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Abstract: Since the publication of the seminal paper by Hwang and Yoon (1981) proposing 

Technique for Order Performance by the Similarity to Ideal Solution (TOPSIS), a substantial 

number of papers used this technique in a variety of applications requiring a ranking of 

alternatives. Very few papers use TOPSIS as a classifier (e.g. Wu and Olson, 2006; Abd-El 

Fattah, 2013) and report a good performance as in-sample classifiers. However, in practice, its 

use in predicting discrete variables such as risk class belonging is limited by the lack of an out-

of-sample evaluation framework. In this paper, we fill this gap by proposing an integrated in-

sample and out-of-sample framework for TOPSIS classifiers and test its performance on a UK 

dataset of bankrupt and non-bankrupt firms listed on the London Stock Exchange (LSE) during 

2010-2014. Empirical results show an outstanding predictive performance both in-sample and 

out-of-sample and thus opens a new avenue for research and applications in risk modelling and 

analysis using TOPSIS as a non-parametric classifier and makes it a real contender in industry 

applications in banking and investment. In addition, the proposed framework is robust to a 

variety of implementation decisions.    
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1. Introduction 

Multi-criteria decision analysis (MCDA) methodologies are widely used for addressing a 

variety of problems; namely, selection problems, ranking problems, sorting problems, 

classification problems, clustering problems, and description problems, where selection problems 

are concerned with identifying the best alternative or a subset of best alternatives; ranking 

problems are concerned with constructing a rank ordering of alternatives from best to worst; 

sorting problems are concerned with classifying alternatives into pre-defined and ordered 

homogenous groups or classes; classification problems are concerned with classifying 

alternatives into pre-defined and unordered homogenous classes; clustering problems are 

concerned with classifying alternatives into not pre-defined and not ordered homogenous classes; 

and description problems are concerned with identifying major distinguishing features of 

alternatives and perform their description based on these features. In this paper, we are focusing 

on the solution of classification problems, or equivalently predicting class belonging. To be more 

specific, we are concerned with the implementation of classifiers and their performance 

evaluation both in-sample and out-of-sample.  

One popular MCDA methodology is Technique for Order Performance by the Similarity to 

Ideal Solution (TOPSIS) proposed by Hwang and Yoon (1981) and used in many application 

areas – see Behzadian et al (2012) for a review including a sample of application areas. This 

methodology was originally designed for solving ranking problems. In fact, TOPSIS provides a 

ranking of alternatives based on similarity scores, where the similarity score of each alternative 

is a function of the distances between the alternative and a couple of benchmarks commonly 

referred to as the positive and the negative ideal solutions. Later on, TOPSIS has been adapted 

for solving classification problems. However, to the best of our knowledge, TOPSIS classifiers 

and their performance evaluation has so far been restricted to in-sample analyses only (e.g., 

Tansel IÇ and Yurdakul, 2010). In sum, an out-of-sample framework for TOPSIS as a classifier 

is lacking. The aim of this paper is to fill this gap by proposing a new integrated framework for 

implementing a full classification analysis; namely, in-sample classification and out-of-sample 

classification. The proposed framework is intended to make TOPSIS classifiers real contenders 

in practice and to increase confidence in their use in a variety of critical application areas such as 

the prediction of risk class belonging (e.g., bankruptcy prediction, distress prediction, fraud 

detection, credit scoring). 



The remainder of this paper unfolds as follows. In section 2, we provide a detailed 

description of the proposed integrated in-sample and out-of-sample framework for TOPSIS 

classifiers and discuss implementation decisions. In section 3, we empirically test the 

performance of the proposed framework in bankruptcy prediction of companies listed on the 

London Stock Exchange (LSE) and report on our findings. Finally, section 4 concludes the 

paper.  

2. An Integrated In-Sample – Out-of-Sample Framework for TOPSIS Classifiers 

In the forecasting literature, nowadays prediction models – whether designed for predicting a 

continuous variable (e.g., the level or volatility of the price of a strategic commodity such as 

crude oil) or a discrete one (e.g., risk class belonging of companies listed on a stock exchange) – 

have to be implemented both in-sample and out-of-sample to assess their ability to reproduce or 

forecast the response variable in the training sample and to forecast the response variable in the 

test sample, respectively. The rationale behind the necessary implementation and performance 

evaluation of prediction models both in-sample and out-of-sample lies in the fact that if you feed 

a properly designed prediction model with some information, it should be able to 

reproduce/predict that information; therefore, in real life settings, in-sample performance is not 

enough to quality a prediction model as a good one. Because the future is unknown, out-of-

sample implementations and evaluations are used to simulate the future. Out-of-sample 

implementation and evaluation frameworks are available for parametric prediction models (e.g. 

statistical models); however, this is not the case for all non-parametric ones (e.g., TOPSIS 

classifiers).  

Hereafter, we shall present our integrated implementation and evaluation framework for 

TOPSIS classifiers – see Figure 1 for a graphical depiction of the process. For illustration 

purposes, we shall customize the presentation of the proposed framework to a bankruptcy 

application where we reproduce a classical bankruptcy prediction model; namely, the 

multivariate discriminant analysis (MDA) model of Taffler (1984), within a TOPSIS classifier 

framework. Recall that Taffler’s MDA model focuses on liquidity and makes use of four drivers; 

namely, Current Assets to Total Liabilities; Current Liabilities to Total Assets; Number of Credit 

Intervals; and Profit Before Tax to Current Liabilities. Note that lower values are better than 

higher ones for Current Liabilities to Total Assets and Number of Credit Intervals, whereas 



higher values of Current Assets to Total Liabilities and Profit Before Tax to Current Liabilities 

are better than lower ones. 

Input: A training sample 𝑋𝐸 = {𝑥𝑖,𝑗
𝐸 ; 𝑖 = 1,… , #𝑋𝐸 , 𝑗 = 1, … ,𝑚} of cardinality #𝑋𝐸 and a 

test sample 𝑋𝑇 = {𝑥𝑖,𝑗
𝑇 ; 𝑖 = 1,… , #𝑋𝑇 , 𝑗 = 1,… ,𝑚} of cardinality #𝑋𝑇, where each 

observation 𝑖 in 𝑋𝐸 or 𝑋𝑇 is an alternative (e.g., LSE listed firm-year observation) along with 

a set of relevant features (e.g., bankruptcy drivers) for the analysis under consideration (e.g., 

Current Assets to Total Liabilities; Current Liabilities to Total Assets; Number of Credit 

Intervals; Profit Before Tax to Current Liabilities) of cardinality 𝑚, and the observed risk or 

bankruptcy status 𝑌; 

Phase 1: In-Sample Analysis  

Step 1: Choose a normalisation method (see Table 1) along with a weighting scheme 𝑤 (see 

Table 2) and use them to transform both training sample data (𝑥𝑖,𝑗
𝐸 ; 𝑖 = 1,… , #𝑋𝐸 , 𝑗 =

1, … ,𝑚) and test sample data (𝑥𝑖,𝑗
𝑇 ; 𝑖 = 1, … , #𝑋𝑇 , 𝑗 = 1, … ,𝑚) into their normalised 

counterparts (𝑟𝑖,𝑗
𝐸 ; 𝑖 = 1,… , #𝑋𝐸 , 𝑗 = 1,… ,𝑚) and (𝑟𝑖,𝑗

𝑇 ; 𝑖 = 1, … , #𝑋𝑇 , 𝑗 = 1, … ,𝑚), 

respectively, where 𝑥𝑖,𝑗
𝐸  (respectively 𝑥𝑖,𝑗

𝑇 ) denote the value of feature or driver 𝑗 of 

alternative 𝑖 in the training (respectively, test) sample and 𝑟𝑖,𝑗
𝐸  (respectively 𝑟𝑖,𝑗

𝑇 ) denote the 

standardized value of feature 𝑗 of alternative 𝑖 in the training (respectively, test) sample. 

Step 2: Compute two virtual benchmarks 𝑟+ and 𝑟− – commonly referred to as the ideal 

positive solution and the ideal negative solution, respectively – as follows, where 𝐹− 

(respectively, 𝐹+) denote the set of features for which lower (respectively, higher) values are 

better: 

𝑟𝑗
+ = min𝑖=1,…,#𝑋𝐸

𝑟𝑖,𝑗
𝐸 , if 𝑗 ∈ 𝐹− ormax𝑖=1,…,#𝑋𝐸

𝑟𝑖,𝑗
𝐸 , if 𝑗 ∈ 𝐹+; 𝑗 = 1,… ,𝑚, 

and 

𝑟𝑗
− = max𝑖=1,…,#𝑋𝐸

𝑟𝑖,𝑗
𝐸 , if 𝑗 ∈ 𝐹− ormin𝑖=1,…,#𝑋𝐸

𝑟𝑖,𝑗
𝐸 , if 𝑗 ∈ 𝐹+; 𝑗 = 1,… ,𝑚. 

Step 3: Choose the metric 𝑑𝑇𝑂𝑃𝑆𝐼𝑆 to use for computing distances between alternatives – see 

Table 3 – and compute the distances 𝑑𝑇𝑂𝑃𝑆𝐼𝑆(𝑟𝑖
𝐸 , 𝑟+) and 𝑑𝑇𝑂𝑃𝑆𝐼𝑆(𝑟𝑖

𝐸 , 𝑟−) between each 

alternative 𝑖 in the training sample 𝑋𝐸 (𝑖 = 1,… , #𝑋𝐸) and the virtual benchmarks (i.e., ideal 

positive and negative solutions) 𝑟+ and 𝑟−, respectively, using the pre-specified metric. 



Step 4: Choose the type of similarity score – which is appropriate for the application at hand 

– amongst the following: 

𝑠𝑖
+ = 𝑑𝑇𝑂𝑃𝑆𝐼𝑆(𝑟𝑖

𝐸 , 𝑟+) (𝑑𝑇𝑂𝑃𝑆𝐼𝑆(𝑟𝑖
𝐸 , 𝑟−) + 𝑑𝑇𝑂𝑃𝑆𝐼𝑆(𝑟𝑖

𝐸 , 𝑟+))⁄ ; 

𝑠𝑖
− = 𝑑𝑇𝑂𝑃𝑆𝐼𝑆(𝑟𝑖

𝐸 , 𝑟−) (𝑑𝑇𝑂𝑃𝑆𝐼𝑆(𝑟𝑖
𝐸 , 𝑟−) + 𝑑𝑇𝑂𝑃𝑆𝐼𝑆(𝑟𝑖

𝐸 , 𝑟+))⁄ ; 

and, for each alternative 𝑖 in the training sample 𝑋𝐸 (𝑖 = 1,… , #𝑋𝐸), compute such score. 

Step 5: Use the appropriate scores computed in the previous step to classify alternatives in 

the training sample 𝑋𝐸 according to a user-specified classification rule into, for example, risk 

or bankruptcy classes, say 𝑌̂𝐸. Then, compare the TOPSIS based classification of alternatives 

in 𝑋𝐸 into risk classes; that is, the predicted risk classes 𝑌̂𝐸, with the observed risk classes 𝑌𝐸 

of alternatives in the training sample, and compute the relevant in-sample performance 

statistics. The choice of a decision rule for classification depends on the nature of the 

classification problem; that is, a two-class problem or a multi-class problem. In bankruptcy 

prediction we are concerned with a two-class problem; therefore, we shall provide a solution 

that is suitable for these problems. In fact, we propose a TOPSIS score-based cut-off point 

procedure to classify alternatives in 𝑋𝐸. The proposed procedure involves solving an 

optimization problem whereby the TOPSIS score-based cut-off point, say 𝜌, is determined so 

as to optimize a given classification performance measure, say 𝜋 (e.g., Type I error, Type II 

error, Sensitivity, Specificity), over an interval with a lower bound, say 𝜌𝐿𝐵, equal to the 

smallest TOPSIS score of alternatives in 𝑋𝐸 (i.e., min𝑖 𝑟𝑖
+ or min𝑖 𝑟𝑖

− depending on the 

decision made at step 4) and an upper bound, say 𝜌𝑈𝐵, equal to the largest TOPSIS score of 

alternatives in 𝑋𝐸 (i.e., max𝑖 𝑟𝑖
+ or max𝑖 𝑟𝑖

− depending on the decision made at step 4). In 

sum, the proposed procedure is based on a performance measure-dependent approach. A 

generic procedure is summarised hereafter into three steps. Note that, in most applications, 

the performance measure 𝜋 is a non-linear function. The choice of a specific optimization 

algorithm for the implementation of the generic procedure outlined above depends on 

whether the performance measure 𝜋 is differentiable or not and if it is non-differentiable, 

whether it is quasi-convex or not. To be more specific, if 𝜋 is differentiable, then one could 

choose Bisection Search; if 𝜋 is twice differentiable, then one could choose Newton's 

Method; if 𝜋 is non-differentiable but quasi-convex, then one could choose Golden Section 

Search, Fibonacci Search, Dichotomous Search, or a brute force search such as Uniform 



Search. For details on these standard non-linear programming algorithms, the reader is 

referred to Bazaraa et al. (2006). 

 

 

Step 5a: Compute 𝜌𝐿𝐵 and 𝜌𝑈𝐵; 

Step 5b: Find the optimal value of 𝜌 with respect to 𝜋, say 𝜌∗, within the interval [𝜌𝐿𝐵, 𝜌𝑈𝐵] 

using the relevant non-linear programming search algorithm amongst the ones mentioned 

above; 

Step 5c: Classify observations in 𝑋𝐸 into two classes; namely bankrupt and non-bankrupt 

observations or firms; that is, determine the predicted risk classes 𝑌̂𝐸 so that firms with 

TOPSIS similarity scores less (respectively, greater) than 𝜌∗ are assigned to a bankruptcy 

class and those with TOPSIS scores greater (respectively, less) than or equal to 𝜌∗ are 

assigned to a non-bankruptcy class if an ideal positive (respectively, an ideal negative) 

benchmark was chosen to compute TOPSIS scores; 

Notice that the last step of this generic procedure classifies alternatives in the training sample 

into two classes; namely bankrupt and non-bankrupt firms or alternatives, and thus the output 

is the optimal TOPSIS score-based cut-off point 𝜌∗ along with the predicted risk classes 𝑌̂𝐸. 

Compare the predicted risk classes 𝑌̂𝑇 with the observed ones 𝑌𝑇 and compute the relevant in-

sample performance statistics. 

Phase 2: Out-of-Sample Analysis  

Step 6: Use an appropriate algorithm to classify alternatives in 𝑋𝑇 into, for example, risk or 

bankruptcy classes, say 𝑌̂𝑇. Then, compare the predicted risk classes 𝑌̂𝑇 with the observed 

ones 𝑌𝑇 and compute the relevant out-of-sample performance statistics. Note that alternatives 

𝑖 in the test sample 𝑋𝑇 could be classified using a decision rule similar to the one used for 

classifying alternatives in the training sample – see Step 5c, where 𝜌∗ is the optimal cut-off 

score determined in Step 5b which is based on the training sample. This naïve classification 

rule might fail to predict the right class belonging for an alternative 𝑖 ∈ 𝑋𝑇, because 

alternative 𝑖 might score better (respectively, worse) than the ideal positive (respectively, 

negative) benchmark on one or several criteria; instead, we propose an instance of case-based 



reasoning; namely, the k-nearest neighbour (k-NN) algorithm which could be described as 

follows: 

 

 

 

 

Initialization Step 

Choose the Case Base as 𝑋𝐸 and the Query Set as 𝑋𝑇; 

Choose a distance metric 𝑑𝑘−𝑁𝑁 to use for computing distances between alternatives. In our 

implementation, we tested several choices amongst the following: Euclidean, Cityblock, and 

Mahalanobis; 

Choose a classification criterion. In our implementation, we opted for the most commonly 

used one; that is, the majority vote; 

Iterative Step 
// Compute distances between queries and cases 

FOR 𝑖1 = 1 to |𝑋𝑇| { 

FOR 𝑖2 = 1 to |𝑋𝐸| { 

Compute 𝑑𝑘−𝑁𝑁(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑖1 , 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑖2); }} 

// Sort cases in ascending order of their distances to queries and classify queries 

FOR 𝑖1 = 1 to |𝑋𝑇| { 

Sort the list 𝐿𝑖1 = {(𝑖2, 𝑑𝑘−𝑁𝑁(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑖1 , 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑖2)) ;  𝑖2 = 1,… |𝑋𝐸|} in 

ascending order of distances and use the first 𝑘 entries in the list 𝐿𝑖1(1: 𝑘, . ) to classify 

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑖1 according to the chosen criterion; that is, the majority vote; } 

Output: In-sample and out-of-sample classifications or risk class belongings of alternatives 

along with the corresponding performance statistics. 

INSERT FIGURE 1 

Figure 1: Generic Design of In-Sample and Out-of-Sample Analyses of TOPSIS Classifiers 

INSERT TABLE 1 

Table 1: Sample of Commonly used Normalization Methods 

INSERT TABLE 2 

Table 2: Sample of Commonly used Weighting Schema 

INSERT TABLE 3 

Table 3: Sample of Commonly used Distance Metrics 



In the next section, we shall report on our empirical evaluation of the proposed framework. 

3. Empirical Results 

In order to assess the performance of the proposed framework, we considered a sample of 

6605 firm-year observations consisting of non-bankrupt and bankrupt UK firms listed on the 

London Stock Exchange (LSE) during 2010-2014 excluding financial firms and utilities as well 

as those firms with less than 5 months lag between the reporting date and the fiscal year. The 

source of our sample is DataStream. The list of bankrupt firms is however compiled from 

London Share Price Database (LSPD) – codes 16 (Receivership), 20 (in Administration) and 21 

(Cancelled and Assumed valueless). Information on our dataset composition is summarised in 

Table 4. As to the selection of the training sample and the test sample, we have chosen the size 

of the training sample to be twice the size of the test sample. The selection of observations was 

done with random sampling without replacement so as to ensure that both the training sample 

and the test sample have the same proportions of bankrupt and non-bankrupt firms. A total of 

thirty pairs of training sample-test sample were generated. 

INSERT TABLE 4 

Table 4: Dataset Composition 

There are many parametric bankruptcy prediction models (e.g., Altman, 1968; Ohlson, 1980; 

Zmijewski, 1984; Taffler, 1984). In our experiment, we reworked a standard and well known 

parametric model in the TOPSIS framework; namely, the multivariate discriminant analysis 

(MDA) model of Taffler (1984), to provide some empirical evidence on the merit of the 

proposed framework. Recall that Taffler’s model makes use of four explanatory variables: 

current liabilities to total assets, number of credit intervals, profit before tax to current liabilities, 

and current assets to total liabilities. We report on the performance of the proposed framework 

using four commonly used metrics; namely, Type I error (T1), Type II error (T2), Sensitivity 

(Sen) and Specificity (Spe), where T1 is the proportion of bankrupt firms predicted as non-

bankrupt, T2 is the proportion of non-bankrupt firms predicted as bankrupt, Sen is the proportion 

of non-bankrupt firms predicted as non-bankrupt, and Spe is the proportion of bankrupt firms 

predicted as bankrupt. 



Since both the TOPSIS classifier and the k-NN classifier, trained on the classification done 

with TOPSIS, require a number of decisions to be made for their implementation, we considered 

several combinations of decisions to find out about the extent to which the performance of the 

proposed framework is sensitive or robust to these decisions. Recall that, for the TOPSIS 

classifier, the analyst has to choose (1) the normalization method, (2) the weighting scheme, (3) 

the metric to use for computing distances between each alternative and the virtual benchmarks, 

𝑑𝑇𝑂𝑃𝑆𝐼𝑆, (4) the type of similarity score to use, and (5) the classification rule. On the other hand, 

for the k-NN classifier, the analyst has to choose (1) the metric to use for computing distances 

between alternatives, 𝑑𝑘−𝑁𝑁, (2) the classification criterion, and (3) the size of the 

neighbourhood 𝑘. Our choices for these decisions are summarised in Table 5. 

INSERT TABLE 5 

Table 5: Implementation Decisions for TOPSIS and k-NN 

Hereafter, we shall provide a summary of our empirical results and findings. Table 6 

provides a summary of in-sample and out-of-sample statistics on the performance of the MDA 

model of Taffler (1984) reworked within our proposed framework, which is an integrated in-

sample – out-of-sample framework for TOPSIS classifiers. In sum, the proposed framework is 

meant to equip TOPSIS with a mechanism to perform out-of-sample prediction where an 

instance of case-based reasoning; namely, k-NN, is trained on the outcome or in-sample 

classification of TOPSIS.  

With respect to in-sample performance of the proposed TOPSIS classifier, our results 

demonstrate that TOPSIS provides an outstanding classifier regardless of the choices of its 

implementation decisions – see Table 6. In fact, in-sample, our TOPSIS classifier does not 

wrongly classify any non-bankrupt firm as demonstrated by Type II error of 0% and Sensitivity 

of 100%. On the other hand, most bankrupt firms are properly classified as demonstrated by a 

very small range (0% to 0.3690%) of Type I error, and a very high Specificity ranging from 

99.6310% to 100%. Notice that the in-sample performance is slightly effected by the choice of 

the normalisation method. Note that compared to Multivariate Discriminant Analysis (MDA), 

the performance of TOPSIS is by far superior – see Table 7. 

INSERT TABLE 6 



Table 6: Summary Statistics of The Performance of The Proposed Framework 

Next, we provide empirical evidence to demonstrate that the proposed out-of-sample framework 

achieved a very high performance in classifying firms listed on LSE into the right bankruptcy 

category – see Table 6. In fact, regardless of which TOPSIS and k-NN implementation decisions 

are made, the out-of-sample performance of the proposed framework is outstanding. In fact, ideal 

results are obtained with Vector normalization and Linear Scale Transformation (Max); that is, 

T1 and T2 being 0% and sensitivity and specificity being 100%. These performances are slightly 

lower when data is normalized using the Linear Scale Transformation (Max-Min) or Linear 

Scale Transformation (Sum) with T1 being 0.7353% and specificity being 99.2647%. Notice that 

the classification of non-bankrupt firms has not been affected by the change in the normalization 

method. Out-of-sample, the proposed framework also proves to be superior to MDA – see Table 

7. 

INSERT TABLE 7 

Table 7: Summary Statistics of The Performance of MDA 

4. Conclusions 

The validation of prediction models requires both in-sample and out-of-sample evaluation of 

their performance. TOPSIS classifiers however lack a proper framework for performing their 

out-of-sample evaluation. In this paper, we filled this gap by proposing an instance of the case-

based reasoning methodology; namely, k-nearest neighbour, trained on the outcome of a TOPSIS 

classifier. We assessed the performance of the proposed framework using a UK dataset on 

bankrupt and non-bankrupt firms. Our results demonstrate its outstanding prediction 

performance. In addition, the outcome of the proposed framework is robust to a variety of 

implementation decisions. Last, but not least, the proposed out-of-sample framework makes 

TOPSIS classifiers real contenders for practitioners.  
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