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Abstract
The search for visible-light photocatalysts is of great significance in clean energy and environmental
applications to best utilize solar radiation. Some layered semiconductor photocatalysts have been
found to exhibit promising performance levels. Their superior activity has been linked to the layering
within the crystal structure, whichmay facilitate separation of carriers and, hence the reduction and
oxidation reactions. Previous investigations on layeredmaterials focused on oxides containing early
transitionmetal cationswith d0 electronic configurations utilizing ultraviolet radiation. Attempts to
synthesize layeredmaterials with visible light response have been less successful and the photoactivity
of suchmaterials is not very high.Here, we have investigated a layered semiconducting compound,
LiNbO2with nominal d2 electronic configuration (Nb3+). As a result of a sub-valence band originating
fromfilled d orbitals, LiNbO2 exhibits visible light absorption extending to 650 nmand demonstrates
interesting photocatalytic activity for hydrogen production.

Solar energy is themost promising energy feedstock across theworld due to its inexhaustible nature and
environmental friendliness [1]. The distribution of solar incidenceworldwide ensures easy accessibility of
energy resource andwide applicability of solar technologies [2]. Among various solar technologies available,
converting solar power directly into chemical fuels is one ofmost promisingmeans of solar energy utilizations,
as it can be readily adopted into our current energy infrastructure built upon fossil fuels [3, 4]. A typical example
is solar hydrogen production fromwater [5, 6]. Under appropriate radiation conditions, preferably visible light,
hydrogen is produced on the surface of a photocatalyst without any other energy input. Such a simple energy
conversion process is very tempting, yet only a fewmaterials were found be to photocatalytically active for
hydrogen productionwithout sacrificial elements, let alone an appreciable conversion efficiency under visible
light radiation [7–10]. A number of layered compounds have been found to exhibit interesting photocatalytic
activity [9, 11–25]. Their activity seems to be associatedwith the peculiar layered crystal structures that promote
separation of charges and reactions [11, 13, 26, 27]. Previous investigations of layered compounds were largely
limited to those active only underUV radiation [11, 13, 27–32]. Here, we investigated a layered compound
LiNbO2with nominal d2 electronic configuration that shows very high hydrogen production rate under visible
light radiation.

The layered compound LiNbO2 has been studied previously due to the occurrence of superconductivity at
∼5 K if around 30%of the Li cations are removed [33, 34]. Its layered structure comprises of alternatingNbO6

trigonal prism sheets and layers of Li+ cations (figure S1 is available in the supplementarymaterial: stacks.iop.
org/JPENERGY/1/015001/mmedia). Conductivitymeasurement and theoretical calculations suggest an
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insulator-to-metal transition driven by decreasing Li content; zero or lowdeficiency of Li yields a semiconductor
with band gap energy around 2 eV [34–37]. This bandgap indicates that semiconducting LiNbO2might be a
promising photocatalyst despite the low oxidation state ofNb suggesting redox instability in contact withwater.
Recent results on cubic Sr1−xNbO3 demonstrate that reduced niobiumoxides do not necessarily react with
water at ambient conditions and hence can deliver stable photocatalytic activity in aqueous systems [7, 38],
hencewe have investigated layered LiNbO2 as a possible photocatalyst.

Results and discussions

LiNbO2was synthesized by reacting Li3NbO4 andNb2O5 precursors withNbmetal in aflowing Ar atmosphere
[39]. The refined x-ray diffraction (XRD) patterns of the final sample obtained are displayed infigure 1S. All of
the peaks can be indexed and refined in the hexagonal symmetry (space groupP 63/mmc) in accordwith
previous reports [33]. ThefinalR factors (Rwp=8.57% andRp=6.69%) and the value of reducedχ2 (2.015)
suggest a reasonablefit of the structuremodel to the observedXRDpatterns, confirmed by the absence of any
unassigned peaks and, hence, no secondary phase in the sample. The refined unit cell parameters (a and c) and
cell volume are (2.9100(3)Å and 10.4708(6)Å) and 76.78 (1)Å3, respectively. Thermogravimetric analysis under
flowing oxygen atmosphere suggests aweight gain of 12.08%up to 1000 °C,which agrees well with the
theoretical value 12.13%on the assumption that all Nb cations in LiNbO2 are oxidized toNb

5+ during the TGA
in air. Themolar ratio of Li toNb is determined to be 0.95(7) based on inductively coupled plasma (ICP)
measurements, which is very close to the stoichiometric value in ideal LiNbO2.

In accordwith previous reports and the reddish appearance of the powders, UV-visible absorption spectrum
of the synthesized LiNbO2,figure 1, reveals an intense absorption in the visible regionwith absorption extending
as far as 650 nm.Kubelka–Munk transformation versus the energy of the light suggests an onset of light
absorption starts from1.94 eV (see inserted image infigure 1), which agrees well with a band gap∼2 eV and the
reported semiconducting nature of the sample [37].

We evaluated the photocatalytic activity of LiNbO2 forwater splitting bymonitoringH2 production from
oxalic acid aqueous solution under visible light irradiation.Oxalic acid is known as a common pollutant from
industrial treatment processes such as textile industry andmetallurgy, the lowpotential of its redox couple
H2C2O4 (aq)/CO2 (g)=−0.49 V suggests that it can be used as a good hole scavenger [40].Measurements were
firstly carried out in the dark conditions with the purpose of evaluating any reaction that does not proceed
photocatalytically. NoH2was detected during themeasured 5 h in the absence of radiation. Figure 2 displays the
typical time courses ofH2 production under visible light radiation. Although only a trace of hydrogenwas
generated in the initial 2 h, the pristine LiNbO2 (0.2 g) shows a hydrogen evolution rate of ca. 12 μmol h−1 in the
subsequent experiment. The inducement period of the first two hoursmight be due to the passivated surface as
samples were synthesized by annealing at ultra-high temperature (1250 °C) for 20 h. To acquire a samplewith a
large fresh surface, the as-prepared LiNbO2 powders were then ballmilled to break down the large particles
(figure S2). The ballmilled sample shows an apparent improvement on the hydrogen evolution rate

Figure 1. (a)UV-visible absorption spectrumof LiNbO2 (converted fromdiffuse reflectance spectra) and photograph of LiNbO2

powders are shown in the inserted images; (b)Kubelka–Munk transformation of reflectance data.
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(∼44.2 μmol h−1) by a factor of 3.6 with respect to the pristine one. Additionally, the inducement period is
largely eliminated and a nearly linear hydrogen evolution rate is observed, suggesting good photocatalytic
stability. The improved photocatalytic performance can be attributed to the large active surface created after ball
milling as specific surface area increases from1.2–9.1m2 g−1 as determined by BET analysis. Furthermore, the
photocatalytic performance can be further improved by introducing Pt and an averageH2 production rate
∼73.7 μmol h−1 was achieved by loading 1 wt%Pt, approaching an apparent quantum efficiency ca. 0.277%.
The role of Pt in this experiment is as a co-catalyst that not only collects photo-generated charges but also
provides additional reaction sites.Microscopic analysis indicates the formation of Pt nanoparticles (∼10 nm) on
the surface of LiNbO2with core-shelledmicro-structures (figure S3). The action spectrumof photocatalytic
hydrogen production showed a strong dependence upon thewavelength of photonswithmaximum
performance around 600 nm (figure S4), confirming a real photocatalytic process. The corresponding apparent
quantum efficiency reaches 1.8% at 550 nm. The linear sweep voltammogrambased on LiNbO2 thin film
electrode clearly shows a light driven current response under chopped light (figure S5). Photocurrent was
observed up to 650 nmand the plots of photocurrent versus wavelength roughly followUV–vis absorption
spectrum (figure S6). Other hole scavengers likemethanol and sodium sulphite were also employed and steady
hydrogen evolutionwas observedwith apparent quantum efficiency ca. 0.38%under full range irradiation and
without change in activity in repeated experiments (figure S7, table S1); the turnover number is calculated to be
7.18 according to the amount of hydrogen produced and number of atoms in thematerial [5]. Besides, the
powders before and after photocatalytic experiment showed an identical XRDpattern (figure S8), SEM image
(figure S9) and x-ray photoelectron spectroscopy (XPS) signals (figure S10).More interestingly, XPS spectra
suggest the existence ofNb2+ andNb4+ species, which implies LiNbO2 is probably a charge transfer insulator
andNbonly has an effective charge of 3+. Based on the above results, we confirm that LiNbO2 is a real
photocatalyst and is capable of splittingwater in the presence of sacrificial elements. It should also be noted that
the surface area of LiNbO2 particles after ball-milling is still quite low and particles are fairly large (see figure S2)
therefore the capability of photocatalytic hydrogen evolutionmay be improved by further decreasing the particle
size.Mechanical processingwill not only help to decrease the particle size but alsomay provide additional
trapping sites that are favorable for reactions and charge separation.

To better understand the photocatalytic activity and its relation to the layered structure, we carried out some
theoretical calculations on the electronic structure of LiNbO2. The calculated band structure is displayed in
figure 3. According to the calculations, conduction band and valence band are well separated from the Femi level
with a direct band gap 1.6 eV, therefore, LiNbO2 is indeed a semiconductor. The smaller calculated band gap
compared to the experimental value (1.94 eV) is due to the drawbacks ofGGAmethod that often underestimates
band gap energy [41]. Nevertheless, the calculations do give useful qualitative information. Layeredmaterials are
well known for their anisotropies in physical or chemical properties, such as electronic conductivity of graphite.
The question then arises whether the photogenerated charge carriers (electron hole pairs) behave in an
anisotropicmanner in the case of layered LiNbO2. This can be examined by analyzing its band structure in
different crystallographic directions (figure 3). Take for example, alongE–k curve, traversing frompoint a to
point b covers a large energy dispersion∼2 eVof conduction band in the [100] direction. Recalling that the

Figure 2.Time-dependent photocatalytic hydrogen evolution frompristine LiNbO2, ball-milled LiNbO2 and ball-milled LiNbO2

with 1 wt%Pt.Measurements were performed upon 0.2 g powders in 200 ml oxalic acid aqueous solution (0.025 M). Light source:
250 W iron dopedmetal halideUV–vis lampwith aUV cut-offfilter (λ�420 nm).
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mobility of electrons/holes is inversely proportional to their effectivemassm* and the effectivemass is inversely
proportional to the second derivative ofE versus k curve (wide band leads to highmobility):

* =
-⎛

⎝⎜
⎞
⎠⎟ħ ( )m

d E

dk
12

2

2

1

therefore, the electrons in theCBwill have a highmobility in the [100] direction [42, 43]. In other words, a large
curvature ofE–k curve indicates ‘light’ electrons/holes that are easy tomove. Similar observations are also found
in other directions such as [−120] (frompoint b to point c), therefore, electrons are highlymobile parallel to the
NbO6 trigonal prism sheets. However, dispersion in the [001] direction (frompoint c to point d) is almost
negligible, suggesting electronmigration across different layers are virtually forbidden. Similar situations are
also found in the valence band thereby charge carriers in LiNbO2will bemore or less restricted in separated
layers. These restrictions to the charge carriers are of great significance to the photocatalytic activity, as electron
hole recombination between different layers can be considerablymitigated.

Partial density of states (PDOS) from constituent elements in LiNbO2were also calculated (figure S11). The
absence of Li PDOSnear Fermi level suggests negligible contributions of Li to bothCB andVB. TheCB andVB
are found to be predominantly composed byNb atoms (4d orbitals), with some contributions fromOatoms
(mainly 2p orbitals). In this respect and above analysis, electrons and holes are primarily confined in the
individualNbO6 trigonal prism sheets with high intrasheetmobility. The role of interlayer Li+ ions can therefore
be understood as steric barriers preventing charge interactions between different sheets. This specific structure is

Figure 3.Calculated band structure of LiNbO2, energy zero point was set at Fermi level. Brillouin zone for a hexagonal lattice was
shown on the right.

Figure 4.Proposed energy band positions for LiNbO2 in comparisonwith redox potential of water at pH=0.
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highly beneficial for fast charge transfers as eachNbO6 trigonal prism sheet can act as an independent
photocatalyst.

Knowledge of the energy band positions is also crucial in understanding the photocatalytic reactions. The
conduction band edge can be roughly inferred from theMott–Schottky (MS) plot according to impedance
measurement (figure S12). Theflat-band potential determined fromMSplot∼−0.534 V versusNHEwill lie
very close to the conduction band edge. Thereby the valence band edge can be simply estimated using the band
gap energy (1.94 eV), which approximately lies at+1.4 V versusNHE. Thefinal proposed energy band positions
are displayed infigure 4. The energy gap betweenCB andVB straddles the redox potentials of water, whichmeets
the thermodynamic requirement forwater splitting. Nevertheless, the CB edge is suitablymore negative
(<−0.534 V versusNHE) than the reduction potential of water, so the electrons in the conduction bandwill
have high reducing power for hydrogen evolution and a strong driving force for the separation fromholes due to
the large potential drop across depletion layer when equilibrating withwater. TheVB edge, on the other hand,
lies very close to the oxidation potential of water, suggesting LiNbO2might not be suitable forO2 production.
This is confirmed in the photocatalytic O2 evolution experiment (table S2), where only a small amount ofO2was
produced even under full range radiation (UV+Vis) and a low turnover number around 0.07.

Conclusions

In summary, we have synthesized a layered compound LiNbO2, which demonstrates a high photocatalytic
activity inH2 production. Its good photocatalytic performancemight be related to the anisotropic dispersion of
its electronic structure such that charge recombination can be inhibited. The very negative CB edge position
endows photogenerated electronswith high reducing power and facile charge separation that favorsH2

production. Such a layered structure as well as the special d2 electronic configurations of transitionmetal
enlightens our search for new photoactivematerials in the future.

Methods

Sample synthesis
LiNbO2was synthesized by calcining homogenized Li3NbO4,Nb andNb2O5mixtures in aflowing Ar
atmosphere at 1250 °C for 20 h [33, 39]. Details for synthesis can be found in supplementary information.

Characterization
Crystal structure and phase puritywere examined byXRD analysis of powders on a STOESTADI/Ppowder
diffractometer. Incident radiationwas generated using a CuKα1 source (λ=1.540 56 Å). The step size for data
collectionwas 0.02°with a collection time 1000 s at each step. Vaselinewas used tomount the powders onto the
holder. X-POWsoftware andGeneral Structure Analysis Systemprogramunder EXPGUI interface was used to
perform least square refinement andRietveld refinement. AMicromeritics instrument ASAP 2020was used to
examine theN2 adsorption and desorption properties and specific surface areaswere calculated via the
Brunauer–Emmett–Teller (BET)model. Themicrostructure of the powders was inspected using a scanning
electronmicroscope (JEOL 5600 SEM) equippedwith aMica energy dispersive x-ray spectroscopy analysis
system.Diffuse reflectance spectrawere collected on aUV–vis spectrophotometer (JASCO-V550) and the
absorbancewas transformed by theKubelka–Munkmethod. Thermogravimetric analysis was carried out on a
Rheometric Scientific TG1000M+andTA instruments with heating and cooling rate of 10 °Cmin−1 to
1000 °Cunderflowing oxygen. AnAgilent 7500a ICPmass spectroscopywith laser ablationwas used for surface
element analysis.MS analysis was carried out through impedancemeasurements using a Schlumberger
Solartron 1255 frequency response analyzer couple with a 1287 Electrochemical Interface. Sintered LiNbO2

pellet, Pt wire, Ag/AgCl electrode and 1MKCl aqueous solutionwere used as working, counter, reference
electrode and electrolyte respectively. The configuration of the set upwas as decribed in prior literature [44]. The
impedance analysis was performed at frequency range from100 kHz–0.1 Hz at 50 mV rms under potential bias
from−1.6 to+0.5 V (versus Ag/AgCl). The capacitance was then extracted from the impedance spectra andwas
used to derive theMS plot. TheXPSmeasurements were performed onThermoEscalab 250with a
monochromatic Al Kα x-ray source. All binding energies were referenced to theC 1 s peak (284.6 eV) arising
fromadventitious carbon.

Photoreactivitymeasurements
Measurement of photocatalytic hydrogen evolutionwas performed in a home-made Teflon reactor with
window sealed by a quartz glass. In a typical experiment, photocatalyst was dispersed in aqueous solution (oxalic
acid,Methanol or sodium sulfite). The suspensionwas then sealedwithin the home-made photoreactor. The
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reactorwas purgedwith pure Ar gas as a protective gas. Gas compositionwithin the reactorwasmonitored by a
gas chromatograph (Agilent 3000MicroGasChromatograph). A 250W iron dopedmetal halideUV–vis lamp
with orwithout aUV cut-off filter (λ�420 nm)was used as the light source. The photon flux of the lamp is
calibrated using a quantummeter (ApogeeMQ-200). The average photon flux is 1305±27 μmol m−2 s−1

under visible light radiation and 1510±31 μmol m−2 s−1 under full range radiation. The photocatalytic
oxygen evolutionwas performed in a similar set up, except using 0.1 g LiNbO2 powder and 200 mlAgNO3

aqueous solution (0.005M) as a sacrificial element.
The LiNbO2 thin film electrodewas prepared according to the following procedure: 40 mg powders and

10mg iodinewere dispersed in 50 ml acetone solution ultrasonically. Two pieces offluorine-doped tin oxide
(FTO) glasses were then placed in parallel into the suspensionwith a separate distance 10 mm. 30 V biaswas
applied for 30 min between these two FTOglass under potentiostatic control. The as-prepared electrodewas
then dried in the oven for 1 h before photocurrentmeasurements. The photocurrentmeasurements were
performed in 0.2 MNa2SO4 aqueous solution using LiNbO2 thinfilm electrode, platinum sheet andAg/AgCl
electrode asworking, counter and reference electrode respectively.

Theoretical calculations
Theoretical calculationswere carried out by using the density functional theory implemented in theVienna
ab initio simulation package [45]. Perdew, Burke and Ernzerhof exchange-correlation functional within the
generalized gradient approximation [46] and the projector augmented-wave pseudopotential [47]were adopted.
Spin-polarizationwas also taken into account in this calculation. A hexagonal super cell with a=2.91 Å and
c=10.47 Åwas used for simulations. All geometry structures were fully relaxed until the forces on each atom
are less than 0.01 eV Å−1. Static calculations were donewith a 19×19×5Monkhorst–Pack k-point grid [48].
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