parameter p = 10, and q = 1 power iteration. Compressed DMD is
computed using c = 1000 (random rows) single pixel measurements. Once
the DMD is obtained, the optimal set of modes is selected using the or-
thogonal matching pursuit method. In general the use of K = 10 non-zero
entries achieves good results. Notice that the DMD is formulated here as
a batch algorithm. Thus, a given long video sequence is split into batches
of 200 consecutive frames. The decomposition is then computed for each
batch independently. For every video an individual threshold value has
been selected by hand in order to compute the foreground mask.

4.5.2 Evaluation Using the CD Dataset

First, six CD video sequences (Wang et al., 2014b) are used to contex-
tualize the background model quality using the sparse-coding approach
(denoted as ‘opt’). This is compared to using the dominant (static)
background mode only (denoted as ‘0’). Figure 4.4 shows the results
by plotting the F-measure versus varying thresholds. Note, that here
only one batch (i.e., 200 frames) is used for the evaluation. In four out
of six examples the sparse-coding approach dominates. In particular,
significant improvements are achieved for the dynamic background video
sequences ‘Canoe’ and ‘Fountain02’. Only in case of the ‘Park’ video
sequence the method tends to over-fit. This is, because here the initial
frame contains several moving objects. Interestingly, the performance
of the randomized algorithm is slightly better than the deterministic
DMD algorithm for some of the video sequences, overall. This is due to
the implicit regularization of randomized algorithms (Mahoney, 2011).
However, it is important to note that the performance can also slightly
vary over several runs due to random fluctuations.

Next, we show in Table 4.1 the evaluation results of 8 real videos from
the CD dataset. The videos are from three different categories: ‘Baseline’,
‘Dynamic Background’ and ‘Thermal’. For comparison, the results of

4.5 Numerical Results | 103

two leading algorithms in the CD ranking are shown as well. Firstly,
the flux tensor with split Gaussian models (FTSG) algorithm (Wang
et al., 2014a), and secondly the pixel-based adaptive word consensus
segmenter (PAWCS) algorithm (St-Charles et al., 2015). The former
algorithm is based on a mixture of Gaussians and won the 2014 CD
challenge. The latter algorithm is based on a word-based approach for
background modeling.

0 50 100 150
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

F-
M
e
a
su

re

DMD (0) F=0.751

rDMD (0) F=0.752

rDMD (opt) F=0.763

(a) Highway

0 20 40 60 80 100
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

F-
M
e
a
su

re

DMD (0) F=0.903

rDMD (0) F=0.908

rDMD (opt) F=0.902

(b) Blizzard

0 50 100 150 200 250
Threshold

0.0

0.2

0.4

0.6

0.8

F-
M
e
a
su

re

DMD (0) F=0.572

rDMD (0) F=0.566

rDMD (opt) F=0.641

(c) Canoe

0 50 100 150 200 250
Threshold

0.0

0.1

0.2

0.3

0.4

0.5

F-
M
e
a
su

re

DMD (0) F=0.379

rDMD (0) F=0.388

rDMD (opt) F=0.464

(d) Fountain02

0 50 100 150 200
Threshold

0.0

0.2

0.4

0.6

0.8

F-
M
e
a
su

re

DMD (0) F=0.675

rDMD (0) F=0.675

rDMD (opt) F=0.405

(e) Park

0 50 100 150 200 250
Threshold

0.0

0.5

1.0

F-
M
e
a
su

re

DMD (0) F=0.976

rDMD (0) F=0.977

rDMD (opt) F=0.982

(f) Library

Fig. 4.4 The F-measure shows the improved performance of the sparsity-
promoting approach over using only the zero mode.

104 | Dynamic Mode Decomposition for Background Modeling

As expected, the deterministic and probabilistic DMD algorithms
show very similar results. Interestingly, the randomized DMD algorithm
performs slightly better than the compressed and the deterministic al-
gorithm on most of the videos. However, the overall detection accuracy
of the DMD algorithms looks poor compared to the FTSG and PAWCS
algorithm. This can be related to several challenges faced here. While the
performance on the two baseline videos ‘Highway’ and ‘Pedestrians’ are
good, issues arise for the other two baseline videos. The video ‘PETS2006’
is challenging for the DMD algorithm, due to camouflage effects as well
as because some of the objects are sleeping foreground objects. The video
‘Office’ shows even more drastically that DMD cannot cope with sleeping
foreground objects.

Further, if videos feature dynamic backgrounds, it can be seen that
the DMD achieves good recall rates, while the precision is poor. The
performance for the thermal videos is relatively good.

Overall, the raw results of the DMD cannot compete with the FTSG
and PAWCS methods. These, two methods are highly optimized for the
task of background modeling. Moreover, they consider the information
from all three RGB channels, while DMD is using only the information
of the grayscale video. But, it can be seen that the performance can
be substantially improved by simple post-processing techniques like the
median filter. In addition to the quantitative results, Figure 4.5 shows
some visual results for three selected videos.

4.5 Numerical Results | 105

Fig. 4.5 Visual results showing frames of the ‘Highway’, ‘Canoe’ and
‘Park’ video. The top row shows the grayscale frames, and the second
row the corresponding true foreground masks. The third row shows the
differencing between the frames and the background model. The fourth
and fives row show the thresholded, and median filtered foreground masks.

106
|

D
ynam

ic
M

ode
D

ecom
position

for
Background

M
odeling

Table 4.1 Evaluation results of eight real videos from the CD dataset. For comparison, the results of two algorithms from the
CD ranking are presented.

Measure Baseline Dynamic Background Thermal Average
Highway Pedestrians PETS2006 Office Overpass Canoe Park Lakeside

PAWCS
St-Charles et al. (2015)

Recall 0.952 0.961 0.945 0.905 0.961 0.947 0.899 0.520 -
Precision 0.935 0.931 0.919 0.972 0.957 0.929 0.768 0.752 -
F-Measure 0.944 0.946 0.932 0.937 0.959 0.938 0.829 0.615 0.89

FTSG
Wang et al. (2014a)

Recall 0.956 0.979 0.963 0.908 0.944 0.913 0.666 0.228 -
Precision 0.934 0.890 0.883 0.961 0.941 0.985 0.724 0.960 -
F-Measure 0.945 0.932 0.921 0.934 0.943 0.948 0.694 0.369 0.84

DMD
Recall 0.803 0.943 0.692 0.347 0.540 0.621 0.736 0.447 -
Precision 0.759 0.781 0.736 0.558 0.448 0.663 0.614 0.402 -
F-Measure 0.780 0.854 0.713 0.428 0.490 0.641 0.669 0.423 0.62

cDMD
Recall 0.803 0.942 0.692 0.387 0.552 0.629 0.736 0.435 -
Precision 0.753 0.743 0.716 0.246 0.467 0.664 0.613 0.567 -
F-Measure 0.777 0.831 0.704 0.301 0.506 0.646 0.669 0.492 0.61

rDMD
Recall 0.803 0.943 0.693 0.349 0.552 0.618 0.736 0.439 -
Precision 0.760 0.783 0.735 0.567 0.471 0.660 0.614 0.531 -
F-Measure 0.781 0.855 0.713 0.432 0.508 0.638 0.669 0.480 0.63

rDMD
(with median filter)

Recall 0.899 0.975 0.696 0.346 0.764 0.615 0.798 0.655 -
Precision 0.845 0.948 0.741 0.578 0.813 0.985 0.764 0.571 -
F-Measure 0.871 0.961 0.718 0.433 0.788 0.758 0.781 0.610 0.74

4.5 Numerical Results | 107

4.5.3 Evaluation Using the BMC Dataset

Next, we use the BMC dataset which comprises nine real and ten syn-
thetic video sequences. Figure 4.6 shows sample frames of the nine real
videos. These video sequences reproduce challenges which are commonly
encountered in outdoor surveillance videos. Further, the BMC dataset
allows us to compare the randomized DMD algorithm to leading RPCA
algorithms by using the results of Bouwmans et al. (2016b). Here, we
compare the performance of the DMD to the online robust principal com-
ponent analysis (OR-PCA) algorithm (Javed et al., 2014) as well as to
the GoDec and the IALM algorithms. This OR-PCA algorithm has been
designed, in particular, as a robust foreground detection algorithm, and
the continuous constraint approach using the markov random field (MRF)
helps to improve the accuracy considerably. Currently, this algorithm is
the best performing algorithm according to the ranking provided by Bouw-
mans et al. (2016b). Javed et al. (2015b) have improved the algorithm
even further by introducing the concept of dynamic feature selection. The
GoDec algorithm is an approximated RPCA algorithm, which is based on
bilateral random projections (Zhou and Tao, 2011). Compared to most
of the other RPCA algorithms, this algorithm shows a relatively good
computational performance. The IALM algorithm is one of the standard
RPCA algorithms for obtaining the low-rank and sparse components of
a data matrix (Lin et al., 2011). In particular, the IALM algorithm can
benefit from using the randomized SVD as demonstrated in Chapter 2.
In addition we show the results of other prominent background models
like the adaptive mixture-of-Gaussians background model (Shimada et al.,
2006), the robust orthonormal subspace learning background model (Shu
et al., 2014) as well as the DECOLOR (DEtecting Contiguous Outliers
in the LOw-rank Representation) model (Zhou et al., 2013).

Table 4.3 shows the evaluation results for the real video sequences.2

Overall rDMD achieves an average F-measure of about 0.65. This is
slightly better than the performance of GoDec and IALM, but substan-
tially poorer than the F-measure of the OR-PCA (with MRF) algorithm.
In particular, the videos ‘001’, ‘005’ , ‘008’ , and ‘009’ are challenging

2The evaluation results were obtained by using the BMC wizard: http://bmc.iut-
auvergne.com.

http://bmc.iut-auvergne.com
http://bmc.iut-auvergne.com

108 | Dynamic Mode Decomposition for Background Modeling

for the DMD algorithm. These videos contain all a lot of background
noise such as moving trees, clouds, rain and snow. On the other hand
the results show that DMD can deal with large moving objects and low
illumination conditions.

Figure 4.7 presents some visual results for fife videos. Here, the last
row shows the smoothed (median filtered) foreground mask.

(001) Boring
parking

(002) Big trucks (003) Wandering
students

(004) Rabbit in the
night

(005) Snowy
Christmas

(006) Beware of
the trains

(007) Train in the
tunnel

(008) Traffic during
windy day’

(009) One rainy
hour

Fig. 4.6 BMC dataset: Example frames of the 9 real videos.

Table 4.4 shows the results of randomized DMD for the ten synthetic
videos of the BMC dataset and the picture is very similar to the previous
evaluation results. The synthetic videos show that DMD is flexible enough
to deal with some illumination changes, clouds, fog and sun. However,
in particular, the videos ‘Street 412’ and ‘Rotary 422’ are challenging,
due to the emulated windy scenes, and the additional noise. Overall, the
OR-PCA algorithm outperforms, while the dynamic mode decomposition
performs slightly better than the GoDec and IALM algorithm here.

4.5.4 Computational Performance

Table 4.2 shows the average computational time required to obtain the
background model using different DMD algorithms. In addition the
number of processed frames per second (FPS) is shown. Specifically, a

4.5 Numerical Results | 109

Fig. 4.7 Visual results for fife frames corresponding to the BMC Videos:
‘002’, ‘003’, ‘006’, ‘007’ and ‘009’. The top row shows the original grayscale
images. The second row shows the differencing between the background
model and the video frame. The third and fourth row show the thresholded
and the median filtered foreground mask.

sequence of 200 frames is decomposed using the target rank k = 25. The
randomized DMD algorithm as well as the DMD algorithm using the
randomized SVD is computed with the parameter p = 10 and q = 1. The
compressed DMD algorithm is computed using c = 1000 random rows.

The deterministic algorithm shows a good performance for low resolu-
tion videos, but due to some memory error the algorithm fails to find a
decomposition for the high resolution videos. Similar does the compressed
DMD algorithm fail to decompose the HD (720) video sequence.

Overall, the probabilistic algorithms show substantial computational
savings compared to the deterministic algorithm. Erichson and Donovan
(2016) proposed to use the randomized SVD for computing the DMD,
and indeed this approach shows a considerable speedup. However, the
compressed and the randomized DMD algorithm show an even better
performance. The compressed DMD shows a slightly better performance
than the randomized algorithms, but the latter algorithm is more memory
efficient. Hence, overall the randomized algorithms is favorable. The
advantage of the rDMD algorithm becomes more pronounced for data of
increasing dimensions. In addition, Figure 5.8 in Chapter 5 shows the

110 | Dynamic Mode Decomposition for Background Modeling

Table 4.2 Algorithms runtime for obtaining the background model for
varying video resolutions. Here a sequence of 200 frames is decomposed
using target rank k = 25, and the parameters p = 10, q = 1 and c = 1000
for the probabilistic algorithms.

Resolution
QVGA HVGA VGA SVGA XGA HD 720

320× 240 480× 320 640× 480 800× 600 1024× 768 1280× 720

Deterministic DMD Time (s) 2.27 4.41 9.49 16.18 - -
FPS 88 45 21 12 - -

DMD using rSVD Time (s) 1.30 2.63 5.65 9.00 14.98 19.66
FPS 153 75 35 22 13 10

Compressed DMD Time (s) 0.65 1.31 2.67 4.11 7.07 -
FPS 307 153 75 48 28 -

Randomized DMD Time (s) 0.77 1.38 2.80 4.41 7.75 8.55
FPS 261 144 71 45 25 23

computational performance of the GPU accelerated randomized DMD
algorithm.

4.6 Conclusion

Background modeling is a complex and challenging task. In particular,
real-time HD video analysis remains one of the grand challenges of the field.
This is, because most algorithms in this area are very computationally
demanding.

The dynamic mode decomposition has shown to be a viable and
computationally efficient candidate for background modeling. Despite
the significant computational savings, the randomized DMD algorithm
remains competitive with other leading methods in the quality of the
decomposition itself. In particular, the trade-off between speed and
accuracy of the randomized DMD is compelling. Specifically, our results
show, that for both standard and challenging environments, the rDMD’s
background subtraction accuracy in terms of the F-measure is competitive
to some robust principal component analysis algorithms. However, the
DMD algorithm cannot compete, in terms of the F-measure, with highly
specialized algorithms for background modeling like FTSG, PAWC or OR-
PCA with MRF. Thus, while the DMD provides an interesting theoretical
framework for background modeling, it requires the integration into a
more general vision system in order to be useful in practice.

4.6 Conclusion | 111

As a final remark in this Chapter, we need to note that the emergence
of deep learning greatly challenges the future of low-rank matrix approxi-
mations for the task of background modeling. The work by Wang et al.
(2016a), Braham and Van Droogenbroeck (2016), Babaee et al. (2017)
and Kang et al. (2016) show compelling results.

112
|

D
ynam

ic
M

ode
D

ecom
position

for
Background

M
odeling

Table 4.3 Evaluation results of nine real videos from the BMC dataset. For comparison, the results of three leading robust
PCA algorithms are presented, adapted from Bouwmans et al. (2016b).

Measure BMC real videos Average
001 002 003 004 005 006 007 008 009

OR-PCA with MRF
Javed et al. (2014)

Recall 0.776 0.845 0.905 0.799 0.779 0.800 0.806 0.566 0.95 -
Precision 0.936 0.781 0.738 0.870 0.860 0.891 0.768 0.558 0.74 -
F-Measure 0.848 0.812 0.813 0.834 0.826 0.843 0.786 0.562 0.854 0.8

IALM
Lin et al. (2011)

Recall 0.697 0.515 0.759 0.691 0.635 0.642 0.433 0.617 0.70 -
Precision 0.585 0.723 0.798 0.678 0.483 0.643 0.683 0.632 0.80 -
F-Measure 0.637 0.605 0.778 0.684 0.551 0.643 0.536 0.624 0.754 0.64

SemiSoft GoDec
Zhou and Tao (2011)

Recall 0.666 0.491 0.769 0.681 0.636 0.644 0.438 0.594 0.68 -
Precision 0.548 0.706 0.809 0.694 0.489 0.632 0.642 0.629 0.81 -
F-Measure 0.602 0.583 0.789 0.687 0.555 0.638 0.525 0.611 0.744 0.64

Adaptive MOG
Shimada et al. (2006)

Recall 0.849 0.580 0.859 0.829 0.754 0.780 0.691 0.723 0.828 -
Precision 0.682 0.546 0.780 0.580 0.435 0.636 0.603 0.495 0.790 -
F-Measure 0.757 0.562 0.818 0.785 0.558 0.702 0.644 0.591 0.809 0.68

ROSL
Shu et al. (2014)

Recall 0.743 0.837 0.912 0.851 0.823 0.843 0.778 0.562 0.768 -
Precision 0.865 0.731 0.779 0.531 0.512 0.680 0.684 0.508 0.852 -
F-Measure .799 0.781 0.840 0.654 0.631 0.753 0.728 0.534 0.808 0.725

DMD
Recall 0.552 0.779 0.772 0.694 0.615 0.701 0.723 0.512 0.566 -
Precision 0.579 0.643 0.756 0.771 0.542 0.595 0.823 0.509 0.575 -
F-Measure 0.565 0.705 0.764 0.731 0.576 0.644 0.769 0.510 0.570 0.65

cDMD
Recall 0.552 0.746 0.770 0.693 0.611 0.698 0.720 0.515 0.566 -
Precision 0.581 0.605 0.760 0.770 0.541 0.594 0.823 0.510 0.574 -
F-Measure 0.566 0.668 0.765 0.730 0.574 0.642 0.768 0.512 0.570 0.64

rDMD
Recall 0.552 0.777 0.772 0.694 0.615 0.699 0.723 0.516 0.566 -
Precision 0.581 0.639 0.754 0.771 0.543 0.594 0.823 0.511 0.575 -
F-Measure 0.566 0.701 0.763 0.731 0.577 0.642 0.769 0.513 0.570 0.65

4.6
C

onclusion
|

113

Table 4.4 Evaluation results of ten synthetic videos from the BMC dataset. For comparison, the results of three leading
RPCA algorithms are presented, adapted from Bouwmans et al. (2016b).

Measure Street Rotary Average
112 212 312 412 512 122 222 322 422 522

OR-PCA with MRF
Javed et al. (2014)

Recall 0.871 0.870 0.894 0.850 0.860 0.937 0.940 0.923 0.917 0.841 -
Precision 0.956 0.952 0.882 0.873 0.894 0.924 0.924 0.901 0.846 0.92 -
F-Measure 0.911 0.909 0.888 0.861 0.876 0.931 0.932 0.912 0.880 0.879 0.897

IALM
Lin et al. (2011)

Recall 0.774 0.689 0.741 0.738 0.677 0.743 0.750 0.741 0.705 0.70 -
Precision 0.662 0.811 0.719 0.743 0.664 0.779 0.769 0.740 0.773 0.74 -
F-Measure 0.715 0.746 0.730 0.741 0.670 0.761 0.759 0.740 0.737 0.725 0.732

SemiSoft GoDec
Zhou and Tao (2011)

Recall 0.692 0.700 0.717 0.730 0.664 0.726 0.718 0.673 0.642 0.71 -
Precision 0.816 0.818 0.752 0.772 0.601 0.792 0.799 0.750 0.804 0.68 -
F-Measure 0.750 0.755 0.734 0.750 0.631 0.758 0.757 0.710 0.715 0.702 0.726

Adaptive MOG
Shimada et al. (2006)

Recall 0.827 0.827 0.797 0.761 0.821 0.823 0.831 0.797 0.743 -
Precision 0.766 0.768 0.480 0.426 0.519 0.786 0.790 0.526 0.435 0.740 -
F-Measure 0.796 0.796 0.605 0.553 0.640 0.804 0.810 0.638 0.555 0.784 0.698

DECOLOR
Zhou et al. (2013)

Recall 0.982 0.985 0.983 0.980 0.978 0.983 0.983 0.981 0.967 0.980 -
Precision 0.778 0.748 0.747 0.729 0.599 0.764 0.759 0.760 0.762 0.694 -
F-Measure 0.868 0.851 0.849 0.836 0.743 0.860 0.857 0.857 0.852 0.813 0.838

DMD
Recall 0.857 0.856 0.789 0.710 0.739 0.861 0.836 0.708 0.682 0.748 -
Precision 0.910 0.879 0.558 0.633 0.676 0.905 0.921 0.896 0.576 0.829 -
F-Measure 0.883 0.867 0.653 0.670 0.706 0.882 0.876 0.791 0.624 0.787 0.77

cDMD
Recall 0.858 0.856 0.790 0.710 0.740 0.861 0.835 0.707 0.681 0.748 -
Precision 0.908 0.898 0.559 0.632 0.707 0.905 0.924 0.895 0.575 0.836 -
F-Measure 0.882 0.877 0.655 0.669 0.723 0.882 0.877 0.790 0.623 0.789 0.77

rDMD
Recall 0.857 0.856 0.788 0.710 0.739 0.861 0.836 0.710 0.682 0.748 -
Precision 0.910 0.878 0.558 0.633 0.695 0.905 0.922 0.868 0.575 0.827 -
F-Measure 0.883 0.867 0.653 0.670 0.717 0.882 0.877 0.781 0.624 0.786 0.77

Chapter 5

GPU Accelerated
Randomized Algorithms

“Machines take me by surprise with great
frequency."

— Alan Turing

Note: The work described in this chapter was carried out in collaboration with
Professors J. Nathan Kutz and Steven L. Brunton of University of Washington.
Parts of the work appeared in the Journal of Real-Time Image Processing under
the title ’Compressed dynamic mode decomposition for background modeling’.
My contributions involve conceptualizing the project idea, implementing the
routines, running the simulations as well as writing the original draft.

5.1 Introduction

Graphics processing units (GPUs) becoming increasingly popular for
general-purpose high-performance computing. Compared to central pro-
cessing units (CPUs), the architecture of GPUs enable massive parallel
processing. This paradigm of parallel computing has been proven valuable
for a variety of computational tasks, e.g., linear algebra or Monte-Carlo
simulations. Specifically CUDA, NVIDIA’s programming model for par-
allel computing opens up GPUs as a general parallel computing device
(Nickolls et al., 2008).

Originally GPUs were designed for the real-time creation of high-
definition 2D/3D graphics. Thus, the computational architecture was

116 | GPU Accelerated Randomized Algorithms

optimized for data-parallel, throughput computations of array like data
structures. This is achieved by a large number of small arithmetic logic
units (ALUs). In contrast, CPUs consist of a few ALUs, which are
highly optimized for low-latency access to cached data sets.1 Figure 5.1
illustrates the architecture of both modern CPUs and GPUs.

ALU ALU

ALU ALU

Control

L2

DRAM

(a) CPU

L2

DRAM

(b) GPU

Fig. 5.1 Illustration of the CPU and GPU architecture. Compared to
the CPU, the GPU consist of many arithmetic logic units (green) which
enable massive parallel processing.

Motivation and Overview

The probabilistic framework for computing low-rank matrix decompo-
sitions as presented in Chapter 1 is embarrassingly parallel. Take, for
instance, the matrix multiplication of two n × n square matrices, illus-
trated in Figure 5.2. The computation involves the evaluation of n2

dot products.2 The data parallelism therein is that each dot-product
can be computed independently. With enough ALUs the computational
time can be substantially accelerated. This parallelism applies readily to
the generation of random numbers and many other operations in linear
algebra.

1Intel has recently introduced the new Xeon Phi coprocessor, which provides
many ALUs. This allows highly parallel computing using a CPU architecture, and
benchmarks show that the performance is highly competitive with GPUs.

2Modern efficient matrix-matrix multiplications are based on block matrix decom-
position or other computational tricks, and do not actually compute n2 dot products.
However the concept of parallelism remains the same.

5.2 Background: GPU Computing | 117

Fig. 5.2 Illustration of the data parallelism in matrix-matrix multiplica-
tions. The entries of the resulting matrix can be computed as independent
dot products in parallel.

In Section 5.2 we give a brief background about GPU computing.
Then, in Section 5.3 we outline the Scikit-CUDA package which provides
GPU-based libraries for linear algebra routines in Python. Section 5.4
shows the performance of the GPU accelerated implements for both
the randomized singular value decomposition and the dynamic mode
decomposition. Section 5.5 discusses the results.

5.2 Background: GPU Computing

Linear algebra is at the core of most scientific computing applications,
and the mathematics behind machine learning and vision. In particular,
solving large linear systems of equations is a standard problem in these
areas. In the area of image processing it is often required to perform the
same computations on a large number of pixels. The GPU is a powerful
engine to tackle these computationally demanding tasks. This is, because
often the required computations can be parallelized effectively on GPU.
Thus, the paradigm of parallel computing is the future of computing
in the era of ‘big data’ (Owens et al., 2008). We refer the reader for a
comprehensive introduction into the field of parallel and GPU computing
to Wen-Mei (2011), Cai and See (2015) and Sanders and Kandrot (2010).

In particular, fundamental matrix decompositions like the Cholesky
factorization, the LU, and the QR decomposition benefit substantially

118 | GPU Accelerated Randomized Algorithms

from GPU accelerated implementations. Tomov et al. (2010) show
that the performance of the GPU accelerated Cholesky factorization
is up to 100 times higher than the performance of the CPU routine.
Similar, Volkov and Demmel (2008) show impressive performance results
of GPU acclerated implementations of these dense matrix factorizations.
Substantial performance gains are also achieved for randomized matrix
algorithms, for instance, see Ji and Li (2014), Voronin and Martinsson
(2015) and Martinsson et al. (2017).

Analogous, performance gains are demonstrated in the area of image
processing (Wang et al., 2013). For instance, Park et al. (2008) propose a
GPU accelerated Canny Edge detection algorithm. Further, Zhang et al.
(2014) demonstrate the computational advantage of a highly parallelized
mixture-of-Gaussian algorithm for background subtraction.

Finally, it is to mention that GPU computing plays a fundamental role
in deep learning to make training faster (Chetlur et al., 2014; Krizhevsky
et al., 2012).

5.3 The scikit-CUDA Package

The multi-author scikit-CUDA package (initiated by Lev Givon) pro-
vides NumPy like interfaces to several low-level CUDA routines, e.g.,
CUBLAS, CUFFT, and CUSOLVER (Givon et al., 2015). In addition,
several wrapper functions for the high-performance linear algebra library
CULA (Humphrey et al., 2010) are provided. These low-level wrapper
functions allow to implement GPU accelerated matrix decompositions
in Python. We have implemented routines to compute the randomized
singular value decomposition, and the randomized dynamic mode de-
composition. The interfaces are similar to the CPU implementations of
Algorithm 1 and 3. The basic GPU rsvd() interface is

U, S, V = rsvd(a_gpu, k=None, p=10, q=1, ...)

where the first argument a_gpu passes a m × n GPUArray. Given a
NumPy like 2-dimensional array A, the GPU array is simply created as
follows

a_gpu = gpuarray.to_gpu(A)

5.4 Numerical Results | 119

Further, the basic GPU rdmd() interface is

F, b, V = rdmd(a_gpu, k=None, p=10, q=1,
return_amplitudes=False, return_vandermonde=False, ...)

It is important to note that the GPUArray assumes Fortran mem-
ory ordering. For installation instructions visit the GIT repository
https://github.com/lebedov/scikit-cuda. See also the package manual, as
all package functions are fully documented.

5.4 Numerical Results

In the following, we are using random matrices to compare the computa-
tional performance of the CPU and GPU accelerated implementations
in Python. All computations are performed on a standard notebook
with Intel Core i7-5500U 2.4GHz, 8GB DDR3 memory and a NVIDIA
GeForece GTX 980M with 4GB VRAM.

5.4.1 Randomized Singular Value Decomposition

First we compare the performance for a square random matrix of dimen-
sion 5000× 5000 with and without power iterations. Figure 5.3 shows the
results. Independent of the target rank, the performance gain is only mi-
nor when the computation of power iterations are omitted. However, some
computational savings are achieved in the latter case, where q = 2 power
iterations are computed. The computational advantage becomes more
distinct with increasing dimensions of the input matrix. Figure 5.4 shows
the performance for a square random matrix of dimension 10000× 10000
with and without power iterations. Here speedups of about 2 − 5 are
achieved.

https://github.com/lebedov/scikit-cuda

120 | GPU Accelerated Randomized Algorithms

0 500 1000 1500 2000
Target rank

10-2

10-1

100

101

T
im

e
 i
n
 s

CPU rsvd

GPU rsvd

(a) p = 10, q = 0.

0 500 1000 1500 2000
Target rank

10-2

10-1

100

101

102

T
im

e
 i
n
 s

CPU rsvd

GPU rsvd

(b) p = 10, q = 2.

Fig. 5.3 Average runtime of the CPU and GPU accelerated randomized
singular value decomposition for varying target ranks. Here, the low-rank
matrix decomposition is performed on a 5000× 5000 square matrix.

0 500 1000 1500 2000
Target rank

10-2

10-1

100

101

102

T
im

e
 i
n
 s

CPU rsvd

GPU rsvd

(a) p = 10, q = 0.

0 500 1000 1500 2000
Target rank

10-2

10-1

100

101

102

T
im

e
 i
n
 s

CPU rsvd

GPU rsvd

(b) p = 10, q = 2.

Fig. 5.4 Average runtime of the CPU and GPU accelerated randomized
singular value decomposition for varying target ranks. Here, the low-rank
matrix decomposition is performed on a 10000× 10000 square matrix.

Figure 5.5 shows the performance for square random matrices of
varying dimensions without power iterations. For small matrices the GPU
accelerated implementations shows no computational advantage. The
break-even point is given by matrices of dimension about 3000 × 3000.
The weak performance for small matrices is mainly due-to some overhead
of the scikit-CUDA implementation as well as due to the costs of data
transfer between the GPU and the fast memory.

5.4 Numerical Results | 121

0 2000 4000 6000 8000 10000
Matrix dimension

10-3

10-2

10-1

100

T
im

e
 i
n
 s

CPU rsvd

GPU rsvd

Fig. 5.5 Average runtime of CPU and GPU accelerated randomized
singular value decomposition for varying matrix dimensions. Break-even
point is given by matrices of dimension about 3000× 3000.

5.4.2 Randomized Dynamic Mode Decomposition

Next, we compare the computational performance of the CPU and GPU
accelerated randomized dynamic mode decomposition. Here, we use
tall random matrices, instead of square matrices. This is, because we
normally face a (relatively) small sequence of high-dimensional snapshots
in the area of fluid dynamics or video processing. Figure 5.5 shows the
performance for a 100000× 200 random matrix with and without power
iterations. The GPU accelerated implementation achieves computational
savings in both cases. As before, the computational savings become more
distinct with increasing dimensions. Figure 5.5 shows the performance
for a 200000× 500 random matrix. Here speedups of about 2− 3.5 are
achieved.

Figure 5.8 shows the computational advantage of the GPU accelerated
implementation for varying video resolutions. Here, the performance is
measured as the average processed frames per second (fps). The target
rank is set to k = 10, and no additional power iterations are computed.
For instance, the decomposition of a high definition (HD) 1280 × 720
video feed using the GPU accelerated implementation achieves a speedup
of about 5 over the CPU implementation. More substantial, a speedup of
about 24 is achieved over the deterministic DMD implementation.

122 | GPU Accelerated Randomized Algorithms

10 15 20 25 30 35 40 45 50
Target rank

10-1

100

101

T
im

e
 i
n
 s

CPU rDMD

GPU rDMD

(a) p = 10, q = 0.

10 15 20 25 30 35 40 45 50
Target rank

10-1

100

101

T
im

e
 i
n
 s

CPU rDMD

GPU rDMD

(b) p = 10, q = 2.

Fig. 5.6 Average runtime of CPU and GPU accelerated randomized
dynamic mode decomposition for varying target ranks. Here, the low-
rank matrix decomposition is performed on a 100000×200 square matrix.

10 15 20 25 30 35 40 45 50
Target rank

10-1

100

101

T
im

e
 i
n
 s

CPU rDMD

GPU rDMD

(a) p = 10, q = 0.

10 15 20 25 30 35 40 45 50
Target rank

10-1

100

101

T
im

e
 i
n
 s

CPU rDMD

GPU rDMD

(b) p = 10, q = 2.

Fig. 5.7 Average runtime of CPU and GPU accelerated randomized
dynamic mode decomposition for varying target ranks. Here, the low-
rank matrix decomposition is performed on a 200000×500 square matrix.

5.5 Conclusion

The paradigm of parallel computing becomes increasingly important in the
area of ‘big data’. In particular, first the computational power of modern
GPU architectures made the training of deep neural networks possible in
practice. The computation, for instance, of the deterministic SVD, the

5.5 Conclusion | 123

QVGA (320x240) HVGA (480x320) VGA (640x480) SVGA (800x600) XGA (1024x768)HD 720 (1280x720)
Video resolution

0

200

400

600

800

1000

1200

1400

Fr
am

es
 p
er
 se

co
nd

 (f
ps
)

88 45 21 12 6 4

261
144

71 45 25 23

1174

641

311
207

111 101

Deterministic DMD
rDMD
GPU rDMD

(a) Average runtime.

QVGA (320x240) HVGA (480x320) VGA (640x480) SVGA (800x600) XGA (1024x768) HD 720 (1280x720)
Video resolution

0

5

10

15

20

25

30

35

40

Sp
ee

du
ps

2 3 3 3 4
5

13 14 14
16 17

24

rDMD
GPU rDMD

(b) Speedup.

Fig. 5.8 Average runtime of the CPU and GPU DMD algorithms for
varying video resolutions. Here, 200 frames are used and the low-rank
approximation is computed with target-rank k = 25.

eigenvalue decomposition and the least-square solver can benefit from the
GPU architecture as well. Randomized matrix decompositions can benefit
by design even more from a GPU accelerated implementation. This is,
because the expensive computational steps (generating the test matrix
Ω as well as computing the sample matrix Y = AΩ) are embarrassingly
parallel. However, the disadvantage of current GPUs is the rather limited
bandwidth, i.e., the amount of data which can be exchanged per unit of
time, between CPU and GPU memory.

Here, just a GeForce GTX 950M was used for the computations. This,
is a low-performance GPU, and thus the computational performance
compared to the MKL (Intel Math Kernel Library) accelerated routines
is not that significant. However, specialized GPUs like the Tesla K40
or GTX Titan are substantially more powerful and show a much better
performance gain.

Chapter 6

Randomized CP
Decomposition

“In mathematics you don’t understand things.
You just get used to them."

— John von Neumann

Note: The work described in this chapter was carried out in collaboration with
Professors J. Nathan Kutz and Steven L. Brunton of University of Washington
and Krithika Manohar. It is submitted to the Journal of Computational Statis-
tics and Data Analysis under the title: ‘Randomized CP Tensor Decomposition’.
My contributions involve conceptualizing the project idea, implementing the
routines, running the simulations as well as writing the original draft.

6.1 Introduction

Numerous applications across the physical, biological, social and engineer-
ing sciences generate multi-modal data. In previous chapters, we have
encountered already some prominent examples like fluid flows and video
footage. These type of data arise naturally as 3 or higher-modal data
structures. In order to be able to employ traditionally matrix decomposi-
tions techniques such as the singular value decomposition or the dynamic
mode decomposition we were required to flatten the data first. However,
this process of reshaping the data into a 2-dimensional array can lead
to an information loss, because some of the relative locational informa-
tion of the entries to one another get lost. Thus, subsequently matrix

126 | Randomized CP Decomposition

decomposition can fail to reveal important structures in the data. Tensor
decompositions overcome this issue of information loss. The canonical
CP (CANDECOMP/PARAFAC) decomposition is particularly suitable
for data-driven discovery since it expresses a tensor as a sum of rank-one
tensors. Specifically, this simpler representation helps to reduce the di-
mensionality as well as to better understand the underlying properties of
the data.

However, tensor decompositions of massive multidimensional data pose
a tremendous computational challenge. Hence, innovations that reduce
the computational demands have become increasingly relevant in this field.
A key concept to ease the computational challenges is the idea of tensor
compression. This involves the computation of a smaller (compressed)
tensor, which is then used as a proxy to efficiently approximate the CP
decomposition. Such a compressed tensor can be obtained, for instance,
using the Tucker decomposition (Bro and Andersson, 1998; De Lathauwer
et al., 2000). However, this approach requires the expensive computation
of the left singular vectors for each mode. This computational challenge
can be eased using modern randomized techniques developed to compute
the singular value decomposition. Tsourakakis (2010) presents a random-
ized Tucker decomposition algorithm based on the work of Achlioptas
and McSherry (2007). Later, Zhou et al. (2014) proposed a more refined
randomized CP algorithm using the ideas of Halko et al. (2011b), how-
ever, they omit the important concept of power iterations in their work.
As an alternative to random projections, Drineas and Mahoney (2007)
proposed a randomized tensor algorithm based on the idea of random
column selection. Related work by Vervliet et al. (2014) proposed a
sparsity-promoting algorithm for incomplete tensors using concepts of
compressed sensing. Alternatively, a different approach to efficiently com-
pute large-scale tensor decompositions is based on the idea of subdividing
a tensor into a set of blocks. These smaller blocks can then be used to
approximate the CP decomposition of the full tensor in a parallelized
or distributed fashion (Phan and Cichocki, 2011). Sidiropoulos et al.
(2014) fused the idea of randomization (random projections) and blocking
into a highly computationally efficient algorithm. More recently, Vervliet
and Lathauwer (2016) also proposed a block sampling CP decomposi-

6.1 Introduction | 127

tion method for the analysis of large-scale tensors using randomization
as computational strategy. The presented numerical evaluations show
significant computational savings, while attaining near optimal accuracy.
These block based algorithms are particularly relevant if the tensor is too
large to fit into fast memory.

Motivation and Overview

Previously we have seen the computational benefits of embedding low-
rank matrix approximations into the powerful probabilistic framework
outlined in Chapter 1. Here, our aim is to generalize this framework
to multi-modal data. Again, the idea is to build a suitable basis using
random projections. Once a good basis is obtained, the high-dimensional
tensor is projected onto this low-dimensional space. The resulting smaller
tensor can then be used to obtain the CP decomposition. Once the
approximate factor matrices are computed, the full factor matrices can
be efficiently recovered using the orthonormal basis matrices. A crucial
aspect to build a sufficient basis are power iterations, however, as far as
we are aware, it has not been applied in the context of tensors before. In
particular, in the presence of white noise the performance of randomized
algorithms based on random projections can suffer considerably without
additional power iterations. Thus, both the concept of oversampling and
power iterations allow one to control the error of the decomposition. Our
numerical results show outstanding computational savings, while achieving
a near-optimal approximation quality. In addition, we provide an open-
software package written in Python, which allows the reproduction of all
results. The cTensor package can be obtained from the GIT repository:
https://github.com/Benli11/rtensor.

The remainder of this manuscript is organized as follows. Section 6.2
briefly introduces some additional tensor notation. Then, Section 6.3 re-
views the CP decomposition. Section 6.4 presents an efficient randomized
tensor algorithm, which is used to compute the CP tensor decomposition
as discussed in Section 6.5. The algorithm is motivated using both alter-
nating least squares and a block coordinate descent approach. Section 6.7
shows the computational performance using both synthetic and real world

https://github.com/Benli11/rtensor

128 | Randomized CP Decomposition

examples. Finally, Section 6.8 summarizes the research findings and
outlines further directions.

6.2 Some Tensor Notation

A tensor can be seen as a multi-index numerical array. The order of a
tensor is the number of its modes or dimensions. A real-valued tensor of
order 3 is denoted by X ∈ RI×J×K in the standard notation. A tensor
element xijk is indexed by the three integers i, j and k. This concept can
be generalized to N -way tensors denoted by X ∈ RI1×···×IN .

Tensor decompositions are computed on tensor modes, which are
flattened or unfolded, matricized versions of the N -way array. An N -way
tensor has N different modal flattenings or unfoldings along each of its N

different dimensions. For example, the mode-3 unfolding of X is formed
by holding the third index k fixed, creating K number of I × J matrices
denoted X::k, then flattening these matrices into vectors x::k. The mode-3
unfolding X (3) ∈ RK×(I·J) results then from stacking these as row vectors
within

X (3) =

xT

::1

xT
::2
...

xT
::K

 .

Several matrix product operators are used in computation on the
flattened modes, which we briefly reproduce here. The matrix Kronecker
product of two matrices A ∈ RI×J and B ∈ RK×L is

A⊗B =

a11B a12B . . . a1JB
a21B a22B . . . a2JB

...
aI1B aI2B . . . aIJB

 =
[
a1 ⊗ b1 a1 ⊗ b2 . . . aJ ⊗ bL−1 aJ ⊗ bL

]
.

The Khatri-Rao product of A ∈ RI×K and B ∈ RJ×K is given by the
columnwise Kronecker product

A⊙B =
[
a1 ⊗ b1 a2 ⊗ b2 . . . aK ⊗ bK

]
.

6.3 Deterministic CP Decomposition | 129

Finally, the Hadamard product of two equal size matrices is simply the
elementwise multiplication

(A ∗B)ij = aijbij.

These operators are discussed in more detail by Kolda and Bader (2009).
Further, the inner product of two tensors is expressed as ⟨·, ·⟩.

6.3 Deterministic CP Decomposition

In the past, computation was severely inhibited by available computa-
tional power. Today, tensor decompositions enjoy more popularity, yet
runtime bottlenecks still persist. Ideas for multi-way factor analysis
emerged in the 1920s with the formulation of the polyadic decomposi-
tion by Hitchcock (1927). However, the polyadic tensor decomposition
only achieved popularity much later in the 1970s with the canonical
decomposition (CANDECOMP) introduced by Carroll and Chang (1970)
in psychometrics. At the same time, Harshman (1970) introduced the
method of parallel factors (PARAFAC) in chemometrics. Hence, this
method became known as the CP (CANDECOMP/PARAFAC) decom-
position. The CP decomposition is the natural tensor equivalent of the
singular value decomposition, since it approximates a tensor by a sum
of rank-one tensors. Specifically, tensor rank is defined as the smallest
sum of rank-one tensors required to generate the tensor (Hitchcock, 1927).
The CP decomposition can be used to approximate these rank-one tensors.
Given a third order tensor X ∈ RI×J×K , the rank-R CP decomposition
is expressed as

X ≈
R∑

r=1
ar ◦ br ◦ cr, (6.1)

where ◦ denotes the outer product. Specifically, each rank-one tensor is
formulated as the outer product of the rank-one components ar ∈ RI ,
br ∈ RJ , and cr ∈ RK . Components are often constrained to unit length
with the weights absorbed into the vector λ = [λ1, ..., λR] ∈ RR. Then,

130 | Randomized CP Decomposition

Equation (6.1) can be re-expressed as

X ≈
R∑

r=1
λr · ar ◦ br ◦ cr. (6.2)

More compactly the components can be expressed as factor matrices, i.e.,
A = [a1, a2, ..., aR], B = [b1, b2, ..., bR], and C = [c1, c2, ..., cR]. Using
the Kruskal operator as defined by Kolda and Bader (2009), Equation (6.2)
can be more compactly expressed as

X ≈ [[λ; A, B, C]].

The CP decomposition is illustrated in Figure 6.1. For more technical
details, we refer to Kolda and Bader (2009) and Smilde et al. (2005).

Fig. 6.1 Schematic of the CP decomposition.

An astonishing property of the CP decomposition is the parsimonious
data representation. This becomes evident comparing the compression
ratio of the CP to the SVD. For a third order tensor X ∈ RI×J×K of rank
R, the CP decomposition achieves the following compression ratio

cCP = I · J ·K
R · (I + J + K + 1)

In contrast, the singular value decomposition requires to reshape the
tensor into a 2-dimensional array first. Thus the compression ratio is as
follows

cSV D = I · J ·K
R · (I · J + K + 1)

Figure 6.2 illustrates the compression performance of both methods for a
tensor of dimension 100 × 100 × 100. The compression performance is

6.4 Randomized Tensor Algorithm | 131

striking, however, the downside is that the CP decomposition does not
reconstruct the data as accurate as the SVD does.

0 20 40 60 80 100

Target rank

100

101

102

103

104

C
o
m
p
re
ss
io
n
 r
a
ti
o

CP

SVD

Fig. 6.2 Compression ratio of the CP singular value decomposition for
varying rank-R approximations. The achieved compression rate of the
CP decomposition is substantial.

6.4 Randomized Tensor Algorithm

The aim is to use randomization as a computational strategy to efficiently
build a suitable basis that captures the action of the tensor X . Therefor,
we generalize the concepts of randomized matrix algorithms to tensors.
In particular, we build upon the methods introduced by Martinsson et al.
(2011) and Halko et al. (2011b), as well as related work on randomized
tensors by Drineas and Mahoney (2007), who proposed a randomized
algorithm based on random column selection.

Assuming a N -way tensor X ∈ RI1×···×IN , the aim is to obtain a
smaller tensor B ∈ Rk×···×k, so that its N tensor modes capture the action
of the input tensor modes. Hence, we seek a natural basis in the form of
a set of orthonormal matrices {Qn ∈ RIn×Rn}N

n=1, so that

X ≈ X ×1 Q1Q⊤
1 ×2 · · · ×N QNQ⊤

N (6.3)

is satisfied. Here the operator ×n denotes tensor-matrix multiplication
defined as follows.

Definition 1. The n-mode matrix product X ×n QnQ⊤
n multiplies a tensor

by the matrices QnQ⊤
n in mode n, i.e., each mode-n fiber is multiplied by

132 | Randomized CP Decomposition

QnQ⊤
n

M = X ×n QnQ⊤
n ⇔ M(n) = QnQ⊤

n X (n).

Given a fixed target rank k, these basis matrices can be efficiently
obtained using a randomized algorithm. Specifically, the approximate
basis for the n-th tensor mode is obtained by first drawing k random
vectors ω1, . . . , ωk from a Gaussian distribution. These random vectors
form the measurement matrix Ωn ∈ R

∑
i ̸=n

Ii×k, which is used to sample
the column space of X (n) ∈ RIn×

∑
i ̸=n

Ii as follows

Yn = X (n)Ωn, (6.4)

where Yn ∈ RIn×k is the sample matrix. The sample matrix serves as
an approximate basis for the range of the n-th tensor mode. Probability
theory guarantees that the set of random vectors {ωi}k

i=1 are linearly
independent with high probability. Hence, the corresponding random
projections y1, . . . , yk efficiently sample the range of a rank deficient
tensor mode X (n). The economic QR decomposition of the sample matrix
Yn = QnRn is then used to obtain a natural basis, so that Qn ∈ RIn×k

is orthonormal and has the same column space as Yn. The final step
restricts the tensor mode to this low-dimensional subspace

Bn = X ×n Q⊤
n ⇔ Bn = Q⊤

n X (n). (6.5)

Thus, after N iterations a compressed tensor B and a set of orthonormal
matrices is obtained. Since this is an iterative algorithm, we set X ← Bn

after each iteration. The number of columns of the basis matrices form
a trade-off between accuracy and computational performance. Thus
the aim is to use as few columns as possible, yet allow an accurate
approximation of the input tensor. Assuming that the tensor X exhibits
low-rank structure, or equivalently, the rank R is much smaller than the
ambient dimensions of the tensor, the basis matrices will be a efficient
representation. However, to improve the performance of the basis, we
allow for additional oversampling in practice. This means, instead of
drawing exactly k random vectors, it is preferred to draw l = k+p random
vectors, where p denotes the oversampling parameter. In practice, a small

6.4 Randomized Tensor Algorithm | 133

oversampling parameter is often sufficient, i.e., p = {5, 10}. Moreover, it is
important to note that it may be beneficial to assign different oversampling
parameters to different modes. Indeed, most real world tensors exhibit
distinct tensor modes, and some of them may not be low-rank.

The randomized algorithm as presented requires that the mode-n
unfolding of the tensor has a rapidly decaying spectrum in order to achieve
good performance. However, this assumption is often not suitable. In
particular, the spectrum starts to decay slowly if the tensor is compressed
several times. To overcome this issue, the algorithm’s performance can
be substantially improved using power iterations (Gu, 2015; Halko et al.,
2011b; Rokhlin et al., 2009). Specifically, power iterations turn a slowly
decaying spectrum into a rapidly decaying one by taking powers of the
tensor modes. Thus, instead of sampling X (n) the idea is to sample from
the following tensor mode

X q
(n) := (X (n)X ⊤

(n))qX (n),

where q denotes a small integer. This power operation ensures that the
singular values of X q

(n) are {σ2q+1
j }j . Now, instead of using Equation (6.4),

the improved sample matrix can be computed from

Yn = (X (n)X ⊤
(n))qX (n)Ωn. (6.6)

However, if Equation (6.6) is implemented in this form it tends to distort
the basis due to round-off errors. Therefore, in practice (normalized)
subspace iterations are used to form the sample matrix. This means that
the sample matrix is orthornormalized between each power iteration in
order to stabilize the algorithm. For implementation details see Voronin
and Martinsson (2015) or Szlam et al. (2014).

The combination of oversampling and additional power iterations
can be used to control the trade-off between approximation quality and
computational efficiency of the randomized tensor algorithm. Our results,
for example, show that just q = 2 subspace iterations and an oversampling
parameter of about p = 10 achieves near-optimal results. Algorithm 6
summarizes the computational steps.

134 | Randomized CP Decomposition

Algorithm 6 A prototype randomized tensor compression algorithm.
Require: An N -way tensor X , and a desired target rank k.
Optional: Parameters p and q to control oversampling, and the number of power iterations.
(1) B = X Initialize compressed tensor.
(2) for n = 1, . . . , N Iterate over all tensor modes.
(3) l = k + p Slight oversampling.
(4) I, J = dim(B(n)) Dimension of the n-th tensor mode.
(5) Ω = rand(J, l) Generate random matrix.
(6) Y = B(n)Ω Compute sampling matrix.
(7) for j = 1, . . . , q Power iterations (optional).
(8) [Q,∼] = qr(Y)
(9) [Z,∼] = qr(B⊤

(n)Q)
(10) Y = B(n)Z
(11) end for
(12) [Qn,∼] = qr(Y) Orthonormalize sampling matrix.
(13) B = B ×n Q⊤

n Project tensor to smaller space.
(14) end for
Return: Compressed tensor B of dimension l × · · · × l, and a set of orthonormal
basis matrices {Qn ∈ RIn×l}N

n=1.

Remark 3. For better numerical stability, subspace iterations using the
QR decomposition are computed in step 7-11. We recommend a default
value of q = 2.
Remark 4. In practice, the user can decide which modes to compress and
specify different oversampling parameters for these modes.

Performance analysis

In the following the average-case behavior of the randomized tensor
algorithm is characterized. In particular, we are interested in the expected
residual error

E∥E∥F = ∥X − X̂∥F , (6.7)

where X̂ = X ×1 Q1Q⊤
1 ×2 · · · ×N QNQ⊤

N . Theorem 1 follows as a
generalization from Theorem 10.5 formulated by Halko et al. (2011b).

Theorem 1 (Expected Frobenius error). Consider a low-rank real N -way
tensor X ∈ RI1×···×IN . Then the expected approximation error, given a
target rank k ≥ 2 and an oversampling parameter p ≥ 2 for each mode, is

E∥X −X ×1 Q1Q⊤
1 ×2 · · · ×N QNQ⊤

N∥F ≤
√

1 + k
p−1 ·

√∑N
n=1

∑
j>k σ2

nj.

The proof is shown in Appendix A. Intuitively, the projection of
each tensor mode onto a low-dimensional space introduces an additional

6.5 Randomized CP Decomposition | 135

residual. This is expressed by the double sum on the right hand side.
If the low-rank approximation captures the column space of each mode
accurately, then the singular values j > k for each mode n are small.
Further, it can be seen that the error can be improved by the oversampling
parameter.

The computation of additional power (subspace) iterations can improve
the error further. This result again follows by generalizing the results
of Halko et al. (2011b) to tensors. Sharper performance bounds for both
oversampling and additional power iterations can be derived following,
for instance, the results by Witten and Candes (2015).

6.5 Randomized CP Decomposition

6.5.1 Conceptual Overview

Given a third order tensor X ∈ RI×J×K , the objective of the CP decom-
position is to find a set of R normalized rank-one tensors {ar ◦br ◦ cr}R

r=1

which best approximates X , i.e., minimizes the Frobenius norm

minimize
X̂

∥X − X̂∥2
F subject to X̂ =

R∑
r=1

ar ◦ br ◦ cr. (6.8)

If the dimensions of X are large, the computational costs of solving this
optimization problem can be enormous. However, for obtaining the factor
matrices A, B, C only the column spaces are of importance, rather then
the individual columns of the mode X (1), X (2), X (3) matricizations of the
tensor X . This is because the CP decomposition learns the components
based on proportional variations in inter-point distances between the
components. Therefore, the small tensor B ∈ Rk×k×k must preserve
pairwise Euclidean distances, where k ≥ R. This in turn requires that
column spaces, and thus pairwise distances, are approximately preserved
which is achieved by design in the randomized tensor algorithm presented
in the previous section. Figure 6.3 shows the schematic of the randomized
CP decomposition architecture.

136 | Randomized CP Decomposition

X [[A, B, C]]

B [[Ã, B̃, C̃]]

CP decomposition

rCP decomposition

Eq. (6.10)

Tensor Factor matrices

‘B
ig

’
‘S

m
al

l’

Fig. 6.3 Schematic of the randomized CP decomposition architecture.
The tensor X is first compressed using random projections. Then the
CP decomposition is performed on the small tensor B. Finally, the factor
matrices A, B and C are recovered from the compressed factor matrices
Ã, B̃ and C̃ using Eq. (6.10).

6.5.2 Randomized Algorithm

While there exist several optimization strategies for minimizing the ob-
jective function defined in Equation (6.9), we consider alternating least
squares (ALS) and block coordinate descent (BCD). Both methods are
suitable to deal with a compressed tensor B ∈ Rk×···×k, where k ≥ R.
Specifically, the optimization problem in Equation (6.8) is reformulated

minimize
B̂

∥B − B̂∥2
F subject to B̂ =

R∑
r=1

ãr ◦ b̃r ◦ c̃r, (6.9)

where ãr, b̃r and c̃r denote the compressed rank-one components. Once
the compressed factor matrices Ã ∈ Rk×R, B̃ ∈ Rk×R, C̃ ∈ Rk×R are
estimated, the full factor matrices can be recovered from

A ≈ Q1Ã,

B ≈ Q2B̃, (6.10)

C ≈ Q3C̃,

6.5 Randomized CP Decomposition | 137

where Q1 ∈ RI×k, Q2 ∈ RJ×k, Q3 ∈ RK×k denote the orthonormal basis
matrices. For simplicity we focus on third order tensors, but the concept
generalizes to N -way tensors.

Alternating Least Squares Algorithm

Alternating least squares is the most popular method for computing the
CP decomposition (Comon et al., 2009; Kolda and Bader, 2009). This
is because the algorithm is simple and efficient. First we note that the
optimization problem in Equation (6.9) is equivalent to

minimize
Ã,B̃,C̃

∥B −
R∑

r=1
ãr ◦ b̃r ◦ c̃r∥2

F

with respect to the factor matrices Ã, B̃ and C̃. Further, the tensor B
can be expressed in matricized form

B(1) ≈ Ã(C̃⊙ B̃)⊤,

B(2) ≈ B̃(C̃⊙ Ã)⊤,

B(3) ≈ C̃(B̃⊙A)⊤,

where ⊙ denotes the Khatri-Rao product. The optimization problem in
this form is non-convex, however, an estimate for the factor matrices can
be obtained using the least-squares method. Therefore, the ALS algorithm
updates one component, holding the other two components fixed, in an
alternating fashion until convergence. Specifically, the algorithm iterates
over the following subproblems

Ãj+1 = argmin
Ã
∥B(1) − Ã(C̃j ⊙ B̃j)⊤∥, (6.11)

B̃j+1 = argmin
B̃
∥B(2) − B̃(C̃j ⊙ Ãj+1)⊤∥, (6.12)

C̃j+1 = argmin
C̃
∥B(3) − C̃(B̃j+1 ⊙ Ãj+1)⊤∥. (6.13)

Thus, each step involves a least-squares problem which can be solved
using the Khatri-Rao product pseudo-inverse. Algorithm 7 summarizes
the computational steps.

138 | Randomized CP Decomposition

Definition 2. The Khatri-Rao product pseudo-inverse is defined as

(A⊙B)† = (A⊤A ∗B⊤B)†(A⊙B)⊤,

where the operator ∗ denotes the Hadamard product, i.e., the elementwise
multiplication of two equal sized matrices.

There exist few general convergence guarantees for the alternating least
squares algorithm, see for example the work by Uschmajew (2012) and
Wang and Chu (2014). Moreover, the final solution tends to depend on the
initial guess Ã0, B̃0 and C̃0. A standard initial guess uses the eigenvectors
of B(1)B⊤

(1), B(2)B⊤
(2), B(3)B⊤

(3) (Bader and Kolda, 2015). Further, it is
important to note that normalization of the factor matrices is necessary
after each iteration to achieve good convergence. Specifically, this prevents
singularities of the Khatri-Rao product pseudo-inverse (Kolda and Bader,
2009). The algorithm can be further improved by reformulating the above
subproblems as regularized least-squares problems, for instance, see Li
et al. (2013) for technical details and convergence results. The ability of
the alternating least squares algorithm to impose structure on the factor
matrices permits the formulation of non-negative, or sparsity-constrained
tensor decompositions (Cichocki et al., 2009).

Algorithm 7 A prototype randomized CP algorithm using ALS.
Require: An I × J ×K tensor X , and a desired target rank R.
Optional: Parameters p and q to control oversampling, and the number of power iterations.
(1) B, QA, QB, QC = compress(X , R, p, q) compress tensor using Algorithm 6
(2) B, C = [eig(B(2), B⊤

(2)), eig(B(3), B⊤
(3))] use first R eigenvectors for initialization

(3) repeat
(4) A = B(1)(C⊙B)(C⊤C ∗B⊤B)†

(5) A = A/norm(A)
(6) B = B(2)(C⊙A)(C⊤C ∗A⊤A)†

(7) B = B/norm(B)
(8) C = B(3)(B⊙A)(B⊤B ∗A⊤A)†

(9) λ = norm(C)
(10) C = C/λ

(11) until convergence criterion is reached
(12) A, B, C = [QAA, QBB, QCC] recover factor matrices
(13) re-normalize the factor matrices and update the scaling vector λ

Return: Normalized factor matrices A, B, C and the scaling vector λ.

6.6 The rTensor Package | 139

Block Coordinate Descent Algorithm

While ALS is the most popular algorithm for computing the CP decompo-
sition, many alternative algorithms have been developed. One particularly
intriguing algorithm is based on the method of block coordinate descent
(BCD) (Xu and Yin, 2013). First, Cichocki and Phan (2009) proposed
this approach for computing nonnegative tensor factorizations. The BCD
algorithm is based on the idea of successive rank-one deflation. Unlike
ALS, which updates the entire factor matrix at each step, BCD computes
the rank-1 tensors in a hierarchical fashion. Therefore, the algorithm
treats each component ar, br, cr as a block. First, the most correlated
rank-1 tensor is computed; then the second most correlated rank-1 tensor
is learned on the residual tensor, and so on. Assuming that R̃ = r − 1
components have been computed, then the r-th compressed residual tensor
Yr is defined

Yr = B −
R̃∑

r=1
ãr ◦ b̃r ◦ c̃r. (6.14)

Then, the algorithm iterates over the following subproblems

ãj+1
r = argmin

ãr

∥Yr(1) − ãr(c̃j
r ⊙ b̃j

r)⊤∥, (6.15)

b̃j+1
r = argmin

b̃r

∥Yr(2) − b̃r(c̃j
r ⊙ ãj+1

r)⊤∥, (6.16)

c̃j+1
r = argmin

c̃r

∥Yr(3) − c̃r(b̃j+1
r ⊙ ãj+1

r)⊤∥. (6.17)

Note that the computation can be more efficiently evaluated without
explicitly constructing the residual tensor Yr; see Kim et al. (2014) for
further details. Algorithm 8 summarizes the computational steps of the
BCD algorithm.

6.6 The rTensor Package

We have developed the package rTensor, which implements the previous
presented algorithms in Python. The routines are based on the numerical
linear algebra tools provided by the SciPy (Open Source Library of Scien-
tific Tools) package (Jones et al., 2001). Specifically, SciPy provides MKL
(Math Kernel Library) accelerated high performance implementations of

140 | Randomized CP Decomposition

Algorithm 8 A prototype randomized CP algorithm using BCD.
Require: An I × J ×K tensor X , and a desired target rank R.
Optional: Parameters p and q to control oversampling, and the number of power iterations.
(1) B, QA, QB, QC = compress(X , R, p, q) compress tensor using Algorithm 6
(2) B, C = [eig(B(2), B⊤

(2)), eig(B(3), B⊤
(3))] use first R eigenvectors for initialization

(3) Y = B initialize residual tensor
(4) for r = 1, . . . , R compute rank-r approximation
(5) repeat
(6) ar = Y (1)(cr ⊙ br)(c⊤

r cr ∗ b⊤
r br)†

(7) ar = ar/norm(ar)
(8) br = Y (2)(cr ⊙ ar)(c⊤

r cr ∗ a⊤
r ar)†

(9) br = br/norm(br)
(10) cr = Y (3)(br ⊙ ar)(b⊤

r br ∗ a⊤
r ar)†

(11) λr = norm(cr)
(12) cr = cr/λr

(13) until convergence criterion is reached
(14) Y = B − [[λ[1:r]; A[:,1:r], B[:,1:r], C[:,1:r]]] update residual tensor
(15) end for
(16) A, B, C = [QAA, QBB, QCC] recover factor matrices
(17) re-normalize the factor matrices and update the scaling vector λ

Return: Normalized factor matrices A, B, C and the scaling vector λ.

BLAS and LAPACK routines. Thus, all linear algebra operations are
threaded and highly optimized on Intel processors. This allows us to
optimally exploit the computational benefits of the randomized algorithm.
The rTensor package provides the following core functions:

• Randomized CP using the alternating least squares method (ALS):
ccp_als().

• Randomized CP using the block coordinate descent method (BCD):
ccp_bcd().

Our packages builds on the scikit-tensor package, which provides rou-
tines for basic tensor operations such as folding/unfolding, tensor-matrix
and tensor-vector products. The implementation of the CP decomposi-
tion follows the MATLAB Tensor Toolbox implementation (Bader and
Kolda, 2015). For installation instructions visit the GIT repository
https://github.com/Benli11/rTensor.

In the following we only briefly describe the ccp_bcd() function, since
the ccp_als() is similar in design. The interface is as follows

P = ccp_bcd(T , r, c=True, p=10, q=2, maxiter=500)

https://github.com/Benli11/rTensor

6.6 The rTensor Package | 141

The first mandatory argument T passes the N -way input tensor. Given a
NumPy array A, a dense tensor is created as follows

T = dtensor(A)

The second mandatory argument r sets the target rank, and it is assumed
that c is smaller then the ambient dimensions of the input tensor. The
third argument c can be used to chose between the randomized accelerated
algorithm c=True, and the deterministic algorithm c=False. Next, we
can set pass values for the two tuning parameters p and q in order to
control the accuracy of the algorithm. The former parameter is used to
oversample the basis, and is set by default to p=10. The parameter q
can be used to compute additional power iterations (subspace iterations).
By default this parameter is set to q=2 which shows a good performance
in our numerical experiments. The resulting model object, P, is itself a
list and contains the factor matrices as well as a vector λ which contains
the weights.

This implementation normalizes the components after each step to
achieve better convergence. Further, we use eigenvectors (see above) to
initialize the factor matrices. Interestingly, randomly initialized factor
matrices have the ability to achieve slightly better approximation errors.
However, re-running the algorithms several times with different random
seeds can display significant variance in the results. Thus, only the
former approach is used for initialization. We note that the randomized
algorithm introduces some randomness and slight variations into the
CP decompositions as well. However, randomization can also act as
an implicit regularization on the CP decomposition (Mahoney, 2011),
meaning that the results of the randomized algorithm can be in some
cases even ‘better’ than the results of the corresponding deterministic
implementation. Following Bader and Kolda (2015), the convergence
criterion is defined as the change in fit. The algorithm therefore stops
when the improvement of the fit ρ is less then a predefined threshold,
where the fit is computed using

ρ = 1− ∥X∥
2
F + ∥X̂∥2

F − 2 · ⟨X̂ , X ⟩
∥X∥2

F

.

142 | Randomized CP Decomposition

6.7 Numerical Results

In the following the performance of the randomized CP algorithm is
evaluated using both random tensors as well as several canonical data
sets from fluids and climate. The fluid data consists of vorticity fields
from a fluid simulation, and real-world measurements of ocean sea sur-
face temperature spanning two decades. The results demonstrate that
the near optimal approximation for massive tensors can be achieved
in a fraction of the time using the randomized algorithm. In order to
characterize the approximation accuracy the relative error is computed
as ∥X − X̂∥F /∥X∥F , where X̂ denotes the approximated tensor. All
computations are performed on a workstation running Ubuntu 16 LTS,
with the following hardware specifications: 12 Intel Xeon CPUs E5-2620
(2.4GHz), and 32GB DDR3 memory.

6.7.1 Computational Performance

First, the robustness of the randomized CP algorithm is assessed on
random low-rank tensors. Specifically, it is of interest to examine the
approximation quality in the presence of additive white noise. Figure 6.4
shows the averaged relative errors over 100 runs for varying signal-to-
noise ratios (SNR). In the presence of little noise all algorithms converge
towards the same relative error. However, at excessive levels of noise
(i.e., SNR< 4) the deterministic CP algorithms exhibit small gains in
accuracy over the randomized algorithms using q = 2 power iterations.
Here, both the ALS and BCD algorithm show the same performance. The
performance of the randomized algorithm without power iterations (q = 0)
is, however, poor. This highlights the importance of the power operation
for real applications. The oversampling parameter for the randomized
algorithms is set here and in the following to p = 10. Increasing p can
slightly improve the accuracy, but setting p = 10 is generally sufficient.

Next, the reconstruction errors and runtimes for tensors of varying
dimensions are compared. Figure 6.5 shows the average evaluation results
over 100 runs for random low-rank tensors of different dimensions, and for
varying target ranks k. The randomized algorithms achieve near optimal
approximation accuracy while demonstrating substantial computational

6.7 Numerical Results | 143

Fig. 6.4 Average relative error, plotted on a log scale, against increasing
signal to noise ratio. The analysis is performed on a rank R = 50 tensor of
dimension 100×100×100. Power iterations improve the the approximation
accuracy considerably.

savings. The computational advantage becomes pronounced with increas-
ing tensor dimensions, as well as with an increasing number of iterations
required for convergence. Using random tensors as presented here, all
algorithms rapidly converge after about 4 to 6 iterations. However, it is
evident that the computational cost per iteration of the randomized algo-
rithm is substantially lower. Thus, the computational savings in real world
applications, which require several hundred iterations to converge, can be
even more substantial. Overall, the ALS algorithm is computationally
more efficient than BCD. The deterministic ALS algorithm is faster than
the BCD by nearly one order of magnitude. However, the randomized
algorithms exhibit similar computational timings. Interestingly, the BCD
relative error decreases sharply by about one order of magnitude when
the target rank is achieved, and the tensor rank is much smaller then the
ambient dimensions. Similar performance results are achieved for higher
order tensors as well. Figure 6.6 shows the computational performance for
a 4-way tensor of dimension 100×100×100×100. Again, the randomized
algorithms achieve speedups of 1-2 orders of magnitude, while attaining
good approximation errors. Once more, the BCD algorithm achieves
better approximation at the true tensor rank.

Figure 6.7 shows the computational savings and speedups of a rank
k = 20 approximation for varying tensor dimensions. In particular the
speedups achieved for the block coordinate descent method are substantial.

144 | Randomized CP Decomposition

(a) Tensor of dimension 100× 100× 100.

(b) Tensor of dimension 200× 200× 200.

(c) Tensor of dimension 400× 400× 400.

Fig. 6.5 Random tensor approximation and performance for rank R = 50
tensors: rCP methods achieve speedups by 1-2 orders of magnitude and
the same accuracy as their deterministic counterpart. Speedups rise
sharply with increasing dimensions.

6.7.2 Numerical Examples

In the following, several examples are presented demonstrating the per-
formance of the randomized CP decomposition. The first is a multiscale
toy video example, the second is the simulated flow field behind a station-
ary cylinder, and the third consists of real-world measurement data of
global sea surface temperature. Due to the better and more natural inter-
pretability of the block coordinate descent algorithm, only this algorithm
is considered in subsequent sections. BCD is in particular advantageous

6.7 Numerical Results | 145

Fig. 6.6 Random tensor approximation and performance for a 4-way rank
R = 20 tensor of dimension 100× 100× 100× 100.

Fig. 6.7 Algorithm runtimes and speedups for target rank k = 20 approxi-
mation for varying tensor dimensions. The runtime savings increase with
the tensor size.

when dealing with data consisting of both spatial modes and temporal
dynamics, as presented in the following examples.

Multiscale Toy Video Example

The approximation of the underlying spatial modes and temporal dynam-
ics of a system is a common problem in signal processing. In the following,
we consider a toy example presenting multiscale intermittent dynamics in
the time direction. Specifically, the data is generated by four Gaussian
modes on a two-dimensional spatial grid (200× 200), which are undergo-
ing intermittent oscillations in the temporal direction resolved with 215

146 | Randomized CP Decomposition

time steps. Thus, the resulting tensor is of dimension 200× 200× 215.
Figure 6.8 shows the corresponding modes and the time dynamics.

6.7
N

um
ericalR

esults
|

147

Modes Time dynamics

Time

Tensor

Time

Noisy modes Noisy time dynamics Noisy tensor

Fig. 6.8 Illustration of the multiscale toy video. The system is governed by four spatial modes experiencing intermittent
oscillations in the temporal direction. The bottom subplot shows the noisy signal with a signal-to-noise ratio of 2.

148 | Randomized CP Decomposition

This problem becomes even more challenging when the underlying
structure needs to be reconstructed from noisy measurements. In particu-
lar, traditional matrix decomposition techniques such as the singular value
decomposition (SVD) or standard principal component analysis (PCA)
face difficulties approximating the underlying system of such intermittent
multiscale dynamics. This is mainly due to the fact that the SVD esti-
mates more coefficients than necessary. Thus, the approximation tends to
overfit. The CP decomposition needs to estimate many fewer coefficients,
in contrast. This is because the data do not need to be reshaped, which
allows for a parsimonious approximation. Comparing the compression
ratios between the two methods illustrates the difference. For a real rank
R = 4 tensor of dimension 100× 100× 100, the compression ratios are
computed as follows

cSV D = I · J ·K
R · (I · J + K + 1) = 1003

4 · (1002 + 100 + 1) ≈ 24.75,

and

cCP = I · J ·K
R · (I + J + K + 1) = 1003

4 · (100 + 100 + 100 + 1) ≈ 830.56.

The SVD requires this data to be reshaped in some dimension. The
comparison displays the striking difference between compression ratios.
It is evident that the CP decomposition requires computing many fewer
coefficients in order to approximate the tensor. This makes the method
more robust in the presence of noise. A further advantage is that much
less storage is required to approximate the data. This can be of im-
portance if the bandwidth is constrained and only a limited amount of
information can be transmitted, in which case the CP decomposition may
be advantageous. However, the advantage of the SVD is that noise free
data can be approximated with an accuracy as low as machine precision.

Figure 6.9, shows the decomposition results of the noisy (SNR=2)
toy video for both the randomized CP decomposition and the SVD. The
subplots (a) and (b) show the results of a rank k = 4 approximation
computed using the rCP algorithm with q = 2 power iterations, and a
small oversampling parameter p = 10. The method faithfully captures

6.7 Numerical Results | 149

the underlying spatial modes and the time dynamics. For illustration, the
subplots (c) and (d) show the decomposition results without additional
power iterations. It can clearly be seen that this approach introduces
distinct artifacts, and the approximation quality is relatively poor overall.
The subplots (e) and (f) correspond to the singular value decomposition.
The results show poor performance at separating the different modes.
In particular, the spatiotemporal dynamics of modes 2 & 3 are mixed,
as well as modes 2 & 4 to a lesser extent. Table 6.1 further quantifies
the observed results. The achieved speedup of rCP is substantial, with
a speedup factor of about 15. Interestingly, the relative error using the
randomized algorithm with q = 2 power iterations is slightly better than
the deterministic algorithm. This is due to the beneficial properties of
randomization, which can act to regularize. However, the reconstruction
error without power iterations is large, as is the error resulting from the
SVD.

Table 6.1 Summary of the computational results for the noisy toy video.

Parameters Time (s) Speedup Iterations Error

CP BCD k = 4 2.31 - 9 0.0171

rCP BCD
k = 4, p = 10, q = 0 0.13 17 9 0.494
k = 4, p = 10, q = 1 0.14 16 10 0.0191
k = 4, p = 10, q = 2 0.15 15 10 0.0164

SVD k = 4 0.52 - - 0.137

Flow behind a cylinder

Matrix decomposition techniques play an important role in the area of
fluid dynamics (Holmes et al., 2012). Extracting the dominant coherent
structures from fluid flows helps to better characterize them for modeling
and control (Brunton and Noack, 2015). The workhorse algorithm in fluid
dynamics and for model reduction is the singular value decomposition.
However, fluid simulations generate high-resolution spatiotemporal grids
of data which naturally manifest as tensors. In the following we examine
the suitability of the CP decomposition for decomposing flow data, and
compare the results to those of the SVD.1

1We omit here the comparison with the dynamic mode decomposition, because the
results of the SVD and the DMD are similar for this specific example in the following.

150 | Randomized CP Decomposition

−16

−12

−8

−4

0

0.0

2.5

5.0

7.5

10.0

−20

−15

−10

−5

0

0.0

1.5

3.0

4.5

6.0

(a) rCP BCD modes, q = 2. (b) rCP BCD time dynamics,
q = 2.

−12
−8
−4
0
4

−9

−6

−3

0

−15

−10

−5

0

5

0

2

4

6

(c) rCP BCD modes, q = 0. (d) rCP BCD time dynamics,
q = 0.

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

(e) SVD modes. (f) SVD time dynamics.

Fig. 6.9 Toy video decomposition results. Randomized CP with q = 2
successfully reconstructs the original spatiotemporal dynamics from noise-
corrupted data, while SVD and rCP without subspace iterations yield
poor reconstruction results.

6.7 Numerical Results | 151

Here, we revisit the example of a fluid flow behind a cylinder as
introduced in Section 3.6, which is a canonical example in fluid dynam-
ics (Noack et al., 2003). Recall, the data are constructed as a time-series
of fluid vorticity fields behind a stationary cylinder on an equispaced
grid. The data is obtained by solving the two-dimensional Navier-Stokes
equations using the immersed boundary projection method in a fast multi-
domain solver (Colonius and Taira, 2008; Taira and Colonius, 2007). The
corresponding flow tensor is of dimension 199× 449× 151, containing 151
snapshots of a 449× 199 spatial grid. Further, the flow is characterized
by a periodically shedding wake structure at Reynolds number Re = 100
and is inherently low-rank in the absence of noise. This can be seen in
the normalized spectra for the singular values as shown in Figure 6.10.
The characteristic frequencies of flow oscillations occur in pairs, reflecting

Fig. 6.10 Normalized spectrum. The SVD and (r)CP BCD decompositions
successfully capture pairs of characteristic frequencies in the low-rank
cylinder flow.

the complex-conjugate pairs of eigenvalues that define sine and cosine
temporal dynamics. Accordingly, the normalized singular values and
coefficients for both the SVD and the normalized lambda values of the
CP decomposition using BCD accurately reflect the true physics of the
cylinder wake. However, it can be seen that the singular values capture
more energy in fewer modes than the CP decomposition, i.e., the SVD
requires fewer singular vectors to approximate the flow. But, because
the SVD is based on the flattened spatial dimensions of the flow, the
decomposition ignores some of the spatial structure. In contrast, the CP
decomposition is able to reveal the underlying structure more accurately.

Figure 6.11 shows both the approximated spatial modes and the tem-
poral dynamics for the randomized CP decomposition and the SVD. The

152 | Randomized CP Decomposition

temporal dynamics of both methods have similar patterns. However,
the spatial modes exhibit a distinct structure. The SVD groups modes
together according to their variance in the data, while ignoring coordinate
structure. Thus, the first four spatial modes revealed by the CP decom-
position are condensed into the first two SVD modes. CP spatial modes
resemble spatial Fourier transforms of the SVD spatial modes. This is
because CP modes are rank-one outer products of vectors in the x and
y dimensions which by construction cannot capture the triangular wake
interactions seen in the SVD modes.

The CP decomposition represents the spatial structure by single spatial
frequencies per mode, which poses difficulties in obtaining a decomposition
low in tensor rank. This explains why for a fixed target rank of 30 across
all methods, the SVD achieves a substantially lower reconstruction error,
seen in Table 6.2. However, the compression ratios for the CP and SVD
methods are cCP ≈ 562.17 and cSV D ≈ 5.02 assuming a target rank
R = 30. Thus the tensor representation compresses the data further by
nearly two orders of magnitude.

Table 6.2 Summary of the computational results for the noise-free cylinder
flow.

Parameters Time (s) Speedup Iterations Error

CP BCD k = 30 115.55 - 458 0.117

rCP BCD
k = 30, p = 10, q = 0 1.27 91 533 0.122
k = 30, p = 10, q = 1 1.41 82 517 0.121
k = 30, p = 10, q = 2 1.56 74 437 0.118

SVD k = 30 0.57 - - 4.25E-05

Next, the analysis of the same flow is repeated in the presence of
additive white noise. While this is not of concern when dealing with flow
simulations, it is realistic when dealing with flows obtained in empirical
studies. We choose a signal-to-noise ratio of 2 to demonstrate the ro-
bustness of the CP decomposition to noise. Figure 6.12 shows again the
corresponding dominant spatial modes and temporal dynamics. Both the
SVD and the CP decomposition faithfully capture the temporal dynamics.
However, it is apparent that the spatial modes are overfitted, i.e., they
contain a large amount of noise. The spatial modes revealed by the CP
decomposition show a significantly better approximation. Again, it is

6.7 Numerical Results | 153

crucial to use power iterations here to achieve a good approximation qual-
ity. Table 6.3 lists the results. By inspection, the relative reconstruction
error using the SVD is poor compared to the error achieved using the
CP decomposition. Here, we have shown the error for a rank k = 30 and
k = 6 approximation. The latter target rank was determined using the
optimal hard threshold for singular values (Gavish and Donoho, 2014).
However, the suggested target rank is lower then the number of modes
which are of interested as seen in 6.10. The CP decomposition overcomes
this disadvantage, and is able to approximate the first k = 30 modes with
only a slight loss of accuracy. Again, it is interesting to see, that the
randomized CP decomposition is performing better then the deterministic
algorithm in the presence of noise.

Table 6.3 Summary of the computational results for the noise-corrupted
cylinder flow.

Parameters Time (s) Speedup Iterations Error

CP BCD k = 30 64.01 - 239 0.191

rCP BCD
k = 30, p = 10, q = 0 0.99 64 332 0.522
k = 30, p = 10, q = 1 1.23 52 414 0.189
k = 30, p = 10, q = 2 1.13 56 370 0.153

SVD k = 30 0.58 - - 0.655
k = 6 0.58 - - 0.311

Figure 6.13 further illustrates the approximation quality with an
example snapshot from the reconstructed flow in time. The left column
corresponds to the noise free scenario. Here the performance of the
SVD is nearly perfect. However, the left column containing the noisy
example shows the clear advantage of the CP decomposition. Despite the
denoising effect of the SVD, the approximated low-rank subspace remains
distorted by noise in the ambient space. While not perfect, the CP
decomposition allows a more meaningful interpretation of the underlying
structure, and thus can be seen as a valuable tool for the analysis of fluid
flows in the presence of noise. In addition, the spatiotemporal, multiscale
separation performed by the CP decomposition can be beneficial for flow
interpretation in practice. From a purely data analytic perspective, the
CP modes offer a new and intriguing interpretation of flow structure,
hence the trade-off between lower-rank approximation with SVD and
multiscale separation with tensors must be weighed carefully.

154
|

R
andom

ized
C

P
D

ecom
position

(a) rCP BCD modes, q = 2. (b) Time dynamics.

(c) SVD modes. (d) SVD time dynamics.

− 15 − 10 − 5 0 5 10

(e) Colorbar.

Fig. 6.11 Fluid flow decomposition, no noise. Both methods capture the same dominant frequencies from the time dynamics,
while randomized CP requires more rank-1 outer products in x and y to represent single frequency spatial dynamics.

6.7
N

um
ericalR

esults
|

155

(a) rCP BCD modes, q = 2. (b) Time dynamics.

(c) SVD modes. (d) SVD time dynamics.

− 15 − 10 − 5 0 5 10

(e) Colorbar.

Fig. 6.12 Fluid flow decomposition noisy (SNR=2). Randomized CP modes are robust to additive noise and SVD spatial
modes are corrupted by noise.

156
|

R
andom

ized
C

P
D

ecom
position

SV
D

rC
P

Sn
ap

sh
ot

(a) Noise free. (b) Noisy (SNR=2).

− 15 − 10 − 5 0 5 10

(c) Colorbar.

Fig. 6.13 Fluid snapshots, and randomized CP and SVD approximations of the snapshot are pictured in the first, second and
third rows, respectively. The randomized CP better recovers the true signal (top left) from noise-corrupted flow (top right).

6.7 Numerical Results | 157

Sea Surface Temperature

The last example considers sea surface temperature (SST) data. In
particular, we are interested in analyzing the deviations of sea surface
temperatures in the equatorial Pacific Ocean, illustrated in Figure 6.14.
Periodic departures from the expected sea surface temperatures in this

0 4 8 12 16 20 24 28

Fig. 6.14 Mean sea surface temperature field. The dashed rectangle
indicates the area under consideration.

area are known as the El Niño and La Niña phenomena. Together, they
are called the El Niño southern oscillation, describing a band of warmer
or cooler ocean water temperatures than usual. These ocean currents are
well known for their effects on the weather patterns around the world, and
for their influence on winds and precipitation. Specifically, an El Niño
event is defined as an anomaly, where the 5-month running means of SST
exceed 0.4 ◦C for 6 months or more (Trenberth, 1997). Data of the weekly
sea surface temperatures for the last 26 years are publicly available from
the National Oceanic & Atmospheric Administration (NOAA). 2 The
data can be expressed as a tensor of dimension 1390× 90× 125, where
the first index corresponds to time, and the other two index the spatial
grid. Interpolated measurements are used for the land masses.

The aim of the following analysis is to isolate the temporal direction
of the Sea surface temperature in order to identify El Niño and La Niña
events. Therefore, the data are first mean centered in the temporal
direction. The results are shown in Figure 6.15 for both the SVD and
randomized CP decomposition using the BCD optimization algorithm.

2The data set can be obtained at http://www.esrl.noaa.gov/psd/ stored in
the NetCDF data format.

http://www.esrl.noaa.gov/psd/

158 | Randomized CP Decomposition

The time dynamics for both methods robustly identify the deviations
from the mean ocean temperature over time. Both methods exhibit good
agreement with the annual summer to winter mean field dynamics in
the first temporal modes. More interestingly, the second temporal mode
features the strong El Niño events occurring from 1997-1998 and 2015-
2016 as well as the strong La Niña events beginning in 1999, 2007 and
2010. However, while the SVD mode exhibits the whole area of the warm
and cold ocean water band, it seems that the second CP mode better
characterizes the strongest sea surface temperature anomaly, which is
located off the coast of South America. This result is relevant, because
the literature distinguishes between several different types of El Niño
events (Johnson, 2013). Thus, the CP decomposition is a promising
method to reveal more refined insights about this highly complex process.
Table 6.2 summarizes the computational results. The randomized CP
algorithm achieves a substantial speedup of about 28 using two power iter-
ations, while attaining the same reconstruction error as the deterministic
algorithm. Overall, the reconstruction error can decreased by computing
a higher rank approximation.

Table 6.4 Summary of the computational results for the sea surface
temperature data.

Parameters Time (s) Speedup Iterations Error

CP BCD k = 2 4.22 - 13 0.461

rCP BCD
k = 2, p = 10, q = 0 0.12 35 13 0.479
k = 2, p = 10, q = 1 0.14 30 13 0.461
k = 2, p = 10, q = 2 0.15 28 13 0.461

SVD k = 2 1.93 - - 0.39

6.7
N

um
ericalR

esults
|

159

(a) rCP BCD modes

− 0.05

0.00

0.05

− 0.05

0.00

0.05

90 91 92 93 95 9694 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 1514 16

(b) Time dynamics.

(c) SVD modes

− 0.05

0.00

0.05

− 0.05

0.00

0.05

90 91 92 93 95 9694 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 1514 16

(d) Time dynamics.

Fig. 6.15 Sea Surface Temperature decomposition. El Niño (red) and La Niña (blue) events occur when the time dynamics
fall above and below the dashed thresholds, respectively, with strong El Niño events indicated in bold red.

160 | Randomized CP Decomposition

6.8 Conclusion

The emergence of massive tensors requires efficient algorithms for ob-
taining the CP decomposition. We have presented a randomized CP
algorithm which substantially reduces the computational burdens in-
volved in obtaining a tensor decomposition. Despite the computational
savings, the approximation quality is near-optimal, and in the presence
of noisy measurements even better than the deterministic CP algorithm.
A key advantage of the randomized algorithm is that modern compu-
tational architectures are fully exploited. Thus, the algorithm benefits
substantially from multithreading in a multi-core processor. In contrast
to proposed algorithms which are based on computational concepts such
as distributed computing, our proposed randomized algorithm provides
substantial computational speedups even on standard desktop computers.
This is achieved by substantially reducing the computational costs per
iteration. In practice, real world examples require a larger number of
iterations to converge, and thus traditional deterministic algorithms are
often not feasible.

Randomized algorithms have established themselves as highly com-
petitive methods for computing traditional matrix decompositions. Thus
the generalization of these concepts to tensors are evident. In particular,
the concept of oversampling as well as power iterations are crucial in
order to achieve a robust tensor decomposition. Our experimental results
show that in general a small oversampling parameter and about two
power iterations are sufficient. Once a good basis is obtained, the CP
decomposition can be obtained in a computationally efficient manner on
the compressed tensors using well established optimization strategies. We
have considered both the alternating least squares and the block coordi-
nate descent methods. Due to its more natural relationship to the singular
value decomposition, we have favored the BCD method throughout our
numerical examples. Indeed, the randomized CP decomposition demon-
strates outstanding performance on several examples using artificial and
real-world data. While the singular value decomposition is able to achieve
reconstruction errors as low as machine precision, the CP decomposition
is the method of choice in the presence of noise. This is because the

6.8 Conclusion | 161

parsimonious approximation is more robust to noise. Further, the CP
decomposition reveals interesting structures not captured by the singular
value decomposition.

The lean and powerful concepts of randomization make the algorithm
useful as a common routine, which may simply replace the deterministic
algorithm. The achieved approximation quality is sufficient for many
approximations. However, if higher precision is required, the proposed
algorithm can be used to efficiently determine the optimal tensor rank
and provide good starting values to initialize the factor matrices. Fur-
ther research will involve the development of randomized algorithms for
sparse tensors, and tensors with missing values and non-negative tensor
factorizations. A further interesting research direction is a randomized
incremental (online) implementation of the CP tensor decomposition.
Online tensor subspace learning plays an important role in many signal
and video processing applications (Li et al., 2007). Extending the here
presented ideas is straight forward, and will allow to substantially ease the
computational demands of deterministic incremental tensor algorithms as
well as enable real-time video processing.

Chapter 7

Conclusion

“Ce que nous connaissons est peu de chose,
ce que nous ignorons est immense."

— Pierre-Simon Laplace

7.1 Randomness as a Computational
Strategy

Randomness is a powerful concept and an effective computational strat-
egy for designing faster algorithms. In particular, employing a degree of
randomness as part of the logic of low-rank matrix and tensor decompo-
sition algorithms has been shown to be extremely successful. This new
computational paradigm becomes increasingly important in the era of ‘big
data’, where deterministic algorithms become computationally infeasible.

The basic idea of these randomized algorithms is to derive a smaller
matrix from a high-dimensional data matrix, which can subsequently
be used to efficiently compute a near-optimal low-rank approximation.
Specifically, the concept of random projections is used to form a basis
which best captures the action of the column space of the high-dimensional
input matrix. Then, a smaller matrix is simply constructed by projecting
the input data matrix on the low-dimensional subspace spanned by the
natural basis. This framework ensures that the small matrix captures
the essential spectral information with high probability, and in many
applications the small matrix is sufficient to learn from the data.

164 | Conclusion

The key advantage of using randomness as a computational strategy is
that the resulting randomized algorithms are robust, and highly reliable,
yet simple to implement. Furthermore, the approximation quality can be
controlled using the concepts of oversampling and the power scheme.

7.2 Summary of the Contributions

This thesis essentially builds up on the probabilistic framework for low-
rank matrix approximations, formulated by Halko et al. (2011b).

Despite the great success of randomized matrix algorithms over the last
two decades, the techniques are still widely unfamiliar in areas outside of
theoretical computer science, applied mathematics and statistics. In order
to make the randomized singular value decomposition and randomized
principal component analysis better accessible for researchers in other
areas, e.g., social and biological science, we introduced the R software
package rsvd. Chapter 2 as well as the accompanying paper (Erichson
et al., 2016c) aim to give a user-friendly and hands-on introduction to
randomized techniques for computing low-rank matrix approximations.

In addition, to broaden the audience, the second fundamental aim
of this thesis is to extend the scope of the probabilistic framework to
new applications. Chapter 3 demonstrates how the dynamic mode de-
composition can benefit from randomness as a computational strategy
by embedding the computational steps into the probabilistic framework.
The DMD is an emerging dimensionality reduction technique which is
extensively used in the area of fluid dynamics. The proposed randomized
algorithm for computing the DMD enables to analyze fluid flows which are
too big to decompose using the deterministic algorithm, yet the accuracy
is better than that of previous proposed probabilistic strategies like the
compressed DMD algorithm. Indeed, some of our ideas have started to
attract the attention of researchers in the area of fluid dynamics (Bistrian
and Navon, 2016; Dawson, 2017; Taira et al., 2017).

While not specifically designed for the task of background modeling, we
have demonstrated in Chapter 4 that the DMD is an interesting candidate
for background modeling as well. The randomized DMD algorithm allows
to process videos at a much higher frame rate than several other techniques

7.3 Perspectives | 165

designed for this task. While the achieved detection performance cannot
compete with the leading techniques in this area, the randomized DMD
might be still a viable building block for more complex real-time vision
systems.

Further, in Chapter 5 we have demonstrated that GPU accelerated
implementation of randomized routines can substantially increase the
computational performance. High-performance computing using GPUs
can be a crucial concept if real-time processing is required. The GPU
accelerated routines are provided as part of the scikit-cuda package.

Finally, we have generalized the probabilistic framework for computing
low-rank matrix decompositions to tensor decompositions. The random-
ized CP algorithm, presented in Chapter 6, substantially reduces the
computational demands, while achieving a near-optimal decomposition.
In addition to the presented numerical results, Theorem 1 characterizes
the average-case behavior of the proposed randomized tensor algorithm.
Moreover, our corresponding software package rTensor allows to use the
randomized CP decomposition straight away in Python.

7.3 Perspectives

7.3.1 Short-Term Perspectives

The lean and powerful concept of randomization is of interest for a wide
variety of applications. Future work has the potential to apply the ideas
to several linear dimensionality reduction techniques like discriminant
analysis, canonical correlation analysis and multi dimensional scaling.
However, more generally, we have already shown that the small matrix
can be used to learn from the data using techniques such as alternating
least squares or block coordinate descent. Our current work shows that
the probabilistic framework can be used in a similar manner for the
expectation maximization algorithm. This allows us to impose structure
like sparsity or non-negativity.

Moreover, the here presented algorithms for computing the DMD and
the CP tensor decomposition can be implemented as incremental (online)

166 | Conclusion

algorithms as well. This is, in particular, of interest in several signal and
video processing applications, which often deal with streaming like data.

Javed et al. (2015a) show that the background model accuracy can be
considerably improved by using multi-features. Thus, it is an interesting
research direction to investigate how multi-features can be efficiently
integrated into the DMD and CP framework.

7.3.2 Long-Term Perspectives

Randomized techniques will play a major role in future applications across
science. This is because the size of the data problems is growing more
rapidly than the available computing power is - meaning solutions will
have to be found by algorithmic efficiencies, rather than brute force.
Another important aspect is that randomized algorithms are energy
efficient, i.e., the reduced run-time requires significant less computational
resources than deterministic algorithms. This aspect becomes crucial if
applications run on devices like robots, drones or autonomous underwater
vehicles. Furthermore, randomness can not only be used to reduce the
computational load, but also to reduce communications costs, i.e., instead
of transmitting the full data it might be sufficient to just transmit the
smaller (compressed) data matrix.

References

H. Abdi and L. J. Williams. Principal component analysis. Wiley
Interdisciplinary Reviews: Computational Statistics, 2:433–459, 2010.

D. Achlioptas and F. McSherry. Fast computation of low-rank matrix
approximations. Journal of the ACM, 54:9, 2007.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LA-
PACK Users’ Guide. SIAM, 3rd edition, 1999.

M. Babaee, D. T. Dinh, and G. Rigoll. A deep convolutional neural
network for background subtraction. arXiv preprint arXiv:1702.01731,
2017.

B. W. Bader and T. G. Kolda. MATLAB tensor toolbox version 2.6, 2015.
URL http://www.sandia.gov/~tgkolda/TensorToolbox/.

R. G. Baraniuk. Compressive sensing. IEEE Signal Processing Magazine,
24(4):118–120, 2007.

O. Barnich and M. Van Droogenbroeck. Vibe: A universal background
subtraction algorithm for video sequences. IEEE Transactions on Image
processing, 20(6):1709–1724, 2011.

D. Bates and M. Maechler. Matrix: Sparse and dense matrix classes and
methods, 2016. URL https://CRAN.R-project.org/package=Matrix.
R package version 1.2-6.

Y. Benezeth, P.-M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger.
Comparative study of background subtraction algorithms. Journal of
Electronic Imaging, 19(3):–, 2010. doi: 10.1117/1.3456695.

S. Bianco, G. Ciocca, and R. Schettini. How far can you get by combining
change detection algorithms? arXiv preprint arXiv:1505.02921, 2015.

D. Bistrian and I. Navon. Randomized dynamic mode decomposition
for non-intrusive reduced order modelling. International Journal for
Numerical Methods in Engineering, pages 1–22, 2016. doi: 10.1002/
nme.5499.

http://www.sandia.gov/~tgkolda/TensorToolbox/
https://CRAN.R-project.org/package=Matrix

168 | References

L. Bottou. Large-scale machine learning with stochastic gradient descent.
In Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

T. Bouwmans. Recent advanced statistical background modeling for
foreground detection: A systematic survey. Recent Patents on Computer
Science, 4(3):147–176, 2011.

T. Bouwmans. Traditional and recent approaches in background modeling
for foreground detection: An overview. Computer Science Review, 11-12:
31–66, 2014. doi: 10.1016/j.cosrev.2014.04.001.

T. Bouwmans and E.-H. Zahzah. Robust PCA via principal component
pursuit: A review for a comparative evaluation in video surveillance.
Computer Vision and Image Understanding, 122:22–34, 2014. doi:
10.1016/j.cviu.2013.11.009.

T. Bouwmans, N. S. Aybat, and E. Zahzah. Handbook of Robust Low-Rank
and Sparse Matrix Decomposition: Applications in Image and Video
Processing. CRC Press, 2016a. ISBN 9781498724623.

T. Bouwmans, A. Sobral, S. Javed, S. K. Jung, and E.-H. Zahzah. De-
composition into low-rank plus additive matrices for background/-
foreground separation: A review for a comparative evaluation with a
large-scale dataset. Computer Science Review, pages 1–71, 2016b. doi:
10.1016/j.cosrev.2016.11.001.

M. Braham and M. Van Droogenbroeck. Deep background subtraction
with scene-specific convolutional neural networks. In Systems, Signals
and Image Processing (IWSSIP), 2016 International Conference on,
pages 1–4. IEEE, 2016.

R. Bro and C. A. Andersson. Improving the speed of multiway algorithms:
Part II: Compression. Chemometrics and Intelligent Laboratory Systems,
42:105–113, 1998.

B. W. Brunton, L. A. Johnson, J. G. Ojemann, and J. N. Kutz. Extracting
spatial–temporal coherent patterns in large-scale neural recordings using
dynamic mode decomposition. Journal of Neuroscience Methods, 258:
1–15, 2016. doi: 10.1016/j.jneumeth.2015.10.010.

S. L. Brunton and B. R. Noack. Closed-loop turbulence control: Progress
and challenges. Applied Mechanics Reviews, 67:1–60, 2015.

S. L. Brunton, J. L. Proctor, J. H. Tu, and J. N. Kutz. Compressed sensing
and dynamic mode decomposition. Journal of Computational Dynamics,
2(2):165–191, 2015. ISSN 2158-2491. doi: 10.3934/jcd.2015002.

Y. Cai and S. See. GPU Computing and Applications. Springer, 2015.

E. J. Candès and M. B. Wakin. An introduction to compressive sampling.
IEEE Signal Processing Magazine, 25(2):21–30, 2008. doi: 10.1109/
MSP.2007.914731.

References | 169

E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component
analysis? Journal of the ACM, 58(3):1–37, 2011. doi: 10.1145/1970392.
1970395.

J. D. Carroll and J.-J. Chang. Analysis of individual differences in
multidimensional scaling via an N-way generalization of ‘Eckart-Young’
decomposition. Psychometrika, 35:283–319, 1970.

S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer. cudnn: Efficient primitives for deep learning. arXiv
preprint arXiv:1410.0759, 2014.

A. Cichocki and A. H. Phan. Fast local algorithms for large scale non-
negative matrix and tensor factorizations. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
92:708–721, 2009.

A. Cichocki, R. Zdunek, A. Phan, and S. Amari. Nonnegative matrix
and tensor factorizations: Applications to exploratory multi-way data
analysis and blind source separation. John Wiley & Sons, 2009.

B. A. Cipra. The best of the 20th century: Editors name top 10 algorithms.
SIAM news, 33(4):1–2, 2000.

T. Colonius and K. Taira. A fast immersed boundary method using a
nullspace approach and multi-domain far-field boundary conditions.
Computer Methods in Applied Mechanics and Engineering, 197:2131–
2146, 2008.

P. Comon, X. Luciani, and A. De Almeida. Tensor decompositions,
alternating least squares and other tales. Journal of Chemometrics, 23:
393–405, 2009.

J. P. Cunningham and Z. Ghahramani. Linear dimensionality reduction:
Survey, insights, and generalizations. Journal of Machine Learning
Research, 16:2859–2900, 2015.

L. Dalcin, R. Paz, and M. Storti. MPI for Python. Journal of Parallel
and Distributed Computing, 65(9):1108–1115, 2005. doi: 10.1016/j.jpdc.
2005.03.010.

M. A. Davenport and J. Romberg. An overview of low-rank matrix
recovery from incomplete observations. IEEE Journal of Selected Topics
in Signal Processing, 10(4):608–622, 2016.

S. T. Dawson. Reduced-order modeling of fluids systems, with applications
in unsteady aerodynamics. PhD thesis, Princeton University, 2017.

L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear sin-
gular value decomposition. SIAM Journal on Matrix Analysis and
Applications, 21:1253–1278, 2000.

170 | References

J. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

D. L. Donoho. Compressed sensing. IEEE Transactions on Information
Theory, 52(4):1289–1306, 2006. doi: 10.1109/TIT.2006.871582.

P. Drineas and M. W. Mahoney. A randomized algorithm for a tensor-
based generalization of the singular value decomposition. Linear Algebra
and its Applications, 420:553–571, 2007.

P. Drineas and M. W. Mahoney. RandNLA: Randomized numerical linear
algebra. Communications of the ACM, 59:80–90, 2016.

C. Eckart and G. Young. The approximation of one matrix by another of
lower rank. Psychometrika, 1:211–218, 1936.

N. B. Erichson. rsvd: Randomized singular value decomposition, 2015.
URL https://CRAN.R-project.org/package=rsvd. R package ver-
sion 0.6.

N. B. Erichson and C. Donovan. Randomized low-rank dynamic mode
decomposition for motion detection. Computer Vision and Image
Understanding, 146:40–50, 2016. doi: 10.1016/j.cviu.2016.02.005.

N. B. Erichson, S. L. Brunton, and J. N. Kutz. Compressed dynamic
mode decomposition for background modeling. Journal of Real-Time
Image Processing, pages 1–14, 2016a. doi: 10.1007/s11554-016-0655-2.

N. B. Erichson, K. Manohar, S. L. Brunton, and J. N. Kutz. Randomized
CP tensor decomposition. Submitted, pages 1–30, 2016b.

N. B. Erichson, S. Voronin, S. L. Brunton, and J. N. Kutz. Randomized
matrix decompositions using R. arXiv preprint arXiv:1608.02148,
2016c.

N. B. Erichson, S. L. Brunton, and J. N. Kutz. Randomized dynamic
mode decomposition. arXiv preprint arXiv:1702.02912, 2017.

J. R. Fienup. Invariant error metrics for image reconstruction. Applied
Optics, 36:8352–8357, 1997.

A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for
finding low-rank approximations. J. ACM, 51:1025–1041, 2004.

M. Gavish and D. L. Donoho. The optimal hard threshold for singular
values is 4/

√
3. IEEE Transactions on Information Theory, 60(8):

5040–5053, 2014.

A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to
many: Illumination cone models for face recognition under variable
lighting and pose. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23:643–660, 2001.

https://CRAN.R-project.org/package=rsvd

References | 171

L. E. Givon, T. Unterthiner, N. B. Erichson, D. W. Chiang, E. Larson,
L. Pfister, S. Dieleman, G. R. Lee, S. van der Walt, T. M. Moldovan,
F. Bastien, X. Shi, J. Schlüter, B. Thomas, C. Capdevila, A. Rubinsteyn,
M. M. Forbes, J. Frelinger, T. Klein, B. Merry, L. Pastewka, S. Taylor,
F. Wang, and Y. Zhou. scikit-cuda 0.5.1: a Python interface to GPU-
powered libraries, 2015. URL http://dx.doi.org/10.5281/zenodo.40565.
http://dx.doi.org/10.5281/zenodo.40565.

G. Golub and W. Kahan. Calculating the singular values and pseudo-
inverse of a matrix. SIAM, Series B: Numerical Analysis, (2):205–224,
1965.

G. H. Golub and C. Reinsch. Singular value decomposition and least
squares solutions. Numerische Mathematik, 14:403–420, 1970.

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
University Press, 3 edition, 1996.

N. Goyette, P.-M. Jodoin, F. Porikli, J. Konrad, and P. Ishwar. Changede-
tection.net: A new change detection benchmark dataset. In Computer
Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE
Computer Society Conference on, pages 1–8. IEEE, 2012.

J. Grosek and J. N. Kutz. Dynamic mode decomposition for real-time back-
ground/foreground separation in video. arXiv preprint arXiv:1404.7592,
2014.

M. Gu. Subspace iteration randomization and singular value problems.
SIAM Journal on Scientific Computing, 37(3):1139–1173, 2015. doi:
10.1137/130938700.

N. Halko, P.-G. Martinsson, Y. Shkolnisky, and M. Tygert. An algorithm
for the principal component analysis of large data sets. SIAM Journal
on Scientific Computing, 33:2580–2594, 2011a.

N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with
randomness: Probabilistic algorithms for constructing approximate
matrix decompositions. SIAM Review, 53(2):217–288, 2011b. doi:
10.1137/090771806.

R. A. Harshman. Foundations of the PARAFAC procedure: Models and
conditions for an "explanatory" multi-modal factor analysis. Technical
Report 16, Working Papers in Phonetics, UCLA, 1970.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Series in
Statistics. Springer-Verlag, 2nd edition, 2009.

F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of
products. Journal of Mathematical Physics, 6:164–189, 1927.

http://dx.doi.org/10.5281/zenodo.40565
http://dx.doi.org/10.5281/zenodo.40565

172 | References

P. J. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley. Turbulence,
coherent structures, dynamical systems and symmetry. Monographs in
Mechanics. Cambridge University Press, 2 edition, 2012.

J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, and E. J.
Kelmelis. CULA: Hybrid GPU accelerated linear algebra routines, 2010.

S. T. IBM Reseach Division. libskylark: Sketching-based distributed
matrix computations for machine learning, 2014. URL https://
xdata-skylark.github.io/libskylark/. C++ package version 0.2.

A. J. Izenman. Modern Multivariate Statistical Techniques: Regression,
Classification, and Manifold Learning. Springer-Verlag, 2008.

S. Javed, S. H. Oh, A. Sobral, T. Bouwmans, and S. K. Jung. OR-
PCA with MRF for robust foreground detection in highly dynamic
backgrounds. In Asian Conference on Computer Vision, pages 284–299.
Springer, 2014.

S. Javed, S. H. Oh, T. Bouwmans, and S. K. Jung. Robust background
subtraction to global illumination changes via multiple features-based
online robust principal components analysis with markov random field.
Journal of Electronic Imaging, 24(4):1–16, 2015a. doi: 10.1117/1.JEI.
24.4.043011.

S. Javed, A. Sobral, T. Bouwmans, and S. K. Jung. OR-PCA with dynamic
feature selection for robust background subtraction. In Proceedings of
the 30th Annual ACM Symposium on Applied Computing, pages 86–91.
ACM, 2015b.

H. Ji and Y. Li. Gpu accelerated randomized singular value decomposition
and its application in image compression. Update, 4:5, 2014.

N. C. Johnson. How many ENSO flavors can we distinguish? Journal of
Climate, 26:4816–4827, 2013.

I. Jolliffe. Principal Component Analysis. Springer Series in Statistics.
Springer-Verlag, 2nd edition, 2002.

E. Jones, T. Oliphant, and P. Peterson. SciPy: Open source scientific
tools for Python, 2001. URL https://www.scipy.org/.

M. R. Jovanović, P. J. Schmid, and J. W. Nichols. Sparsity-promoting
dynamic mode decomposition. Physics of Fluids, 26(2):1–22, 2014.

K. Kang, W. Ouyang, H. Li, and X. Wang. Object detection from video
tubelets with convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
817–825, 2016.

https://xdata-skylark.github.io/libskylark/
https://xdata-skylark.github.io/libskylark/
https://www.scipy.org/

References | 173

J. Kim, Y. He, and H. Park. Algorithms for nonnegative matrix and
tensor factorizations: A unified view based on block coordinate descent
framework. Journal of Global Optimization, 58:285–319, 2014.

M. Kirby and L. Sirovich. Application of the Karhunen-Loeve procedure
for the characterization of human faces. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12:103–108, 1990.

T. G. Kolda and B. W. Bader. Tensor decompositions and applications.
SIAM Review, 51:455–500, 2009.

B. Koopman. Hamiltonian systems and transformation in hilbert space.
Proceedings of the National Academy of Sciences, 17:315–318, 1931.

A. Korobeynikov and R. M. Larsen. svd: Interfaces to various state-of-
art SVD and eigensolvers, 2016. URL https://CRAN.R-project.org/
package=svd. R package version 0.4.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

J. N. Kutz, X. Fu, S. L. Brunton, and N. B. Erichson. Multi-resolution
dynamic mode decomposition for foreground/background separation
and object tracking. In IEEE International Conference on Computer
Vision Workshop (ICCVW), pages 921–929, 2015. doi: 10.1109/ICCVW.
2015.122.

J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor. Dy-
namic Mode Decomposition: Data-Driven Modeling of Complex Systems.
SIAM, 2016a.

J. N. Kutz, X. Fu, and S. L. Brunton. Multiresolution dynamic mode
decomposition. SIAM Journal on Applied Dynamical Systems, 15(2):
713–735, 2016b.

R. M. Larsen. Lanczos bidiagonalization with partial reorthogonalization.
DAIMI Report Series, 27:1–101, 1998.

R. Lehoucq, D. Sorensen, and C. Yang. ARPACK Users’ Guide. SIAM,
1998.

N. Li, S. Kindermann, and C. Navasca. Some convergence results on the
regularized alternating least-squares method for tensor decomposition.
Linear Algebra and its Applications, 438:796–812, 2013.

X. Li, W. Hu, Z. Zhang, X. Zhang, and G. Luo. Robust visual tracking
based on incremental tensor subspace learning. In Computer Vision,
2007. ICCV 2007. IEEE 11th International Conference on, pages 1–8.
IEEE, 2007.

https://CRAN.R-project.org/package=svd
https://CRAN.R-project.org/package=svd

174 | References

E. Liberty. Simple and deterministic matrix sketching. In Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 581–588. ACM, 2013.

Z. Lin, M. Chen, and Y. Ma. The augmented lagrange multiplier method
for exact recovery of corrupted low-rank matrices. arXiv preprint
arXiv:1009.5055, 2011.

A. Liutkus. Randomized Singular Value Decomposition, 2014.
URL http://uk.mathworks.com/matlabcentral/fileexchange/
47835-randomized-singular-value-decomposition. MATLAB package
version 1.0.

M. W. Mahoney. Randomized algorithms for matrices and data. Founda-
tions and Trends in Machine Learning, 3:123–224, 2011.

S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency
dictionaries. IEEE Transactions on Signal Processing, 41(12):3397–
3415, 1993.

P.-G. Martinsson. Randomized methods for matrix computations and
analysis of high dimensional data. arXiv preprint arXiv:1607.01649,
2016.

P.-G. Martinsson, V. Rokhlin, and M. Tygert. A randomized algorithm for
the decomposition of matrices. Applied and Computational Harmonic
Analysis, 30:47–68, 2011.

P.-G. Martinsson, G. Quintana-Orti, and N. Heavner. randutv: A blocked
randomized algorithm for computing a rank-revealing utv factorization.
arXiv preprint arXiv:1703.00998, 2017.

O. Mersmann, C. Beleites, R. Hurling, and A. Friedman. microbench-
mark: Accurate timing functions, 2015. URL http://CRAN.R-project.
org/package=microbenchmark. R package version 1.4-2.1.

I. Mezić and A. Banaszuk. Comparison of systems with complex behavior.
Physica D: Nonlinear Phenomena, 197:101 – 133, 2004.

J. Monod. Chance and Necessity: An Essay on the Natural Philosophy of
Modern Biology. Alfred A. Knopf, 1971.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press,
2012.

J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel
programming with CUDA. Queue, 6(2):40–53, 2008. doi: 10.1145/
1365490.1365500.

http://uk.mathworks.com/matlabcentral/fileexchange/47835-randomized-singular-value-decomposition
http://uk.mathworks.com/matlabcentral/fileexchange/47835-randomized-singular-value-decomposition
http://CRAN.R-project.org/package=microbenchmark
http://CRAN.R-project.org/package=microbenchmark

References | 175

B. R. Noack, K. Afanasiev, M. Morzynski, G. Tadmor, and F. Thiele. A
hierarchy of low-dimensional models for the transient and post-transient
cylinder wake. J. Fluid Mech., 497:335–363, 2003.

D. Okanohara. redsvd: Randomized SVD, 2011. URL https://code.
google.com/archive/p/redsvd/. C package version 0.2.

J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips. Gpu computing. Proceedings of the IEEE, 96(5):879–899, May
2008. ISSN 0018-9219. doi: 10.1109/JPROC.2008.917757.

S. I. Park, S. P. Ponce, J. Huang, Y. Cao, and F. Quek. Low-cost, high-
speed computer vision using nvidia’s cuda architecture. In Applied
Imagery Pattern Recognition Workshop, 2008. AIPR’08. 37th IEEE,
pages 1–7. IEEE, 2008.

K. Pearson. On lines and planes of closest fit to systems of points in
space. Philosophical Magazine Series 6, 2:559–572, 1901.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

V. Pham, P. Vo, V. T. Hung, et al. GPU implementation of extended
gaussian mixture model for background subtraction. In IEEE Inter-
national Conference on Computing and Communication Technologies,
Research, Innovation, and Vision for the Future, pages 1–4, 2010.

A. Phan and A. Cichocki. PARAFAC algorithms for large-scale problems.
Neurocomputing, 74:1970–1984, 2011.

J. Proctor and P. Echhoff. Discovering dynamic patterns from infectious
disease data using dynamic mode decomposition. International Health,
7:139–145, 2015.

J. L. Proctor, S. L. Brunton, and J. N. Kutz. Dynamic mode decomposi-
tion with control. SIAM Journal on Applied Dynamical Systems, 15(1):
142–161, 2016.

Y. Qiu, J. Mei, G. Guennebaud, and J. Niesen. RSpectra: Solvers for
large scale eigenvalue and SVD problems, 2016. URL https://CRAN.
R-project.org/package=RSpectra. R package version 0.12-0.

V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for
principal component analysis. SIAM Journal on Matrix Analysis and
Applications, 31:1100–1124, 2009.

C. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. Henningson. Spectral
analysis of nonlinear flows. Journal of Fluid Mechanics, 641:115–127,
2009.

https://code.google.com/archive/p/redsvd/
https://code.google.com/archive/p/redsvd/
https://CRAN.R-project.org/package=RSpectra
https://CRAN.R-project.org/package=RSpectra

176 | References

R. Rubinstein, M. Zibulevsky, and M. Elad. Efficient implementation of
the K-SVD algorithm using batch orthogonal matching pursuit. CS
Technion, 40(8):1–15, 2008.

J. Sanders and E. Kandrot. CUDA by Example: An Introduction to
General-Purpose GPU Programming, Portable Documents. Addison-
Wesley, 2010.

T. Sarlos. Improved approximation algorithms for large matrices via
random projections. In Foundations of Computer Science. 47th Annual
IEEE Symposium on, pages 143–152, 2006.

S. Scardapane and D. Wang. Randomness in neural networks: An overview.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
7(2):1–41, 2017. doi: 10.1002/widm.1200.

P. Schmid. Dynamic mode decomposition of numerical and experimental
data. Journal of Fluid Mechanics, 656:5–28, 2010. doi: 10.1017/
S0022112010001217.

S. C. Sen-Ching and C. Kamath. Robust techniques for background
subtraction in urban traffic video. In Electronic Imaging 2004, pages
881–892. International Society for Optics and Photonics, 2004.

A. Shimada, D. Arita, and R.-i. Taniguchi. Dynamic control of adaptive
mixture-of-gaussians background model. In Video and Signal Based
Surveillance, 2006. AVSS’06. IEEE International Conference on, pages
5–5. IEEE, 2006.

X. Shu, F. Porikli, and N. Ahuja. Robust orthonormal subspace learning:
Efficient recovery of corrupted low-rank matrices. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
3874–3881, 2014.

N. Sidiropoulos, E.Papalexakis, and C. Faloutsos. Parallel randomly
compressed cubes: A scalable distributed architecture for big tensor
decomposition. IEEE Signal Processing Magazine, 31:57, 2014.

A. Smilde, R. Bro, and P. Geladi. Multi-Way Analysis with Applications
in the Chemical Sciences. John Wiley & Sons, 2005.

A. Sobral and A. Vacavant. A comprehensive review of background
subtraction algorithms evaluated with synthetic and real videos.
Computer Vision and Image Understanding, 122:4–21, 2014. doi:
10.1016/j.cviu.2013.12.005.

P.-L. St-Charles, G.-A. Bilodeau, and R. Bergevin. A self-adjusting ap-
proach to change detection based on background word consensus. In
Applications of Computer Vision (WACV), 2015 IEEE Winter Confer-
ence on, pages 990–997. IEEE, 2015.

References | 177

C. Stauffer and W. Grimson. Adaptive background mixture models for
real-time tracking. Proceedings IEEE Conf. on Computer Vision and
Pattern Recognition, 1999.

G. W. Stewart. On the early history of the singular value decomposition.
SIAM Review, 35:551–566, 1993.

A. Szlam, Y. Kluger, and M. Tygert. An implementation of a ran-
domized algorithm for principal component analysis. arXiv preprint
arXiv:1412.3510, 2014.

K. Taira and T. Colonius. The immersed boundary method: A projection
approach. Journal of Computational Physics, 225:2118–2137, 2007.

K. Taira, S. L. Brunton, S. Dawson, C. W. Rowley, T. Colonius, B. J. McK-
eon, O. T. Schmidt, S. Gordeyev, V. Theofilis, and L. S. Ukeiley. Modal
analysis of fluid flows: An overview. arXiv preprint arXiv:1702.01453,
2017.

S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. Dense linear algebra
solvers for multicore with gpu accelerators. In Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE Inter-
national Symposium on, pages 1–8. IEEE, 2010.

L. N. Trefethen and D. Bau III. Numerical Linear Algebra. SIAM, 1997.

K. E. Trenberth. The definition of El niño. Bulletin of the American
Meteorological Society, 78:2771, 1997.

J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements
via orthogonal matching pursuit. IEEE Transactions on Information
Theory, 53(12):4655–4666, 2007.

J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher. Randomized single-
view algorithms for low-rank matrix approximation. arXiv preprint
arXiv:1609.00048, 2016.

C. E. Tsourakakis. MACH: Fast randomized tensor decompositions. In
Proc. 2010 SIAM Int. Conf. Data Mining, pages 689–700, 2010.

J. Tu, C. Rowley, D. Luchtenberg, S. Brunton, and J. N. Kutz. On
dynamic mode decomposition: Theory and applications. Journal of
Computational Dynamics, 1:391–421, 2014.

M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In
Proceedings on Computer Vision and Pattern Recognition, pages 586–
591. IEEE, 1991.

A. Uschmajew. Local convergence of the alternating least squares algo-
rithm for canonical tensor approximation. SIAM Journal on Matrix
Analysis and Applications, 33:639–652, 2012.

178 | References

A. Vacavant, T. Chateau, A. Wilhelm, and L. Lequievre. A benchmark
dataset for outdoor foreground/background extraction. In Computer
Vision–ACCV 2012 Workshops, pages 291–300. Springer, 2013.

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S-PLUS.
Statistics and Computing. Springer-Verlag, 2002.

N. Vervliet and L. D. Lathauwer. A randomized block sampling approach
to canonical polyadic decomposition of large-scale tensors. IEEE Jour-
nal of Selected Topics in Signal Processing, 10:284–295, 2016.

N. Vervliet, O. Debals, L. Sorber, and L. D. Lathauwer. Breaking the
curse of dimensionality using decompositions of incomplete tensors:
Tensor-based scientific computing in big data analysis. IEEE Signal
Processing Magazine, 31:71–79, 2014.

V. Volkov and J. W. Demmel. Benchmarking gpus to tune dense linear
algebra. In High Performance Computing, Networking, Storage and
Analysis, 2008. SC 2008. International Conference for, pages 1–11.
IEEE, 2008.

S. Voronin and P.-G. Martinsson. RSVDPACK: Subroutines for com-
puting partial singular value decompositions via randomized sampling
on single core, multi core, and GPU architectures. arXiv preprint
arXiv:1502.05366, 2015.

G. Wang, Y. Xiong, J. Yun, and J. R. Cavallaro. Accelerating computer
vision algorithms using opencl framework on the mobile gpu-a case
study. In Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on, pages 2629–2633. IEEE, 2013.

L. Wang and M. T. Chu. On the global convergence of the alternating least
squares method for rank-one approximation to generic tensors. SIAM
Journal on Matrix Analysis and Applications, 35:1058–1072, 2014.

R. Wang, F. Bunyak, G. Seetharaman, and K. Palaniappan. Static and
moving object detection using flux tensor with split Gaussian models.
In Computer Vision and Pattern Recognition Workshops (CVPRW),
2014 IEEE Conference on, pages 420–424. IEEE, 2014a.

Y. Wang, P.-M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, and P. Ishwar.
CDnet 2014: An expanded change detection benchmark dataset. In
IEEE Workshop on Computer Vision and Pattern Recognition, pages
393–400. IEEE, 2014b.

Y. Wang, Z. Luo, and P.-M. Jodoin. Interactive deep learning method for
segmenting moving objects. Pattern Recognition Letters, pages 1–10,
2016a. doi: 10.1016/j.patrec.2016.09.014.

Y. Wang, Z. Luo, and P.-M. Jodoin. Interactive deep learning method
for segmenting moving objects. Pattern Recognition Letters, 2016b.

References | 179

D. S. Watkins. Fundamentals of Matrix Computations. John Wiley &
Sons, 2 edition, 2002.

W. H. Wen-Mei. GPU computing gems emerald edition. Elsevier, 2011.

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag, 2009. URL http://had.co.nz/ggplot2/book.

R. Witten and E. Candes. Randomized algorithms for low-rank matrix
factorizations: sharp performance bounds. Algorithmica, 72:264–281,
2015.

D. P. Woodruff. Sketching as a tool for numerical linear algebra. Founda-
tions and Trends in Theoretical Computer Science, 10(1-2):1–157, 2014.
doi: 10.1561/0400000060.

F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert. A fast randomized
algorithm for the approximation of matrices. Journal of Applied and
Computational Harmonic Analysis, 25:335–366, 2008.

J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma. Robust principal
component analysis: Exact recovery of corrupted low-rank matrices via
convex optimization. In Advances in Neural Information Processing
Systems, pages 2080–2088, 2009.

Y. Xu and W. Yin. A block coordinate descent method for regularized
multiconvex optimization with applications to nonnegative tensor fac-
torization and completion. SIAM Journal on Imaging Sciences, 6(3):
1758–1789, 2013.

Y. Xu, J. Dong, B. Zhang, and D. Xu. Background modeling methods in
video analysis: A review and comparative evaluation. CAAI Transac-
tions on Intelligence Technology, 1(1):43–60, 2016. doi: 10.1016/j.trit.
2016.03.005.

C. Zhang, H. Tabkhi, and G. Schirner. A gpu-based algorithm-specific
optimization for high-performance background subtraction. In Parallel
Processing (ICPP), 2014 43rd International Conference on, pages 182–
191. IEEE, 2014.

G. Zhou, A. Cichocki, and S. Xie. Decomposition of big tensors with low
multilinear rank. arXiv preprint arXiv:1412.1885, 2014.

T. Zhou and D. Tao. Godec: Randomized low-rank & sparse matrix
decomposition in noisy case. In International Conference on Machine
Learning, pages 1–8. ICML, 2011.

X. Zhou, C. Yang, and W. Yu. Moving object detection by detecting
contiguous outliers in the low-rank representation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(3):597–610, 2013.

http://had.co.nz/ggplot2/book

180 | References

Z. Zivkovic. Improved adaptive gaussian mixture model for background
subtraction. In Pattern Recognition, 2004. ICPR 2004. Proceedings of
the 17th International Conference on, volume 2, pages 28–31. IEEE,
2004.

Appendix A

Proof of Theorem 1

In the following, we sketch a proof for Theorem 1, which yields an upper
bound for the approximate basis for the range of a tensor. To assess the
quality of the basis matrices {Qn}N

n=1, we first show that the problem
can be expressed as a sum of subproblems. First, let the residual error be
defined as

∥E∥F = ∥X − X̂∥ = ∥X −X ×1 Q1Q⊺
1 ×2 · · · ×N QNQ⊺

N∥F . (A.1)

Note that the Frobenius norm of a tensor and its matricized forms are
equivalent. Upon defining the orthogonal projector as Pn ≡ QnQ⊺

n, we
can reformulate Equation (A.1) more compactly as

∥E∥F = ∥X −X ×1 P1 ×2 · · · ×N PN∥F . (A.2)

Proof. Assuming, that Pn yields an exact projection onto the column
space of the matrix Qn, we need to show first that the error can be
expressed as a sum of the errors of the n projections

∥E∥F =
N∑

n=1
∥X −X ×n Pn∥F =

N∑
n=1
∥X ×n (I−Pn)∥F , (A.3)

where I denotes the identity matrix. Following Drineas and Mahoney
(2007), let us add and subtract the term X ×N PN in Equation (A.2) so
that we obtain

182 | Proof of Theorem 1

∥E∥F = ∥X −X ×N PN + X ×N PN −X ×1 P1 ×1 · · · ×N PN∥F (A.4)

≤ ∥X −X ×N PN∥F + ∥X ×N PN −X ×1 P1 ×1 · · · ×N PN∥F (A.5)

= ∥X −X ×N PN∥F + ∥(X −X ×1 P1 ×1 · · · ×N−1 PN−1)×N PN∥F (A.6)

≤ ∥X −X ×N PN∥F + ∥X −X ×1 P1 ×1 · · · ×N−1 PN−1∥F . (A.7)

The bound (A.5) then follows from the triangular inequality for a norm.
Next, the common term PN is factored out in Equation (A.6). Then, the
bound (A.7) follows from the properties of orthogonal projectors. This
is because the range(X ×1 P1 ×1 · · · ×N−1 PN−1) ⊂ range(X ×1 P1 ×1

· · · ×N PN), and then it holds that ∥X − X ×1 P1 ×1 · · · ×N PN∥F ≤
∥X −X ×1 P1 ×1 · · · ×N−1 PN−1∥F . See Proposition 8.5 by Halko et al.
(2011b) for a proof using matrices. Subsequently the residual error EN−1

can be bounded

∥EN−1∥ ≤ ∥X −X ×N−1 PN−1∥F + ∥X −X ×1 P1 ×1 · · · ×N−2 PN−2)∥F .(A.8)

From this inequality, Equation (A.3) follows. We take the expectation of
Equation (A.3)

E∥E∥F = E
[

N∑
n=1
∥X ×n (I−Pn)∥F

]
. (A.9)

Then, recall that Theorem 10.5 formulated by Halko et al. (2011b) states
the following expected approximation error (formulated here using tensor
notation)

E∥X ×n (I−Pn)∥F ≤
√

1 + k

p− 1 ·
√∑

j>k

σ2
j , (A.10)

assuming that the sample matrix in Equation (6.4) is constructed using a
standard Gaussian matrix Ω. Here σj denotes the singular values of the
matricized tensor X (n) greater then the chosen target rank k. Combining
Equations (A.9) and (A.10) then yields

E∥E∥F ≤
√

1 + k

p− 1 ·

√√√√√ N∑
n=1

∑
j>k

σ2
nj,

| 183

where the double sum in the right term sums the eigenvalues over the N

matricized tensors.

Figure A.1 and A.2 show a simulation over 100 runs to evaluate the
performance of the theoretical upper bound.

(a) Tensor of dimension 50× 50× 50.

(b) Tensor of dimension 50× 50× 50× 50.

Fig. A.1 Given both a third and fourth order random low-rank R =
25 tensor, and assuming a fixed oversampling parameter p = 2, the
performance of the theoretical upper bound for varying target ranks is
bounding the average error faithfully.

Fig. A.2 Given a low-rank J/2 tensor of dimension J×J×J , and assuming
an oversampling parameter p = 2 and a fixed target rank k = 20, the
performance of the theoretical upper bound is slightly overcautious with
an increasing ratio between the intrinsic and target rank.

	Table of contents
	List of Figures
	List of Tables
	Some Nomenclature
	1 Introduction
	1.1 The Big Picture
	1.2 Some Notation and Preliminaries
	1.3 Low-Rank Approximations
	1.4 Probabilistic Framework
	1.4.1 Computational Considerations
	1.4.2 Theoretical Performance
	1.4.3 Test Matrices

	1.5 Overview and Contributions

	2 Randomized Singular Value Decomposition
	2.1 Introduction
	2.2 Singular Value Decomposition
	2.2.1 Brief Historical Overview
	2.2.2 Conceptual Overview
	2.2.3 Randomized Algorithm

	2.3 Principal Component Analysis
	2.3.1 Conceptual Overview
	2.3.2 Randomized Algorithm

	2.4 Robust Principal Component Analysis
	2.4.1 Conceptual Overview
	2.4.2 Randomized Algorithm

	2.5 The rsvd Package
	2.5.1 The rsvd() Function
	2.5.2 The rpca() Function
	2.5.3 The rrpca() Function

	2.6 Numerical Results
	2.6.1 SVD Example: Image Compression
	2.6.2 PCA Example: Eigenfaces
	2.6.3 Robust PCA Example: Foreground/Background Separation
	2.6.4 Computational Performance

	2.7 Conclusion

	3 Randomized Dynamic Mode Decomposition
	3.1 Introduction
	3.2 Deterministic DMD
	3.2.1 Conceptual Overview
	3.2.2 Deterministic Algorithm

	3.3 Compressed DMD
	3.3.1 Conceptual Overview
	3.3.2 Compressed Algorithm

	3.4 Randomized DMD
	3.4.1 Conceptual Overview
	3.4.2 Randomized Algorithm
	3.4.3 Blocked Randomized Algorithm

	3.5 The DMDpack Package
	3.5.1 The dmd() Function
	3.5.2 The cdmd() Function
	3.5.3 The rdmd() Function

	3.6 Numerical Results
	3.6.1 Numerical Results
	3.6.2 Computational Performance

	3.7 Conclusion

	4 Dynamic Mode Decomposition for Background Modeling
	4.1 Introduction
	4.2 Video Interpretation of the DMD
	4.3 Real-Time Background Modeling
	4.4 Evaluation Measures
	4.5 Numerical Results
	4.5.1 Evaluation Settings
	4.5.2 Evaluation Using the CD Dataset
	4.5.3 Evaluation Using the BMC Dataset
	4.5.4 Computational Performance

	4.6 Conclusion

	5 GPU Accelerated Randomized Algorithms
	5.1 Introduction
	5.2 Background: GPU Computing
	5.3 The scikit-CUDA Package
	5.4 Numerical Results
	5.4.1 Randomized Singular Value Decomposition
	5.4.2 Randomized Dynamic Mode Decomposition

	5.5 Conclusion

	6 Randomized CP Decomposition
	6.1 Introduction
	6.2 Some Tensor Notation
	6.3 Deterministic CP Decomposition
	6.4 Randomized Tensor Algorithm
	6.5 Randomized CP Decomposition
	6.5.1 Conceptual Overview
	6.5.2 Randomized Algorithm

	6.6 The rTensor Package
	6.7 Numerical Results
	6.7.1 Computational Performance
	6.7.2 Numerical Examples

	6.8 Conclusion

	7 Conclusion
	7.1 Randomness as a Computational Strategy
	7.2 Summary of the contributions
	7.3 Perspectives
	7.3.1 Short-Term Perspectives
	7.3.2 Long-Term Perspectives

	References
	Appendix A Proof of Theorem 1

