
Accepted Manuscript

Title: The generation and characterisation of neutralising
antibodies against the Theiler’s murine encephalomyelitis
virus (TMEV) GDVII capsid reveals the potential binding site
of the host cell co-receptor, heparan sulfate

Authors: Nicole Upfold, Caroline Ross, Özlem Tastan Bishop,
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Highlights 

 

 TMEV capsid proteins localise to large punctate structures in the cytoplasm during late 

infection. 

 Anti-TMEV capsid antibodies bind a surface loop at the C-terminus of VP1 near the 

putative receptor binding site. 

 Anti-TMEV capsid antibodies neutralise viral infection. 

 The TMEV GDVII co-receptor, heparan sulfate, binds to residues in the C-terminal loop 

of VP1. 

 Docking experiments reveal the potential binding site of the co-receptor on the TMEV 

capsid 

 

Abstract 

The early stages of picornavirus capsid assembly and the host factors involved are poorly 

understood.  Since the localisation of viral proteins in infected cells can provide information on 
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their function, antibodies against purified Theiler's murine encephalomyelitis virus (TMEV) 

GDVII capsids were generated by immunisation of rabbits. The resultant anti-TMEV capsid 

antibodies recognised a C-terminal region of VP1 but not VP2 or VP3 by Western analysis. 

Examination of the sites of TMEV capsid assembly by indirect immunofluorescence and 

confocal microscopy showed that at 5 hours post infection, capsid signal was diffusely 

cytoplasmic with strong perinuclear staining and moved into large punctate structures from 6 to 8 

hours post infection. A plaque reduction neutralisation assay showed that the anti-TMEV capsid 

antibodies but not anti-VP1 antibodies could neutralise viral infection in vitro. The VP1 C-

terminal residues recognised by the anti-TMEV capsid antibodies were mapped to a loop on the 

capsid surface near to the putative receptor binding pocket. In silico docking experiments 

showed that the known TMEV co-receptor, heparan sulfate, interacts with residues of VP1 in the 

putative receptor binding pocket, residues of VP3 in the adjacent pit and residues of the 

adjoining VP1 C-terminal loop which is recognised by the anti-TMEV capsid antibodies. These 

findings suggest that the anti-TMEV capsid antibodies neutralise virus infection by preventing 

heparan sulfate from binding to the capsid. The antibodies produced in this study are an 

important tool for further investigating virus-host cell interactions essential to picornavirus 

assembly. 

Keywords: Theiler's murine encephalomyelitis virus, Neutralising antibodies, Capsid modelling, 

Surface epitopes, Heparan sulfate, Molecular docking 

1. Introduction 

 The Picornaviridae comprises a heterogeneous group of medically and economically important 

viruses, exemplified by the human and animal pathogens Poliovirus (PV), Enterovirus 71 

(EV71), Foot-and-mouth disease virus (FMDV) and Theiler’s murine encephalomyelitis virus 

(TMEV) (Brito et al., 2015; Morales et al., 2016). The picornavirus genome encodes a unique 

large polyprotein with three functional domains which undergo autoproteolytic cleavage to yield 

all the viral structural and non-structural proteins necessary for a complete infectious cycle 

(Jiang et al., 2014). The picornavirus capsid is non-enveloped and composed of 60 copies of four 

capsid proteins VP1-4 (Stanway, 1990). Assembly begins after cleavage of the P1 precursor into 

the protein subunits VP0, VP1 and VP3, which immediately assemble into the protomer. Five 

protomers then combine to form the pentameric subunit of which twelve pentamers interact to 
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yield the provirion. Finally, cleavage of the VP0 precursor to VP2 and VP4 yields mature 

infectious virions. (Jiang et al., 2014; Tuthill et al., 2010).  

In the mature picornavirus capsid, VP1-3 interact to create the capsid shell and are surface 

exposed, while VP4 is arranged at the inner surface of the virion. VP1-3 are structurally 

analogous sharing a wedge-shaped core of eight β-strands. Strand N and C terminal ends are 

connected by loops that differ in composition and size (Mateu, 1995). Variation in the loop 

amino acid sequences is responsible for differences in capsid surface topology observed between 

picornavirus species and serotypes, and also influences receptor binding and antigenicity of the 

virion, thereby affecting host range, tissue tropism and persistence (Rossmann et al., 2000; 

Tuthill et al., 2010). The capsid is assembled in a manner that places five VP1 proteins in 

protruding mesas around the 5-fold axis, and VP2 and VP3 of different protomers in surface 

protruding heterohexamers on the 3-fold axis (Cathcart et al., 2014). In enterovirus capsids, a 

deep depression, known as the canyon runs between the mesa and heterohexamer separating 

surface exposed loops of VP1 from those of VP2 and VP3, while in picornaviruses such as 

FMDV the depression is reduced or completely absent. In cardiovirus capsids the 5-fold VP1 

mesas are star shaped, whose points disrupt the canyon resulting instead in a series of 

hydrophobic pits (reviewed by Tuthill et al., 2010). Although the precise mechanism of 

picornavirus capsid assembly is poorly understood, mutational analyses of a small number of 

picornaviruses including FMDV and the enteroviruses, have identified residues in VP1-3 protein 

interfaces that are important for capsid function and structure (Ellard et al., 2017; Mateo et al., 

2003; Rincón et al., 2015; Ross et al., 2017).  

The main purposes of the capsid are to protect the viral genome from environmental conditions 

and to bind to the host cell to deliver the genome into the cell’s interior. Once inside the host’s 

body, enteric viruses attach specifically to a homologous host cell. The initial catch-hold 

between virus and host cell is mediated through sites on the viral capsid binding to attachment 

factors on the target cell surface. Picornaviruses exploit a diverse range of host cell receptors for 

virus attachment and entry, including immunoglobulin superfamily receptors used by PV and 

cardiovirus encephalomyocarditis virus (EMCV) (Greve et al., 1991; Huber, 1994; Staunton et 

al., 1989), integrin cell adhesion molecules utilised by FMDV (Monaghan et al., 2005) and decay 

accelerating factors used by many enteroviruses (Shieh and Bergelson, 2002). Flexibility in 
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receptor and co-receptor usage has been observed for many species and is often linked to 

differences in tissue tropism and pathogenesis, for example minor group human rhinoviruses 

(HRVs) utilise low density lipoprotein receptors (LDLR) while major group HRVs utilise the 

intercellular adhesion molecule-1 (ICAM-1). Differences in TMEV virulence and tissue-tropism 

are linked to differences in co-receptor specificity. Neurovirulent strains use heparan sulfate 

(HS) and persistent strains use α2,3-linked N-acetylneuraminic acid (sialic acid) (reviewed by 

Tuthill et al., 2010).  

Investigations into capsid antigenicity have also shown that immunogenic epitopes on the virus 

surface can be the target of protective neutralising antibody (nAb) responses in the host 

(reviewed by Dotzauer and Kraemer, 2012). nAbs play an important role in virus clearance 

during primary viral infections and in preventing reinfection. Epitopes have been identified on all 

surface exposed capsid proteins (Meloen Briaire et al., 1983; Westerhuis et al., 2015), however 

VP1 is the dominant antigenic protein and contains major neutralising epitopes (Cameron et al., 

2001; Collen et al., 1991; Edlmayr et al., 2011; Luo et al., 1992; Mateu, 1995; Nitayaphan et al., 

1985; Oberste et al., 1999; Wu et al., 2001). Neutralisation sites have been mapped to the N and 

C termini as well as the EF and GH loops of equine Rhinitis Viruses (ERAV) VP1 (Horsington 

et al., 2012; Varrasso et al., 2001) and GH loops of FMDV VP1 (Collen et al., 1991). In TMEV, 

neutralising epitopes have been mapped to the VP1 CD I and II loops as well as the C termini of 

the protein (Ohara et al., 1988; Tan and Cardosa, 2007; Zurbriggen and Fujinami, 1989) in 

addition to VP2 EF puff A and B loops (Inoue et al., 1994). 

 

Aspects of picornavirus replication have been well documented while capsid assembly, 

particularly the early steps from P1 to protomer formation, remains the least understood part of 

the life cycle. Studies have revealed only the basic steps of capsid oligomerisation, and that 

pentamers can assemble into empty capsids in vitro without assistance from host cell factors and 

proteins (Li et al., 2012; Rombaut et al., 1991). Evidence suggests that multiple viral and cellular 

components, such as chaperone proteins of the heat shock family, are required for capsid 

assembly, particularly the early stages from P1 cleavage to pentamer formation (Geller et al., 

2007; Jiang et al., 2014; Macejak and Sarnow, 1992). Few studies have examined the localisation 

of capsid subunits during infection, and these have largely been restricted to PV or FMDV.  
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Theiler’s murine encephalomyelitis virus (TMEV) is a non-enveloped virus belonging to the 

Cardiovirus genus of the Picornaviridae. All TMEV strains produce enteric and neurological 

diseases in mice and are separated into two subgroups based on their neurovirulence (Lipton, 

1980). Theiler’s original (TO) subgroup includes the persistent DA and BeAn strains which 

cause an acute demyelinating illness, similar to multiple sclerosis in humans, while the GDVII 

and FA strains are highly neurovirulent and induce acute encephalitis (reviewed by Oleszak et 

al., 2004). A replication system in BHK-21 cells is available and, in this system, we used 

antibodies against the N-terminal 112 amino acids of VP1 in immunofluorescence experiments 

to show that the GDVII VP1 protein colocalises with Hsp90 in the cytoplasm and perinuclear 

region of infected cells (Ross et al., 2016). To extend these studies, antibodies targeting the 

TMEV capsid proteins (as opposed to VP1 alone) are required, thus rabbits were immunised 

with purified TMEV GDVII particles. The resultant antibodies were used to investigate the 

localisation of capsid precursors through the course of TMEV infection. Additionally, the 

neutralising ability of the antibodies and recognition of linear epitopes near the putative receptor 

binding site, led to the identification of the potential binding site of the GDVII co-receptor- HS. 

2. Materials and Methods 

2.1 Cells and virus  

BHK-21 cells (kindly provided by M. Ryan, University of St Andrews, UK) were cultured in 

buffered Dulbecco’s modified Eagle Medium (DMEM, Lonza Group Ltd, Basel, Switzerland) 

supplemented with 5% heat-inactivated foetal calf serum (FCS), 100 U penicillin ml−1, 10 mg 

streptomycin ml−1 and 25 μg fungizone ml−1 with 10% CO2 at 37˚C. The TMEV strain GDVII 

(GenBank accession no: M20562) was used to infect cells in all experiments. Virus stocks were 

prepared and titred as described previously (Murray et al., 2009). Cells were infected with virus 

at a multiplicity of infection (M.O.I) of approximately 3. 

2.2 Preparation and purification of TMEV GDVII particles 

Cells cultured in four 75cm2 flasks grown to 80% confluency were infected with TMEV in 

serum-free DMEM at a total volume of 2 ml. The virus was allowed to adsorb for 1 h at room 

temperature (RT) with gentle shaking. 5 ml of serum-free DMEM was added and the flasks were 

incubated for 24 hours at 37º C to allow for the development of cytopathic effect (CPE), after 
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which the flasks were frozen at –20º C. To facilitate cell lysis, TMEV infected cells were freeze-

thawed three times after which 10% Nonidet P40 (NP-40) (Roche, Germany) was added to a 

final concentration of 1% and allowed to incubate for 2h at RT, with shaking. Cells were 

centrifuged at 6 000 x g for 20 minutes using a JA20 rotor (Beckman centrifuge, USA) and 7% 

polyethylene glycol (PEG MW 6000) (Merck, RSA) and NaCl to a final concentration of 0.38 M 

were added to the supernatant to concentrate the virus particles, followed by overnight 

incubation at 4º C. The samples were centrifuged at 11 000 x g at 4º C, for 20 min in Beckman 

centrifuge tubes using a JA20 rotor. The pellet was resuspended in phosphate buffered saline 

(PBS) [137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4 (pH 7.4)] and centrifuged 

on a 30% sucrose cushion at 171 000 x g using a Beckman 70.1Ti rotor (Beckman centrifuge, 

USA) for 4 h at 4º C. The resultant pellet was resuspended in PBS. 

A sucrose gradient was prepared in SW41 tubes (Beckman, USA) with 10% and 40% sucrose, 

using a gradient master (BioComp, Canada). The pellet obtained from the sucrose cushion was 

placed at the top of the tube and centrifuged at 96 808 x g using a SW41 rotor (Beckman, USA) 

for 2 h at 4º C. The resultant virus band was carefully removed using a 7-gauge syringe needle, 

washed using PBS and centrifuged at 151 263 x g in a SW41 rotor (Beckman, USA) for 1 h at 4º 

C, and resuspended in 250 µl PBS. 10 µl of the purified virus sample was denatured using 2X 

loading buffer [100 mM Tris-Cl (pH 6.8), 4% (w/v) sodium dodecyl sulfate (SDS), 0.2% (w/v) 

bromophenol blue, 20% (w/v) glycerol, 200 mM DTT (diothreitol)] and resolved by 12% SDS-

PAGE, and stained with coomassie. Approximately 1 mg of the purified virus sample was used 

by D. Bellstedt (University of Stellenbosch, South Africa) for the immunisation of rabbits to 

generate anti-TMEV capsid antibodies (Bellstedt et al., 1987).  

2.3 Transmission Electron Microscopy (TEM) 

Purified virus was prepared for TEM according Lipton and Friedmann (1980) except that sodium 

phosphotungstate was replaced with a 3% solution of uranyl acetate. Grids were viewed using a 

Carl Zeiss Libra 120 PLUS transmission electron microscope and ITEM software was used to 

capture the images (Carl Zeiss, Germany). 

2.4 Preparation of infected cell lysate and Western blot 
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To produce infected cell lysates, 75 cm2 flasks containing BHK-21 cells were infected with 

TMEV in serum-free DMEM. Following a virus adsorption period of 1 h, at RT with shaking, 

virus inoculum was aspirated and the cells rinsed twice with PBS before 5 ml DMEM was 

added. The cells were incubated at 37°C, and harvested at various hours post infection (hpi). 

Control cells were mock-infected with serum-free DMEM. Cells were collected following 

treatment with trypsin and centrifugation at 1000 x g and were resuspended in PBS. For Western 

analysis experiments, total proteins were denatured in 2X SDS loading buffer and resolved by 

12% SDS-PAGE. Proteins were transferred onto nitrocellulose membrane (Bio-Rad, USA) 

before probing with the anti-TMEV capsid antibodies. Detection was performed using the BM 

Chemiluminescence Western Blotting Kit (Roche, Mannheim, Germany) according to the 

manufacturer’s instructions. Protein bands were visualised using the ChemiDoc Molecular 

Imager XRS+ (Bio-Rad, USA), and image analysis was performed using the Image LabTM 

software, version 5.1. 

2.5 Plasmids 

Plasmids containing the TMEV VP1 full length protein and VP1 truncations were constructed. 

The sequence of TMEV VP1 was obtained by PCR of pGDVIIFL2, a plasmid that carries the 

full-length cDNA of TMEV GDVII (Fu et al., 1990), using the KAPA Taq ReadyMix kit (KAPA 

Biosystems, South Africa). The forward primer NUVP1F and reverse primers NUVP1R, NU1-

112R, NU1-195R and NU1-221R were used to generate the plasmids pVP1 (Full length), 

pVP1∆113-276, pVP1∆196-276, pVP1∆222-276 (C-terminal truncations) respectively. Primers NU159-

276F and NU159-276R were used to generate pVP1∆1-158 (N-terminal truncation) (Table 1). 

PCR cycles included an initial denaturation step at 95º C for 1 min, 30 cycles of: denaturation at 

95º C for 1 min, annealing at 60º C for 1 min and elongation at 72º C for 1 min, followed by a 

final elongation step at 72º C for 7 min.  The PCR products were ligated into the plasmid vector 

pQE-80L (Qiagen, Mannheim, Germany) by restriction with BamHI and SalI (ThermoFischer 

Scientific, USA). To confirm the presence of the inserts and correct open reading frames, all 

plasmids were sequenced by Inqaba Biotechnical Industries (Pty) Ltd., Pretoria South Africa.  

2.6 Protein expression, and analysis 

E. coli JM109 cells transformed with pQE-80L, pVP1, pVP1∆113-276, pVP1∆196-276, pVP1∆222-276 

and pVP1∆1-158 were cultured in Luria broth (LB) supplemented with 100 µg/ml ampicillin 
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overnight at 37°C. Cultures were induced with 1 mM Isopropyl β-D-1-thiogalactopyranoside 

(IPTG) for 4 h and duplicate samples collected each hour. Centrifugation at 11,800 x g was used 

to pellet the cells which were resuspended to equivalent density in PBS. Proteins were denatured 

using 2X loading buffer and resolved by 12% SDS-PAGE before being transferred onto 

nitrocellulose membrane for Western blotting using Anti-His6(2) antibodies (Roche, Germany), 

recognising the 6X histidine tag in pQE-80L, at a dilution of 1:3000. Anti-TMEV capsid 

antibodies were used at a dilution of 1: 20 000.  

2.7 Indirect immunofluorescence and confocal microscopy 

BHK-21 cells grown on sterile 13 mm glass coverslips in six-well plates were washed twice with 

serum-free DMEM before 1:1 TMEV GDVII virus stock: serum-free DMEM (2 ml total 

volume) was added to each well. Following a virus adsorption period of 1 h, at RT with shaking, 

virus inoculum was aspirated and the cells rinsed twice with PBS before 5 ml DMEM was 

added. The cells were incubated at 37°C, and fixed at various hpi. Control cells were mock-

infected with serum-free DMEM. Cells were washed with PBS before fixation with 4% 

paraformaldehyde for 20 min at RT, then rinsed twice with PBS. For staining, cells were 

permeabilised in PB (10% sucrose, 0.1% Triton X-100 in PBS) for 20 min, blocked in PB 

containing 2% BSA (Block) for 40 min at RT and incubated with antibodies against TMEV 

GDVII 2C (1:1000) (Jauka et al., 2010), anti-TMEV VP1 antibodies (1: 20 000) (Ross et al., 

2016) or anti-TMEV capsid antibodies (1:20 000), diluted in block buffer for 1 h with shaking. 

Cells were washed twice in PBS containing 0.1% Tween-20 and incubated with species-specific 

Alexa Fluor 546 or 488-conjugated secondary antibodies (Invitrogen, USA) (1:500) for 30 min. 

Cells were washed three times, and 4’,6-diamino-2-phenylindole dihydrochloride (DAPI, Sigma, 

St Louis, USA) was added at a final concentration of 0.8 µg/ml in the second wash step to stain 

the nucleus. The slides were mounted using Dakofluorescence mounting medium (Dako Inc., 

CA, USA) and stored at RT. The helium/neon and argon lasers at wavelengths 405, 488 and 543 

nm were used to excite, DAPI, Alexa Fluor 488 and Alexa Fluor 546 respectively. Images were 

captured using the Zeiss LSM 510-Meta laser scanning confocal microscope and analysed using 

Zen software (2012 blue edition, Zeiss, Germany). To acquire a representative image for each 

experiment, over 50 cells were viewed at 63 x magnification. Immunofluorescence experiments 

were performed in triplicate.  
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2.8 Antibody neutralisation assay 

The abilities of anti-TMEV capsid and anti-TMEV VP1 (Ross et al., 2016) antibodies to 

neutralise virus infection in vitro were assessed by measuring the inhibition of viral plaque 

formation using a plaque reduction neutralisation assay. Antibodies were diluted to 1:50, 1:100, 

1:500 and 1:1000 in serum-free DMEM. TMEV stocks were diluted in serum-free DMEM to 10-

4. Equal volumes of virus and serum dilutions were added, giving a final virus dilution of 5x10-5 

and serum dilutions of 1:100, 1:200, 1:1000 and 1:2000 (in a total volume of 300 µl), and were 

left to co-incubate with gentle agitation for 1.5 hours at 37º C. Virus-serum mixtures were then 

added to confluent BHK-21 monolayers in 6 well plates, to adsorb for 30 min at RT with gentle 

agitation and then 2.5 hours at 37º C. The cells were washed with PBS, overlayed with 3ml of 

overlay solution (50% DMEM, 1.25% methocel, 60mM NaCl) and incubated at 37º C until 

visible plaques were observed. Cells were washed and fixed in 4% paraformaldehyde for 15 min 

at RT then stained with Coomassie Brilliant Blue. The number of plaques for each well was 

counted. Pre-immune serum (final dilution of 1:100) and mock-infected controls were used. All 

experiments were performed in triplicate.  

2.9 In silico virus structure assembly  

A homology model of the TMEV GDVII protomer was obtained from a previous study (Ross et 

al., 2016). The model did not contain water molecules or bound ligands. The protomer complex 

was solvated and minimised using GROMACS 5.1.2 (Abraham et al., 2015). The complex was 

subjected to 1700 steps of steepest descent energy minimisation. A complete viral capsid was 

then assembled by superimposing 60 copies of the minimised protomer on the biological 

assembly of a template virus (TMEV DA strain; PDB ID: 1TME) (Grant et al., 1992). It is 

thought that the host cell receptor of TMEV is situated in a hydrophobic pit that is located near 

the interface between two adjacent protomers around the five-fold axis. This receptor binding 

region is the focus of interest for the docking of the co-receptor HS and can be investigated by 

locally analysing any one of the 60 pits within the capsid. Therefore, to lower the computational 

cost of the docking studies, a second complex comprising of only two adjacent protomers was 

also assembled. This complex is termed the protomer interface complex.  

2.10 Epitope mapping  
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Two respective epitope regions were mapped to the assembled TMEV GDVII virus capsid. 

These regions were VP1 (1-112) and VP1 (222-276). To identify which epitope regions were 

located on the surface, the virus capsid was visualised in PyMol (Schrodinger, 2010). In addition 

to exploring the location of epitope regions, the suggested HS binding motif (Reddi and Lipton, 

2002) YKKMKV, located in VP1 (240-245), was also mapped to the capsid model.  

2.11 Molecular docking 

Sialic acid and HS compounds were retrieved from the ZINC database (Irwin and Shoichet, 

2005). The two compounds were individually docked to the protomer interface complex using 

AutoDock4.2 (Morris et al., 2010). AutoDock Tools (ADT) were used to prepare the protomer 

interface complex and the ligands. The partial charges of the ligands were assigned using the 

Gasteiger-Hückel algorithm. Sialic acid binds to the capsid in a pit located between VP1 loop II 

and VP2 Puff B (Tsunoda et al., 2010). Therefore, for sialic acid the grid box was centred on this 

pit and spanned an area of residues around a 15 Å radius. The binding site of HS is unknown. To 

identify the potential binding site of HS, four docking simulations were performed. For each 

simulation, a grid box spanning a 35 Å radius was centred on a different region across the 

protomer interface complex. All docking simulations were carried using the Lamarckian Genetic 

Algorithm (LGA) with the following parameters: population size of 300, 100 LGA runs, a 

maximum of 250,000 energy evaluations and a maximum of 27,000 generations. LigPlot+ 

(Laskowski and Swindells, 2011) was used to determine the residue interactions between the 

protomer interface complex and ligands that docked with the lowest binding energy.  

3. Results 

3.1 Sucrose gradient purification of TMEV GDVII infected cells yields pure intact virus particles  

To produce polyclonal antibodies against TMEV GDVII capsids, BHK-21 cells were infected 

with TMEV GDVII for 24 hours and the virus particles were purified using a 30% sucrose 

cushion and 10-40% sucrose gradient. Transmission electron micrographs (Fig. 1A panels a and 

b) showed the presence of numerous virus particles roughly 31 nm in diameter with icosahedral 

symmetry. Particles that appeared to be damaged or empty (yellow arrowheads) were also 

present in the sample, but were not abundant (Fig. 1A panel b). SDS-PAGE analysis of 
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denatured capsid samples resolved bands for three proteins at the expected sizes of 37kDa, 

34kDa and 27kDa for TMEV VP1, VP2 and VP3 respectively (Fig. 1B). 

3.2 Anti-TMEV capsid antibodies detect VP1 but not VP2, VP3 or VP4 by Western analysis  

To determine whether the anti-TMEV capsid antibodies could detect viral capsid proteins in 

infected cell lysates, BHK-21 cells were infected or mock infected with TMEV for a period of 8 

hours. Cells were collected at hourly intervals and total cell lysates were analysed by Western 

blot. A single protein band of approximately 37kDa corresponding to VP1 was detected from 5 

hpi in infected cells, and signal increased in intensity as time progressed to 8 hpi (Fig. 2A). No 

bands were detected in mock-infected cell lysate and pre-immune serum could not detect protein 

bands in infected or mock infected cell lysates indicating that the antibodies were recognising 

viral protein.   

3.3 Anti-TMEV capsid antibodies recognise linear epitopes in the C-terminal region of VP1 

To define the region of amino acid residues in VP1 recognised by anti-TMEV capsid antibodies 

during Western blot experiments, a deletion analysis was performed on the VP1 protein. The 

full-length VP1 coding sequence and C- or N-terminally truncated coding sequences were PCR 

amplified and cloned into pQE-80L (Fig. 2B). Once transformed, expression was induced for 4 

hours following the addition of IPTG. Whole cell lysates were used in Western blot experiments 

using Anti-His6(2) antibodies to confirm that the expression of each protein was successful (data 

not shown). Anti-TMEV capsid antibodies could detect full-length VP1 as expected (Fig. 2C). 

The anti-TMEV capsid antibodies were not able to recognise the VP1 C-terminal truncates 

VP1∆113-276, VP1∆196-276 or VP1∆222-276, but were able to detect the N-terminal truncate VP1∆1-

158, mapping the binding region to 54 amino acids 222-276 in the C-terminus of VP1. The anti-

TMEV capsid antibodies were not able to detect the empty pQE-80L vector, as expected (Fig. 

2C).  

3.4 TMEV capsid proteins localise to the cytoplasm of infected cells forming punctate structures 

towards the end of infection 

To examine the subcellular distribution of TMEV capsid precursors through the course of 

infection BHK-21 cells were infected or mock infected with TMEV, fixed with 4% 

paraformaldehyde at 4, 5, 6, 7 and 8 hpi, and probed with anti-TMEV capsid antibodies. No 
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capsid signal was detected in mock infected cells (Fig. 3 panel a) or in TMEV infected cells 

stained with secondary antibodies alone (Fig. 3 panel b). To confirm that cells were successfully 

infected with TMEV, cells were stained with anti-TMEV VP1 specific and anti-TMEV 2C 

antibodies (Fig. 3 panels c and d). Signal for VP1 was cytoplasmic with increased signal 

intensity in the perinuclear region as expected (Ross et al., 2016), while 2C was apparent in the 

perinuclear replication complex as previously reported (Jauka et al., 2010; Murray et al., 2009). 

Following optimisation of anti-TMEV capsid antibodies, a dilution of 1: 20 000 was found to 

accurately detect capsid signal without non-specific staining (data not shown). No signal was 

observed for TMEV capsid proteins in cells at 4 hpi (Fig. 3 panel e), however a bright signal was 

detected from 5 hpi, and was diffusely cytoplasmic, but dominant in the perinuclear region of the 

cell (Fig. 3 panel f). The distribution of TMEV capsid protein changed dramatically from 6 to 8 

hpi where the signal moved progressively into large punctate structures within the cell cytoplasm 

(Fig. 3 panels g-i). TMEV capsid proteins remained absent from the nucleus at all time-points 

post infection. The same distributions were observed in all infected cells at respective timepoints, 

in three independent experiments. 

3.5 Anti-TMEV capsid antibodies but not anti-TMEV VP1 antibodies neutralise TMEV infection 

To determine whether the anti-TMEV capsid and previously produced anti-TMEV VP1 

antibodies (Ross et al., 2016) were able to neutralise in vitro viral infection, increasing 

concentrations of sera were incubated with TMEV virus at a dilution of 5x10-5, before the 

residual viral infectivity was measured by plaque assay on BHK-21 monolayers. The results 

indicate that as concentrations of anti-TMEV capsid containing serum increase, TME viral 

plaque formation decreases dramatically. Sera produced against the N-terminal region of TMEV 

VP1 does not neutralise TME virus infection at any concentration (Fig. 4, A and B). Anti-capsid 

serum at a dilution of 1: 2000 inhibited plaque formation ~5-fold, and up to ~120-fold at a 

dilution of 1:100 (Fig. 4B).  

3.6 C-terminal residues 254-274 reside on a surface exposed loop  

The epitope regions detected by the anti-TMEV capsid and anti-TMEV VP1 antibodies were 

mapped to the TMEV GDVII capsid. It is clear that the anti-TMEV VP1 antibodies previously 

generated against a peptide spanning the region VP1 (1-112) recognise regions within the N-

terminal (1-112) amino acids of the protein. Epitopes recognised by polyclonal antibodies 
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generated against a mature virus particle however, may be situated anywhere on the capsid 

surface. The deletion analysis revealed that the anti-TMEV capsid antibodies bind linear epitopes 

located within the region VP1 (222-276). It is likely that the two sets of antibodies recognise 

areas in (1-112) and (222-276) that are exposed on the virus surface, therefore we explored the 

structural locations of VP1 (1-112) and VP1 (222-276). The structural mapping of the TMEV 

GDVII capsid is shown in Fig. 5. Within the VP1 (1-112) peptide, three regions are exposed on 

the surface (47-57), (79-87) and (95-112). The regions are adjacent to each other and form a 

larger area that extends towards the interface between the VP1, VP2 and VP3 subunits (Fig. 5B). 

The (95-112) region contains VP1 loop II (98-105). This loop is clearly indicated in the cartoon 

depiction (Fig. 5C) and neighbours the VP2 Puff B loop. With regard to VP1 (222-276), the 

residues 254-274 are located on the surface of the capsid. These residues form a loop in the C-

terminus of VP1 at the VP1-VP3 interface (Fig. 5A-C). 

3.7 The TMEV host cell co-receptor, heparan sulfate, is predicted to bind to a pit at the VP1-VP3 

interface below the VP1 C-terminal loop 

Two co-receptors, sialic acid and HS, were docked to a complex comprising of two adjacent 

protomers from the GDVII capsid model. The binding site of sialic acid has been previously 

identified as a pit located between VP1 loop II and VP2 Puff B (Zhou et al., 2000). In this study, 

a targeted docking of sialic acid was performed as a control for docking experiments. The pit 

between VP1 loop II and VP2 Puff B marked the centre of a grid box that spanned a 15 Å radius. 

The docking results were consistent with previous studies and indicated that sialic acid has a 

high binding affinity to this pit. From a total of 100 LGA runs (Supplementary Table S1), the 

best docked conformation had a binding energy of -5.88. The results of the LigPlot analysis (Fig. 

6A panel a) indicate the predicted residue interactions between the docked sialic acid compound 

and the viral capsid. As predicted sialic acid binds to residues of VP1 loop II through 

electrostatic interactions with R97, S98, G99, G100 and A104. This loop forms part of the 

surface exposed region recognised by the antibodies generated against the peptide VP1 (1-112).   

The binding site for HS is unknown, but VP1 (240-YKKMKV-245) is thought to be a possible 

HS binding motif (Reddi and Lipton, 2002). To explore this further the motif was mapped to the 

viral capsid. The motif is in fact buried deep within the viral capsid and is not surface exposed, 

as such it is unlikely to be the binding site of HS (Fig. 6B). To explore all possible binding sites 
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across the protomer, a series of four docking simulations were performed, such that in each 

simulation the grid box was centred on a different region of the protomer complex. In addition, a 

larger grid box spanning a 35 Å radius was defined for each simulation. Out of the four docking 

simulations, only one revealed high affinity binding for HS to the viral capsid. Specifically, 

significant docking results were only observed when the grid box was centred on the VP1 

residue L252, situated in a pit directly below the VP1 C-terminus loop (254-274) and neighbours 

the VP1 hydrophobic pocket at the VP1-VP3 interface, the suggested binding site of the host cell 

receptor.  HS docked directly into this pit with a lowest energy conformation of -8.58 

(Supplementary Table S2). The residue interactions between HS and the capsid subunits (Fig. 6A 

panel b) depict multiple electrostatic and covalent bonds with VP1 and VP3 residues. Notably, 

HS docked around a central VP1 residue F254 that is located in the C-terminus loop recognised 

by the anti-TMEV capsid antibodies. The molecule also interacts with the P257 residue in the C-

terminus loop and with VP1 P153, A154, D155 residues that form part of the hydrophobic pit in 

the adjacent protomer. HS also interacts with VP3 T174, S175, Y176, which are located within 

the pocket of the local protomer. Ligands bound to the capsid surface are depicted in Fig. 6C.  

4. Discussion 

The main aim of this study was to generate polyclonal antibodies against the TMEV GDVII 

capsid proteins and characterise their antigen recognition properties as well as neutralisation 

ability during TMEV infection. The antibodies detected the linearised 37 kDa TMEV VP1 

protein when purified virus and infected cell lysates were analysed by Western blotting. It was 

anticipated that antibodies targeting VP1 epitopes would be present in the serum, as VP1 is the 

most surface exposed and immunodominant of the capsid proteins (Edlmayr et al., 2011; Meloen 

Briaire et al., 1983; Rossmann et al., 1985). Linear epitopes have also been reported for TMEV 

VP2 and VP3 (Inoue et al., 1994; Kim et al., 1992). The inability to detect these linearised 

epitopes is therefore unexpected, but is possibly due to low concentrations of specific antibodies 

or the presence of conformational epitopes in the mature capsid. VP4 is the smallest capsid 

protein at 6 kDa and is arranged internally in the capsid particle (Jiang et al., 2014; Stanway, 

1990), thus the absence of antibodies to linear epitopes in VP4 is not surprising.  

The next experiments investigated the antibody recognition site on VP1. Linear epitopes have 

been identified within the VP1 proteins of many picornaviruses including duck hepatitis A virus 
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(DHAV) (Wu et al., 2015), enterovirus 71 (EV71) (Zhang et al., 2012) and FMDV (Yang et al., 

2011). In TMEV, epitopes have been identified around amino acid 101 in DA VP1 (Zurbriggen 

et al., 1989) and at positions 12-25, 145-160, 262-276 in BeAn VP1 (Inoue et al., 1994). We 

previously identified five major surface accessible epitopes in the N-terminal 1-112 amino acids 

of VP1 using an in-silico analysis, and produced responding antibodies against a peptide 

encoding this N-terminal region (Ross et al., 2016). We therefore tested whether the anti-TMEV 

capsid antibodies would detect epitopes in this highly antigenic region by performing a deletion 

analysis of the VP1 protein. The anti-TMEV capsid antibodies could not recognise linear 

epitopes within the N-terminal half of VP1, but instead recognised a truncated protein consisting 

of C-terminal amino acids 159-276. The in-silico analysis presented by Ross et al (2016) also 

identified epitopes in the C-terminal amino acids 251-276 of VP1, which are likely those that 

elicited the production of the anti-TMEV capsid antibodies.  

To investigate the localisation of capsid precursors through a time-course of infection, TMEV 

infected BHK-21 cells were fixed using 4% paraformaldehyde from 4-8 hpi and probed with 

anti-TMEV capsid antibodies. A clear signal was detected from 5 hpi in infected cells but not in 

mock infected cells, indicating that the antibodies were specific for capsid proteins. At 5 hpi the 

anti-TMEV capsid signal was diffusely cytoplasmic, with increased signal in the perinuclear 

region, but was absent from the nucleus. Similar cytoplasmic localisation patterns have been 

observed for the VP1 proteins of FMDV (Knox et al., 2005), PV (Wychowski et al., 1985) and 

TMEV GDVII (Ross et al., 2016) and DA (Nedellec et al., 1998), as well as the VP0, VP1 and 

VP3 proteins of EV71 (Liu et al., 2013).  

Interestingly, from 6 hpi, the capsid signal changed from a diffuse cytoplasmic pattern into 

distinct punctate structures which were most prominent at 8 hpi and resembled those observed by 

Nedellec and colleagues (1998) for TMEV GDVII at 5 hpi. These punctate structures are 

possibly intracytoplasmic crystalline arrays formed by the accumulation of viral capsids prior to 

host cell death, first observed by Friedmann and Lipton, (1980). Whether these structures are 

sites of capsid assembly and membrane associated is yet to be determined although our 

preliminary data suggests that they do not colocalise with membranes of the distal secretory 

pathway (not shown).  
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Previous studies investigating localisation of viral capsids have involved the use of antibodies 

targeting the individual capsid proteins as opposed to antibodies generated against whole capsid 

(Liu et al., 2013, Knox et al., 2005, Nedellec et al., 1998 and Ross et al., 2016). Whether the anti-

TMEV capsid antibodies in this study recognise individual capsid proteins, a subset thereof, or 

epitopes on assembled capsid precursors isnot known. Although evidence suggests that the 

individual capsid proteins are never separate in the cell but rather assemble immediately into the 

protomer following cleavage of P1 (Bruneau et al., 1983), the anti-TMEV antibodies were able 

to detect VP1 and VP3 but not VP2 when expressed as GFP tagged proteins by 

immunofluorescence (data not shown). These results suggest that the antibodies possibly 

recognise conformational epitopes on these proteins that are present in the mature capsid. 

Additionally, it is unlikely that the anti-capsid antibodies recognised the immature VP0 

precursor, as it is proteolytically cleaved to the VP2 and VP4 proteins in the mature capsid.  

Protective nAbs targeting the surface exposed capsid proteins have been identified for many 

picornavirus species including the VP1 and VP2 proteins of TMEV (Cameron et al., 2001; Inoue 

et al., 1994; Kim et al., 1992). Since the anti-TMEV capsid antibodies in this study and anti-

TMEV VP1 antibodies (Ross et al., 2016) recognised linear epitopes within in the C-terminal 

and N-terminal regions of VP1 respectively, the next experiments examined the in vitro 

neutralising abilities of the two sets of antibodies. Plaque reduction neutralisation assays 

demonstrated that the anti-TMEV VP1 antibodies could not neutralise viral infection, whereas 

anti-TMEV capsid antibodies were able to reduce the number of plaques by ~120-fold when 

diluted 1:100. Investigations into the antigenicity of TMEV VP1 have identified nAbs targeting 

only the C-terminal region of the protein and not the N-terminus. For example, Inoue et al., 

(1994) reported three predominant linear epitopes in BeAn VP1, namely VP1(12-25), VP1(146-

160) and VP1(262-276) with only VP1(262-276) eliciting nAbs. Furthermore, it is possible that 

the anti-TMEV capsid antibodies detect the same VP1(262-276) epitope in GDVII, as amino 

acid sequences between the two strains are highly conserved for this region (data not shown). 

Epitopes must be surface exposed to be detected on the mature capsid particle. Many of the VP1 

N-terminal residues described in Ross et al., (2016) were predicted to be surface exposed in the 

protomer, but their location in the mature virus particle was not investigated. Since we observed 

that C-terminal but not N-terminal VP1 epitopes elicited neutralising antibodies, amino acids 1-
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112 and 222-276 were mapped to the capsid surface to better understand their locations. Amino 

acid residues 47-57, 79-87 and 95-112 were found to be situated near the VP1-VP3 interface, 

with residues 98-105 forming VP1 loop II next to VP2 Puff B. Residues 254-274 were found to 

form a large flexible loop at the VP1-VP3 interface. The position of residues 254-274 and their 

detection by anti-TMEV capsid antibodies is consistent with multiple studies that demonstrate 

that the highly variable loops at the virion surface are the most exposed residues of the capsid, 

and typically contain neutralising epitopes (Luo et al., 1992; Mateu, 1995; Rossmann et al., 

1985). Additionally, this loop protrudes over the lateral extension of a pit believed to be the 

binding site for the host cell receptor in DA and BeAn strains (Grant et al., 1992; Luo et al., 

1992).  

Host cell receptors have been identified for a number of picornaviruses (reviewed by Tuthill et 

al., 2010). Several investigations have failed to identify the TMEV host cell receptor but suggest 

that both persistent and virulent strains of the virus bind to an unknown 37 kDa glycoprotein 

(Kilpatrick and Lipton, 1991). Co-receptors are thought to assist with host cell receptor binding 

and different molecules have been identified as co-receptors for the different TMEV subgroups. 

Persistent strains use the N-linked glycoprotein sialic acid as a receptor moiety (Fotiadis et al., 

1991; Shah and Lipton, 2002) while highly-neurovirulent strains use HS, a proteoglycan (Reddi 

and Lipton, 2002). HS typically recognises and binds to heparin-binding domains (HBD) which 

consist of basic amino acids separated by hydrophobic residues (Cardin and Weintraub, 1989). A 

potential HBD in the VP1 C-terminus (YKKMKV) identified by Reddi and Lipton (2002) was 

mapped to the full capsid and is unlikely to be the HS binding site as it is found at positions 240-

245 which are buried deep within the viral capsid. In silico docking experiments were therefore 

used to determine the residues that HS likely binds and these results were used to map HS bound 

to the full capsid structure. The results showed that HS interacts with residues in the hydrophobic 

pit situated at the VP1-VP3 interface which is thought to be the host cell receptor binding site 

(Luo et al., 1992). Furthermore, HS also interacts with residues in a pocket below and residues of 

the C-terminal loop recognised by the neutralising anti-TMEV capsid antibodies produced in this 

study. Taken together the results suggest that the binding of anti-TMEV capsid neutralising 

antibodies to the C-terminal loop hinders HS binding and therefore receptor binding, preventing 

viral attachment and entry.  

ACCEPTED M
ANUSCRIP

T



In conclusion, this study generated neutralising anti-TMEV capsid antibodies that not only 

detected viral protein in infected cells but also revealed a potential binding site for the TMEV 

GDVII co-receptor, HS. These antibodies provide a valuable tool with which to further 

investigate the host cell interactions that govern the capsid assembly process.  
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Fig. 1. TMEV GDVII virus particles purified from infected BHK-21 cells by sucrose 

cushion and sucrose gradient purification. (A) TEM of GDVII virus particles following 

sucrose cushion (top panel) and sucrose gradient (bottom panel) purification. Yellow arrows 

indicate intact empty capsids. (B) Presence of capsid proteins confirmed by 12% SDS-PAGE 

analysis, following sucrose gradient purification. Mw (Molecular weight marker in kDa).  

Fig. 2. Detection of TMEV GDVII VP1 in infected BHK-21 and bacterial lysates and 

mapping of linear antigenic regions in VP1. (A) Western analysis of TMEV infected BHK-21 

lysates at various times post-infection, using anti-TMEV capsid antibodies. MW (molecular 

weight marker in kDa). (B) The strategy used to generate truncated VP1 his-fusion proteins. The 

red boxes represent the his-coding sequence. The blue boxes represent the truncated regions of 

VP1. The numbers above the boxes represent the nucleotide locations. Numbers following ∆ 

denote the deleted amino acids. Dashed lines represent the region recognised by anti-capsid 

antibodies. (C) Western Blot of bacterially expressed lysates. Cells were transformed with 

plasmid constructs and induced for 4 h using IPTG. Whole cell lysates were analysed by Western 

blot using anti-TMEV capsid antibodies to determine the regions of VP1 detected by the 

antibodies.  MW (molecular weight marker in kDa) 

Fig. 3. Subcellular distribution of TMEV capsid proteins in infected BHK-21 cells. Cells 

were mock infected (panel a), or infected with TMEV (panels b-i), fixed with 4% 

paraformaldehyde at 4-8 hpi and stained with anti-TMEV VP1 (5 hpi) (panel c), anti-TMEV 2C 

(4hpi) (panel d) or anti-TMEV capsid antibodies (4-8 hpi) (panels e-i). Primary antibodies were 

detected using species specific Alexa Fluor 488-conjugated or 546-conjugated secondary 

antibodies. Cells in panel b were probed with secondary 488-conjugated antibodies only. Scale 

bars = 20µm.   

Fig. 4. In vitro neutralising abilities of polyclonal anti-TMEV capsid and anti-TMEV VP1 

antibodies. (A) A representative result of three independent experiments for each treatment. (B) 

Quantitative comparison of the neutralising activities of anti-TMEV capsid and anti-TMEV VP1 

antibodies at increasing concentrations of sera. 100% confluent BHK-21 cells were infected with 

TMEV pre-incubated with increasing concentrations of anti-TMEV capsid and anti-TMEV VP1 

sera. After removal of virus-serum inoculum, neutralising ability was analysed by plaque 

reduction assay. Neutralising ability is expressed as the decrease in plaque number with 
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increasing serum concentration. Pre-immune sera were used as controls for each treatment, at a 

dilution of 1:100. All experiments were repeated in triplicate. Error bars show standard deviation 

of the mean.  

Fig. 5. Structural mapping of the TMEV GDVII capsid. (A) Homology model of a mature 

TMEV GDVII capsid. Subunits are coloured as: Green-VP1; Pink-VP2; Orange-VP3. Surface 

exposed residues of VP1 N-terminal (1-112) containing linear epitopes detected by the anti-

TMEV VP1 antibodies (Ross et al., 2016): Blue-VP1 residues 47-57, 79-87 and 95-112. Surface 

exposed residues of VP1 C-terminal (222-276) containing linear epitopes detected by the anti-

TMEV capsid antibodies: Black-VP1 residues 254-274. (B) Local region showing surface of the 

virus. (C) Cartoon depiction of the local capsid region that contains the predicted surface 

exposed linear epitopes.  

Fig. 6. Residue interactions of TMEV GDVII capsid with sialic acid and heparan sulfate. 

(A) Residue interactions between the capsid proteins VP1 and VP2 with sialic acid (left panel), 

and the capsid proteins VP1 and VP3 with heparan sulfate (right panel). Residues from an 

adjacent protomer are indicated with italic blue labels. The figures were generated in LigPlot, 

subsequent to AutoDock docking simulations. (B) Cross-section through the capsid surface. The 

motif VP1 240-YKKMKV-245 (predicted by Reddi and Lipton, 2002) is mapped in purple 

(circled in black) and lies deep beneath the surface of the capsid. (C) Local region showing 

docked co-receptors on the surface of the virus. Docked co-receptors are coloured as: Yellow-

sialic acid; Red-heparan sulfate. The hydrophobic pocket is indicated by a white circle, VP1 C-

terminal residues 222-276 are coloured in Black, VP1 residues 47-57, 79-87 and 95-112 are 

coloured in Blue.  
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Table 1.  Primers used to generate plasmids expressing VP1 truncates 

Primer Primer sequence 

NUVP1F 5’ AAA GGA TCC GGA ATT GAC AAT GCT G 3’ 

NUVP1R 5’ AAA GTC GAC TCA CTC AAG CTC AAG AAT G 3’ 

NU1-112R 5’ AAA GTC GAC TCA CTG TTT GGT CAT GAT GG 3’ 

NU1-195R 5’ AAA GTC GAC TCA CAG AGG GGA ATT GTA AGG 3’ 

NU1-221R 5’ AAA GTC GAC TCA ATC CGA CGT AGG AGC AAC 3’ 
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NU159-276F 5’ AAA GGA TCC GTC ACT GAC CAG CTG ATC 3’ 

NU159-276R 5’ AAA GTC GAC TCA CTC AAG CTC AAG AAT G 3’ 
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