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Abstract 
Depth perception is a major component of 3D vision. There are many cues to depth; one 

particularly sensitive aspect is the vivid perception of depth created from having eyes with 

overlapping visual fields (binocular vision). As the eyes are located at different points in 

space, they see different views of the scene – these slight differences (called binocular 

disparity) can be used to obtain depth information. However, extracting depth from 

disparity requires complex visual processing. So why use binocular vision?  

Julesz (1971) proposed an explanation – camouflaged animals can fool the perception of 

some cues to 3D shape, but camouflage is ineffective against binocular vision. We would 

expect that animals with binocular vision could see the 3D shape of animals, despite their 

camouflage.  Whilst commonly accepted, this hypothesis has not been tested in detail. In 

this thesis, we present experiments designed to establish how depth from binocular vision 

interacts with camouflage and object shape. Two main questions were addressed: 

First, we explored how the visual system represented depth information about 3D objects 

from binocular disparity. Objects with smooth depth edges (hill-shaped) were perceived 

with less depth than sharper edged objects. A computational model that segregated the 

object, then averaged the disparity over the segregated region emulated human 

performance. Finally, we found that disparity and luminance cues interacted to alter 

perceived depth. 

Secondly, we investigated if binocular vision could overcome camouflage. We found that 

camouflaged objects defined by luminance were detected faster when also defined by 

depth from disparity, thus reduces the effect of camouflage. Smooth objects were detected 

slower than sharp objects: an effect that was replicated in the real world, suggesting a 

camouflage technique to counter binocular vision. 

In summary, binocular vision is useful because it can detect camouflaged objects. However, 

smoother shapes take longer to spot, forming binocular (or stereoscopic) camouflage.  
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1 Introduction 

We exist in a rich and complex environment, with a wide variety of complex visual 

information. To exist and navigate in our three-dimensional world, we must take the visual 

input from the eye and reconstruct the world which in we live in to enough detail and 

accuracy to enable us to live, eat, catch prey, navigate and avoid predators. As the world is 

three dimensional, it is not enough to only identify and know which direction objects are in 

– we must know how far away they are. This is essential to many of the uses of vision: to 

navigate, we must know the 3D arrangement of objects, and their shapes; to know if we are 

in danger we need to know if a predator is close enough to strike.  

There are many ways in which the human visual system can extract information about depth 

and shape in a scene, from head movements to shape from shading. However, perhaps the 

most intriguing is binocular vision – the ability to extract depth information purely from the 

difference in the images between the two eyes. Binocular vision creates a particularly vivid 

impression of depth, and is excellent at distinguishing very small depth differences e.g. 

(McKee, 1983; Westheimer, 1975, 1979; Westheimer & McKee, 1977), indicating that it may 

be an important cue to extracting 3D object shape (Anzai & DeAngelis, 2010).  Overall, 

binocular vision provides an exquisitely sensitive cue to depth without requiring movement 

that might give away the predator’s presence. 

Despite the advantages, extracting depth from binocular vision turns out to require a 

complex and metabolically costly processing system (Marr, 1982). This is because in order to 

extract the depth of a feature in the scene using two eyes, a feature must be identified as 

belonging to the same object in both eyes. This is not a trivial problem to solve – depending 

on the depth of the object a single feature could be located in a large range of different 

positions in each eye, requiring a huge number of comparisons between small regions in 

each eye. And this is only a tiny fraction of the way to even identifying the existence of a 

feature, let alone matching it to the depth of an object – the visual system must eliminate 

false matches, compensate for regions with no matches, detect edges, segregate out objects 

and many more steps besides (see Section 2.2 for an in-depth discussion of binocular 

vision). 

Given all the neural apparatus used to extract depth from two eyes, perhaps it is surprising 

that the visual system does not rely entirely on other cues to depth. There are several other 

cues that can provide an impression of depth, and for a lot of animals these cues are their 

sole source of depth information e.g. (Heesy, 2009; Isbell, 2006; Srinivasan, 1995), this can 

be the case even when the animals have eyes with overlapping visual fields e.g. (Martin, 

2015; Ott, Schaeffel, & Kirmse, 1998). For example, shape from shading can provide a vivid 

impression of depth of the shape of a surface by the luminance of the surface e.g. (Norman, 

Todd, Norman, Clayton, & McBride, 2006; Todd, 2004)- this cue can even override depth 

from binocular disparity in certain circumstances e.g.(Chen & Tyler, 2015; Lovell, Bloj, & 
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Harris, 2012). Other cues are also available on a comparable scale: self-motion causes closer 

objects to move across objects further away, enabling depth calculations e.g. (Heesy, 2009; 

Snowden & Freeman, 2004; Srinivasan, 1995). Artists commonly use other cues to depth in 

their work – for example objects further away are smaller and higher up in the visual scene. 

 

As there is an abundance of other reliable cues to depth, 

then why use binocular vision? It clearly has some 

advantages as it has evolved independently in several 

animals (Iwaniuk & Wylie, 2006; Stevens, 2006; Willigen, 

Frost, & Wagner, 1998). One of the most commonly 

accepted reasons is that binocular vision is likely to be 

used to spot well-camouflaged prey in the environment. 

Often, animals create exquisite camouflage through a 

variety of methods, such as eliminating shape-from-

shading cues via countershading (Stevens & Merilaita, 

2009) as in Figure 1.1, or creating disruptive camouflage 

patterns that break up the shape of the animal. However, 

with the ability to see in 3D using two eyes, then a 

binocular observer can perceive the shape of the 

camouflaged object, no matter how well their patterning 

matches their background. This is hypothesized to create 

a pop out or jump out effect, making the animal easy to 

detect due to the additional depth information. 

This idea, that “even under ideal monocular camouflage, 

the hidden objects jump out in depth when 

stereoscopically fused” (Julesz (1971), p145), first stated 

by Julesz in 1971 has often been assumed to be correct 

e.g.(Heesy, 2009; Isbell, 2006). However, this observation 

(a) (b) 

  
Figure 1.1: A demonstration of countershading: this is the same caterpillar with different 

orientations. Notice how in (a) the 3D shape is clear from the shading, where in (b) it has been 
obscured. Images reproduced by kind permission of Olivier Penacchio. 

 
Figure 1.2: Abstract display of 

random dots similar to that 
used by Julesz (Burt & Julesz, 

1980). This is the stimulus from 
experiment 1. These images can 

be viewed with red/blue 
anaglyph glasses to get an 

impression of depth. 
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was made from a highly abstract display of random dots such as that in Figure 1.2 using 

objects with sharp edges – a far reach from realistic environments where animals have 

evolved to be as hard to detect as possible. In the forty years since Julesz made this 

proposal, this theory has been widely accepted but has not been subjected to rigorous 

scientific enquiry. In this thesis, I break this observation down into two halves for in-depth 

study: 

1. What is a depth defined object? What happens when the boundary between the 

object and the background is smoothed?  

2. Does depth perception break camouflage? Is there a way in which prey animals can 

break stereoscopic depth perception from binocular vision, thus reforming their 

camouflage? 

1.1 Roadmap 
In Chapter 2 I consider the background behind the current research, with two primary 

focuses: in Section 2.1 we present an overview of the biological background of animal 

camouflage, and in Section 2.2 we conduct an in depth discussion of stereopsis. In Section 

2.3 we review visual search tasks relevant to stereopsis and camouflage. Finally, in Chapter 

3 we discuss the methodologies used in this thesis for data extraction and analysis. 

From this point, the thesis splits into two main strands as shown in the flowchart in Figure 

1.3: those considering object perception in Chapters 4, 5 and 6; and those considering 

camouflage in Chapters 7, 8 and 9. We then briefly overview all the results together in the 

summary in Chapter 10. At the end of the thesis there is a glossary and references.  
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Figure 1.3: Flowchart of the thesis structure. 

 

Chapter 2: Background 
“However, as random-dot stereopsis demonstrates, even under ideal monocular 
camouflage, the hidden objects jump out in depth when stereoscopically fused” 

Chapter 3: Methodology 
 

Chapter 4: What is a depth defined 
object?  

4.3 Blurring the 
object boundary 

 

4.4 Half 
occlusions  

Chapter 5: How do we segregate a 
depth defined object from its 

background?  
5.3, 5.4 Modelling 

object 
segregation 

 

5.5 Testing 
model 

predictions 
 

Chapter 6: How does depth 
segregation interact with luminance 

segregation? 
6.2 Luminance 

and well defined 
objects 

6.3, 6.4 
Luminance and 
blurred objects 

6.5 Luminance 
and poorly 

defined depth 

 

 

Chapter 7: Does disparity defined 
depth assist in breaking camouflage? 

7.3 Disparity and detection times 
 
 

Chapter 8: Does poor segregation 
create stereoscopic camouflage?  

8.2 Segregation and detection times 
 

Strand 1: What is an object? Strand 2: Does depth perception 

break camouflage? 

Chapter 10: Conclusions 
 

References 
 

Glossary 
 

Chapter 9: Does stereoscopic 
camouflage work in natural 

conditions?  
9.2 Adding a 

natural background 
9.3 Real world 

experiment 
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2 Background 

 Forms of camouflage such as crypsis and background matching. 

 Detection time.  

 Overview of binocular vision. 

 Description of binocular disparity and other cues to depth. 

 Modelling of disparity extraction. 

 Overview of visual search. 

 

 

Figure 2.1: An octopus (Octopus rubescens, the central rock), displaying camouflage via 
background matching, disruptive colouration and mimicry. 

Image reproduced with permission, (Rob, 2011). 
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2.1 Camouflage 
We split our discussion of camouflage techniques into three major Sections: First, we 

discuss the different ways in which an animals can avoid detection. Second, we consider 

how predators react to these different methods of camouflage, and how they detect their 

prey. Finally, we review the current literature relevant to the interaction of depth 

perception and camouflage to see how binocular depth perception may aid in detecting 

camouflaged prey. 

2.1.1 Camouflage techniques and depth perception 

Camouflage takes many forms, but in the most generic it is the ability of an animal to fool 

perception of an observer so that it thinks the animal is either not present, or is not of 

interest, thus increasing its chance of survival (Darwin, 1859). Here we only consider the 

camouflage techniques in the presence of a surface (for example the soil, or a tree trunk) as 

in the open ocean the challenges of camouflage are different enough to require a different 

approach (Johnsen, 2002, 2014; Johnsen & Sosik, 2003). The methods of camouflage in land 

and most aquatic environments reflect a major split in camouflage techniques (Endler, 

2006):  

1. Mimicry and masquerade, which is attempting to be perceived as something else – 

either not of interest to the observer (typically called masquerade e.g. (Ruxton & 

Sherratt, 2004; Stevens & Merilaita, 2009)), or as a well defended object that is not 

worth predating (typically called mimicry e.g. (Edmunds & Edmunds, 1974; Ruxton & 

Sherratt, 2004)). 

2. Crypsis and background matching – this is appearing not to be present, but rather 

perceived as part of the background and thus avoiding detection and reducing the 

chances of predation (Cooper & Allen, 1994; Cuthill et al., 2005; Edmunds & 

Edmunds, 1974; Feltmate & Williams, 1989; Johannesson & Ekendahl, 2002; Ruxton 

& Sherratt, 2004).  

3. Disruptive colouration, is the use of bold colours or contours (such as in Figure 2.2) 

to break up an animals’ outline. The observer then sees the animal as many different 

elements that are not of interest (Cott, 1940; Cuthill et al., 2005; Lovell, Egan, Scott-

Brown, & Sharman, 2015).  

4. Self-shadow concealment is when an animal changes shape or colouration to hide 

shadows that might give away the location of an animal that is otherwise well 

camouflaged. This comes in two forms: hiding shadows on the animal, normally by 

colouration called countershading e.g.(Penacchio, Lovell, Cuthill, Ruxton, & Harris, 

2015; Rowland, 2009; Ruxton, Speed, & Kelly, 2004), or by changing shape to 

minimise shadows on the animal or background e.g.(Penacchio, Lovell, Cuthill, et al., 

2015). 
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Many animals employ a mix of these tactics, for example in Figure 2.1, where the Octopus is 

mimicking seaweed in order to match its background – this specific combination is often 

known as masquerade. These mixings of camouflaging techniques suggest there is no clear 

boundary between the different techniques e.g. (Cuthill et al., 2005; Endler, 1981). For 

clarity in this thesis we use the definitions listed above.  

We are interested in the interaction of camouflage with binocular depth perception. A 

binocular predator has eyes placed such that an area of the environment is visible in both 

eyes. Due to the different positions in space of the two eyes, each eye sees a slightly 

different image of the scene. It is possible to use these small differences to extract the 

depth of the scene (discussed in detail in Section 2.2). It is commonly thought that the 

ability to extract depth causes camouflaged objects in the scene to become obvious, making 

them easy to detect e.g. (Heesy, 2009; Isbell, 2006; Julesz, 1971). To investigate this claim, 

we consider how well these three camouflage mechanisms may perform when viewed 

under the effects of binocular depth perception. 

Mimicry and masquerade are related techniques, where an animal imitates either another 

animal or an aspect of its environment, such as a leaf. In the majority of cases a mimic must 

attempt to not only match the colouration and patterning of the mimicked animal, but in 

order to appear to be the mimicked object from any angle, and so will match the overall 

 

Figure 2.2: A herd of zebras displaying disruptive colouration, making it hard to distinguish 
one animal from another.  the primary purpose of their stripes is debated (Caro, Izzo, Reiner, 
Walker, & Stankowich, 2014; Egri et al., 2012; How & Zanker, 2013).  Image reproduced with 

permission, Kaisl (2007). 
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shape. This makes depth information of little use in the detection of the majority of animals 

employing mimicry. Due to this, we do not spend much time considering the interaction of 

mimicry with depth perception.  

It is less clear how disruptive colouration may interact with depth perception – for some 

patterns and shapes it may be that the breaking up of the prey’s shape into many elements 

would cause the perception of several different objects with slightly different depths. 

However, it is also possible that the bold edges used in disruptive colouration would be 

discounted due to the continuous change in depth, thus enabling depth perception to 

detect the form of the animal (Lovell, Scott-Brown, Egan, & Sharman, 2016). While of 

interest (we briefly consider the interaction of disruptive colouration and depth perception 

in Chapter 6), we are mainly concerned in investigating Julesz’s claims, which relate to 

objects camouflaged with no monocular cues to shape – such as in background matching. 

It is thought that background matching can be ‘broken’ (i.e. it will no longer have a 

deceptive effect on the observer) using depth perception (Julesz, 1971; Troscianko, Benton, 

Lovell, Tolhurst, & Pizlo, 2009a). Typically, an animal matching its background will match, as 

closely as possible (from the point of view of the viewer), the surface properties of the 

background using pigmentation and patterning (Endler, 1981, 1984; Zylinski, Osorio, & 

Shohet, 2009). Typically, an animal that matches a background well enough to be hard to 

detect is described as being cryptic. We do not go into the intricacies of the difference 

between crypsis and background matching here, for more detail see Ruxton & Sherratt 

(2004). However, even if the animal matches the colour, luminance and texture of the 

background, it will still have a 3D shape that is different to the background, particularly in 

cases where the background is relatively flat. This means that to an observer with depth 

perception, the animal will still stand out from the background, thus breaking camouflage 

(Isbell, 2006). We discuss this in detail in Section 2.1.3, after considering how camouflaged 

animals are detected in the next Section. 

2.1.2 Detection of camouflaged animals 

In order to study the interaction of camouflage with processes that cause the camouflage to 

no longer be effective, called the camouflage ‘breaking’ processes, we must understand 

how a predator detects a camouflaged prey item. Note that prey will also be attempting to 

detect camouflaged predators, but we use a ‘predator searching for prey’ description for 

convenience of linguistics. 

To detect camouflaged prey, the predator must search an area of the environment for the 

prey item. The predator must decide how long to search the environment – if it spends a 

long time searching an area without prey in or attacks a feature of the environment that is 

not prey, then it has wasted time and energy (Geisler & Diehl, 2002, 2003; Maloney, 2003; 

Smith, 2009). However, if it moves on too fast and misses potential prey then it has lost a 

potential opportunity to feed (Geisler & Diehl, 2002, 2003; Maloney, 2003). This leads us to 

one of the major attributes describing predator activity – the length of time that the 
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predator spends searching for a prey item before moving on, sometimes called the quitting 

threshold (Godwin, Menneer, Riggs, Cave, & Donnelly, 2014; Schwark, MacDonald, Sandry, 

& Dolgov, 2013). The optimal length of time spent searching a region of the environment is 

determined by the overall abundance of prey, and how well it is camouflaged – typically a 

predator will choose how fast it moves on to account for these factors (Gendron & Staddon, 

1983). 

The total chance of detection of an animal when encountering a predator is therefore a 

function of the length of time a predator searches for and the probability of the animal 

being detected per unit time. If the animal takes a long time to detect (i.e. is very well 

camouflaged) and the predator spends a long time searching, then the overall probability of 

survival could be the same as an if a predator spends a short time searching for an animal 

that is easy to detect.  

In the experiments presented in this thesis, the participants know that their ‘prey’ is always 

present, therefore are incentivised to search for a long time before giving up. The longer it 

takes the participant to detect the ‘prey’ the better camouflaged it is, as they will only 

infrequently quit the search. We therefore we use detection time as a measure of how well 

camouflaged our token prey item is e.g. (Cuthill et al., 2005; Lovell et al., 2015; Penacchio et 

al., 2016; Penacchio, Lovell, Sanghera, et al., 2015). In an environment without the 

knowledge of the target being present, then if an animal takes longer to detect, then it will 

be more likely to go unnoticed until the predator moves onto the next area. As participants 

will sometimes get bored and quit their search, we also look at number of trials where they 

correctly detect the prey – called the accuracy.  

The theory that predators modify the length of time they search the environment for prey 

dependent on prey abundance and camouflage is called the search rate theory (Ruxton & 

Sherratt, 2004). There are other competing theories, most notably search image theory – 

this suggests that once one prey item has been detected, the predator will be better at 

detecting a second similar prey item for a short time (Dukas & Kamil, 2001; Pietrewicz & 

Kamil, 1979; Plaisted & Mackintosh, 1995; Tinbergen, 1960). This mechanism leads to 

similar effects to the search rate theory (Ruxton & Sherratt, 2004), and there are some key 

differences these affect situations with a mix of prey types and prey frequencies (Dawkins, 

1971; Plaisted & Mackintosh, 1995; Reid & Shettleworth, 1992). While important to 

understanding predator-prey dynamics in a mixed environment, this does not assist us in 

evaluating how well cryptically camouflaged (hard to detect) a single prey item is when 

presented in isolation – for both theories a prey item that takes longer to find will have a 

greater survival rate. Hence my studies will focus on the detection of single items. 

Using the detection time as a measure of camouflage is a well-established technique (an 

extensive number of examples can be found in Avoiding Attack, by Ruxton & Sherratt 

(2004)).In biological contexts, a set of artificial prey items are displayed to the predators. As 

the presence of the prey cannot be continuously monitored, the experimenter instead 



24 
 

measures proportion eaten at multiple time points, with the lowest proportion eaten 

considered to be the best camouflaged e.g.(Bond & Kamil, 1998; Cuthill et al., 2005; Stevens 

et al., 2007). This is the equivalent to measuring detection time – as those objects/prey 

items that take longer to detect will have the fewest casualties at a given time point. In a lab 

setting, we can measure how well camouflaged a prey item is by directly measuring both 

accuracy and time to detection (Bond & Kamil, 2002; Cuthill et al., 2005; Lovell et al., 2015; 

Penacchio, Lovell, Sanghera, et al., 2015). 

2.1.3 Binocular vision and camouflage 

An essential component to discuss when considering the evolution of camouflage and 

camouflage breaking techniques is the evolutionary arms race. The arms race is essentially a 

competition between predator and prey, where an adaptation on one side is countered by 

an adaptation on the other. An example is the use of specific behaviours to manipulate prey 

into startling towards predators, rather than away from them (Catania, 2009). However, it 

appears that these alterations typically involve morphological changes, rather than changes 

to the sensory systems (Abrams, 2000). There are several reasons for this: Firstly, in the 

arms race prey animals are thought to have the advantage – if the predators lose they only 

miss a meal, whereas if prey fails it loses its life, thus there is a greater evolutionary 

pressure on the prey item (Dawkins & Krebs, 1979). Additionally, sensory systems are not 

just for one function, as they are required for the detection of several prey types, 

communication, navigation etc. Therefore, alterations to a sensory system must not impair 

other functions (Stevens, 2013), enabling some animals to exploit the properties of their 

predator’s visual systems (Merilaita, 2003; Osorio & Srinivasan, 1991). 
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As discussed in the introduction (Chapter 

1), a suggested counter adaptation to 

camouflage is binocular vision (Heesy, 

2009; Julesz, 1971; Mckee, Watamaniuk, 

Harris, Smallman, & Taylor, 1997; Wardle, 

Cass, Brooks, & Alais, 2010) – this is the 

ability to extract depth from the 

environment using two eyes. Being able to 

see the environment in 3D is thought to 

allow the shape and therefore presence of 

an animal to be detected easily (Heesy, 

2009; Isbell, 2006; Julesz, 1971), despite 

any background matching (see point 2 in 

Section 2.1.1). As required above, the 

adaptation to use depth from binocular 

vision does not inhibit other functions of 

the visual system, and indeed may assist 

with some tasks such as nocturnal 

navigation and manoeuvring in trees (see 

Heesy (2009) for a good overview). If 

binocular vision is used to break 

camouflage, then as outlined above we 

would expect prey animals to be ahead in 

the evolutionary arms race and possess 

counter adaptations that would inhibit 

depth from binocular vision. In the second 

strand of this thesis, we establish if depth from binocular vision assists with detecting a 

monocularly camouflaged object. We then move onto investigating if any small alteration to 

shape or colouring could inhibit depth perception (Merilaita, 2003), thus creating a counter 

adaptation which we dub ‘stereoscopic camouflage’.  

Interestingly for the implications of the camouflage-breaking properties of binocular depth 

perception, in certain circumstances binocular depth is only dominant over other cues to 

object segregation when these other cues are weak (Dobias & Papathomas, 2013; Pizlo, Li, 

& Steinman, 2008). This may imply that binocular vision is suited to break camouflage: a 

well camouflaged animal will cause all the cues to depth and object segregation to fail, 

leaving binocular disparity as the only remaining cue to the presence of an object. 

In order to fully understand the interaction of camouflage and depth perception, we need 

an in-depth understanding of the how the visual system extracts depth from the scene using 

two eyes. In this thesis we use the human visual system as an overall model of generic 

binocular vision. While it is reasonable to assume that human binocular vision is similar to 

 

Figure 2.3: A mossy gecko (Rhacodactylus 
chahoua) on a tree, flattened against the left 
hand side of the trunk. Reproduced by kind 

permission of Dr Hobaiter. 
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other vertebrates (Kiltie & Laine, 1992), it is worth bearing in mind that different animals do 

perceive their environment in different ways (Briscoe & Chittka, 2001; Heiling, Herberstein, 

& Chittka, 2003; Land, 1997; Thoen, How, Chiou, & Marshall, 2014).  In the next Section, we 

cover the relevant sections of disparity extraction and processing that may help inform us of 

the interaction of camouflage and stereopsis. 

2.2 Binocular vision 

2.2.1 What is binocular vision? 

Binocular vision is the ability to extract depth information using two eyes – there are many 

different cues created by having the eyes located in different points in space. When both 

eyes’ views overlap, then there is a region in which the two eyes see slightly different views 

of the same object, with the images of the objects in the scene falling on different points on 

the retinae of each eye. By processing the differences in retinal position between the two 

eyes (called binocular disparity), it is possible to calculate the relative 3D locations of the 

objects in the scene e.g. (Howard, 2002; Howard & Rogers, 2002). There are other cues to 

3D location possible using binocular vision – for example, when an object occludes the 

background, one eye will be able to see more of the background region than the other. The 

region visible to only one eye is called a half occlusion or monocular zone (see Harris & 

Wilcox (2009) for a good overview). This wealth of cues has been well-explored, but in this 

Section we primarily consider disparity and a discussion on half occlusions. 

The impression of depth formed from binocular vision and other sources is called stereopsis: 

when Julesz wrote about stereopsis and camouflage he was referring to depth caused by 

binocular vision (Julesz, 1971). However, it is possible to have a vivid impression of depth 

from just one eye (Vishwanath & Hibbard, 2013). For clarity in this thesis we refer to the 

impression of depth from two eyes as binocular vision (and avoid the word ‘stereopsis’ 

when possible), as this is the source of depth information that has been hypothesized to 

break camouflage. 

An in-depth knowledge of depth from disparity is essential to both strands of this thesis: in 

the first strand we need to understand what binocular information we know the visual 

system has available for object perception. In the second strand we need to understand 

what extra information binocular vision provides that may assist in breaking camouflage, 

and in turn how these mechanisms may be exploited to provide prey with a counter 

adaptation. 
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2.2.2 Definition of disparity 

  

In order to understand how the visual 

system extracts depth from binocular 

vision depth, we must first understand 

what information is available to the 

binocular visual system. When both eyes 

of a binocular observer fixate on an object, 

then the image of the object falls on the 

fovea of each eye, for example when 

fixating on the orange circle as in Figure 

2.4. To change the fixation from the 

orange object to the blue object, each eye 

must move by a different angle. The 

difference between these angles is called 

the absolute binocular disparity. The 

magnitude of this difference is 

proportional to the depth between the 

two objects (see Figure 2.4) and is thought 

to be used very early in the visual system 

(V1, for reviews of this work, see 

Deangelis, 2000; Neri, 2004; Parker, 2004).  

However, there is a problem with absolute disparity: if the observer changes fixation to the 

blue square, then the eyes no longer have to move to fixate on the blue square, meaning 

that the absolute disparity of the blue square is now zero. This means absolute disparity 

constantly changes as the observer changes fixation, meaning it is not a useful 

measurement for our experiments. 

The use of absolute disparity in experiments is problematic – in order to measure the 

absolute disparity of an object we have to know the fixation position, and recompute the 

value every time fixation changes. Instead, we can use a related quantity, called relative 

binocular disparity. Relative disparity is defined independent of fixation, and instead 

computes the angular difference between a given object in the scene and all other objects. 

For example, in Figure 2.4, we can consider disparities relative to our orange circle. The 

relative disparity between the orange circle and blue square is then 𝛿 = 𝛿𝐿 − 𝛿𝑅 no matter 

where the observer is fixating, and this calculation can be easily extended to many objects. 

Relative disparity is invariant relative to fixation position and is proportional to the depth 

difference between the objects. For the rest of this thesis, we measure relative disparity 

with reference to the plane of the display screen, and call it ‘disparity’ for brevity. 

 
Figure 2.4: Simplified diagram of a pair of eyes 

(black circles) viewing a scene made of an 
orange circle and a blue square.  

Left Eye Right Eye 

𝛿𝐿 𝛿𝑅 

x 
Depth 
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Disparity does have another problem, as 

we are measuring the angular difference 

between each and every point in the 

scene. However, there is no way of using 

these angular dependencies to calculate 

metric depth between two objects 𝑧 

without first knowing two other quantities: 

the distance of the object at zero disparity 

from the observer 𝐿, and the intraocular 

distance 𝐼, as shown in Figure 2.5. From 

these values, it is possible to calculate the 

approximate difference in depth 𝑧 (when 

𝐼 ≪ 𝐿 (Harris, 2004)) between the square 

and circular objects from the disparity 𝛿 

(rearranged from Howard & Rogers (2002):  

𝑧 =
𝛿𝐿2

𝐼
=
(𝛿𝐿 − 𝛿𝑅)𝐿

2

𝐼
 Eq.  2.1 

 

The dependence on needing a distance 

measurement to use disparity to calculate 

the depth difference between two objects 

presents a conundrum – how do we know 

the distance to start with? Typically, this 

distance is estimated using other cues to 

depth, for example the relative size of 

familiar objects, or motion information 

(Brenner & Landy, 1999; Brenner, Smeets, 

& Landy, 2001; Johnston, Cumming, & 

Landy, 1994; Landy & Brenner, 2001). This 

knowledge of distance from the observer 

is particularly important, as a small change 

in disparity at a small distance indicates a 

small difference in depth, while at a long 

distance it is a much greater difference in 

depth (as can be seen from the 𝐿2 term in 

Equation 2.1). While there are normally 

cues to object distance available in 

abundance, when they are not the size and scale of an object can become confusing, as 

shown in Figure 2.6. This effect can create biases in abstract vision experiments and in some 

situations in the real world, when there are few cues to distance or depth (Cumming, 

 
Figure 2.5: Measurements needed to calculate 

depth from disparity. 

 
Figure 2.6: The Pillars of Creation – without 

familiar scaling cues we have no idea what size 
these are. The left hand pillar is four light years 

long.  Image reproduced with permission, 
(NASA, 2014). 
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Johnston, & Parker, 1991; Glennerster, Rogers, & Bradshaw, 1996; Johnston, 1991). We 

discuss how we avoid these problems in the methodology Chapter (Chapter 3). 

𝛿 =
𝐼𝑧

𝐿2
 Eq.  2.2  

It is worth noting that as disparity decreases with the distance squared (see Eq. 2.2), it is 

typically of most use close to the observer, as this is where disparity can be used for the 

finest depth discriminations (Ogle, 1958). This means that the camouflage breaking 

properties of depth perception will be most useful within a short range when the change in 

disparity 𝛿 is significant for the depth of the object 𝑧. When the observer is too far away, 

then monocular camouflage will be sufficient to make the prey item undetectable. 

In our previous figures we have considered two 

distinctively different objects which are easy to distinguish 

– therefore it is possible to identify which pair of images in 

the eyes correspond to the same object. However, in a 

scene with many similar objects, constructing a depth 

representation suddenly becomes more complex, as 

shown in Figure 2.7. Here, a pair of identical circular solid 

objects are placed one in front of another. However, the 

configuration of images created is entirely consistent with 

the objects being placed at equal depths as indicated by 

the hollow circles and dotted lines. From the images alone 

(if we ignore other cues to depth external to disparity) 

there is no way to distinguish between these two 

situations - this is called the correspondence problem 

(Goutcher & Mamassian, 2005; Marr & Poggio, 1976a; 

Marr, Poggio, Hildreth, & Grimson, 1991; Seymour & 

Clifford, 2012). To solve this problem the visual system 

must consider other cues such as distortion of object 

surfaces (Vidal-Naquet & Gepshtein, 2012)  or nearby 

distinguishing features (Marr & Poggio, 1976a).  

Another problem with depth judgements from disparity is Panum’s fusional area (Panum, 

1858). This is the region in which an object appears single.  Once an object is placed outside 

of the fusional area, then it is far away in depth from fixation that the object is no longer 

fused into appearing as one object, but is rather perceived as two semi-transparent objects, 

called diplopia. This limit is a limiting factor on the design of experiments, as once the 

perception of objects in a scene becomes diplopic the judgement of depth is impaired. 

Typically, the fusional limit lies around 10 to 15arcmin (Ogle, 1952) although reliable 

disparity discrimination can be made in excess of 1 degree (Blakemore, 1970; Westheimer & 

Tanzman, 1956). This value is dependent on context (Burt & Julesz, 1980) and is much larger 

 

 
Figure 2.7: The correspondence 
problem – objects located at the 
solid circles produce an identical 
set of images in the eyes as the 

pair located at the hollow circles. 
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in the peripheral vision (Blakemore, 1970). Diplopia can also be caused when elements of 

very different disparities that are placed close to each other – this is called the disparity 

gradient limit (Burt & Julesz, 1980; McKee & Verghese, 2002). In the experiments presented 

here we make sure to observe these limits to ensure that it does not cause any problems 

with the perception of the stimuli.  

(a) (b) 

  
Figure 2.8: a: Despite being on the same depth plane as indicated by the dotted orange line, the 

disparity between the orange circle and blue square is non-zero –the angles 𝛿𝐿 and 𝛿𝑅 are 
different. b: The horopter is theoretically a circle centred on the object and the focal points of 
the eyes, as shown by the dashed orange circle. Experimentally it has found to be a shallower 

arc similar to the solid blue line. 

An additional simplification we have been using in discussing disparity is that all the 

situations presented so far have considered objects located in front, or almost directly in 

front of the viewer. When considering disparity relative to a point, any object located at that 

point has zero disparity. However, if we translate an object laterally as in Figure 2.8a from 

the location of the orange circle to the blue square, we can see that once the object has 

been moved sufficiently far laterally along the depth plane (called a front-to-parallel plane, 

thin orange dotted line), the object’s disparity begins to change. We therefore introduce the 

concept of the horopter – this is the line along which all objects will be of zero disparity. 

Theoretically, the horopter is a circle, centred at fixation and the focal point of the lenses in 

each eye (orange dashed line in Figure 2.8b), however in experiments it is found that it is 

perceptually a much shallower arc (shown as blue line Figure 2.8b)(Blakemore, 1970; Tyler, 

1991). In the experiments in this thesis, we present objects directly in front of the observers 

to avoid problems with the shape of the horopter. This also avoids problems with vertical 

disparity, where the vertical extent of an object is greater when closer to one eye but not 

the other, e.g. (Backus, Banks, Van Ee, & Crowell, 1999; Brenner et al., 2001; Cumming et 

al., 1991; Garding, Porrill, Mayhew, & Frisby, 1995). 

Left Eye Right Eye 

𝛿𝐿 𝛿𝑅 

x 

Left Eye Right Eye 
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2.2.3 Half occlusions 

The most basic form of half occlusion or monocular zone 

occurs when an opaque object blocks the view of an object for 

one eye only. For example, in Figure 2.9, the right eye can see 

the entirety of the circle. However, the left eye is unable to 

view the circle as the square blocks the view – in order to see 

the edge of the circle, the light would have to follow the 

dashed line, passing straight through the square object. 

Indeed, the eye cannot see anything below the blue line. This 

form of half occlusion where one object completely obscures 

the view of another is fairly common but cannot give much 

information about a scene; typically the circle is perceived to 

be as close as possible in depth to the blue square (Nakayama 

& Shimojo, 1990). 

There are many other forms of half occlusions  (see Harris & 

Wilcox (2009) for an in-depth discussion) some of which have 

been found to be able to cause a percept of depth e.g. 

(Anderson & Nakayama, 1994; Julesz, 1971; Nakayama & Shimojo, 1990; Tsirlin, Wilcox, & 

Allison, 2010). Here, however we restrict discussion primarily to half occlusions of a textured 

background by an opaque binocularly visible foreground, such as in Figure 2.10(a, b), as 

these are the type that occurs in the stimuli we use.  

 

 

Figure 2.9: The origin of 
half occlusions: the left 

eye’s view of the orange 
circle is blocked by the 
opaque blue square. 

(a) (b) (c) 

   
Figure 2.10: Demonstrating half occlusions. (a) An object with less depth has smaller half 
occlusions (hatched regions) than an object with more depth shown in (b). However, a 
trapezium with shallow edges (c) never occludes the background to only one eye, thus 

forming no half occlusions.  
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When an opaque object is placed on a textured background, the object blocks the view of 

the background from one eye as in Figure 2.10a. A similar shaped object, but with additional 

depth will block a greater region of the background Figure 2.10b, thus the size of the half 

occlusion is proportional to the depth in the object. In these situations, the visual system 

assumes that the monocularly visible background is of the same depth as the adjacent 

background, with the occluding object being perceived as having more depth (Anderson & 

Nakayama, 1994; Collett, 1985; Julesz, 1971; Nakayama & Shimojo, 1990). 

Calculating the foreground (the surface of the blue object that faces the view) depth from 

the size of half occlusions is complicated by the profile of the object. Figure 2.10c shows a 

simple example where, because of the shape of the object there are no half occlusions 

present despite the object having the same maximum depth and being viewed at the same 

distance as in 2.10a. From the current literature, whether an impression of depth is 

generated appears to be specific to the situation (see Tsirlin et al., 2010 for a discussion). 

We will therefore design experiments to explore how half occlusions affect depth 

perception for the kinds of stimuli we use (see Section 4.4). 

2.2.4 Early disparity extraction 

Having considered the cues available to the visual system to extract depth using binocular 

vision, we briefly discuss the current knowledge of how the visual system can extract depth. 

This informs us on what information the visual system can draw on when trying to identify 

objects in a scene. For a detailed review of the visual system and depth perception, see 

Parker (2007). In this Section, we present an overview of how disparity is extracted in the 

early visual system. 

The current understanding of disparity extraction is primarily informed though a mix of 

computational modelling and neurophysiology, and is often concerned with the processing 

going on in the very early visual system. The first stages of disparity extraction are thought 

to occur in V1 (Barlow, Blakemore, & Pettigrew, 1967; Nikara, Bishop, & Pettigrew, 1968; 

Pettigrew, 1980; Poggio, 1995). To understand this process, we consider a basic property of 

neurons – receptive fields. 

A receptive field is, in this case, an area of the visual field in which the chosen neuron 

responds to changes of stimuli within that area. Stimuli in the receptive field can either 

excite or inhibit the activity of the neuron, or a mix of the two. For example, a neuron may 

respond strongly to high luminance in the centre of the receptive field, but the response 

could be inhibited by the edges of the receptive field also receiving a high luminance 

stimulus. The output of neurons that respond simply to stimuli can be combined by neurons 

further up the visual hierarchy to form more complex behaviours, such as edge detectors 

(Wiesel, 1968). The neurons we are most interested in are those with two receptive fields – 

one for each eye, as this enables the extraction of disparity. In reality, these receptive fields 

probably use a mix of inhibitory and excitatory regions that can be described by Gabor 

filters e.g. (Jones & Palmer, 1987; Qian & Zhu, 1997; Sanger, 1988). Additionally, each 
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neuron in V1 does not operate independently - the neurons in V1 are arranged in a complex 

cooperative and competitive set of relationships that helps with the computation of 

disparity (Samonds, Potetz, & Lee, 2009). However the simplified view is a sufficient to 

understand basic disparity extraction. 

Consider a disparity sensitive neuron with a receptive field centred on the fovea in each eye 

(i.e. there is zero horizontal offset between the two receptive fields). The neuron will then 

respond maximally when the stimuli in both receptive fields is the same - for example if 

both areas are of high luminance. If the receptive field in one eye does not match the 

receptive field in the other, then the activity of the neuron could be inhibited.  As this 

disparity sensitive neuron has receptive fields placed identically in each eye, then the 

horizontal offset between the neuron’s two receptive fields is zero - therefore it is going to 

respond maximally when it is presented with a stimulus with zero disparity. In the brain this 

neuron would be part of a bank of neurons, each with a different horizontal offset between 

the receptive fields in the two eyes – our exemplar neuron has a zero offset, and detects 

zero disparity, but it’s neighbour might have a small offset and detect a small horizontal 

disparity. By comparing the responses of a bank of these neurons and selecting the disparity 

of the neuron with a maximal response, the brain can detect the disparity of a small region 

of the visual scene. In essence, the visual field is covered by banks of disparity detecting 

neurons. One can imagine that the extracted disparity at each point on the visual field 

corresponds to the disparity of the neuron that is responding maximally at that point 

(DeAngelis, Ohzawa, & Freeman, 1991). 

As an aside, there is discussion over whether the pairs of receptive fields belonging to 

binocular neurons have a lateral separation between the two eyes, or if they are responding 

to different phases of patterns within each receptive field e.g. (Blake & Wilson, 2011; Chen 

& Qian, 2004; DeAngelis et al., 1991; Fleet, Wagner, & Heeger, 1996; Read & Cumming, 

2007). This detail is not of direct relevance to the thesis, and we do not go into further detail 

about this discussion.  

The arrangements of these neurons are thought to explain some of the basic behaviour of 

the depth perception. For example, there is a minimum and maximum horizontal offset 

present between the receptive fields: the minimum offset suggests there is a lower limit for 

perceiving depth from disparity (Filippini & Banks, 2009; Harris, McKee, & Smallman, 1997; 

Norcia & Tyler, 1984), and can explain why the visual system is unable to detect depth 

corrugations of more than 5cpd (cycles per degree) (Tyler & Julesz, 1980). The maximum 

offset may be responsible for Panum’s fusional limit, where features above a certain 

disparity are perceived as diplopic, as there are no neurons capable of signalling such a high 

disparity (Joshua & Bishop, 1970; Nikara et al., 1968).  

While we have been discussing results primarily found in humans, the methods of disparity 

extraction seem to be generalizable to many animals: a lot of neurophysiology of the 

workings of the visual system are informed from studies of primates e.g. (Nassi & Callaway, 
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2009; Nienborg, Bridge, Parker, & Cumming, 2004; Xiao, Wang, & Felleman, 2003) or cats 

e.g. (Barlow et al., 1967; Jones & Palmer, 1987; Nikara et al., 1968). The behaviour of the 

animals in these studies is very similar to that observed in humans, and to our knowledge 

there are a lot of similarities between the human and other animal’s visual systems. This 

suggests that the results of the experiments we conduct later in the thesis are generalizable 

to the use of binocular vision in some other animals, particularly our close relatives. 

Disparity processing is by no means limited to the V1 and the early visual system (Parker & 

Cumming, 2001): in fact the responses of V1 cannot explain our sensation of depth from 

disparity (Cumming, Shapiro, & Parker, 1998). In this thesis we are looking at the relative 

perception of 3D objects and surfaces – it appears that this occurs much later in the visual 

system e.g. (Chandrasekaran, Canon, Dahmen, Kourtzi, & Welchman, 2007; Georgieva, 

Peeters, Kolster, Todd, & Orban, 2009; Welchman, Deubelius, Conrad, Bülthoff, & Kourtzi, 

2005). 

V2 has particularly interesting interactions for our investigation of depth interaction, as it 

processes edges and contours (Peterhans & von der Heydt, 1993; Qiu & Von Der Heydt, 

2005). Of particular note is that V2 contains neurons that are specialised in detecting depth 

edges (Von Der Heydt, Zhou, & Friedman, 2000) and calculating the depth ordering of 

planes (Thomas, Cumming, & Parker, 2002). There is evidence that some cells in V2 use 

Gestalt cues (see Section 2.2.6) to create representation of local depth order (Bredfeldt & 

Cumming, 2006; Qiu & Von Der Heydt, 2005). These studies strongly indicate that visual 

processing after V1 is important in the processing of disparity defined objects, and further 

indicates that we cannot rely on the models of disparity extraction to explain the perception 

of 3D objects. Additionally, the processing in V2 is only one step towards segmentation 

(Bredfeldt, Read, & Cumming, 2008), so we must consider further stages of disparity 

processing in the visual system. 

V3 and V3A have relatively little processing of depth information relative to the earlier areas 

of the visual system (Anzai, Chowdhury, & DeAngelis, 2011). More disparity processing is 

performed in V4, where macaque monkeys have been shown to have fine scale disparity 

discrimination (Shiozaki, Tanabe, Doi, & Fujita, 2012). Of particular interest in V4 are the 

neurons that are sensitive to the disparity between the centre and surround of a RDS 

(Umeda et al., 2007). This is relevant to our experiments, as they use RDSs to look at the 

perceived peak depth of a central depth defined object on a surrounding background – an 

experiment with very similar characteristics to Umeda et al’s. This further confirms that the 

modelling of V1 cannot fully explain our experimental results, as there is neurophysiological 

evidence for processing disparity in similar experiments that is completed in V2, V3 and V4. 

Finally, there is evidence of complex encoding of 3D surfaces and spatial configurations in 

V5/IT (Anzai & DeAngelis, 2010; Milner & Goodale, 1998; Orban, Janssen, & Vogels, 2006). 

There are also neurons in V5/MT that code specifically for the disparity between visual 

features, as opposed to just disparity present in the scene(Krug & Parker, 2011). The 
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argument that the early visual system is not the be all and end all of visual processing of 

depth information also supported by the finding that there is a better link between 

perception and neuronal activity in MT than in the primary visual cortex (Cumming & 

DeAngelis, 2001). 

In the next Section we review the modelling techniques that have been used to further our 

understanding of disparity extraction, and consider their successes and limitations.  

2.2.5 Disparity modelling 

Computational modelling of the early visual system is highly informative about the way in 

which disparities are processed and perceived. This is of particular relevance to the first 

strand of the thesis, where we consider what depth-defined objects are, and how they are 

perceived. 

We begin with a short discussion of cognitive neuroscience, and the levels of computational 

modelling. These were first laid out by Marr in 1976 (Marr, 1976) and have been widely 

used in the study and interpretation of computational modelling of neural systems e.g. 

(Churchland & Sejnowski, 1988; Griffiths, Lieder, & Goodman, 2015; Marr & Poggio, 1976b; 

Poggio, 2012). These levels lay down the different way in which any system that performs a 

computation can be understood: 1) The basic components, that is how do the neurons or 

transistors work; 2) The circuitry, how and why are the basic components interconnected; 3) 

The algorithm, this is the step-by-step processing that is implemented by the hardware; 4) 

The overall computational goal. While each of these levels are interconnected and 

knowledge about one can strongly inform another, it is possible to progress understanding 

at one level without understanding another – for example you can understand how 

transistors work, but not how they are arranged to calculate a trigonometric function; or 

know the equation to calculate a point spread function but not know how it is implemented 

algorithmically. 

The most basic models of the early visual system use cross correlational techniques 

between the two eyes – these models take small areas or windows from each eye’s view 

and perform a cross correlation between the windows. By taking windows with different 

horizontal separations, then the disparity is calculated as the horizontal offset that creates a 

maximal response in the cross correlator e.g. (Harris, 2014), similar to the banks of disparity 

receptive neurons in the early visual system. This simple methodology creates a map of 

disparities in the visual field, which can then be analysed to consider how the model has 

performed.  

These modelling techniques can recreate many of the fundamental properties of disparity 

extraction – for example the minimum and maximum limits for perceiving disparity (Banks, 

Gepshtein, & Landy, 2004; Filippini & Banks, 2009) and can be extended to understand the 

origins of other features of human stereovision e.g. (Allenmark & Read, 2010, 2011; Anzai & 

DeAngelis, 2010). The models have been improved until they are highly sophisticated; 
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adding stages such as spatial frequency filtering (Goutcher & Hibbard, 2014; Kane, Guan, & 

Banks, 2014) and variable size receptive fields e.g. (Allenmark & Read, 2011). One 

particularly successful model is the constantly evolving disparity energy model (Read & 

Cumming, 2003; Tsai & Victor, 2003) which is capable of imitating some very complex 

behaviour in the binocular visual system, in both human and non-human subjects (e.g. 

Nienborg et al., 2004).   

There are some circumstances in which the current understanding of disparity extraction 

can cause apparently large scale effects. A prime example of this was discovered by 

Kaufman et al (Kaufman, Bacon, & Barroso, 1973) when working with random dot 

stereograms (RDS) – these are a field of randomly located dots displayed separately to each 

eye, which provide a disparity signal with little to no other cues to form (see Figure 1.2, 

discussed in detail in Section 3.1). Kaufman et al. used these RDSs to display two 

overlapping transparent planes of different depth (called stereotransparency). They found 

that the two planes were perceived as a single plane at the average disparity of the two 

transparent planes. This effect typically occurs when the disparity between the two planes is 

smaller than 2-6 arcmin (Parker & Yang, 1989; Stevenson, Cormack, & Schor, 1991; Tsirlin, 

Allison, & Wilcox, 2008).  

The apparent long range interaction between these large overlapping planes can be 

explained by short range interactions in algorithmic models of the visual system (Harris, 

2014; Tsirlin et al., 2008). When the overlapping two planes of random dots are generated, 

then adjacent elements often have little horizontal separation but are of very different 

disparities. This means these elements fall within one receptive field, meaning that the 

neuron with a maximal response (for small separations between the two planes) is then the 

neuron tuned to detect the disparity that is an average between these two planes as it 

responds strongly to both elements (Harris, 2014).  As would be expected from this result, 

when the planes are separated into two adjacent opaque planes the effect is no longer 

observed (Akerstrom & Todd, 1988).  

These models imply that the visual system extracts disparity from every point in the scene, 

and the perceived depth of any given point is then given by the disparity extracted for that 

exact location. However, this is not the end of the story. The algorithmic models presented 

here are replicating behaviour in the early visual system, primarily in V1. We know that the 

behaviour of V1 cannot explain some of the key characteristics of binocular depth 

perception (Goutcher & Hibbard, 2010; Parker, 2004; Tsai & Victor, 2003). For example, 

neurons in V1 respond identically to anti-correlated and correlated random dot 

stereograms, but no depth is perceived in anti-correlated RDS (Cumming & Parker, 1997; 

Cumming et al., 1998).  To fully understand binocular vision, we must therefore consider 

areas beyond the early visual system. 

Of particular interest to us is some of the literature discussed at the end of Section 2.2.4, 

which shows that the perception of 3D shapes and depth intervals occurs late in the visual 
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hierarchy. This indicates that in order to fully capture the scope of processing that is 

involved in detecting and identifying camouflaged objects, we must consider what 

processing is done after the early visual system, specifically what processing is done to the 

extracted disparities (Anzai & DeAngelis, 2010). A good way to explore the overall effects of 

the stages of processing disparity in the visual system is to develop quantitative models to 

assist in understanding and characterizing the response of the participant to the displayed 

stimuli. In this thesis we model our results using a general quantitative model with two 

aims: to have a better understanding of the mechanisms an animal could exploit in for 

stereoscopic camouflage; and to inform the development of more complex models of the 

visual system. 

In the next Chapter, we review the discoveries that cannot be explained by these models of 

early disparity extraction. For the first strand of this thesis, we are particularly interested in 

those relating to the perception of objects, as we wish to investigate what a disparity 

defined object is, and how it is perceived.   

2.2.6 Disparity extraction and object perception 

Typically, disparity extraction can account for short range disparity interactions (or apparent 

long range effects such as stereo transparency, see Section 2.2.5) – normally these effects 

are attributed to the size of the receptive fields (see Section 2.2.4). Unfortunately, point by 

point extraction of disparity (which we call a disparity map) does not explain some longer 

range interactions. One example of this is disparity capture (or interpolation), where areas 

of ambiguous depth (for example horizontal lines) are displayed flanked by disparity defined 

surfaces (Georgeson, Yates, & Schofield, 2009; Wilcox, 1999; Wilcox & Duke, 2005). From a 

disparity extraction point of view, these regions are undefined in depth, and should be 

perceived as having no depth. However, studies have found that depth is perceived in the 

ambiguous region and that it is dependent on the disparity of the flankers or surrounding 

regions (Georgeson et al., 2009; Harris & Gregory, 1973; Ramachandran, 1986; Wilcox & 

Duke, 2005; Yang & Blake, 1995).  

Unexpected biases in the perceived depth of a region do not only occur in poorly defined 

regions (Yang & Blake, 1995). If two regions of disparity defined depth are placed next to 

each other, the observers are good at judging the depth difference between the regions. 

However, if the two regions of disparity are joined with a ‘Cornsweet depth profile’, as in 

the solid line in Figure 2.11 (bottom), the perceived depth difference between the two 

regions is magnified (Anstis, Howard, & Rogers, 1977; Didyk, Ritschel, Eisemann, 

Myszkowski, & Seidel, 2012; Rogers & Graham, 1983), as shown by the dashed line in Figure 

2.11 (bottom). The effect was originally discovered in the luminance domain (Cornsweet, 

1970; Craik, 1966; O’Brien, 1958) – the effect can be seen for luminance in Figure 2.11 (top). 

This depth effect cannot be predicted from simple disparity extraction, as the size of the 

regions should be sufficient to allow for disparity extraction unaffected by the Cornsweet 

profile.  
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Shading and luminance gradients do not only provide 

analogous effects to the perception of disparity defined 

depth – as discussed in the introduction, there are 

many other cues to 3D shape apart from binocular 

disparity. Some of these cues, such as the size of 

familiar objects, will not be of much use to detect 

camouflaged animals, as the camouflaged object has to 

have already been detected in order to be compared. 

Others, such as self-motion can cause a perception of 

depth in an object, but would be self-defeating – the 

predator may be able to detect the prey item, but the 

self-motion would give away the predator’s presence to 

its prey (Srinivasan, 1995). The most relevant to our 

discussion of camouflage of depth defined objects is 

shape from shading – this is where shadows and 

shading can give cues to the shape of a 3D object due to 

the direction of the light source (Norman et al., 2006; 

Todd, 2004). Indeed, there is an entire camouflage 

mechanism called self-shadow concealment or 

Wcountershading (Penacchio, Lovell, Sanghera, et al., 

2015; Rowland, 2009; Ruxton et al., 2004; Stevens & 

Merilaita, 2009) that is thought to have developed in 

order to reduce or eliminate shading cues (see Section 

2.1.1). 

Shape from shading has been found to give a vivid impression of depth and surface 

orientation, due to the direction of the light source  (Kleffner & Ramachandran, 1992; 

Koenderink, Doorn, & Kappers, 1992; Norman & Wiesemann, 2007). We know that the 

simultaneous presentation of shape from shading and binocular depth perception causes a 

more vivid impression of depth than either cue presented alone (Bülthoff & Mallot, 1988; 

Todd, Norman, Koenderink, & Kappers, 1997), implying that the combination may be very 

effective at breaking camouflage techniques such as background matching. Other studies 

have looked at situations where shape from shading and binocular depth perception are 

placed in conflict, and have found that depth from disparity is typically dominant, although 

in situations where the disparity signal is noisy, shape from shading can be dominant (Chen 

& Tyler, 2015; Lovell et al., 2012). This is the behaviour we would expect if binocular 

disparity was used to break monocular camouflage techniques – as discussed above, shape 

from shading cues can be manipulated by camouflage techniques such as shape from 

shading or countershading. 

As an aside, this combination of shape from shading and binocular depth perception can be 

looked at from the perspective of cue combination – the brain must take two cues, and 

 

 
Figure 2.11: Top: Cornsweet 

illusion in the luminance domain. 
Both sides have identical 

luminance. Image reproduced 
with permission, (Fibonacci, 

2005).  
Bottom: solid line: cross-section of 

the Cornsweet profile. Dashed 
line: representation of the 

viewer’s perception. 
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combine them in an optimal way. The exact way in which cues are combined is often 

complex, and relies on estimates of how reliable each of the two cues are (Hillis, Watt, 

Landy, & Banks, 2004; Knill & Saunders, 2003). However, a simplified view is that the less 

reliable a cue, the less weight the visual system places on this cue, resulting in the 

perception of the object being closer the characteristics of the reliable cue. The estimates of 

reliability are typically a mix of a judgement of the noise present in the stimulus, and long 

term judgements of cue reliability (Backus et al., 1999; Gillam, 1968; Knill, 2007; Young, 

Landy, & Maloney, 1993). If shape from shading is typically judged to be a less reliable cue 

than disparity, then the depth from disparity would be dominant – as has been observed. 

However, in this thesis we primarily concentrate on the effects of binocular depth 

perception and camouflage, so we return to examining the literature on interaction of 

binocular disparity between different elements. 

In the 1980s Mitchison and Mckee did a series of experiments (Mitchison & McKee, 1987a, 

1987b) on lines of regularly spaced  points and found a the perception of depth in the 

central dots was dictated by the depth of the dots at the ends of the lines. Under short 

presentation times the entire line of dots was perceived as having the same disparity as the 

end points; under longer presentations the depth of the dots in the centre of the line were 

influenced but not dictated by the disparity of dots at the ends. This goes against the 

predictions of a point by point depth representation, which would predict the exact 

estimation of the depth of the central points regardless of the depth of the points at the 

ends of the lines. Instead, we have a grouping effect, where the perception of entire line is 

affected by the depth of some of the points. Under short presentations times, the grouping 

of the points into all having the same depth bears a striking resemblance to the theories of 

Gestalt grouping, which may provide us with some insight into the origins of these 

perceptual biases. 

Gestalt grouping concerns the collection of elements into objects – an area where disparity 

maps seem to have considerable trouble. The Gestalt principles of perceptual grouping state 

that when a set of elements are grouped into single perceived object or collection, they 

follow certain principles. These ideas were first laid out by Max Wertheimer in 1923  who 

identified five main aspects listed below (Wertheimer, 1923), each of which we have 

accompanied with a companion diagram in Figure 2.12. 
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1. Proximity. Elements located close to each other are grouped together. 

2. Similarity. Elements that are similar to each other are grouped together. 

3. Good continuity. Elements that are arranged to follow established lines or curves 

are preferentially grouped over sharp changes. 

4. Closure. Elements are preferentially grouped to form closed objects as opposed to 

ones with gaps or holes. 

5. Common fate. Elements that move together are grouped. 

1. Proximity 2. Similarity 3. Continuity 4. Closure 5. Common Fate 

     
Dots in 

proximity group 
into vertical 

lines. 

Similar dots are 
grouped into 
vertical lines. 

Dots are 
grouped into a 
continuous line 

and arc. 

Dots are 
perceived as a 

closed ring even 
when occluded. 

Dots that move 
together are 

grouped. 

Figure 2.12: Using dots to demonstrate the five main principles of Gestalt Grouping 
 

Several other principles have been added since 1923, for example: symmetry, 

connectedness (two elements that are connected by a third element) and common regions 

(elements contained within a common area, e.g. a box) (Wagemans, 2015). Additionally, 

there appear to be top-down influences in grouping (Beck & Palmer, 2002). As a whole, 

grouping and subsequent processing on an object level may explain some of the disparity 

effects discussed here. 

Deas and Wilcox (2014) performed a very interesting 

study on the effect of grouping and depth perception. 

Inspired by papers that found horizontal lines or 

intermediate dots changed the perception of the depth 

of vertical lines (Fahle & Westheimer, 1988; Mitchison 

& Westheimer, 1984), they studied the interaction of 

disparity defined lines and perceptual grouping – 

participants were asked to judge the depth (defined by 

disparity) between two vertical lines. The lines were 

either displayed individually as in Figure 2.13a, and thus 

not grouped; or displayed with horizontal lines between 

them as in Figure 2.13b, thus grouping them via closure. 

Deas and Wilcox found that less depth was perceived when the lines were grouped together 

– a completely unexpected result, as the addition of horizontal lines does not alter the 

disparity information present in the vertical lines. This result strongly suggests that 

disparities are further processed after the elements have been grouped together to from a 

single object. In a follow-up paper, Deas and Wilcox found objects formed of sets of strongly 

a b 

  
Figure 2.13: Two vertical lines 
displayed individually (a) are 

perceived with more depth than 
when the lines are grouped with 

horizontal lines (b).  
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grouped elements were faster to detect than objects formed of poorly grouped elements. 

This was the case despite a decrease in perceived depth in the object (Deas & Wilcox, 2015). 

Pilzo et al (Pizlo, Li, & Francis, 2005a) also found a similar result: that perceptual grouping 

has a marked effect on the perception of depth in an object. 

Additional processing after early disparity extraction is further indicated by the interaction 

of depth from binocular disparity and luminance. As discussed earlier, there are strong 

analogies between several luminance effects and disparity processing effects. This 

potentially implies that the same mechanisms are being used for processing both disparity 

and luminance.  A few rare studies have even found interactions between luminance and 

disparity, with luminance edges having been found to effect the perceived depth and depth 

thresholds (Burge, Peterson, & Palmer, 2005; Didyk, Ritschel, Eisemann, Myszkowski, Seidel, 

et al., 2012; Peterson & Gibson, 1993). Interactions are not limited to luminance and 

disparity: depth from motion also affects disparity defined depth (Seymour & Clifford, 

2012). If early disparity extraction was the be-all and end- all of disparity processing, then 

effects such as these would be very unexpected. 

These studies give a strong case against a point by point representation of disparity in the 

visual field being the final stage of disparity processing. We have a variety of different cases 

in which a simplistic point by point disparity extraction should cause veridical perception. 

When looked at from the angle of Gestalt grouping, it appears that an additional stage of 

object processing is dominant over the early levels of disparity extraction. We hypothesize 

that these biases in perceived depth stem from a mechanism dedicated to the identification 

of objects. In the first strand of this thesis, we investigate in depth the perception of an 

object defined solely by disparity to understand how disparity defined objects are 

perceived, and if poor grouping of the object may cause difficulties in the perception of the 

object. 

2.3 Visual search 
Visual search tasks are widely used in the study of visual behaviour, as they give a wealth of 

data into how different features such as colour and orientation are processed – either 

independently or in conjunction (McSorley & Findlay, 2001; Wolfe, 1994). In general, a 

visual search task is when a participant is displayed with a region containing a visual 

stimulus. The participant is then requested to find a target object within the search area – 

frequently this is made more complex by the introduction of distractors which may be 

similar to the target object. By manipulating either the object, or the quantity and similarity 

of the distractors, it is possible to infer the factors involved in the detection of the target 

object, and how hard the object is to distinguish from the distractors (Cave & Wolfe, 1990; 

Treisman, 1982; Treisman & Gelade, 1980; Wolfe, 1994). 

In general, observers’ performance at a visual search task with distractors is partitioned into 

two major categories: serial searches, where the time taken to find the target object is 

affected (typically linearly) by the number of distractors present; and parallel searches, 
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where the time taken to find the target is unaffected by the number of distractors that are 

present (Treisman & Gelade, 1980). In parallel searches the target is thought to have a ‘pop 

out’ effect, where the target is clearly different to the distractors and therefore 

comparatively trivial to detect, for example a horizontal line in a field of vertical lines. Serial 

searches are when an increase in the number of distractors increases the time it takes to 

detect the target. This behaviour is often caused when the target is defined by a conjunction 

of two other cues (Treisman & Gelade, 1980), for example when the target is a horizontal 

red line, not a vertical red line or a horizontal green line (Finlayson, Remington, Retell, & 

Grove, 2013; Nakayama & Silverman, 1986).  

Promisingly for the use of binocular vision to break camouflage, there is evidence that depth 

information can enable the segregation of the scene into planes that can each be rapidly 

searched (Nakayama & Silverman, 1986). Segregation in depth also improves the detection 

of objects superimposed on another scene (Harris & Willis, 2001; Harris & Gregory, 1973; 

Moraglia & Schneider, 1990; Schneider, Moraglia, & Speranza, 1999; Wardle et al., 2010). 

However, the use of depth for segregation seems to be limited to large disparities (over 

6arcmin (de la Rosa, Moraglia, & Schneider, 2008; Mckee et al., 1997)) and sometimes only 

in certain circumstances e.g. (Finlayson et al., 2013; Steinman, 1987).  

Interestingly, studies looking at disparity judgements in visual search found that people 

were typically faster when the target was located in front of a background, rather than 

behind (Becker, Bowd, Shorter, King, & Patterson, 1999; Kim, 2013; O’Toole & Walker, 

1997). This is the same geometric arrangement as an object in the environment sitting on an 

opaque background. This perhaps indicates that binocular vision has evolved to assist in 

detecting environmental objects, an argument further supported by an increased detection 

time for convex objects (Bertamini & Lawson, 2008). However, these search tasks all use flat 

planes in their experiments, rather than three dimensional objects that extend over a range 

of depths like a real world object. Additionally, the task is frequently to identify a collection 

of small elements rather than large extended objects.  

There is some visual search literature using  objects: for example we know it is easier to find 

a 2D object that is closed than an open one, indicating that the visual system is adapted to 

detecting entire objects (Bertamini & Lawson, 2008; Elder & Zucker, 1993). The closest 

object based searches come to considering 3D objects is the work considering shadow 

perception – for example using abstract 2D objects to cast shadows (Rensink & Cavanagh, 

2004). There is also some work looking at the perception of photographs of stones with cast 

and self-shadows (Lovell, Gilchrist, Tolhurst, & Troscianko, 2009). Unfortunately, these 

studies investigated if shadow processing uses a separate, faster mechanism than object 

detection rather than considering the effect of any percept of depth caused by the inclusion 

of shadows.  

Unnatural search tasks are a concern, with the majority of visual search tasks being 

presented on simple backgrounds (Troscianko et al., 2009a; Wolfe, 1994), or on uniform 
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grids e.g. (McSorley & Findlay, 2001). Neider et al. did two studies in naturalistic scenes, and 

found that the effect of the extra information from the naturalistic background could not be 

solely attributed to the presence of crowding from the extra elements in the scene (Neider, 

Boot, & Kramer, 2010; Neider, Brotzen, & Zelinsky, 2010). This indicates that it is important 

to consider the effects of the environment that the target object is located in. Lovell et al. 

(2015) conducted some naturalistic studies investigating the detection of a snake that was 

camouflaged via a leaf-like pattern on the snake that matched an artificial leaf background. 

Interestingly, they managed to make the snake so well camouflaged against an artificial leaf 

background that they needed no distractors, and could measure how well camouflaged the 

snake was from detection time alone (Lovell et al., 2015).  

Search tasks in the environment using only visual cues are rare, one such study by Foulsham 

et al (2014) did a search task outside of the lab, using an eye tracker to study the effects of 

colour on search times (Foulsham et al., 2014). The presence of an eye tracker assisted 

Foulsham et al. to detect trials when participants looked at the target but did not recognise 

it. 

To us, the most useful naturalistic world search tasks are those that relate to camouflage.  

Several studies have investigated if visual search can predict participants' performance at a 

foraging task (active searching of an environment for ‘food’), and have found that if the 

foraging is mainly visually driven, then visual search is a good analogue to foraging for 

natural objects (Gilchrist, North, & Hood, 2001; Smith, Hood, & Gilchrist, 2008). Naturally, 

the effect of the environment is important when considering visual search and camouflage, 

with reaction times increasing with increased similarity of the target to the background 

(Neider & Zelinsky, 2006). This is caused by background matching – a form of camouflage. 

Despite these attempts, there is little literature relating camouflage to complex scenes or 

with discrete objects, with most inferences about visual camouflage being drawn directly 

from simpler objects and tasks (see Troscianko et al. (2009a) for a discussion). 

In developing the visual search tasks presented in this thesis, we heavily drew inspiration 

from the more complex camouflage tasks, especially those that were constructed with a real 

environment in mind (Lovell et al., 2015; Neider, Boot, et al., 2010; Neider, Brotzen, et al., 

2010). However, perhaps the most influential were the meta analyses discussing the 

advantages and disadvantages of different visual search paradigms. One common paradigm 

to use is a search task where distractors are always present but with the target only present 

in some of the trials e.g. (Gilchrist et al., 2001; Neider & Zelinsky, 2006; O’Toole & Walker, 

1997; Rensink & Cavanagh, 2004; Wolfe, 1994). The participant’s task is then to identify if 

the target is present or absent, requiring only a very simple experimental setup. However, 

this methodology has been found to have serious issues – the prevalence of the target 

makes a significant difference to both detection rates and reaction times e.g. (Godwin et al., 

2014; Schwark et al., 2013) making it hard to analyse the effect of manipulating the target vs 

the effects of target prevalence.  
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Additionally, in camouflage tasks we typically wish to compare the participant’s 

performance between several objects to establish if certain attributes cause the target to be 

better camouflaged. We decided to avoid placing multiple objects in each search task as this 

introduces problems with interpreting the results. For example, multiple object searches 

cause an increase in miss rates for the rarer or harder to detect targets – particularly when 

the participant is tasked to indicate if the object is present or absent (Cain, Adamo, & 

Mitroff, 2013).  

The inclusion of distractors in the visual search task can influence how camouflaged a target 

object is measured to be. From a study by Neider and Zelinsky (2006) we know that when 

searching for a camouflaged object, participants will spend time investigating distractors 

instead of the target similar background. This is a problem, as the location and shape of the 

distractors will confound our measurements of the target’s camouflage. For example, if we 

have multiple different targets, then the targets that are most similar to the distractors will 

take longest to be spotted purely due to our choice of distractors, and not due to any 

inherent properties of the target. For these reasons, we avoid tasks with distractors and 

tasks where the target is ever absent. We discuss in depth how we combine these studies 

into a camouflage visual search task in Section 3.2.2. 
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3 Methodology 

 Outline of stereoscopic stimulus presentation. 

 Overview of the psychophysical techniques used in the first strand to extract data 

from the two alternative forced choice experiments. 

 Overview of the visual search tasks used in the second strand of this thesis. 

 Participant recruitment. 

 

 

Figure 3.1: A Dead Leaf Mantis (Deroplatys desiccate, two central brown leaves) displaying 
mimicry. Animals imitating dead leaves such as this mantis are frequently very thin and flat, 

making them appear the right shape for a leaf even to a stereoscopic viewer.  Image 
reproduced with permission, (Pingstone, 2005) 
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In this Chapter, we will review the general methodologies used in the thesis. First, we will 

describe the setup used to display controlled stereoscopic stimuli on a computer screen. 

The techniques of stereoscopic display will be used in all but the last Experiment (11). We 

then go on to discuss the methods of data analysis. Due to using different experimental 

paradigms in the two strands of the thesis, we discuss the data analysis methods in two 

separate Sections: For the first strand we describe the psychophysical analysis techniques, 

for the second strand we discuss the data analysis techniques used for visual search tasks. In 

the final Section of the Chapter, we discuss participant recruitment techniques, which are 

identical for both strands of the thesis.  

3.1 Display of stereoscopic stimuli 
The objective of our experiments is to 

test the visual system’s use of depth 

defined by binocular disparity. To do this, 

depth must be delivered in a highly 

controlled manner, or other cues to form 

and depth may be present. Here, we 

discuss how this is achieved using 

random dot stereograms (RDS) (Julesz, 

1971) and a Wheatstone Stereoscope 

(Wheatstone, 1838). Random dot 

stereograms (for an example, see Figure 

1.2) are of particular use as a display 

method, as they can display binocular 

disparity in isolation from other cues 

(Julesz, 1971). 

For all computer based experiments, 

stimuli were displayed using the same 

apparatus, except that the screen was 

changed for the visual search tasks in the 

second strand of the thesis (details in 

situ). A completely different setup 

without a computer screen used to 

create a real world task in Section 9.3 

(Experiment 11), this setup is discussed in 

Chapter 9.  

In order to display images with stereoscopic depth on a computer screen, we must present 

each eye with different but overlapping images – i.e. the images originate from different 

locations on a computer screen, but are projected into the eyes via mirrors as if they come 

from the same location (Figure 3.2, detail on exactly how this works is discussed below). To 

 

 
Figure 3.2: Ray diagram of stereoscope: a point 
in the left half of the screen enters the left eye 
at an angle that is different to the angle of the 
ray at the right eye. The visual system, without 

information about the mirror setup sees an 
object in depth in front of the computer screen. 

 
 

Left Eye Right Eye 

Computer Screen 
Left eye’s view Right eye’s view 

Mirrors 
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achieve this, images for the left and right eyes were presented side by side on a luminance 

calibrated monitor (monitor details are at the beginning of each strand in Sections 4.2.1 and 

7.2.1). In order to make the images for each eye appear to overlap as if they originate from 

the same location in space, they were reflected into stereoscopic presentation using a 

Wheatstone stereoscope (Wheatstone, 1838)(see Figure 3.2). Viewing position was 

stabilized with a chin rest placed 1m from the screen. If needed due to differing intraocular 

distances, the participant adjusted the central stereoscope mirrors to obtain comfortable 

fusion.  

 

A Wheatstone stereoscope works as follows: When a dot is displayed at the centre of the 

left half of the screen, and an identical dot is displayed at the centre of the right half of the 

screen viewer perceives a single dot on the surface of the screen directly ahead of them 

(Figure 3.3a). If we change the position of the dot, say to the left, in both eyes, then the 

viewer perceives the single dot at the centre moving towards the left (Figure 3.3b). If we 

move the dot in different directions in both eyes – for example to the left in the right eye 

and to the right in the left eye (Figure 3.3c), then the image of the dot falls in different 

places in the retina in each eye, introducing a disparity cue. As the visual system does not 

(a) (b) (c) 

   
Figure 3.3: Effect of dot movement for a Wheatstone stereoscope. (a) A dot positioned at the 

centre of each half of the screen (small black squares) is perceived at the centre of the 
computer screen (hollow black square). (b) Moving dots in each half of the screen to the left 

moves the perceived dot to the left, as indicated by the arrows. (c) Moving the dots in 
opposite directions in each eye moves the perception of the dot away from the plane of the 

screen.  

Left Eye Right Eye 

Computer Screen 
Left view Right view 

Mirror
s 

Left Eye Right Eye 

Computer Screen 
Left view Right view 

Mirror
s 

Left Eye Right Eye 

Computer Screen 
Left view Right view 

Mirror
s 
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know about the presence of the mirrors, it assumes that the difference in relative dot 

position between the two eyes is due to a single dot located in depth between the viewer 

and the screen (Figure 3.3c). We can use this setup to create the perception of one or 

multiple disparity defined dots (or objects) in depth relative to the screen. By varying the 

amount of horizontal displacement we give a dot in each eye, we can vary the apparent 

position on the screen and in depth, allowing us to accurately control exactly where in 

depth the viewer perceives the dot. 

 Many stereoscopic experiments suffer 

from cross-talk. Cross-talk is most simply 

described with red/blue anaglyph glasses – 

these are glasses with a red filter over the 

one eye and a blue filter over the other 

(see Figure 3.4). When looking at an 

anaglyph, such as in Figure 3.5, then the 

viewer gets a perception of depth in the 

image. This perception of depth relies on 

each eye seeing only either the red or the 

blue of the printed anaglyph. However, 

frequently the filters on the glasses allow a 

faint red image though the blue filter or 

vice versa. This faint image from the 

other eye can interfere with the 

perception of depth or cause eye strain 

and discomfort e.g. (Seuntiëns, 

Meesters, & IJsselsteijn, 2005; Woods, 

2012; Xing, You, Ebrahimi, & Perkis, 

2012). Cross talk from overlapping 

images is not a problem in the 

Wheatstone stereoscope (Woods, 2010), 

as the two images originate from 

separate physical locations.  

Wheatstone stereoscopes do have some 

disadvantages. It is possible for the 

observer to sometimes see segments of 

the other eye’s view in the edge of the 

field of view. This cross-viewing can give away information about the properties of the 

stimulus or distract the participant. In these experiments, we reduce this effect by applying 

black tape to the two mirrors. However, a small amount of cross-viewing across the central 

line of the monitor will still have been present due to the individual differences in 

 
Figure 3.4: Red/blue anaglyph glasses. Image: 

own work.  

 
Figure 3.5: Anaglyph of an Asiatic hybrid Lilium. 
To see depth, wear anaglyph glasses with the 
red filter over the left eye. Image reproduced 

with permission,  (Harrison, 2008) 
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participant’s intraocular distances. For this reason, the central region of the screen is 

presented as being blank.  

In order to isolate the binocular disparity cue, our experiments used random dot 

stereograms (RDS (Blake & Wilson, 2011; Gantz & Bedell, 2012; Howard & Rogers, 2002; 

Julesz, 1971). RDSs (for an example, see Figure 3.6) are very abstract but do deliver disparity 

defined-depth without any other information to form, either in depth or monocularly. To 

create a random dot stereogram, a field of random dots at the required density is 

generated, and then duplicated into left and right displays. Disparity is then added by taking 

the desired dots and moving them laterally to the left in the right eye’s view and vice versa 

in the left, creating a binocular disparity signal when the two halves of the stereogram are 

viewed simultaneously through the stereoscope (as in Figure 3.2).   

When the change in disparity at the edge of an object is large, this process leaves an area 

with no dots on one side where the dots were moved from and an area with double density 

on the other where the dots were moved to. To avoid this, duplicate dots from the 

background (i.e. those unmoved by adding disparity to the image) are deleted on the high 

density side and regenerated randomly on the sparse side. This maintains dot density but 

creates half occlusions (areas of the image only visible to one eye, see Chapter 2.2.3), as 

would be seen in an opaque real object. With this manipulation, RDSs have the advantage 

than when under monocular vision, there is no cue to object form: all that can be seen is a 

field of equal density random dots as can been seen in the experimental screenshot in 

Figure 3.6. However, it does introduce the disadvantage that we must now control for half 

occlusions – a potential cue to depth e.g. (Harris & Wilcox, 2009; Tsirlin et al., 2010). Please 

note that Figure 3.6 is the only true screenshot displayed in the thesis – stimuli in the 

experimental Chapters are representative of those displayed to the participants but are 

mock-ups created with exaggerated disparity to ensure visibility on an A4 page. 

All experiments were coded in MATLAB® (2013 or 2014) with stimuli being coded and 

displayed using the psychophysics toolbox (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; 

Pelli, 1997). This is a frequently used toolbox within vision science, and allows for accurate 

and timed presentation of stereoscopic stimuli. 
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Figure 3.6: Top: A screenshot of the random dot stimulus used in Experiment 1 (Section 4.3).  
When viewed through the Wheatstone stereoscope, the left half of the image would only be 
viewed by the left eye, and the right half only by the right. Divergent (top) or cross (bottom) 

fusion gives a similar percept of two square shapes protruding from the RDS. 



51 
 

 

3.2 Data analysis 
There are two main methods of collecting and analysing data in this thesis: psychophysics, 

which is used in the first strand of the thesis to characterise the perception of an object; and 

visual search tasks, which are used in the second strand of the thesis to investigate the 

interaction of camouflage and depth perception. 

3.2.1 Strand 1: Psychophysics 

Psychophysics is a paradigm that develops a numerical relationship between a measurable 

property of a stimulus and the perception of that property (Kingdom & Prins, 2009). This is 

typically achieved by systematically altering the property of interest in a stimulus, while the 

participant makes very simple choices such as: can you see the stimulus, or which stimulus is 

brighter. Here, we primarily consider what is called the two alternative forced choice 

paradigm (2AFC) using a method of constant stimuli. 

The two alternative force choice 

methodology revolves around displaying 

two stimuli simultaneously and asking the 

participant to make a simple choice 

between the stimuli, such as ‘which is 

brighter’. The participant is forced to 

choose between the two options, even 

when the participant does not know which 

of the two options is correct. The 

advantage of this is that participants are 

often well above chance level when 

uncertain, so forcing a choice allows us to 

calculate how often they choose each 

stimulus at the displayed level of the 

stimulus (Kingdom & Prins, 2009). We can 

get an idea of the participant’s perception 

by plotting the property of interest (for 

example in Figure 3.7 we use brightness of 

stimulus A) against the percentage of 

times the participant chose one of the two stimuli. The orange line in Figure 3.7 is an 

example of when the participant is uncertain if stimulus A or B is brighter, but still chooses 

stimulus A the majority of the time.  

We are interested in the point at which participants can no longer tell the difference 

between the presented stimuli, as indicated by the blue solid vertical line in Figure 3.7. This 

point, called the PSE (point of subjective equality) indicates when the participant perceives 

both the presented stimuli to be identical. For a two alternative forced choice experiment, 

 
Figure 3.7: Diagram of participant choosing an 
arbitrary stimulus A as brighter than stimulus B 
as a function of the brightness of stimulus A. In 

the red hashed region, the participant is 
confident and always chooses one of the two 

stimuli as the brightest. The vertical orange line 
is an example of when they are uncertain but 
still above chance level. The blue vertical line 

indicates the brightness of stimulus A when the 
participant responds as if they perceive the two 

stimuli are identical, called the PSE.  
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the PSE is determined by when they choose each stimulus with a frequency of fifty percent. 

2AFC methodology also gives a measure of how sensitive the participant is to small changes 

in the stimulus. This is called threshold, and is calculated by measuring how rapidly the 

participant changes between choosing one stimulus over another as the stimulus level 

varies. We go into greater detail on threshold later in this Section. 

The 2AFC methodology also helps solve the problem posed in Chapter 2.2.2, that in order to 

make judgements of the depth from disparity, we need to know how far away the object is 

– normally estimated by other cues to depth such as the size of familiar objects. This is a 

problem when displaying abstract stereoscopic stimuli in a dark room there are few cues to 

distance, therefore making absolute judgements of depth are highly problematic. We avoid 

this problem by not asking the participants to make an absolute judgement of depth of one 

object, but rather to distinguish between two objects displayed simultaneously, thus 

enabling them to make accurate judgements between the stimuli (Glennerster et al., 1996). 

By joining the background of the two objects, we make it clear they are originating in the 

same depth plane, therefore eliminating any bias between them that might be caused by 

incorrect distance judgements.  

Although the 2AFC methodology theoretically allows the measurement of point of 

subjective equality by displaying stimuli at all possible stimulus levels, this is highly 

impractical. Instead, we need a method of charactering the participant’s response over a 

large range while minimising the number of measurements needed. There are many 

techniques of doing this, but in this thesis we use one of the simplest, called the method of 

constant stimuli, rather than the more complex staircase methods. We discuss the reasons 

for this below.  

The method of constant stimuli relies on pre-setting a range of stimulus values to be 

displayed. The participant is repeatedly presented with each different stimulus value (the 

value presented is randomised from the pre-set range each trial), with enough repeats that 

their percentage of each stimulus chosen at each stimulus value can be assessed. From this 

data, the PSE can be interpolated between the pre-set stimulus values typically by fitting a 

cumulative normal function e.g. (Glennerster & McKee, 1999; Harris, 2014; Harris, Chopin, 

Zeiner, & Hibbard, 2012). The diagram in Figure 3.7 is a mock-up of a cumulative normal 

curve. This method characterises the participant’s responses over the tested range and is 

simple to run, although it results in slow data collection.   

In comparison, staircase methods rely on the principle of adjusting the stimuli to make the 

task easier when the participants make an incorrect judgement, and making the task harder 

when the participants are correct. Theoretically, in the simplest case the staircase should 

converge to near the PSE, with the participant switching between being correct and 

incorrect each time the task is made easier or harder. However, there are many 

complexities to this method, with different ways of implementing the staircase having 

different advantages and disadvantages (Kingdom & Prins, 2009). When starting the first 
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Experiment we therefore used the method of constant stimuli, with the intention to switch 

to a staircase method if faster results collection was required. However, we found the 

method of constant stimuli could collect sufficient data in the time allowed, therefore never 

requiring us to use the staircase alternative.  

More specifically, the method of constant stimuli we used presented two stimuli 

simultaneously on the screen, one placed above the other with the participant asked to 

make a judgement between them. Unknown to the participant, one of the stimuli (the 

comparison stimulus) had exactly the same properties in every trial, while the second varied 

according to pre-set values (the test stimulus). The position of the comparison stimulus was 

randomised between the upper and lower position (with the test stimulus being placed in 

the other position) to obscure the constant nature of the comparison stimulus and avoid 

biases in perception between the upper and lower positions e.g.(Bian & Andersen, 2010; 

Goutcher & Mamassian, 2002; Harris et al., 2012; Hibbard & Bouzit, 2005). We measured 

how often the participants chose the comparison stimulus as a function of the varied 

parameter of the test stimulus. 

Once sufficient data is accumulated for each value of the parameter we must then 

interpolate between the collected data points in order to calculate the point of subjective 

equality. To achieve this, we use Palamedes toolbox: routines for psychophysical analysis 

(Prins & Kingdom, 2009), which is an established analysis toolbox for MATLAB®. We first 

used Palamedes to fit a cumulative normal curve to the participant’s data using a maximum 

likelihood model, the fitted curve was then used to calculate the PSE. Additionally, 

Palamedes was used to bootstrap error margins on the calculated value PSE. We can 

measure the bias in perception of the stimulus by measuring the shift in PSE from the 

objective value at which the test and comparison stimulus are identical, as in Figure 3.8a. 

By fitting a cumulative normal we have an additional measure of use – the gradient of the 

slope near the PSE, called the threshold. Our estimate of threshold, related to the slope of 

the curve, is calculated as half the difference between the stimulus level at 75% and 25%. 

Threshold is a measure of how sensitive the participant is to the manipulations made to the 

test stimulus – a more sensitive participant will have more of a difference in performance 

between adjacent stimulus level, increasing the slope of the function at the PSE. The 

difference between a more and a less sensitive participant is shown in Figure 3.8b. 

In order to eliminate any trade-off effects where the participant might perform the task 

faster in order to finish earlier, while another might be slower, we presented each stimulus 

for a set amount of time. This forced the participants to all spend the same amount of time 

viewing the stimulus. A 2s stimulus duration was settled on as being sufficient for the 

participant to view the stimuli and make an informed decision, while being short enough to 

collect sufficient data in each one-hour session.  
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(a) (b) 

  
Figure 3.8:Pictorial representation of the alterations made by (a) biased percept (orange 

dashed) compared to an unbiased (solid blue). Stimulus level at 50% correct is the PSE. (b) 
Participants that are less sensitive (orange dashed) or more sensitive (blue solid). Arrows 

indicate the size of the thresholds for each of these lines.  
 

Due to the naïve nature of the participants, we chose not to control where the participants 

fixated over the 2s stimulus presentation as without including eye tracking we had no way 

of verifying fixation. This should not be a problem, as our motivation has a real world 

context where there is no control over fixation, thus controlling fixation would be an 

unnecessary abstraction from detecting camouflaged objects in the environment. 

There are three main disadvantages of the method of constant stimuli we had to overcome: 

1. The data needed to be piloted on several participants to determine the range values 

that need to be displayed before the experiment could be run – however this is not a 

major disadvantage as all experiments require a certain level of piloting. This means 

we did require the pilots to either be inexperienced stereoscopic observers or, in 

some circumstances, a mix of inexperienced and experienced stereoscopic 

observers. 

2. As the depth of the stimuli are pre-set to certain values and constant through the 

experiment, there are inevitably some stimulus values that are at the ceiling or floor 

of measurement for some participants. This reduces the amount of useful data 

collected. In the end, this merely increases the experiment duration, but we have 

tried to keep ceiling and floor measurements to a minimum by piloting. For the 

experiments presented here, the variation between participants is small enough that 

this problem occurs infrequently and does not represent a large portion of the time 

spent collecting data. 

3. Some outlier participants with particularly poor (or good) stereovision had PSEs 

outside of the measured range. We kept this problem to a minimum by screening 

participants with the TNO test (see Section 3.3) and rejecting any participants with 

thresholds above 240 arcmin. This is because our stimuli can only be perceived using 

stereoscopic vision, therefore someone with poor binocular vision will be unable to 

see the stimuli or complete the tasks. Secondly, without further testing we do not 
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know why certain individuals have poor binocular vision, and therefore we would 

not be able to correctly interpret why their performance differs from the more 

typical participant. We chose such a large threshold as the performance of a 

participant changed greatly dependent on the lighting in the room when performing 

the TNO test. Additionally, the TNO test used stimuli sufficiently different to the 

experiment that some participants who had trouble passing the TNO test had no 

difficulty perceiving depth in our stimuli, and vice versa. The TNO test was therefore 

a high pass filter to ensure consistency and a reference point to other experiments, 

while we performed further screening in a demo stage of our experiment. 

 

3.2.2 Strand 2: Visual search 

Visual search tasks were used in conjunction with the psychophysics used in this thesis. The 

psychophysical analysis can give us a quantitative measurement of how changing the 

stimulus changes the perception of the stimulus, it cannot tell us how much harder or easier 

that alteration makes the stimulus to detect. We therefore need to move to visual search 

experiments in the second strand of the thesis, where we are looking at the interaction of 

binocular vision with camouflage. 

A visual search experiment is one in which the participant’s task is to locate a target in the 

presented visual scene as quickly as possible. Typically, an object on its own is very easy to 

spot, so other objects that look like targets are often introduced into the scene – these are 

called distractors. The participant’s task is to find the target amongst the distractors. There 

is a wide variety of literature using this paradigm, which was discussed in depth in Section 

2.3. 

The typical visual search task aims to compare how easy it is to detect the target based on 

certain properties, e.g. if a red or blue target is easier to spot amongst green distractors. 

There are various ways to evaluate the participant’s performance – one technique is to 

evaluate how much longer it takes to spot a target with an increase in the number of 

distractors, giving an overall measure of how easy it is to distinguish between the distractors 

and the target (see Section 2.3) e.g.(Neider & Zelinsky, 2006). In our experiments this 

presents a problem as we typically need multiple different shaped targets as we are 

comparing participants’ performance across many conditions. Specifying exactly what the 

target looks like to a naïve participant is therefore extremely hard, and it is known that 

multiple targets can introduce many extra sources of error (Cain et al., 2013) including 

biases based on the similarity between the distractors and the different targets (Duncan & 

Humphreys, 1989; Lovell, Gilchrist, Tolhurst, To, & Troscianko, 2008). Additionally, this 

regime presents issues: the distractors are examined in preference to areas of the 

background which may contain an undetected target (Neider & Zelinsky, 2006). Additionally, 

measuring how much harder distractors make the target to spot is, in camouflage terms, 



56 
 

more akin to the various forms of mimicry and therefore dependent on the exact properties 

of the distractors as well as the properties of the target (see Chapter 2.1).  

Unfortunately, there are few examples of combining binocular vision and camouflage with 

visual search tasks. The few studies that do consider depth and visual search typically look at 

the effects of depth on spotting a 2D target amongst 2D distractors, and investigating how 

the depth of the target relative to the distractors changes the difficulty of detecting the 

target (e.g. Finlayson et al., 2013; Kim, 2013; O’Toole & Walker, 1997; see Section 2.3 for a 

discussion of this literature). While of relevance, this is not the regime we are after, as our 

targets are aiming to resemble prey items, and therefore must have their own distinct 3D 

shape. We must therefore turn to a different regime for testing how hard it is to spot a 

disparity defined 3D object on a featureless background. 

To achieve this, we altered a much simpler paradigm used by Lovell et al. (2015) – no 

distractors with the target always present, and looking at the time it takes to detect the 

single target object. Across trials, we alter the properties of the object that we are 

interested in: the participant does not need to identify each of these objects as a separate 

target, as we have only instructed them to find an object in the scene. If the target is indeed 

camouflaged by our experimental manipulation, then it will be harder to spot and the time 

it takes for the participant to indicate they have spotted the target will increase.  

We refer to the time between stimulus onset and the participant’s response as their 

reaction time and equate this to the detection time (in the context of camouflage, this is the 

length of time it takes for a predator to spot their prey). Unfortunately, reaction time also 

includes the length of time it takes for the participant to make a motor response to indicate 

that they have spotted the target. However, this should be negligible in comparison to the 

overall reaction time (measured in seconds) and should be similar for all different stimulus 

conditions. 

Some studies use eye tracking to further break the reaction time down into the time until 

first fixation on the target, and the length of time spent fixating on the target to positively 

identify it as the target, called the verification time e.g. (Neider, Brotzen, et al., 2010). This 

can give us some further information about how the participants are detecting their targets 

– for example Neider et al. found that verification time increased as the scene searched got 

more cluttered. In the absence of eye-tracking, we cannot distinguish between the time to 

first fixation of the target and the time spent verifying that the fixated object is the target. 

We argue that in a camouflage context the distinction between first fixation and verification 

time is not essential. This is because in order to react to the presence of a prey item, the 

prey item must be identified as being the predator’s target. In order to identify the prey, the 

predator must fixate and verify the target. We consider the length of time it takes to identify 

the target as a measure of camouflage - time to identification includes both the length of 

time till first fixation time and the length of time to verification time. Therefore, how well 
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camouflaged an object is, is not influenced by the distinction between how much time is 

spent fixating the target, and how much is spent verifying it.  

It is frequent practice in visual search experiments to exclude outliers in reaction time on 

the grounds that they are typically due to participants not paying attention. However, in our 

data all the long response times were present in one condition of our experiments 

(specifically the smoothest objects in Experiments 9, 10 and 11).  This indicates that the long 

response times are due to the experimental stimuli, not participant inattentiveness and any 

attempt to remove outliers is invalid. To ensure that outliers do not bias our data however, 

we will compare the trends in both the mean and the median of the data, as the difference 

between the mean and median results will inform us about the effect of the spread of the 

data.  

3.3 Participants 
Participant details presented here are used in all experimental Chapters of the thesis, unless 

specifically noted otherwise. 

Participants were recruited via the University of St Andrews’ online recruitment system 

(SONA) and were recompensed £5 per hour for their time. Due to the nature of the 

recruitment, the majority of participants were students, although some older participants 

were recruited thought the study. This should not present a problem to our results for two 

reasons: Firstly, the binocular visual system is functionally comparable and only deteriorates 

slowly with age e.g.(Norman et al., 2008). Secondly, we are comparing a human visual 

system to that of a generic stereoscopic observer – therefore variation within the human 

population is less important to measure. Participants were only accepted with normal or 

corrected-to-normal vision. 

All participants were tested for stereoactuicity using the TNO stereotest (“TNO Stereotest, 

Richmond Products,” 2014) and any participants who could not correctly identify depths of 

240 arcmin were rejected from further study. This threshold was set so high because the 

TNO test was only a rough approximation to our experiments – each experiment also had a 

demonstration that was used to exclude participants on the basis of their performance at 

the demonstration stage. The TNO test is an established test using red/blue anaglyphs and 

coloured glasses in order to display stereoscopic depth from a booklet. The booklet consists 

of several simple stereograms to establish that the participant can see stereoscopic depth, 

then a series of stereograms with decreasing depth to establish an approximate depth 

threshold. While the TNO test and our experimental setup are different enough that the 

approximate threshold is not directly relevant to our experiments, they give an indication of 

how good the participant’s stereovision is.  

Participation was for a maximum of a single one-hour session each day and for a maximum 

of eight hours total. Participants could stop at any time without giving a reason. Ethical 

approval was given by the St Andrews University Teaching and Research Ethics Committee 
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(UTREC). All research was conducted according to the Declaration of Helsinki and abided by 

the BPS code of conduct. Participants gave informed consent before the experiment.  

For clarity and anonymity, all participants who completed the experiments are labelled with 

a capital letter in alphabetical order of completion. In each Chapter a single letter will refer 

to one and only one participant, but labelling is restarted with A for every Chapter, except 

when explicitly mentioned otherwise. 
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4 What is a depth defined object? 

 Strand 1, How does depth from binocular vision contribute to object perception? 

 Investigating: How is a depth defined object perceived with different edge shapes? 

 Task: Which of two objects has a greater peak depth? 

 Manipulation:  One object (the smooth object) has blurred edges.  

 Result 1: The smooth object is perceived with less depth than a sharp object. 

 Result 2: Bias is not due to the absence of half occlusions in the smooth object. 

 Conclusions: Smooth edge shapes cause a decrease in the perceived peak depth of 

the smooth object. 

 

Figure 4.1: A mossy gecko on a tree (Rhacodactylus chahoua, flattened against the left hand 
side of the trunk). Note the ragged edges and flattening into the trunk to disguise the shape 

in a way that blurs its edge with the background. 
Reproduced by kind permission of Dr Hobaiter. 
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4.1 Introduction 
In this thesis we are exploring the interaction of binocular vision with camouflage, 

particularly with reference to Julesz’s assertion in 1971 that “hidden objects jump out in 

depth when stereoscopically fused” (Julesz, 1971). To do this, we have split the thesis into 

two main strands: the first explores what a disparity defined object is, and how we can 

perceive it using depth from two eyes. In the second strand, we investigate how easily 

spotted objects are when viewed with two eyes, and if depth from two eyes can break 

camouflage. 

This Chapter is the first of three exploring the first strand of this thesis: how does binocular 

vision contribute to object perception? To explore this, we start by looking at the Gestalt 

principles of grouping (Wertheimer, 1923) (discussed in depth in Section 2.2.6), which give 

us an idea of what properties cause a set of elements to be perceptually grouped into a 

single entity. This approach inspired the work of Deas and Wilcox (2014), who studied the 

perception of depth separation between two vertical lines. When the two vertical lines were 

joined with two horizontal lines, grouped into a single rectangular object (see Section 2.2.6), 

then the depth difference between the vertical lines was perceived as being less than when 

the objects were not grouped. 

Deas and Wilcox’s work is one of many examples (see Section 2.2.6 for a full discussion) 

where the current understanding of disparity processing in the brain cannot explain the 

observed behaviour. As discussed in Section 2.2.5, the visual system uses small regions of 

the visual scene to calculate the disparity within that region e.g.(DeAngelis, 2000; Neri, 

2004). If there is a depth change on a scale smaller than these regions, then the visual 

system cannot detect this depth difference and will effectively average over the depths 

present in that region. This causes measurable effects on our perception: for example a 

depth corrugation of over 3cpd (cycles per degree) will typically be perceived as a flat plane 

(Kane et al., 2014; Tyler, 1973, 1975). However, this effect is only on a small scale – on the 

length scales used by Deas and Wilcox (3.3o by 2.2o) then the disparity should be extracted 

for each vertical line without any kind of interaction due to the horizontal lines joining them. 

This illustrates a common problem with the current literature modelling how disparity 

extraction works: disparity extraction takes place over small length scales, and then 

conclusions are made about if the model agrees with the observed human behaviour, with 

little consideration about further processing. However, the extracted disparities from a 

disparity interaction at small scales cannot explain larger scale grouping effects such as 

those discovered by Deas and Wilcox.  

The majority of objects used in experiments such as Deas and Wilcox are composed of 

elements that are well defined and on a featureless background. This is rarely the case in 

the real world, when background features cause visual effects such as crowding (Neider, 

Boot, et al., 2010). The featureless background is even more abstract when considering 

camouflage, as the animal is often evolved to match the background as closely as possible 
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(see Section 2.1.1). In this Chapter, we explore what happens when we smooth (blur) the 

boundary between the object and the background, making it harder to distinguish the edge 

between the object and its background.  

Perceptually an increase in the smoothness of an object has been described as making the 

shape appear smoother or more like a ‘hill’. The smoother the object, the less abrupt the 

transition from the object to the background, increasing the continuity between the 

background and the object. This causes perceptual grouping via good continuity between 

the object and the background, making it harder to segregate object out from the 

background. In the case of the sharp object, the edge of the object forms a closed contour, 

thus grouping the sharp object together via closure and inhibiting grouping with the 

background (Nakayama, Shimojo, & Silverman, 1989).  

We hypothesize that the long range effects that have been found to be dependent on the 

grouping of the elements are indicative of another stage of object orientated disparity 

processing that estimates the overall depth of the object. This additional stage could cause a 

difference in peak depth between sharp and smooth objects. In the case of smooth objects, 

the boundary between the object and the background is poorly defined compared to the 

sharp object. If elements of the smooth edge are included in the estimate of the region of 

smooth object, then the lower non-peak disparities that make up the smooth object may be 

used in the overall estimation of depth in the smooth object, thus decreasing the perceived 

depth of it relative to the sharp object.   

In this Chapter we discuss (in Section 4.2.1) the objects we used, and how we manipulated 

their shape to change how well defined the edge of the object was. We then present two 

experiments:  

Experiment 1 (Section 4.3) tested if an object with a smooth edge is perceived with a 

different peak depth to an object with a sharp edge. We found that smooth edged 

objects are perceived with less depth, possibly implying that there are further stages 

of disparity processing after objects are segregated from their background. 

Experiment 2 (Section 4.4) tests if the absence of half occlusions (a potential cue to 

depth discussed in Section 2.2.3) in the object with a smooth edge caused the 

difference in perception of their peak depth when compared to the objects with well 

defined edges that have half occlusions. We found no significant effects of half 

occlusions on the perception of depth in these objects. 

Finally, we sum up the findings of this Chapter in a discussion Section (4.5). 
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4.2 Methods used in the first strand of the thesis 

4.2.1 Stimuli 

The overall experimental setup (using a Wheatstone Stereoscope) is discussed in Section 

3.1. Stimuli were displayed on a luminance calibrated screen placed 1m from the observer 

(iiyama HM204DE A Vision Master Pro 514, size 23 by 17 degrees). The stimuli consisted of 

an RDS (see Chapter), 5.6 degrees wide and 11.2 degrees tall with white (12.24cd/m2) and 

black (<0.01cd/m2) dots of size 2.14 by 2.14 arcmin distributed at 20% density (326 dots per 

square degree) on a grey (6.10cd/m2) background.  

The RDS (random dot stereogram, see Section 3.1 and Figure 4.4) was comprised of two 

patches displayed one above the other, each containing disparity defined objects with a side 

length of 5.6 degrees. A constant comparison object was a depth-defined square with 

constant crossed disparity of 5.7arcmin and side length 2.8 degrees located centrally (see 

Figure 4.2a). This object is well defined, and can be easily segregated and the elements 

perceptually grouped (via Gestalt principles, see Section 2.2.6) as an object distinct from the 

background. We will call this the sharp object. The sharp object was randomly assigned to 

either the upper or lower patch. The other object, assigned to the other location was the 

test object and had a variable depth and shape stimulus defined differently in each 

experiment (see Figure 4.2b for an example shape). In this experiment, the test object has a 

smooth edge (as in Figure 4.2b), and we hypothesized that it will be hard for the visual 

system to determine where the background ends and the object begins. We will call this the 

smooth object. 

(a) (b) 

  
Figure 4.2: A 3D representation of the stimuli used in experiment 1. (a) left: Sharp object with 

well defined edges, (b) right: smooth object with poorly defined edges. 
 

Throughout the thesis, the profile of the smooth object (the test object) along one 

dimension 𝑥 is defined using an underlying hyperbolic tangent function: 
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Where 𝑥 is the coordinate of the specific point, located between 0 and 𝑤, which is the 

overall width of the stimulus. The two major variables that cause interesting manipulations 

to the stimulus are 𝜎, the smoothness coefficient and 𝑝 the plateau size. 

The smoothness coefficient, 𝜎 is a variable that changes the overall shape of the hyperbolic 

function without altering the 𝑥 position of the point corresponding to half the maximum 

depth, 𝛿𝑝. The manipulation can be seen in the change of shape of the object in the cross-

sections displayed in Figure 4.3(a). Here, an increase in smoothness coefficient decreases 

the first and second differentials of 𝑥 (i.e. the gradient and the rate of change of the 

gradient), thus joining the top of the object more continuously to the background.  

 

 Hyperbolic functions were chosen specifically because as long as 𝜎 is kept low enough that 

𝑓 (
𝑤

2
, 𝑝) ≈ 𝛿𝑝 (i.e. the depth of the central point is approximately equal to the input peak 

disparity) then the average disparity of the entire object is 𝛿𝑝/2 independent of the 

smoothness coefficient. If the smoothness coefficient is set too high, then this is invalidated. 

To avoid this, the code that creates objects to display checks the peak depth at the centre of 

the object is not less than 0.99𝛿𝑝. 

A very small smoothness coefficient could cause depth edges that are steep enough to 

cause half occlusions (Harris & Wilcox, 2009) or be beyond the disparity-gradient limit (Burt 

& Julesz, 1980). In these experiments we manually set smoothness coefficients – so we 

avoid using any smoothness coefficients that cause these problems. To ensure this is the 

case the code checks if the edges are steep enough to cause problems and generates an 

error message if they are. Between the lowest (0) and highest (26) smoothness coefficients 

used in all experiments in this thesis, the volume, peak depth and average disparity of the 

(a) (b) 

  
Figure 4.3: A 2D cross-section of the stimulus showing (a) the effect of manipulating 

smoothness coefficient and (b) plateau size. 
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object for any input maximum disparity 𝛿𝑝 is constant to within 1%. For the values used in 

each experiment, see the stimuli Sections. 

The second variable, plateau size, 𝑝, has no effect on the first or second derivatives of 𝑥. 

Instead it interacts with the two points of the function that are at 𝑓(𝑥, 𝑝) = 0.5𝛿𝑝, also 

known as the full width half maxima or the positions at half maximum depth. These also 

coincide with the inflection points of the function. The plateau size is defined as the distance 

between the two inflection points, as shown in Figure 4.3(b). Decreasing the plateau size by 

Δ𝑝 moves the inflection points towards the centre of the object (𝑥 = 𝑤/2) by Δ𝑝/2 each, 

and vice versa when 𝑝 is increased – this manipulation can be seen in Figure 4.3(b). For the 

first strand of this thesis, plateau size is normally kept constant at 168arcmin (2.8o), but is 

manipulated for Experiment 3 between 100 and 200 arcmin. In the second strand, plateau 

size is reduced to a constant 74.7arcmin except for Experiment 8 where it is 112arcmin. 

Overall, the two variables 𝜎 and 𝑝 make for a very useful way of intuitively altering the 

stimulus shape. The effect of each variable is effectively orthogonal, that is to say that any 

measurement of the stimulus altered by one variable is left unchanged by the other. This 

makes our smooth object useful for exploring the effect of the smooth shape on the 

perception of the object. 

4.2.2 Experimental procedure 

In the experiments we are trying to establish if and how causing the object to be less well 

defined causes a bias in the perception of the object. To this end, we asked participants 

compare the peak depths of the objects. This is because the peak depth is an inherent 

property of the object this is well defined mathematically, meaning we know the 

performance of an ideal observer. Additionally, the peak depth is at the central point of the 

object and this was used to help describe what was meant to the participant using cross 

sectional line drawings (discussed later in this Section). The alternative would have been to 

introduce and ask about the depth of a probe at the peak depth e.g. (Koenderink et al., 

1992), but then the presence of the probe object would have provided a disparity cue of its 

own, thus confounding the experiment. 

After completing the consent form, participants took the TNO test (“TNO Stereotest, 

Richmond Products,” 2014) for stereoacuity. Those who could not correctly identify depths 

of 240 arcmin or larger were excluded as discussed in Chapter 3.3.  

Prior to the demonstration, we explained the task to the participants using a cross-section 

of the stimulus, indicating where the peak depth was on the stimulus, stating it was always 

central and informing them that the rest of the object’s shape was irrelevant to the task. 

This was to ensure that all participants correctly grasped the concept of the peak depth of 

the object. To ensure participants could correctly view the stimulus, they then viewed a 

static stereogram screenshot from the experiment (similar to Figure 3.6) and were asked to 
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describe the shapes present in the stimulus (they did not know prior to this point the 3D 

shape, only the 2D cross-section) and make a peak depth judgement. 

Every participant then completed a short demonstration of the experiment to familiarize 

them with the procedure. The demonstration consisted of the same stimuli as in the 

experiments, but with a larger disparity (maximum 9arcmin) and with smoothness 

coefficients (3 and 26). Additionally, the demonstration trials started at 10s duration, 

reducing to 2s per trial by the 10th trial. Data from the demonstration was checked to ensure 

participants understood the task before they continued onto the experiment. We 

specifically checked that the participant’s responses changed with changing disparity, and 

that the sharp object was indicated as having more depth more often for sharp objects. If 

either of these was not the case, we checked the participant’s understanding of the task by 

asking them to explain the task to the experimenter. If possible, any participants who 

misunderstood the task were corrected and re-ran though the demonstration, but this was 

not always possible and some participants were excluded from further study based on their 

performance on the demonstration (Heron & Lages, 2012). 

Experiments all followed the same procedure: a fixation cross was presented at the centre 

of the screen (black on mid grey, 69 arcmin high/wide) until the space bar was pressed to 

initiate the trial.  The stimulus was displayed, consisting of a rectangular RDS made up of 

two adjacent patches, one above the other. The upper patch of the RDS was randomly 

assigned to be either the smooth or sharp object, and the other object was assigned to the 

lower patch. This is done to remove any biases the participant might have between the 

upper and lower patches. The stimulus was presented for 2s, followed by the response 

prompt screen: black text on mid grey prompted participants to press either the up or down 

arrow buttons to indicate if the upper or lower stimulus had a greater peak depth. When a 

response was given, the fixation cross was then redisplayed. Trials were presented in blocks 

of approximately 300 trials, each block taking 10 – 15min to complete with a forced 60s 

break between each block. The first experimental session was three blocks preceded by the 

demonstration, subsequent sessions were four blocks.  

4.3 Experiment 1: Is perceived peak depth affected by the shape of an 

object’s edges? 

4.3.1 Introduction 

In this experiment, we investigate if 3D shape has an effect on object perception. We 

compare two objects – one with a sharp, well defined edge and the other with a smooth 

continuous edge that makes it hard to segregate the object from its background (discussed 

in Section 4.2.1). The objects are large (2.8o across), thus we would expect early disparity 

extraction mechanisms to correctly obtain the peak depth of the objects (as discussed in the 

background, Sections 2.2.4 to 2.2.6). If 3D shape does have an effect on perceived depth, 

this may be due to another  stage of object orientated disparity processing after the initial 
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extraction. This additional stage may be present in order to estimate the overall depth of 

the object, and therefore may cause a difference in the perceived depth between the well-

defined (sharp) object and the poorly-defined (smooth) object.  This may be caused by the 

inclusion of the non-peak disparities in the smooth object being used in the estimation of 

the overall depth of the smooth object, this decreasing the perceived depth of the smooth 

object relative to the sharp one. 

4.3.2 Stimulus 

Here, we discuss the details of the stimulus used for this experiment specifically. General 

details of the experimental setup, procedure and stimulus parameters are described in 

Section 4.2. For this experiment, the test stimulus was an object with smooth depth edges 

as shown in Figure 4.2(b), defined by the function:  

𝛿(𝑥, 𝑦) = 𝛿𝑝𝑓 (𝑥,
𝑤

2
) , 𝑓 (𝑦,

𝑤

2
)  

 
Eq.  4.2 

 Where 𝑓(𝑥, 𝑝) is the function defined in Eq.4.1, and 𝛿𝑝 is 

the peak depth of the object. A plateau size (𝑝) of 2.8 

degrees (w/2) was used for the smooth object, meaning 

that the distance between the inflection points of this 

object is identical to the distance between the edges of 

the sharp object (see Section 4.2.1), which has a plateau 

size equivalent to 2.8 degrees. This should be a large 

enough scale such that individual disparity detecting 

neurons will not encompass both the edge and the centre 

of the object (see Sections 2.2.4 to 2.2.6). 

For this experiment, we ran test stimuli using four 

different smoothness coefficients (3, 6, 14 and 23) with 

peak disparities at 5.4 and 8.4arcmin and five disparities 

equally spaced between these. A higher smoothness 

coefficient indicates a stimulus with a lower disparity 

gradient and lower rate of change of disparity gradient in 

the depth edge, thus forming a ‘smoother’ shape as 

shown in Figure 4.3a. Each combination of peak disparity 

and smoothness coefficient was displayed randomly 

interleaved in each block. The sharp comparison object 

was displayed at a peak disparity of 5.8 arcmin – see 

Figure 4.4 for an example stimulus. We ran a total of 

seven blocks spread between two sessions, with each 

participant completing a minimum of 60 trials (maximum 

77) for each combination of smoothness coefficient and 

peak disparity.  

 
Figure 4.4: Anaglyph of the 

stimulus used in Experiment 1, 
with the sharp object top (as 

shown in Figure 4.2a) and 
smooth object bottom (see 

Figure 4.2b).  



67 
 

4.3.3 Results 

First, I will discuss the analysis and results for one participant (Participant A or Par A), then 

show the final results for all participants.  

We measured the proportion of occasions the sharp-edged stimulus was judged as having 

more depth, as a function of peak disparity of the smooth object (Figure 4.5a).  For each 

smoothness coefficient for each participant, we fitted a psychometric function (cumulative 

normal) to the data. This was done using the Palamedes toolbox (for details see Chapter 

3.2.1) and produces a best fit to the data, as shown in Figure 4.5a. The psychometric 

function gives us two useful quantities – the point of subjective equality (PSE), where the 

participant chose the sharp stimulus on half the occasions; and the threshold, a measure of 

the slope of the psychometric function, which relates to the sensitivity of the observer for 

this task. We define threshold as half the difference in disparity of the smooth object at the 

0.75 and 0.25 points on the function fit. 

(a) (b) 

  
Figure 4.5: Analysis for one participant. (a) The psychometric function, black horizontal line is at 
50% . (b) Extracted PSEs. Dashed blue line is the disparity of the sharp stimulus. Error bars are 

1SEM. 
 

PSEs are plotted against smoothness coefficient in Figure 4.5b. Error bars on the PSE for 

each smoothness coefficient were calculated using bootstrapping. A PSE close to 5.8 arcmin 

(the disparity of the sharp stimulus, indicated by the dashed blue line) indicates that the 

smooth stimulus was perceived to have the same peak depth as the sharp stimulus – this is 

the performance we would expect from an unbiased observer. A greater PSE than 5.8 

arcmin means the smooth stimulus is displayed with more depth than the sharp stimulus to 

be perceived as having the same depth, thus meaning that the smooth object is perceived 

with less depth. The results suggest that the smooth stimulus was perceived as being flatter 

– it has a lower perceived depth than it was objectively displayed with.  

We can see from Figure 4.5b that for this participant the smoothness coefficient makes a 

difference to the perceived peak depth. When the edges of the smooth object were very 

steep, there was no difference in the perceived depth. However, once the edges were 
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smoothed out, as indicated by a higher smoothness coefficient, the smooth object was 

perceived as progressively flatter. 

Looking at the threshold data in Figure 4.7 for Par A, the smoothness coefficient does not 

appear to have made the task any harder for the participant to perform. This indicates that 

this participant had a biased but consistent perception of the smooth stimulus. 

 
Figure 4.6: Perceived depth (PSE) as a function of smoothness coefficient for all participants 
in experiment 1, with the ideal observer shown as a horizontal blue dashed line. Error bars 

are one standard error of the mean (SEM). 
 

Figure 4.6 shows the PSEs for all participants. Although there is individual variation, we can 

see that the overall trend observed in Par A’s data is supported. All participants saw the 

smoother objects (higher smoothness coefficient) as having less peak depth (i.e. flatter) 

than the sharp edged object. A repeated measures ANOVA on a group level shows a highly 

significant effect of smoothness coefficient on the PSE (F(3,9) = 21.1, p<0.0005). 

Figure 4.7 shows the effect of smoothness coefficient on threshold. We find there are no 

significant effects on a group level between any pair of smoothness coefficients on the 

thresholds (Bonferroni pairwise comparison, p>0.1) indicating that the participants were not 

finding it any harder to make the depth judgements on the smoother stimuli. 
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Figure 4.7: The threshold with smoothness coefficient for all participants in experiment 1. 

Error bars show 1 SEM 

 

4.3.4 Discussion 

This Chapter investigated if making an object smoother effects the perception of the object. 

If so, this effect would likely be caused by an object orientated disparity processing 

mechanism that takes place after early disparity extraction. To test this, we have created a 

pair of objects that should be perceived as having identical perceived peak depth due to 

their size (as discussed in Section 2.2.5). We varied the edge profile of the smooth object to 

make it harder or easier to segregate from its background (discussed in Section 4.2.1). We 

found that the smoother (harder to segregate) the object was, then the lower the perceived 

peak depth in comparison to the sharp object. This indicates that the edge shape of the 

object has an effect on the perceived peak depth of the object over a long range compared 

to the size of disparity detectors. We speculate that object segregation and object 

orientated disparity processing may be having an effect on the perception of depth in the 

object. Thresholds indicated that the participants did not find the task any harder to 

complete with the smoother objects.  

The key finding of this experiment is that the smoother the depth edge of the displayed 

object, the lower the perceived peak depth despite having a constant objective peak depth. 

From a viewpoint of early disparity extraction, these results are highly unexpected as for this 

size of object we should be able to extract the disparity of the peak of the object without 

any interaction of with the smooth edges. These results support our hypothesis that the 
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perceived depth between the two objects is different. We will therefore consider what 

mechanisms may cause this bias in the perception of depth in the smooth object. 

To consider how the disparities of the smooth edges may interact with the peak disparity, 

we turn to the current models of disparity extraction. These typically involve the 

comparison of small regions of visual scene between the eyes in order to estimate a 

disparity for that region, as discussed in depth in Section 2.2.5. Within these regions, the 

different disparities are effectively averaged, rendering it impossible to extract disparities 

on a smaller or larger scale than the size of the regions (see Section 4.2.1). To ensure this did 

not affect the perception of our stimulus, we have deliberately made the object displayed 

here too large to be affected by these artefacts of disparity extraction (see Section 4.3.2). 

However, this does not discount the possibility that there is a larger scale mechanism that 

combines disparities after the currently modelled stages of disparity processing. 

There are two major possible mechanisms that could cause this bias in perception of the 

object, which we discuss in the following subsections. 

4.3.4.1 Object based disparity interactions 

One possibility is that the decrease in perceived peak depth is due to processing on an 

object level.  The visual system must somehow segregate objects from the background and 

estimate the depth of these objects – to effectively segregate, there must be a decision 

made about where the boundary is between the object and the background. 

In this experiment, we have been looking at the perceived peak depth of an object which 

has edges that are grouped with the background via good closure (discussed in Section 

4.2.1). As the edge of the object becomes smoother, the grouping between the object and 

the background should become stronger, making it harder to segregate the object out from 

the background. This difficulty in segregation may introduce elements of the object’s edge 

into the area that is segregated out as the object. The harder the object is to segregate 

(caused by an increase in the smoothness of the object), then the more likely the segregated 

area is to include elements of the edge. These edge elements are lower depth than the peak 

depth of the object.   

According to current models of disparity extraction the inclusion of below-peak edge 

elements in the segregated object should not influence the perceived peak depth. As 

discussed earlier, this is because the edge is far enough away it should not interfere with the 

extraction of disparity at the central peak of the object (see Section 2.2.6 for a discussion of 

the range of disparity interaction from disparity extraction). We therefore consider object 

based mechanisms that could cause the edge elements that have been included in the 

segregated object to decrease the perceived depth of the overall object. 

We hypothesize that edge elements may influence the perceived depth of the object. This is 

may be caused by the visual system averaging over the segregated object to reduce 

disparity noise in the estimate of the depth of the object introduced by small errors in 
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disparity extraction. When the segregation between the object and background has been 

poor, such as in our smooth object, then it could include intermediate disparities present in 

the smooth edge. Averaging over this segregated area in the smooth stimulus would include 

the elements of lower than peak disparity, thus averaging across the area would lower the 

perceived depth of the object. The more intermediate disparities present in the segregated 

object, then the greater we would expect the bias in perceived depth to be. This prediction 

lines up with what we have observed (see Figure 4.6), as larger smoothness coefficients 

have more intermediate disparities present in their edges and result in a larger bias in 

perceived depth.   

In summary, the first hypothesized mechanism is that the decrease in perceived peak depth 

is due to poor segregation that leads to the inclusion of elements of the smooth edge in the 

estimated object. In order to decrease disparity noise, the segregated region is averaged 

over to obtain an estimate of the depth of the object. However, the inclusion of elements of 

the smooth edge means that the calculated average is lower than the peak depth of the 

object, causing a decrease in the perceived peak depth. The smoother the object, the more 

edge elements of lower disparity included in the average, leading to a decrease in perceived 

peak depth with an increase smoothness coefficient. In Chapter 5 we investigate this 

hypothesis in detail using a computational model. 

4.3.4.2 Half occlusions 

Half occlusions (discussed in Section 2.2.3) can under certain circumstances, cause a 

perception of depth, separate from binocular disparity e.g.(Collett, 1985; Harris, 2010; 

Tsirlin et al., 2010). These half occlusions are present in the sharp object but are absent in 

the smooth object, therefore it is possible that the discrepancy in the presence of these 

cues is causing a bias in the perceived depth that is not specifically due to disparity 

processing. 

Half occlusions in the sharp object are caused by occlusion of the background in only one 

eye. If there is a greater distance between the occluding surface and the background, then 

the region visible to only one eye is larger. The size of the half occlusion therefore gives a 

depth cue to the distance between the occluding surface and background. In our study, the 

sharp object has half occlusions, as the top of the object occludes one eye’s view of the 

background. However, none of the smooth objects have half occlusions, as all of the 

continuous edge between the foreground and background can be viewed with both eyes. 

Indeed, the code is set up so that if the gradient between the foreground and background 

was high enough to cause half occlusions the code would quit with a terminal error 

message. 

As smaller half occlusions are typically present when there is less depth in an object (and the 

visual system perceives less depth with smaller half occlusions e.g. (Tsirlin et al., 2010)), it is 

possible that the visual system is assuming that the complete absence of half occlusions in 

the smooth stimulus is due to a low peak depth – thus leading to a perception of less depth 
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in the smooth stimulus. While this hypothesis may account for some of the bias observed in 

perceived peak depth for the smooth object, it cannot explain why the objects with 

different smoothness coefficients are perceived as having different perceived peak depths, 

as half occlusions are absent for all smooth stimuli. 

To test if the absence of half occlusions in the smooth object creates any bias in the 

perception of depth, for Experiment 2 we create a rotatable stimulus that has half 

occlusions in one orientation and not in the other.  If the absence of half occlusions is 

responsible for some of the bias in perceived peak depth, we would expect there to be less 

depth perceived in this stimulus when the half occlusions are absent.  

4.4 Experiment 2: Do half occlusions have an effect on the perceived 

peak depth of the sharp and smooth objects? 

4.4.1 Stimulus 

The sharp comparison object was kept identical to the first experiment (see Chapter 4.2.1), 

but the test (smooth) object was altered to comprise of a smooth change in depth in one 

direction, and sharp change in the other, as shown in Figure 4.8. The test object was 

displayed in one of two orientations: either with the sharp edges displayed orientated 

left/right as in Figure 4.8a, thus creating half occlusions; or by rotating the stimulus by 90 

degrees results in the sharp edges displayed top/bottom as in Figure 4.8, such that there are 

no half occlusions. The experimental screenshot in Figure 4.9 shows the no half occlusion 

condition. By rotating the stimulus in this way, we ensure that the overall shape and 

disparity distribution is constant, with the only difference between the two conditions being 

the presence or absence of half occlusions – therefore if there is a perceived difference 

between the two conditions it must be due to the presence or absence of the half 

occlusions. 

 

(a) (b) 

  
Figure 4.8: A 3D representation of the stimuli used in experiment 2. (a) Stimulus, orientated 

with half occlusions, and in (b) with no half occlusions.  
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The smooth edges of the stimulus were the same shape as in the previous experiment, with 

the disparity of a dot being described by: 

𝛿(𝑥, 𝑦) = 𝛿𝑝𝑓 (𝑥,
𝑤

4
) 𝑑𝑣  

 
Eq.  4.3 

Were 𝑓 (𝑥,
𝑤

4
) is the equation for the smooth edged object (see Eq. 4.1). The disparity 

contribution 𝑑𝑣 governs the sharp edge, and is calculated by: 

𝑑𝑣 =

{
 
 

 
 0 𝑖𝑓 𝑦 ≤

𝑤

4

1 𝑖𝑓
𝑤

4
< 𝑦 ≤

3𝑤

4

0 𝑖𝑓
3𝑤

4
< 𝑦

 

 

Eq.  4.4 

These two equations in the current form describe the object with no half occlusions present 

(Figure 4.8b). By switching 𝑥 and 𝑦 we can change this into the second condition with half 

occlusions (Figure 4.8a). 

We displayed the stimuli with a reduced number of smoothness coefficients (SC) compared 

to experiment 1, removing SC6 in order to bring the total experiment duration down from 

four hours to three. SC6 was removed as there was very little difference between the 

perceived peak depth at this value and that at SC3 (see Figure 4.6), meaning these two 

values are the most redundant. The SC3 tests the behaviour of the perceived peak depth at 

the smallest smoothness coefficient that does not cause half occlusions, and so is more 

informative to the overall trend than the intermediary value. 
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4.4.2 Results 

As in Experiment 1, we collected the proportion of 

occasions the sharp object was judged as having more 

depth than the smooth, and plotted it as a function of 

peak depth of the smooth object for each smoothness 

coefficient. We fitted a cumulative normal curve for 

every smoothness coefficient, and extracted the PSE (the 

value when participants chose the sharp object 50% of 

the time) and threshold (the gradient of the cumulative 

normal function). The PSE gives us a measure of what 

the perceived peak depth of the object is, and the 

threshold is a measure of sensitivity.  

Two of six participants had PSEs outside of the measured 

range or were unable to complete the TNO test, and 

were so excluded from further study. The PSEs for the 

remaining 4 participants are displayed on Figure 4.10, 

plotted against smoothness coefficient. There is one 

graph for each participant: dotted lines and hollow 

symbols indicate the condition with half occlusions 

present; solid lines and solid symbols indicate when half 

occlusions are absent.  

The same overall trend as seen in Experiment 1 can be seen, with a decrease in the 

perceived peak depth with increasing smoothness coefficient. It can be seen from visual 

inspection that the data for the condition with half occlusions (HO) is frequently within error 

margins of the no half occlusion condition (NHO). This is backed up with a repeated 

measures ANOVA, which shows that there is no significant difference between the two 

conditions (f= (1,3) = 0.452, p=0.459) 

 

 

Participant C Participant E 

  

5.5
5.7
5.9
6.1
6.3
6.5
6.7
6.9

0 5 10 15 20 25

P
SE

 (
ar

cm
in

)

Smoothness Coefficent

5.5
5.7
5.9
6.1
6.3
6.5
6.7
6.9

0 5 10 15 20 25

P
SE

 (
ar

cm
in

)

Smoothness Coefficent

 
Figure 4.9: Anaglyph of the no 
half occlusion stimulus used in 
experiment 2, with the sharp 
object top and smooth object 

bottom. 
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Participant F Participant G 

  

Figure 4.10: The PSEs (perceived depth) with SC for all participants in experiment 2. Dashed 
lines and hollow symbols = Half occlusions, Solid lines and solid symbols = No half occlusions. 

Error bars are one SEM (included in figure but sometimes too small to resolve). Note the scale 
change from Figure 4.6. 

 

Thresholds showed some variation between participants, as shown in Figure 4.11. However, 

within subjects the thresholds were not significantly between the two conditions (repeated 

measures ANOVA, F(2,3)  = 0.001, p=0.975). 

Participant C Participant E 

  
Participant F Participant G 

  
Figure 4.11: The thresholds with SC for all participants in experiment 2. Dashed lines and hollow 
symbols = Half occlusions, Solid lines and solid symbols = No half occlusions. Error bars are one 

SEM and in some cases too small to see. 
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4.4.3 Discussion 

In Experiment 1 we had compared a smooth object with no half occlusions to a sharp object 

with half occlusions. As half occlusions have been known to create a percept of depth 

(Harris, 2010; Harris & Wilcox, 2009; Tsirlin et al., 2010), we hypothesized that the absence 

of half occlusions in the smooth stimulus may contribute to the observed decrease in 

perceived peak depth. To test this, we designed a stimulus that has half occlusions or no half 

occlusions depending on the orientation of the object, but which was identical in all other 

respects. If half occlusions contributed to the percept of depth in our objects, we expected a 

difference in the perceived peak depth between these two conditions.  

This experiment found no significant difference between the perceived peak depth in the 

condition with and without the half occlusions. We therefore have no evidence that the half 

occlusions are used by the participants to aid in this depth judgement, indicating that for 

our objects the decrease in peak depth with smoothness coefficient is due to a different 

cause. It is already known that half occlusions only create a percept of depth in certain 

circumstances even when they are presented in isolation from any other cues (Harris & 

Wilcox, 2009). In this experiment, we have a strong depth cue from disparity with only a few 

elements of the random dot stereogram forming the half occluded surface. Perhaps it is not 

surprising that we cannot detect any effect of half occlusions on the perception of our 

object.  

4.5 Overall discussion of experiments 1, 2, and future directions 
In this Section, we: 

1. Summarise of the implications of this Chapter on the first strand of the thesis. 

2. Compare the two experiments, considering what the difference in participants’ 

performance can tell us about the mechanism causing the decrease in perceived 

peak depth of the object. 

3. Consider how these results relate to the current models of disparity extraction,  

4. Discuss object based mechanisms that might cause the observed bias in perceived 

peak depth.  

5. Consider a cue conflict between disparity and the texture gradient on the smooth 

edge of the object. 

6. Compare the object’s shape to the edge shape used in the Craik-O’Brien-Cornsweet 

illusion.   

7. Look at the relevance of the results here for the second strand of the thesis, where 

we look at the hypothesis that binocular vision is used to break camouflage. 

8. Round up with a discussion of the future directions we will take in the first strand of 

the thesis. 

In the first strand of this thesis we consider how binocular vision contributes to object 

perception. In this Chapter, we have experimented using an object that has a poorly defined 

edge, to see if object processing influences the perceived depth of the object. In Experiment 
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1, we discovered that if there was a poorly defined edge between the object and the 

background then the object would be perceived as having a decreased peak depth. In 

Experiment 2, we investigated if this could be due to the presence of half occlusions in the 

stimulus, but found no evidence of any effect. We conclude that the decrease in peak depth 

is due to disparity processing, potentially due to the disparities within a segregated object 

being combined to give an overall estimate of the object’s depth.   

The second experiment also replicated the 

results of Experiment 1 – that a greater 

smoothness coefficient decreases the 

perceived peak depth of the object. 

However, there is less overall bias in the 

PSE at higher smoothness coefficients (see 

comparison of averaged participant data 

between the experiments in Figure 4.12). 

While this could be due to inter-

participant variation, it is of interest as in 

this experiment only one edge was 

smooth, meaning there were fewer 

elements between peak and zero-disparity (this can be seen mathematically by the Eq.4.3 

for the stimulus in only being dependent on 𝜎 rather than 𝜎2). As our segregation and 

averaging theory above involves averaging over the intermediate disparities present in the 

smooth edge, then in this stimulus with fewer intermediate disparities we would expect a 

smaller decrease in the perceived peak depth. This is exactly what we observe, further 

indicating that the segregation and averaging hypothesis may hold merit. 

The results here are not clearly explained by the current models of disparity extraction. This 

is because the current understanding of disparity extraction relies on comparing small 

regions of the image in two eyes, and using this comparison to estimate the disparity of the 

small region (see Chapter 2.2.5). Typically, this process causes averaging over small scales 

due to the finite minimum size of the regions estimating disparity e.g. (Norcia & Tyler, 1984; 

Tyler & Julesz, 1980). However, the averaging caused by disparity extraction is typically on 

scales of 3-6arcmin or lower (Filippini & Banks, 2009; Harris et al., 1997) – much smaller 

than the 100+arcmin region over which we have disparities near the peak depth. The small 

5arcmin region should therefore extract the correct peak disparity for a large area of the 

stimulus, thus correctly estimating the peak depth of the object. However, this is not what 

we observe: in order for the edges to have an effect on the perceived peak depth we need a 

mechanism that averages disparities over a region larger than 100arcmin – far larger than 

the 5arcmin regions used for fine scale disparity extraction. 

We hypothesize that the long range interaction of disparity is due to an object based 

mechanism. This is inspired by Gestalt grouping (see Section 2.2.6) experiments such as those 

 
Figure 4.12: Comparison of average participant 

results in Experiment 1 (yellow circles) and 
experiment 2 (red squares). Error bars are the 

SEM based on observer variation. 
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conducted by Deas & Wilcox (2014, 2015), and Pizlo et al. (2005a). These experiments also 

used very large stimuli (Deas and Wilcox used an object of 2.2o by 3.30), and found that the 

perception of depth was impaired when elements were grouped into a single object. This 

indicates that there could be a large scale mechanism that is causing a bias in the perception 

of depth within objects. It is inspired by this work that we explore the potential of averaging 

taking place across the extended region of the object itself in Chapter 5.  

4.5.1.1 Potential cue conflict 

Unfortunately, the stimulus itself may introduce an additional complication. By maintaining 

a constant dot density across the RDS, we have created a potential cue conflict on the 

smooth edges of the object. If the random dots were a texture on the surface of the object, 

then the density of dots should increase when the surface slants more steeply away from 

the observer (Hillis et al., 2004). As we wish to avoid introducing any monocular cues to the 

experiment, we could not replicate this effect, thus causing a cue conflict that may decrease 

participants’ sensitivity or introduce bias to the task (Backus et al., 1999; Gillam, 1968; 

Gillam, Blackburn, & Brooks, 2007; Gillam & Ryan, 1992; Hillis et al., 2004; Knill & Saunders, 

2003; Ryan & Gillam, 1994). However, as the top of the object is approximately flat, then 

the region over which participants are making a judgement will not have this cue conflict, so 

the effects on the perceived peak depth of the object should be limited and do not explain 

the effects observed here.  

It is interesting to compare the decrease in peak depth of the object to the Craik-O’Brien-

Cornsweet illusion (Anstis et al., 1977) discussed in Section 2.2.6. When two planes of 

identical depth are joined together using a Cornsweet profile (see bottom Figure 4.13 

reproduced from Figure 2.11) then there is a bias in the depth difference between the two 

planes. This is of particular interest, as the Craik-O’Brien-Cornsweet illusion is causing a 

change in the perceived depth of a surface due to the shape of the edge between the two 

surfaces. This is very similar to our results, where a smooth edge is altering the perceived 

depth between the surface of the background and the surface at the top of the object. 

While the Craik-O’Brien-Cornsweet illusion causes a difference in perceived depth between 

the two planes, and ours causes a decrease. The difference between these effects is possibly 

because of the presence of a discontinuity in the smooth depth change in the Craik-O’Brien-

Cornsweet profile. It would be interesting to see a study that investigated if the perceived 

depth of a smooth edged object could be manipulated by introducing a discontinuity in the 

profile similar to that in the Craik-O’Brien-Cornsweet illusion.  
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The shapes explored in this Chapter are very relevant to 

the second strand of the thesis which will explore the 

hypothesis that binocular vision is used to break 

camouflage – here we have effectively found a shape 

that may allow an animal to camouflage itself to a 

binocular predator. If an animal resting on the 

background was approximately cylinder shaped, then 

on its edges it would have depth discontinuities similar 

to our sharp edged object. The animal, however well 

camouflaged would stand out to a binocular predator. 

However, if the animal changed its shape to be similar 

to our smooth edged object by smoothing itself into the 

background, then it would decrease its apparent peak 

depth. This manipulation might allow the animal to 

blend better into the contours of the background and, 

with its decrease in peak depth, pop out less from the 

background making it harder to spot. In Chapter 8 we 

use visual search experiments to explore if the smooth 

object is harder to spot. 

To shed light on why the smooth edged object is perceived with less depth, we now turn to 

the alternative explanation discussed after Experiment 1 (Section 4.3.4.1): that poor object 

segregation causes some of the non-peak disparities from the smooth edge to be 

segregated from the background as part of the object. Subsequent averaging to reduce 

disparity noise over the segregated object would cause disparities from the smooth edge to 

reduce the average disparity calculated for the entire object, pulling down the perceived 

depth of the object. This effect is discussed and explored in detail in the next Chapter. 

  

 
Figure 4.13: Top: Cornsweet 

illusion in the luminance domain. 
Both sides have identical 

luminance.  Image reproduced 
with permission,  (Fibonacci, 

2005).  
Bottom: solid line: cross-section of 

the Cornsweet profile. Dashed 
line: representation of the 

viewer’s perception. 
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5 How do we segregate an object from the 

background? 

 Strand 1, How does depth from binocular vision contribute to object perception? 

 Investigating: If object based disparity processing involving segregating the object 

from the background influences the perceived depth of the object. 

 Task: Create a computational model which can replicate participants’ performance. 

 Manipulation: Size and shape of the object segregated by the model. 

 Results 1: Model is a good fit to existing results from Experiments 1 and 2. 

 Results 2: Model can predict participants’ performance on a new stimulus. 

 Conclusions: Visual system uses properties of the object to segregate it from the 

background, then estimates disparity via averaging across the segregated region. 

 
Figure 5.1: A camouflaged soft coral crab (Hoplophrys oatesi, centre of the image). Note 
how the crab has grown protrusions to imitate its background – outside of the coral this 
camouflage would be ineffective. Image reproduced with permission, (Hobgood, 2005) 
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5.1 Introduction 
This Chapter continues the first strand of the thesis, exploring how disparity defined depth 

interacts with objects perception. There are many current models of disparity extraction in 

the early levels of the visual system which can describe many of the visual effects observed 

in humans e.g. (Allenmark & Read, 2011; Banks et al., 2004; Chen & Qian, 2004; Filippini & 

Banks, 2009)(see Sections 2.2.4 and 2.2.5 for an in depth discussion). Although they are very 

powerful, these models typically only describe the early stages of disparity extraction and do 

not address the behaviour involving disparity combination for object perception. Indeed, 

Section 2.2.4 detailed an in depth discussion of the importance of the later stages of the 

visual system, where the first evidence of disparity processing on a similar scale to our 

objects occurred in V4 (Umeda et al., 2007). In order to better understand how a depth 

defined object is perceived and how this interacts with camouflage, we are not interested in 

the exact anatomy or mechanisms used in the visual system, but rather a general 

understanding of the which aspects of our stimuli  are governing the perception of an 

object’s depth. We therefore take a step back from these complex models of the visual 

system and create a simpler quantitative model to explore what interactions of disparity can 

cause the altered perception of the peak depth of the object found in the previous Chapter. 

Quantitative models of the visual system are simple to calculate, understand and 

implement, meaning we can characterise the interaction of the perceived depth of the 

object with the shape of our stimuli in a way that would be very hard using more complex 

models. In turn, these insights could inform the current literature on disparity processing, 

enabling a more directed approach to the construction of complex models: it is easier to 

construct a complex model when we already have a basic understanding of the interactions 

involved in the perception of disparity in our stimuli. We therefore expect this model to be 

complementary to the techniques currently used for studying the visual system without 

directly competing with them. 

This Chapter consists of three main Sections: 

1. First, in Section 5.2, we discuss the overall approach and basis behind the model we 

will be using, and why it might account for the observed bias in perceived peak 

depth. 

2. The next two Sections (5.3 and 5.4) concern themselves with modelling Experiments 

1 and 2 from the previous Chapter. Interestingly, we find that the best fit for the 

model is to segregate and average over a square region the same size as at the 

distance between the inflection points (plateau size) of the smooth object. 

3. In Section 5.5 we take the developed model and use it to predict the performance of 

a new experiment. We have two different predictions, depending on exactly how the 

visual system is segregating the smooth object. We run the experiment, and find a 

good fit between the predicted and experimental results when segregation is based 

properties of the shape of the object.  
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5.2 Model basis & overall approach 
As discussed above, we consider a quantitative model of the interaction of our stimulus and 

perceived depth, and consider what processing would have to happen to create our 

observed results in Chapter 4 – that an object with smooth edges is perceived with less peak 

depth than one with sharp edges. We start from the underlying equation that defines the 

shapes of our objects and investigate if a simple lateral disparity interaction (see previous 

Section for an explanation) would be required to create the reduction of perceived depth 

observed in the smooth object.  

Here, we aim to discover how the edges of the smooth object could interact with the 

perception of the peak depth of the object. Perhaps the simplest form interaction would be 

if the perceived depth of the object was calculated as the average disparity over an area 

that has been segregated out as the object. Averaging of this form would be advantageous 

overall as we know the first stages of disparity extraction are error prone (Tsai & Victor, 

2003), and therefore perceiving the disparity of a single point as being exactly the estimated 

disparity at that point could cause misinterpretations of object shape and texture. An 

average over an area would increase the precision and accuracy of the depth estimate for 

opaque continuous objects, thus conferring an advantage for object perception when 

implemented after disparity extraction.  

If we consider averaging over a small but 

extended area, as between the dashed 

lines in Figure 5.2, then the average depth 

will be similar to the peak depth of the 

object, regardless of the shape of the 

edges. However, with an object like our 

smooth object, if the averaging area is too 

large, such as between the dotted line in 

Figure 5.2, it will include below-peak 

disparities contained within the edges of 

the object. Averaging over these below-

peak disparities causes a decrease in the 

average peak depth and therefore the 

perceived object depth. The modelling and 

experiments presented in this Chapter primarily concern themselves with testing this 

hypothesis that the decrease in peak depth is caused by averaging over an extended region, 

most probably to improve signal-to-noise ratio in the object.  

 
Figure 5.2: Averaging over a small region 

(vertical dashed lines) gives an estimate similar 
to the peak depth (horizontal dashed line), but 

averaging over too large a region (vertical 
dotted lines) gives a much lower value 

(horizontal dotted line). 
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5.3 Exploring the results of Experiment 1 using modelling 

5.3.1 Introduction 

In Section 5.1 we speculated that the peak depth of the smooth object was perceived as 

being lower than the sharp object due to some form of lateral disparity interaction at a 

stage of the visual system beyond disparity extraction – probably via some form of disparity 

averaging after object segregation. In this Section, we present a simple quantitative model 

that explored this idea to see if averaging over a segregated area of the object could 

replicate the participants’ performance in Experiment 1. 

We implemented the quantitative model via the equations that generate the shape of the 

object. As discussed in Section 5.1 we are interested a characterising and understanding 

how the perception of depth is influenced by the shape of our object. We therefore create a 

model based on the equations that govern the stimulus; this model that should complement 

the complex approach of the models of the visual system such as those by Allenmark and 

Read (2010, 2011) and others (see Section 2.2.5 for a discussion).   

In Section 5.1 we speculated that the visual system was segregating an area of the 

background out as the object, then averaging over the object in order estimate the overall 

disparity of the object. In order to implement a model that averaged over the segregated 

object, we had to choose the shape of the segregated region that was averaged. As we 

speculated that averaging occurs during the depth estimation of objects, we thought that 

that the shape of the averaged area might be dependent on the shape of the object – in our 

case square. We contrast this square based averaging to a circle and a Gaussian to explore 

the effect of segregated shape on the model’s performance. 

5.3.2 Square window model 

In this sub-section we consider a computational model where the shape of the area being 

averaged (called the averaging window), is square. This was because all the objects used in 

Experiment 1 are approximately square-based. The predicted perceived peak depth is the 

average disparity within this window.  

5.3.2.1 Implementation – integrals 

The fastest and simplest way to implement an average over an area of our object is divide 

the integral of the function that defines the underlying shape of the object by the area that 

is averaged over. The function used to define the smooth object is: (Eq. 4.1, repeated here 

for clarity). 

𝑓(𝑥, 𝑝) =
1

2
[tanh(

1

𝜎
(𝑥 −

𝑤 − 𝑝

2
)) − tanh(

1

𝜎
(𝑥 −

𝑤 + 𝑝

2
))] Eq.  5.1 

 Where 𝑓 is a function of the position 𝑥 and the plateau size 𝑝. Plateau size determines the 

distance between the points at half depth. 𝜎 is the smoothenss coefficient, and determines 

the edge profile. Finally, 𝑤 is the overall width of the object. The average of this function 
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across a square area can be found by dividing the two dimensional integral by the area 

covered by the integral: 

𝛿𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝛿𝑝 ∫ ∫ 𝑓(𝑥, 𝑝)

𝑦2
𝑦1

𝑓(𝑦, 𝑝)𝑑𝑦
𝑥2
𝑥1

𝑑𝑥

(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)
 Eq.  5.2 

 

Where 𝑥1 and 𝑥2 are the minimum and maximum 𝑥 values of the window – likewise with 𝑦1 

and 𝑦2. So the bottom left of the averaging window is located at (𝑥1, 𝑦1) and the upper right 

at (𝑥2, 𝑦2). 

For the moment, we consider only the numerator of this equation, which calculates to the 

total disparity within the square area: 

𝛿𝑡𝑜𝑡𝑎𝑙 = 𝛿𝑝∫ ∫ 𝑓(𝑥, 𝑝)
𝑦2

𝑦1

𝑓(𝑦, 𝑝)𝑑𝑦
𝑥2

𝑥1

𝑑𝑥 Eq.  5.3 

 

As 𝑥 and 𝑦 are orthogonal, the integrals are separable: 

𝛿𝑡𝑜𝑡𝑎𝑙 = 𝛿𝑝∫ 𝑓(𝑥, 𝑝)
𝑥2

𝑥1

𝑑𝑥∫ 𝑓(𝑦, 𝑝)𝑑𝑦
𝑦2

𝑦1

 Eq.  5.4 

 

Solving these integrals separately, and substituting in 𝑝 =
𝑤

2
 as in the first experiment we 

obtain: 

∫ 𝑓 (𝑥,
𝑤

4
)

𝑥2

𝑥1

𝑑𝑥 = ∫
1

2
[tanh(

1

𝜎
(𝑥 −

𝑤

4
)) − tanh(

1

𝜎
(𝑥 −

3𝑤

4
))]

𝑥2

𝑥1

𝑑𝑥 Eq.  5.5 

   

∫ 𝑓 (𝑥,
𝑤

4
)

𝑥2

𝑥1

𝑑𝑥 =
𝜎

2
ln

(

 
 cosh (𝜎−1 (

𝑤
4 − 𝑥2)) sech (𝜎

−1 (
𝑤
4 − 𝑥1))

cosh (𝜎−1 (
3𝑤
4
− 𝑥2)) sech (𝜎

−1 (
3𝑤
4
− 𝑥1))

)

 
 

 Eq.  5.6 

 
For brevity, we define a function: 

𝑔 (𝑥1, 𝑥2,
𝑤

4
) = ln

(

 
 cosh (𝜎−1 (

𝑤
4 − 𝑥2)) sech (𝜎

−1 (
𝑤
4 − 𝑥1))

cosh (𝜎−1 (
3𝑤
4 − 𝑥2)) sech (𝜎−1 (

3𝑤
4 − 𝑥1))

)

 
 

 Eq.  5.7 

 
So, substituting this back into equations 5.4 and 5.2 respectively, we find that: 

𝛿𝑡𝑜𝑡𝑎𝑙 = 𝛿𝑝𝜎
2𝑔 (𝑥1, 𝑥2,

𝑤

4
) 𝑔 (𝑦1, 𝑦2,

𝑤

4
) 

 
Eq.  5.8 
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𝛿𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝛿𝑝𝜎

2𝑔 (𝑥1, 𝑥2,
𝑤
4) 𝑔 (𝑦1, 𝑦2,

𝑤
4)

(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)
 Eq.  5.9 

 

As we are considering a square area to average over, we know that 𝑥2 = 𝑦2 and 𝑥1 = 𝑦1, 

and 𝑥2 − 𝑥1 = 𝑙, where 𝑙 is the edge length of the square. Additionally, as the square is 

centred on the peak depth of the stimulus, we set 𝑥2 = 𝑤 − 𝑥1, so that the edges of the 

averaging window are the same distance from the edges of the stimulus on both sides. This 

gives us the final equation for calculating the average disparity within an arbitrary square of 

edge length 𝑙 on our smooth stimulus: 

𝛿𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝛿𝑝𝜎

2𝑔 (𝑥1, 𝑤 − 𝑥1,
𝑤
4)

2

𝑙2
 

Eq.  5.10 

 
We are calculating the peak depth of the object, which is located centrally, so we therefore 

consider the square window to be centred on the object, so that 𝑥1 =
𝑤−𝑙

2
. Substituting this 

into Eq. 5.10: 

𝛿𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝛿𝑝𝜎

2𝑔 (
𝑤 − 𝑙
2 ,

𝑤 + 𝑙
2 ,

𝑤
4)

2

𝑙2
 

Eq.  5.11 

 
The only unknown variable in this equation is therefore the size of the averaging window to 

be used, 𝑙. This is our only free variable, which we fit to each participant’s data by 

generating the predicted perceived peak disparity for each smoothness coefficient at one 

window size. The goodness-of-fit of the window is calculated using the chi-squared test 

statistic: 

𝜒2 =∑
(𝑂𝜎 − 𝐸𝜎)

2

(𝛿𝑂𝜎)2
𝜎

 Eq.  5.12 

 
Where 𝑂𝜎 is the observed value (i.e. the PSE from Experiment 1, Section 4.3.3) of the peak 

depth at smoothness coefficient 𝜎, 𝐸𝜎 is the expected value from the model. 𝛿𝑂𝜎 is the 

error in the observed PSE, obtained from bootstrapping when fitting the psychometric 

function to the participant’s raw data, see Section 3.2.1 for a discussion and Section 4.3.3 

for an example fit. The advantage of this test statistic is that it takes into account the size of 

the error bars in the experimental data – an important consideration as the participants 

vary inconsistently in their performance at different smoothness coefficients (see Figure 

4.6). This procedure is repeated for many different window sizes, and the window with the 

lowest chi squared test statistic is considered the best fit and retained (Andrae, Schulze-

Hartung, & Melchior, 2010). The model is applied to each participant separately. We only 

accept the model as having successfully fitted participant’s data if the model produced a 

value of 𝜒2  under 25.0 in fewer than 1000 iterations.  
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To get an idea of how well the test statistic fits the observed data, we turn to the simplest of 

regression theory – the 𝑅2 test statistic, defined by: 

𝑅2 = 1 −
∑ (𝑂𝜎 − 𝐸𝜎)

2
𝜎

∑ (𝑂𝜎 − �̅�)2𝜎

 Eq.  5.13 

 
Where �̅� is the average observed value for all smoothness coefficients. Effectively, a 𝑅2 

value of 1 indicates that the model can account for all the variation in the observed data, 

and a value of 0 indicates that it can account for none of the variation (subject, of course, to 

other statistical tests). Finally, a result of -1 or less indicates that the data would be better 

fitted by a linear fit than the proposed model.  

5.3.2.2 Results 

The model performs well, producing fits to all participants with an average 𝑅2 of 0.92, 

indicating that the model can account for 92% of the variance in the data (see data table in 

Figure 5.4 for a breakdown for all participants).  The observed PSEs for all participants is 

plotted with the best model prediction for fits to the data in Figure 5.3.  

 
Figure 5.3: Square model fit (solid lines) to the participants’ data (symbols). Error bars are 

one standard error. 
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Figure 5.4: Bar graph: window size used for each participant and the group mean. Dotted 

line is plateau size of the smooth object. Data table: Window size (arcmin) and the R 
squared test statistic for each participant. Window size (%) is the size of the fitted window 

divided by the plateau size (171 arcmin) as a percentage. 
 

5.3.2.3 Discussion 

In this Section, we set out to model the participants’ performance in Experiment 1 to gain 

an understanding of why the participants have a bias in their perceived peak depth of the 

smooth object. We speculated that after object segregation, the segregated object area 

would be averaged to decrease noise in the estimate of the depth of the object. If the object 

was square, and the visual system segregated based on the shape of the object then we 

would expect the visual system to average over a square area (called an averaging window). 

This model could account for the decrease in perceived peak depth because if the smooth 

object was segregated part way down the smooth edges, then the averaging would include 

disparities below the peak value, thus decreasing the estimate of the depth of the object. 

We created a model to average over different square windows to test if these could fit the 

experimental data. 

The model describes the data well, with the fits produced accounting for over 80% of the 

variance in the data for each participant (separately).  It is important to note we only had 

one free parameter, and the shape of the window over which we average was fixed. This 

suggests that the square shape used by the model is likely to be a fundamental part of the 

peak disparity extraction process. Also of interest is the size of the windows fitted to the 

model: in data table in Figure 5.4 the range of fitted window sizes is between 146 and 

A B C D Avg

Window Size (%) 102 90 100 85 94

Window Size (arcmin) 174.5 154.6 170.5 146.2 161.4
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175arcmin. These values are very close the size of the plateau used in creating the sharp and 

smooth objects – 171 arcmin, further indicating that the shape and size of the averaging 

window is dependent on the properties of the object.  

Here we offer some speculation to why it might be an advantage to average over a flexible 

sized area of the object. As we discussed in Section 2.2.4, disparity extraction is an 

inherently noisy process - if, when judging the disparity of a point in space, then the 

extracted disparity of that point was the estimate would have a high degree of error. As 

objects in the scene are typically extended across significant regions in space, and objects 

often vary smoothly in depth, it is not unreasonable for the visual system to make the 

assumption that similar nearby disparities are part of the same object, and therefore are of 

similar magnitude to the requested point judgement. Therefore, by segregating an area of 

the object with approximately constant disparity from its surroundings, and then combining 

the disparities over the segregated region it should be possible to improve the precision of 

the depth estimate of the object. One way of combining disparities over a region in order to 

reduce the error in the estimate of the peak depth would be to take the average depth.   

We speculate that this is the mechanism that we are replicating in this model: that the 

visual system is segregating out a central area of the object, and then averaging over it in 

order to reduce the error in the estimate of peak depth. If this is the case, then the shape of 

the averaging window should be dependent on the object’s shape. In order to confirm or 

refute this suspicion we investigate if other window shapes can reproduce a good fit in 

Section 5.3.3.  By performing modelling on the results from the second experiment (see 

Chapter 5.4), we can confirm if any findings are coincidences from this specific shape used in 

Experiment 1, or if there is an underlying behaviour governing the disparity averaging area.   

5.3.3 Circular window model 

In the previous Section, we successfully fitted participants’ data for Experiment 1 to a model 

that segregated over a square region (called a window) and then averaged over all 

disparities within this area. Given the model has only one free parameter, it created a good 

fit to participants’ data. We speculated that the square shape of the averaging region was 

due to object segregation, and therefore based off the shape of the object. Here, we test 

this hypothesis by considering a model where the region averaged over is circular: the 

object used in experiment 1 is square-based so we would expect this model to fail if the 

averaging window is dependent on the shape of the object. We expect the circular model to 

be unable to emulate it for human performance, but include it for completeness. 

5.3.3.1 Implementation of the circular and Gaussian models 

As in the previous Chapter, we initially calculated the integral of the shape of the object for 

a circular window. However, the integral is much more complex, and involved considerable 

calculation time using Wolfram Mathematica®’s Integrate function. An attempt to run this in 

the same fitting program used in the previous Section resulted in unreasonable runtimes. 

We therefore turned to a simpler technique for calculating the best fit for a circular window 
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– we calculated the average disparity by first generating a disparity matrix across the object, 

then averaged all the disparities within the desired region. This was originally the approach 

used in fitting the square window model, however the technique has a poor trade-off for 

calculation speed vs accuracy. To ensure that the accuracy for this different technique was 

correct and comparable to the previous square model, we took the resulting window size fit 

and ran it numerically though the integration process in Wolfram Mathematica ®. 

We now describe the method for calculating the average disparity within a circular window. 

A disparity matrix 𝐷 was created, such that each element 𝑖, 𝑗 corresponded to the disparity 

calculated from Equation 5.1 at a point on the object (𝑥 = 𝑖, 𝑦 = 𝑗). To calculate the 

average disparity for a window of a given radius, 𝑟 we take a second matrix 𝐴 such that 

𝐴𝑖𝑗 = 1 if the element was within the window, and 𝐴𝑖𝑗 = 0 if the element is outside of the 

window: 

𝐴𝑖𝑗 =

{
 
 

 
 
1 𝑖𝑓 √(𝑥 −

𝑤

2
)
2

+ (𝑦 −
ℎ

2
)
2

≤ 𝑟2

0 𝑖𝑓√(𝑥 −
𝑤

2
)
2

+ (𝑦 −
ℎ

2
)
2

> 𝑟2

 Eq.  5.14 

 

We then do elementwise multiplication (∘) of the disparity matrix 𝐷 with matrix 𝐴, and sum 

all resulting elements – this provides the total disparity contained within the circle. To 

obtain the average disparity, we then divided by the total number of non-zero elements (i.e. 

the sum of 𝐴): 

𝛿𝑐𝑖𝑟𝑐𝑙𝑒 =
∑(𝐷 ∘ 𝐴 )

∑(𝐴)
 Eq.  5.15 

As before, we performed this calculation for a range of window sizes and for all smoothness 

coefficients used in Experiment 1, and compared the model’s predictions to the 

participant’s performance. The fit with the smallest chi-squared test statistic was considered 

the best fit, and we then calculated the 𝑅2 test statistic to give us an idea of how well the 

prediction fitted the observed data. This is repeated separately for each individual 

participant. 
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5.3.3.2 Results 

Results for each individual participant of their best fit for the circular model and the 

observed data are shown in Figure 5.5, with the results and test statistics summarised in 

Table 5.1. It can be seen from Figure 5.5 that the predicted model fits are far from the 

experimental data – this is backed up from the test statistics seen in Table 5.1, 

 
Figure 5.5: Circular model fit (solid lines) to the participants’ data (symbols). Error bars are 

one SEM. 
 

Participant Window Size 

(arcmin) 

𝑅2 

(a) 165.3 -239 

(b) 146.0 -20 

(c) 158.3 -89 

(d) 139.5 -15 

Average 152.4 -91 

Table 5.1: Window size and 𝑅2 test statistics for the circular model fit. 

 

5.3.3.3 Discussion 

We developed a circular model to help confirm if the averaging region was dependent on 

having a square shaped averaging window. Having run a simple circular window model, it 

can clearly be seen that the predicted perceived peak disparities are far outside of the 
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observed perceived peak disparities, with the test statistics indicating that the data is far 

better fitted with a straight line rather than with the circular model. Compared to the 

square window model in Chapter 5.3.2 this model is extremely poor, indicating that shape 

of the window which is averaged over is important to predicting the perceived peak depth, 

not just the act of averaging over an extended area.  

5.3.4 General discussion – Experiment 1 modelling performance 

Here, we developed a model to characterize the quantitative approach that the visual 

system was using to estimate the peak depth of the smooth objects. We found that a model 

that averages over a square central region of the object performed very well, being able to 

account for an average of 92% of the variance in the data. This model was compared 

favourably to similar versions that performed the same calculation using circular windows: 

the circular model delivered an extremely poor fit. 

In Section 5.3.2.3, we speculated that the success of the square window indicated that the 

brain segregated the square object from the background and then averaged over the 

segregated square region. This may confer an advantage by reducing the errors present in 

the disparity signal from disparity extraction. This segregation and averaging increases the 

precision of the estimate of the depth of the object, however when applied over objects 

such as ours with smooth depth edges it risks including disparities that are different due to 

the physical depth differences rather than depth extraction errors, thus introducing the 

observed bias in the perceived depth of the object. If the brain is truly segregating an area 

of the object to average over, then the good performance of the square window should be 

unique as it is based on the shape of the object. However, this mechanism and explanation 

is very speculative, especially given our simplified quantitative model of the visual system. It 

would be interesting to see further work extending this model into a computational theory 

of the visual system that explored the origins and reasons for a mechanism that causes an 

average of the surface of an object. 

In the next section we test how well our quantitative model enables us to understand the 

interaction of the object shape with the perception of depth in the object by applying the 

model to Experiment 2. 

5.4 Exploring the results of Experiment 2 using modelling 

5.4.1 Introduction 

In the previous Section, we found that a model based on averaging disparities over a square 

window performed very well at fitting participants’ performance on the smooth edged 

stimuli in Experiment 1. However, the model has only been tested against one stimulus – in 

order to understand how well this model applies to the generic processing in the visual 

system we must test its performance against other objects, with different shapes and 

characteristics. In the Experiment 2, we used a more complex stimulus with one smooth 

edge and one sharp edge. This stimulus is still square based, so we would expect that the 
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square averaging model developed in Section 5.3.2 should be able to fit the performance of 

the participants’. The stimulus and results from Experiment 2 will therefore make a good 

test of how general the model is, as the stimulus is similar in shape but results in different 

observed PSEs. The only alteration we need to make to the model is to the change the 

equation defining the shape of the object to that used for the second experiment. 

5.4.2 Model Implementation – integrals 

The same process as used in Section 5.3.2.1 can be used to calculate the average disparity 

over an area using integrals. However, due to the presence of conditionals in the stimulus, 

we end up with two different equations that govern the model, depending on whether the 

square window is large enough to incorporate the sharp edges of the object:  

𝑥2 − 𝑥1 ≤ 𝑤, 𝛿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =
𝑓(𝑥2, 𝑥1)

2(𝑦2 − 𝑦1)
 Eq.  5.16 

   

𝑥2 − 𝑥1 > 𝑤, 𝛿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 
𝑓(𝑥2, 𝑥1)𝑤

2(𝑦2 − 𝑦1)(𝑥2 − 𝑥1)
 Eq.  5.17 

 

There are two stimuli used in Experiment 2, however these stimuli are identical in their 

equations but with 𝑥 and 𝑦 switched. Therefore, the predicted flattening for both conditions 

is identical. 

5.4.3 Results 

The integral equations predict that the participants should not perceive a difference 

between the two conditions – this is what we see in the results of Experiment 2 (Section 

4.4.2). 

Model fits are plotted against each participant’s performance individually in Figure 5.6. Test 

scores and fitted window sizes are summarised in Table 5.2. The fits are good in general, 

although the fit for participant C only accounts for 53% of the variance – from inspection of 

their performance however it can be seen that they have unusually large error bars for this 

condition compared to other participants, suggesting that they found this condition of the 

experiment particularly hard. The 𝑅2 test statistic cannot take into account the error in the 

participant’s performance, so the poor score on this statistic is likely due to their uncertainty 

in response. 
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Participant E Participant F 

  
Participant G Participant C 

  
Figure 5.6: Participants’ performance and square model fits for all participants in Experiment 2. 

Participant C participated in Experiment 1. NHO = No Half Occlusions, HO = Half Occlusions.  
 

Participant Condition Window Size 

(arcmin) 

Window Size 

(% of sharp-edged patch) 

𝑅2 

E NHO 151.7 89 1 

E HO 145.1 85 0.94 

F NHO 172.2 101 0.98 

F HO 173.3 101 0.79 

G NHO 163.2 95 0.96 

G HO 157.2 92 0.53 

C NHO 167.8 98 0.98 

C HO 171.4 100 0.88 

Average NHO 164.2 96 0.98 

Average HO 162.3 94 0.87* 

Average Total 163.2 95 0.93* 

Table 5.2: Window size and 𝑅2 test statistics for the square model for Experiment 2. NHO has 
no half occlusions, HO has half occlusions. *Average 𝑅2 excludes participant C condition 2. 
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5.4.4 Discussion 

When we modelled participants’ performance for Experiment 1, we found that the model 

that best fit participants’ performance was an average over a square region. We speculated 

this was due to the square based nature of the object . To backup this characterization of 

the interaction of the stimulus and the perceived peak depth of the object, we created an 

analogous square based model on the stimuli used in Experiment 2, where it should perform 

as well due to the square based nature of the stimuli in Experiment 2. 

The model fits very well to the data shown; with the average window size used being similar 

to the modelling of Experiment 1 (Section 5.3) and having a high 𝑅2 value. As predicted, this 

indicates that the model may be generalizable to many different square-based stimuli. 

Interestingly, the results from the window sizes used in the experiment are similar to those 

found in the previous modelling of Experiment 1 (which has an average window size of 

152.4 arcmin, see Section 5.3.2.2). These window sizes are very similar to the plateau size 

(distance between the half-depth points on the stimulus) of the smooth object, and the 

width of the sharp object. In the modelling of the first experiment we tested several 

different object shapes, and found that the square shaped window gave the best fit to the 

participant data. The square shaped window was most similar to the shape of the objects 

displayed, and the size of the window was similar to the size of several key characters of the 

objects displayed. We speculated that this indicated a link between the size and shape of 

the averaging window and the size and shape of the object.  

This speculation that there is a link between window size and object size is backed up by the 

performance of participant C, who completed both experiments. Modelling for this 

participant fitted their performance using a window size of 170.5 arcmin in Experiment 1, 

and 167.8 and 171.4arcmin for NHO and HO conditions respectively in Experiment 2 with a 

𝑅2 of 0.98 for all fits. These window sizes are very close to each other with a consistently 

good fit, indicating that the model and the participant are performing similar calculations in 

both experiments. 

To consider this possible link between the averaging window and the object, we look at 

what aspects of the stimulus display may cause the averaging window to be similar in size 

and shape to the objects displayed. There are two main possibilities, discussed in depth in 

Section 5.3.2.3 and again in the introduction of the next Section, 5.5.1:  

1. Shape based averaging: That the properties of the smooth object are determining 

the shape and size of the area to be segregated then averaged.  

2. Template based averaging: The shape and size of the sharp object is providing a 

template that determines the shape of the smooth object.  

We can distinguish between these two theories by changing the plateau size of only the 

smooth object and seeing if the size of the averaging window changes. If changing the 

plateau size alters the size of the averaging window, then the averaging window must be 
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determined by the shape based averaging – if not then the template is determining the 

shape and size of the averaging window. 

5.5 Experiment 3: Testing model predictions using a new experiment 

5.5.1 Introduction 

We have created a simple descriptive model in Section 5.3 that is able to fit our 

observations of previous experimental results to a very high degree. However, this does not 

show that the understanding we have gained from this model is applicable in novel 

circumstances. Here, we test the model by predicting the results of an experiment that has 

not been run, and then run the experiment to test how well the model stands up.  

For this experiment, we predict what the window size is based on the stimulus, then 

calculate the predicted perceived peak depth, then run the experiment. The model will have 

no free parameters, as the only parameter in Sections 5.3 and 5.4 was window size. Holding 

all the parameters fixed means that we cannot account for individual participant variation 

and our prediction is for the group behaviour. Zero free parameters also means we expect 

the prediction to be much poorer than the previous fits, but this prediction will indicate if 

the behaviour of the model is generalizable to other situations. 

Additionally, the current model fits have found that the window size used in averaging is 

coincident with two major properties of the experimental stimuli:  

1. The edges of the window lie near the inflection points (and the full width half depth) 

of the smooth stimulus. This indicates that the visual system may be using these 

properties to determine the edge of the object, then using them to segregate the 

object from the background and average over the area that has been segregated out 

as the ‘object’. We call this hypothesized mechanism shape based averaging.  

2. The size of the window is close to the size of the sharp stimulus, which is always 

present and the participant is requested to compare the smooth stimulus to the 

sharp stimulus. The sharp stimulus may be used as an indication of the size of the 

smooth object, and therefore the visual system uses the sharp object as a template 

to segregate the smooth object from its background. This effectively causes 

segregation and averaging may be taking place over a template dictated by the sharp 

edged object. We call this template based averaging.  

These two predictions have very different implications – one where the shape of the object 

is governing the behaviour, implicating our hypothesized object segregation mechanisms, 

and the other due to the setup of the experiment. In this experiment we vary the size of the 

plateau of the smooth object (see Figure 5.7 for a 3D diagram of this manipulation), to test 

which of these behaviours is driving the averaging we observe. If this manipulation makes a 

difference to the size of the averaging window, then this indicates that the visual system is 

using shape based averaging as opposed to template based averaging. 
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It is worth noting that, the fitted window size is approximately 90% of the size of the plateau 

size used for both the smooth and sharp stimuli. We are not predicting that the width of the 

plateau on either the smooth or sharp objects is exactly where the edge of the averaging 

occurs - it is highly unlikely that the averaging occurs over a distinct, hard edged region, 

however as the models of the previous two experiments show (Sections 5.3 and 5.4), it is a 

good approximation to the true area averaged.  

5.5.2 Modelling, and model predictions 

We took the equation governing the predicted peak depth from the model and altered it to 

the shape of an object with variable plateau size. However, this time we had two 

predictions: that the shape of the object defines the size of the averaging window, called 

shape based averaging; or that it is set by the size of the sharp edged stimulus, called 

template based averaging. Here, we address the predictions of each in turn. For both 

predictions, we consider our equation of the peak depth (average disparity) of the object, 

repeated here in a generalised form for simplicity: 

𝛿𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝛿𝑝𝜎

2𝑔(𝑥1, 𝑥2, 𝑝)𝑔(𝑦1, 𝑦2, 𝑝)

𝑙2
 Eq.  5.18 

 
Where 𝛿𝑝 is the peak disparity of the object, 𝜎 is the smoothness coefficient, 𝑔(𝑥1, 𝑥2, 𝑝) is 

the underlying integrated function of the smooth edges (see Eq.5.7), 𝑝 is the plateau size 

and 𝑙 the width of the averaging window – defined as 𝑥2 − 𝑥1. (𝑥1, 𝑦1) is the bottom left 

hand corner of the averaging window, (𝑥2, 𝑦2) is the top right hand corner. 

5.5.2.1 Shape based averaging 

In the case of shape based averaging, the shape of the object defines the size of the 

averaging window. Therefore, we fix the size of the averaging window,  𝑙 = 𝑝, the plateau 

 (a) (b) 

  

Figure 5.7: A 3D representation of the stimuli used in experiment 3. (a) Small plateau size, (b) 
Large plateau size. 



97 
 

size.  The positions of 𝑥2 and 𝑥1 are dependent on the plateau size, as shown in Eq. 5.19 and 

Eq. 5.20 

𝑥1 = 𝑦1 =
𝑤 − 𝑝

2
 Eq.  5.19 

𝑥2 = 𝑦2 =
𝑤 + 𝑝

2
 Eq.  5.20 

These were subsisted into Eq.5.18 to give Eq.5.21, predicting the perceived peak depth at an 

arbitrary plateau size 𝑝 and smoothness coefficient 𝜎.  

𝛿 𝑠ℎ𝑎𝑝𝑒 =
𝛿𝑝𝜎

2𝑔 (
𝑤 − 𝑝
2 ,

𝑤 + 𝑝
2 , 𝑝)

2

𝑝2
 Eq.  5.21 

 
Figure 5.8 shows a 3D plot of the effect of changing smoothness coefficient on predicted 

PSE at different plateau sizes. Note how the predicted PSE increases dramatically at low 

smoothness coefficients – this is the effect of the objective peak depth being decreased by 

the smooth edges encroaching on the peak of the object. The effect of changing plateau size 

on the predicted PSE alone is shown in Figure 5.11a (page 121). 

 

 

Figure 5.8: The effect of smoothness coefficient and plateau size on the predicted PSE for 
shape based averaging. 
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5.5.2.2 Template based averaging 

In template based averaging, we expect that the averaged area of the window to be 

dependent on the size of the sharp object. This means we are considering 𝑥1 and 𝑥2 to be 

constants, fixed to the edge positions of the sharp object at 𝑤/4 and 3𝑤/4. We can 

substitute this straight into Eq.5.18 giving us Eq. 5.22.  

𝛿 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 =
𝛿𝑝𝜎

2𝑔 (
𝑤
4 ,
3𝑤
4 , 𝑝)

2

𝑝2
 

Eq.  5.22 

 

The effect of changing plateau size and smoothness coefficient on the predicted PSE is 

shown in Figure 5.9. When comparing to the shape based averaging in Figure 5.8, we can 

see that at large plateau sizes (150 to 250 arcmin) the predictions of both models is very 

similar. However, at smaller plateau sizes (below 150 arcmin) the predictions differ, with the 

PSE greatly increasing with decreasing plateau size for the template based model – this is 

unlike the shape based model, where PSEs do not change much with plateau size.  

 

Figure 5.9: The effect of smoothness coefficient and plateau size on the predicted PSE for 
shape based averaging. 

5.5.3 Stimuli 

We need to consider which smoothness coefficient to use for this experiment. As we have 

two predictions that we wish to discriminate between, we will therefore select the 

smoothness and plateau size where the difference between the predictions is greatest. We 

plot the difference 𝛿𝑠ℎ𝑎𝑝𝑒 − 𝛿𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 against plateau size and smoothness coefficient in 

Figure 5.10.  
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Figure 5.10: The difference between the two model predictions, note the rotation of the 
graph from the previous two figures to give a better view of the data. 

 

The difference between these model predictions is maximal at maximal smoothness 

coefficient, however as we decrease plateau size the edges of the smooth object are 

brought closer together. This creates a problem: having too large a smoothness coefficient 

and too small a plateau size will cause the smooth edges of the object to overlap, decreasing 

the objective peak depth of the object. To avoid this, we must trade-off between 

maximising the difference between the predictions of the models, and ensuring that the 

object is displayed with a constant peak depth. After exploring models, we decided the best 

compromise was a range of plateaus of 107.3 to 193.2 arcmin across, with a smoothness 

coefficient of 14. The predictions for the perceived peak depths are displayed in as the 

dotted red (template) and solid blue lines (shape based) in Figure 5.11(a). 

In summary, the sharp edged object was identical to those used in previous Chapters. 

However, the smooth edged stimulus had an additional manipulation – this time the plateau 

size was displayed as 107.3, 139.5 or 193.2 arcmin, whilst the smoothness coefficient was 

kept constant at 14. As shown Figure 5.11(b), this manipulation changes the distance 

between the inflection points (see Figure 5.7 for a 3D representation). As before, the sharp 

stimulus was of constant disparity and plateau size of 171.1arcmin. Due to an increased 

range of expected values of the PSE, seven disparities were shown between 4 and 10arcmin. 

Figure 5.12 shows an example screenshot of the stimulus. We will compare participants’ 

performance to a pair of model predictions, which are generated with zero free parameters. 
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(a) (b) 

  
Figure 5.11: (a) The predictions for the two models at a smoothness coefficent of 14. (b) The 

effect in cross-section of manipulating plateau size on the shape of the object – the three 
plateau sizes illustrated are those used in the experiment. 

 

All other experimental details are the same as in Experiment 1 (Section 4.2). 

5.5.4 Results 

Out of 10 participants, 9 successfully completed the 

experiments, with one excluded due to delivering a flat 

psychometric function. Participant F has a PSE for the 

plateau of size 103arcmin outside of the measured range, 

but is included for completeness. The results for all 

participants are shown in Figure 5.13, alongside the two 

predictions, while 𝜒2 analysis is presented in Table 5.3. 

The model predictions have no free parameters, and the 

window size was fixed before performing the Experiment 

as discussed in Sections 5.5.2.1 and 5.5.2.2 for all 

participants, so cannot account for participant variation. 

Seven of nine participants appear to follow the shape 

based model (blue solid line), with 𝜒2 values between 1 

and 5.5 (excluding Par A at 49 and F at 18), indicating that 

the model gave an excellent to acceptable fit but did not 

account for all sources of error. The shape based model 

performs considerably better than the template based 

model (red dotted line), which has 𝜒2 values between 140 

and 276 for all but Participants A (8) and F (3). None of 

these participants follow the prediction exactly, but this is 

to be expected as we have created a predictive model 

with no free parameters.  
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stimulus for experiment 3, with 
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Figure 5.13: Participant data for Experiment 3 alongside the template and shape based 

predictions. Error bars are 1SEM. 
 

 

Shape 
based Template 

Par A 49.2 7.9 

Par B 1.9 236.3 

Par C 1.1 229.2 

Par D 2.8 179.1 

Par E 4.2 141.4 

Par F 18.7 33.5 

Par G 1.7 275.2 

Par H 5.4 276.6 

Par I 3.8 218.2 

Average 1.0 215.0 

Table 5.3: 𝜒2 values for the nine participants that completed Experiment 3. A 𝜒2 of 1 
indicates an excellent fit, greater 𝜒2 indicate progressively poorer fits. The model has no free 

parameters, so the model parameters are identical for all participants – all variation in 𝜒2 
reflects variation in participant performance. Average is the 𝑋2 measured to mean for each 

plateau size of all participants’ data. 

There are two outlier participants, however both of these participants had thresholds over 

three times those of other participants (Figure 5.13, Par A: 2.3 to 2.9 arcmin, Par F: 7 to 4 

arcmin, the remaining participants had thresholds of 0.5 to 1.3arcmin). This indicates that 

they found this experiment much harder, and were likely resorting to different techniques 

to complete the experiment (possibly because of poor stereothresholds). Both these 
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participants have a very poor 𝜒2 value (see Table 5.3). Participant F (Orange plus) appears to 

be following a trend similar to the template model but has considerably larger error margins 

than the other participants. Despite the apparent goodness of fit to the template model 

however, analysis shows their performance to be a poor fit for either model 𝜒2 = 34 for the 

template model, 𝜒2 = 18 for shape based modelling). Participant A (Solid red square) 

seems to be doing something completely different, with their perception of the smooth 

stimulus being considerably flattened and almost independent on the plateau size. 

 
Figure 5.14: Threshold data for Experiment 3, error bars are too small to be visible on this 

scale. 
 

5.5.5 Discussion 

This experiment was designed to test if the size of the averaging window was determined 

from the smooth object (shape based averaging hypothesis) or from the sharp edged object 

(template based averaging hypothesis). We modelled the effect of each of these 

hypothesises when changing the plateau size of the smooth object to obtain predictions, 

and then compared these predictions to participants’ performance to find the model 

prediction that best matched human performance. Overall, the majority of participants have 

a good fit to the prediction of the shape based modelling and very poor fits from the 

predictions of the template based modelling. We therefore conclude that it is most likely 

that the visual system is basing the size of the averaging window on the shape of the 

observed object.  

The observed PSEs are slightly greater than predicted for the shape based modelling – some 

deviation from the prediction is to be expected as the model had no free parameters as 
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window size was fixed prior to taking experimental results. The model therefore cannot 

compensate for variation in participants’ performance, as discussed in the introduction to 

this Section.  

5.6 Overall discussion of model performance 
For the first strand of this thesis, we are considering what a disparity defined object is. This 

Chapter explored an important aspect of object recognition – how the visual system 

behaves when an object has a smooth edge that is hard to segregate from its background. In 

the previous Chapter, we found that smooth edge caused a bias in the perception of depth 

of the object. Here we used those results to create a quantitative model of the visual system 

in order to better understand how the shape of our stimulus was interacting with the 

perceived peak depth of the object. Having developed a model that could fit participants’ 

data, we then tested it by attempting to predict the results of Experiment 3 before we ran it 

on participants. We found that the model performed well, given that it had zero free 

parameters. 

Here, we briefly review the model’s performance by considering how it has performed at 

each of the three tasks: modelling Experiment 1; modelling Experiment 2; and predicting 

participant performance in Experiment 3. We discuss what this tells us about how the visual 

system is processing the peak depth and averaging across large regions and consider how 

this relates to the current literature on disparity averaging. Finally, we relate this back to 

animal camouflage, and consider how the discoveries of the model could be used to help an 

animal attempting to camouflage itself from a stereoscopic observer. 

Given the simplicity and quantitative approach of the model, the model has performed well, 

and is able to explain over 80% of the variance for most individual participants when fitted 

to their experimental data from Experiments 1 and 2 (Figure 5.4 and Table 5.2). We were 

then able to alter the model to predict group behaviour prior to experimentation, with zero 

free parameters, the majority of participants’ performance at a novel stimulus (Section 5.5). 

Perhaps the most interesting aspect of the model for the first experiment (Section 5.3) was 

the shape of the window model used – the only window shape that could fit the data well 

was square (Section 5.3.4). As both the smooth and sharp objects were square-based, this 

strongly suggested that the shape of either the smooth or sharp object was prompting a 

form of segregation across the top of the object, followed by averaging to obtain an 

estimate of peak depth. This speculation was further strengthened by the best fit window 

sizes for both Experiments 1 and 2, which showed that the size of the averaging window 

used was close to the plateau size of both the objects (Figure 5.4 and Table 5.1) – a 

parameter that determined the distance between the inflection points in the smooth object 

and the distance between the edges in the sharp object.  

We therefore had two alternative sources of the size of the averaging window: either we 

had a shape-based averaging, where the visual system segregated the edge of the smooth 
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object from its background and then averaged over the area to obtain a depth estimate; or 

template based averaging, where the coincident display of the well-defined sharp object 

was used as a template to determine the area of the smooth object over which to average.  

In Section 5.5.2 we created two models with no free parameters, one to predict the 

performance of a template based approach and one to predict a shape based approach. By 

altering the plateau size of the smooth object, we could create distinct predictions for these 

two cases, and compare them to participants’ performance.  We found that participants 

were closest to the shape based averaging, where the area averaged over is based on the 

object’s own size and shape (Section 5.5.4). 

The averaging aspect of our shape based averaging is not that remarkable in itself: it is well 

known (as discussed in the background theory, Section 2.2.4) that the early stages of 

disparity extraction result in the averaging across small scales e.g. (Allenmark & Read, 2010, 

2011; Filippini & Banks, 2009; Goutcher & Hibbard, 2014; Tyler & Julesz, 1980). These effects 

are typically thought to occur at the scale of the finest scale disparity detectors at around 

5arcmin across (Filippini & Banks, 2009; Harris et al., 1997). However, what we are 

hypothesising here that the averaging is occurring over much larger areas – at scales of over 

150arcmin. Averaging effects have been observed over this length scale, for example in 

overlapping transparent planes (Kaufman et al., 1973; Parker & Yang, 1989; Stevenson et al., 

1991; Tsirlin et al., 2008), however in this situation the elements of different disparities in 

close proximity, potentially allowing small scale averaging effects between adjacent 

elements to account for the large scale percept (Harris, 2014). Here, we have averaging 

occurring over a large area which is dependent on the shape of an object, with a large 

lateral separation between elements of different disparities. While averaging specifically 

over an object has not been proposed before, the long range effects share similarities to 

some studies on Gestalt grouping (Section 2.2.6). In particular, Deas and Wilcox found that 

perceptually grouping joining lines into objects causes a reduction in the perceived depth 

(Deas & Wilcox, 2014) – an effect that could be caused by the averaging mechanism 

hypothesised here.  

The results of this model have potential ramifications on the second strand of this thesis, 

which explores if depth perception from binocular vision enables camouflaged objects to 

jump out from their background, making them trivial to detect. Here, we have found an 

interaction of the stimulus with the visual system that may enable an animal to confound 

one of the mechanisms of depth perception in a predator, thus removing this advantage. If 

an animal were to colour itself such that it would be segregated as many objects (called 

disruptive colouration, see Section 2.1.1 (Cuthill et al., 2005; Osorio & Srinivasan, 1991; 

Ruxton & Sherratt, 2004) ), then each part of the animal that appeared as a separate object 

may be individually averaged over, giving each a separate depth estimate. This could 

potentially create the impression of many different objects, each divorced in depth from the 

other. A stereoscopic observer would therefore no longer see the animal as a distinctly 
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continuous shape standing above the background, thus ridding the stereoscopic observer of 

its advantage.  

While this is an interesting speculation on the interaction of luminance and disparity, we do 

not know how the processes responsible for segregating an object based on disparity cues 

interact with other cues to object segregation. While work has been done on the perception 

of depth when disparity is placed in conflict with other cues to depth such as shape from 

shading e.g. (Chen & Tyler, 2015; Lovell et al., 2012), they do not look at interaction of depth 

perception with cues to object segregation. In the next Chapter we explore this gap: how do 

disparity based object segregation mechanisms interact with a luminance cue to object 

segregation? 
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6 How does depth segregation interact with 

luminance segregation? 

 Strand 1, How does depth from binocular vision contribute to object perception? 

 Investigating: If luminance cues influence segregation of depth defined objects. 

 Task: Which of two objects has a greater peak depth? 

 Manipulation: One object has a luminance cue to segregation. 

 Results: Luminance only has an effect when the disparity cue is poor. 

 Conclusion: Luminance and disparity do interact, but in an RDS it is very hard to 

make the disparity cue weak enough for the luminance cue to have an effect. 

 

 

Figure 6.1: Two moths resting on the bark of a Jackfruit tree (one central, one bottom 
right). Note how brown luminance edges break up the moth into several smaller sections 

that are not moth-shaped. Image reproduced with permission, (Baliga, 2014) 
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6.1 Introduction 
In the first strand of this thesis, we are exploring how disparity-defined depth influences 

object perception. So far, we have been exploring the perception of purely disparity defined 

objects – in Chapter 4 we have investigated the effect of a smooth edged object on the 

perception of disparity defined objects. We found that the objects were perceived with a 

decreased peak depth relative to the objective peak disparity. In Chapter 5 we used 

computational modelling to explore the mechanisms that could be causing this effect, and 

concluded that after object segregation the disparities within the object were averaged, 

possibly to remove errors from the disparity extraction process. However, poor segregation 

over the smooth object resulted in the inclusion of disparities that were lower than the 

peak, resulting in a perceptual decrease in their peak depth.  

In this Chapter, the third and final experimental Chapter of the first research strand, we are 

interested to see if object segregation and subsequent averaging is purely driven by the 

disparity cues to depth, or if other cues to segregation are important. Luminance has been 

found to improve the judgement of the shape of rectangles (Regan & Hamstra, 1994), and 

to have an effect on human depth perception (Didyk, Ritschel, Eisemann, Myszkowski, 

Seidel, et al., 2012; Richards, 1977), but we do not know if this is a combination of 

luminance and disparity before or after object segregation and averaging as proposed in 

Chapter 5. To explore this, we introduce a luminance cue to object segregation, and 

investigate if there is a change in perceived peak depth with the size of the luminance cue. If 

the perception of depth in the object is then altered by the luminance cue to segregation, 

this will indicate that the luminance and disparity cues were combined to segregate the 

object prior to disparity averaging. 

Adding luminance segregation to the disparity defined object created a surprising number of 

problems with the perception of the object. In this Chapter, we present several 

experiments: 

1. In Experiment 4, we tested if luminance segregation of the object is a sufficiently 

strong cue to alter the perceived peak depth of a sharp object. We used the model 

from Chapter 5 to predict the results, but found that the addition of different 

luminance dots causes the experiment to be too hard for naïve participants to 

compete. 

2. In Experiment 5, we explore a series of alterations to attempt to improve 

participants’ performance while still testing the interaction of disparity and 

luminance cues to object segregation. This Experiment is the presentation of a series 

of interesting stimulus manipulations which lead to the creation of Experiment 6, 

rather than a single standalone experiment. 

3. Experiment 6 combines the improvements of Experiment 5 with the luminance 

segregation methods of Experiment 4. Here, we find that when the disparity signal is 
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well defined and the luminance signal poorly defined (because we are only altering 

the luminance of the dots making up the RDS), then the luminance cue to 

segregation has no effect on the perceived depth of the object. 

4. In Experiment 7, we investigate if decreasing the reliability of the disparity cue we 

could result in an interaction of luminance and disparity segregation. We add 

random noise to the disparity signal, and find that the perceived peak depth of the 

object is altered by the size of the luminance window, indicating that segregation 

based on luminance influences the area segregated and averaged over by the object 

based disparity processing. 

 

6.2 Experiment 4: Does a luminance cue to segregation change the 

perception of a sharp object? 

6.2.1 Introduction 

Our previous experiments have always compared an object with smooth depth edges to an 

object with discontinuous (sharp) edges, as we were exploring the effects of object shape on 

perceived depth. However, if luminance is a sufficiently powerful cue to object segregation, 

it is possible that the luminance cue could cause the segregation of the object over the 

region defined by luminance independent a disparity cue to object segregation. If this is the 

case, then a luminance cue to segregation on the sharp object would cause the disparity 

averaging in the sharp object to occur over a region defined by the luminance cue.  

If the luminance defined object was larger than the disparity defined object, then there 

would be elements of zero disparity contained within the luminance defined object. 

Segregation across the luminance object would then cause these zero disparity elements to 

be segregated into the same object as the non-zero elements of the disparity defined 

object. If luminance segregation of the object occurs before the disparity averaging 

modelled in Chapter 5, then the depth of the object would be calculated by averaging over 

both the zero and non-zero disparity elements. This would result in a decrease in the 

perceived peak depth of the sharp object. We therefore start by comparing two sharp 

objects to explore if a luminance edge larger than the sharp object can provoke a decrease 

in peak depth indicating that disparity averaging is influenced by luminance segregation.  

6.2.2 Experimental stimuli 

The two sharp objects used are identical in form to those in previous experiments, using 

white and black dots on a grey background. However, we wish to vary the luminance of the 

object in order to create a luminance cue to segregation. The sharp comparison object has a 

square luminance window with stimulus dots displayed across the full range of luminance, 

from white to black (12.24 cd/m2 and <0.01cd/m2). To create a luminance edge in the sharp 

test object, the luminance of the foreground dots are manipulated, either the white dots are 

made darker (light grey, 8.64 cd/m2) or the black dots lighter (dark grey, 3.6 cd/m2) 
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luminance. By altering the luminance of either the black or white dots, the overall 

luminance of the region will increase or decrease creating a luminance window. This change 

also alters the contrast which can effect perceived depth (Legge & Yuanchao, 1989; Rohaly 

& Wilson, 1999), so this window provides a cue to segregation of the object via luminance 

and contrast (Micheson contrast: target, 0.7; background, 1). 

In order to create a luminance window, we must either 

increase or decrease the luminance of the dots. As there 

is no clear indication if we should either increase or 

decrease the overall luminance, each trial was 

randomized to either increase the luminance (high 

luminance condition) of the black dots within the window 

(thus increasing the overall luminance) or to decrease the 

luminance (low luminance condition) of the white dots 

(thus decreasing the overall luminance). We recorded on 

each trial if the luminance was high or low. 

When determining the size of the luminance window we 

had to balance two conflicting problems: make the 

luminance window small and too few background 

elements would be included to measurably decrease 

perceived peak depth; make the window size too big and 

the luminance window would not appear to be connected 

to the disparity defined sharp object, and therefore could 

be disregarded when segregating the disparity defined 

object from its background. 

 

 

To determine if the luminance window 

was large enough to create a significant 

difference in predicted results, we took 

the model from Chapter 5. In Chapter 5 

the model averaged the disparities over a 

variable sized region of the smooth object 

to calculate a predicted perceived peak 

depth. Here, we altered it to average the 

disparities in the sharp object over a set 

range of window sizes. For simplicity, we assume that the segregation for averaging will be 

completely dependent on the position of the luminance edge, producing the prediction 

shown in Figure 6.3.  

 

Figure 6.2: Stimulus for 
Experiment 4, with the sharp 

object top and bottom, but the 
bottom object has a low 

luminance window of 171.3 
arcmin.  

 
Figure 6.3: Predicted increase in PSE for a sharp 

edged object with different sized segregation 
windows.  
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In order for this experiment to work, the visual system has to link the disparity defined 

sharp object and the luminance defined object as being the same object. During pilot 

experiments we found that if the region of altered luminance was too large then it appeared 

to be unrelated to the disparity defined object and was ignored. This creates a trade-off: If 

the luminance windows are too similar to the width of the object, then the model does not 

predict a measurable change in PSE from the background elements present in the luminance 

window. If the luminance window is too large, then the participant will discount it. We 

balanced this trade-off using pilot experiments to see if the participant perceived the 

luminance window to be part of the object, and chose the largest window size that 

appeared to be consistently perceived as part of the object.  

We chose a luminance widow of 1.2 times the size of the disparity defined sharp object 

(206.1 arcmin). This was the largest window (and therefore the window size with the 

greatest increase in predicted perceived peak depth) which consistently appeared to be 

connected with the sharp disparity defined object to a couple of lab member pilots. The 

model predicted a PSE of 7.5arcmin, a detectable decrease of approximately the same 

magnitude the smoothest object in Experiment 1 (Section 4.3.3, Figure 4.6).  

We use two sharp edged objects of identical objective peak depth that are displayed 

simultaneously. One object (the test) has altered dot luminance of the background, creating 

a luminance window 0.8 or 1.2 times the width of the disparity defined object. If the 

luminance window has an effect we expect the 0.8 window size to be the within 

uncertainties of the objective peak depth, and the 1.2 to be perceived with less peak depth. 

As in Experiments 1 and 2, the comparison object had a constant disparity of 5.8arcmin. 

The experimental setup was the same as in Section 3.1 and experimental procedure was the 

same as in Section 4.2.2. As a reminder, the participants were asked to indicate using the up 

and down arrow keys “which object has a greater peak depth”. Participants’ stereoacuity 

was tested with a TNO test (“TNO Stereotest, Richmond Products,” 2014), and were 

rejected if they could not see depth in the sixth plate. Participants then completed a 

demonstration version of the experiment, which started with trials taking 10s, reducing to 

the 2s presentation that was used during the experiment. The data from the demonstration 

was checked to ensure that the participants could complete the task. The experiment itself 

was presented in blocks of approximately 300 trials, taking 10-15min to complete each 

block with a forced 60s break between blocks. Each trial was a 2s presentation of the 

stimulus, followed by a response prompt screen. After response, a fixation cross was 

displayed with a prompt to press the space bar to continue. There was only one 

experimental session which comprised of the demonstration and three blocks.  

6.2.3 Results 

Psychometric functions were fitted and the PSEs of the participants were extracted. Out of 

eight participants, six completed the demonstration with good enough results to continue, 

and only three had results good enough to fit psychometric functions (the other three did 
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not converge) and one of these three has a very flat psychometric function (participant C), 

such that the uncertainty on the measurement at a fractional window size of 1.2 is over 

1,000 arcmin. 

Figure 6.4 shows the mean PSEs for all three participants with extractable PSEs. Note the 

large amount of individual variation, the omitted error bars for Participant C for clarity 

(errors are in excess of 550arcmin in all conditions but the high luminance 0.8 window size). 

Results were not as expected, with all participants showing a decrease in perceived peak 

depth when the stimulus is displayed with a small window (0.8 times the size of the disparity 

defined sharp object). Here, the model predicted there should be no effect of luminance as 

all disparities within this luminance window are at peak disparity. Results for the large 

luminance window (1.2 times the size of the disparity defined sharp object) were very 

variable, with Participant A perceiving the same depth as the standard stimulus, Participant 

B and Participant C (whose results we should regard with scepticism due to the large 

uncertainty on this measurement) showing a lower PSE and thus an increase in perceived 

peak depth. 

 
Figure 6.4: The PSEs for all three participants, the dotted line is the veridical depth estimate. 

Error bars are omitted for participant C, as they were all in excess of 200 arcmin. 
 

As the window luminance was counterbalanced between high (light) and low (dark) 

luminance, we extracted PSEs separately for the light (high luminance) and dark (low 

luminance) conditions to ensure this there was no difference between these two conditions.  
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(a) (b) (c) 

   
Figure 6.5: PSE’s individually presented for each participant. (a) participant A, (b) participant 

B and (c) participant C. 
 

 
Figure 6.6: Thresholds for all three participants. Error bars are omitted for participant C, as 
they were infinite. Error bars of one SEM are present for participants A and B, but are too 

small to be seen clearly. 
 

 

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0.7 1.3

P
SE

 (
ar

cm
in

)

Fractional size of 
luminance window

Dark

Average

Light
3.5

4

4.5

5

5.5

6

6.5

7

7.5

0.7 1.3

P
SE

 (
ar

cm
in

)

Fractional size of 
luminance window

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0.7 1.3

P
SE

 (
ar

cm
in

)

Fractional size of 
luminance window

0

1

2

3

4

5

6

7

0.7 0.8 0.9 1 1.1 1.2 1.3

Th
re

sh
o

ld
s 

(a
rc

m
in

)

Fractional size of luminance window

Par A

Par B

Par C



113 
 

As the luminance of the dots should be above threshold, we know of no reason that there 

should be any performance difference between the light and dark luminance windows. 

Figure 6.5 shows the results compared to the combined (average) condition presented 

above. 

Results show a large amount of participant variation, with Participant B surprisingly showing 

a very marked difference between the light and dark conditions. 

Due to the shallow response curves, the threshold data is very variable, particularly for 

Participant C whose curves were so flat the error bars on the thresholds were infinite. For 

completeness, we include threshold data in Figure 6.6, with error bars stripped off for 

clarity. 

6.2.4 Discussion 

Overall, this experiment has shown some very odd and unexpected results, with extreme 

variation in the participants’ performance, both in their results and their ability to complete 

the experiment. Given that only 3 of 8 participants had extractable PSEs, and of those only 

three only two have acceptable error margins, this suggests that the introduction of dot 

modulated luminance makes the experiment extremely hard to complete. We therefore 

suggest that while the data can be explored for trends, a more reliable experiment is 

needed to draw any conclusions. 

Given the very consistent results of Participant A, it suggests that this participant ignored, or 

potentially could not see the luminance window for both conditions. Participant B’s 

performance varied depending on whether the window was darkly or light coloured. The 

lighter luminance window appears to cause this participant to use the luminance window to 

segregate the object (as we hypothesized), decreasing the apparent depth of the object. 

Participant C clearly found the task very difficult, and with error margins in the thousands it 

is hard to evaluate their data. 

It is unexpected to find a difference between the participants’ performance in the high 

(black dots are displayed as dark grey, 3.60 cd/m2) and low (white dots are displayed as light 

grey, 8.64cd/m2) luminance conditions as the contrast of the windows was almost identical 

for both conditions (0.70 for high luminance, 0.71 for low luminance). We know that the 

luminance and contrast of the stimuli can alter the perception of disparity defined depth 

(Legge & Yuanchao, 1989; Richards & Foley, 1974; Schor & Howarth, 1986; Schor & Wood, 

1983). When looking specifically at RDS, the luminance of the screen used is sometimes as 

low as 10cd/m2 (Schneider et al., 1999; Tsirlin et al., 2008), but in these cases the dots are 

white on a black background, and it is not uncommon to use a luminance in excess of 

60cd/m2 (Harris et al., 2012; Stevenson et al., 1991; Yang & Blake, 1995). Read and Cumming 

(2003) used a random dot stereogram with white and black dots on a grey background, with 

a maximum luminance of 41cd/m2. In order to ensure that the luminance of our screen is 



114 
 

not causing issues with the perception of depth, in the next experiment we increase the 

screen’s brightness to its maximum, with white dots then being displayed at 37.09 cd/m2.  

The interaction of luminance and disparity raises other considerations about the 

experimental stimulus that we used. By defining the luminance edge via the dots, we have 

created a luminance edge which is signalled by either the white dots being made darker 

(low luminance condition) or the black dots being made lighter (high luminance condition). 

This means that the luminance edge is only signalled by half of the dots, and the other half 

are unchanged. As the dot density is 20%, this means that only 10% of the pixels on the 

screen have an altered luminance across the luminance defined edge, perhaps making the 

edge luminance poorly defined to a naïve observer. In grouping terms, there is not much 

more similarity between the elements of the luminance window than between elements of 

the background and the luminance window (see Section 2.2.6). In the next Experiment we 

make the luminance edge a property of the background rather than the dots, enabling us to 

form a distinct and continuous edge.  

Although it cannot explain why there is so much participant variation, it is possible that the 

disparity edge being so sharp makes the object too reliably defined by disparity for a poorly 

defined luminance edge to contribute. This is a common observation in cue combination 

literature, where a reliable cue will often override the perception of an unreliable cue e.g. 

(Knill, 2007; Knill & Saunders, 2003; Lovell et al., 2012; Ryan & Gillam, 1994). This 

speculation is supported by the Participant A’s data, they do not perceive any difference 

between the different sizes of luminance window. In order to make the disparity edge less 

well defined, we will return to comparing a sharp object to the smooth object, which has a 

poorly defined disparity edge between the object and the background – potentially 

increasing the amount that the visual system will rely on the luminance window as a cue to 

segregation.  

6.3 Experiment 5: Exploration of segregation on other objects via 

background luminance 

6.3.1 Introduction 

In the previous experiment, we found that varying the luminance of a central area to create 

a luminance edge had odd and variable effects on participants’ performance. It was thought 

that there could be three main contributing factors: 

1. The luminance edge was too weakly defined by only modulating the luminance of 

the dots, and not the background. 

2. The dot luminance was too similar to the background, making the dots hard to 

perceive. 

3. The distinct edge of the sharp object is too reliable a cue to object edge for the 

luminance information to be considered. 
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In this Section, we attempt to rectify these problems by: 

1. Creating a well-defined luminance edge by modulating the luminance of the 

background instead of the dots. 

2. Applying two solutions to increasing dot luminance and visibility: 

a. Increasing the overall luminance of the screen, enabling us to have a much 

larger difference between the luminance values used. 

b. Changing the background to being black and the dots to all white, making the 

dots more distinct from the background (each dot now has a maximum 

contrast of 1, rather than 0.5 as in the previous experiment). 

3. We use the smooth edged object, which has a continuous depth edge. This should 

reduce the reliability of the disparity edge as a cue to segregation, allowing for 

luminance information to be taken into consideration in segregating the object. 

As most of the experiments presented in this Section are exploratory with few to no pilots 

and no full experiments, this Section is more of an overview of the attempts made to 

explore the issues and possible solutions to improve participants’ performance. 

6.3.2 Exploration of stimuli with a square background 

This Section contains a number of pilot stimulus manipulations, each of which gradually 

changed the overall stimulus in an attempt to improve people’s ability to perform the task. 

However, as none of the changes made a dramatic difference we will discuss them as a 

single alteration. All manipulations performed here used a constant sharp stimulus as a 

comparison to the smooth stimulus, with an increased maximum screen luminance of 37.09 

cd/m2. 

In this Section, we explore pilots with lab members and colleagues as participants, rather 

than naïve participants. This enables easy recruitment, and these people were willing to 

repeatedly come back and pilot small changes to stimuli, enabling us to monitor the effects 

of multiple small changes to the stimuli. 

The stimuli still comprised of random dot stereograms of the same density. We still asked 

participants to judge which of two objects has a greater peak depth. Both the objects had 

the same disparities as presented previously in this Chapter and in Chapter 4, with the 

comparison sharp object having constant disparity and the test smooth object having 

variable disparities.  
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6.3.2.1 Moving luminance edge from dots to the background 

The first change was to remove the luminance edge from 

the dots and instead modulate the luminance of the mid-

grey background to being either light or dark grey within 

a central square area (similar to Figure 6.7). While this 

increased the visibility of the luminance cue to 

segregation, it introduced an additional problem that we 

dub the ‘curtain effect’. This is where the disparity of the 

edges of the square luminance region dictate the overall 

perceived depth of the entire luminance window, but not 

the dots – effectively the square luminance edges 

appeared to be part of a depth plane located behind the 

dot-disparity defined object. This was a serious issue, as 

it divorced the luminance-defined background from the 

smooth edged object, meaning they appeared as two 

independent objects. This potentially introduces effects 

explored in stereo transparency literature as discussed in 

Section 2.2.6, such as poorer depth thresholds (Wallace 

& Mamassian, 2004).  

6.3.2.2 Alteration of dot luminance 

The second change was to alter the object such that the 

background was black (<0.01 cd/m2) except for a mid-

grey luminance square (18.67cm/m2) with all dots being 

white (37.09cd/m2) – see Figure 6.7 for a screenshot. The 

luminance window now has a Micheson contrast of 0.5, 

with a background contrast of 1. While this helped with 

the visibility of the dots and luminance window (compare 

Figure 6.7 to Figure 6.2) the curtain effect became more pronounced, with the square now 

clearly being distinctly perceived as having a separate depth, and therefore being a separate 

object to the dot defined surface.  

6.3.2.3 Reducing the curtain effect 

We attempted to reduce the curtain effect by setting the disparity of the luminance window 

to being equal to that of the edge of the object. For example, for a luminance window of 

171 arcmin (the plateau size of the smooth objects used), then disparity is set to half the 

peak depth. Unfortunately, for the smooth object, lines of constant disparity are not square 

in shape –therefore giving a square a constant disparity did not help, as the corners of the 

square appear to stick out above the dot defined surface as shown in Figure 6.8 (despite the 

apparent small scale in the diagram this was visible when undertaking the experiment). This 

is potentially also part of the problem with the previous experiment in Section 6.2, where a 

square luminance window was applied to the dot luminance. The creation of the correct 

 
Figure 6.7: Anaglyph of square 
stimuli in Experiment 5. Sharp 

object top, smooth with a 
square luminance window of 
zero disparity bottom. Note 
how the constant luminance 
square appears behind the 

dots which we call the ‘curtain 
effect’. 
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shape to match the shape of the smooth object as a uniform background patch is non-trivial 

in MATLAB®, so we turn to a different shape object where this is not a problem – circular 

stimuli. 

 
Figure 6.8: Representation of the flat square with disparity equal to the half depth of the 

smooth object. Note how the constant disparity of the square means disparity is noticeably 
larger than the smooth objects at the corners. 

 

6.3.3 Circular stimuli & monochromatic dots 

6.3.3.1 Stimuli 

Circles are very easy to display using the Psychophysics toolbox in MATLAB® so we altered 

the formula for the smooth edged object (see Equations 6.1 and 6.2) to generate a smooth 

curricular object using plain polar coordinates. Unfortunately, when integrated the circular 

smooth stimulus is only dependent on 𝜎−1 not 𝜎−2 (due to only one 𝑓(𝑟, 𝑝) term in Eq. 6.2), 

so we expect a smaller decrease in perceived peak depth than for the square-based 

stimulus. Therefore, in order to trial the circular objects, we initially piloted the experiment 

with two sharp edged objects to test if naïve participants could complete the task given 

circular objects and circular luminance windows. If pilot participants could do the task with 

circular stimuli, then we would explore the effect of smooth circular objects to see if there 

was a measurable decrease in perceived peak depth in these stimuli. 

𝑓(𝑟, 𝑝) =
1

2
[tanh(

1

𝜎
(𝑟 −

𝑤 − 𝑝

2
)) − tanh(
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2
))] Eq.  6.1 

𝛿(𝑟, 𝜃) = 𝛿𝑝𝑓(𝑟, 𝑝) Eq.  6.2 
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Both sharp edged disparity defined objects 

were of identical size (radius 96arcmin, black 

outlined cylinders in Figure 6.9). The test object 

has a luminance window with a radius of either 

74arcmin (0.8 times the size of the disparity 

defined object, as shown in in the anaglyph in 

Figure 6.10), or 111.6arcmin (1.2 times the 

radius of the disparity defined object), as 

shown diagrammatically as the dark grey region 

on the lower cylinder in Figure 6.9. The 

comparison object has a luminance window of 

radius identical to the disparity defined object 

(96arcmin), as represented by the dark grey 

circle on the top cylinder in Figure 6.9.  

In order to reduce the curtain effect, we added disparity 

to the luminance window that was consistent with the 

disparity of the dots at the edge of the window. The 

window with a fractional size of 1.2 has zero disparity, 

while 0.8 has the disparity of the peak of the test object. 

The disparity of the window with fractional size of 0.8 

and the peak depth of the test object were stepped 

between seven values equally spaced between 5.8 and 

8.4 arcmin. The luminance window on the comparison 

object and the peak depth of the comparison object had 

a disparity of 5.8arcmin.  

Pilots were able to complete this experiment with 

extractable PSEs without reporting a perception of the 

curtain effect. Therefore, we ran this experiment on 

naive participants. Our main objective is for the 

experiment to be able to be completed by the majority 

of participants as we expect the disparity edge of the 

sharp object to be too well defined for the luminance 

edge to strongly influence segregation. However, it 

would be interesting to confirm this hypothesis, if the 

experiment was doable by naïve participants. If the 

experiment was successful, we would have then moved 

onto smooth circular stimuli. 

 

 

Figure 6.9: Diagram of the displayed depth 
of the luminance windows for the circular 

object.  

 
Figure 6.10: Anaglyph of circular 

stimulus in Experiment 5. 
Comparison object (top) and test 
object with luminance window of 

1.2 times object size (bottom). 
Note that the region with no 

dots is only due to the 
exaggerated disparity used in 

this screenshot.  
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6.3.3.2 Results – circular stimuli 

Figure 6.11 shows the results for circular stimuli, where the background was black (<0.01 

cd/m2) with a mid-grey (18.67cd/m2) luminance window and white (37.06cd/m2) dots. Out 

of eight participants only seven were able to complete the demo stage. Out of these, two 

had PSEs for both luminance window sizes outside of the measured range of disparities, and 

therefore was rejected. From the remaining five participants, only one, Participant D had 

extractable PSEs for both the 0.8 and 1.2 luminance windows. The remaining three were 

capable of completing the experiment with the smaller 0.8 luminance window (Participants 

E, F, G and H see Figure 6.11). Out of these, all but Participant F had PSEs far outside of the 

displayed disparity range for a window 1.2 times the diameter of the stimulus. Note that 

normally participant F’s data point at 1.2 should be excluded, but as it is only just outside of 

the range it is included for interest.  Additionally, several participants self-reported the 

circular luminance window as appearing as a separate object to the disparity defined object. 

 
Figure 6.11: The PSEs for five participants. No PSEs were extractable for participants E, G 

and H for the 1.2 luminance window, and the 1.2 for F is extrapolated, not interpolated and 
therefore likely has additional errors over the calculated standard error bars. 

 

As the data is in the majority of cases completely flat, we cannot extract meaningful 

thresholds (typically these were on the order of infinity). 

6.3.4 Discussion 

By using a circular window with white dots and a mid-grey luminance window on a black 

background, we appear to have made the task easier than in Experiment 4 as some naïve 
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participants can complete the experiment with meaningful results. However, we still have a 

low success rate for a psychophysical task – only one of eight participants were able to 

complete the entire experiment with usable results. Four had good performance on only the 

smaller luminance window.  

Interestingly three participants consistently chose the comparison stimulus almost all the 

time for the larger luminance window. One interpretation is that they are viewing the 

stimulus with the larger window as very much flatter; however, given the poor past 

performance at the luminance window experiments it is probable that these participants 

were ignoring the dots, comparing the disparities of the luminance windows. The disparity 

of the 1.2 luminance window was 0 arcmin, and the disparity of the 0.8 luminance window 

was identical to the peak depth of the test object. If participants were comparing the 

disparity of the luminance window to the comparison object, then we would expect 

participants to always select the comparison object as having a greater peak depth when 

the test object was displayed with a luminance window of 1.2. When the test object was 

displayed with a luminance window of 0.8, then we would expect the participants to act as 

unbiased observers. This is approximately what these three participants did, although it 

does not explain the minor flattening effect observed in the 0.8 radius stimulus. Given the 

number of participants that could not complete the experiments at all, the only solid 

conclusion we can take is that these participants were unable to correctly complete the task 

as requested, and were each following a different strategy.  

The circular objects provide multiple more problems: the continued reporting of the curtain 

effect when viewing a smooth edged circular object; the expectation of a decreased 

flattening effect when compared to square objects; and being much more complex to 

model. We will therefore return to the square based stimuli in future experiments. 

However, this experiment and its pilots seem to indicate from the increased performance 

(and self-reporting from pilots) that the use of white dots on a black background is easier to 

perceive than the mid-grey background with white and black dots. We will therefore 

continue using this regime in future to increase clarity of the disparity defined object. 

Potentially the most likely avenue to produce a usable result without the curtain effect is to 

revert to displaying the luminance edges using the dots themselves. As the dots make up 

the disparity defined objects, then it should be clear that the luminance boundary is a 

property of disparity defined object, and not a second object which is individually defined in 

depth. A similar technique to this failed in Section 6.2, but the change in dots to all being 

white and the increased overall luminance may alleviate the problems found there – we 

discuss this in detail in the next Section. 
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6.4 Experiment 6: Segregation on smooth objects via dot luminance 

6.4.1 Introduction 

We have previously tried several different iterations of the experiment, attempting to find a 

way to successfully cause a luminance segregation cue to be associated with the disparity 

cue. In the previous experiment, we have tried changing the luminance of the background 

to create a luminance edge near where disparity segregation occurs.  Unfortunately, this has 

consistently created a percept of a shaded shape that is unrelated to the disparity defined 

object which we call the curtain effect. However, other changes such as the use of a black 

background and white dots helped stabilise the percept of the object. Here, we attempt to 

fuse the luminance edge with the disparity defined object by changing the luminance of the 

dots that make up the disparity defined object. This 

should clearly associate the luminance as a property of the 

disparity defined object, potentially allowing the 

luminance edge to interfere with the disparity segregation 

processes.  

Although in Section 6.2 we found that adding the 

luminance cue to the dots caused the experiment to be 

very hard to complete, we have many improvements that 

should help:  

1. We are using a black background (<0.01cd/m2) 

with mid-grey (18.67cd/m2, Michelson contrast 

0.5) and white dots (37.09cd/m2, Michelson 

contrast 1), which should ensure both object and 

background dots visible. 

2. Originally in Experiment 4 (Section 6.2), only half of 

the window dots (either the white or black dots) 

had a different luminance to the background dots. 

In this experiment, all the dots within the window 

will be white and all the dots outside will be mid-

grey, making the luminance window better 

defined, with no dots in the window having the 

same luminance as dots present in the 

background. 

3. We are going to reduce the sizes of the luminance windows to the minimum possible 

that still creates a sufficient predicted difference to be experimentally detectable – 

this could further increase the relevance of the luminance cue to segregation. 

4. Rather than applying the luminance increase over a set square area, we are going to 

display dots as white if they are above a certain disparity and black if below. This 

 
Figure 6.12: Anaglyph of 
stimuli in Experiment 6. 
Sharp object (top) and 

smooth (bottom), with a 
1.125 fractional luminance 

window on the lower object 
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means that the shape of the luminance window will correspond fully to the shape of 

the smooth object. We discuss this below.  

 

We choose a horizontal distance from the 

centre of the window, and calculate the 

disparity of the smooth object at this point. 

We then draw a line of constant disparity, 

which follows the curved shape shown in 

Figure 6.13.  We use this shape as our 

luminance window, which means that the 

shape of the luminance window now 

matches the shape of the smooth object. 

  

 

6.4.2 Stimuli and methods 

We return to the previous square shaped sharp and smooth objects. However, we keep the 

black background and white dots from the previous circular experiment as this appeared to 

increase the visibility of the object and the luminance window. The central region of dots 

inside the luminance window is white (37.09cd/m2, Michelson contrast 1), while the dots 

outside of the window are mid-grey (18.67cd/m2, Michelson contrast 0.5) on a black 

background (<0.01cd/m2) as shown in Figure 6.12. Dots outside the window are still easily 

visible, but the difference of dot luminance of 18.42 cd/m2 across the should make it clear 

that the luminance window is part of the disparity defined object, not a second object that 

is hanging behind a transparent disparity defined curtain. Additionally, the sharp object had 

the same increase in luminance that coincided with the disparity edge (square, side length 

of 171.1arcmin) to reinforce the luminance window as a cue to object segregation. 

Smooth objects are displayed at smoothness coefficients of 3, 14 and 26 with seven 

different peak depths as in Experiments 1 and 2, and compared directly to a sharp object of 

constant disparity. The luminance cue on the sharp object always corresponded to the 

disparity edge (171.2 arcmin), while the luminance cue on the smooth object was either 

150.2, 171.2 (the same as the plateau size) or 193.2 arcmin across (fractional plateau size 

0.875, 1 and 1.125).  

 
Figure 6.13: Difference between the square 
luminance window in Experiment 4 (dotted 
line, Section  6.2) and the constant disparity 
defined luminance window used here (solid 

line)  

Line of 
constant 
disparity 

Line of 
constant x 
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We ran the different luminance window 

sizes through the model developed in 

Chapter 5 to obtain the predicted perceived 

peak depth for the objects with every 

combination of luminance windows size 

and smoothness coefficient. The model was 

run as if the luminance window dictated 

the area of the disparity defied object that 

was segregated and then averaged – this is 

the maximum effect that the luminance 

window could have on the perceived peak 

depth. These predictions are plotted in 

Figure 6.14. 

The experimental setup was the same as in Section 3.1 and experimental procedure was the 

same as in Section 4.2.2.  Participants were tasked to press either the up or down arrow 

buttons to indicate which object had a greater peak depth. Participants completed seven 

blocks of approximately 300 trials each, each of which took 10-15min to complete with a 

forced 60s break between the blocks. These blocks were completed in two sessions: In the 

first hour long session, participants completed the TNO test, then a demo, participants that 

could not complete these successfully (see Section 4.2.2) were rejected from further study. 

Participants then completed three blocks. In the second session Participants completed the 

remaining four blocks.  

6.4.3 Results 

Psychometric functions were fitted and the PSEs were extracted for each combination of 

smoothness coefficient and window size for each participant. We appear to have made the 

experiment much simpler to complete, with only one participant unable to complete the 

demo and two having PSEs outside of the extractable range, leaving five out of eight 

participants completing with usable data.  

Each results graph in Figure 6.15 plots PSE against luminance window size for an object of a 

single smoothness coefficient. By comparing between the three graphs, we can see that the 

PSEs are greater in Figure 6.15c (SC14) than Figure 6.15a (SC3) and b (SC0), and greater in 

Figure 6.15b (SC3) than Figure 6.15a (SC0). Effectively, objects of greater smoothness 

coefficient have a greater PSE. This replicates the data in Chapters 4 and 5, where an 

increase in smoothness coefficient results in a decrease in the perceived peak depth of the 

object.  

Looking at the change of window size with PSE within each of the three graphs in Figure 

6.15 there appears to be no relation between the model-predicted PSEs (dotted line) and 

the observed data. Statistical analysis shows that there is no significant effect of window 

size on observed PSE at any smoothness coefficient (two way repeated measures ANOVA for 

 
Figure 6.14: Predicted perceived peak depth 
for objects with each smoothness coefficient 

with the size of the luminance window 
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window size, F(1.094,4.374) = 0.501, p=0.531 for window size and smoothness, 

F(1.139,4.555) = 0.501, p=0.534 with a Greenhouse-Geisser correction for invalidation of the 

assumption of sphericity p<0.05). 

(a) (b) 

  
                                              (c)     

 
Figure 6.15: Predictions alongside participant performance with smoothness coefficients (a) 26 

(b) 14 (c) 6. 
 

6.4.4 Discussion 

We successfully made the experiment simple enough that participants were able to 

complete it without too much difficulty, although the error bars and dropout rates (2 out of 

7 have extractable PSEs) are still a little large in comparison to the experiments in Chapters 

4 and 5. However, the surprising result is that there is no effect at all of the luminance 

window size on the perceived disparity. This indicates that the luminance window is not 

affecting the area over which disparity segregation is taking place. 

As the disparity is very well defined, even the smooth edge may provide a strong cue to 

object segregation. The luminance cues we have presented may be comparatively poor cue 

to the object’s edge as the luminance was delivered only via the positions of the random 

dots. As these dots are randomly placed, the edge of the luminance window appears 

uneven rather than a distinctive straight line, potentially weakening the strength of this cue 

to segregation. This may mean that the visual system is using the disparity cue to segregate 

the object and ignoring the more unreliable information provided by the luminance 

window. 
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A similar problem was encountered by Lovell et al (2012) when investigating the 

combination of shape from shading and shape from disparity – they found that the disparity 

cue could be strong enough that the shape from shading cue was ignored. We will therefore 

try the next step that they took in alleviating this problem – adding random noise to the 

disparity cue to make the disparity unreliable and harder to judge (Harris & Parker, 1992), 

thus forcing the visual system to rely more on the presence of the luminance cue for 

segregation. 

6.5 Experiment 7: Does random disparity noise cause a luminance 

edge to change the perception of peak depth? 

6.5.1 Introduction 

In the previous experiment, we managed to create a stimulus such that the majority of 

participants could complete the experiments. However, despite this success the experiment 

delivered a null result. We hypothesise that the luminance edge did not have an effect on 

the disparity segregation due to the respective noise in the signals – the disparity is very 

well defined on a continuous surface for all dots. The luminance edge is comparatively 

poorly defined, with the fact that the dots convey the cue causing a very ragged edged 

square shape, as can be seen from the screenshot in Figure 6.12. It is commonly known in 

cue conflict and cue combination literature that if one signal is very reliable, then other 

unreliable cues to depth will be reduced or even discounted e.g. (Chen & Tyler, 2015; Hillis 

et al., 2004; Knill, 2007). In our case this potential asymmetry in cue strength may have 

caused the visual system to ignore the segregation from the luminance in favour of the 

disparity cue. 

In order to test this hypothesis, we present an experiment where the disparity has random 

noise added in order to degrade the disparity signal (Norman, Lappin, & Zucker, 1991). The 

luminance cue remains identical – therefore the addition of disparity noise could push the 

visual system towards reliance on the luminance cue for segregation. As before, we 

compare the perceived peak depth of the objects to the predicted perceived peak depths if 

the luminance window dictated segregation (generated using the model from Chapter 5).  
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6.5.2 Stimuli and methods 

Stimuli are presented identically to the previous 

experiment (Experiment 6, Section 6.4.2), except this time 

we use disparity noise as in Lovell et al (2012). In order to 

weaken the disparity signal, after generation of the left 

and right halves of the RDS, each dot in each half of the 

RDS is moved to the right by an angle randomly generated 

from a normal distribution with mean 0 arcmin and 

standard deviation of 0.58arcmin. Random disparity noise 

was added to each dot in each eye individually, which 

could decrease the reliance on disparity defined 

segregation and increase reliance on the luminance 

window for object segregation.  

As in the previous experiment, we use the model in 

Chapter 5 to predict the expected PSEs for the different 

window sizes if the area segregated then averaged was 

completely defined by the luminance window. As can be 

seen from Figure 6.14, the objects with smoothness 

coefficients 3 and 26 have minimal difference between 

their predicted PSEs at the extremes of window size. 

Therefore, we only run this experiment with a single 

object of SC14. This brings the total experiment duration 

down to one hour, consisting of the TNO test and demo 

followed by three blocks of approximately 300 trials each, 

with a forced 60s break between each block. 

6.5.3 Results 

Eight out of nine participants completed the experiment, with one being excluded by the 

TNO test. Participant H could not correctly see depth at a window size of 193arcmin (with a 

PSE of around 35arcmin and a bootstrapped SEM of 3000arcmin) – the data is included for 

interest however. The remaining participants are clustered into two groups, as can be seen 

in Figure 6.17, firstly Participants A D E and F, and a second group comprising of participants 

B C and G (indicated with dashed lines). Due to this clustering, we separate the participants 

into two groups – those with an increase in PSE with window size (A,D,E and F) and those 

with a decrease in PSE with window size (B,C and G) and analyse them individually. 

Participants A D E and F showed the expected trend similar to the blue dashed model 

prediction, with a significant change in PSE with window size (repeated measures ANOVA on 

Participants A, D, E and F only, F(2,32)=0.01, p=0.001). It can be seen from Figure 6.17 that, 

as expected, the PSE increases with increasing window size – in line with the prediction that 

 
Figure 6.16: Anaglyph of 

Experiment 7. Sharp object 
(top) and smooth 10% 

disparity noise (bottom) with 
a 1.125 fractional luminance 
window on the lower object. 
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segregation and averaging are affected by the luminance window. However, the magnitude 

of this effect is extremely variable between these participants. 

Participants B, C and G (the three with the smallest PSE at a window size of 190 arcmin, 

marked by dashed lines in Figure 6.17) were less effected by window size than the previous 

group. For this group, the window size has no significant difference on their perception of 

the object (repeated measures ANOVA on Participants B, C and G only, F(2,4.3) = 0.10, 

p=0.101).  

 

 
Figure 6.17: The PSEs with window size for all participants in Experiment 7, with prediction. 

Error bars are one SEM. 
 

Looking into threshold data with the same participant split (Figure 6.18), there is no 

significant effect of window size on thresholds for participants B C and G (repeated 

measures ANOVA, F(2,0.12) = 0.988, p=0.99). Participants A D E and F however show a 

significant effect (repeated measures ANOVA, using the Greenhouse-Geisser correction as 

the assumption of sphericity is violated (p=0.02) we find F(1,13) = 0.03, p=0.033). Unlike 

manipulation of smoothness coefficient, this implies that the increase in luminance window 

cue is making the task harder for those affected by it as well as creating a bias. 
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Figure 6.18: The thresholds as a function of window size for all participants in Experiment 7. 
Error bars are one SEM. 

 

6.5.4 Discussion 

In this experiment we have demonstrated the effect we hypothesised at the beginning of 

the Chapter – that an additional cue to object segregation can cause a bias in the perceived 

peak depth, with a larger segregation cue causing a decrease in the perceived depth of the 

object. This effect appears to be subject to a very large degree of individual variation, with 

approximately a third of participants not experiencing the effect, and two thirds having an 

effect.  

We altered the model from Chapter 5 to predicted the perceived peak depth of the object if 

the object was segregated using the luminance window alone, then the disparities within 

the luminance window were averaged. We found that the participants that were affected by 

the luminance window had a greater decrease in perceived peak depth than that predicted 

by this simple averaging model.  This degree of individual variation between participants 

and the presence of changing thresholds with window size indicates that other mechanisms 

are having an influence that were not observed in the previous experiments. We speculate 

that this is due to the individual differences in weighting the contribution of the luminance 

and disparity cues in the cue combination stage of visual processing. For example, Hills et al. 

(2004) paper on cue differences in observers that they speculated that some individual 

differences were due to individual participants weighting cues differently – see Section 2.2.6 

for a brief discussion of cue combination.  
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Future investigation into this area would be valuable, as it would be very interesting to 

know exactly how the cue combination is happening and why there is so much variation in 

the effect of luminance on disparity estimation. However, the difficulty of getting any result 

at all using these stimuli indicates that they are far from the optimal way to investigate 

these effects.  

6.6 General Discussion 
Measuring the interaction of disparity segregation and luminance segregation turned out to 

be remarkably tricky when using RDS to create a disparity defined objects. The primary 

problems were that the majority of methods of adding a luminance cue were perceived as 

forming a separate object from the disparity defining dots. This confusion made the 

experiment impossible to perform with any degree of accuracy or interparticipant reliability.  

However, we found that by increasing the contrast and overall luminance of the screen, 

then altering the dots to be either grey or white with a black background (see Figure 6.12) 

enabled participants to complete the experiments (Section 6.4). When the luminance edge 

was being perceived as part of the object in Experiment 6, the luminance edge did not have 

any effect on the perceived depth (Figure 6.15). In order to make the luminance cue have an 

effect we introduced eye-dependent disparity noise to force more reliance on the 

luminance cue (Harris & Parker, 1992; Lovell et al., 2012). Even then, in Experiment 7 we 

only found that two thirds of the participants showed a decrease in perceived peak depth 

with a larger luminance window. Additionally, for these participants, the larger luminance 

cue greatly decreased their sensitivity to peak depth. 

6.6.1 Speculation on the interaction of disparity and luminance 

As the luminance cue to segregation of the object influences the perceived peak depth of 

the object, this offers some interesting but speculative insights into where in the visual 

hierarchy segregation and averaging takes place. If the luminance cue could not influence 

the perceived peak depth of the object, then this would suggest that object segregation and 

averaging in the binocular domain was conducted separately to object segregation from 

luminance. However, as luminance segregation has influenced the perceived disparity, this 

indicates that these cues are combined further up the visual hierarchy, perhaps in a mid-

level shape processing area (Loffler, 2008). As such, we agree with Richards 1977, that 

monocular cues are essential in considering depth perception in objects (Richards, 1977). 
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Interestingly, as the disparity is averaged 

over the object this suggests that further 

processing of disparity and perhaps other 

cues such as luminance take place after 

being combined in the visual system. This 

is perhaps not surprising, given the 

number of similar effects that have been 

found that are analogous between 

luminance and disparity (Anstis et al., 

1977; Didyk, Ritschel, Eisemann, 

Myszkowski, & Seidel, 2012; Lunn & 

Morgan, 1995). For example, Lunn and 

Morgan (1995) found that the Hermann 

grid illusion depicted in Figure 6.19 creates 

a similar illusion when using disparity-

defined depth instead of luminance (see Section 2.2.6 for a discussion of similarities 

between luminance and disparity). This has ramifications on the work of many modellers of 

the visual system as their models may need to take into account processing much later than 

the current models of the early visual system. 

While the exploration of the interaction of luminance segregation and disparity averaging 

over the surface of the object has been very interesting, the sheer difficulty and 

interparticipant variation in the experiments presented here indicates that this is the wrong 

paradigm to study this effect in detail. We therefore propose that future exploration of this 

area would best be left to another project which can dedicate time and resources to 

designing an experiment with a stable interparticipant percept to study the effect. An 

interesting point to start may be by using stimuli similar to Lovell et al. (2012), where a 

random dot stereogram is combined with self-contained shape from shading cues. By using 

shape from shading rather than sharp luminance edges, it would be possible to create a 

strong percept of an object of similar shape to the disparity defined shape, but created from 

luminance. With both luminance and disparity providing a good cue to the object it may 

then be easier to specifically investigate the interaction of disparity averaging with object 

cues from shape from shading.  

6.6.2 Effect of luminance and disparity interactions on camouflage 

As an aside, this Chapter overlaps with the second strand of the thesis considering Julesz’ 

assertion that objects “jump out from their background when stereoscopically fused” 

(Julesz, 1971) . If luminance cues to object edges alter the disparity based object segregation 

mechanism, then an animal using disruptive camouflage (see Section 2.1) could exploit use 

this monocular camouflage technique to also fool a binocular predator, and still appear as 

 
Figure 6.19: Hermann grid illusion – there 

appear to be dark patches in the intersections 
of the horizontal and vertical white lines. 

Reproduced with permission, (Paaliaq, 2007). 
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multiple different objects. This would be compounded if depth from disparity was then 

averaged over the miss-identified objects, as they would appear to have different depths, 

making it hard to identify as a prey item. Interestingly, this observation acts against the 

hypothesis that binocular vision is used to break camouflage – an optimal system for 

detecting disruptively coloured targets would be for disparity processing to operate 

independently from luminance and colour, thus providing an additional method of detecting 

animal shape. It is probable that other uses of binocular vision (as discussed in Section 2.1.3) 

and the risk of misidentifying object based solely off one cue means that combing cues is 

more valuable than the single use of detecting camouflage prey. 

The objective of camouflage is not to specifically decrease the perceived depth, but to make 

the object harder to spot. The first few experiments may give an indication of a potential 

camouflage technique that is slightly different to the proposed one in the introduction to 

this Chapter: by having luminance edges that are not coincident with disparity edges, it 

appears make it very hard to extract depth from the object. While this effect may be due to 

the highly abstract nature of our RDSs, it is possible that adding luminance edges that are 

irrelevant to the depth boundaries on the object, may disrupt the perception of the prey as 

object, making it harder to spot.  
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7 Does disparity defined depth assist in 

breaking camouflage? 

 Strand 2: Does depth perception break camouflage? 

 Investigating: Does disparity defined depth trivialise camouflaged target detection. 

 Task: Search for a camouflaged target. 

 Manipulation: Target sometimes has a disparity cue 

 Results: Disparity assists in target detection, but does not trivialise it. 

 Conclusions: Depth helps break camouflage, but detection of disparity defined 

targets is not trivial: 

 Further work: Do smooth objects hinder disparity defined object detection?  

 

 

 

Figure 7.1: The head and body of the leafy sea dragon, Phycodurus eques showing excellent 
masquerade. Image reproduced with permission, (©Ta-graphy, 2010) 
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7.1 Introduction 
In this thesis, we are exploring the interaction of disparity defined depth and camouflage via 

Julesz’s original assertion in 1971 that “even under ideal monocular camouflage, the hidden 

objects jump out in depth when stereoscopically fused” (Julesz, 1971). We broke this 

statement into two strands to explore: first, investigating what a disparity defined object is, 

and second, the interaction of stereoscopic vision with camouflage. In the previous three 

Chapters, we have explored the perception of an object with a smooth depth edge (Chapter 

4), gained an understanding of how the edge of the object is detected (Chapter 5) and 

explored the interaction of luminance and disparity when segregating the object (Chapter 

6).   

In this and the following Chapters, we explore the second strand of this assertion: that the 

objects jump out in depth when stereoscopically fused, thus rendering monocular 

camouflage useless. In order to do this, we turn away from psychophysics, which compares 

two stimuli, and towards visual search experiments, where the participant must find a 

target object in a visual display. By making the target very similar to the background of the 

display, we can make visual search tasks very similar to searching a section of the 

environment for a target camouflaged via background matching. As discussed in Section 

2.1.2 and 2.3, we can use two main metrics in a visual search experiment to measure 

camouflage: 

1. Reaction time – the length of time it takes to find the target object. The longer it 

takes to detect a target, the more likely the predator will give up searching and move 

on, leaving the target undetected. Therefore, we take a longer reaction time as an 

indicator that the target is better camouflaged e.g. (Cuthill et al., 2005; Lovell et al., 

2015; Penacchio et al., 2016; Penacchio, Lovell, Sanghera, et al., 2015). 

2. Accuracy – how many of the targets are correctly identified. A target that goes 

undetected more often is thought to be better camouflaged e.g. (Bond & Kamil, 

1998; Cuthill et al., 2005; Stevens et al., 2007).  

To measure these two metrics, we need to design an experiment where the participant 

searches a visual field for a camouflaged target object. We then need to measure the 

reaction time – the length of time it takes the participant to detect the target. Alongside 

this, we need to measure accuracy, to ensure that the participant is genuinely detecting the 

target, and as a measure of camouflage.  As discussed in Section 3.2.2, we use only a single 

target object that is always present as multiple target objects or present/absent searches 

are prone to creating biased results (Cain et al., 2013; Duncan & Humphreys, 1989; Lovell et 

al., 2008). 

In Experiment 8 presented in this Chapter, we present an experiment to explore if the 

presence of depth from binocular disparity does cause a camouflaged luminance defined 

object to be detected more quickly than if depth is not present. We continue using random 

dot stereograms, as these present the ideal monocular camouflage that Julesz is proposing, 
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and ask participants to search for a square target (defined by luminance) among rectangular 

distractors. On two thirds of trials, the target has an added square-shaped depth from 

disparity – if binocular depth does break camouflage then the participants should detect the 

object faster than when depth is not present. As a preview, we find that binocular disparity 

does assist in target detection. 

In this Chapter we: 

1. Present the new methods and stimuli used for all visual search experiments. 

2. Present Experiment 8, in which we tested if a target object with a disparity cue was 

easier to detect than the target object without disparity. 

In the following two Chapters, we continue to use the general methods described in the 

next Section (7.2), but test two new ideas:  

In Chapter 8 (Experiment 9) we investigate if the decrease in peak depth and 

decreased perceptual grouping of the smooth object (see Section 4.5 and 5.6) could 

impair the camouflage breaking properties of binocular disparity discovered in 

Experiment 8. In preview, we find that the smoother object is slower to detect. 

In Chapter 9 we investigate how the results of Experiment 9 hold up in naturalistic 

conditions. In Experiment 10, we use the methods described in Section 7.2, but add 

naturalistic disparity noise to the background, to investigate if the smooth object is 

still harder to detect. In Experiment 11, we create a real-world analogue of the visual 

search experiments, using a unique experimental setup and techniques. 

7.2 General methods for visual search experiments 
In the previous three Chapters, we have been using an identical setup for all experiments. 

However, this setup is not suited for the visual search experiments in this and the next two 

Chapters. In this Section, we discuss the new experimental equipment, setup and 

methodology used for the visual search experiments. Exact details of the stimuli used are 

discussed in the individual Experimental Sections.  

Here, we present a brief overview of the visual search experiments. In these visual search 

experiments, we measure the time it takes for a participant to find a target placed at a 

random location in a RDS that covers the majority of each half of the screen. The longer it 

takes the participant to find the target, the better camouflaged the target. In order to test 

the effect of different manipulations of target shape and size on the target’s camouflage, we 

use several different target conditions – either adjustments of the target’s disparity or it’s 

smoothness (profile in depth). Each experiment is blocked in to sections, in each 

experimental block, we choose to display a certain number of repeats of each condition, and 

interleave these between the trials, displaying only one target of one condition in each trial.  
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The visual search experiments we use follow a simple procedure: first the observer is 

presented with a black screen with a central fixation cross. After one second, this proceeds 

to the RDS. Within this RDS is the target object, defined by either luminance or disparity or a 

combination of these two cues. The participants’ task is to press a button as soon as they 

spot the target, then indicate on a response screen (discussed in Section 7.2.2) where they 

saw the target. 

7.2.1 Experimental equipment 

In order to use as large a display as possible, the visual search experiments used a mac 

monitor which was placed at 1.1m away from the participant. The monitor has a resolution 

of 2560 by 1600, and a size of 32 by 19 degrees in visual angle. Pixels are at 0.747 arcmin 

across (making the individual 2x2 pixel square dots of the RDS have a side length of 1.49 

arcmin). A random dot stereogram and Wheatstone stereoscope (Section 3.1) are still used. 

Maximum luminance (white) for this screen is 268.8 cd m-2, and minimum luminance (black) 

is 0.4 cd m-2. 

We replaced the keyboard input method with the mouse, for reasons explained in the next 

Section. 

7.2.2 Experimental methodology 

The visual search experiments require a different procedure to the previous experiments as 

they are asking different questions. Participants search in a RDS for an object, with no limits 

to the length of time they can spend searching. A participant who is fast at the task will 

therefore progress through trials faster than a slow participant (unlike in the previous 

experiments, where each trial was set to take 2s). We allow participants to proceed through 

blocks of the experiment at their own rate, completing as many blocks as they can during 

the one-hour session. In order to ensure a reasonable degree of precision, we require that 

the participant completes a minimum number of blocks (three in Experiment 8). 

We reduce the number of trials in each block (to fifty in Experiment 8), aiming at an average 

of 10 minutes per block for each participant. As different conditions are interleaved within 

each block, we wish to avoid participants stopping partway through a block at the end of the 

session, and then having completed a different number of trials for each experimental 

condition. These 10-minute blocks should allow us to fit as many blocks into the one hour as 

possible without breaking blocks partway though at the end of the one-hour session.  

Participants are required to correctly complete at least the sixth panel in the TNO test. 

Additionally, participants complete a visual search demo to familiarise themselves with the 

task before undergoing the experiment. Participants were informed that their task was to 

find a square-shaped object in the field of random dots. The demo consisted of 12 trials 

(each condition was displayed to the participant 3 times), and were identical to the 

experimental blocks – the demo was for practice and to ensure the participants had 
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correctly understood the task. Participants unable to complete the demo with at least 80% 

success rate at identifying the target objects were rejected from further study.  

7.2.3 Experimental procedure 

The procedure of the experiment is significantly 

changed from the previous three Chapters. At the 

beginning of the experiment, the participant is 

shown an alignment screen consisting of a box 

around the area that will contain the visual search 

stimuli. Participants are asked to ensure that they 

can see the entire box in each eye individually, and 

only one box with comfortable fusion when both 

eyes are open. If needed, they are shown how to 

adjust the angle of the stereoscope mirrors to 

achieve this.  

The experiment then starts with a mouse click, 

initiating the display of the visual search stimulus. 

During the presentation, the mouse pointer is 

hidden, and the participant is given as long as they 

wish to spot the target – as soon as the participant 

identifies the target they click the mouse button. 

The time taken between the mouse clicks is 

measured by the program as their reaction time. 

In order to ensure that the participant correctly 

identified the location of the target, the participant is then presented with a response 

screen containing a set of white square outlines as in Figure 7.2, one square corresponding 

to the location of the target object. The mouse pointer is revealed at the fixation cross, and 

the participant requested to click which of the squares corresponded to the location of the 

target. No two squares were allowed to be within 74.7 arcmin of each other, called the 

padding, to ensure that participants could not get confused about the location of the target 

with respect to the response patches. The participant moves the mouse to the square 

where they thought the target was. This square will turn white to indicate the participant’s 

selection – the participant presses the button to confirm and move onto the next trial. The 

participant can mouse over as many selections as they wish before making a selection. Once 

a square is selected, the fixation cross was displayed for one second before the next 

stimulus onset. No feedback was given. 

We switched from a keyboard input in the previous three Chapters to a mouse in these 

visual search Chapters because there is no clear way of selecting between the five response 

boxes using a keyboard. Using a mouse, selecting the correct box is intuitive for the 

participant. 

 
Figure 7.2: Mock up response screen. 
The mouse is initially at the fixation 

cross, with all possible response 
positions as hollow white squares. 
When the participant hovers the 

mouse over a square, it is highlighted 
white to indicate the participants’ 

selection.  The participant clicks the 
square they think was at the target 

location. 
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To ensure that search times were not dictated by the initial fixation position the position of 

the target was pseudo-random. The target was not allowed to appear within 74.7 arcmin of 

the fixation cross to ensure that participants had to search the stimulus to locate the target. 

Additionally, the target could not appear within 74.7 arcmin of the edge of the random dot 

stereogram. 

Randomised position within these constraints was obtained by using a matrix, each element 

of the matrix corresponded to one pixel on the screen where the target object could be 

placed. Every element of the matrix was set to zero, to indicate that it was an allowed 

position, as in Figure 7.3a. The top left corner of the target was calculated by a randomised 

(x, y) coordinate, and all elements that would be covered by the target and the banned 

region around it (which stops objects being too close to each other) were assigned a ‘1’ as in 

Figure 7.3b. A second random (x, y) coordinate was then generated as the top left of the 

first distractor. If any of the elements within the area of the second object are ones (as in 

Figure 7.3c), then this position is rejected and a new one generated until the object contains 

only zeros as in Figure 7.3d (this is only attempted 100 times before the entire matrix is 

reset). All elements covered by the new object and the area around it are assigned to one, 

as in Figure 7.3e. As can be seen in Figure 7.3e, there is only one randomised top left 

position left that could result in the placement of an object at (4,1) – once an object is 

placed here we cannot fit any more in. This typically takes place at around 55% coverage 

(Brosilow, Ziff, & Vigil, 1991). This not an issue with our stimuli however, as they only have 

approximately 1% coverage, so all objects can be reliably positioned randomly in the scene. 

a. Initial matrix b. Target added c. Distractor 
first attempt 

d. Distractor 
second attempt 

5. Distractor 
added 

   

  

A matrix 
corrisonding to 

all available 
positions was 

set to 0. 

Top LHS of 
target is 

randomised as 
(1,1). Target is 
located in the 

box. 

Trial position of 
a distractor at 
(3,2) is shown 
by the dotted 
square. This 

contains 1’s and 
is rejected. 

Second trial 
position at (3,4) 

does not 
contain 1’s and 

is accepted. 

Position of the 
distractor and 
surroundings 

are set to 1’s to 
indicate they 
are occupied. 

Figure 7.3: An example small matrix of how the screen was populated with objects. The 
objects in this demonstration are 2 by 2, with a padding of 1. Solid lines indicate the position 

of stored objects, dotted lines the attempted positioning of objects. 
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7.3 Experiment 8: Does disparity information decrease reaction 

time? 

7.3.1 Introduction 

First, we must test the hypothesis that to a stereoscopic observer, it is easy to spot a 

monocularly camouflaged target when disparity information is present, as proposed by 

Julesz in 1971 (Julesz, 1971). This is a highly persuasive argument and has been often 

accepted but not rigorously tested (Heesy, 2009; Isbell, 2006). In this Chapter, we wish to 

test that the presence of disparity defining a camouflaged shape makes the object easier to 

spot than when displayed without a disparity cue. 

Here, we use a visual search task where the target is defined by a luminance cue, and with 

an additional disparity cue for two thirds of the trials. Participants were not informed of the 

presence of the additional disparity cue. In theory, if disparity defined depth assists with 

breaking monocular camouflage, then the targets with the disparity cue should be faster to 

detect than those without. A luminance defined object is trivial to detect in a uniform 

luminance RDS, so in order to make the target camouflaged, we add luminance defined 

distractors. The target is then camouflaged because it matches distinct features of the 

background (see Section 2.1.1).  

7.3.2 Stimuli 

The general procedure was detailed in Section 7.2.2 and we used the same experimental 

setup as in Section 7.2.1. In this Section, we detail the specifics of stimuli we display using 

these techniques. 

The target was a 112 arcmin square, with six rectangular distractors of 146 by 78 arcmin 

with a randomly defined orientation of either 0 or 90 degrees (see Figure 7.4). Dot density 

was 217 dots per square degree. The objects were created by selecting dots within these 

areas, and increasing their luminance to white (268.8 cd m-2), whilst background dots were 

dark grey (24.6 cd m-2) on a black background (0.4cd m-2). When disparity was present in the 

target it was either crossed or uncrossed (added to each dot, in front or behind the screen, 

see Section 2.2.2) of 11 arcmin.  

The stimulus consists of one square target with six rectangular distractors, as shown in 

Figure 7.4. The participants are informed that the task is to find the square object within the 

rectangular distractors. The participants are not informed that on two thirds of trials the 

target has non-zero disparity: one third of trials 11 arcmin crossed, one third 11 arcmin 

uncrossed, and one third zero disparity. As half occlusions (regions of the background 

viewable by only one eye, see Sections 2.2.3 and 4.4) can contribute create differences 

between crossed and uncrossed stimuli (e.g. (Becker et al., 1999; Kim, 2013)) we use the 

smooth object at smoothness coefficient 3 (see Figure 4.3, page 63), which has no perceived 

change in peak depth relative to a sharp-edged object and no half occlusions to remove any 

potential bias in perception due to half occlusions. If a disparity cue helps in the detection of 
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an object, the participants should spot the targets that contain disparity faster than those 

without. 

 
Figure 7.4: Anaglyph showing the visual search stimuli. Target square is located at the 

upper right of stimulus, with a disparity cue. Note that the dots in the background are dark-
grey and may not show up clearly on non-calibrated devices. 

 

7.3.3 Results 

Out of twelve participants, one did not complete the demo and was excluded. All remaining 

participants completed the minimum of 3 blocks (150 trials for each condition), with a 
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maximum of 7 blocks completed (350 trials per condition). Mean reaction times, taken 

across correct trials only (percentage correct is discussed later, alongside Figure 7.8b) are 

shown in Figure 7.5 and demonstrate a clear trend, with the zero disparity target taking the 

longest to detect. There are two exceptions: Participants A and B (indicated by dotted lines 

in Figure 7.5).  

 
Figure 7.5: Mean reaction times for correct trials to detect the square target object. Objects 

with crossed disparity (which stand out from the background) are negative. 
 

The mean reaction times are non-normal (Shapiro-Wilk, p<0.05), and therefore statistical 

analysis was done using the Wilcoxon signed rank test, as a non-parametric alternative to 

the t-test that does not assume normality. We compare three conditions, meaning there are 

three pairwise comparisons, so we used a Bonferroni correction to the significance value to 

avoid type 1 errors from multiple comparisons. Statistical significance is therefore taken at 

the p=0.017 level.  

Statistical analysis using the Wilcoxin signed rank shows differences between disparity 

absent and disparity present trials to be highly significant on a group level for both positive 

and negative disparities (0 to 11 arcmin, Z=-16.9, p<0.0005; 0 to -11 arcmin, Z = 18.4, 

p<0.0005). Group mean data is plotted in Figure 7.6  Testing on an individual level replicated 

these results except for Participants A and B, who showed no significance for any pair of 

conditions (p>0.30) and Participant F who showed no significance between zero and 11 

arcmin disparity (p=0.11).  
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The difference between positive and negative disparity present trials was only significant for 

some participants (C,D,E,G,H,K), and was not significant on a group level (11 to -11 arcmin, Z 

= -2.2, p=0.031 which is insignificant due to the Bonferroni correction).  For the participants 

with a significant difference, three found the -11 arcmin faster to detect and three found 11 

arcmin faster to detect. This discrepancy between disparity present trials is probably due to 

either chance or to individual differences. 

Despite the highly significant results, it is 

hard to see the advantage afforded by 

disparity from the mean reaction times in 

Figure 7.5, although we can see the effect 

when looking at the mean reaction time 

across all participants in Figure 7.6. This 

difficulty in seeing the trend in individual 

data is due to the individual variation in 

reaction times between participants. To 

reduce participant variation in reaction 

time, we normalized the results for each 

participant by dividing the mean reaction 

for each condition by that participants’ mean reaction time in the zero disparity condition. 

This gives us a measure we call the gain – a number greater than 1 indicates a decrease 

(speed up) in detection time compared to the zero disparity conditions, a number less than 

1 indicates an increase (slow down) in detection time. In Figure 7.7 we plot the gain against 

the displayed target disparity. The gain shows the trend in the mean data more clearly, with 

the majority of participants displaying a noticeable gain when disparity information was 

present.  Analysed across significant participants (discussed above) the mean gain was 22%, 

with a standard deviation of 14%. Across all participants, mean gain was 17%, with a 

standard deviation of 17%. 

Mean reaction times, while informative to test how well camouflaged the target is can be 

skewed by a few outlying results. In Figure 7.8(a) we can see that the median reaction times 

replicate the trend shown by the mean, indicating that the results were not caused by 

outliers.  

 

 

 
Figure 7.6: Mean reaction times for correct 

trials averaged (mean) across all participants. 
Error bars are one standard error. 
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Figure 7.7: Percentage gain of reaction time with the presence of a disparity cue – a 10% 

gain means the participant was 10% faster than the disparity absent trial. 
 

 

(a) (b) 

  
Figure 7.8: Participants’ lines coloured identically to Figure 7.7(above). (a) Median reaction 

times for all participants. (b) Percentage correct. Participants with dotted lines had non-
significant effects. 

 

Finally, for this experiment, we investigate the percentage correct of participants, shown in 

Figure 7.8(b) (note error bars are omitted, due to being around 5-8 percentage points and 

thus covering the entire graph). All participants performed above 94% correct, with there 

being no clear link between disparity and percentage correct.  Some participants seem to 

have poorer performance on the zero disparity trials but this is within the calculated 
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standard errors (and typically corresponds to getting 5 trials incorrect out of a minimum of 

150). 

7.4 Discussion 
Here, we consider the implications of this experiment on the theory that disparity defined 

depth is used to break camouflage. We then discuss the lack of a difference between the 

crossed and uncrossed cues in reference to current literature. Finally, we consider exactly 

what it means to have no disparity, and wrap up with a discussion of the next steps to test 

the interaction of binocular depth perception and camouflage. 

In order to test the theory that the presence of disparity defined depth would assist in the 

detection of camouflaged prey, we created an experiment where the target sometimes 

contained disparity information. As predicted, we found that the presence of disparity in the 

target object significantly decreases reaction times for eight out of ten participants, 

however the presence of disparity did not make them trivial to spot, with the average 

decrease in reaction time being 22%. This shows that the disparity in the target assists with 

detection, even when participants are not informed about the presence of disparity.  

Given that participants were not informed that disparity was present in the stimulus it is 

interesting that the presence of the cue could helped nine out of eleven participants detect 

the target. As we did not inform participants about the presence of disparity this makes the 

effect of decreasing reaction times robust – the participants are unlikely to be exhibiting any 

top-down behaviour looking for the presence of disparity first, then searching for the square 

luminance cue.  

There was little evidence of a difference between crossed and uncrossed disparities (depth 

in front and behind the background plane) unlike some of the literature that has 

investigated uncrossed vs crossed disparities specifically e.g. (O’Toole & Walker, 1997; 

Patterson et al., 1995; Patterson, Moe, & Hewitt, 1992). A study by Becker et al. (1999) 

studied the asymmetry between the perception of crossed and uncrossed stimuli by 

manipulating fixation relative to the background plane. They found that there was no 

difference between uncrossed and crossed conditions when both conditions were displayed 

in front or behind of the background plane an experiment that was replicated by Kim (2013). 

However, they observed a difference between the conditions when crossed stimuli were 

presented in front of the background plane, and uncrossed behind. Becker et al. (1999) 

suggested that the asymmetry was due to the difference in occlusions when the stimuli 

were presented in front or behind the background plane, rather than the crossed or 

uncrossed nature of the stimulus.  This suggestion is consistent with our findings – although 

we display the objects in front or behind the background plane, we use a smooth object to 

eliminate any occlusions, thus removing the asymmetry observed in earlier studies. 

On a pedantic note, all of these presentations have a disparity cue – having zero disparity is 

not the same as an absence of disparity. However, as both the distractors and the target 
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have zero disparity, then the disparity cue here contains no information and so cannot be 

used to detect the target. While we could consider comparing monocular and binocular 

presentation, this is not as simple as it sounds: monocular presentation can alter the 

perception of flat objects when compared to binocular presentation (Prinzmetal & 

Gettleman, 1993), and it is possible that two eyes are used to improve signal to noise in the 

display (Heesy, 2009; Jones & Lee, 1981). To add an additional level of complexity, some 

predators with overlapping regions in both eyes will may use these regions to enhance 

signal, but not to calculate depth e.g. (Martin, 2015; Ott et al., 1998). It would be interesting 

to see a set of experiments based around comparing monocular and binocular 

presentations. In the meantime, we think that making the disparity cue give no information 

is sufficient to give us an idea of the difference in detection rates that binocular vision 

provides.  

In 1971 Julesz proposed the idea that depth from binocular disparity would cause even well 

camouflaged objects to be detected easily. Whilst widely accepted, the presence or 

magnitude of this effect had never been formally tested. Here, we found that a target that is 

defined by both disparity and luminance is, on average, detected 17% faster than a target 

defined by luminance alone. This was a significant decrease in reaction time for the majority 

of participants, indicating that disparity defined depth can assist in detecting camouflaged 

targets. In the next Chapter, we investigate if the advantage of disparity defined depth could 

be counteracted by manipulating the perception of depth in the target object. 
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8 Can certain shapes create stereoscopic 

camouflage? 

 Strand 2: Does depth perception break camouflage? 

 Investigating: Do smoothed reduce the advantage afforded by binocular vision. 

 Task: Search for a target object. 

 Manipulation: Target has different edges smoothness, rendering it easier or harder 

to segregate. 

 Results: Smoother objects are slower to detect. 

 Conclusions: Smoother objects are harder to detect than sharper objects. This 

could be used as camouflage against a binocular observer.  

 Further work: Do these effects carry over to real world tasks?  

 

 

Figure 8.1: The feathery edge around this common baron caterpillar (Euthalia aconthea) 
may make it hard to segregate the edge of the caterpillar from the mango leaf. Image 

reproduced with permission, (Auswandern;, 2007) 
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8.1 Introduction 
In the second strand of this thesis, we are considering the interaction of camouflage and 

depth perception, particularly with respect to Julesz’s claim that objects with disparity 

defined depth would be trivial to detect (Julesz, 1971). In this Chapter, we investigate if 

certain shapes, such as the smooth objects in the first strand of this thesis could counteract 

the advantage of binocular vision and become hard to detect, forming a kind of stereoscopic 

or binocular camouflage. 

Although depth perception enables the extraction of depth across the scene, there are 

additional levels of processing to segregate an object from the background that cause 

misperceptions of depth– as discussed in the first strand of the thesis. We hypothesize that 

these additional levels of processing and the resultant biases in the perception of depth 

(modelled in Chapter 5) may slow down detection of disparity defined targets. This 

hypothesis is supported by the findings of Deas and Wilcox (2015). They found that 

participants detected lines of disparity defined dots faster when they were more strongly 

grouped via good disparity continuation than when disparity continuation was weakened by 

adding disparity noise to the dots (see Section 2.2.6). This indicates that the better the 

grouping of the elements making up an object, the faster it can be segregated from the 

background and identified as the target. In this Chapter we extend the work of Deas and 

Wilcox (2015). We investigate if 3D objects that are well grouped (in our case, sharp objects) 

are faster to detect than those whose shape causes problems with grouping and cause a 

misperception of depth (in our case, smooth objects, the relative grouping of sharp and 

smooth objects is discussed in Section 5.6). 

If smoother objects are harder to detect than sharper ones, then this indicates limitations in 

disparity processing that animals may be able to exploit these limitations of disparity 

processing by altering their shape, therefore taking longer to detect and being better 

camouflaged (Merilaita, 2003). This has interesting implications for the statement that 

binocular vision can break camouflage – if it is possible to adopt certain strategies to make 

the object is harder to detect, then it is effectively displaying a form of camouflage. This 

camouflage technique is similar to crypsis, where the target is avoiding being detected as an 

object separate from the background. We dub this effect binocular or stereoscopic 

camouflage (Cammack & Harris, 2016). 

In this Chapter, we present an experiment that uses the smooth and sharp objects from the 

first strand of the thesis to investigate if certain objects shapes take longer to detect using 

depth from binocular disparity. As we found in Chapter 5, the smooth object is perceived 

with less peak depth than the sharp object, which we interpreted as a problem with object 

segregation. We speculated that the elements that make up the smooth object are poorly 

grouped together, and are grouped with the background via good continuation (see 

Sections 2.2.6 and 4.2.1), making it hard to segregate the object from the background. Deas 

and Wilcox (2015) performed an experiment that found that objects that were strongly 
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grouped were detected faster than objects with weak grouping. We therefore expect that 

the smooth object will take longer to detect than a sharp object that is strongly grouped 

with itself via good closure. 

We compare the reaction times of three different objects: the sharp object with half 

occlusions, a smooth object with no half occlusions and no decrease in perceived peak 

depth (SC3) and a smooth object with a no half occlusions and a decrease in perceived peak 

depth (SC14, see Section 4.3.3). This should enable us to separate any effects of reaction 

time due to the shape of the smooth edge and the processing and perception of the object: 

 If the lack of half occlusions in the smooth objects has an effect on reaction times, 

then the both smooth objects will have altered reaction times compared to the 

sharp object. 

 If the impaired perceptual grouping or the decreased perception of depth in the 

smooth object has an effect on reaction times, then we expect to see altered 

reaction times between the smooth object with no decrease in perceived peak depth 

and the smooth object with a decrease in perceived peak depth.  

8.2 Experiment 9: Do smooth objects take longer to detect? 

8.2.1 Methods 

We investigated if it takes longer to detect an object with a poorly defined edge between 

the object and the background. To do this, we measured the detection time of a disparity-

defined smooth object (see Figure 8.2b) embedded in RDSs and looked at the effect of 

smoothness coefficient (Section 4.2.1) on reaction time. The general setup and 

experimental procedure were the same as those detailed in the general description of visual 

search experiments in Section 7.2. In this Section, we detail the specifics of the stimulus 

used in this experiment. 

Unlike the previous experiment (Section 7.3), we did not change the luminance of the dots, 

so providing no monocular cues to segregation of the object and thus forming the perfect 

monocular camouflage discussed by Julesz (Julesz, 1971). The experimental stimulus is an 

RDS that covers 14.1 by 18 degrees containing white dots (268.8 cd m-2) at a density of 217 

dots per square degree on a black background (0.4 cd m-2). The background dots have zero 

disparity, with a single target object of peak depth of 5 arcmin. 
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(a) (b) 

  
Figure 8.2: A 3D representation of the stimuli used in Experiments 1 and 9. (a) Sharp object with 

half occlusions, (b) smooth object with no half occlusions. 
 

We compared the detection times of the objects used in the first strand of the thesis - the 

sharp edged object with a discontinuous edge and half occlusions; and the smooth object 

whose edge is continuously joined to the background and has no half occlusions (see 

Section 4.2.1 for a discussion of these objects, and Figure 8.2 for a 3D representation). For 

the smooth object, we use two smoothness coefficients - 3 (SC3) and 14 (SC14, see Section 

4.2.1, page 63, Figure 4.3 for cross-sections). The object with SC3 is included as it has a 

smoothed edge but no perceptual decrease in perceived depth (see Section 4.3.3, Figure 

4.6), while the SC14 object has a much smoother edge which causes a perceived decrease in 

peak depth (see Section 4.3.3, Figure 4.6). Both of these objects are not as strongly grouped 

than the sharp object, but only the SC14 object has significant decrease in perceived peak 

depth, which we speculated was due to poor segregation (Chapter 5) and weak grouping 

between object elements.  

Due to the range of object shapes, there is no simple choice that will make a good 

distractor, so do not use distractors in this experiment (the advantages of no-distractor 

experiments are discussed in Sections 2.1.2, 2.3 and 3.2.2). The angular size of the object is 

made small enough (74.7 by 74.7 arcmin) that participants take a more than a second 

searching the screen to detect the single disparity defined object in the zero disparity 

background. To ensure that the participants have detected the object, the response screen 

is displayed with five possible locations of the target (as in Figure 7.2). The participant must 

click on the correct location of the target, if they fail to, the data for that trial is rejected 

(response screen is discussed in more detail in Section 7.2.2). 

8.2.2 Results 

A total of twelve participants were recruited, one was rejected for performing at chance 

level (20%) and a second for not completing sufficient trials (completing only 2 blocks, not 

the required 3 blocks, or 75 trials for each object). Mean reactions times excluding all 
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incorrect responses (percentage correct is shown in Figure 8.4b and discussed later) for the 

remaining ten participants are shown in Figure 8.3. The majority of participants show an 

increase in reaction times at the highest smoothness coefficient.  

Inspection of the mean reaction times in Figure 8.3 seems to show two main groups of 

participants – the main cluster of seven who have a mean reaction time for smoothness 

coefficient 14 that is approximately double that of their reaction times for smoothness 

coefficient 3 and the sharp object (smoothness coefficient 0). Although it may appear that 

the smoothness coefficient 3 is slightly faster to detect than smoothness coefficient 0, this is 

not statistically significant (on a group level, Wilcoxin signed rank test, Z=-1.45, p=0.147) 

whereas the increase from smoothness coefficient 0 to smoothness coefficient 14 and 

smoothness coefficient 3 to smoothness coefficient 14 is highly significant (on a group level, 

Wilcoxin signed rank test, SC0 to 3: Z=-13.03, p<0.0005, for SC0 to 14: Z=-13.99, p<0.0005).  

Three participants (B, H and I) do not show such a dramatic increase in reaction times, 

however when analysing these Participant I still shows a significant increase between 

smoothness coefficient 14 and the other two conditions (see Table 8.1). Note that this 

participant performs the task particularly fast, making the difference between smoothness 

coefficient 14 and the other conditions hard to see on the scale of the graph. 

Only two participants (B and H) did not follow the group statistics, and are indicated by 

dashed lines in the graphs. We consider these participants’ performance in the discussions.  

 
Figure 8.3: Mean reaction times for correct trials to detect the object in experiment 9. Dotted 

lines are participants’ B and H, whose performance is considered individually in the 
discussion. 
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Participant 0 - 3 0 - 14 3 - 14 

A 0.479 <0.005 <0.005 

B 0.432 0.075 0.175 

C 0.144 0.001 <0.005 

D 0.841 0.015 0.006 

E 0.917 <0.005 <0.005 

F 0.923 <0.005 <0.005 

G 0.132 <0.005 <0.005 

H 0.465 0.029 0.005 

I 0.035 0.007 <0.005 

J 0.923 <0.005 <0.005 

Table 8.1: Per participant Wilcoxin signed rank test. Green cells indicate results below 0.017, 
the Bonferroni corrected significant level for three comparisons. Note that here we are 

effectively making thirty comparisons (as there are ten participants), so the individual data is 
included for interest and not to draw conclusions from. 

 

We also considered the median reaction times to ensure that the results were not being 

driven solely by outliers, shown in Figure 8.4(a). Median reaction times are much faster (due 

to the non-normality of the data), however show a similar trend, with the reaction time at 

the largest smoothness coefficient being typically greater that at the sharpest. 

(a) (b) 

  
Figure 8.4: See Figure 8.3 for legend (a) Median reaction times for correct trials for all 

participants. (b) Percentage correct. 
 

Percentage correct is analysed and shown in Figure 8.4(b). The lowest percentage correct 

among the remaining four participants is 88% at smoothness coefficient 14, with the 

majority of participants above 95% for all conditions. This indicates that the participants 

were able to do the task on all conditions with few mistakes. Note that all incorrect trials 

were excluded from the reaction time measures. 

Additionally, we recorded the position of the target object on the screen. This enables an 

analysis of the change of reaction time with the radial distance from fixation cross (called 
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eccentricity) for each smoothness coefficient. To do this, we take all the results between 0 

and 100arcmin eccentricity for one smoothness coefficient, then calculate the mean 

reaction time. We then take the mean for all results for one smoothness coefficient 

between 100 and 200arcmin, then between 200 and 300arcmin and so on, until we have a 

value for mean reaction time for all ranges of eccentricities present in the display. This is 

repeated for all smoothness coefficients, enabling us to plot the mean reaction time against 

smoothness coefficient and eccentricity in Figure 8.5. 

Eccentricity data shows a similar trend to the reaction time data, with an increase reaction 

time with smoothness coefficient at all eccentricities. As expected, the further from fixation 

the longer it takes to detect the target, with a fairly consistent increase in reaction time with 

eccentricity. 

 

Figure 8.5: Effect of eccentricity on the reaction time for different smoothness coefficients in 
Experiment 9.  

 

8.3 Discussion 
In this discussion, we start with a general overview of this experiment and its findings. In the 

following sub-sections, we: 

1. Discuss why we can consider the smooth object as being better camouflaged than 

the sharp object. 

2. Consider if the results in this experiment are applicable to the real world. 
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3. Ask the question: why do smoother objects take longer to detect? We present some 

speculative experiments that may help understand in more detail the non-

camouflage implications of this experiment.  

4. Briefly conclude the experiment. 

In Chapter 7 we started investigating the second strand of this thesis: exploring the 

interaction of binocular vision with camouflaged objects. We investigated the extent to 

which disparity defined depth assisted with detection of a camouflaged luminance defined 

target. We found that disparity defined depth decreased reaction times by an average of 

17%. In this Chapter we investigated if certain shapes, such as the smooth object, could 

counteract the advantage of binocular vision and become harder to detect, thus forming a 

kind of camouflage designed to counter binocular vision.  

In this experiment, we found evidence that the smoother the edge of the object, the longer 

it takes to detect. An object with smoothness coefficient 14 took approximately 2.3 times 

longer to detect than objects of smoothness coefficient 0 and smoothness coefficient 3, 

despite a decrease in peak perceived depth of approximately 15% (Chapter 5, Figure 4.6). 

This overall trend was replicated in the median data, indicating that it is not due to a few 

outliers. We analysed the effect of reaction time on eccentricity and found that the more 

eccentric the presentation, the longer the object took to find (Figure 8.5). This is as 

expected, as the participants commenced search from a fixation cross in the centre of the 

display. The smoother the object, the longer it took to find at greater eccentricities, but this 

is probably due to the mean reaction time for a smoother object being longer.  

On an individual level, two participants did not follow the overall trend. Participant H shows 

a significant difference between SC0 and SC14 but not SC3 and SC14.  As an aside, this 

participant self-reported systematically searching from top left to bottom. We discuss 

Participant B’s performance later in this Section. 

8.3.1 Are smoother objects better camouflaged? 

We conclude that smooth objects are better camouflaged, as the smoothest object takes 

longer to detect than the sharpest object. We can conclude this despite all participants 

being equally accurate at detecting the object at all smoothness coefficients. This is because 

in this experiment, participants were incentivised to keep on searching the display for the 

target as they knew it was always present. Without this knowledge, participants would have 

eventually given up and decided to move on to the next trial – the longer the target takes to 

detect, then the more likely participants would have been to give up before detecting the 

target. This effect is discussed in depth in Section 2.1.2. 

An alternative experiment to explore smoothness as a form of binocular camouflage would 

be to use genetic algorithms which mimic natural selection, such as those used by Burg and 

Alais ( 2015) and others (Geisler & Diehl, 2002, 2003). These algorithms display the observer 

with a set of targets with random properties (in our speculated experiment, we would use 
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random smoothness coefficients). Observers given a search task to detect the targets, and 

all those targets that are detected are considered to be ‘dead’. They combine the properties 

of pairs of the surviving stimuli with a random mutation (a random number added to these 

properties) to create a set of ‘offspring’ of equal number to the original set. These offspring 

are then displayed to the observer, and the dead ones removed. This is repeated many 

times, meaning that the final set of offspring will have a set of properties that has been 

optimised by selection to be hardest to detect.  It would be interesting to apply this 

technique to our stimuli, and allow properties such as the smoothness and total volume to 

change with different generations of stimuli. (Volume should change rather than just height 

or width as animals are typically the size they are for reasons other than camouflage (Clarke 

& Sardesai, 1959; Sand, Cederlund, & Danell, 1995; Warren & Lawton, 1987)). It would be 

interesting to see if the ‘optimal’ camouflage technique was to be objectively flat and 

smooth, or if there was a trade-off in shape that we have not detected by only being able to 

investigate three different smoothness coefficients. 

With both of the above experiments, our task is performed in an artificial environment, 

leading to questions about the applicability of these visual search tasks to the real world. 

8.3.2 Are these findings applicable to the real world? 

The background of the stimuli used in this experiment is very artificial with a flat zero 

disparity background and shape and form defined only by small dots, therefore we may 

observe effects that are not applicable to the real world. For example, the flat background 

may have enabled observers experienced with RDSs to pick out the target very easily (for 

some observers, reaction time was under a second for all trials) because the target was the 

only item in the search task with non-zero disparity. This effect is potentially behind 

Participant B’s non-significant results – they were an experienced stereoscopic observer, so 

they may have found it easier to detect anything with non-zero disparity, making the shape 

of the object less relevant. Experienced stereoscopic observers may not display this 

advantage in a naturalistic setting, as the background would be rough with varying disparity 

– meaning that the target would not be the sole feature with non-zero disparity.  

The ease with which stereoscopic observers can detect non-zero disparities in RDS displays 

exemplifies a problem in linking our findings to camouflage: an RDS is a very unnatural 

environment, and findings in simple environments do not always extend to more complex 

scenes (Goutcher & Mamassian, 2005; Harris, 2014). To properly test how well camouflaged 

an object is we must relate our findings more closely to the real world.  

In order to link these abstract experiments back to the real world, in the next Chapter (9) we 

take two steps towards reality. In Experiment 10, we introduce a naturalistic disparity noise 

in the background to emulate an object sitting on a real, bumpy, surface. In Experiment 11, 

we print a 3D model of the objects and place them on a real surface to see if the objects are 

camouflaged in a real task. In the next sub-section, we consider the non-camouflage 

implications of the experiment presented in this Chapter.  
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8.3.3 Why do smoother objects take longer to detect? 

It is hard to distinguish exactly which aspect of the object with smoothness coefficient 14 

causes an increase in reaction time. Here, we present two potential interpretations: 

1. The increase in detection time is due to the decrease in perceived peak depth. 

Objects with smoothness coefficient 14 have a lower perceived peak depth than 

objects with smoothness 0 or 3, which are perceived with similar peak depths 

(Section 4.3.3). In the experiment presented in this Chapter, we found that objects 

with lower smoothness coefficients were detected faster by participants than 

objects with higher smoothness coefficients.  

 

While there have been no other studies on the effect of perceived depth on reaction 

times, similar effects have been found when looking at objective differences in 

disparity defined depth. Wardle et al. (2010) found that disparity was most effective 

at helping detect a visual overlay when displayed with a disparity of over 6arcmin. 

Finlayson et al. (2013) found search for a luminance defined T shape amongst 

distractors was faster when the T shape had a disparity of 1.5arcmin or greater. This 

indicates that decreasing objective depth makes an object slower to detect, so the 

same may be true for perceived depth. It may be desirable for a camouflaged animal 

to decrease perceived rather than objective depth because there are other 

requirements that dictate an animal’s size (Clarke & Sardesai, 1959; Sand et al., 

1995; Warren & Lawton, 1987). 

 

2. The increased difficulty of segregating smoother objects (Chapter 5) directly leads to 

an increased detection time. This is supported by the work of Elder and Zucker, and 

Deas and Wilcox who found that well grouped objects (which are easier to 

segregate) were faster to detect than poorly grouped objects (Deas & Wilcox, 2015; 

Elder & Zucker, 1993). Neider et al. found that participants only improved at 

detecting a camouflaged object when trained on detecting camouflaged rather than 

non-camouflaged, targets. This led them to conclude that improvements were due 

to processes such as object segregation (Neider, Ang, Voss, Carbonari, & Kramer, 

2013). These studies indicate that if the object is harder to segregate from the 

background, then it will take longer to detect the object. 

With the evidence at hand, we conclude that we cannot distinguish between these two 

factors. We now discuss a speculative starting point for an experiment to distinguish 

between these two factors.  

There are several potential experiments that may help distinguish between these two 

effects, but here we consider the idea behind an eye tracking experiment. Eye tracking is a 

common way to understand the visual behaviour of a participant in search experiments e.g. 

(Cain et al., 2013; Foulsham et al., 2014; Neider & Zelinsky, 2006; Nodine & Kundel, 1987).  
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This potential experiment uses the same setup and stimuli as the current one (with the 

participant searching for sharp or smooth objects), except with the inclusion of a calibrated 

eye-tracker to monitor the observer’s fixation position relative to the screen. The observer’s 

fixation position would be tracked, and the time between first fixation on the target area 

and their mouse click to indicate detection of the target would be measured. We do not 

know how long this time should be, but the two interpretations provide different 

predictions on the length of time between first fixation and detection for the smooth and 

sharp objects: 

For the first interpretation, the sharp object takes time between commencing the trial and 

being fixated for the first time, but is detected as soon as it is fixated. Smooth objects with a 

lower peak depth take longer before first fixation, but are also detected when fixated. 

Therefore, in the first interpretation we would expect the time between first fixation and 

detection to be similar for both the smooth and sharp objects. However, there will be a 

longer period between commencing the trial and first fixation for smoother objects than for 

sharp objects. 

In the second interpretation, the smooth object is harder than the sharp object to segregate 

out from the background. This means that once fixated upon, it may take time for the 

smooth object to be segregated and detected as the target. The sharp object, being easier 

to segregate, would take less time to be segregated and detected. Therefore, in this 

interpretation we would expect the time between first fixation and detection to be longer 

for the smooth object than for the sharp object. However, there will be a similar time 

between commencing the trial and first fixation for both objects. 

8.3.4 Conclusions 

We conclude that the smooth object is better camouflaged because it takes longer to detect 

than the sharp object (detection time as a measure of camouflage was discussed in Section 

2.1 and 2.3). However, the experiment presented here uses a very abstract flat background, 

which may cause visual behaviour that is not applicable to the real world. In the next 

Chapter, we investigate if smoothness as a form of camouflage is applicable in the real 

world by comparing the detection time of smooth objects to sharp objects in realistic 

environments. 
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9 Does stereoscopic camouflage work in natural 

conditions? 

 Strand 2: Does depth perception break camouflage? 

 Investigating: Do our findings work in real life? 

 Task: Search for a camouflaged target on a screen and in a sandpit. 

 Manipulation: Target has different edge profiles, as in previous Chapters. 

 Results: Smooth edged objects are still harder to detect. 

 Conclusions:  By making an object poorly defined it is possible to camouflage it in a 

real world search task.  

 

 

Figure 9.1: A crab spider (Misumena vatia) with wasp. An excellent example where the real 
world must be considered: to our eyes the spider is camouflaged, but to an insect the 

spider is highly visible in the UV spectrum (Heiling et al., 2003). Image reproduced with 
permission, (Leillinger, 1998) 

 
 

  



157 
 

9.1 Introduction 
In the second strand of this thesis, we are exploring the claim that the addition of disparity 

defined depth to a camouflaged object makes it easy to detect. In the previous two 

Chapters, we first (in Chapter 7) established that the addition of disparity information to a 

luminance defined target object assisted with the speed of detection of the target. 

However, the additional of disparity information did not make the detection of the target 

trivially fast. In Chapter 8 we explored why the disparity information did not make detection 

of the target trivial using the smooth objects from the first strand of the thesis. We found 

that an object with a more poorly defined edge (the smoothest object) took significantly 

longer to detect than objects with sharply defined edges. This indicates that the need to 

process disparity information to identify the object as separate from the background may be 

making it harder to detect – effectively rendering it camouflaged to a stereoscopic observer, 

compared to an object with a sharply defined depth edge. 

In this Chapter we continue investigating the interaction of binocular vision and camouflage, 

however, our investigations so far use extremely abstract objects and backgrounds. We wish 

to address this issue and create experiments how well camouflaged the smooth object 

appears under levels of increased realism.  

1. In the Experiment 10, we address a major problem with our artificial background – it 

is flat. The majority of surfaces in the real world are not flat, so it would be 

interesting to see if binocular vision still confers an advantage when searching for an 

object in a depth-textured background, or if it is merely of use when detecting a 

disparity defined patch on a flat background.  

2. Experiment 11 did not use computer stimuli, but rather the objects and backgrounds 

existed physically in the world. The experiment was performed with real 3D objects 

placed in a large sandpit and tested if smooth objects are still better camouflaged 

than sharp objects in a real world experiment. We believe that this experiment will 

provide much needed reference back to the real world, as this experiment will 

consider other cues that are not present in our RDS (Richards, 1977). 

9.2 Experiment 10: Adding a natural background 

9.2.1 Introduction 

In Experiment 9 (Section 8.1), we present evidence that a smooth object is slower to detect. 

This indicates that smoothly segregated shapes could be used as a form of binocular 

camouflage, requiring only minor adjustments of shape to result in a greater survival rate. 

However, as discussed at the beginning of this Chapter all the previous experiments are still 

very far from real life, with our object being displayed on a perfectly flat front-to parallel 

plane. Here, we look at how object shape interacts with binocular vision in a more realistic 

environment by introducing a background that has a naturalistic depth distribution.  
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We used a visual search experiment to explore the effect of the background on the 

perception of the three objects used in the previous two experiments. We anticipated two 

effects on reaction time of participants searching for the object:  

1. Variation in background depth will hinder search times for all objects, as the objects 

will all be camouflaged within the background variation, making them harder to 

spot. This effect may compound with the objects being displayed on sloped 

background surfaces, hindering sensitivity to depth (Glennerster & McKee, 1999) and 

potentially slowing down search times for all objects. 

2. The variation in background depth is more similar to the smooth object than the 

sharp object – therefore we would expect additional slowing for the smoother object 

over the previous experiments with flat background. This effect will cause a greater 

increase in reaction times for objects with higher smoothness coefficient than those 

with lower smoothness coefficient. 

9.2.2 Methods 

The experimental procedure and setup are the same as the visual search experiments 

described in Section 7.2. The target stimuli are identical to the previous experiment, 

described in detail in Sections 8.2.1 and 4.2.1. The target placement algorithms are also 

identical – the target is a square disparity defined object of side length 72arcmin, displayed 

with a smoothness coefficient of either 0, 3 or 14 (see Figure 4.3, page 63 for cross-sections) 

and a peak disparity of 6 arcmin. The background and target are formed of a RDS with white 

dots and a black background (dot size and luminance are identical to the previous 

experiment, detailed in Section 8.2.1). The major change in this experiment is the 

introduction of naturalistic disparity noise to all dots in the RDS – we detail how this is 

delivered below. We also discuss a minor alteration to the procedure of the experiment. 

9.2.2.1 Naturalistic background 

In order to generate a naturalistic noise background, we used a toolbox (McClure, 2014) 

performing an algorithm called fractal terrain generation. Fractal terrain generation 

generates a set of randomly located dots, each with a disparity that is dependent on the 

disparities of the nearby dots.  

In short, the algorithm works by selecting three randomly selected points, then assigning 

each of them a random number – here used as the disparity of each point. Then the 

algorithm goes on a second pass, selecting three times the number of random points than in 

the previous iteration (so for the second iteration 9, for the third 27 and so on). The current 

depth of these new points is calculated by interpolation between the three closest 

previously generated points. The depth of these new points is then further randomised by a 

set fraction of the random depth added in the previous iteration (called the roughness, for 

example, 1/3rd of original noise on the second iteration, 1/9th on the second and so on). This 

process is repeated with an increasing number of points, each of which is shifted in depth by 

a decreasing amount of randomly generated depth – hence the fractal nature of the 
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generation. The process is repeated until the process forms enough dots to create the 

needed detail. We found that 8 iterations provided the density of dots required for our RDS. 

The spatial frequency profile of fractal noise is approximately 1/f (Olsen, 2004), which is 

similar to the noise profile present in contrast and luminance in natural scenes e.g. 

(Simoncelli & Olshausen, 2001; Torralba & Oliva, 2003). In the absence of large data sets of 

natural disparity distributions (some small ones of limited scenes exist e.g. (Liu, Bovik, & 

Cormack, 2008; Scharstein & Szeliski, 2003), but use too limited a range of environments), 

we speculate that 1/f noise may be similar to natural disparity noise distribution. This 

speculation is backed up as fractal terrain generation is frequently used to generate realistic 

textures such as 3D landscapes (McClure, 2014) as shown in Figure 9.2.  

Fractal terrain generation is a convenient way of creating random disparity noise as it 

generates a set of randomly positioned dots in three dimensions. We can use the (x, y) 

location of each dot as the position in the RDS, and the z dimension as the disparity of the 

dot. Fractal terrain generation results in z dimension is generated as a number between 0 

and 1, which we rescale to provide dots with disparities between -8 and 8 arcmin (discussed 

later in this Section). Once calculated, disparities are added to the generated dots of the 

RDS as in previous experiments (see Section 3.1). 

 
Figure 9.2: Example of the use of fractal terrain generators to create a realistic landscape. 

Image reproduced with permission, (Huber, 2004) 
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Fractal terrain generation creates a variable number of dots within the selected area, 

therefore we set a limit of between 217 and 434 dots per square degree. The code 

randomly removes any dots above this density, or regenerates with a new RDS if there are 

insufficient dots present. To generate this number of dots, we needed to use 8 iterations of 

the fractal terrain generator, with a roughness and iterative roughness of 0.2.  

As with the previous Experiment (9), we compare participants’ reaction times for objects 

with smoothness coefficient 0, 3 and 14, objects were 74.7 by 74.7 arcmin with a peak 

depth of 6 arcmin. In each trial, only one object is displayed. The placement of this object 

objects is randomly decided as in the previous two visual search experiments (see Section 

7.2).  

To combine the disparity defined shape of the object and the disparity defined fractal noise 

background, we take the (x, y) location of the dots where the object is to be placed. We 

then calculate the disparity contribution from the object for the location of these dots (using 

the same equations for the smooth and sharp objects as in the rest of this thesis, as 

described in Section 4.2.1). The disparity contributions from the shape of the object and the 

fractal noise background are combined additively, so it appears as if the object is sitting on 

the background. This has the side effect that if the object is placed on a depth-textured 

region, then the top of the object will have the same non-smooth fractal depth as the 

background. A 3D representation of the finished stimulus is shown in Figure 9.7. 

 

Figure 9.3: 3D representation of the target (located 600,600) embedded within the 
generated fractal disparity noise (z-axis). Depth is greatly exaggerated for clarity.  Yellow 

indicates greater positive disparity, blue greater negative disparity. 
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This experiment is aiming to create a realistic background, to test if our objects are 

camouflaged in a more realistic environment than a flat background. We speculate that with 

a flat background, observers experienced with RDSs may be able to pick out a few dots that 

have non-zero disparity and identify these as the target without having to perceive the 

overall object. In this experiment, we wish to remove this advantage 

If the target object is displayed with greater disparity than the variation in disparity in the 

background, then the point of greatest disparity would always be where the target is 

located. This presents a problem similar to that discussed in Section 8.3.2 of the previous 

experiment – the observer could just pick out the point with maximum disparity in the 

stimulus, and always be correct without identifying the object. This effect would be a 

feature of the experimental setup, not of camouflage – a camouflaged animal would not 

necessarily have the greatest disparity in the area that was being searched. Therefore, to be 

as realistic as possible we must ensure that the highest disparity in the scene is not always 

the target. The terrain was therefore generated with a range of depth between crossed and 

uncrossed disparities of 6arcmin, with approximately 90% of points appearing in the central 

8 arcmin of disparity (between 4 arcmin crossed and 4 arcmin uncrossed).  

Additionally, the noise was checked to ensure that it introduced as few false targets as 

possible. While some shapes in the scene could appear to resemble the smooth edged 

object, the magnitude of the disparity across an area the size of the targets was always 

much less (under a third) than the peak disparity of the target object. This should ensure no 

features in the random noise resemble the targets, as they will either have less depth, or be 

three times as large as the targets. 
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9.2.2.2 A change in procedure 

We want to be able to distinguish between cases 

when the participant gives up (or mistakes a 

feature for a potential target) and knows when 

they are wrong from the cases when they get 

confused and believes the target to be located 

somewhere else. To do this, we added a grey bar at 

the top of the response screen shown in Figure 9.4. 

Participants were instructed to click this bar if, and 

only if there was no option to select the target to 

be located where they thought they had seen it. 

This enables us to distinguish between when the 

participant knows they were incorrect (clicks the 

grey bar) and doesn’t (they indicate that the is 

target located somewhere it is not present).  

Participants are most likely to click the grey bar 

when they become bored of the task and give up, 

so they click the mouse button to move on to the 

next trial. They will then know they are wrong, and 

hit the grey bar. 

 

9.2.3 Results 

Nine participants out of ten completed the experiment - one was rejected as they could not 

complete the demonstration correctly. Out of these nine participants, four were recruited 

from participants that had completed the previous Experiment (9) within the last month – 

participants D, I, J and H. For clarity, we have continued lettering participants from 

Experiment 9 (Section 8.2).  

The overall mean reaction time results for correct trials (percentage correct is displayed in 

Figure 9.8) as a function of smoothness coefficient can be seen in Figure 9.5. It can clearly be 

seen that an increase in smoothness coefficient increases reaction time, as in the previous 

experiment (Section 8.2.2, Figure 8.3). This change in reaction time is highly significant on a 

group level (p=0.0005, Wilcoxon Signed Rank Test) for all participants for smoothness 

coefficient 0 to 14 and smoothness coefficient 3 to 14, and on an individual level (Table 9.1). 

Additionally, there is a significant decrease in reaction time between smoothness coefficient 

0 and smoothness coefficient 3 for Participants N and G (see Table 9.2), but no significant 

change on a group level (p>0.017). The decrease in reaction time is larger than in the 

previous experiments (see Section 9.2.4.2 for a comparison), and, overall, participants were 

slower than in Experiment 9. Several of the participants who participated in this and the 

 

Figure 9.4: Mock up response screen. 
The option mouse over turns white to 

indicate where the viewer is 
responding. There is a grey bar at the 
top of the screen where participants 
can click to indicate that none of the 

available options are where they 
thought the target was located. 
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previous experiment self-reported that the task was harder. As before, the median follows 

the same trend, as shown in Figure 9.6. 

 
Figure 9.5: Mean reaction times for correct trials for participants in Experiment 10.  

 

 
Figure 9.6: Median reaction times for correct trials for participants in Experiment 10.  
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Participant 0 - 3 0 - 14 3 - 14 

K 0.071 <0.005 <0.005 

L 0.83 <0.005 <0.005 

M 0.117 <0.005 <0.005 

N 0.003 <0.005 <0.005 

G 0.011 <0.005 <0.005 

D 0.405 <0.005 <0.005 

I 0.842 <0.005 <0.005 

J 0.04 <0.005 <0.005 

H 0.786 <0.005 <0.005 

Table 9.1: Per participant Wilcoxin signed rank test. Green cells indicate results below 0.017. 
Note that we are making 27 comparisons, so the individual data is included for interest but 

should be interpreted with caution. 

Looking at the mean reaction times (Figure 9.5) there appears to be a split in participant 

performance between faster and slower participants at smoothness coefficient 14. 

However, this split is not reflected between participants at smoothness coefficient 0 or 3. It 

is possible that this split indicates a difference in search strategy when the search task is 

made difficult, although this split is not reflected in the median data in Figure 9.6. To 

investigate this further, we normalise the data for each participant by dividing the mean 

reaction time for each smoothness coefficient by the reaction time at smoothness 

coefficient 0. This gives us a measure of how many times slower the participant was to 

detect the smoother objects, plotted in Figure 9.7. From this data we can see that the 

apparent grouping of participants is no longer visible, suggesting that the grouping is due to 

chance.  

The majority of participants were above the 80% correct mark (see Figure 9.8), although 

there is a noticeable decrease in the percentage correct for some participants at the highest 

smoothness coefficient. Additionally, the miss rates are much higher than the previous 

experiment, with the worst participant at smoothness coefficient 14 in Experiment 9 being 

90% correct (Section 8.2.2, Figure 8.4b), and the best at this Experiment being 96% correct 

at the same smoothness coefficient. Participants M and N have much lower percentages 

correct than their peers at the highest smoothness coefficient, with participant M at 49% 

correct and N at 65% correct (chance level is 20% as in the response screen there is one 

correct option and four incorrect, see Figure 9.4). 
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Figure 9.7: Normalized reaction time for correct trials by dividing the reaction time at each SC 
by the reaction time at SC0, giving a measure of how many times slower the participant was 

at each SC relative to SC0.  
 

 

 
Figure 9.8: Percentage correct for participants in at Experiment 10 
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We have further detail available from when analysing percentage correct: the percentage 

known wrong (i.e. the percentage of trials on which participants knew they had not 

identified the target and chose the grey bar, see Section 9.2.2.2) shown in Figure 9.9a; and 

percentage unknown wrong (i.e. percentage of trials participants did not know they had not 

identified the target and chose the wrong location) shown in Figure 9.9b. Note we are 

considering the percentage incorrect in this breakdown. For the majority of participants, 

when they were incorrect they knew they were incorrect and have indicated so. However, 

there is a clear pair of outliers, one in each graph, who we discuss in detail below. 

(a) (b) 

  
Figure 9.9: See Figure 9.8 for legend (a) Percentage known wrong (b) Percentage unknown 

wrong.  
 

Participant M (the outlier in Figure 9.9b, orange circles) appears to have had a different 

approach than most participants, as when analysing their data individually they appear to 

have a quitting threshold (the length of time participants will search for before giving up and 

guessing the target’s location) of around 10s, and only searched for more than 10s on 5 

trials out of 300. It appears this may be a unique approach on this participants’ part, where 

they searched the across the entire stimulus evenly, then guessed if they did not detect the 

stimulus. This participant never used the grey bar to indicate that they knew they had got 

the trial wrong. 

On the flip side, participant N (the outlier in Figure 9.9a, orange triangles) did not show the 

same behaviour on search times. Instead, they frequently indicated they had incorrectly 

identified the target responses for the highest smoothness coefficient, opting to indicate 

they knew they were wrong on 25% of trials. This potentially indicates a different trade off, 

where they did not spend so much time verifying if they had correctly identified the target 

but rather accepted a lower percentage correct in the well camouflaged cases (there was no 

incentive for the participant to get a high percentage correct).  

The remaining participants typically realised if they had incorrectly identified the object, 

with known incorrect being chosen considerably more frequently than the participants 

clicking an incorrect response box. Mean reaction times on known incorrect trials was much 

longer than on correct trials, with an overall mean for all participants of 14.6s and standard 
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deviation of 17.7s and median of 8.9s, with individual means varying from 10s to 22s. The 

data here is sparse, with between 0 and 40 data points per participant and a standard 

deviation between 5s (for the participant with a 10s mean) and 33s (for the participant with 

a 22s mean). This suggest this is indicative of the quitting threshold (discussed in Section 

2.1.2 and 8.3), where the participants will only search the RDS for the target until giving up 

and moving onto the next trial. 

9.2.4 Discussion 

This experiment was designed to start to bridge the gap between the very abstract visual 

search task in the previous experiment and a real world detection of camouflage. We 

introduced a naturalistic disparity noise background to emulate placing the object on a real 

surface such as a beach or tree bark. The background succeeded in being naturalistic, with 

several participants commenting how natural and aesthetically pleasing the it appeared. 

Overall, we observed the same effect as in the previous experiment, with the mean reaction 

times increasing significantly for the highest smoothness coefficient stimulus. This strongly 

indicates that the technique of making the object smoother can cause an effect of 

stereoscopic camouflage in natural scenes, although apart from half occlusions making no 

difference we cannot conclude exactly which aspect of the smooth object makes it harder to 

detect (see Section 8.3.3). The differences between this experiment and the previous one 

are interesting and address our hypothesis at the beginning of the Chapter, so we discuss 

them in depth in Section 9.2.4.2. First, we briefly consider some of the standalone results 

we have found from this experiment. 

9.2.4.1 Specific discussion of Experiment 10 

We find on a group level that there is no significant difference between the smoothness 

coefficient 3 target with no half occlusions and smoothness coefficient 0 target with half 

occlusions, despite the creation of a background that varies smoothly in depth. On an 

individual level, two participants (N and G) had a significant increase in the reaction time of 

the smoothness coefficient 3 target compared to the smoothness coefficient 0 target. We 

cannot read too much into this as we are comparing nine participants and there is no 

significant effect on a group level. However, the absence of a difference on a group level is 

very interesting, as the stimulus is smooth-edged, indicating that the sharp sides and half 

occlusions in the smoothness coefficient 0 stimuli are not conferring a disadvantage despite 

the creation of a background that is smoothly varying in depth. This strongly indicates that 

half occlusions are not a particularly salient stimulus when the observer is searching in the 

scene for the target object. It would be interesting to explore this in more detail; however, 

as discussed in more detail in Section 8.3, this is another branch that will be left for future 

research. 

Error rates increase with increasing smoothness coefficient (see Figure 9.8), with the 

majority of Participants knowing when they had got the location of the target incorrect. We 

speculate that the increase in error rates at higher smoothness coefficients is due to 
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adoption of a quitting threshold: typically, the smoothest objects take the longest to find, 

therefore these are most likely to be the objects where the participant quits their search 

with a guess of object location. This hypothesis is supported by two aspects of the results: 

Firstly, the behaviour of Participant M who has a clear quitting threshold of 10s (they only 

searched for greater than 10s on 5 trials out of 300, see Section 2.1.2) and a decrease of 

percentage correct with increasing smoothness coefficient. Secondly, the incorrect trials 

showed considerably longer reaction times than the correct trials, with the mean incorrect 

reaction time being 14s and the mean correct reaction time at 4s. This is indicative of a 

quitting threshold, with the majority of incorrect trials being quitted without knowing the 

location of the target, rather than getting the target location wrong. 

This experiment provides an addition to the investigation of realism on 3D vision. Currently, 

there is very little research looking at the factors affecting binocular depth perception in the 

context of naturalistic scenes. Most current work with naturalistic stimuli looks at other 

aspects of 3D vision such as shape from shading cues. One such study by Lovell et al. uses 

photographs of stones, and shows either self-shadows or cast shadows (Lovell et al., 2009). 

This study is primarily interested in how shadows are processed, and if a stone with an 

incongruent shadow is faster to detect. This paradigm could potentially be adapted to see if 

the addition of shape from shading cues speeds up visual search for realistic objects. Some 

other studies look at established visual search effects in more realistic scenes, such as those 

of Neider et al (2010). It would be interesting to further increase the reality of these studies 

by adding binocular disparity, and see what influence this has on participants’ search 

performance. 

In the next Section, we discuss the original predictions and motivations of this experiment 

by comparing it to the previous experiment with a flat background. We then go on to 

present another experiment that is designed to be a real world analogue of the experiment 

presented here. 

9.2.4.2 Comparison of Experiments 9 and 10 

At the beginning of Experiment 10, we hypothesized that the introduction of a naturalistic 

background would have two effects: Firstly, an overall slowdown in reaction times; 

Secondly, a greater slowdown for the smoothest object. Fortunately, five participants 

completed both Experiments 9 and 10, allowing us to have a look at the difference between 

their performances in the two experiments. In Figure 9.10, we compare the mean reaction 

times between the two experiments, both individually and on a group level. We can see that 

the reaction times for the naturalistic background (Experiment 10, dotted lines) are typically 

greater than that for the flat background (Experiment 9, solid lines).  
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Participant G Participant D 

  
Participant I Participant J 

  
Participant H Group level 

  
Figure 9.10: Differences in performance between Experiments 9 and 10, for all 5 observers and 

a comparison of the group mean. Error bars are one standard error. 
 

Participant SC0 SC3 SC14 

D 0.585 0.684 0 

G 0.262 0.299 0 

H 0.005 0 0 

I 0.017 0 0 

J 0 0.121 0 

Table 9.2: Individual statistics from the Wilcoxon Signed rank test comparing between the 
smoothness coefficients for the flat and fractal Experiments. As before, take care drawing 

conclusions from individual statistics due to the number of comparisons made. 
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On a group level, there is a significant difference between the two experiments with 

smoothness coefficient 0 (Wilcoxin signed-rank test, p=0.005, Z=-2.782) and 14 (p<0.0005, 

Z=-11.6) but no significance between the smoothness coefficient 3 conditions (p=0.717, Z = -

0.363). Individually, only participant J followed this trend, with Participants H and I having 

significant differences between the experiments for all smoothness coefficients, and 

Participants D and G only between the SC14 and the other conditions (see Table 9.2). This 

indicates quite a large degree of individual variation due to the introduction of the 

naturalistic background, suggesting that some participants found it easier to isolate the 

target than others. All participants showed a decrease in percentage correct in Experiment 

10 over Experiment 9. 

At the beginning of Experiment 9, we made two hypothesises; the first was that naturalistic 

depth background would hinder search times for all smoothness coefficients. The difference 

is not consistently observed, with only two participants showing a significant slowing in 

reaction time across all conditions. This inconsistency is probably due to individual 

differences such as search techniques and differences in depth perception. For some 

observers, the difference in disparity between the base and the peak of the object will still 

be great enough to be easily identifiable from the background, causing the introduction of 

the background alone to be insignificant to search times. For observers that are poor at 

detecting disparity, the background may interfere more with the perception of stereoscopic 

depth, making it harder to distinguish the objects from the background and causing a 

slowdown in reaction time. It would have been interesting to measure stereo-thresholds in 

a similar RDS to these stimuli and see if there was any link between stereo-thresholds and 

search times.  

An additional effect that may cause individual variation in detection of the object is the way 

in which the object was added to the background. The object was inserted by summing the 

object’s disparities with the disparity of the naturalistic background, meaning that the top 

surface of the object was modulated with a depth profile identical to the background. 

Observers relying on the surface being flat from their experience of the previous experiment 

could find it harder to identify the target object, whereas more flexible observers may be 

more able to discount this difference.  

The second hypothesis, that the smoothest object would show a greater increase in reaction 

times has been supported by these Experiments 9 and 10, with the difference being highly 

significant on both a group and individual level (p<0.0005 for all participants). This is most 

likely caused by the increase in difficulty of segregating out the object from an undulating 

than flat background. Here, we discuss this effect and a couple of other possible 

explanations: 

1. The perceptual grouping of the smooth object with the smoothly changing 

background is enhanced compared to a flat background, as we have increased the 

similarity of the object to the background thus perceptually grouping them (see 
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Figure 2.12). This would increase the difficulty of segregation of the object from the 

background, but because of the background characteristics as opposed to the 

difficulty of processing the object in isolation. This could be considered a form of 

background matching, as it is the similarity between the object and its specific 

background that makes the object harder to detect. This explanation highlights the 

importance of considering the environment when drawing conclusions about visual 

search tasks. 

2. It is possible that the perceptual decrease in peak depth of the smoothest object 

causes it to be perceived as being similar to the background objects. This seems 

unlikely, as a smoothness coefficient 14 object only has a perceived peak depth 

decreased by approximately 8.5% (Section 4.3.3), whilst the background variation 

was less than a third of the depth of the object over the length scale of the object 

(Section 9.2.2.1). Thus, we consider it to be unlikely for the target to be 

misidentified as a background feature. However, the decrease in perceived peak 

depth may interact with explanation 1, and help form slightly better background 

matching than the sharper objects, making the smooth object have better 

camouflage for this display.  

3. Additionally, the projection of the background undulations to the front of the 

object will have the greatest effect on the smoothest object as it is joined 

continuously to the background. The projection of the undulations onto the smooth 

edges will make the smoother object more similar than the sharp object to the 

background.   

Explanation 1 is supported by the literature showing that perceptual grouping effects search 

times e.g. (Deas & Wilcox, 2015) (see Section 2.2.6 for a discussion), however we have 

insufficient evidence to draw any conclusions. In the next Section we propose a speculative 

future experiment that may begin to tease apart these explanations.  

Interestingly, there is an increase in error rates for Experiment 10 over Experiment 9, 

particularly for the SC14 stimulus. It is likely to be caused by a mix of two different effects 

depending on the response times: 

1. The increased search time led participants to reach their quitting threshold, and they 

thus clicked to continue onto the next trial. Participants may have felt incentivised to 

quit more readily in Experiment 10 than Experiment 9 due to the presence of an “I 

don’t know” option. This explanation is supported by the fact that there were longer 

response times in incorrect (mean 14s) than correct trials (mean 4s, see end of the 

results in Section 9.2.3). 

2. Participants mistook undulations in the natural texture background to be the target, 

and realised they were wrong when there was no response option at their selected 

location. This explanation would explain the short response times where participants 
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were incorrect (causing a standard deviation in the mean incorrect response time of 

17.7s). 

9.2.4.3 Future directions 

The grey bar used in Experiment 10 gave us an idea of why the participant was incorrect on 

different trials. However, further experiments could untangle the reasons for participants’ 

performance. For example, it is hard to know if participants used the grey bar because they 

had misidentified the target or quitted the search. To distinguish between these two, the 

number of alternative targets in the response screen could be increased until it was 

saturated, so that all locations on the RDS had a potential response target nearby (see 

Section 7.2.2). In the case that Participants had misidentified a background undulation as 

the target, then this would ensure a response target would be nearby for them to click, 

which would then give an ‘unknown incorrect’ trial. In the case of quitting threshold, the 

participants would still be using the ‘known incorrect’ option (maybe now better labelled 

the ‘I quit’ option), enabling the determination of whether participants were misidentifying 

the target or quitting.   

We have three speculative reasons (see end of 

Section 9.2.4.2) to why the smoothest object was 

found to take longer to detect in the naturalistic 

background than in the flat background (compare 

experiments 9 and 10). We offer a possible 

experiment that may start to distinguish between 

these three explanations. If we generated a flat 

background that was broken up into polygonal 

areas with sharp changes in depth between them 

(see Figure 9.11), then the changes in depth in the 

background would be most similar to the sharp 

object. The sharp object would then have the best 

background matching, and the smooth object the 

poorest. If the sharp object then takes longer to 

detect compared to Experiment 9 than the smooth 

object, this will indicate that the change in reaction 

times is due to the background matching rather 

than the alternative explanations.  

Overall, we conclude that the environment in which the visual system is operating is an 

important consideration – here we have found that the camouflage of the smoothest object 

is significantly enhanced in a naturalistic background. This illustrates how we need to anchor 

our abstract experiments back to natural or naturalistic environments when drawing 

conclusions about the function of different aspects of the visual system – even with a minor 

increase in reality we have altered our results considerably. 

 
Figure 9.11: The display is broken up 
into polygonal areas, each of which is 

assigned a constant disparity (numbers 
are example disparities). The change in 

depth between the areas is sharp, 
meaning the edges indicated by black 

lines have a similar depth profile to the 
edges of the sharp object. 
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It would be possible to continue adding realistic elements to the experiment using computer 

generated imagery. Using tools such as Radiance, it would be possible to test the 

performance of these shapes of target in a naturalistic environment whilst maintaining 

control of the cues to depth present in the scene. This would enable the comparison of 

binocular vision to other cues to 3D shape when spotting our three dimensional shapes, and 

to see how effective stereoscopic camouflage from shape was at reducing search times.  

With a wealth of directions to go in, we decided the most informative was to test the 

combined effects of the additional cues on the stereoscopic camouflage displayed by these 

objects by going straight to full reality. In Experiment 11 we introduce a real world analogue 

of Experiment 10 to see how well our objects perform in a realistic camouflage search task 

with both monocular and binocular cues to depth present.  

9.3 Experiment 11: Naturalistic analogue using a sandpit 
We have found in Chapter 7 that while disparity defined depth speeds up target detection, it 

does not make the task of detecting a camouflaged object trivial. In Chapter 8 we 

investigated this further, and found that the more poorly defined the edge of the object, the 

slower it was to spot. Both these Chapters have used very abstract stimuli from which we 

are making conclusions about how camouflage in the real world works. In this Section, we 

draw inspiration from a paper by Foulsham et al. (2014)  who compared between lab and 

real world visual search experiments (paper is discussed in Section 2.3). We investigate our 

findings so far by using real objects in a real world experiment to see if the effects found in 

the computer based experiments still hold. 

So far, we have introduced a random noise background similar to continuous background 

textures found in real life. We found (in Section 9.2) that the smooth edged object was 

much harder to detect than sharp edged object.  This replicated the results we have found 

previously, although the smoothest object was significantly harder to find in the natural 

noise background than the flat background (see Section 9.2.4.2 for a discussion).  

In this experiment, we create a real world analogue of the screen-based visual search tasks 

used in the Experiments 8-10. We replace the computer screen with a sandpit, 

photographed in Figure 9.12. We have created a 3D printed version of each of the three 

targets used in the previous experiments (with smoothness coefficients 0, 3 or 14, see 

Figure 4.3) page 63. Each of these targets has been camouflaged by coating it in sand. Each 

trial consists of one of these objects being placed in the sandpit, and the participant 

attempting to find the target as fast as possible. As before, we look at the effect of 

smoothness coefficient on reaction times. Due to the abundance of visual cues other than 

binocular disparity introduced by presenting the experiment in the real world, it is not 

possible isolate if any effects are due to binocular disparity specifically, instead we are 

primarily interested in whether the reaction times are slower for smoother objects – this 

will allow us to test if the smooth objects are better camouflaged in a real environment. 



174 
 

 
Figure 9.12: Photograph of the sandpit used to hide real world objects in. Note the white 

markers around the edge, and the T shaped tape on the floor that the participants stood with 
one foot each side of the stem. 

 

9.3.1 Methods 

9.3.1.1 Experimental setup 

In order to create a real world analogue to the previous experiments, we have created a 

controlled but naturalistic environment in a laboratory setting. As would be expected, the 

equipment has changed dramatically from the previous experiments.  

The participant, instead of searching for a target object on a screen now searches for a 

target object in a 1.8m square sandpit, as photographed in Figure 9.12. The sandpit has 

been lined with black pond liner, then filled with approximately 75kg of play pit sand, 

leading to a sand depth of 1-2cm. Due the pond liner not lying completely flat at the edges 

of the sandpit, the stimulus is never placed within 18cm of the edge of the pit. This is similar 

to previous visual search experiments, where the stimulus could not appear in the 74arcmin 

closest to the edge of the screen.  

The stimuli used in the previous experiments were translated into a real world analogue via 

3D printing. The stimuli were designed to be the same angular size (74.7 arcmin) and 

disparity (6 arcmin) as the on-screen stimuli when viewed (at an angle of 32.5o) by an 

average height participant (1.57m) from a (ground) distance of 75cm. When placed closer in 

the sandpit to the observer, the object will have a greater angular size, and when further 

away it will be smaller. To ensure that observers were central and 75cm from the centre of 
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the sand pit, we stuck tape in a T shape to the floor – as can be seen in Figure 9.12. 

Observers were asked to place one foot each side of the stem of the T (which was located 

midway along the side of the sandpit) with their toes on the top of the T, was located at 

15cm from the sandpit.  

We used Matlab to translate the three objects (smoothness coefficient 0, 3 and 14, see 

Figure 4.3, page 63 for a cross-section) into 3D printable STL files (Sven, 2008). The printed 

objects had a total side length of 37 by 37mm, and a height of 3mm. The 3D printer used 

white nylon to an accuracy of 0.4mm (3DPrintUK, 2016). In order to establish camouflage of 

the object in the sand, we coated the 3D printed shapes with sand. PVA glue was diluted to 

approximately 1 part in 2.5 water, and brushed thinly over the 3D shape. The object was 

then covered in sand and left several hours to dry. This process was repeated 3 times, 

resulting in a smooth covering of sand with no white patches visible.  

The PVA glue caused the sand to be a slightly darker colour than the loose dry sand. Under 

strong lighting, the difference was visible, but under dim lighting the difference was much 

harder to spot. We therefore used diffuse lighting provided by a 60W halogen lamp which 

was pointed at the ceiling above the sandpit (the lamp was located approximately 1m from 

the ceiling and 3m from the sandpit) – this technique also minimised shadows on the object. 

Additionally, the difference in colour is the same for all three objects, so any decrease in 

detection time from the colour will affect all objects identically. 

As the stimuli were real 3D objects, we had two copies of each of the shapes – one used in 

the experiment and one for backup. Unfortunately, PVA glue adheres relatively weakly to 

nylon plastic, so after two weeks of use the original objects had to be rotated out and 

repaired, while the backup versions were used in their place. These backups were identical 

except for small differences in surface texture from when they were coated in sand. This 

was not noticeable prior to wear and tear – we had to label the back of the objects to 

identify which objects were backups. 

To 3D print the smooth objects, all objects were printed with a 1mm thick backing 37cm 

across. This edge was made thicker by the addition of the sand coating, and made the 

objects easy to detect when placed on the surface of the sand. To avoid the objects being 

detected by the edge of their backing rather than the shape of the surface the experimenter 

followed the following procedure to conceal the edge between the backing of the 3D 

printed object and the sandpit sand, with the number of each stage referring to a numbered 

photograph in Figure 9.13: 

1. Object was placed on the surface of the sandpit. 

2. The object was buried in sand. 

3. A small foam brush was used to remove all loose sand on and surrounding the 

object. 
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4. A large foam brush was used to brush off the sand from the backing, leaving sand 

slightly covering the edge of the backing. 

1. 2. 

  
3. 4. 

  
Figure 9.13: Step by step illustration of hiding the object in the sandpit. Numbers refer to the 

step-by-step guide in the text. 
 

This technique effectively removed the edge of the backing as a cue, although it 

necessitates the interval between trials to be around 20-30s between trials. For this reason, 

participants were allowed to use their phone to occupy themselves between trials in order 

to alleviate the boredom of waiting. However, despite concerns of boredom, many 

participants commented that the experiment was more interesting than most they 

participated in. 

The use of the foam brush, and placing and picking up the object left small ridges and 

textures in the sand. These were very tricky to remove and create a smooth sandy 

background, so the entire sandpit was deliberately textured using the large foam brush. This 

made any artefacts from placing and interacting the object match the overall texture of the 

sandpit, and therefore not indicate the position of current or past objects to the participant.  
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We used an altered version of the computer 

program that ran visual search experiments to 

determine where the object should be placed, and 

to keep track of data trials. Figure 9.14 shows a 

mock-up of the object placement screen shown to 

the experimenter. At the top of the screen, the 

smoothness coefficient of the object to be used 

was displayed, next to the randomised position of 

the object in (x, y) coordinates. To assist in placing 

the object, this location was displayed on a 

diagram of the sandpit – each tick on the sandpit 

diagram corresponded to a white marker on the 

edge of the sand pit. This enabled the 

experimenter to accurately place the object 

without marking the sandpit in a grid pattern which 

might have assisted a participant in searching the sandpit (Gilchrist & Harvey, 2006; Scinto & 

Pillalamarri, 1986). In order to ensure that the experimenter always related the coordinates 

of the sandpit correctly to the screen, a large O was placed in one corner of both the 

diagram of the sandpit and the sandpit itself. 

9.3.1.2 Experimental procedure 

The methodology used during experiments was intended to be similar to the procedure in 

the previous computer based experiments (described in Section 7.2) to keep the results as 

comparable as possible. The start of an experimental session was therefore identical – after 

signing the participant consent form, participants completed the TNO stereotest (“TNO 

Stereotest, Richmond Products,” 2014). Participants were required to complete until at least 

the 6th plate or they were rejected from the experiment.  

Participants able to complete the TNO stereo test were then shown a demonstration target 

object. This target object was not one of the objects used in the experiment – instead it was 

a cuboid of the same dimensions and sand coating as the target objects, but without the 

backing. By asking participants to search for this object then it ensured they did not search 

for the combination of object and the backing, but the object alone. 

On the floor in front of the sandpit was a white marker indicating where the participants 

should stand (discussed in Section 9.3.1.1). Participants were asked to stand one foot each 

side of this marker, then turn around and face away from the sandpit. The experimenter 

then placed the object using the computer screen and technique described in Section 

9.3.1.1.  

Once the object was placed and the experimenter had returned to the computer, then the 

participant was asked to turn around and to search for the object in the sandpit. As they 

turned around the experimenter clicked the mouse button to start the timer. Once spotted, 

 
Figure 9.14: Mock-up of the object 

placement screen. 
 

SC = 14, (x, y,) = (6.5,4.5) 
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the participant verbally reported seeing the object and the experimenter pressed a mouse 

button to stop the timer. The participant then indicated with a laser pointer the location of 

the object, and the experimenter recorded if they were correct using the (Y)es and (N)o 

buttons on the keyboard. No feedback was given. The participant was then asked to turn 

around, and the experimenter picked up the old target. This procedure was repeated for 

every trial. 

Trials were then continued for a full hour. Unknown to the participants, the hour session 

was blocked in groups of 12 trials, each of which had four repetitions of object of 

smoothness coefficients 0, 3 and 14 randomly interleaved. By running an integer number of 

blocks we ensure that the participants complete an equal number of the different 

conditions, but managed to complete as many trials in one hour as possible. Participants 

completed two 1 hour sessions on different days.  Participants that did not come to both 

days were rejected, as they had insufficient results to give us useful data. 

For this experiment, trials took much longer than previous visual search experiments, so 

despite running the experiment for two hours only have a mean of 26 trials per participant 

per condition – much lower than the previous 75 trials. To alleviate problems caused by 

slow data collection for each participant, we ran a total of 17 participants, out of which 14 

completed both hours of experimentation. All participants passed the TNO test, but one 

participant did not come back for the second hour of participation, and two were ill during 

testing and had to stop prematurely. 

9.3.2 Results 

As with the previous visual search experiments, we are running the experiment to measure 

how well smoothing the edge of the object makes the object camouflaged. We do this by 

measuring the detection time of the object – an increase in detection time indicates an 

object that is better camouflaged.  

Mean reaction times for correct trials by each individual participant are shown in Figure 

9.15. On a group level, all conditions are significantly different from each other (Wilcoxin 

signed rank test, p<0.0005, SC0 to SC3: Z=-7.611, SC0 to SC14: Z=-12.774, SC3 to SC14: Z=-

8.075). On an individual level, shown in Table 9.3, all but one participant (U) has significance 

between the SC0 and 14 conditions. However, Participant U’s data should be regarded with 

caution, as they were only right 37% of the time for the SC14 condition, resulting in a total 

of 12 correct trials.  
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Figure 9.15: Mean reaction times for correct trials for participants in Experiment 11.  

 

Participants’ were more variable on an individual level, although we should be very cautious 

drawing conclusions from individual statistics, as we are doing 45 difference comparisons, 

greatly increasing the chances of false negatives and false positives. To limit the crowding on 

the figures, we split the participants into individual series on a bar chart in Figure 9.16 – this 

enables us to easily compare the performance between smoothness coefficients for each 

individual participant. Statistically, there were two major groups: Participants Q, R, S, X, Y, Z, 

Δ and Γ did not have significance between smoothness coefficients 0 and 3. Participants O, 

P, T, U, V, Δ and Γ had no significance between smoothness coefficients 3 and 14. For the 

former participants the results approximately replicate the previous experiments, where 

only a very smooth stimulus made a difference to detection rate. For the latter participants, 

these participants could be using strategies and extra cues not available in the previous 

experiment. We discuss what may be causing these differences in the discussion. 

The data in this experiment was more skewed than previously. This effect can be clearly 

seen by comparing the median reaction times in Figure 9.17 to the median reaction times in 

Figure 9.6 (page 163). Whilst this shows a difference on an individual level between the 

mean and median for some participants, the overall effect is the same – reaction times 

increase in increasing smoothness coefficient. 

As with previous visual search tasks, the percentage correct is informative. We plot 

percentage correct in Figure 9.18, and can see that participants are typically correct all the 

time for Smoothness coefficient 0 and most of the time for smoothness coefficient 3. 
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smoothness coefficient 14 is more variable, with the percentage correct being between 60 

and 100% correct. We looked into this in more detail, and found that participants typically 

had a quitting threshold in the region of 30s. After this point, almost all trials were incorrect, 

likely caused by participants getting bored with the task and guessing the object’s location. 

Participant 0 - 3 0 - 14 3 - 14 

Par O 0 0 0.241 

Par P 0 0 0.028 

Par Q 0.028 0 0 

Par R 0.024 0.002 0.017 

Par S 0.072 0 0 

Par T 0.001 0 0.61 

Par U 0.001 0 0.024 

Par V 0.014 0.004 0.03 

Par W 0.009 0 0 

Par X 0.034 0 0.004 

Par Y 0.313 0 0.003 

Par Z 0.201 0.005 0.003 

Par Γ 0.775 0.028 0.034 

Par Δ 0.142 0 0.086 

Table 9.3: Per participant statistical analysis of the real world experiment. Green cells indicate 
a significance p<0.017, the Bonferroni corrected significance level for three comparisons. 

 

Figure 9.16: Mean reaction times for correct trials for each participant in Experiment 11. 
White (Par W) is significant between all conditions, dark green (Pars O-V) are not significant 

between smoothness coefficients 3 and 14, light blue (Par Δ) is only significant between 
smoothness coefficients 0 and 14, yellow (Par Γ) is not significant for any condition and light 

green (Pars Q-Z) are not significant between smoothness coefficients 0 and 3. 
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Figure 9.17:  Median reaction times for participants in Experiment 11.  

 

. 

 
Figure 9.18: Percentage correct for participants in Experiment 11.  
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We also considered if the position of the object in the sandpit or the trial number had any 

effect on the reaction time. With so few trials, it was hard to analyse the effect of trial 

number, and we concluded that we did not have enough samples to obtain a coherent 

analysis. We also divided the sandpit up into a grid and looked at the mean reaction time for 

different positions in the sandpit. The position in the sandpit was dominated by an 

asymmetric distribution of different smoothness coefficients across the sandpit, but again 

no meaningful analysis could be done because of the small number of trials. 

We analysed a few additional aspects of the raw data in this task to see if we could extract 

any additional trends, but found nothing of note.  

9.3.3 Discussion 

In this thesis, we have been experimenting on highly abstract RDS displays and drawing 

conclusions about camouflage in a real world setting, where there are many more cues and 

complexities to extracting depth. We agree with Richards in 1977 that there is a tenuous link 

between RDS and behaviour in the real world (Richards, 1977). Despite the lack of attention 

to this conclusion (Regan, n.d.), we decided to conduct a real world experiment to test the 

grounding of our results in RDS in the real world.  

 Overall, we have created a real world analogue of a visual search task, that, although slow 

has given us some interesting insights into the behaviour of these objects in the real world 

and given us some interesting comparisons between real world and virtual search tasks. We 

restrict the discussion of real world vs virtual experiments to the next Section (9.4). Here, 

we discuss the effects that may explain the results observed in this experiment: We consider 

the difference between smoothness coefficient 0 and smoothness coefficient 3 in relation to 

self-shadow concealment (the use of colouration or shape to conceal shape from shading 

cues, see Section 2.1.1). Finally, we round up with a discussion of some of the problems 

faced when creating a real world experiment. 

9.3.3.1 Self-shadow concealment 

One of the monocular cues to shape and form that we have added to the experiment by 

conducting it in the real world is shadows and shading, caused by a non-homogeneous 

(although diffuse) light source. These shadows can be used to extract depth information, 

and thus forming a monocular cue to 3D shape and form (Norman et al., 2006; Todd, 2004). 

Self-shadow concealment is a camouflage technique (discussed in Section 2.1.1) where the 

animal changes its shape and/or colouration in order to reduce or remove the presence of 

shadows so they are not available as cues to object shape (Penacchio, Lovell, Sanghera, et 

al., 2015; Rowland, 2009; Ruxton et al., 2004; Stevens & Merilaita, 2009). Here, we discuss if 

the smooth object may be displaying self-shadow concealment, thus making it harder to 

spot. 

The significant difference on a group level between SC0 and SC3 clearly shows an effect that 

has not been present in the previous experiments. We speculate that this significant 
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difference is due to the presence of shadows in the stimuli that were not present before. 

Despite our attempts to make the lighting in the room as diffuse as possible, there were still 

faint shadows on the object, which were more distinct with the object with sharp edges. The 

two smoother objects had little shadowing in comparison – thus their shape may have been 

acting as a form of self-shadow concealment, another form of camouflage (Penacchio et al., 

2016; Penacchio, Lovell, Sanghera, et al., 2015; Penacchio, Lovell, Cuthill, et al., 2015; 

Rowland, 2009; Ruxton et al., 2004). 

We see a significant difference between smoothness coefficients 3 and 14. For brevity, we 

will refer to ‘smoothness coefficient’ as ‘SC’ for the rest of this discussion. While there is a 

weaker shadow on the SC14 than the SC3 object, it is hard to quantify. Under the diffuse 

lighting in the room when standing from the participants’ viewpoint we thought there was 

perceptually less difference in shadowing between the SC14 and SC3 objects than between 

the SC0 and SC3 objects. Additionally, the slowdown between SC3 and SC14 is much 

greater, with taking on average 4.7 times slower to detect SC14 over SC0, and only 1.7 times 

slower to detect SC3 over SC0. The SC14 object does not appear to have much less 

shadowing than the SC3 object, but had a much greater reaction time than SC3, compared 

to the difference between the SC0 and SC3 objects. We therefore speculate that differences 

other than shadowing between the SC3 and SC14 object are also making it much harder to 

spot, such as an increase in difficulty of segregating the object (for detail or more 

possibilities, see discussions in Section 9.2.4). 

On and individual level, we had two major groups of participants – those who had no 

significance between SC0 and SC3 and those with no significance between SC3 and SC14. 

Due to the large number of comparisons being made, a proper Bonferroni reduction in the 

level of statistical significance would render almost none of these comparisons significant. 

However, we tentatively speculate that those who have no significance between SC3 and 

SC14 may be segregating the object using shadows (as there appears visually to be little 

difference between the shadows on the SC3 and SC14 objects) – hence there is little 

difference in the time it takes to detect SC3 and SC14 objects. When SC0 and SC3 are not 

significant this may indicate participants who are using other cues such as disparity to 

segregate – for these cues there is little difference between the SC0 and SC3 objects. 

However, this is a very tenuous speculation, and would require in depth study with a 

specifically designed experiment and a method of measuring the strength of the shadowing 

cue to object shape to find any evidence. 

An interesting extension to this experiment would be to have the participants perform it 

with one eye shut to test if binocular disparity was assisting participants in detecting the 

target object. This would remove binocular disparity cues, although it would also remove 

binocular information that was not due to depth from disparity, as discussed in Section 7.4. 

An example is that the overlapping views from two eyes helps boost signal and reduce 

noise, thus having only one eye would reduce the strength of cues we think of as 
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monocular, such as luminance (Formankiewicz & Mollon, 2009; Heesy, 2009; Jones & Lee, 

1981; Martin, 2015; Ott et al., 1998; Prinzmetal & Gettleman, 1993). However, removing 

binocular information could enable us to start to determine how much difference depth 

from disparity and half occlusions make to detecting camouflaged objects in a real world 

environment. We think it is improbable that shutting one eye would stop the smoothest 

object being the hardest to spot, due to the effects of self-shadow concealment and the 

increased difficulty of segregation of the smooth object for multiple cues (see Section 9.4 

for an in depth discussion). 

9.3.3.2 Future directions of real world experiments 

Needless to say, conversion of a virtual search task to a real world search task was an 

exacting process, but one which we can consider a success. However, it is not without its 

problems, and there are more experiments to be done to control more variables in a real 

world experiment. The most noteworthy of these are: 

1. Finer control of lighting: Particularly how diffuse the lighting was. This would enable 

us to test if the difference between SC0 and SC3 is indeed driven by shadows, and if 

the effect between SC3 and SC14 is still robust in the absence of shadowing. 

2. Better colour matching: Weak diffuse lighting rendered the difference in colour 

between the objects and the sandpit to be subtle, we would have preferred the 

colours and textures to be identical between the target and the object to make the 

monocular camouflage as good as possible. 

3. Faster experiment: While the error bars are remarkably small given the small 

number of trials it would have been valuable to have more repeats and less 

downtime between the trials. 

4. Control of viewing angle: Participants are of variable height, and stand to one side of 

the sandpit, leading to the participants’ viewing the object from an angle. With a 

taller room, we could have placed participants on a pedestal or even balcony above 

the experiment, meaning that participants would look straight down on the objects.   

5. Multiple viewing distances: Allison et al. (2009) found the presence of environmental 

cues altered selectively enhanced stereoscopic depth at certain distances (4.5 and 

9m). Combined with control of viewing angle it would be interesting to make several 

3D printed objects, so we could vary viewing distance whilst keeping disparity 

constant to see if the different objects were faster to spot at certain viewing 

distances. 

6. Participant behaviour: We do not know how much time we measure between the 

mouse clicks that the participant is actively searching the sandpit, if they are using 

their eyes or head to search the visual field (in the previous experiments, head 

movements were controlled), or how much time they are spending verifying the 

target. 
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The real world visual search experiment that we used partly as inspiration for this study by  

Foulsham et al. (2014). Foulsham et al. fitted participants with a mobile eye tracker, then 

had the participant search a mail room for a pigeon hole with a certain name on it. The 

pigeon hole was made more visible (salient) by making it coloured. The eye tracking data 

enabled Foulsham et al. to investigate the change in participants’ head and eye movements 

when they were informed that the colour was important versus when they were naïve to 

the presence of the colour cue. The nature of Foulsham’s experiment meant that several of 

the issues we faced were not a problem. However, other problems, such as the participants’ 

visual behaviour at searching the sandpit could be informed by using their eye tracking 

software. This enabled Foulsham et al. to analyse the participants’ behaviour while 

searching, and identify trends such as how much time the participant spent searching by 

moving the head as opposed to moving the eyes. 

Other explorations of the perception of the object in the real world could be made by 

moving away from visual search experiments. To better compare the real world and virtual 

objects we could create a setup similar to the experiments of McKee and Taylor’s (2010) and 

Frisby et al. (1996). In McKee and Taylor’s experiment, participants made judgements in 

depth between a pair of vertical rods both with and without adjacent objects and textures. 

A similar experiment, using our objects instead of rods could inform us on the effect of the 

textured sandpit on the perception of depth in the object. We could also vary the texture of 

the objects to measure the effect of the sandy coating on the perception of the object. 

This regime could be taken further – we could create the object out of LED lights, similar to 

the work of Welchman et al. (2004). Welchman et al. tested how participants judged if an 

approaching object would hit them. They originally used binocularly defined dots moving in 

depth on a computer screen, but compared this to real life performance by using a movable 

LED light in a dark room. This regime allowed them to measure the effects of cues present in 

the real world, such as changing accommodation, whilst maintaining the moving object as a 

point of light. We could emulate this idea, and create a 3D display of LEDs to create real 

world objects defined by points of light in a dark room – a display that would be very similar 

to our computer based tasks. When compared to the solid 3D objects this would enable us 

to distinguish between effects from bringing the object into the real world and effects from 

adding additional cues such as shape from shading. 

9.4 Comparison of virtual and real world experiments 
In this Chapter of the thesis, we aimed to investigate how well camouflaged the smooth 

object would be in a more realistic setting. In the first Experiment (Section 9.2) we added a 

naturalistic disparity noise background to investigate if the increased difficulty of finding the 

targets due to the background noise would drown out any effect of the objects’ shape. In 

the second Experiment (Section 9.3) we realised this experiment into a real world 

equivalent, using 3D printed objects and a sandpit. Here, we consider the implications of the 

differences between these two experiments.  
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Perhaps the most striking difference between our real world search task and our virtual 

search tasks, shown in Figure 9.10, is the difference in reaction times between SC0 and SC3 

objects. In the virtual task, we have no significant difference in this comparison. Previous 

experiments had shown that the smooth object was not harder to find purely because of 

the presence of smooth edges and lack of half occlusions, but rather due to the interaction 

of the smooth edge with the extracting of depth for the disparity defined object (Chapters 4 

and 5). Despite this, in our real world search task we observe a significant difference 

between SC0 and SC3, although the effect is smaller than the difference in reaction times 

between SC3 and SC14 (see Figure 9.10). We speculate that the significant difference 

between SC0 and SC3 is due to the effects of self-shadow concealment (see Section 2.1.1), 

where the smooth edges of SC3 have a decreased shadowing compared to the SC0 objects, 

as discussed in Section 9.3.3. 

There is a very large increase in the 

reaction times between the virtual and the 

real world experiment as shown in Figure 

9.19. This effect increased with increasing 

smoothness coefficient. An increase in 

reaction time itself is not surprising, as 

during pilots the real world experiment 

was deliberately made harder by the 

decrease of luminance in the room for 

three reasons:  

 

 

1. With a long setup time and few total results, it is valuable to have longer trials, as 

this magnifies the absolute reaction time difference between conditions, making any 

differences easier to detect above noise. 

2. The dim lighting obscured colour differences between the object and the sandpit, 

but made the object harder to detect.  

3. Participants in the real world experiment made head movements often being made 

to properly search the full area, which may have slowed search down. Head 

movements were restricted in the virtual experiments.  

However, these effects do not explain why the SC14 object has a much greater difference in 

detection times than the SC0 or SC3 objects – for the virtual experiment SC14 is only 3.4 

times slower to detect than SC0, but it is 4.8 times harder in the real world.  

One hypothesis is as to why smoothest object was so much harder to spot in the real world 

experiment relates to the shape of the background. It is possible that in addition to 

 
Figure 9.19: Group mean of the three visual 

search Experiments testing the effect of 
smoothness coefficient. 
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increasing the difficulty segregating the object, the depth profile of the smooth object 

matched the background undulations of the real world experiment much better than the 

fractal background of Experiment 10. This would mean the object could exhibit a depth 

based background matching (Section 2.1.1), where the object is harder to detect because it 

matches elements of the background. Additionally, we know that camouflage is more 

effective in a visually complex environment (Merilaita, 2003) – it is possible that the 

increase in difficulty of detecting all objects is representative of the increased difficulty 

detecting a camouflaged object in its environment. 

We also hypothesise that the smoothest object is so 

much harder to spot than the sharper objects due to the 

presence of Gestalt grouping cues. Until now, we have 

only been considering the effect of the smooth object as 

causing a difficulty in grouping due to binocular 

disparities – primarily due to good continuity between 

the smooth object and the background. However, we 

have not considered the effect of the reduced closure 

(see Figure 9.20, or Section 2.2.6 for a discussion) of the 

smooth object due to the smooth edge not having clear closure when compared to the 

sharp object, which has a distinct, closed edge. It may be that the reduction of good closure 

also applies to other cues that are now available in the real world experiment – such as 

differences in luminance, colour and shadowing. The object is likely being segregated by a 

combination of these cues (Johnston et al., 1994; Regan & Hamstra, 1994; Richards, 1977) – 

thus increasing the detection time over purely using binocular vision. If the smooth object is 

making all these cues less reliable at grouping the object, then we might expect a greater 

increase in detection times than when the object was being detected via one cue – as 

observed here. 

Despite the differences between the two experiments it is surprising how similar the results 

of the two experiments were, given the change in the number of cues to object detection, 

both to the shape of the object and monocular cues to its location. This is particularly 

remarkable given: 

1. In the original experiments, the objects were viewed top-down; in the real world 

experiment they were viewed from an angle (32.5o from vertical for an average 

observer). This gave the participants a different perspective, and would make object 

segregation different as the edge of the smooth object facing away from the 

observer would appear steeper than the edge facing the observer. Despite this, we 

see an effect of smoothness on the detection times.  

2. There are monocular cues present in the real world experiment that are not present 

in the virtual experiment. As discussed earlier (Section 9.3.3.1), further investigation 

could be made by comparing reaction times with both eyes open to with one eye 

4. Closure 

 
Dots are perceived as a closed 

ring even when occluded. 
 

Figure 9.20: Excerpt from 
Gestalt grouping in Figure 2.12 
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shut to see how much binocular cues to perception affected the detection of the 

target. Some of the non-visual search experiments discussed in Section 9.3.3.2 could 

also inform us on the effect of monocular cues. 

 

Despite all the complexities of creating a real world analogue of our virtual experiment, we 

think it is very interesting exercise, especially given our motivations are the study of 

camouflage – a real world phenomenon which has to interact with the many complex cues 

available in the environment. When making claims about the real world from RDS we agree 

that it is valuable to relate findings back to more realistic displays (Regan, n.d.; Richards, 

1977). We would encourage future experimental designs to consider extending their 

research into a real world task, as it is an illuminating and rewarding experience which adds 

an extra degree of relevance to the experimental findings. 
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10 Summary 

In this thesis, we examined Julesz’s statement that “even under ideal monocular 

camouflage, the hidden objects jump out in depth when stereoscopically fused” (Julesz, 

1971). While widely accepted as a use of stereoscopic or binocular vision, this hypothesis 

had not been rigorously tested. We investigated this observation, splitting it up into two 

sub-questions for detailed study: 

1. What is a disparity defined object? What happens when the boundary between the 

background and the object is poorly defined? 

2. Does binocular vision enable us to break camouflage? Are there ways in which prey 

animals can break binocular depth perception, thus reforming their camouflage? 

In order to discuss these two individual strands, we use the format shown in the flowchart 

at the beginning of the thesis (Figure 1.3), but tabulated for clarity. For detailed discussions 

of the results for each Experiment and Chapter, see their individual discussion Sections. 

Numbers in brackets indicate the Sections relevant to each statement. 

In the first three experimental Chapters we explored the first strand of this thesis: How does 

depth from binocular vision contribute to object perception? The results were illuminating, 

summarised here Chapter by Chapter: 

 

 

Chapter Expt Focus Results Conclusions 

4: What is a 
depth 

defined 
object? 

1 
Smoothed 

object 
boundary 

An object with a 
smooth edge was 

perceived with less 
depth than the sharp 
object with a distinct 

edge (4.3.3).  

The perception of depth 
at the centre of the 

object is influenced over 
a long range by the 

object’s edges (discussed 
in 4.3.4). 

2 

Half 
occlusions 

and 
boundaries 

An object with half 
occlusions was 

perceived to have the 
same depth as an object 

with the same depth 
shape, but without half 

occlusions (4.4.2). 

The difference in 
perception between the 
smooth and sharp edged 
objects could be due to 

the presence or absence 
of half occlusions (4.4.3). 
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5: How do 
we 

segregate a 
depth 

defined 
object from 

its 
background? 

- 
Modelling 

object 
segregation 

A computational model 
that segregated out a 

square area of the 
stimulus as the ‘object’ 
and averaged over this 

area was able to fit 
participants’ perceived 

peak depth in 
Experiments 1 and 2 

(5.3 and 5.4).  

The decrease in depth in 
the objects was probably 
due to a mechanism that 

averages over a large 
region of the segregated 
object, probably to give a 
consistent depth estimate 

for the object 
(5.3.45.4.4). 

3 
Testing 
model 

predictions 

A zero free-parameter 
model that created a 
prediction based on 

averaging over a region 
dependent on the size 
of the object (5.5.2.1) 

predicted the perceived 
peak depth of a variable 

plateau size object 
better (5.5.4) than a 

model with a fixed size 
averaging region 

(5.5.2.2).  

The size of the 
segregation area was 

dependent on the size of 
the object, supporting the 
hypothesis that the visual 

system segregates the 
object from the 

background then 
averages over the object 
to improve the precision 
of the predicted depth 

(5.5.5). We speculate that 
cues to object 

segregation may alter the 
perceived peak depth of 

the object. 

6: How does 
depth 

segregation 
interact with 

luminance 
segregation? 

4 – 6 

Luminance 
and well 
defined 
depth 

objects 

These three 
experiments found that 

manipulating a 
luminance cue to 

segregation on the 
disparity defined 

objects made the task 
extremely difficult for 

participants (6.2,6.3 and 
6.4). 

With a good disparity cue 
and a poor luminance 

cue, we found no 
evidence that the 

luminance cue made 
affected the depth 

averaging mechanisms 
(6.4.4). 

7 

Luminance 
and poorly 

defined 
depth 

We added disparity 
noise to the smooth 

object, and found that 
the luminance cue to 

segregation altered the 
perceived depth of the 

object (6.5.3). 

This strongly indicates 
that binocular and 

monocular cues are 
combined to segregate 

the object from its 
background, then the 
depth of the object is 
estimated via depth 

averaging (6.6). 
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In summary of the first strand, we found that that objects with a poorly defined depth edge 

were perceived with a decrease in peak depth. We found we could predict perceived peak 

depth using a model that segregated a region of the object based on the shape of the object 

itself, then averaged over this region. We investigated the interaction of binocular disparity 

with luminance, and found that a luminance cue to segregation altered the perceived peak 

depth of the object. This implies that object segregation occurs by combining multiple cues, 

before further processing of an object’s properties such as its depth. 

These Chapters present several new findings and techniques over those used in the current 

literature – indeed the results and methods of Chapters 4 and 5 have been published 

(Cammack & Harris, 2016). Typically, when investigating the perception of depth in an 

object, experiments look at highly abstract objects on featureless backgrounds e.g. (Deas & 

Wilcox, 2014, 2015; Kim, 2013). In Chapter 4, we investigate the effect of viewing objects 

with extended edges that join into the background, and find that this has an effect on the 

peak depth of the object. This effect seems to have links to the literature on Gestalt 

grouping (Elder & Zucker, 1993; Pizlo, Li, & Francis, 2005b; Wertheimer, 1923), with several 

similarities between our results and those of Deas and Wilcox (2014).  

The results of Chapter 4 were not clearly explained by current models of disparity averaging, 

which could only explain disparity interaction on a short range, about 3-6 arcmin (Filippini & 

Banks, 2009; Harris et al., 1997). This implied that there was a disparity averaging 

mechanism taking place over longer scales than currently modelled. Given the body of 

literature that had previously found effects from Gestalt grouping that could not be 

explained by these models (Elder & Zucker, 1993; Pizlo et al., 2005b; Wertheimer, 1923), we 

thought that the long range effect may be due to further object based disparity processing.  

Inspired by the words of Marr (1982), we created a novel computational model in Chapter 5 

to study the overall computation used in the visual system when processing our object. This 

model found the results from Experiments 1,2 could be fitted by long range disparity 

averaging across a segregated region of the object – an effect not proposed before. We 

believe this model could inform development of current models of disparity extraction, e.g. 

(Allenmark & Read, 2010, 2011; Filippini & Banks, 2009; Goutcher & Hibbard, 2014). Using 

our results, these models could be extended to perform segregation after disparity 

extraction based on local changes in disparity such as inflection points. Subsequent 

averaging over the segregated region would create a model computationally similar to our 

model, but on algorithmic or hardware level. Comparing these new models to human 

performance could then inform us on how the brain may be processing the disparity signal 

for object perception.  

There appeared to be a link between object shape and the area that was segregated and 

averaged – in Chapter 6 we investigate if other cues to object segregation, specifically 

luminance, could alter the area segregated and averaged. While other studies have 

investigated the effects of luminance and disparity e.g. (Anstis et al., 1977; Didyk, Ritschel, 
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Eisemann, Myszkowski, & Seidel, 2012; Lunn & Morgan, 1995), our work indicates that 

luminance and disparity cues to object processing may be implemented before disparity 

processing is complete. 

The next three experimental Chapters explored the second strand of the thesis, considering 

how depth perception interacts with camouflage. We used different experimental 

techniques from the first strand but the experiments were informed by results and 

conclusions of object perception in the first strand. 

Chapter Expt Focus Results Conclusions 

7: Does 
depth 

perception 
break 

camouflage? 

8 

Does 
disparity 
decrease 
detection 

time? 

A luminance defined 
target object was 

camouflaged amongst 
similar distractors 

(7.3.2). We found that 
the addition of disparity 
defined depth assisted 

with identifying the 
target, with up to a 20% 

decrease in reaction 
times (7.3.3). 

Disparity defined depth 
gives a moderate 
improvement in 

detecting monocularly 
camouflaged targets 

(7.4). 

8: Does poor 
segregation 

create 
stereoscopic 
camouflage? 

9 

Is a poorly 
defined 
object 

harder to 
spot? 

Smooth objects were 
monocularly 

camouflaged in a RDS 
(8.2.1). We found that 
the smoother the edge 

of the object, the longer 
it took to detect (8.2.2). 

An object with smooth 
edges takes longer to 

spot than one with sharp 
edges, potentially 

forming stereoscopic 
camouflage (8.3). 

9: Does 
stereoscopic 
camouflage 

work in 
natural 

conditions? 

10 
Adding a 
natural 

background 

We investigated if the 
addition of a naturalistic 

disparity noise 
background would make 
all objects equally hard 

to spot, as they would all 
be much harder to 

segregate from their 
background (9.2.1). The 
previous findings were 
upheld: that the more 

poorly defined the edge, 
the harder an object is to 

spot (9.2.3). Overall 
detection times were 
increased relative to 

Experiment 9 (9.2.4.2). 
 

The smooth object is still 
harder to spot in 

naturalistic disparity 
backgrounds, indicating 
that smooth edges could 

be used to in the real 
world to create 

stereoscopic camouflage 
(9.2.4). 
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11 
Real world 
experiment 

The previous experiment 
was used as the basis of 
a real world experiment 
(9.3.1). Here, we found 
that the smoother the 

object, the longer it took 
to detect (9.3.2). Unlike 
in previous experiments, 

low smoothness 
coefficient objects 

(relatively sharp edges) 
took longer to spot than 
objects with sharp edges 

(9.4).  

Smooth objects are 
better camouflaged than 
sharper objects even in 
real world experiments 
(9.3.3). However, the 
addition of other cues 

not present in the 
computer experiment, 

such as shape from 
shading (9.3.3.1) seem to 

make a significant 
difference to detection 

time of objects with 
intermediate levels of 

smoothness (9.4). 

 

In summary of the second strand, we found that objects that were defined by both 

luminance and disparity were faster to detect than objects defined by luminance alone, 

suggesting that depth from disparity could be used to find monocularly camouflaged 

objects. Objects with smoother edges took longer to detect than objects with sharper 

edges. This is most likely because segregation of a depth defined object from its background 

is not trivial and causes a decrease in the perception of depth in the smooth object, making 

it harder to detect. As a smoother object is harder to detect, this indicates that animals 

wishing to hide from stereoscopic observers could adapt their shape to make themselves 

harder to spot, thus forming camouflage. This camouflaging potential was robust, even 

under a unique real world analogue of our abstract computer experiments. 

Since Julesz (1971) proposed the idea that binocular depth perception was used to break 

camouflage, it has often been assumed to be the case without formal testing e.g. (Heesy, 

2009; Isbell, 2006). In Chapter 7, we establish that depth from disparity can and does assist 

in the detection of monocularly camouflaged objects, even when the observer is not aware 

of the disparity cue. However, the speedup in detection of camouflaged objects was not as 

dramatic as expected, and in Chapter 8 we investigated if the objects from the first strand 

may influence the detection time via the added difficulty of segregating poorly grouped 

objects (Deas & Wilcox, 2015; Elder & Zucker, 1993; Troscianko, Benton, Lovell, Tolhurst, & 

Pizlo, 2009b). We found the smooth objects  took longer to detect, concurring with current 

literature and potentially forming a new kind of camouflage which we dub ‘stereoscopic’ or 

binocular camouflage (Cammack & Harris, 2016; Stevens & Merilaita, 2009).  

Finally, in Chapter 9 we test our observations in more realistic environments to test if the 

results hold outside of abstract vision experiments (Richards, 1977). This is a very rare step, 

with only a few other studies relating results directly back to the real world e.g. (Foulsham 

et al., 2014; Frisby et al., 1996; McKee & Taylor, 2010; Welchman et al., 2004) and even 
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rarer in visual search e.g. (Foulsham et al., 2014; Smith et al., 2008). We successfully create 

a real world Experiment that replicates some of our results, but shows some interesting new 

effects, such as the potential of an interaction between binocular camouflage and self-

shadow concealment (Penacchio et al., 2016; Penacchio, Lovell, Sanghera, et al., 2015; 

Penacchio, Lovell, Cuthill, et al., 2015; Rowland, 2009; Ruxton et al., 2004). We hope that 

the methods and success of this real world experiment will inspire others to relate their 

virtual experiments back to the real world. 

In conclusion, we find that Julesz’s claim that “even under ideal monocular camouflage, the 

hidden objects jump out in depth when stereoscopically fused” (Julesz (Julesz, 1971), p145) 

should be viewed with caution. We find that depth assists with the detection of 

camouflaged objects, but does not make detection trivial. Additionally, the profile of the 

object can make a binocularly defined object hard to segregate from the background, 

making it difficult to detect. This potentially forms a kind of stereoscopic camouflage that, in 

the real world could be complemented by other camouflage techniques such as self-shadow 

concealment and disruptive colouration. 

  



195 
 

Acknowledgements 

I would like to thank these people for their invaluable contributions: 

 This thesis would not have been possible without Julie Harris, my supervisor, for her 

invaluable support, advice, knowledge and guidance through the three years of this 

PhD. Also for her endless patience with my dyslexic writing. 

 Tomas Otto, my second supervisor, for his guidance, and his support and advice 

giving me the confidence to make my presentation and graphical skills what they are 

today. I now enjoy giving presentations! 

 Helen Cammack, my wife. Without her moral support I would never have made it 

here. 

 All the lab members for their advice, ideas and insight, including: 

o Ana Porskalaite, a final year project student who took Experiment 8 as her 

final year project, piloted, tweaked and collected all the data presented here.  

o Andrew Chua, a summer student for spending weeks sorting out the details 

of Experiment 11, running and collecting the data presented here. 

o Andrew Mackenzie, for all the wisdom passed down from the heights of a 

PhD student a year above me. Also for all the long discussions of experiments 

at conferences, many of which are presented in this thesis. 

o Benjamin Portelli, Abigail Lee and Andrews Mackenzie, for all the patient 

hours of constructive criticism and piloting. 

o Olivier Penacchio, for his support and insights into modelling and camouflage. 

o The suggestions and advice of Martin Giesel. 

o Xavier Otzau, for his interest and attempts at creating a detailed neuronal 

model of my stimulus. 

 All the vision lab members, your insight and contributions around the department 

and especially at Journal Club let me avoid so many pitfalls. A special callout to 

Giedre Zlatkute for the idea of using sand. Also to Christopher Gillespie for his advice 

and predictions – he was more right about the third year of the PhD than I ever 

thought possible. 

 Everyone at the School office and Mary Latimer and Helen Sunderland, who were 

always there to help in any way they could. 

 Sheila Baillie, the NHS and Eric Bowman, for their help and advice dealing with 

Dyslexia and APD. You made it so much easier to write this. 

 The discussions and ideas everyone who talked to me at conferences, namely VSS 

annual general meeting (2015), SVG (2014,2015 and 2016) and AVA annual general 

meeting (2014).  

 Everyone in my PhD office, and all the invaluable hours of discussions, piloting and 

sympathy. 



196 
 

 My friends and family, for their support, advice and a sympathetic ear and a hot 

chocolate whenever things went pear-shaped. 

Without the support of these bodies, this research could never have been conducted: 

 EPSRC for funding my 600th Anniversary scholarship, equipment and other costs. 

 University of St Andrews and the School of Psychology and Neuroscience, for 

funding, office and laboratory space. 

 The BBSRC for funding. 

 Grants from EPS, CAPOD, the School of Psychology and Neuroscience at the 

University of St Andrews and the HPC consortium. 

These programs made large contributions to this thesis: 

 SPSS statistics, for most statistical analysis (“IBM SPSS Statistics for Windows,” 

2013). 

 MATLAB, for most data analysis and experimental programming (“MATLAB and 

Statistics Toolbox,” n.d.). 

o Psychophysics toolbox, for display of stimuli (Brainard, 1997; Kleiner et 

al., 2007). 

o Palamedes toolbox for psychometric function fitting (Prins & Kingdom, 

2009). 

 Wolfram Mathematica, for integration and modelling (“Mathematica,” n.d.). 

 Stereophotomaker, for the creation of the anaglyphs presented in this thesis 

(Suto & Sykes, 2014) 

 

  



197 
 

Glossary 

Term Definition 

2AFC Two alternative force choice – an experimental paradigm where the 
participant has to choose between two alternative options. 

Background 
matching 

A camouflage technique where the patterning, colours and other features 
of the animal resemble the background so well that the animal cannot be 
distinguished from the background, see Section 2.1.1. 

Binocular  Visible or viewed with both eyes simultaneously. See Section 2.2.1. 

Binocular 
vision 

Using two eyes simultaneously to see the same area of visual field. See 
Section 2.2.1. 

Detection 
time 

The length of time it takes an animal to find a camouflaged object, be it 
predator or prey. This is only loosely defined in literature, but we mean 
the time between the start of a trial and the participant indicating they 
have found the object. 

Disparity The angular difference in the position between the images of an object in 
each of the two eyes.  We always mean relative crossed disparity in this 
thesis unless otherwise stated, see Section 2.2.2. 

Disruptive 
Colouration 

A camouflage technique where an animal uses bold contours or colours to 
appear to several different unrelated segments or objects, and thus not 
be identified as an animal, see Section 2.1.1. 

Cryptic An animal that is sufficiently well camouflaged via background matching 
so as to appear not to be present, see Section 2.1.1. 

Half-
occlusions 

Regions of a scene that are visible by only one eye (monocularly) due to 
an opaque surface obscuring the view of the other eye. See Section 2.2.3.  

Luminance The intensity of light emitted from the surface per unit area. 

Masquerade A camouflage technique where the animal attempts to appear to be 
something in the environment that is not of interest to the observer, e.g. 
Figure 7.1. See Section 2.1.1. 

Mimicry A camouflage technique where an animal attempts to appear to be a 
different animal, typically one that is well defended or not worth 
predating. See Section 2.1.12.1. 

Model A computer program or equation designed to emulate or predict the 
behaviour of a real-life system. 

Monocular Visible or viewed only with one eye. 

PSE Point of subjective equality – the numerical value when the participant 
cannot perceive the difference between the displayed stimuli, even 
though they may be displayed as being different. See Section 3.2.1. 

Plateau size A value determining the distance between the inflection points of the 
smooth object. This is also equal to the full width half maximum of the 
function. See Section 4.2.1. 

Quitting 
threshold 

The length of time a participant will search for the target before giving up. 
See Section 2.1.2. 

Real world 
experiment 

An experiment where the visual stimulus is physically present, rather than 
displayed on a computer screen. 
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RDS Random dot stereogram – a display consisting of a randomly distributed 
set dots, such that when viewed stereoscopically (usually using apparatus 
such as a stereoscope) depth can be perceived within the stereogram. See 
Section 3.1. 

Reaction 
time 

The length of time it takes for the participant to indicate they think they 
have detected the target. Unless otherwise stated, this is only analysed 
for correct trials. See Section 3.2.2. 

SC See smoothness coefficient 

Self-Shadow 
concealment 

A camouflage technique where an animal obscures cues to its shape and 
location by decreasing the visibility of shadowing caused by the animal. 
See Section 2.1.1. 

Segregation Isolating a region of space as being different, in this thesis it typically 
refers to where an object is perceived as being different to the 
background. 

Smoothness 
coefficient 

A value determining the first (gradient) and second differential of the 
object shape – perceptually this makes the object seem smoother or 
sharper. A higher number is considered to be smoother. See Section 4.2.1 

Stereoscopic 
camouflage 

A shape or patterning designed to impair binocular vision in the observer, 
rendering it harder to spot the animal or object using depth cues. 

Stereopsis A strong impression of depth from the scene, but not necessarily using 
two eyes. Julesz used stereopsis to refer to what we call here binocular 
vision. 

(Wheatstone) 
Stereoscope 

A device consisting of four mirrors used with a computer screen to display 
depth. See Section 3.1. 
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