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Abstract 

 

Dyslexia is a neurodevelopmental disorder that affects between 5% and 12% of 

school-aged children.  Individuals with dyslexia have difficulties in learning to read 

despite normal IQ levels and adequate socio-economical and educational 

opportunities. Dyslexia has a strong genetic component, but only a few candidate 

genes have been characterized to date. The KIAA0319 gene is a strong dyslexia 

candidate found to be associated with dyslexia in independent studies. The 

KIAA0319 genetic variants associated with dyslexia reside in a regulatory region. 

Studies in rat suggested that this gene is required for neuronal migration during 

early cortex formation. The KIAA0319-like (KIAA0319L) is a KIAA0319 homolog 

in structure and has recently been shown to play a role in dyslexia. I used zebrafish 

as a model organism both to study the effects of non-coding variants and to 

characterise kiaa0319 gene function. I used Gateway Tol2 technology to study the 

role of regulatory sequences. While these experiments led to inconclusive results, 

they highlightened some of the challenges but also the feasibility of using zebrafish 

as model organism to study genetic associations. In parallel, I studied the kiaa0319 

function with knockout and knockdown experiments. Additionally, I conducted a 

detailed gene expression analysis with different in situ hybridisation protocols 

showing kiaa0319 ubiquitous expression in the whole embryo before 12 hours post 

fertilisation, with later specification to the eyes, brain, otic vesicle and notochord. 

Additionally, I have tested for the expression of kiaa0319l and showed similar 

expression pattern to the kiaa0319, but with significantly lower expression of 

kiaa0319l in zebrafish notochord. My data show, for the first time, that kiaa0319 

has stage-specific expression in the brain and notochord during zebrafish early 

development, suggesting kiaa0319 specific role in the development of these 

structures.  These results are in line with recent mouse studies. With this project I 

support the idea of kiaa0319 role being extended beyond the brain function and 

propose a role for kiaa03019 in the visual system and in the notochord.    
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1 Introduction 

 

1.1 Dyslexia 

Dyslexia, or reading disability (RD), has had various definitions through time 

[Hulme and Snowling, 2009]. The current accepted version defines RD as a 

neurobiological disability in which an individual’s ability to accurately and/or 

fluently recognise words, spell and decode is significantly affected [Pennington and 

Bishop, 2009]. For meeting a dyslexia diagnosis individuals need to have 

difficulties in learning to read despite adequate educational opportunities, no brain 

damage, no other obvious neurological impairments or sensory deficits and no other 

syndromes [Pennington and Bishop, 2009].  

Dyslexia affects between 5 and 12 percent of school-aged children [Peterson and 

Pennington, 2015] and is the most commonly studied learning disability [Shaywitz, 

2003]. Dyslexia is highly correlated with phonological deficits in school-age 

children [Fletcher et al., 1994] as well as in adolescents [Shaywitz et al., 1999]. 

Although it is defined as a developmental disorder, functional difficulties persist 

throughout adulthood [Ramus et al., 2003; Shaywitz et al., 2003; Frauenheim, 

1978]. Dyslexia often coexists with language impairment [Moats, 1994; 

Lindamood, 1994], deficits in mathematical abilities [Fletcher and Loveland, 

1986], and/or attention disorder (Shankweiler, et al., 1995; B.A. Shaywitz, Fletcher, 

& S.E. Shaywitz, 1994).  
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1.1.1 Dyslexia theories 

 

There are three most supported theories as to why and how to explain the 

pathophysiology of dyslexia:  

 

1) The phonological theory:   

Dyslexia is a consequence of inaccurate processing of the information in the brain 

due to deficits in phoneme awareness. An extensive line of research was reviewed 

by Schulte-Körne and Bruder (2010), highlighting the results in support of this 

theory [Schulte-Körne and Bruder, 2010].  

 

2) The cerebellar theory:  

The malfunction of the cerebellum leads to fine motor control and balance problems 

[Nicolson and Fawcett, 1990], inadequate information processing speed [Nicolson 

and Fawcett, 1994] and visual and auditory deficits [J and C, 2002; Stein, 2001b; 

Boets et al., 2008]. Cerebellum controls the majority of functions, which are 

dysfunctional in individuals with dyslexia (reviewed in Stoodley and Stein 2011).  

 

3) The Magnocellular theory:  

The magnocellular theory of dyslexia focuses on the changes in visual and auditory 

processing. The magnocells are large cells located in the retina and throughout the 

ventral lateral geniculate nucleus (LGN) and possibly other structures involved in 

visual processing [Livingstone et al., 1991]. The psychophysical and post-mortem 

data were first to suggest that dyslexia is a consequence of the abnormal function 

and appearance of magnocells [Livingstone et al., 1991; Lovegrove et al., 1980]. 

The magnocellular layer of dyslexic post-mortem brain seems to be disorganised 

and the cells are smaller in size, potentially influencing the processivity of the visual 



Introduction 

  

  19 

information [Livingstone et al., 1991]. Taking up the idea, more studies have 

focused on the visual processing deficits, repetitively proposing impairment of the 

visual and auditory systems to be the underlying reason for dyslexia phenotype 

[Bosse et al., 2007; Bosse and Valdois, 2003; Stein, 2001a]. Ray et al (2005) 

showed that reading abilities in impaired population increased significantly when 

the visual input was stimulated with the addition of a yellow filter [Ray et al., 2005]. 

Despite the amount of research attributing to magnocellular/sensory theory of 

dyslexia origin, there are still challenges to be addressed before a conclusion is 

made (discussed in Goswami 2015). 

 

 

 

1.1.2 Laterality and dyslexia 

The human brain exhibits structural and functional asymmetries. Structural brain 

asymmetries can be detected already in utero and continue to change as the child 

grows older  [Dubois et al., 2009; Kasprian et al., 2011; Habas et al., 2012; 

Kivilevitch et al., 2010; Zhang et al., 2011]. Functional asymmetries have been 

reported as early as in the 19th century, when Broca and Wernicke observed 

impaired language abilities as a consequence of brain trauma [Broca, 1861; 

Wernicke, 1874]. Asymmetries in brain regions underlying language are 

phylogenetically conserved and strongly heritable [Thompson et al., 2001; Toga 

and Thompson, 2003]. The lateralisation of language abilities can be observed 

already in infants and followed up throughout childhood. As the recurring theme in 

the dyslexia research is a reduced language lateralization [Illingworth and Bishop, 

2009] and cerebral lateralization [Sun et al., 2010; de Guibert et al., 2011; Badcock 

et al., 2012], there has been a lot of research dedicated to understanding the 

correlation between these traits. 
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The first mention of dyslexia dates back to 1891, when Dejerine (1891) noticed the 

importance of the left posterior brain region in reading [Dejerine, 1891]. Following 

Dejerine, many scientists have worked on unravelling the morphological changes 

in the brain and their link to dyslexia [Damasio and Damasio, 1983; Friedman et 

al., 1993; Geschwind, 1965]. With the increase of novel techniques, investigations 

of the post-mortem brain [Galaburda et al., 1985] and its morphometry [Brown et 

al., 2001; Eliez et al., 2000; Filipek, 1996] and magnetic resonance imaging (MRI) 

[Eliez et al., 2000], differences in specific regions between dyslexic and non-

impaired readers have been confirmed. Functional MRI (fMRI) studies have mainly 

focused on three brain areas (Figure 1.1) whose activity levels are altered in readers 

with dyslexia [Kronbichler et al., 2006; Brambati et al., 2006; Shaywitz et al., 

2002]. The parietotemporal region (Figure 1.1 red), the inferior frontal gyrus (IFG; 

Broca’s area) (Figure 1.1 blue) and the occipitotemporal region (Figure 1.1 green) 

are all found in the left brain hemisphere and are responsible for rapid word 

recognition [Cohen et al., 2000; Cohen and Dehaene, 2004; Dehaene et al., 2005; 

Vinckier et al., 2007; Price and Devlin, 2011]. These areas show under- or over-

activation while performing reading tasks in dyslexic readers compared to non-

impaired participants [Shaywitz et al., 2002; Richlan et al., 2011; Price and 

Mechelli, 2005; Shaywitz and Shaywitz, 2005; Richlan, 2012]. Furthermore, 

functional brain imaging in adult dyslexic readers has showed the left posterior 

brain region fails to function properly while reading [Simos et al., 2000; Salmelin 

et al., 1996; Rumsey et al., 1997, 1992; Horwitz et al., 1998; Helenius et al., 1991; 

Brunswick et al., 1999; Shaywitz, 1998; Paulesu et al., 2001].  In other words, non-

impaired reader’s language lateralization is dominant on the left hemisphere 

[Knecht, 2000], whilst in the dyslexic population, the language centre seems to be 

more bilateral [Finn et al., 2014]. However, the research is difficult to interpret due 

to the heterogeneity of data collection and analyses. A review of more than 50 

imaging studies indicates that in a dyslexic brain, there is a specific lack of 

activation of  the left occipito-temporal cortex (Figure 1.1 green), which is involved 

in reading and reading-like behaviours [Paulesu et al., 2014].  
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Figure 1.1 Left hemisphere brain activation pattern in non-impaired readers compared to 

dyslexic readers  

Nonimpaired readers show activation in Broca’s area (blue), parieto- temporal region (red) and the 

occipito-temporal region (green). The brain activation of  parieto- temporal region (red) and the 

occipito-temporal region (green) in dyslexia is under-activated during performance of phonological 

tasks whilst Broca’s area (blue) overcompensates for the loss of function [Shaywitz and Shaywitz, 

2004]. Image adapted from Shaywitz, 2003. 

 

 

1.1.2.1 Handedness and brain laterality 

Handedness is considered as the most obvious of human lateralised behaviours, 

which can be observed as early as at 10 weeks of gestation [Hepper et al., 1998]. 

The right-left hand bias is seen across all cultures with right hand being dominant 

in more than 75% of tested subjects [McManus, 1991; Raymond et al., 1996; 

McKeever, 2000]. Left handedness has historically been connected to a variety of 

disorders, predisposing that left handers deviate from  the “normal” right handed 

population (reviewed in  Hepper 2013). However, new evidence indicate that left 

handers and severe right handers represent the two ends of the normal distribution 

of handedness across population [Gutwinski et al., 2011].  
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Handedness is weakly correlated to language dominance lateralisation. The brain 

of right handed individuals is exhibiting language dominance on the left in 96% of 

cases, whereas in the left handed population, the language centre lies on the left 

hemisphere only in 73% of individuals [Knecht, 2000]. Asymmetries in the 

language-related centres and motor cortex are also correlated with handedness 

[Amunts et al., 1996; Dassonville et al., 1997; Hervé et al., 2006]. Hemispheric 

structural differences are thought to play a role in functional variation (Reviewed 

in Hepper 2013). It is believed that the behavioural lateralisation (the preferred 

movement of the right hand) led to functional lateralisation, thus development of 

language [Morillon et al., 2010; Phan and Vicario, 2010]. Indeed, the left-handed 

subjects tend to have more diverse language lateralisation than the right-handers, 

which in part supports the afore-mentioned theory [Sommer et al., 2002].  

 

 

1.1.2.2 Handedness and dyslexia 

 

A study of more than 25000 families with twins revealed that handedness is 

genetically controlled in only about a quarter of a variance (~25%) [Medland et al., 

2009]. Handedness is thought to be a polygenic trait, controlled by a large number 

of genetic factors [McManus et al., 2013]. However, there are only a few suggested 

handedness candidate genes to date. Francks et al (2007) have conducted a meta-

analysis of 20 genome-wide linkage studies and shown that handedness is 

significantly linked to LRRTM1 in a schizophrenic population [Francks et al., 

2007]. The study was replicated in an independent German cohort, supporting the 

linkage between LRRTM1 and schizophrenia [Ludwig et al., 2009].  LRRTM1 

(Leucine-rich repeat transmembrane neuronal 1) is expressed in thalamus and 

cerebral cortex of the forebrain and is likely to be involved in human brain 

asymmetry [Francks et al., 2007; Ludwig et al., 2009].  
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Furthermore, Scerri et al (2011) found two intronic associations through genome-

wide association study (GWAS) between relative hand skill and the PCSK6 gene 

in dyslexic population [Scerri et al., 2011a]. Scerri et al (2011) performed a meta-

analysis of three samples selected for dyslexia, using a PegQ measure derived from 

a pegboard test. The pegboard test measures relative hand skill (right vs left) and 

returns a normal distribution of degree of handedness rather than a handedness type 

[Scerri et al., 2011a]. The carriers of minor alleles of either of the highly associated 

SNPs (rs9806256 or rs11855415) are significantly more skilled with their right 

hand compared to their left hand [Scerri et al., 2011a]. The association with 

rs11855415 was replicated in two independent  cohorts of individuals with dyslexia, 

while the minor allele of the same SNP indicated lower right-handed bias in the 

general population [Scerri et al., 2011a]. 

 

PCSK6 (proprotein convertase subtilisin/kexin type 6) or PACE4 promotes NODAL 

maturation [Constam and Robertson, 1999]. NODAL is the earliest conserved gene 

involved in setting up asymmetries in the vertebrates [Levin, 2005].  NODAL and 

NODAL-related genes are members of transforming growth factor beta (TGF-β) 

superfamily. The genes in NODAL pathway are well studied for their functions 

during embryo development [Morokuma et al., 2002]. NODAL members can 

potentially inhibit the Bone morphogenetic proteins (BMPs) and Wingless-related 

integration site (Wnt) ligands [Onuma et al., 2005], thus affecting the body axis 

patterning. In mouse, human and chick there is only a single Nodal gene, while in 

frogs (encoded by six xNr genes)  and zebrafish (cyclops, squint and southpaw) 

there are several [Schier, 2003]. The NODAL ligands act as morphogens, activating 

responses in a dose-dependent manner [Ashe and Briscoe, 2006]. When it comes to 

neural development, NODAL plays a dual role in generating patterning of neural 

tissue, leading to maintenance and patterning of neural tissue [Shen, 2007]. The 

evolutionary conservation and the versatile functioning of NODAL and NODAL-

related genes in LR patterning and neural development suggest NODAL being an 

important factor in the vertebrate development.  
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Additionally, members of Nodal family in zebrafish regulate the asymmetry of the 

brain development. The leftwards expression activates the asymmetry of the pineal 

gland complex, thus affecting the development of firstly left and then right 

habenulae [Liang et al., 2000; Concha et al., 2000, 2003, Gamse et al., 2002, 2003]. 

The pineal complex consists of a centrally positioned pineal organ (zebrafish 

epiphysis) and the left parapineal anlage. Next to them there are dorsal habenluae, 

which vary in size and gene expression. In the absence of Nodal leftward activity, 

the epithalamus develops asymmetries and the fish lateralised behaviour, 

“handedness”, becomes randomised [Concha et al., 2000]. 

 

The associations of handedness with PCSK6 (but not LRRTM1) have further been 

confirmed in two independent studies, making PCSK6 a more reliable handedness 

candidate [Arning et al., 2013; Brandler et al., 2013a]. Arning et al (2013) used the 

general population Edinburgh handedness inventory as a sample to test for the 

associations of handedness with LRRTM1 and PCSK6 [Arning et al., 2013]. Rather 

than testing for functional handedness distribution, they have analysed the degree 

of handedness using laterality quotient calculated based on the self-reported 

handedness questioner. The resulting significantly associated variant rs10523972 is 

an intronic 33bp variable-number tandem repeat (VNTR) with a long (9) or short 

(6) repetition being the most frequently observed [Arning et al., 2013]. 

Furthermore, Brandler et al (2013) replicated the handedness phenotype from Scerri 

et al (2011) study using the general population, however, they were driven by 

different associations, independent from PCSK6. Additionally, they have coupled 

the GWAS data with the gene-set enrichment analysis (GSEA) and the mouse 

phenotype data and showed the identified genes in dyslexic population are all 

involved in body left-right asymmetry [Brandler et al., 2013b]. They hypothesise 

the same mechanisms involved in establishing body laterality might be involved in 

determining behavioural laterality (handedness) and cerebral development 

[Brandler et al., 2013b].  
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Figure 1.2 PCSK6 intronic promoter sequence with rs11855415 variant  

A) Human Chromosome 15. Blue box represents PCSK6. B) Full PCSK6 gene with 21 exons 

spanning 185,911kb in antisense direction (black arrow). Blue box represents intronic promoter 

region C) Promoter sequence spanning 1806bp (black thick line in blue box) across PCSK6 intron 

13. Red line represents rs11855415 SNP associated with relative hand skill in dyslexic population 

[Brandler et al., 2013a]. The blue and red peaks represent DNase I hypersensitivity clusters. 

 

 

Recently, Shore et al. (2016) performed a functional study showing one of the top 

picks for PCSK6 association with handedness, rs11855415 (Figure 1.2), has an 

effect on the nuclear factor binding site [Shore et al., 2016]. They used the 

Electrophoretic Mobility Shift Assays (EMSA) in multiple cell lines, confirming 

the minor allele (A) of  rs11855415 variant promotes the binding of transcriptional 

factors, whereas the major allele (T) does not [Shore et al., 2016]. The association 

is located near the recently characterised intronic promoter which regulates the 

transcription of long non-coding RNA (lncRNA) and a shorter PCSK6 isoform 

[Shore et al., 2016].  
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The association with handedness, the novel function and a proximity of the 

rs11855415 SNP, make the PCSK6 regulatory region an attractive candidate to 

study, however, a model is needed that would allow for more complex study of the 

regulatory function in a time and tissue specific manner. The known function of 

PCSK6 makes it an interesting candidate for handedness, as same biology of 

structural asymmetries is implicated in behavioural asymmetries. 

 

Despite the selection of associations described above, there have been several 

studies, finding no associations between handedness and dyslexia [Bishop, 2013]. 

The GWAS are being discussed between scientists as a low power approach due to  

the impaired reproducibility of the results [McCarthy et al., 2008; Bishop, 2013]. A 

precaution is advised when analysing the outcomes of such studies. Here (Table 

1.1) are some of the major reasons causing controversial results of GWA studies: 

 

Table 1.1 Three major criterions contributing to the heterogeneity of GWAS 

outcomes 

Criterion Description 

Sample size 

Recommended sample size is 1000-1.000.000, however, each study is using a 

vastly different number of participants which attributes to inconsistent 

outcomes. Additionally, gathering high power sample size for complex traits 

can be time- and money-consuming, leading  to further complications when 

designing the study [Newbury et al., 2014; Brandler and Paracchini, 2013; 

McCarthy et al., 2008] 

Approach 

Population-based (all the phenotypes represented in the population) or binary 

(case-control) qualitative GWA studies, quantitative GWA studies… Various 

approaches yield different outcomes [Newbury et al., 2014] 

Phenotype 

definition 

Defining the critical cut-off point of dyslexia phenotype. Phenotype has been 

defined differently in different studies, which affects the population selections 

and consequently, the outcomes of the GWAS [Newbury et al., 2014] 
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1.2 Dyslexia Genetics 

Dyslexia is highly heritable (up to 70%) and results from the interactions between 

complex genetic and environmental risk factors [Fisher et al., 2002; Francks et al., 

2002; DeFries et al., 1987]. Dyslexia candidate genes have been mapped on nine 

putative dyslexia loci: DYX1–DYX9 (reviewed in Schumacher et al. 2006; 

Paracchini et al. 2016). The most robust dyslexia candidate genes are DYX1C1 on 

chromosome 15 [Taipale et al., 2003; Scerri et al., 2004; Wigg et al., 2004], 

KIAA0319 [Francks et al., 2004; Cope et al., 2005; Harold et al., 2006; Luciano et 

al., 2007; Paracchini et al., 2008] and DCDC2 [Meng et al., 2005; Schumacher et 

al., 2007] on chromosome 6 , KIAA0319-LIKE on chromosome 1 [Couto et al., 

2008] and ROBO1 on chromosome 3 [Hannula-Jouppi et al., 2005].  

 

1.2.1 DYX1C1 

The first candidate gene for dyslexia was dyslexia susceptibility 1 candidate 1 

(DYX1C1), discovered through linkage studies and mapped to the chromosome 15 

using fluorescence in situ hybridisation [Rabin et al., 1993; Smith et al., 1983; 

Nopola-Hemmi et al., 2000]. DYX1C1 has been shown to be involved in altered 

neuronal migration based on the only post-mortem anatomical study of dyslexic 

brain conducted to date [Galaburda et al., 1985]. More recent studies reported  

DYX1C1 variant associations with deficits in the short-term memory [Dahdouh et 

al., 2009], verbal short-term memory [Marino et al., 2007] and non-word reading 

[Bates et al., 2010]. Molecular and cellular analyses of DYX1C1 have pointed out 

DYX1C1 involvement in neuronal migration in the developing cortex [Rosen et al., 

2007; Wang et al., 2006] and cilia biology [Hoh et al., 2012; Ivliev et al., 2012a; 

Tarkar et al., 2013a]. RNAi knock down study in rats has again pointed towards the  

impaired migration of the neurons [Wang et al., 2006]. Furthermore, a knock down 

of Dyx1c1 in rats resulted in defects in sound processing and spatial learning as well 

as in impaired development of the neocortex and hippocampus [Rosen et al., 2007; 
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Threlkeld et al., 2007]. Functional studies on zebrafish dyx1c1 mutants report 

asymmetry phenotypes such as body curvature, hydrocephalus and kidney cysts 

[Chandrasekar et al., 2013]. Hydrocephalus and situs inversus, a complete reversal 

of body inner organs have also been reported in mouse Dyx1c1 mutants [Tarkar et 

al., 2013b]. 

 

Despite the DYX1C1 involvement in neuronal migration shown by the knock down 

studies, Rendall et al (2017) failed to reproduce the phenotype in homozygous 

knockout mice. They observed no significant differences in the cortex or in the 

cortical lamination patterning of the forebrain of the knockout mice in comparison 

to the controls [Rendall et al., 2017]. Further behavioural studies on the mice with 

disrupted function of Dyx1c1 indicated the knockout animals have impaired 

memory performance [Rendall et al., 2017].  

 

1.2.2 DCDC2 

DCDC2 (doublecortin-domain-containing-2) is a member of a doublecortin (DCX) 

family and contains a doublecortin homology domain. DCX family members have 

been involved with abnormal neuronal migration leading to disruption of the cortex 

layering [des Portes et al., 1998]. Indeed, RNAi studies indicate DCDC2 down 

regulation leads to alteration in neuronal migration in the brain regions related to 

reading [Meng et al., 2005]. The DCDC2 harbours several variants associated with 

multiple reading traits [Meng et al., 2005] and dyslexia [Schumacher et al., 2006]. 

Furthermore, DCDC2 localises to the microtubules of the mitotic spindle and the 

ciliary axoneme, suggesting its role in cilia biology [Grati et al., 2015; Schueler et 

al., 2015b; Massinen et al., 2011a]. Ciliary phenotypes have also been shown 

through a knockdown study of dcdc2 in zebrafish (Schueler et al., 2015). Additional 

research on ciliopathy patients revealed the involvement of DCDC2 mutations with 

cystic kidney disease, retina malformation [Schueler et al., 2015b] and deafness 

[Grati et al., 2015].   
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1.2.3 ROBO1 

ROBO1 was found through translocation fine mapping, where and individual with 

dyslexia had a translocation breakpoint in the first intron of the ROBO1 [Hannula-

Jouppi et al., 2005]. Further gene expression study in lymphocites resulted in 

lowered or absent ROBO1 transcription, which led to believe dyslexia is caused by 

the reduction of ROBO1 expression [Hannula-Jouppi et al., 2005]. ROBO1 is a 

transmembrane protein, expressed in the brain cortex and has found to be involved 

in neuronal axon guidance [Kidd et al., 1999, 1998; Seeger et al., 1993; Hannula-

Jouppi et al., 2005] and neuronal migration [Pini, 1993; Wong et al., 2002; Wu et 

al., 1999; Zhu et al., 1999; Skaper, 2012]. When one of the two active copies is 

inactive or mutated, the axonal guidance becomes impaired, which might lead to 

dyslexia [Hannula-Jouppi et al., 2005].  

 

1.2.4 KIAA0319  

KIAA0319 is one of the strongest dyslexia candidates due to the rising amount of 

association studies (reviewed below). The gene codes for a transmembrane protein 

with five PKD (Polycystic Kidney Disease) domains [Velayos-Baeza et al., 2008]. 

The presence of PKD domains suggests the involvement of the gene in the cilia 

biology. The genes containing PKD domains mostly play a role in human 

ciliopathies, diseases caused by cilia malfunctioning [Hildebrandt et al., 2011a]. In 

humans, KIAA0319 is shown to have a specific spatial-temporal expression pattern 

in foetal brain [Paracchini et al., 2006a] and strong expression in adult human brain 

(Figure 1.2 A). The shRNA studies showed rat Kiaa0319 involvement with 

impaired neuronal migration  [Paracchini et al., 2006b]. However, a recent study of 

Kiaa0319 knock out mice found no effects of Kiaa0319 on neuronal migration 

[Martinez-Garay et al., 2017]. 
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1.2.4.1 KIAA0319 associations with dyslexia phenotype 

Several studies have associated KIAA0319 variants with reading-related traits. In 

2004, Francks et al. performed an association analysis in three independent samples 

and showed a 77kb quantitative trait loci (QTLs) containing genes TTRAP, 

KIAA0319 and THEM2 to be associated with dyslexia [Francks et al., 2004]. A 

further evidence in KIAA0319 involvement in dyslexia emerged in 2005 when Cope 

et al. identified two additional SNPs associated with dyslexia [Cope et al., 2005]. 

Harold et al. (2006)  tested  additional KIAA0319 SNPs and found nine variations 

associated with dyslexia clustered around the first exon, suggesting that KIAA0319 

function could be affected by the mutations in the putative regulatory region 

[Harold et al., 2006]. Luciano et al. (2007) replicated the significant association of 

variants within the KIAA0319 (as shown by Cope et al. 2005) and TTRAP genes 

[Luciano et al., 2007]. Furthermore, Couto et al. (2010) identified several putative 

regulatory regions near the associated markers within the KIAA0319 and DCDC2 

genes, proposing the variation within regulatory regions as a likely cause of 

dyslexia-related traits [Couto et al., 2010]. The associations located in the 

regulatory region were also described by Scerri et al. (2011), however these 

markers are not associated with dyslexia per se, but rather with reading and spelling 

skills in general [Scerri et al., 2011b]. Additionally, the KIAA0319/TTRAP/THEM2 

locus has been associated with the reduction of brain left-hemisphere asymmetry 

during reading [Pinel et al., 2012].  

Despite the reproduced associations within KIAA0319, TTRAP and THEM2  locus 

[Francks et al., 2004], the in situ  hybridisation indicated that risk haplotypes only 

reduce the expression of KIAA0319, while TTRAP and THEM2 expression levels 

remain unaffected [Paracchini et al., 2006a]. Similar trend was observed through 

the RNAi study in rats, where only the shRNA constructs against Kiaa0319 led to 

the impaired neuronal migration and impaired neocortex formation [Paracchini et 

al., 2006a]. Furthermore, upon identifying the association rs9461045 in the vicinity 

of KIAA0319 transcription start site, Dennis et al (2009) conducted a detailed 

analysis of KIAA0319 promoter region (Figure 1.3) [Dennis et al., 2009]. They have 
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characterised a minimal promoter (Figure 1.3 C) and shown that rs9461045 creates 

a nuclear protein-binding site, promoting the expression of the KIAA0319 in both, 

neuronal and non-neuronal cell lines [Dennis et al., 2009].  

Similarly to afore-mentioned PCSK6 intronic regulatory region, containing the 

variant rs11855415 [Shore et al., 2016], KIAA0319 promoter presents an interesting 

candidate region to study the spatiotemporal activity throughout early development. 

Studying regulatory sequence activity in cell lines provides us only with a limited 

information of temporal activity, therefore a new model is required to acquire the 

spatial distribution of the promoter activity as well.  

 

Figure 1.3  KIAA0319 promoter sequence with the rs9461045 variant   

A) Human Chromosome 6. Blue box represents KIAA0319. B) Full KIAA0319 gene with 21 exons 

spanning 102.05kb in antisense direction (black arrow). Blue box represents adjusted KIAA0319 

promoter region C) Adjusted promoter sequence spanning 1128bp (black thick line in blue box) 

across KIAA0319 promoter region. Red line represents rs9461045 variant associated with reading-

measures and shown to have a functional effect [Dennis et al., 2009]. 
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1.2.5 KIAA0319-like 

An additional dyslexia candidate gene has been proposed, KIAA0319-like 

(KIAA0319L) [Couto et al., 2008]. KIAA0319L is expressed in the brain cortical 

neurons, hippocampus, olfactory bulb and other regions (Figure 1.4 B,  Poon et al. 

2011a). The protein sequence homology with KIAA0319 is 61% similar. The 

KIAA0319L has been associated with dyslexia phenotypes, such as deficits in 

spelling and phonemic awareness [Couto et al., 2008]. The presence of PKD 

domains, interaction with Nogo receptor 1 and its positional homology with the 

KIAA0319 gene suggest KIAA0319L potential involvement in neuronal migration 

[Couto et al., 2008; Poon et al., 2011b]. Subsequent study of Kiaa0319l function in 

mice confirmed its role in establishing the correct neuronal migration pattern in 

embryos [Platt et al., 2013]. However, a recently established Kiaa0319l knock out 

mouse line showed no impaired neuronal migration [Guidi et al., 2017]. Guidi et al 

(2017) also created a double knock out line Kiaa0319/Kiaa0319l, where again they 

could not observe any differences in neuronal migration. When moving towards 

behavioural studies, they have observed a specific role of Kiaa0319l in the auditory 

processing of the homozygous and double mutants [Guidi et al., 2017].  
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Figure 1.4 KIAA0319 and KIAA0319L expression profile in human tissues  

Screenshots of the GTEx database. A) KIAA0319 is strongly expressed in the adult human brain 

(yellow boxes). B) KIAA0319L is expressed across all human tissues tested. TPM = transcript 
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1.3 Functional characterisation of KIAA0319 in model 

organisms 

Functional studies conducted in model organisms show inconsistent results for the 

function of KIAA0319. Paracchini et al (2006) conducted an in utero RNAi knock 

down in rat, showing a significant reduction in the neuronal migration distance in 

the rat neurocortex and the impaired morphology of neurons when the Kiaa0319 is 

knocked down [Paracchini et al., 2006a]. Kiaa0319 shRNA knock down resulting 

in apical dendritic hypertrophy and impaired neuronal migration in rats was shown 

by Peschansky et al (2010). Similarly, Adler and colleagues conducted a shRNA 

study on Kiaa0319 in mice, resulting in failed migration of the neurons in the white 

matter of the brain [Adler et al., 2013]. Additionally, the disruption of rat Kiaa0319-

like (Kiaa0319l) (by knockdown, overexpression, or rescue) also resulted in 

impaired neuronal migration [Platt et al., 2013], further strengthening the idea of 

neuronal migration being the cause for developmental dyslexia. Kim and colleagues  

performed a Kiaa0319 knock down study on mice by in utero electroporation and 

showed the reduction of dendritic spine density [Kim, 2009]. There are no direct 

correlations between the spine density and dyslexia, however, it is known that the 

spine density does correlate to neurodevelopmental disorders schizophrenia and 

epilepsy [Ethell and Pasquale, 2005; Garey et al., 1998]. 

In addition to several knock down Kiaa0319 studies showing its involvement in 

neuronal migration [Peschansky et al., 2010; Szalkowski et al., 2012a; Adler et al., 2013], 

Centanni et al (2014) created a knock down rat model and shown impaired 

discrimination in speech processing [Centanni et al., 2014a, 2014b]. A recent 

characterisation of the Kiaa0319 knockout mouse line shows no anatomical 

abnormalities in the brain layers [Martinez-Garay et al., 2017]. Instead, the 

behavioural study indicates sensory impairment and alterations in anxiety-related 

behaviour [Martinez-Garay et al., 2017]. A Kiaa0319/Kiaa0319l double knockout 

mouse mutant further confirmed the lack of neuronal migration phenotype in mice 

[Guidi et al., 2017]. The study did however show significant sensory impairment in 



Introduction 

  

  35 

double knockout specimen, suggesting Kiaa0319 and Kiaa0319l together are 

important for auditory processing [Guidi et al., 2017]. 

 

1.3.1 Zebrafish as a model to study neurodevelopmental disorders 

Due to the opposing outcomes (e.g. Kiaa0319 role in neuronal migration) of 

functional studies using mammalian model systems, a different approach is needed 

to study the function of KIAA0319. Zebrafish (Danio rerio) is a well-established 

model organism used for genetic, pharmaceutical studies and behavioural analyses. 

The embryos are transparent, and they develop outside the womb, providing the 

ideal platform for the observations of embryogenesis in vivo. Embryogenesis 

requires 120 hours, enabling the observation of developing structures in a time-

efficient manner. The handling of the embryos (collection, storage, microinjection, 

imaging) is time and cost efficient and relatively low effort. The well-studied 

embryonic development further adds to the popularity of this small teleost fish 

[Spence et al., 2007]. Due to a number of well-established techniques for genetic 

manipulation, the zebrafish poses an excellent opportunity for large scale forward- 

and reverse genetics analyses.  

 

The zebrafish genome consists of 25 pairs of chromosomes coding for more than 

26,000 proteins [Bhartiya et al., 2010]. The sequence homology to the human 

genome is approximately 70% and 84% of human disease genes have a zebrafish 

homologue, [Howe et al., 2013a]. An additional advantage of using zebrafish as a 

model organism to study genetics of human traits, is the simple application of 

transgenesis methods by microinjection in the single cell embryos. These 

characteristics allow performing different experiments, such as testing human 

regulatory sequences, performing knock down or knock out studies as well as 

studying mutations and their effects on gene function [Becker and Rinkwitz, 2012].  
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1.3.1.1 Zebrafish laterality 

One of the regions I have selected to test for spatiotemporal activity throughout 

early development is the PCSK6 intronic promoter. This bidirectional noncoding 

sequence entailing a rs11855415 variant has been recently shown to promote the 

expression of the shorter isoform of a PCSK6 as well as the lnRNA transcripts 

[Shore et al., 2016]. The SNP is associated with handedness in dyslexic population, 

linking dyslexia to behavioural laterality. To test for the activity of said promoter 

region, I chose to use zebrafish as a model organism. Their highly conserved 

embryogenesis makes them an attractive model organism to study laterality and 

human developmental disorders [Onai et al., 2014].  

 

The zebrafish laterality is thought to be set after the development of the Kupffer’s 

vesicle, a transient teleost structure homologous to mammalian embryonic node 

[Cooper and D’Amico, 1996; D’Amico and Cooper, 1997]. It first appears around 

12 hours post fertilisation (hpf). Kupffer vesicle is filled with ciliated cells 

generating a fluid flow, consequently regulating the LR patterning of the brain, 

heart and gut [Essner et al., 2005]. Following the activation of zebrafish Nodal 

pathway, members of Nodal family in zebrafish regulate the asymmetry of the brain 

development. The leftwards expression activates the asymmetry of the pineal gland 

complex, thus affecting the development of firstly left and then right habenulae 

[Concha et al., 2000, 2003; Liang et al., 2000; Gamse et al., 2002, 2003]. In the 

absence of Nodal leftward activity, the epithalamus develops asymmetries and the 

fish lateralised behaviour, “handedness”, becomes randomised [Concha et al., 

2000]. 

 

Further to the structural laterality of the zebrafish viscera, a lateralised behaviour 

such as preferential use of right eye when hunting or approaching to unfamiliar 

objects, has been reported [Miklosi et al., 1997, 1999]. A zebrafish “frequent situs 

inversus” (fsi) mutant line helped to link a part of structural, functional and 

behavioural asymmetries. It has been shown that fsi zebrafish simultaneously 
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exhibit visceral asymmetry reversal and the asymmetries in the diencephalon. 

Furthermore, some behaviours, such as mirror viewing and approach to target, are 

fully reversed [Barth et al., 2005]. Interestingly, not all behaviours tested have 

shown the reversal, indicating the involvement of more than one mechanisms in 

establishment of various asymmetries [Barth et al., 2005].  

 

Despite the many benefits, zebrafish also possess some disadvantageous qualities.  

The teleost fish have undergone a genome duplication, adding to complexity of 

genetic analyses in zebrafish [Ekker et al., 1992; Prince et al., 1998; Amores et al., 

1998]. The embryos development rate varies between embryos, even though they 

have been laid within a single batch. This poses a problem when dividing them into 

the same developmental stages as time is not the most reliable factor  [Kimmel et 

al., 1995a]. Due to these differences in development it is important to use 

appropriate strategies when studying gene function throughout embryo 

development, as discussed in following section. 

 

1.3.2 Tools to study disorders in zebrafish 

 

1.3.2.1 Knock down morpholino studies 

Morpholinos (MOs) are synthetic antisense oligonucleotides designed to knock 

down a gene with high specificity and low adverse effects [Summerton and Weller, 

1997]. They consist of 25 morpholine (C4H9NO) subunits replacing the ribose ring 

of the DNA. Their structure (Figure 1.3 A) resembles the one of the standard nucleic 

acid with a change of phosphorodiamidate linkage (Figure 1.3 A red circle) with 

the anionic phosphodiester bond [Summerton and Weller, 1997]. These two 

modifications offer a high stability when studying gene function using MO knock 

down technique [Corey and Abrams, 2001; Heasman, 2002; Heasman et al., 2000; 

Nasevicius and Ekker, 2000; Summerton, 1999]. Morpholinos are designed to bind 

either to ATG translational start site of the sequence (translational blocking) or 
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between the exon-intron junction (splice junction), affecting the splicing of the 

premature messenger RNA into the matured mRNA (Figure 1.3 B). In both cases, 

MOs target the protein function thus creating a specific “knock-down” effect.  

 

 

Figure 1.5 Morpholino oligonucleotides 

 A) Comparison of DNA and a morpholino structure as per Corey and Abrams (2001). The ribose 

ring in DNA structure is replaced by the morpholine ring and the phosphorodiamidate linkage with 

the anionic phosphodiester bond (red circles). R and R’ indicate the continuation of the structure in 

the same manner. B) The position of translational blocking (TB) and splice junction (SJ) MO binding 

sites on the DNA sequence (red lines). TB MOs are complementary to the ATG translational start 

site, while SJ MOs bind to intron-exon junction and prevent efficient splicing of the pre-mRNA into 

mRNA. Red lines indicate DNA sequence. Thick lines indicate exons, thin lines indicate introns. 

 

Due to their stability, nuclease resistance, water solubility and low toxicity, MO 

induced knock down is one of the most widely used reverse genetic approaches 

[Hosen et al., 2013]. For efficient ubiquitous delivery of MO molecules to target, 

microinjections need to be done between one and 8 cell stage of development 

[Nasevicius and Ekker, 2000]. The MOs can carry fluorescein label, which makes 

them visible under the GFP filter and enable fast phenotypical screening. The knock 

down effect is only temporary and depends on the concentration of injected MOs, 

which calls for initial dose optimisation before conducting a large scale KD 

analysis.  
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There are two classes of MO oligonucleotides: translational blocking and splice 

junction MOs. The translational blocking MOs (TB MOs) provide a more reliable 

knock down as they prevent the binding of the translational machinery to the 

mRNA, thus preventing protein translation to take place. Their effect can be 

validated by western blotting, and therefore requires specific antibodies which can 

be a limitation [Hutchinson and Eisen, 2006]. On the other hand, a simple RT-qPCR 

reaction provides the validation of splice junction MOs (SJ MOs). As the SJ MOs 

contribute to either exon skipping or intron retention, the resulting frameshift can 

be easily observed through reduced transcript levels [Draper et al., 2001].  

The disadvantages of knock down by morpholino technique are mostly attributed 

to the off-target effects. Indeed, all the antisense techniques (RNAi, shRNA, MOs) 

suffer from the unwanted and unspecific effects on the organism development. 

Developmental delay, apoptosis and abnormal development of body axes are 

amongst non-target-related phenotypes [Ekker et al., 2001]. In order to control for 

the specificity, stringent controls need to be put in place [Eisen and Smith, 2008]. 

One solution is to design a control sequence differing in five nucleotides from the 

target sequence (5-mispair control). The mismatches between the bases disable the 

binding to the target sequence. When injected at the same concentration as the MOs, 

we can control for factors related to injection procedure or toxicity [Cornell and 

Eisen, 2002; Rana et al., 2006]. Furthermore, the more reliable control would be a 

“rescue” of the phenotype. It is common to many MO studies that zebrafish exhibit 

similar phenotypes. If however, these phenotypes can be reversed by adding mRNA 

of the knock down homolog, we can conclude that the effect were specific to the 

MO target sequence [Eisen and Smith, 2008].  

  



Introduction 

  

  40 

1.3.2.2 CRISPR/Cas9 knock-out system 

The Clustered, Regularly Interspaced, Short Palindromic Repeats (CRISPR) and 

the CRISPR-associated system (Cas) have recently been adapted for genome 

editing purposes [Sander and Joung, 2014]. The system has been used as efficient 

screening tool to study and assess multiple genes and their function in zebrafish 

[Shah et al., 2015]. The advantage of this system is the rapid generation of 

homozygous mutant lines, achieved in two generations or less [Li et al., 2016].  

The CRISPR/Cas stems from bacterial immune system, providing bacterial defence 

against the virus invasion [Jinek et al., 2012]. Hwang et al (2013) developed a 

CRISPR/Cas9 system as easy and highly accessible tool for in vivo genome editing 

in zebrafish [Hwang et al., 2013a]. The system consists of a customized single guide 

RNA (sgRNA) and a single Cas9 enzyme. The sgRNA binds to the DNA sequence, 

providing a signal for the Cas9 cleavage. The in vitro transcribed, capped and 

polyadenylated Cas9 is translated into the protein. The Cas9 protein then creates a 

double strand break in the DNA, that can be repaired through the non-homologous 

end joining (NHEJ) [Chang et al., 2013; Hwang et al., 2013b]. The NHEJ repair 

mechanism introduces a variety of mutations and/or insertions or deletions (indels), 

disrupting the DNA sequence, hence preventing the proper translation of the mRNA 

and consequently, the protein sequence. As CRISPR/Cas9 system provides time 

and cost-efficient manner of creating knock out lines, it has become an invaluable 

complementary approach to morpholinos for protein function studies in zebrafish 

[Varshney et al., 2015; Gagnon et al., 2014; Jao et al., 2013]. 
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1.3.2.3 Studying regulatory sequences using Gateway Tol2 technology 

Regulatory sequences are functionally non-coding elements of the genome, 

alongside non-coding RNA and splicing elements [Chatterjee and Lufkin, 2012]. 

Previously, scientists have mostly been technically limited to studying conserved 

non-coding elements (CNEs) [Woolfe et al., 2004; Pennacchio et al., 2006; 

Sandelin et al., 2004]. However, with the advance in techniques, new enhancer 

regions have been identified, many of which have low levels of conservation 

between species [Roh et al., 2005, 2007, Heintzman et al., 2009, 2007; Visel et al., 

2009; Blow et al., 2010]. To understand the role of such elements (conserved or 

non-conserved), functional analyses are needed. In zebrafish, the Tol2-based 

system for studying regulatory sequences (enhancers, promoters) has been 

established and optimised [Kawakami et al., 2004; Suster et al., 2009; Kawakami 

et al., 2000]. 

The Tol2 element is a transposon first discovered in the genome of the medaka fish 

(Oryzias latipes) [Koga et al., 1996]. The Tol2-mediated transgenesis is a highly 

efficient procedure, where more than 50% of the injected fish transmit the construct 

to the next generation [Kawakami et al., 2004, 2000]. The system consists of the 

donor plasmid carrying a Tol2 transposone backbone (Figure 1.6 A) and the in vitro 

transcribed transposase (Figure 1.6 B) [K. Kawakami et al., 2016]. The Tol2 system 

became widely used to screen and annotate human functional non-coding elements 

in the genome [Chatterjee and Lufkin, 2012]. The short DNA sequences flanking 

the transposon are recognised for cleavage by the transposase, enabling the 

integration of inserts into the zebrafish genome [Urasaki et al., 2006]. Tol2 can 

integrate almost everywhere in the genome as a single copy through a cut-and-paste 

mechanism, without any modifications at the target site (Kawakami et al., 2000). 

Recently, a mini Tol2 system has been developed, allowing the transposition of 

large (~10kb) sequences without affecting the transgenesis efficiency [Korzh, 

2011]. 
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Figure 1.6 The Tol2 system  

The donor plasmid (A) consists of the regulatory sequence (blue), carried on the zebrafish Tol2 

transposone backbone (grey). The plasmid is cleaved at the recognition sites (red lines) for the 

transposase. B) The transposase plasmid pCS-zT2TP carries the zebrafish transposase enzyme 

(blue). After the in vitro transcription, the transposase mRNA is co-injected together with the donor 

plasmid DNA into the 1-4 cell stage embryo (C). There the transposase cleaves the plasmid, 

releasing the transposone backbone, which then randomly integrates into the zebrafish genome. 

 

Using the Tol2 system, new transgenic lines are generated in time efficient manner 

[Fisher et al., 2006b, 2006a]. The co-injection of transposone backbone and the 

transposase enzyme enables effective low-mosaic construct integration thus 

enabling the analysis already in the injected embryos rather than waiting for the 

establishment of the transgenic line [Kwan et al., 2007].  

Several studies (Table 1.2) have successfully used a nonconserved sequence and 

studied it in zebrafish using Tol2 system, therefore I am confident the system I have 

chosen for this analysis, is appropriate.  
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Table 1.2 An overview of a few recent studies, using non-conserved sequences in a Tol2 assay.  

 

Gene Gene region Size [bp] Species* Conservation  Reference 

Sox10 Enhancer 820 M-ZF 12% [Antonellis et al., 

2008] 

MPZ Enhancer 

Variant c.126-

1086T>A 

246 H-ZF 12% [Antonellis et al., 

2010] 

AUTS2 Enhancer 1817 H-ZF 5% [Oksenberg et al., 

2013] 

SIM1 Enhancer 

SCE2-CE-

100658719 

G>A 

1882 H-ZF 7.5% [Kim et al., 2013] 

IRF4 rs12203592-

[T/C] in 

enhancer 

region 

451 H-ZF 17.5% [Praetorius et al., 

2013] 

*Notes: H = Human, ZF = Zebrafish, M = mouse 
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Due to the ease of use and time saving properties of Tol2 Gateway system, I have 

chosen to use it to characterise the trait-associated afore-described regulatory 

sequences. The KIAA0319 and PCSK6 regulatory sequences have been shown to 

play a role in neurodevelopmental disorders and behavioural laterality [Dennis et 

al., 2009; Shore, 2015], which makes them attractive candidates to study their 

function throughout early embryonic development. The principle of the Tol2 

Gateway system can be compared to the luciferase assay in the cell cultures, 

however, with the Tol2 we can not only observe the difference in expression levels, 

but also the spatiotemporal distribution throughout development.  
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1.4 Summary and aims 

Dyslexia is a common developmental disorder, influenced by multiple genetic 

factors. Functional characterization of candidate genes suggest neuronal migration 

as an underlying cause of impaired reading, however, the results are not conclusive. 

The KIAA0319 is a highly attractive candidate due a potential role in neuronal 

migration in the cortex and a number of genetic associations with dyslexia related 

traits.  

The aim of this thesis is to map kiaa0319 expression and to understand its function 

during zebrafish embryonic development.  

I have used three different methods of in situ hybridisation to map the expression 

of zebrafish ortholog kiaa0319 during the early development. I have applied a 

CRISPR/Cas9 knock out and a morpholino knock down technique to study the 

effect of kiaa0319 on zebrafish development. As most of the associations with 

dyslexia phenotype reside in KIAA0319 regulatory region, I have tested for the 

spatio-temporal expression of the promoter sequence during embryonic 

development. I have adjusted the Gateway Tol2 protocol to clone the human 

KIAA0319 promoter into the zebrafish genome. Similar procedure has been carried 

out to test for the function of the PCSK6 intronic promoter, a locus associated with 

degree handedness in cohorts selected for dyslexia. 
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2 Kiaa0319 expression in zebrafish embryo development 

 

2.1 Summary 

The role of KIAA0319 during brain development remains unclear. To understand 

the function of this dyslexia candidate, the expression of the zebrafish orthologue 

during early neurogenesis was analysed. Firstly, the presence of kiaa0319 sequence 

and copy number in the zebrafish genome were confirmed. Next, the expression 

pattern of kiaaa0319 in developing zebrafish embryo was assessed, using three 

different ISH protocols: 1) digoxygenin uridine- 5’-triphosphate (DIG) labelled 

RNA probes, 2) fluorescence in situ Hybridisation, and 3) RNAScope. Due to 

similarity of human KIAA0319 with KIAA0319L sequence and its involvement with 

dyslexia, I decided to test for the zebrafish kiaa0319l expression as well. I observed 

that kiaa0319 and kiaa0319l have a similar expression pattern throughout the early 

stages of development. Both genes are expressed ubiquitously in the first 4 hours 

of development and then localise specifically to the developing brain, spinal cord 

and notochord. The expression of kiaa0319 and kiaa0319l was also observed in the 

retina and otic vesicles, both of which include ciliated structures [Lepanto et al., 

2016; Stooke-Vaughan et al., 2012]. Data from this chapter are described in a 

manuscript available as preprint (Appendix 6.7) and submitted for publication. 
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2.2 Methods 

2.2.1 Genomic mapping of zebrafish kiaa0319 and kiaa0319l  

 

I used the University of California, Santa Cruz (UCSC https://genome.ucsc.edu/) 

and Ensembl (http://www.ensembl.org) genome browsers to identify the 

coordinates of the zebrafish orthologs of human KIAA0319 gene. When mining for 

published work and expression data using zebrafish database (www.Zfin.org), no 

published data on kiaa0319 was found (Appendix 7.3.2).  

Mapping for kiaa0319 expression throughout early development (first 5 days post 

fertilisation) was done by a reverse transcriptase PCR (RT PCR) reaction: 

 

MyTaq Buffer    [50mM]  4 µl 

Fwd Primer    [10µM]  1 µl 

Rev Primer    [10µM]  1 µl 

zebrafish cDNA   [65ng/µl]  1.2 µl 

MyTaq DNA Polymerase  [5,000 units/ml] 0.2 µl 

H2O        12.6 µl 

Total Volume       20 µl 

 

The samples were run in the G-STORM thermocycler (Labtech international) under 

the following conditions: 

. 

http://www.ensembl.org/
http://www.zfin.org/
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Denaturation 95°C 30s,  

Annealing 58°C 20s 

Elongation 72°C  1min 

 

Primer pair 416/417 (Appendix 7.1.6) resulting in 1024bp product were used for 

kiaa0319 cDNA.  

In order to test for potential kiaa0319 isoforms, primer pairs (Appendix Table C1) 

were designed using Primer3web (http://primer3.ut.ee/) online software. Based on 

the cDNA sequences downloaded from Ensembl, the predicted differences in 

fragment sizes are in the range of 20 - 92bp, therefore the electrophoresis was 

performed using a 2% gel and ran for 2 hours at 50 volts.  

Agarose gel was made using 1g of agarose and 50 mL of TAE Buffer (Tris-Acetate-

EDTA). The mixture was heated in the microwave and left to cool. SYBR Safe 

DNA Gel Stain (ThermoFisher Scientific) was added to visualise DNA. Once the 

gel was poured into the mould, it was left to solidify. DNA was mixed with 6x 

loading buffer and loaded into wells. The appropriate timing and voltage were 

applied based on DNA size. The size of the resulting PCR product was assessed 

according to the 1kb and 100bp DNA ladder (NEB). 

 

2.2.2 Quantitative Real time PCR  

 

Once the presence of the kiaa0319 was confirmed through the RT PCR, a 

quantitative RT-qPCR reaction was set in order to examine the genes’ expression 

profile. Firstly, the cDNA was extracted (section 2.2.2.1) from the WIK WT 

zebrafish embryos and used for setting of the standard curve (section 2.2.2.2). The 

same settings were then used to quantify the level of kiaa0319 expression 

throughout development. 

30 cycles 

http://primer3.ut.ee/
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2.2.2.1 cDNA preparation 

The whole RNA from zebrafish developmental stages between 16 – 32 cells, 3 – 5 

hours post fertilisation (hpf), 6hpf, 12hpf, 24hpf, 3hpf, 48hpf, 72hpf, 96hpf and 

120hpf was extracted using RNeasy Mini kit (QIAGEN). To extract whole RNA 

from zebrafish embryos, 50 embryos were homogenized using TRIzol reagent 

(Thermo Fisher Scientific). The extraction of the RNA followed as per 

manufacturer instructions. Eluted RNA was further precipitated with 10µl of 3M 

Sodium Acetate Stop Solution and extracted with an equal volume of 

phenol/chloroform. The aqueous phase containing RNA was transferred to a new 

tube. RNA was once again precipitated by adding 1 volume of isopropanol. After 

overnight incubation at –20°C, RNA was centrifuged at 4°C for 15 minutes at 

maximum speed. All the excess liquid was removed and the RNA pellet was air 

dried for no more than 30 minutes. Purified RNA was resuspended in 20µl of RNase 

free water, quantified on Nanodrop and stored at -80°C until further use. 

Following the extraction and purification of RNA, the PrimeScript RT reagent kit 

(Takara) was used to transcribe the RNA into the cDNA following the 

manufacturer’s protocol: 

PrimeScript Buffer  [5X]   2 µl 

PrimeScript RT Enzyme Mix   0.5 µl 

Oligo dT Primer   [50µM]  0.5 µl 

Random Hexamers   [100µM]  0.5 µl 

Total RNA   [500ng]  1.4 µl 

RNase free water    5.1 µl 

The reverse transcription was set for 15 minutes at 37°C and terminated for 5s at 

85°C. The Resulting 50 ng/µl cDNA was stored at - 20°C until further use. 
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2.2.2.2 Standard curve 

Quantitative real-time PCR (RT-qPCR) was used to quantify levels of gene 

expression. To test the efficiency of designed primer pairs, a standard curve 

(Appendix 7.3.3) was derived from serial dilutions with a known concentration.  

The standard curve was required to show a multiplying efficiency between 95% and 

105% and a defined Cycle threshold (Ct).  

The reaction was set using the cDNA obtained from the WIK WT strain of zebrafish 

in concentrations 12.5ng/µl, 6.25ng/µl, 3.125ng/µl, 1.56ng/µl and 0.78ng/µl. A 

final volume of 4µl of the cDNA was added to 6µl of the mastermix: 

 

Primer 518  [10µM]   0.25 µl 

Primer 519  [10µM]   0.25 µl 

Luna Universal qPCR Master Mix  5 µl 

Water      0.5 µl 

Total Volume     6 µl 

and ran on a Viia 7 thermocycler (Life technologies) under the following 

conditions: 

Denaturation 95°C 60s, 

Annealing 95°C 10s 

Elongation 60°C  30s   

Primer pairs 410/411 (Appendix 7.3.1) spanning 91bp through zebrafish eukaryotic 

translation elongation factor 1 alpha 1, like 2 (eef1a1l2) were used as positive 

control to assess cDNA quality. 

 

30 cycles 
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2.2.2.2.1 RT-PCR analysis  

Once the quality of designed primers was confirmed through the standard curve, 

the RT-qPCR mastermix was set for kiaa0319 and eef1a1l2 genes and repeated in 

triplicates. The positive control sample containing the adult zebrafish brain cDNA 

was run. As a negative control a triplicate of non-template control (NTC) was run 

on the same plate.  

The RT-qPCR results for the Ct (Cycle threshold) values were used for further 

calculations of the relative quantification (RQ) factor. The mean values of eef1a1l2 

technical triplicates were calculated for each developmental stage. The individual 

mean Ct values of every kiaa0319 sample triplicate were then subtracted from the 

mean value of the eef1a1l2 (ΔCt). The individual values of the positive control Ct 

values (the kiaa0319 expression in the adult zebrafish brain) were further 

substracted from delta Ct (ΔCt). The result (ΔΔCt) was used to calculate the RQ 

using the following formula: 

RQ = 2-ΔΔCt 

The relative quantification factor RQ was used to plot a graph, enabling the visual 

representation of the kiaa0319 expression levels throughout development. 
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2.2.3 Whole-mount in situ hybridization (WISH) on zebrafish embryos  

 

2.2.3.1 Zebrafish embryo collection  

Zebrafish work using live embryos was done under the close supervision of Dr Carl 

Tucker, Zebrafish Facility Manager and Research Scientist at The Queen's Medical 

Research Institute at the University of Edinburgh. This includes zebrafish 

husbandry, embryo collection, embryo staging, microinjections (described in 

Chapter 3) and live imaging. Animals were handled in accordance with the 

guidelines from European Directive 2010/63/EU and euthanised in accordance with 

Schedule 1 procedures of the Home Office Animals (Scientific Procedures) Act 

1986. 

Wild type WIK or AB/TU zebrafish embryos were obtained from the mass egg 

production system (MEPS) and incubated at 28.5°C to enable developmental 

assessment according to the zebrafish standard staging series [Kimmel et al., 1995a] 

(Appendix G). Embryos younger than 48hpf were enzymatically dechorionated 

using 1 mg/ml pronase for 2-10 minutes (depending on developmental stage). The 

chorions of older embryos were manually broken with a pair of tweezers. After 

digestion, embryos were washed 3x for 5 minutes in Danieau solution and fixed in 

4% PFA at 4°C overnight. The following day, fixed embryos were washed 3x in 

PBT and dehydrated using methanol series (25% MetOH/PBT, 50% MetOH/PBT, 

75%MeOH/PBT, 2x 100% MetOH). Embryos in 100% methanol were stored at -

20°C until further use.  

 

2.2.3.2 Creating WISH riboprobe for detecting kiaa0319 transcripts 

A riboprobe was generated by amplifying a portion of the kiaa0319 from the cDNA 

(For flow see Figure 2.1). To enable the consequent transcription into RNA, a T3 

promoter sequence was attached to the reverse (T751) primer. A 1066bp cDNA 

sequence was obtained after a PCR reaction was set: 
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GoTaq Green   [2x]   25 µl 

Fwd T750 Primer  [10µM]  1 µl 

Rev T751 Primer  [10µM]  1 µl 

Zebrafish cDNA  [50ng/µl]  1 µl 

H2O      22 µl 

Total Volume     50 µl 

 

The samples were run in the G-STORM thermocycler (Labtech international) under 

the following conditions: 

 

Denaturation 95°C 5 min 

Denaturation 95°C 30s,  

Annealing 58°C 30s 

Elongation 72°C  72s 

Elongation 72°C  5 min 

 

The resulting ~1kb cDNA fragment with a T3 promoter at the 3’ end of the sequence 

was gel purified and in vitro transcribed as described as follows: 

 

 

 

30 cycles 
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PCR fragment    [333 ng/µl]  6 µl 

Transcription buffer   [5x]   4 µl  

DTT    [0.1 M]  2 µl 

DIG-NTP-Mix   [10X]   2 µl 

RNase Inhibitor, Murine  [40,000 units/ml] 2 µl 

H2O       2 µl 

T3 RNA polymerase   [50,000 units/ml] 2 µl 

Total Volume      20 µl 

 

The transcription mix was incubated for 2 hours at 37°C and then treated with 

DNaseI for 15 minutes at 37°C.  The resulting riboprobe was precipitated by adding 

5µl of NH4OAC and 200µl of cold 100% ethanol and incubated at -20°C for 2 

hours. The precipitated RNA was spun down at the highest speed for 30 minutes. 

The resulting supernatant was discarded. The RNA pellet was dried and 

resuspended in 20µl of RNase-free water. The concentration of the resulting 

riboprobe was measured on a Nanodrop instrument and ran on a standard 1% 

agarose gel to control for probe stability. In the final step, 17µl of RNA probe were 

diluted in 17µl of Hybridization buffer and stored at -20°C until further use.  
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Figure 2.1 In situ Hybridisation procedure  

A schematic representation of in situ Hybridisation flow. RNA sequence is read from 5’ – 3’ and a 

cDNA sequence transcribed. Target sequence is PCR amplified, in vitro transcribed and labelled 

accordingly to the protocol. Labelled riboprobe is synthesised antisense to the target RNA. The 

probe is introduced to the zebrafish embryo of chosen developmental stage and hybridised to target 

sequence. After a series of washes, the signal is detected using appropriate microscopy technique.  
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2.2.3.3 WISH Hybridisation protocol  

Embryos at the appropriate stage were selected and rehydrated using reverse 

methanol series (75% MetOH/PBT, 50% MetOH/PBT, 25%MeOH/PBT, 2x PBT). 

Proteinase K (10µg/ml) treatment was applied (for duration, see Table 2.1) and then 

terminated by washing in PBT for 5 minutes. The Hybridisation solution (Appendix 

7.1.2) was applied and incubated at 65°C for 2 hours. Before applying to the 

samples, the diluted riboprobe was heated at 65°C for 5 minutes, vortexed and spun 

down. Pre-warmed probe (200µl) was added to individual tubes and incubated at 

65°C overnight.  

 

Table 2.1 Duration of Proteinase K treatment according to zebrafish developmental stage 

Time (min) Embryo stage 

8 24hpf 

12 30hpf 

30 48hpf 

45 72hpf 

 

The following day the probe was recovered and pre-warmed (65°C) wash-solutions 

were applied to the samples. The probe residues were washed out with 200µl 

hybridisation solution for 30 minutes. To further wash away any nonspecific 

binding, 1ml of 2x SSC buffer (Appendix 7.1.2) was added and incubated for 10 

minutes with shaking. Additional two washes of 30 minutes with 0.2x SSC buffer 

were performed at 65C, each with shaking. The samples were equilibrated for 5 

minutes in Maleic Acid Buffer (MAB, Appendix 7.1.2) buffer and blocked in 2% 

MAB/blocking solution for at least 3 hours at room temperature on a shaker. To 
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detect incorporated DIG molecules, an anti-DIG antibody (Anti-Digoxigenin-AP, 

Fab fragments, Roche) was added to blocking mix in dilution of 1:5000 and 

incubated overnight at 4°C with shaking. 

The samples were then washed 3x for 1 hour in MAB buffer. A fresh solution of 

alkaline phosphatase buffer (NTMT) was applied for at least 20 minutes. NTMT 

reacts with the added colouring solution (NBT + BCIP) and creates a colour signal 

where the antibody has bound to the riboprobe. Once the signal was visible, the 

embryos were post-fixed in 4% PFA for 20 minutes at RT and washed twice in 

PBT. The labelled embryos were finally stored in 80% glycerol until mounting. 

 

 

Figure 2.2 Comparison of three in situ Hybridisation protocols used in this study  

Whole mount In situ Hybridisation (WISH), Fluorescence In situ Hybridisation (FISH) and 

RNAScope technology.  
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2.2.4 Fluorescence In situ Hybridisation (FISH) 

 

2.2.4.1 Creating FISH riboprobe for detecting kiaa0319 transcripts 

The protocol for fluorescence In situ Hybridisation (FISH) was optimised from the 

Invitrogen FISH Tag™ RNA Multicolor Kit protocol (ThermoFisher Scientific). A 

595bp cDNA sequence was obtained after a PCR reaction: 

Phusion® GC Buffer   [5x]   10 µl 

Forward 496 primer   [10µM]  2.5 µl 

Reverse 497 primer    [10µM]  2.5 µl 

dNTP mix    [10µM]  2.5 µl 

cDNA     [50ng/µl]  2 µl 

Phusion® High-Fidelity  

DNA Polymerase   [2,000 units/ml] 1.5 µl 

H2O        29 µl 

Total Volume       50 µl 

The samples were run in the G-STORM thermocycler (Labtech international) under 

the following conditions: 

Denaturation 98°C 30s 

Denaturation 95°C 20s,  

Annealing 65°C 20s 

Elongation 72°C  4min 

Elongation 72°C  10 min 

30 cycles 
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The resulting PCR product was gel extracted using the QIAquick Gel Extraction 

Kit (QIAGEN) and cloned into a pCR™-Blunt II-TOPO® Vector containing SP6 

and T7 promoter sequences. The cloning mix was transformed into One Shot™ 

TOP10 Chemically Competent E. coli cells. The resulting plasmid pCR™-Blunt II-

TOPO_kiaa0319 (Appendix 7.2) was isolated using QIAprep® Spin Miniprep Kit 

(QIAGEN) and stored at -20C until further use.  

To create an antisense riboprobe, 10µg of pCR™-Blunt II-TOPO_kiaa0319 

plasmid was linearised and purified using QIAprep® Spin Miniprep columns. The 

linear product was then in vitro transcribed using the mMESSAGE mMACHINE® 

T7 µlTRA Transcription Kit. As a positive control an otx5 probe was transcribed, 

kindly provided by Blader group, Toulouse, France [Gamse et al., 2002]. The RNA 

was then purified and precipitated according to the manufacturer protocol. The kit 

provides an option for labelling the probe with four different Alexa Flour dyes: 488, 

555, 594 and 647. The kiaa0319 and the otx5 probes were labelled with Alexa Flour 

555 and 488, respectively. Fluorescently labelled RNA probes were again purified 

and precipitated as described in Section 2.2.2.1, before storing them at -80C until 

further use. The same procedure was followed when transcribing the control sense 

probe. 

The hybridisation protocol followed the same steps as the protocol for WISH 

(Figure 2.1 and Figure 2.2) with the exception of the antibody detection step. 

Instead, the embryos were incubated for 10 minutes per step in glycerol series (25% 

glycerol/PBT, 50%, and 75%) and finally incubated overnight in 75% glycerol. The 

following day, the embryos were deyolked and mounted on a single cavity 

microscope slides (Fisher Scientific). 
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2.2.5 RNAScope 

RNAScope is a novel ISH protocol designed by Advanced Cell Diagnostics, Inc 

(ACD) to simultaneously detect up to four RNA transcripts in the same sample. In 

order to obtain the signal amplification, 20 target probe oligonucleotides (named 

double Z probes - ZZ) need to bind to the target sequence in tandem. The 

nucleotides need to bind next to each other in order to assure efficient binding of 

further amplification molecules. Two independent nucleotides will highly unlikely 

hybridize to a non-specific target right next to each other, thus preventing a high 

amplification of off-target signals. 

RNAScope has primarily been developed for detection of RNA on tissue slices, but 

has recently been adapted for whole mount detection in zebrafish embryos [Gross-

Thebing et al., 2014]. For our purposes, I have optimised the RNAscope® 

Multiplex Fluorescence Assay following the Gross-Thebing protocol.  

 

2.2.5.1 RNAScope probe design 

Custom-made oligonucleotides for kiaa0319 and kiaa0319l were produced by the 

Advanced Cell Diagnostics (Figure 2.3, Appendix 7.4.4) . As a positive control, the 

probe for myod1 as demonstrated in the Gross-Thebing protocol [Gross-Thebing et 

al., 2014] has been used. The negative control consists of a standardised triple 

negative sequence that doesn’t bind to any of the sequences. 
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Figure 2.3 RNAScope probe design  

Screenshot of the UCSC Blast nucleotide search results indicating the position of designed probes 

relative to the gene sequences. A) Probe C1 represents an 880bp sequence (black line) covering both 

kiaa0319l isoforms (red). B) Probe C2 represents a 1081bp sequence (black line) covering zebrafish 

myod1 isoforms (red). C) Probe C3 represents a 908bp sequence (black line) covering both kiaa0319 

isoforms (red). 

 

 

2.2.5.2 RNAScope hybridisation protocol 

Zebrafish embryos were collected and staged as described in section 2.2.3.1. The 

PFA treatment step was applied at the room temperature and incubated according 

to the developmental stage (See Table 2.2Error! Reference source not found.). 

ollowing fixation, embryos were digested with the Pretreat 3 solution according to 

their developmental stage (See Table 2.2Error! Reference source not found.). 

The embryos still remaining in chorions were treated with pronase prior to protease 

digestion. 
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Table 2.2 Duration of Pretreat 3 and PFA treatment according to zebrafish developmental 

stage 

Duration of Pretreat 3 

treatment (min) 

Embryo stage Duration of PFA treatment (h) 

 >12hpf 4 (with chorion) 

1.5 12hpf 1 (with chorion) 

3 24hpf 0.5 (without chorion) 

5 36hpf 0.5 

7 48hpf 0.5 

10 72hpf 0.5 

12 96hpf 0.5 

15 120hpf 0.5 

 

 

The original protocol suggests the use of company-made and supplied wash buffer; 

however, based on previous reports of wash buffer being too aggressive on the 

embryos [Gross-Thebing et al., 2014], I chose to use SSCT solution (Appendix 

7.1.2). Prior to hybridisation, all probes were warmed up to 40°C for 10 minutes, 

vortexed and spun down. A working solution in ratio 1:50 was prepared for each 

probe in company provided diluent and allowed to cool down to the room 

temperature. Following the digestion, the Pretreat 3 solution was removed and 

embryos were rinsed three times for 15 minutes in 1ml PBT at RT with shaking. 

After the third wash, a 100µl of target probes were added per tube and hybridised 

at 40°C overnight. The following day, used probes were collected and stored in a 

new tube in order to be reused in the following experiments. Three washes of 15 
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minutes with SSCT were followed by a 10 minute postfixation with 4% PFA. The 

embryos were then washed again and incubated with 100µl Amp1 solution for 30 

minutes at 40°C. Three washes of 15 minutes with SSCT were followed by the 

Amp2 incubation for 15 minutes. Further three washes of 15 minutes with SSCT 

were followed by the Amp3 incubation for another 30 minutes. In order to label the 

probes with the correct combination of fluorescent dyes (Appendix Table 7.6), the 

kiaa0319 (c3) and kiaa0319l (c1) probes were added to the same sample while the 

myod positive (c2) and a triple negative control to a separate one. Amp4 (option A, 

B or C) was added and incubated for 15 minutes at 40°C. After the three washes 

with SSCT, a company-provided DAPI solution was added to each sample and 

incubated overnight in the dark at 4°C with slow agitation. The following day, 

DAPI was removed with a quick PBT wash and the samples prepared for imaging 

with the fluorescence confocal microscope. 

 

 

2.2.6 Imaging and Image reconstruction 

Bright field images were taken on Leica MZ16F and MZFLIII microscopes. The 

fluorescence images were obtained with Leica TCS SP8 confocal microscope and 

processed in Leica Application Software X (LAS X). All images were taken under 

20x magnification, some with manual zoom (see scale bars).  

Imaging with the lightsheet microscope was conducted with an in-house built 

microscope designed on the  basis of the project openSPIM [Pitrone et al., 2013a]. 

The original openSPIM design has both the illumination and detection objectives 

on a horizontal plane, but this was modified to achieve an inverted configuration to 

accommodate larger varieties of samples. The main setup fits on a 450 mm × 300 

mm breadboard (MB3045/M, Thorlabs), as in the original openSPIM design. A 

488nm wavelength laser (Solstis with frequency doubler, M Squared) provides 

illumination for the microscope through a single mode fibre. A beam expander is 

followed by an adjustable slit (VA100/M, Thorlabs) to adjust the width of the beam 
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and a cylindrical lens (LJ1695RM-A, FL 50mm, Thorlabs) to focus the beam to a 

light sheet. A steering mirror delivers the beam to the illumination objective 

(UMPLFLN 10XW, water dipping, NA 0.3, Olympus) through a relay lenses 

combination. The two objectives are mounted on a customized holder which not 

only simplifies the system but also minimizes adjustment required. This holder also 

allows a change of objective lens if needed. Excited fluorescent signal is collected 

by a detection objective (LUMPLFLN 20XW NA 0.5, water dipping, Olympus) 

and an achromatic lens (LA1708-A-ML, FL 200 mm, Thorlabs) as tube lens, then 

projected onto a sCMOS camera (ORCA-Flash4.0 sCMOS camera, Hamamatsu). 

The imaging was done with a manual scanning stage. The 3D images were 

reconstructed using an arbitrary z step in ImageJ [Schindelin et al., 2012] and an 

open source software Icy [de Chaumont et al., 2012] with the VTK library 

Visualization Tool Kit [Schroeder et al., 2006a]. 
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2.3 Results 

2.3.1 Zebrafish kiaa0319 and kiaa0319l throughout development 

Zebrafish kiaa0319 is located on Chromosome 16, spanning 25.135kb 

(Chromosome 16: 36,952,809-36,977,944) in antisense direction on the forward 

strand (Figure 2.4 A). It has two known isoforms. The chosen kiaa0319 isoform 

(ENSDART00000160645.1) consists of 20 exons, of which 19 code for 955aa 

protein sequence. Zebrafish kiaa0319l exists in 2 isoforms, located on Chromosome 

19 and is spanning 38.353kb (Chromosome 19: 44,073,525-44,111,878) in sense 

direction (Figure 2.4 B). The kiaa0319l isoform ENSDART00000139151.3 

consists of 21 exons, of which 20 are coding for a 1,049aa protein sequence.  

 

Figure 2.4 A schematic representation of zebrafish kiaa0319 and kiaa0319l genes  

A) Chromosome 16 as shown on the UCSC website. The red line marks the position containing both 

isoforms of kiaa0319 (36.965.046 – 36.971.728). In red, isoform 201 (ENSDART00000160645.1) 

of kiaa0319 gene with 20 exons spanning 25.135kb in antisense direction (black arrow). Isoform 

202 (ENSDART00000169208.1) with 20 exons spanning 24.503kb in antisense direction B) 

Chromosome 19 as shown on the UCSC website. The red line marks the position containing both 

isoforms of kiaa0319l (44.090.681 – 44.104.327). In red, isoform 201 of kiaa0319l gene 

(ENSDART00000139151.3) with 22 exons spanning 38.140kb in sense direction (black arrow). 

Isoform 202 (ENSDART00000051723.5) with 22 exons spanning 38.254kb in sense direction. 
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In order to confirm zebrafish kiaa0319 presence throughout embryonic 

development, a reverse transcription PCR reaction using the full cDNA was set as 

described in Section 2.2.1. The resulting ~1kb kiaa0319 fragment was observed 

throughout all developmental stages (Figure 2.5). Human expression data confirm 

the highest expression of KIAA0319 in the brain (Figure 1.2). To compare for 

kiaa0319 gene expression in zebrafish tissues, adult zebrafish heart, brain and liver 

were dissected and whole RNA isolated. Following cDNA transcription, a reverse 

transcriptase PCR (Figure 2.5) was set. The results show kiaa0319 expression 

throughout all tested developmental stages, as well as in the adult zebrafish brain. 

The level of kiaa0319 expression in adult zebrafish liver and heart is substantially 

lower (Figure 2.5).  

 

 

Figure 2.5 Zebrafish kiaa0319 throughout embryo development  

PCR reaction using primers 512/513 resulting in 1024bp kiaa0319 (top panel). The expression level 

is low in adult zebrafish tissues other than brain. Genomic gDNA serves as a negative control. PCR 

reaction for zebrafish beta actin (bactin2) serves as positive control (Primer pairs 443/444 giving the 

expected fragment of 322bp) 
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Once the presence of kiaa0319 was confirmed, the brain cDNA sample was used 

for further investigation of kiaa0319 expression. When testing for kiaa0319 

isoforms as described in Section 2.2.1, no additional isoforms were found, and no 

alternative splicing discovered (Figure 2.6).  

 

 

Figure 2.6 Primer design strategy for kiaa0319 isoform screening  

A) Analysis of kiaa0319 gene with primer pairs (red) spanning from the beginning of coding 

sequence in Exon 3 to Exon 20. Orange coloured exons indicate untranslated region (UTR). Blue 

coloured exons indicate translated regions. Predicted cDNA fragment lengths for kiaa0319 isoforms 

1 and 2. B) A 2% agarose gel of PCR amplified kiaa0319 fragments. No alternative splicing has 

been observed. 
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2.3.2 Quantification of kiaa0319 expression levels 

For more precise quantification of kiaa0319 expression levels, a quantitative RT-

qPCR was run for 10 different developmental stages. After optimising the reaction 

settings to obtain the standard curve within required measurements (Appendix 

Figure 7.3), the reaction was run and the ct values collected. The calculated RQ 

scores represent the amount of kiaa0319 cDNA relative to the basal expression of 

the housekeeping gene eef1a1l2.  The highest kiaa0319 expression is observed in 

the first 5 hours post fertilisation (Figure 2.7 left panel). The expression level then 

drops significantly and hits the lowest scores at 12hpf ( Figure 2.7 right panel). At 

24hpf and 36hpf, the kiaa0319 expression rises again, followed by another drop at 

48hpf. At 96hpf, kiaa0319 expression levels mark the highest score after 5hpf and 

then drops again at 120hpf. 

 

 

Figure 2.7 The expression levels of zebrafish kiaa0319 throughout embryonic development  

The RQ values represent the kiaa0319 expression referenced again eef1a1l2 values. Two panels 

shown here are due to a much higher expression of kiaa0319 in the first 5 hpf. 
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2.3.3 kiaa0319 WISH and FISH probe design 

In order to design a riboprobe for kiaa0319 transcript detection, a PCR reaction was 

set, followed by in vitro transcription of the probe. For the whole mount ISH 

(WISH) protocol, a 1066bp RNA sequence was DIG-labelled and ran on a 1% 

agarose gel to test for the transcription efficiency (Figure 2.8 A). Following the 

same principle, a 595bp fluorescently labelled ISH (FISH) riboprobe was 

transcribed (Figure 2.8 B).  

 

Figure 2.8 Agarose gels of transcribed WISH and FISH riboprobes  

A) A 1066bp DIG-labelled WISH riboprobe. B)  A 595bp fluorescently labelled FISH riboprobe. 

The bands appear larger due to incorporated labelling molecules. 

 

Furthermore, the precise tissue localization of kiaa0319 was investigated. In order 

to efficiently detect the transcript, a riboprobe was designed so that it binds 

transcripts from both isoforms. The highest and most ubiquitous expression of 

kiaa0319 is observed in very early stages (Figure 2.9 A) then it becomes more brain 

specific with time. At 3 somite stage (Figure 2.9 A1, 2), kiaa0319 is ubiquitously 

expressed. Already at 14 somite stage (16hpf), a localised distribution can be 

observed in the developing brain and spinal cord (Figure 2.9 A3, 4). The 

development of zebrafish otic vesicles, midbrain-hindbrain boundary and the 

pigmentation can be seen at 30hpf. The expression of kiaa0319 at that stage is 

observed in the eyes (Figure 2.9 B1, 2 and 3), brain (Figure 2.9 B1, 2 and 4) and 

the otic vesicles (Figure 2.9 B2, 5).  
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Further along the embryo development, the kiaa0319 expression becomes less 

abundant. At 48hpf, the kiaa0319 expression was observed in the brain (Figure 2.9 

C1, 2), more strongly in the forebrain area Figure 2.9 C2).  Additionally, the 

kiaa0319 expression is localised to the eyes (Figure 2.9 C1, 2, 3) and otic vesicles 

(Figure 2.9 C4). At all stages, the expression in the spinal cord and notochord can 

be observed (Figure 2.9 B6, C2). 

 

Figure 2.9 The expression of kiaa0319 in early embryonic development  

The purple stain indicates the location of kiaa0319 transcripts in zebrafish embryos. A) Zebrafish 

embryo at 3 somite stage. The kiaa0319 is ubiquitously expressed in the head (1) and is also present 

in the tail (2). kiaa0319 is highly expressed in a 14 somite embryo head (A3) and throughout the 

developing spinal cord (A4). B) At 30hpf, the kiaa0319 is localised to specific tissues, but still highly 
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expressed throughout the embryo. B1) The top view of the embryo showing the expression of 

kiaa0319 in the brain structures and the eyes. B2) The lateral view of the embryo showing kiaa0319 

expression in the brain, eye and the otic vesicle (black arouw). Strong expression is seen in the 

notochord. The magnification of consistently strongly labelled structures: eyes (B3), midbrain-

hindbrain barrier (B4), otic vesicle (B5) and the notochord (B6). C) kiaa0319 expression in a 48hpf 

embryo. C1) The top view of the embryo showing kiaa0319 expression in the whole embryo; C2) 

The lateral view of the embryo indicating kiaa0319 expression in the telencephalon, eye (C3), spinal 

cord, notochord and the otic vesicle (C4). D) A zebrafish larva at three days post fertilisation as a 

reference indicating the main physiological culprits as labelled (black arrow). 

 

 

2.3.4 kiaa0319 FISH protocol 

The WISH protocol was successfully applied to the developing embryos, but the 

accuracy of the information was not satisfactory. The wide distribution of the probe 

made it unclear to determine whether the detected signal was indeed kiaa0319 

transcript, or merely staining background. In order to obtain a more detailed 

information about kiaa0319 localisation, I have optimised an ISH protocol with 

fluorescently labelled riboprobes, as described in section 2.2.4. Fluorescence from 

the FISH probes is predicted to be more accurate than DIG labelled riboprobes. 

Two fluorescently labelled probes were designed: antisense probe labelled with 

Alexa Flour 555 and sense probe labelled with Alexa Flour 488. The antisense 

probe hybridises to the target mRNA sequence, whereas the sense probe does not 

bind at all. The sense probe is used as a negative control, testing for the efficiency 

of the protocol. As the fluorescence imaging makes it difficult to distinguish left 

from right, an additional control probe was applied. The zebrafish otx5 proved to 

be an efficient control to test for both, the efficiency of the protocol and to control 

for the laterality of the zebrafish embryo. It has been shown that the otx5 is 

expressed in the pineal and parapineal glands [Gamse et al., 2002] and can be 

detected as early as at 13-somite stage of the development. The pineal gland is 

located centrally, whereas the parapineal in 92% of the cases develops on the left 

side of the dorsal diencephalon [Gamse et al., 2002].  
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Figure 2.10 Fluorescence in situ hybridisation (FISH)  

A)  Expression of kiaa0319 (red) in the head of 24 hpf embryo. B) No signal can be seen when 

applying sense riboprobe. C) A positive otx5 control (green) relative to the embryo (grey). D) A 

head of a 24 hpf WT zebrafish embryo for reference. Scale bar 50µm 

 

The FISH protocol has been optimised and the embryos imaged under the confocal 

microscope. The kiaa0319 expression profile (Figure 2.10 A) was similar to the one 

obtained through WISH protocol. The probe labelled the majority of the embryo, 

making it unclear whether this is due to the transcript abundancy or technical 

performance of the protocol. The negative control (Figure 2.10 B) proved to be 

unlabelled and only autofluorescence of the yolk cells could be detected. When 

imaging otx5 positive control, a clear signal was obtained from the pineal and 

parapineal gland (Figure 2.10 C). 

The FISH protocol is time consuming and the riboprobe hybridisation efficiency 

and stability depends on many factors. Therefore, the need for a shorter, more 

reliable and specific protocol arose. I have optimised the protocol for whole mount 

RNAScope based on the currently only published paper on this method [Gross-

Thebing et al., 2014]. 
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2.3.5 kiaa0319 RNAScope protocol 

 

The advantage of RNAScope is the ability to detect up to four independent 

transcripts in the same sample. The synthetic oligonucleotide tandems were 

designed to create probes C2 (myod) and C3 (kiaa0319) (Appendix 7.4.1 - 7.4.5). 

These tags enable us to simultaneously apply all probes to the sample and then 

detect them with one of three Amp4 dye combinations (Amp4 A, B or C). In order 

to avoid signal bleed through when detecting multiple probes simultaneously (Table 

7.10), I have chosen to detect only two transcripts at once, leaving the detection of 

the positive control to a separate sample. The triple negative control was applied on 

its own. It consists of standardised probes bound to all three channels, leaving no 

space for other probes. The positive (myod) and negative controls were applied to 

the 5dpf embryos and imaged using the same settings as the samples with labelled 

kiaa0319 (Figure 2.11 and Figure 2.11). There was a small amount of unspecific 

binding detected in the negative control (Figure 2.11). The positive control was 

labelled with Amp4 A, enabling its detection using the ATTO 550 settings on the 

confocal microscope. A strong and specific expression of myod in zebrafish muscle 

tissue was observed (Figure 2.11). 

 

 

Figure 2.11 The 5dpf embryos labelled with triple negative and the positive control for 

RNAScope protocol  

The negative control exhibits a small amount of unspecific binding. The positive (myod) control 

labels myogenic differentiation factor 1 in muscle tissue. Scale bar 50µm. 
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Once both controls were optimised, RNAScope protocol was carried out using 

zebrafish embryos from 16-cell stage to 120hpf. The whole mount embryos were 

imaged using the Leica TCS SP8 confocal microscope. To prevent the bleed-

through of the fluorescence signals from multiple probes, a sequential scan was 

applied. The kiaa0319 (Atto 647) was detected using a 633 laser and Myod (Atto 

550) was detected using the argon laser. The ubiquitous expression of kiaa0319 is 

observed in the first 24hpf, with the emphasis on developing nervous system 

(Figure 2.12). At 48hpf, the detection of kiaa0319 transcripts can be localised to 

the developing brain structures, notochord, eyes and otic vesicles (Figure 2.12).  

 

 

Figure 2.12 Confocal images of kiaa0319 expression in three developmental stages  

The RNAScope protocol was applied to whole zebrafish embryos. The kiaa0319 (red) is strongly 

expressed in the brain throughout early development. At 48hpf, kiaa0319 is strongly expressed in 

the zebrafish brain and otic vesicles (white arrow). Reference image of the zebrafish head at 48hpf. 

Black area in the brain due to the pigmentation of the embryo. White arrowhead indicates the otic 

vesicle. The scale bar is 50µm. 
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To closer investigate the kiaa0319 expression in the sensory organs, a confocal z-

stack images of RNAScope were taken for the eye and the otic vesicle (Figure 2.13). 

The kiaa0319 transcripts are detected in the 48hpf left eye surface area (Figure 2.13 

A) and concentrated on the top. The identity of the cells is so far unknown. The 

RNAScope protocol enables the application of several probes simultaneously, 

therefore I have used it to compare the expression of the kiaa0319 to its homolog 

kiaa0319-like within the same sample. The kiaa0319-l is present on the surface of 

the eye; however, the signal rarely overlaps with the kiaa0319 (Figure 2.13 A 

MERGE). In parallel, the triple negative control was applied to control for the 

background signals and unspecific binding of the probe (Figure 2.13 B). No signal 

was detected in Atto 550 (kiaa0319) or Alexa 488 (kiaa0319-l) channels.  

Upon seeing the strong signal in the otic vesicle area (Figure 2.12 48hpf), I have 

performed additional RNASope on the 48hpf embryos to confirm whether the 

signal is reliable, or could it potentially be only due to the probe trapping. A 

confocal z-stack of the otic vesicle revealed a strong signal in both, the sample 

(Figure 2.13A’) and the control (Figure 2.13 B’). These results indicate there is 

probe trapping present in the otic vesicle structures. However, when inspecting the 

RNAScope for the kiaa0319 and kiaa0319-l sample, a clear signal can be observed 

in the brain area (above the vesicle), and in the vesicle itself (Figure 2.13 A’). As 

in the eye, the identity of the cells is unknown, however, the amount of overlaying 

signal is greater (Figure 2.13 A’ MERGE). When analysing the triple negative 

control, no signal could be found, except for the probe trapping (Figure 2.13 B’) 
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Figure 2.13 kiaa0319 and kiaa0319-like signal in zebrafish eye and otic vesicle. 

A) RNAScope of 48hpf zebrafish left eye. The kiaa0319 (red) and kiaa0319-like (green) are 

expressed on the surface of the eyes and most strongly concentrated around the eye lens. B) Triple 

negative control of the left eye. There is no kiaa0319 or kiaa0319-like expression. A’) RNAScope 

at 48hpf zebrafish left otic vesicle. A strong kiaa0319 (red) signal can be observed in the otic vesicle 

and in the brain (above the otic vesicle). Kiaa0319-like signal in green. B’) Triple negative control 

of the left otic vesicle. Probe trapping is apparent in both channels, red and green. There is no signal 

in the brain. DAPI indicating nuclear staining. Kiaa0319 is labelled with Atto 550 (red). Kiaa0319-

like is labelled with Alexa 488 (green). Merge indicates a merge of all channels. 
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2.3.5.1 Light-sheet imaging 

The light-sheet microscope is equipped only with a 488nm wavelength laser, 

restricting the kiaa0319 labelling to Alexa 488 dye (Amp 4C). The images were 

then reconstructed as in section 2.2.6. Due to the inefficient light penetration 

through the tissue, the images could not be reconstructed in the highest resolution. 

As the stages on this in house build light sheet microscope are all manual, the 

specimen could not be turned during the imaging. This resulted in single-sided 

illumination of the sample. 

The myod labelling in the 5dpf embryos showed a specific signal limited to the 

muscle tissue and was not seen in the spinal cord or in the notochord (Figure 2.14). 

When looking into the 5dpf embryo labelled with the triple negative control, no 

signal was detected (Figure 2.14).  

 

 

Figure 2.14 Lightsheet microscopy and 3D reconstruction of 5dpf zebrafish control embyros  

The coronal and lateral view of a 3D reconstructed embryos. A positive myod and triple negative 

control indicating the accuracy of the protocol. The myod expression in a 120hpf embryo is limited 

to the muscle tissue, whereas the negative control shows no expression. The reference is an image 

of a coronal and lateral view of zebrafish body. 
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Furthermore, the embryos labelled for kiaa0319 (Amp 4C) were imaged at three 

different developmental stages. Earlier in development, at 3dpf (72hpf), a clear and 

strong labelling of the notochord was observed, with the two spinal cord neuronal 

lines being strongly labelled (Figure 2.15). The spinal cord is clearly labelled but 

not as strongly as the notochord. There is also a low level of kiaa0319 expression 

in the surrounding muscle. At 4dpf (96hpf), the kiaa0319 was highly expressed in 

the spinal cord and more prominently present in the notochord. At 5dpf (120hf), a 

clear labelling of spinal cord neuronal lines was observed, and an additional signal 

was seen in the notochord and surrounding muscle tissue (Figure 2.15). The 

kiaa0319 expression was also detected in the zebrafish gut at 120hpf (Figure 2.15). 

 

Figure 2.15 Lightsheet microscopy and 3D reconstruction of kiaa0319 expression in three 

zebrafish developmental stages  

A strong kiaa0319 expression in the notochord (white arrowhead) and a well-defined signal in the 

spinal cord (white arrow) are visible in earlier developmental stages (72hpf). The expression in the 

spinal cord is stronger at 96hpf. A subset of kiaa0319 positive cells can be observed in the notochord. 

At 120hpf, the kiaa0319 is expressed in the spinal cord, notochord and gut lumen. 
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2.3.5.2 Imaging of transgenic lines 

The localisation of Kiaa0319 to the notochord and spinal cord neuronal lines led 

me to investigate the identity of the kiaa0319 – positive cells. In order to confirm 

the location of spinal cord in relation to kiaa0319 positive cells, a tg(gfap:GFP; 

Oligo2:dsRed) double transgenic line was used in RNAScope protocol. In this 

transgenic zebrafish line the majority of secondary motorneurons, interneurons, and 

oligodendroglia cells are labelled with the GFP, whereas motor neurons and 

oligodendrocytes with DsRed. The tg(gfap:GFP; Oligo2:dsRed) zebrafish were 

kindly provided by Prof Bruce Appel [Shin et al., 2003]. 

When detecting the kiaa0319 expression with the 488 laser, I obtained a strong GFP 

signal in the spinal cord. To identify the kiaa0319 positive cells, I have performed 

an RNAScope on the above mentioned line and imaged with the confocal 

microscope. At 3dpf, the kiaa0319 (labelled with Atto 647) could not be seen in the 

gfap:GFP positive cells in the spinal cord, but was strongly expressed in the 

notochord (Figure 2.16). In order to control for signal coverage due to the strong 

GFP in the spinal cord, a WT specimen was labelled in the same procedure. The 

notochord was labelled with kiaa0319 probe, whereas the spinal cord remained very 

low on kiaa0319 signal.  

 

Figure 2.16 Confocal images of RNAScope on gfap:GFP Oligo2:dsRed transgenic zebrafish  

The maximum projections of the RNAScope protocol on transgenic line. A 4dpf triple negative 

control exhibits low unspecific binding. A 3dpf myod positive control (red) in the muscle tissue. A 

3dpf sample labelling kiaa0319 (red) in the notochord. The spinal cord is GFP positive (green). A 

reference image indicating notochord (red) relative to spinal cord (white arrow) containing 

kiaa0319-positive red dots.  Blue signal is DAPI. The scale bar is 50µm 
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2.3.6 kiaa0319 is asymmetrically expressed at specific developmental stages 

The WISH and FISH protocol both returned a minority of embryos (2 out of the 

pool of 20) with asymmetrically expressed kiaa0319 in the eyes. The observed 

asymmetry was always in the favour of the left side of the embryo (Figure 2.17).  

The expression of kiaa0319 is notably observed in the whole embryo, but appears 

stronger in the left eye, midbrain and midbrain-hindbrain barrier (Figure 2.17 

arrows). 

 

Figure 2.17 The asymmetric expression of kiaa0319 in 28hpf zebrafish embryo  

The DIG-labelled kiaa0319 (purple) is expressed ubiquitously in developing embryo. Arrowheads 

indicate stronger expression in the left side of the embryo in the eye and brain.  

 

 

The asymmetry observed through WISH was seen also after applying the FISH 

protocol (Figure 2.10 A). In order to test for asymmetrical gene expression, an RT- 

qPCR was run on zebrafish eyes. I staged 20 embryos of the WT strain AB.TU into 

24hpf, 36hpf and 48hpf and dissected the eyes. The same was done on pool of 5 

adult zebrafish (WIK strain).  RT-qPCR was run and obtained data analysed 

manually, combining the Ct values from 9 technical replicates. As a reference I used 

the same cDNA samples and ran them for eef1a1l2. The RQ scores were calculated 

as described in section 2.2.2.2.1. To see whether the difference in RQ scores reach 

the level of significance, a t.test was calculated for each RQ pair (L vs R). The value 

was then corrected from 0.05 to 0.01 using Bonferroni principle.  The significant 

difference (p < 0.01) in asymmetry was therefore observed at 24hpf and 36hpf and 

interestingly, in adults (Figure 2.18).  
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Figure 2.18 The RQ results of left vs right zebrafish eyes in three developmental stages  

At 24hpf, there is a significant difference (p < 0.05) between kiaa0319 expression in favour of the 

left eye. The highest and most significant (p < 0.01) expression is at 36hpf, where the left eye 

expresses almost 10x more kiaa0319 than the right eye. At 48hpf there is no significant differences 

in kiaa0319 expression when comparing left and right eye. Sample size 20 eyes per group. Three 

sets of three replicates. Scale difference due to lower levels of expression. 

 

 

2.3.7 kiaa0319-like 

The human KIAA0319L has been associated with dyslexia phenotype (discussed in 

Section 1.2.5). The PKD domains and high protein sequence similarity with 

KIAA0319 are making it an attractive candidate for dyslexia suseptibility. In order 

to test whether the similarities in the expression profile between kiaa0319 and 

kiaa0319-like exist also in zebrafish, the RT-PCR,  qPCR and in situ hybridisation 

have been used in the same manner as described above.  

RT-qPCR was performed as described in Sections 2.2.1 to 2.2.3. To confirm the 

presence of kiaa0319l transcripts throughout early embryonic development, primer 

pair 520/521 (Appendix A6) resulting in 119bp product were used for kiaa0319l 

cDNA (Figure 2.19). 
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Figure 2.19 Kiaa0319l expression profile throughout embryonic development 

The RQ scores indicate relative quantification of kiaa0319l expression throughout first 120hpf. The 

highest expression levels are within the first 6hpf. The kiaa0319l expression profile is similar to 

kiaa0319 expression profile. 

 

 

Following the RNAScope protocol (Section 2.3.5), a probe “C1” was created to 

detect kiaa0319l transcripts. The probe was applied simultaneously with the C2 

(myod) and C3 (kiaa0319). The kiaa0319l transcripts were labelled with Alexa 488 

and detected using a confocal microscope with argon laser. The triple negative 

control confirmed the efficient execution of the protocol, whereas the positive 

control (myod) returned a weak signal in the body (Figure 2.20 A).  
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Figure 2.20 kiaa0319 expression profile of three developmental stages  

A) Bodies of negative and positive control 5dpf embryo. Triple negative control is clear when 

observed under the argon laser, detecting Alexa 488. Positive control myod shows some unspecific 

binding in the body. B) 12hpf, 24hpf and 48hpf embryo expressing kiaa0319l in the head and body. 

At 12hpf kiaa0319l is ubiquitously expressed throughout throughout the nervous system. At 24hpf 

kiaa0319 is strongly expressed in the brain midline. 48hpf embryo exhibits high presence of 

kiaa0319l transcripts in the brain and the ciliated structure otic vesicle (white arrow). The kiaa0319 

expression is localised to zebrafish notochord at 48hpf. The grayscale image as a reference of 48hpf 

zebrafish head. White arrowhead indicates the otic vesicle. Reference image of a 24 hpf zebrafish 

embryo represents the area of imaged embryos. Scale bar 50µm. 

 

The distribution of kiaa0319l transcripts seems ubiquitous in the first 24hpf, 

however, the central nervous system tends to exhibit a stronger signal to the one in 

other tissues (Figure 2.20 B). At 48hpf, the kiaa0319l is highly expressed in 

zebrafish brain and the otic vesicle (Figure 2.20 B white arrow), however the 

labelling of the notochord (48hpf body) seems to be limited to a specific subset of 

cells, which remain unidentified. 
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As the kiaa0319l expression profile highly resembles the one of the kiaa0319, I 

have decided to quantify the levels of transcripts in the zebrafish eyes (Figure 2.21). 

The eyes have been dissected from the pool of 20 embryos at three developmental 

stages (24hpf, 36hpf, 48hpf). The adult eyes have been dissected and pooled from 

5 adult specimen. The kiaa0319 has been shown to be asymmetrically expressed 

throughout the early development and in the adult zebrafish eyes (Figure 2.18). 

However, the kiaa0319l seems to only be asymmetrical at the 36hpf and 48hpf 

(Figure 2.21). Firstly, the left eye at 36hpf exhibits a significantly higher level of 

kiaa0319l. The asymmetry then turns towards the higher right expression at the 

48hpf. When tested in adult zebrafish, there is no significant difference between left 

and right eye (Figure 2.21). 

 

 

Figure 2.21 The RQ results of left vs right zebrafish eyes in three developmental stages  

At 24hpf, there is no significant difference (p > 0.05) in kiaa0319l expression between left and right 

eyes. The significant (p < 0.05) difference in kiaa0319l expression is observed at 36hpf in the favour 

of the left eye. At 48hpf there, the direction of asymmetry of kiaa0319 expression is revered. Sample 

size 20 eyes per group. Two sets of three replicates. Scale difference due to lower levels of 

expression at 24hpf. 
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2.4 Concluding remarks 

Zebrafish genome contains only one copy of kiaa0319 and kiaa0319l genes. The 

expression of both genes peaks within the first 6 hours post fertilisation. Both genes 

are present during early embryo development and later appear limited to specific 

tissues, mainly the brain. The brain expression is in line with human data (Figure 

1.2), where KIAA0319 expression localises to cerebral neocortex, midbrain, 

hippocampus, and cerebellum of the developing human brain [Paracchini et al., 

2006a]. KIAA0319L is expressed in the brain cortical neurons, hippocampus, 

telencephalon and other regions [Poon et al., 2011a].  

Based on the expression profile of both, kiaa0319 and kiaa0319l, we can assume 

they are somehow linked together. In the first 6 hours post fertilisation, the 

kiaa0319 and kiaa0319l are widely expressed in the embryo (Figure 2.7 and Figure 

2.19). The observed expression of kiaa0319 and kiaa0319l in the eyes and the otic 

vesicles (Figure 2.9), the midbrain – hindbrain barrier (Figure 2.9), spinal cord and 

notochord (Figure 2.12 – Figure 2.15), support the suggestion of said genes being 

involved in functions other than neuronal migration.  

The results obtained from lightsheet microscopy and a 3D reconstruction enabled 

me to see the distribution of kiaa0319 in more detail (Figure 2.15). The expression 

of kiaa0319 has consistently been observed in the spinal cord and notochord. To 

pinpoint the identity of kiaa0319 labelled cells, I have performed the RNAScope 

protocol on the double transgenic line gfap:GFP  Olig2:DsRed. This allowed for 

detection of the gfap-positive cells (peripheral glia and the majority of secondary 

motorneurons) with the 488 laser on the confocal microscope. The sequential scan 

with 633 laser provided for a reliable simultaneous imaging of gfap-positive cells 

and kiaa0319 (labelled with Atto 647). The kiaa0319 - labelled cells have not 

overlapped with the gfap-positive cells, excluding glia cells and secondary 

motorneurons as candidates. The transgenic line, however, enabled us to 

discriminate the location of the labelled cells. A strong kiaa0319 signal was found 
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in the notochord rather than in spinal cord (Figure 2.16). Therefore, the identity of 

kiaa0319 (and kiaa0319l) containing cells in the spinal cord still remains a subject 

of investigation.  

When applying the probe for kiaa0319l transcript detection, a similar expression 

pattern was observed, with the exception of notochord labelling (Figure 2.20). The 

observed kiaa0319l expression was significantly lower compared to the one of the 

kiaa0319 (Figure 2.12 and Figure 2.20 body). Notochord is a transient structure and 

is homologous to human cartilage tissue. The roles of notochord are in patterning 

the neural tube and developing of organs. It secretes proteins of Sonic Hedgehog 

family, which affects the embryo laterality development [Stemple, 2005]. High 

expression of kiaa0319 in notochord could therefore be explained as additional 

indicator of kiaa0319 involvement in LR organisation of the developing embryo. 

RNAScope technology has proven to be a valuable technique for in situ detection 

of target transcripts. The major attribute of the RNAScope technique is the much 

shorter duration of the protocol. The protocol was highly efficient and 

straightforward in the older embryos (from 36hpf on), enabling the specific 

detection of kiaa0319 and kiaa0319l transcripts. Younger embryos however, were 

a subject to further protocol optimisations as they were too fragile to withstand the 

harsh conditions of the washing buffers and chemicals provided by the ACD. 

Therefore, the focus of the RNAScope results is mostly on the embryos post-

hatching, as their tissue managed to maintain integrity after the RNAScope was 

carried out. For further investigation, the focus of kiaa0319 and kiaa0319l detection 

could be carried out on cryoslices. This would enable a more reliable detection on 

a cellular level by discriminating between different cell types throughout various 

tissues. 
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3 Kiaa0319 function in zebrafish  

 

3.1 Abstract 

Zebrafish kiaa0319 is expressed ubiquitously in the early stages of development 

(up to 6hpf). At already 14 somite stage (16hpf), a specific and localised expression 

pattern can be observed in the head. Further along the development, kiaa0319 

specialises to the eyes, otic vesicle and the notochord. To understand kiaa0319 

function during the embryonic development, I have performed knock-out (KO) and 

knock-down (KD) studies using zebrafish as a model organism. Zebrafish genome 

conservation ranges up to 70% [Howe et al., 2013b] which makes it a great tool for 

studying gene functions in vivo and in vitro. The kiaa0319 gene is presented in a 

single copy and codes for two transcripts. I have created three different CRISPR 

constructs to generate a kiaa0319 KO zebrafish line. Additionally, I have performed 

a morpholino KD with two MOs affecting the translational start site and one 

affecting the splicing of the mRNA. No phenotype was observed in confirmed KD 

fish. The CRISPR/Cas9 protocol provided no KOs. While we cannot completely 

rule out technical artefacts, our results indicate kiaa0319 does not play a major role 

during early development and is potentially subsidised by other factors. 
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3.2 Material and Methods 

3.2.1 Morpholino experiments 

 

3.2.1.1 Morpholino design and preparation 

 Morpholino (MO) antisense oligonucleotides were designed by the GeneTools 

LLC (http://www.gene-tools.com/), based on Ensembl mRNA transcript ID 

ENSDART00000160645 for zebrafish orthologue of KIAA0319. To target the 

translation of the protein, two different translation blocking (TB) MOs were 

designed, targeting the 5’UTR of the gene (Figure 3.1). A sequence for TB1 MO 

and its 5-mispair specificity control were designed, followed by the sequence for 

TB2 MO and its control (Table 3.1). An SJ MO affecting splicing of RNA into its 

mature form, was designed between the Intron 2 and Exon 3 of kiaa0319 (Figure 

3.1). All the MOs were labelled with fluorescein for efficient visualisation once 

delivered to the cells. 

Lyophilised MOs were hydrated with 300µl of water to the stock concentration of 

1mM and vigorously shaken before aliquoted. A dilution series was prepared for 

each MO separately. Working concentrations of 50µM, 100µM, 250µM, 500µM, 

750µM and 1mM were stored in brown tubes in order to prevent bleaching of the 

fluorescein.  

 

 

 

 

 

 

http://www.gene-tools.com/


Kiaa0319 function in zebrafish model organism 

89 

 

Table 3.1 Morpholino sequences for translational blocking (TB) and splice junction (SJ) 

targeting MOs. 

MO Morpholino sequence 5’ -3’ 5-mispair specificity control 

TB1 CATGATGCCACTGCCGCCTTTTCAC CATcATcCCAgTGCCcCgTTTTCAC 

TB2 GCGATGGTTTCTAACAGACATTACT GCcATcGTTTgTAACAcAgATTACT 

SJ TCCTGATACTGAATGGGCCACAAAT TCgTcATAgTGAATcGcCCACAAAT 

 

 

3.2.1.2 Microinjection of morpholinos into zebrafish embryos 

The zebrafish embryos were collected from the MEP system as described in Section 

2.2.3.1 and prepared for microinjection. A microinjecting needle was filled with 

MO solution and calibrated to produce a 1µm diameter. This procedure was 

repeated for every new needle used in the experiment. Approximately a 100 

embryos were injected per construct in order to provide suitable numbers for 

statistical analysis. Embryos were kept in embryo water with methylene blue at 

28.5°C until further use. Prior overnight incubation, injected embryos were 

screened for death due to mechanical handling and affected embryos removed.  

 

Figure 3.1 USCS representation of morpholino locations on zebrafish kiaa0319   

TB (1) and TB2 (2) MO sequences (black) are located in the 5’ UTR region of zebrafish kiaa0319 

(red). SJ (3) sequence spans between the kiaa0319 intron 2 and exon 3 and targets splicing of the 

RNA. The two red lines represent two isoforms of zebrafish kiaa0319 gene. 
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3.2.1.3 Western Blot analysis of Morpholino injected embryos 

Zebrafish embryos of the same developmental stage were collected into pools of 30 

and fresh frozen on dry ice. Each tube was carefully defrosted, and tissue 

homogenized in 1 ml of homogenisation buffer (Appendix 7.1.2) using a Precylls 

homogeniser. A homogenate was spun down briefly to collect any connective tissue 

or large debris. Supernatant was removed, and the pellet was spun down for 90 min 

at 16.000rpm at 4°C. The remaining supernatant was removed and aliquots of 100µl 

membrane pellet were frozen at -20°C. Brain zebrafish homogenate, supernatant 

and membrane were used to test for the presence of Kiaa0319 protein. As a positive 

control, HEK293 cells with human KIAA0319-GFP overexpression has been used.  

KIAA0319 is a transmembrane protein, therefore I have chosen to test for its 

presence in the supernatant and the membrane of the cells.  

A 100µl of homogenisation buffer was added to obtain 2 mg protein per ml of 

suspension. Samples were then diluted to 1mg protein/ml in Laemmli buffer 

containing ß-mercaptoethanol and heated to 99oC for 10 minutes. The mix was 

vortexed and naturally cooled to room temperature. Collected samples were stored 

-20oC until further use.  

Prior to loading on the gel, samples were incubated at 50oC for 5 min and spun 

down. Invitrogen NuPage 4% agarose gel was used to run 5µg of protein per well 

at 150 volts for 60 minutes. The gel was then blotted for 1h onto PVDF membrane 

at constant voltage of 150 volts. The membrane was immunostained according to 

ECL method. Solution 1 was applied to a square petri dish and incubated at room 

temperature for one hour with shaking. The Primary antibody (Table 3.2) was added 

to Solution 2 (Appendix 7.1.2) and incubated overnight at 4oC with shaking. The 

membrane was washed four times with quick succession in Solution 3 (Appendix 

7.1.2) and then incubated in solution 3 twice for 15 minutes at room temperature 

with shaking. Secondary was added to Solution 4 (Appendix 7.1.2) and incubated 

for 1.5h at room temperature with shaking. The membrane was washed four times 

with quick succession in Solution 3 and then incubated in solution 3 twice for 15 
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minutes at room temperature with shaking as before. Solution 3 was replaced with 

PBS. The membrane was carefully blotted to a paper roll to remove all the excess 

liquid and placed facing down onto freshly made ECL reagent. After 3minute 

incubation in the dark, excess liquid was removed and the membrane placed 

between two layers of plastic film and imaged.  

Table 3.2 List of antibodies used for western blot analysis 

Antibody Host species Concentration 

Anti-KIAA0319 R7 rabbit 1:1000 

Anti-KIAA0319 70 guinea pig 1:200 

Anti-human β actin Mouse 1:10000 

Anti-rabbit * 1:35000 

Anti-mouse * 1:35000 

Anti-guinea pig * 1:10000 

* Secondary antibodies were kindly provided by Dr Gordon Cramb, School of Medicine, St Andrews 

University 

The antibodies R7, 70 and 74 were kindly provided by Antonio Velayos Baeza 

[Velayos-Baeza et al., 2008; Levecque et al., 2009]. All three antibodies are custom 

made. The R7 polyclonal antibody raised in rabbit targets the cytosolic domain of 

KIAA0319 with peptides ELRPKYGIKHRSTEH and EFESDQDTLFSRERM of 

the mouse KIAA0319 protein. The 70 polyclonal antibody raised in guinea pig 

targets the full intracellular C domain of human KIAA0319 protein. The 74 

antibody has the same features ad antibody 70, but has been made in a later batch. 

It should return the same results as the antibody 70, therefore we have used it as a 

control. 
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3.2.1.4 Quantitative Real time PCR of kiaa0319 morphants 

To assess the efficiency of the kiaa0319 knock down, a qPCR reaction using primer 

pair 518/ 519 returning a 121bp fragment (Figure 3.2) was set as described in 

Section 2.2.2.2. Comparing the quantity of morphant kiaa0319 mRNA relative to 

the WT embryos, the RNA from embryos injected with different MO 

concentrations has been transcribed into cDNA and the qPCR reaction set as 

previously described in Section 2.2.2.2. 

 

 

Figure 3.2 kiaa0319 qPCR fragment  

A screenshot of the UCSC genome browser for the region (thick black line) between Exons 2 and 3 

in kiaa0319 gene (upper red) and the same region in the kiaa0319 isoform (lower red). When 

transcribed into cDNA, this region is 121bp long. 

 

 

3.2.2 CRISPR genome editing protocol  

 

 The aim of this protocol was to introduce a point mutation to knock down the 

function of the kiaa0319 gene. The CRISPR protocol was carried as described 

before [Hwang et al., 2013a]. The protocol requires the synthesis of Cas9 enzyme 

mRNA and its guide sequences. Once these constructs are made, the co-injection 

of both is required for efficient editing of zebrafish genome (Figure 3.3). 
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3.2.2.1 Synthesis of Cas9 mRNA 

To synthesise the Cas9 mRNA, 10µg of the expression plasmid pMLM3613 was 

linearised for 3 hours at 37°C, using PmeI restriction enzyme reaction (NEB). The 

efficiency of the digestion reaction was verified on a 1% agarose gel. The 

successfully linearised plasmid was then purified using a QIAquick spin protocol 

(QIAGEN). To transcribe a capped RNA molecule, the reaction using Ambion 

mMESSAGE mMACHINET7 ULTRA kit was set as follows: 

 

T7 2X NTP/ARCA    10 µL 

T7 Reaction Buffer  [10X]  2 µL 

linear template DNA  [1µg]  6 µL 

T7 Enzyme Mix    2 µL 

Total volume      20 µL 

 

The transcription reaction was incubated for 2 hours at 37°C and then terminated 

by the addition of 1µL TURBO DNase for 15 min at 37°C. The capped-RNA was 

then polyadenylated as follows: 

Capping reaction    20 µL 

Nuclease-free Water    36 µL 

E-PAP Buffer    [5X]  20 µL 

MnCl2     [25 mM] 10 µL 

ATP Solution     10 µL 
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Four microliters of E-PAP enzyme were added to final reaction volume of 100 µL, 

incubated at 37°C for 45 min and put on ice. The polyadenylation reaction was 

stopped, and RNA precipitated by adding 10 µL of 3M Sodium Acetate Stop 

Solution (provided in the kit). The precipitated RNA was extracted by adding an 

equal volume (110 µL) of phenol/chloroform, followed by centrifugation at the 

highest speed for 30 minutes. The aqueous phase was transferred to a new tube and 

added 1 volume of isopropanol. The mixture was put on –20°C overnight. To obtain 

the RNA pellet, the precipitated mix was centrifuged at 4°C for 15 min at maximum 

speed and supernatant carefully discarded. The pellet was then washed with 300 µL 

of 70% ethanol, vortexed and centrifuged for 5min at 4°C. The ethanol was 

carefully removed by pipetting. The residual ethanol drops were left to dry out for 

30 min at room temperature. Precipitated capped and polyadenylated RNA was 

finally resuspended in 20 µL of RNase-free water and stored in 5 µL aliquots at –

80°C. 

 

Figure 3.3 The CRISPR Cas9 protocol  

A) Cas9 trancription. MLM3613 vector containing Cas9 was transcribed into capped and 

polyadenylated mRNA using T7 enzyme. B) gRNA design. DR274 vector (black) was restricted 

with HindIII and ligated with pre-made oligo duplexes (red) into the gRNA scaffold on the vector 

(red). The duplexes were then transcribed into gRNA through T7 transcription protocol. C) Delivery 

of CRISPR/Cas9 system. The Cas9 cap-mRNA-polyA and the gRNA have been co-injected into 

zebrafish embryos for efficient genome editing. 
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3.2.2.2 Guide RNA sequence design 

 The guide sequences were designed using ZiFiT Targeter software package 

(http://zifit.partners.org/ZiFiT). The target DNA sequence (zebrafish kiaa0319) 

was inserted in FASTA format which resulted in generation of primer pairs suitable 

to create guide RNA candidates.  For our purpose, three primer pairs (Appendix 

7.6.1) were chosen and ordered through Eurofins Genomic service 

(https://www.eurofinsgenomics.eu/).  

To create the guide RNA sequence, primer pairs were firstly ligated into the 

pDR274 vector (Addgene) and then in vitro transcribed. Firstly, primer duplexes 

were created to ligate the primers into the vector. The phosphorylation of 

oligonucleotides was set as follows: 

Primer I   [100 µM] 1 µl 

Primer II   [100 µM]  1 µl 

T4 Ligase buffer  [10X]  5 µl 

T4 PNK     1 µl 

ddH2O     42 µl 

Total volume     50 µl 

 

The reaction was incubated at 37°C for 30 minutes followed by heat inactivation 

for 20min at 65°C. Phosphorylated primers were annealed into duplexes by mixing 

equal volumes of the equimolar oligonucleotides in a new tube and adding 2.5 µl 

of 1M NaCl to the phosphorylated oligo pairs. The annealing reaction was 

incubated at 95°C for 5 min in a heat block. The tubes were left in the heat block 

and temperature was then set to 70°C. Once the temperature got to the set value, 

the heat block was switched off and allowed to cool to room temperature (1 hour). 

http://zifit.partners.org/ZiFiT
https://www.eurofinsgenomics.eu/
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Annealed primer duplexes were briefly vortexed, centrifuged and stored at 4°C until 

further use.  

The pDR274 vector was used to ligate the oligonucleotide duplexes. Firstly, 10µg 

of DNA was linearised for 3 hours at 37°C, using HindIII restriction enzyme 

reaction (NEB). The vector was dephosphorylised using Shrimp Alkaline 

Phosphatase (rSAP, NEB). Linearised plasmid was then gel purified using 

QIAquick gel extraction protocol (QIAGEN).  

To create the final construct for guide RNA transcription, the linearised 

dephosphorylated plasmid and phosphorylated oligonucleotide duplexes were 

ligated as follows: 

pDR274    [100ng]  0.7 µl 

phosphorylated oligo duplex     2 µl 

T4 Ligase buffer    [10X]   1 µl 

T4 ligase       1 µl 

 ddH2O       5.3 µl 

Total volume        10 µl 

  

The ligation mix was incubated at room temperature for two hours and transformed 

into DH5α competent cells. The newly constructed plasmids were isolated using 

QIAprep Spin Miniprep (QIAGEN). For each of the three constructs of pDR274 

vector containing oligonucleotide duplex, five clones were chosen at random and 

sent for sequencing using a standard M13 primer.  

The positive clones were further in vitro transcribed using MAXIscript Kit 

Procedure (ThermoFisher). The amount of DNA added into the mix was dependant 

on the plasmid concentration:  
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DNA template   1 µg  x µl 

Transcription Buffer  10X  2 µl 

ATP    10 mM  1 µl 

CTP    10 mM  1 µl 

GTP    10 mM  1 µl 

UTP    10 mM  1 µl 

T7 Enzyme mix    2 µl 

 Nuclease-free Water    y µl 

Total volume     20 µl  

 The transcription mix was incubated 1 hour at 37°C, followed by addition of 1 µl 

TURBO DNase. The mix was further incubated at 37°C for 15min and finally 

purified using RNeasy Mini Kit (QIAGEN) columns. The end product resulted in 

three guide RNA molecules (81, 85, 89). 

  

3.2.2.3 Microinjection of gRNA/Cas9 into zebrafish embryos 

The zebrafish embryos were collected from the MEP system as described in Section 

2.2.3.1and prepared for microinjection. A mixture of guide RNA and Cas9 mRNA 

in the ratio 1:3 was injected into one to four cell stage embryos. Approximately 200 

embryos per guide RNA have been injected with a gRNA/Cas9 mRNA mix. As a 

negative control, embryos with no Cas9 have been injected (gRNA only). 

The following day, dead embryos were removed, and embryo water replaced with 

the fresh medium. The embryos were then left in the zebrafish facility for 3 months. 

To determine the fish with the successfully edited genome, the fin clipping 

genotyping protocol has been applied.  
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3.2.2.4 Genotyping of injected zebrafish embryos 

The genotyping was performed using PCR and diagnostic restriction reaction. To 

obtain the genomic DNA, zebrafish tail fin was cut. The fin clipping was carried 

out under the close supervision of Dr Carl Tucker, the manager of the zebrafish 

facility at The Queen's Medical Research Institute at the University of Edinburgh. 

The fish were placed into the working tricaine solution (4.2ml tricaine solution in 

100ml clean tank water; Appendix 7.1.2), until there was no movement observed. 

The anaesthetised fish were individually put on a cover of a petri dish, and the tail 

fin was cut away with the scalpel. The clipped fin was inserted into PCR tubes 

containing 100µl of tail buffer (Appendix 7.1.2) and individual fish placed into 

labelled tanks, where they remained until their genotype has been confirmed.  

The PCR tubes containing tail clipping were added with Proteinase K solution (20 

mg/ml) and incubated at 55°C overnight. To precipitate the SDS in the Tail Buffer, 

12.5µl of 3M KOAc (Appendix 7.1.2) was added, vortexed and placed to 4°C for 2 

hours. The tubes were then centrifuged at maximum speed for 15 minutes at 4°C. 

The supernatant was transferred to a clean tube and subsequently used in a standard 

MyTaq PCR reactions.  

The primers to obtain the PCR fragment (Appendix 7.6.2) were designed 

simultaneosly with guide sequences, using ZiFiT Targeter software package 

(http://zifit.partners.org/ZiFiT). The software returned the optimal genotyping 

primer pair for each guide sequence, which were then ordered through Eurofins 

Genomic service (https://www.eurofinsgenomics.eu/). When optimising the PCR 

reactions, gradient PCR was set run in the G-STORM thermocycler (Labtech 

international) under the following conditions: 

 

 

 

http://zifit.partners.org/ZiFiT
https://www.eurofinsgenomics.eu/
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Denaturation 95°C  1 min 

Denaturation 95°C  15s,  

Gradient 58°C - 65°C 30s 

Elongation 72°C   72s 

Elongation 72°C   5 min 

 

The resulting DNA fragments were run on the gel in order to determine the optimal 

annealing temperature for each primer pair. The same procedure was repeated for 

the CRISPR/Cas9 constructs 81, 85 and 89.  

The PCR fragments were further digested with according restriction enzymes 

(Appendix F1) and the fragments run on the 2% agarose gel. In the presence of 

CRISPR/Cas9 induced mutation, the fragments are not expected to be cleaved in 

the restriction reaction.  

 

 

3.3 Results 

3.3.1 Morpholino knock down of zebrafish kiaa0319 

Morpholino (MO) system provides a non-transient knock down effect to study the 

function of the protein of choice. The application and analysis of such knock down 

(KD) is faster than the knock out (KO) techniques, therefore I have used it to study 

kiaa0319 function during zebrafish early embryogenesis.  

 

 

30 cycles 
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Splice junction MOs were injected with 50µM, 100µM, 250µM, 500µM, 750µM 

and 1mM concentration (Table 3.3). Approximately a 100 embryos per 

concentration have been injected and stored in embryo water with methylene blue 

at 28.5°C overnight. The following day the dead embryos were counted and cleaned 

away. In the first day post fertilisation normal death process occurs also in WT 

embryos. These embryos were not included in the calculation of the survival 

percentage as their mortality could be due to injection process or normal 

development.  

 Table 3.3 Titration of splice junction (SJ) MOs 

Concentration MO #Dead 1dpf #Dead 5dpf #Live 5dpf %live 5dpf 

 WT 18 0 65 100 

50µM SJ 36 3 88 96.70 

 
SJ-C 28 0 62 100.00 

100µM SJ 47 0 65 100.00 

 
SJ-C 27 0 79 100.00 

250µM SJ 30 2 74 97.37 

 
SJ-C 23 3 62 95.38 

500µM SJ 46 1 77 98.72 

 
SJ-C 24 0 65 100.00 

750µM SJ 24 2 76 97.44 

 
SJ-C 38 1 74 98.67 

1mM SJ 45 3 48 94.12 

 
SJ-C 44 2 58 96.67 
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After the titration experiment, 20 embryos per MO were collected on day 1 and day 

4 post fertilisation. Whole RNA was extracted and transcribed into cDNA. A qPCR 

reaction has been run for samples from 250µM to 1mM MO and referenced against 

WT level of kiaa0319 expression (Figure 3.4). At all concentrations, the MOs 

provided a notable knock down (KD) effect on the mRNA level. The control MOs 

(mismatched morpholinos) caused no significant knock down. At 1mM 

concentration, the control MO has also provided a significant reduction in kiaa0319 

expression, possibly due to the saturation of the injected oligonucleotides. The 

levels of kiaa0319 are lower at 1dpf than at 4dpf (Figure 3.4 light grey columns).  

At a concentration of 750µM, the KD effect persists to day 4 post fertilisation, 

suggesting this concentration is optimal for further experiments. 

 

Figure 3.4 Splice Junction MO knock down in 1dpf vs 4dpf zebrafish embryos  

Different concentrations of injected SJ MO and their controls referenced against the expression of 

kiaa0319 in WT zebrafish embryos of the same developmental stage. The KD is the most efficient 

at 750µM concentration. The control MOs provide no significant KD effect with the exception of 

samples injected with 1mM MOs. Light grey represents MOs at 1dpf. Dark grey represents MOs at 

4dpf. Error bars represent standard deviation SD. 
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Zebrafish embryos injected with translational blocking (TB1 and TB2) 

morpholinos were screened and imaged at 1dpf and 4dpf in order to observe any 

phenotypic differences during development. The TB MOs target the ATG 

translational start site, leading to more efficient KD. Following this, they should 

work efficiently at lower concentrations than SJ MO, therefore I have tested them 

from 50µM to 250µM. The observed survival rates have been over 90% (Table 3.4), 

suggesting the knock down has no negative effect on zebrafish development. 

  

Table 3.4 Titration of translational blocking (TB1 and TB2) MOs 

Concentration MO #Dead 1dpf #Dead 5dpf #Live 5dpf %live 5dpf 

50µM TB1 40 0 48 100.0 

TB1-C 35 0 29 100.0 

TB2 32 0 50 100.0 

TB2-C 10 4 50 92.6 

100µM TB1 14 0 42 100.0 

TB1-C 22 0 29 100.0 

TB2 14 1 55 98.2 

TB2-C 17 1 25 96.2 

250µM 

 

 

 

TB1 19 0 36 100.0 

TB1-C 13 0 35 100.0 

TB2 38 0 46 100.0 

TB2-C 14 2 36 94.7 
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To observe the phenotypic change in development in KD zebrafish, the embryos 

were firstly anaesthetised with tricaine solution and then imaged under the 

epifluorescence microscope. Comparison images were taken at bright field (BF) 

and GFP channel (Figure 3.5). The injected zebrafish that have successfully taken 

up the morpholino oligonucleotides are easily distinguished under the GFP filter. 

WT embryos exhibit no GFP signal (Figure 3.5). I have chosen the MO 

concentration of 100µM in order to check for any phenotypic differences in 

development. At day 1 post fertilisation, all surviving embryos exhibit a GFP signal. 

This signal mellows off by the day 4 post fertilisation, where only autofluorescence 

can be observed in the zebrafish yolk. No phenotype was observed in the majority 

of embryos. To check whether the efficiency of the knock down improves with the 

co-injection of both TB morpholinos, an experiment injecting 100 µM TB1, TB2 

and the mixture of both was conducted (Table 6.18). No phenotype was observed. 
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Figure 3.5 Translation blocking MOs at 1 dpf and 4 dpf  

The embryos were injected with a 100µM concentration of the MOs. The TB1, TB1-c, TB2 and 

TB2-C injected embryos exhibit ubiquitously distributed GFP fluorescence signal at day 1 post 

fertilisation. The GFP fluorescence cannot be observed at day 4 post fertilisation. The WT embryos 

are imaged for reference. No phenotype can be observed in the injected embryos. 
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A specific phenotype was observed in a small number of embryos (Figure 3.6). The 

changes included tail curvature, pericardial oedema and hydrocephalus (Figure 

3.6).  These are the standard phenotypes, observed in most morpholino studies. As 

the WT zebrafish exhibit the same phenotype, the above-mentioned changes could 

not be attributed to Kiaa0319 function, but rather to normal natural variation. 

 

Figure 3.6 Zebrafish MO – injected embryos exhibiting phenotype  

Zebrafish embryos were injected with a 100µM concentration of translational blocking (TB1) or its 

control (TB1-C) MOs. At 4dpf they are exhibiting phenotype including tail curvature, pericardial 

oedema and hydrocephalus. The WT control also exhibits listed phenotypes. a) and b) represent 

different batches of injection.  

 

 

To further check whether the MO have an effect on zebrafish development at higher 

concentrations, I have injected around 100 embryos with the 250µM concentration 

of TB1 and the control MOs. The injected embryos exhibit the GFP signal due to 

the presence of hybridised oligonucleotides also at day 4 post fertilisation as do 

embryos with injected control MOs (Figure 3.7). The WT embryos only exhibit 

autofluorescence, best seen in the yolk.  
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Figure 3.7 The zebrafish embryos injected with 250µM TB morpholino oligonucleotides  

Translational blocking MO at 250µM concentration persists in the zebrafish embryos until day 4 

post fertilisation. WT and TB-C MOs exhibit only autofluorescence GFP signal. 

 

 

 

3.3.1.1 Western blot analysis of MO – injected embryos 

To analyse whether the knock down of Kiaa0319 worked, a western blot protocol 

was applied to protein extracted from TB – injected embryos. As a positive control, 

HEK293 cells expressing KIAA0319-GFP have been used. The samples were 

prepared as described in Section 3.2.1.2. The samples were loaded on two 

membranes and detected with either anti-KIAA319 R7 primary antibody, anti-

KIAA0319 70 or anti-KIAA0319 74 (Figure 3.8). Human and zebrafish Kiaa0319 

are transmembrane proteins, therefore I have divided the samples into a 

homogenate (Figure 3.8A), a supernatant (Figure 3.8 B) and a membrane (Figure 

3.8 C) for zebrafish brain sample. The HEK293 cells containing overexpressed 

Kiaa0319 with the fused GFP protein have been divided into the supernatant and 

the membrane (Figure 3.8 D, E). The samples were loaded on the gel and ran as 

described in Section 3.2.1.2. All antibodies have returned several strong bands in 

all of the samples (Figure 3.8) indicating the antibodies are not specific for the use 

in zebrafish. The zebrafish Kiaa0319 is a 955aa (105kDa) protein compared to the 

human orthologue which is 1063aa (115kDa). The human KIAA0319 is coupled 
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with the GFP protein (27kDa), modifying the size of the protein from 115kDa to 

142kDa. 

 

Figure 3.8 Western blot analysis of Kiaa0319  

The WB analysis of zebrafish Kiaa0319 and human KIAA0319-GFP protein using three different 

antibodies: anti-KIAA0319 70, anti-KIAA0319 74 and anti-KIAA0319 R7. A) Zebrafish brain 

homogenate; B) Brain supernatant; C) Brain membrane; D) HEK293 supernatant with KIAA0319-

GFP overexpression; E) HEK293 membrane. Red rectangle indicates predicted zebrafish Kiaa0319 

protein at 105kDa and human KIAA0319-GFP protein at 142kDa. 

 

 

The western blot did not return reliable results when using custom made antibodies 

against KIAA0319. The specificity of the antibody is too low to say with confidence 

that the detected protein is zebrafish Kiaa0319. The sequence comparison between 

antibody peptides and zebrafish Kiaa0319 (Appendix F4.3) has revealed a low 

percentage of identity (lower than 60%). When compared to Kiaa0319-like, the 

Kiaa0319 paralog, the homology percentage remains rather low with the exception 

of the anti-Kiaa0319 70 antibody (82.0%). Despite the low sequence identity, the 

similarity of sequences reaches over 50% in all peptides compared, always being 

higher when aligning to the Kiaa0319-like sequence (Figure 7.21). 
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To test the efficiency of the commercially available anti-KIAA0319 antibody 

(Abcam), the above described procedure has been applied. Two different 

developmental stages have been compared in order to control for the possible low 

expression of the protein at a specific stage. There are no visible bands around the 

expected 105kDa / 115kDa size in neither of the samples (Figure 3.9). At 24hpf, 

one of the samples has not worked, which is seen by the missing band of β actin 

control. The rest of the samples worked well with the control anti-actin antibody 

but failed to produce a band at expected size for Kiaa0319 protein.  

 

 

Figure 3.9 Comparison of commercial vs custom made anti-KIAA0319 antibody at 24hpf and 

48hpf zebrafish  

The commercially available anti-KIAA0319 (Abcam) has failed to produce any bands at any of the 

developmental stages (left). The custom-made antibody anti-KIAA0319 R7 has produced unspecific 

bands at 48hpf. No protein was detected at 24hpf. Beta actin (42kDa) as a positive control. 
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3.3.2 CRISPR/Cas9 knock-out of zebrafish kiaa0319 

To efficiently edit zebrafish genome, a CRISPR/ Cas9 system has been optimised 

based on the protocol from Hwang et al., 2013 [Hwang et al., 2013b]. The Cas9 

mRNA was capped and polyadenylated as described in Section 3.2.1.2 and the 

guide RNAs transcribed as per Section 3.2.2.2.  

 

 

Figure 3.10 gRNA oligo duplex sequencing results  

Partial sequences of pDR274 vector obtained by using the standard primer M13 Fwd sequencing. 

Three different gRNAs were created and checked: 81, 85 and 89. The plasmids were then transcribed 

and the mRNAs co-injected with the Cas9 mRNA. The enzyme then recognised the gRNAs and 

introduced a double stranded break in the zebrafish gDNA.  

 

Once co-injected into 200 zebrafish embryos per construct, the embryos were left 

to develop up to 3 months. At this time, they have fully developed their tail fin, 

which made it easier to clip. The genomic DNA was then extracted from the clipped 

tail fins and a PCR reaction run to check for indel mutations.  

For the samples injected with constructs 81 and 89, the majority of PCR products 

returned the expected band size (Figure 3.11). In some cases (Figure 3.11 81: A, H, 

M, P; 89: G, H, J, K, L, M, N, O, U), no PCR product was obtained (Figure 3.11). 

Furthermore, the PCR products were digested with appropriate restriction enzyme 
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(Appendix 7.6.1) and ran next to the PCR products (lower case letters Figure 3.11). 

All the restriction reactions returned two bands, indicating the genome editing was 

unsuccessful. In the case of the introduced mutation, the restriction site would be 

deleted, and the reaction would return a single band of the same size as the PCR 

reaction.  

 

Figure 3.11 Genotyping results for CRISPR/Cas9 genome editing  

The expected size of PCR product for construct 81 is 555bp, for 85 is 566bp and for 89 it is 461bp. 

Sample 81) The PCR reaction was successful in all cases except A, H, M, P. The restriction reaction 

returned two fragments, indicating there are no indel mutations in the screened fish. Sample 85) The 

PCR reaction was unsuccessful despite previous optimisation. The WT sample consists of more than 

1 lane, indicating the unspecific binding of primers. None of the samples were successfully 

multiplied in the PCR reaction. Sample 89) The PCR reaction returned several positive and several 

negative results Sample sizes are as expected. The restriction reactions returned 2 bands, indicating 

no indel mutations in the screened fish. Capitalised letters indicate PCR product, lower case letters 

indicate restrictions of the PCR products. 

  



Kiaa0319 function in zebrafish model organism 

111 

 

3.4 Concluding remarks 

Following the mapping of kiaa0319 expression during early development (Chapter 

2), I decided to test for the functional activity of kiaa0319 in zebrafish. To test for 

kiaa0319 function, I used a knock down (KD) morpholino and a knock out (KO) 

CRISPR/Cas9 techniques. Morpholinos (MOs) are synthetic oligonucleotides 

complementary to target sequence. In order to affect the formation of the protein, 

we have had MOs designed to target the ATG translational site of kiaa0319. Two 

different MOs (TB1 and TB2) target the ATG site, preventing the translation of the 

protein. Additional MO, targeting splice junction of kiaa0319, has been designed 

(SJ MO). The MOs have been provided at 1mM concentration and diluted to several 

working concentrations (50µM, 100µM, 250µM, 500µM, 750µM). Following the 

injection of working concentrations, the optimal concentration has been chosen at 

750µM for SJ MO and 100µM for TB MO. Upon counting and image analysis, no 

phenotype has been determined at working concentration. A small number of 

embryos exhibited a phenotype (Figure 3.6), which could possibly be related to 

kiaa0319 KD (tail curvature, hydrocephalus, pericardial oedema). Further analysis 

of WT embryos, however, has shown the same number of embryos with the same 

phenotype, discarding the significance of observed physiological changes of 

kiaa0319 KD embryos. The lack of kiaa0319 KD phenotype could be assigned to 

several factors. Knocking down the kiaa0319 could potentially activate another 

gene, taking over the function of kiaa0319. The function of the KIAA0319 protein 

has been studied in human cell lines and in rodent models, however it has not been 

fully elucidated yet. The first functional characterization was conducted in rats and 

suggested a role in neuronal migration [Paracchini et al., 2006a] while more recent 

studies in mouse indicated the involvement in biological processes beyond brain 

development [Franquinho et al., 2017; Guidi et al., 2017]. Recent findings by Guidi 

et al suggest kiaa0319 involvement in auditory processing [Guidi et al., 2017]. The 

lack of phenotype in developing brain of KD zebrafish and kiaa0319 spatial 

distribution (See Chapter 2) support the idea of kiaa0319 function in processes, 

different to neuronal migration.  
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Alongside the KD study, I conducted a genome editing CRISPR/Cas9 KO study, 

aiming to introduce a stop codon mutation into zebrafish kiaa0319. The three guide 

RNAs (gRNAs) have been designed in order to knock out the kiaa0319, following 

the protocol described in section 3.2.1. The co-injection of gRNA 81, 85 and 89 

with the Cas9 enzyme was expected to change the amino acid sequence in the 

restriction enzyme cleavage site. A whole genome DNA has been extracted from 

the tail fin clippings of 3-month old zebrafish. The PCR reaction was followed by 

the restriction digest of the fragment in order to test for introduced mutations. The 

fragments returned two bands, indicating no mutation has been introduced. Failure 

of introducing the indel mutation to zebrafish genome could be attributed to the 

inappropriate concentration of injected RNA molecules. The suggested working 

concentration to obtain the highest mean frequency of mutations is 12.5ng/µl of 

gRNA and 300ng/µl of Cas-9 encoding RNA [Hwang et al., 2013b]. In order to 

determine the optimum concentration of the Cas9 and gRNA, a series of various 

concentrations should be injected into WT embryos and genotyped. The right 

concentration would then be injected in large scale and successful embryos left to 

grow to sexual maturity. Once they would be ready, pairing with WT zebrafish 

would return a F1 embryos. These embryos would be screened for introduced 

mutations. The positive specimen would then be crossed with each other, creating 

a knock out line. Once all the F2 (or further generations) zebrafish would carry a 

mutation, close observations would be made in early developmental stages. In situ 

hybridisation protocol would reveal the distribution of kiaa0319 and any other 

genes of interest. I have chosen not to proceed with this protocol due to time 

restrictions.
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4 Human regulatory sequence characterisation in 

zebrafish using Gateway Tol2 Protocol 

 

4.1 Abstract 

The Gateway Tol2 system uses a stable reporter gene transgenesis in zebrafish to 

test for functions of cis-regulatory sequences [Ishibashi et al., 2013]. For the 

purpose of this study, two different regulatory regions spanning genetic associations 

with neurodevelopmental traits were tested using the Gateway Tol2 system. The 

aim of this chapter was to test for the function of the human regulatory sequences 

using zebrafish as a model organism.  

 

The promoter region of the human KIAA0319 gene containing the rs9461045 

variant was previously characterised by Dennis et al. [Dennis et al., 2009]. The 

minor allele, which was associated with dyslexia, is linked to lower expression of 

KIAA0319 [Dennis et al., 2009; Paracchini et al., 2006a]. The adjusted minimal 

promoter sequence was cloned into the Gateway destination vector adjacent to the 

mCherry reporter cassette. The transposone was successfully integrated into the 

genome, however, no promoter activity was detected during the first 5 days of 

zebrafish development.  

 

The promoter sequence containing rs11855145 SNP is located in the intron of the 

PCSK6 gene [Brandler et al., 2013a; Scerri et al., 2011a; Shore et al., 2016]. The 

rs11855145 variant is associated with the better performance of the right hand in 

dyslexic population and also shown to affect the activity of the promoter. I cloned 

and screened the PCSK6 promoter region in the same manner as the KIAA0319 

promoter. No mCherry expression could be observed during the first 5 days post 

injection.  
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4.2 Methods 

Many vectors have been created for the Tol2 Gateway technology, enabling the 

expression of any foreign gene in zebrafish embryos [Kwan et al., 2007; Villefranc 

et al., 2015; Fisher et al., 2006b]. The Gateway technology enables the 

recombination of multiple inserts (entry clones) into a destination vector, a reaction 

called multisite recombination [Walhout et al., 2000; Cheo et al., 2004]. The inserts 

are generally divided to the 5’ entry vector, the middle vector and the 3’ vector. The 

5’ vectors usually consist of a promoter sequence, followed by the middle vector 

carrying a reporter cassette. The 3’ entry vectors entail a polyadenylation signal or 

a 3’ tag (fusion protein or an EGFP marker) [Kwan et al., 2007]. Each of the inserts 

is flanked by the required “att” recombination sequence. The att sequence 

recognises its analogue on the other insert and recombines with it, creating a single 

fragment consisting of several sequences. To successfully generate a clone that will 

integrate into the zebrafish genome, a destination vector containing the Tol2 

transposone backbone needs to be included in the multisite recombination. 

Destination vector can carry additional reporter cassettes driven under minimal 

promoters for easier screening when integrated in the genome [Kwan et al., 2007].  

 

4.2.1 The human KIAA0319 promoter 

 

4.2.1.1 Analysis of KIAA0319 promoter sequence 

The KIAA0319 minimal promoter region as described in Dennis et al (2009) was 

adjusted using primer pair 516/517 (Appendix C1). The genomic DNA (gDNA) 

was extracted from human neural stem cells (gibco N7800100). The 1128bp 

fragment was obtained in the Touchdown PCR reaction as follows: 
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Phusion® GC Buffer  [50mM]   10 µl 

dNTPs    [10µM]   1 µl 

Fwd 516 Primer  [10µM]  2.5 µl 

Rev 517 Primer  [10µM]  2.5 µl 

Human gDNA   [65ng/µl]  3 µl 

Phusion® High-Fidelity  

DNA Polymerase  [2,000 units/ml] 0.5 µl 

H2O      30.5 µl 

Total Volume     50 µl 

 

The reaction was run in the G-STORM thermocycler (Labtech international) under 

the following conditions: 

 

Touchdown               72°C → 70°C  

Denaturation  98°C 30s  

Annealing  70°C 30s 

Elongation  72°C  50 s 

 

 

 

10 cycles 

20 cycles 
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The reaction was run on a 1% agarose gel and the PCR fragment was purified using 

QIAquick Gel Extraction Kit as per manufacturers’ guidelines. The purified DNA 

fragment was then cloned into pCR8-Blunt II-TOPO and transformed into One 

Shot® TOP10 Chemically Competent E. coli cells. The cloning mix with cells was 

incubated on ice for 30 min and heat shocked at 42°C for 30s. A 250μl of S.O.C. 

medium was added and incubated at 37°C with shaking for 1 hour. The pre-culture 

was then put on a selective plate and incubated overnight at 37°C. The next day, a 

single colony was inoculated into liquid LB broth containing 100µg/ml 

spectomycin antibiotic and incubated overnight at 37°C with shaking. Bacterial 

culture was then harvested, and plasmids isolated using QIAprep® Spin Miniprep 

Kit according to manufacturer’s instructions.  

 

4.2.1.2 Gateway cloning procedure 

The Gateway Tol2 cloning enables precise and easy cloning of sequences due to 

the specially engineered recombination sites (att sites) flanking the region of 

interest. For the multisite recombination described in this chapter, attL and attR 

sites are required (for sequences see Appendix 7.5). The att sites recombine with 

the help of LR Clonase® II Plus enzyme and create a destination vector containing 

the chosen sequences of interest. 

The entry vector p5E-MCS with special recombination sites attL4 and attR1 (For 

plasmid map see Appendix 7.5.5.2) was opened with a SmaI digestion (Figure 4.2 

B):  

DNA p5E-MCS    [340ng/µl]  14.7 µl 

Restriction Enzyme Buffer   [10X]    3 µl 

SmaI        4 µl 

H2O        11.3 µl 
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The restriction reaction was incubated for 2 hours at 37°C and dephosphorylated by 

adding 5µl of Shrimp Alkaline Phosphatase rSAP. Additional incubation at 37°C 

for 30–60 minutes prevented re-ligation of the linearised backbone. The reaction 

was heat-inactivated at 65°C for 5 min. 

The KIAA0319 promoter was excited from pCR8-Blunt II-TOPO (Figure 4.2 A) 

using restriction reaction with EcoRI as specified by the manufacturer (NEB) 

protocol. The 1146bp product was run on a 1% agarose gel and purified using 

QIAquick Gel Extraction Kit (QIAGEN). Gel purification was followed by blunting 

of the fragment with Quick Blunting™ Kit according to the manufacturer’s protocol 

(QIAGEN). The blunt KIAA0319 product was ligated into p5E-MCS overnight at 

16°C using T4 DNA ligase (NEB).  The following day, the reaction was 

transformed into DH5α competent cells. 

The transformed cells were spread carefully on a pre-warmed kanamycin plate and 

incubated at 37ºC overnight. Overnight colonies were selected for plasmid isolation 

using QIAprep® Spin Miniprep Kit according the standard protocol (QIAGEN). 

The resulting plasmids contain a PCR product flanked by the L4 and R1 att 

recombination sites (Figure 4.1 A, B). 
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Figure 4.1 Gateway Multisite Recombination  

A) The Human promoter (blue line) was cloned into pCR8 Blunt II TOPO vector using T4 DNA 

ligase. B) The TOPO vector was digested by EcoRI to excise the promoter. P5E MCS vector was 

opened with SmaI. Using T4 DNA ligase, the promoter was cloned into the p5E MCS, creating an 

Entry vector. C) The Entry vector was added to p3E-mcs1, pME-Cherry and pDestTol2pACryGFP 

vectors and recombined using LR clonase Plus enzyme. Red bars represent restriction sites. Red line 

represents mCherry reporter cassette. Blue line represents the promoter sequence.   

 

 

In order to clone the mCherry reporter cassette next to the promoter region, a 

multisite recombination reaction (Figure 4.1 C) was set using an empty linker 

plasmid (p3E-mcs1), mCherry – containing plasmid (pME-Cherry) and KIAA0319 

promoter – containing plasmid (p5E-MCS-KIAA0319). Equimolar concentrations 

(150ng/µl) of p5E-MCS-KIAA0319, p3E-mcs1, pME-Cherry (Appendix 7.5.5.1) 

and pDestTol2pACryGFP (attR3/attR4) were used in a multisite Gateway 

recombination reaction to create pDest-Cherry-KIAA0319 destination vector 

(Figure 4.1 C) as follows: 
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p3E-mcs1    [124 ng/µl] 1.2 µl 

p5E-MCS-kiaa0319   [209 ng/µl] 0.7 µl 

pME-cherry    [99 ng/µl] 1.5 µl 

pDestTol2pACryGFP  [350 ng/µl] 0.4 µl 

TE buffer     4.2 µl 

TOTAL     8 µl 

 

The mix was incubated at 25ºC overnight with 2µl of LR Clonase® II Plus enzyme. 

The reaction was terminated with the addition of 1µl Proteinase K followed by brief 

vortexing and collection by short centrifugation. The solution was then incubated 

for 10 minutes at 37ºC and transformed into One Shot® Mach1™ T1 Phage-

Resistant Chemically Competent E. coli cells before overnight incubation on 

100µg/ml ampicillin plates. The cells were inoculated into liquid LB broth and 

incubated overnight at 37°C with shaking (225 rpm). The bacterial culture was 

harvested and plasmids isolated using QIAprep® Spin Miniprep Kit. The resulting 

plasmids were digested with NotI to screen for positive colonies. Selected positive 

plasmids were then sequenced by the DNA Sequencing and Fragment Analysis 

Facility at the Medical Research Council Protein Phosphorylation and 

Ubiquitylation Unit (MRC PPU) services at the University of Dundee. 

As a positive control, a human (Appendix 7.5.2) and zebrafish (Appendix 7.5.3) 

ubiquitous promoters were used in the same recombination reaction as described 

above. An p5E-MCS vector containing no regulatory sequences was cloned to 

control for phenotypes induced by the microinjection process (Appendix 7.5.4).  
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4.2.2 PCSK6 

The Gateway Tol2 system was adapted to analyse a predicted 1.8kb intronic 

promoter. Recent data [Shore et al., 2016] showed that this promoter region  

regulates a novel PCSK6 shorter isoform and potentially long non-coding RNA 

(lncRNA)in the opposite direction. To test for its activity throughout development, 

we have cloned the putative bidirectional promoter in to WT zebrafish using the 

Gateway Tol2 system. 

 

4.2.2.1 Analysis of PCSK6 intronic promoter sequence 

Human genomic DNA was obtained from a saliva sample of patients homozygous 

for the rs11855415 SNP (A/A).  DNA was used as a template for a PCR reaction to 

produce a final 1.8kb fragment containing the intronic promoter (Figure 4.3). The 

PCR reaction was set as follows: 

Phusion® GC Buffer  [50mM]  10 

dNTPs    [10µM]  1 

Fwd 281 Primer   [10µM]  2.5 

Rev 275 Primer   [10µM]  2.5 

Human gDNA   [65ng/µl]  3 

Phusion® High-Fidelity 

DNA Polymerase  [2,000 units/ml]  0.5 

H2O       30.5 

Total Volume      50 µl 
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The reaction was run in the G-STORM thermocycler (Labtech international) under 

the following conditions: 

Denaturation 98°C 30s,  

Annealing 58°C 20s 

Elongation 72°C  2min 

 

4.2.2.2 Gateway cloning procedure 

The PCR product was firstly cloned into pCR8-GW-TOPO in order to obtain a 

stable stock for further experiments (For all vectors see Appendix Table 7.5). The 

empty p5E-MCS vector was opened and phosphorylated as described in section 

4.2.1.2. The PCSK6 PCR fragment was then cut from the pCR8-GW-TOPO vector 

using PsiI. The linear p5E-MCS and the PCR product were run on a 1% agarose gel 

and purified using QIAquick Gel Extraction Kit. Purified fragments were then 

ligated using T4 DNA ligase and transformed into DH5α cells as described above. 

To select for constructs with correctly inserted PCR product, an XbaI restriction 

reaction was set as per manufacturers’ protocol (NEB), followed by sequencing of 

positive p5E-MCS-PCSK6 plasmids. 

Multisite Gateway recombination using pME-Cherry, p5E-MCS-PCSK6 and 

pMinTolR4R2 (attR4att/R2) led to a destination vector (Appendices 7.5.5.9 - 

7.5.5.11), containing a PCR product adjacent to mCherry reporter cassette, both 

flanked by the zebrafish Tol2 transposone backbone. The pENTR5’_ubi vector 

(Appendix 7.5.5.12) was used as a positive control and to test for transposase 

efficacy. An empty p5E-MCS pMinTolR4R2 (Appendix 7.5.5.13) destination 

vector has been used in the multisite recombination as a negative control. 

 

30 cycles 
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4.2.2.3 Generation of pCS-ZT2TP transposase 

Zebrafish transposase plasmid (pCS-zT2TP) has been kindly provided by the 

Kawakami lab [Suster et al., 2011]. NotI-HF restriction enzyme was used to 

linearise 10µg of pCS-zT2TP for 3 hours at 37°C. To purify the reaction, the 

mixture was added 5x volume of PB buffer and applied to columns from QIAquick 

Gel Extraction Kit. The linearised DNA was then washed with 750µl of PE buffer 

and eluted in 30µl of water. Eluted DNA was quantified and stored at -20 ºC until 

used for in vitro transcription: 

T7 NTP/ARCA  [2X]  10µl 

T7 Reaction Buffer [10X]  2µl 

linear template DNA  [9µg]   6µl 

T7 Enzyme Mix   2µl 

 

All the components were mixed together and incubated for 2h at 37°C. TURBO 

DNase (1µl) was added to terminate the capping in vitro transcription reaction and 

incubated 15 min at 37°C. Poly(A) tailing reaction was set in order to produce a 

more stable RNA molecule: 

 mMESSAGE mMACHINE® T7 Ultra reaction  20µl 

 Nuclease-free Water      36µl 

  E-PAP Buffer   [5X]     20µl 

 MnCl2    [25mM]   10µl 

 ATP Solution   [10µM]   10µl 

 E-PAP enzyme (4µl) was added to the reaction, reaching the final volume of 100 

µl, and incubated at 37°C for 45 min. The reaction was immediately put on ice. 
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Resulting CAP-RNA-PolyA mix was transferred onto QIAGEN RNeasy Mini kit 

columns and centrifuged for 15s at 8000G. RNA was washed with 350µl of 

RW1buffer was added to individual tubes and centrifuged for 15s. DNase I was 

added to the membrane and left for 15 min at room temperature to degrade any 

residual DNA molecules. The RW1 wash buffer was added and spun down for 15s, 

followed by 500µl of wash buffer RPE. After 15s centrifugation, the flow through 

was discarded and additional 500µl buffer RPE were added to the spin column. The 

tubes were then centrifuged for 2 min to efficiently wash the RNA. The RNeasy 

column was placed in a new 2 ml collection tube and spun for 1 min. 30µl of Rnase-

free water was added to the membrane and centrifuged 1min. Eluted RNA was 

quantified, aliquoted and stored at -80 ºC. 

 

4.2.2.4 Microinjection of zebrafish embryos  

Destination vectors and transposase enzyme were diluted to 150ng/µl for both DNA 

and mRNA. Equimolar concentration of DNA and mRNA were then mixed 

together and put on dry ice. A control injection mix without transposase mRNA 

(DNA:H2O) was prepared as a negative control to test for transposase activity.  

The microinjection needle was calibrated to inject 1–2nl of DNA:RNA injection 

mix. This procedure was repeated for every new injection mix. Zebrafish embryos 

were kindly provided by Dr Carl Tucker (Queen's Medical Research Institute at the 

University of Edinburgh). The embryos were collected fresh from the MEP (mass 

egg production) system and injected at 1-4 cell developmental stage. Roughly, 100 

injected eggs per construct were transferred to individual petri dish in a medium 

containing methylene blue at 28°C (50 embryos per dish).  All dead and unfertilised 

embryos were removed and discarded. The removal of dead embryos was repeated 

on day 1 post-injection.  
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4.2.2.5 Analysis of expression patterns: Immunohistochemistry 

Post injection embryos (20 embryos per stage) at 1-5 days post fertilisation (dpf) 

were collected and fixed using 4% PFA. Fixed embryos were incubated overnight 

at 4°C, followed by a methanol dehydration series. Each dehydration step (25% 

methanol, 50% methanol, 75% methanol, 100% methanol) was performed at room 

temperature for 5 min with shaking. At this point, embryos were stored at -20°C 

until further use. 

On the day of immunohistochemistry, embryos were rehydrated by reverse 

methanol series (100% - 25% methanol) and finally incubated for 5 minutes in PBT 

at room temperature with shaking. To permeabilise the chorions we incubated 

embryos in 10ug/ml Proteinase K (PK) at room temperature. The duration of the 

permeabilisation is dependent on the developmental stage (see Table 4.1). We post 

fixed the embryos in 4% PFA for 20 minutes at room temperature and washed three 

times for five minutes with PBT. To prevent unspecific binding of the primary 

antibody, we incubated the embryos in blocking solution for 3 hours at room 

temperature with shaking.  The primary mCherry Rat Monoclonal Antibody (Life 

Technologies). was diluted (1/1000) with  the same blocking solution, applied to 

embryos and incubated at 4°C overnight with shaking. 

 The following day, the primary antibody was removed by washing briefly 3 times 

for 5 minutes, followed by 4x30 minute washes in PBT at room temperature with 

shaking. Secondary Alexa Fluor® 594 AffiniPure Donkey Anti-Rat IgG (H+L) was 

diluted 1000x in the blocking solution and applied overnight at 4°C with shaking in 

the dark.  

 On the last day of the immunohistochemistry, embryos were washed briefly 3 times 

for 5 minutes, followed by 4 washes of 30 minutes in PBT at room temperature with 

shaking. We performed glycerol series (25%, 50%, 75%) and incubated the 

embryos in 75% glycerol until mounting. 
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Table 4.1 Duration of Proteinase K treatment relative to zebrafish developmental stage 

 Developmental stage PK treatment 

>12 hpf 2 min 

12 hpf 5 min 

24 hpf 8 min 

36 hpf 12 min 

48hpf 15 min 

72 hpf 20 min 

96 hpf 22 min 

120 hpf 25 min 

 

Bright field and fluorescence images were taken on Leica MZ16F and MZFLIII 

under 5x magnification. The images were obtained with Leica DFC 450C and 

DFC300 FX camera system and processed in Leica Application Software X (LAS 

X). 
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4.3 Results  

 

4.3.1.1 Analysis of KIAA0319 and control Gateway destination vectors 

Four different constructs were built using the multisite Gateway recombination 

procedure. The control vectors p5E-MCS_pDestTol2pACryGFP (Figure 4.2 B), 

zUBI-promoter pDestTol2pACryGFP (Figure 4.2 C) and hUC-promoter 

pDestTol2pACryGFP (Figure 4.2 D) were generated through a one-step multisite 

recombination procedure. The sample vector kiaa03919-promoter 

pDestTol2pACryGFP (Figure 4.2 A) was produced as described in section 4.2.1. 

The vector backbone pDestTol2pACryGFP includes an additional reporter cassette 

coding for the green fluorescent protein (GFP) which is driven by the cry promoter. 

This promoter is specific for the zebrafish lens and drives the expression of the GFP 

from early stages of the lens development. The EGFP expression is a secondary 

control for successful integration of injected constructs. When designing the 

pDestTol2pACryGFP destination vectors, I checked for potential formation of out-

of-frame shifts which could affect the promoter activity. The addition of the 

KIAA0319 promoter did not cause any rearrangements in the mCherry cassette and 

was successfully cloned into the destination vector. This procedure was repeated 

for all the constructs used for injections. 



Human regulatory sequence characterisation in zebrafish using Gateway Tol2 Protocol 

 

127 

 

 

Figure 4.2 KIAA0319 and control Gateway destination vectors  

A) kiaa03919-promoter pDestTol2pACryGFP destination vector. The 7912bp vector contains Amp 

resistance and an EGFP and mCherry cassettes. The EGFP expression is driven by the Cry promoter. 

The mCherry expression is driven by the human kiaa0319 promoter. B) An empty p5E-MCS 

pDestTol2pACryGFP destination vector. The 76785bp vector contains Amp resistance and an EGFP 

and mCherry cassettes. The EGFP is driven by the Cry promoter. There are no additional promoters. 

The SmaI restriction site is indicated with an arrowhead. C) Zebrafish ubiquitous promoter in 

destination vector. The zebrafish zUBI-promoter pDestTol2pACryGFP is a 10153bp vector contains 

Amp resistance and an EGFP and mCherry cassettes. The EGFP is driven by the Cry promoter. The 

mCherry is driven by the zebrafish ubiquitin promoter. D) Human ubiquitine C promoter in 

destination vector. The human hUC-promoter pDestTol2pACryGFP vector is a 8084bp vector 

contains Amp resistance and an EGFP and mCherry cassettes. The EGFP is driven by the Cry 

promoter. The mCherry is driven by the human ubiquitinC promoter. 

 

A reverse transcription PCR was used to test for the efficient integration of above 

mentioned constructs. The embryos have been collected at 4dpf and whole RNA 

extracted as described in section 2.2.2.1. The RNA was then transcribed into cDNA 

and a PCR ran using primers 524/525 (Appendix 7.1.6). These primers amplify the 

successfully integrated mCherry sequence in zebrafish genome. The resulting 

187bp PCR product was run on a 1% agarose gel (Figure 4.3).  
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The embryos injected with the empty negative control vector (Figure 4.2 B) exhibit 

low mCherry transcription (Figure 4.3 MCS). Similar observation was made when 

injecting the embryos without the transposase (Figure 4.3 DNA only). Additionally, 

a low level of positive control (Figure 4.2 C) was also observed (Figure 4.3 zfUBI). 

Only a single zebrafish injected with zUBI-promoter pDestTol2pACryGFP 

survived this experiment. The highest level of mCherry cDNA was observed when 

the embryos were injected with constructs carrying the human ubiquitous (hUC-

promoter pDestTol2pACryGFP) and KIAA0319 promoters (kiaa03919-promoter 

pDestTol2pACryGFP) (Figure 4.3 huUBI and KIAA0319 promoter). Non-injected 

WT embryos served to control for the accuracy of the experiment. A non-template 

control (Figure 4.3 H2O) served as a negative control for the PCR reaction.  

 

 

Figure 4.3 A reverse transcription PCR of 4dpf zebrafish embryos injected with different Tol2 

constructs.  

A 187 bp cDNA fragment confirming the presence or absence of mCherry construct in the zebrafish 

genome. A strong expression is observed in huUBI and KIAA0319prom samples. No bands are 

observed for H20 and WT. The MCS and DNAonly negative controls exhibit low concentration of 

cDNA. A fain band is seen in zfUBI sample. Injected constructs: MCS = p5E-MCS 

pDestTol2pACryGFP vector; DNA only = a control p5E-MCS pDestTol2pACryGFP plasmid 

without transposase; huUBI = positive control human (hUC-promoter pDestTol2pACryGFP); 

KIAA0319 promoter = kiaa03919-promoter pDestTol2pACryGFP; zfUBI = positive control 

zebrafish (zUBI-promoter pDestTol2pACryGFP); WT = Un-injected WT negative control; H20 = 

non-template PCR control. Marker for 100bp (NEB) 
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4.3.1.2 Imaging of zebrafish embryos 

The injected embryos were imaged at 1dpf and at 4dpf (Figure 4.4). The imaging 

parameters were fixed, ensuring the same conditions of imaging for all embryos. 

The images were obtained using bright field (BF), TexasRed filter to detect 

mCherry and GFP filter to detect EGFP signal. 

At 1dpf no EGFP or mCherry signal could be detected in any of the specimen. The 

dead embryos were discarded, and the embryo medium replaced with the fresh one. 

The embryos were then put back to incubation at 28.5°C and left to develop until 4 

days post fertilisation. At 4dpf, the embryos were screened firstly under the GFP 

filter in order to select the embryos with integrated Tol2 constructs. The successful 

integration was determined by an EGFP signal in the zebrafish lens. As the EGFP 

is driven by the cry promoter on the vector backbone, only the integrated copies 

will drive the expression in the lens. In order to detect the mCherry, the filter on the 

microscope was set to TexasRed. Upon detailed observation at the 5x 

magnification, no mCherry signal was observed in any of the embryos injected with 

the constructs in the pDestTol2pACryGFP backbone (Figure 4.4).  

To address the problem of no mCherry expression, the same sequences were cloned 

into the construct with pminTol-R4-R2 backbone as described in Section 4.2.2.2. 

No mCherry was detected, with the exception of the positive control, a zebrafish 

ubiquitous promoter driving the mCherry cassette on the pminTol-R4-R2 

transposone backbone (Figure 4.4 zfUBI pminTol-R4-R2). 
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Figure 4.4 Bright field and fluorescence images of 4dpf zebrafish embryos injected with 

different pDestTol2pACryGFP Destination vectors  

The sample (KIAA0319 promoter) construct was successfully integrated but no mCherry expression 

driven by the KIAA0319 promoter can be seen. The human ubiquitous promoter (huUBI) serves as 

a positive control for human sequences but drives no mCherry expression. The zebrafish ubiquitous 

promoter (zfUBI) in a pminTol-R4-R2 vector drives a mosaic mCherry expression at 4dpf. The 

negative control (MCS) drives no mCherry expression. Red signal corresponds to mCherry 

fluorescence detected under TexasRed Filter on Leica microscope. Green signal corresponds to 

EGFP fluorescence. Integration of the vector is confirmed with GFP positive lens (white arrows). 
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4.3.1.3 Analysis of handedness-associated PCSK6 locus 

To test the PCSK6 intronic regulatory sequence found to be associated with 

handedness, a series of destination vectors was generated, using a pMinTolR4R2 

(Appendices  7.5.5.11– 7.5.5.13) vector as a backbone. The positive control 

destination vector (Figure 4.5 B) was injected into 1-4 cell stages of zebrafish 

embryonic development which presented with mosaic mCherry expression in F0 

embryos. The same procedure was repeated for the PCSK6 promoter using the 

pminTol2R4-R2 (Figure 4.5 A) and p5E-MCS pMinTolR4R2 (Figure 4.5 C).  

 

Figure 4.5 Gateway destination vectors used in PCSK6 analysis  

A) PCSK6 promoter pminTol2R4-R2 vector. The 6491bp destination vector contains Amp 

resistance (orange) and a mCherry cassette (red) driven by the human PCSK6 promoter (blue). It 

contains att/L1 and attL2 recombination sites. B) A zebrafish ubiquitous promoter in pminTol2R4-

R2 destination vector. The zebrafish zUBI-promoter pminTol2R4-R2 is a 7965bp vector containing 

Amp resistance (orange) and a mCherry cassette (red). The mCherry is driven by the zebrafish 

ubiquitin promoter (blue). C) An empty p5E-MCS pMinTolR4R2 destination vector. The 4597bp 

vector contains Amp resistance (orange) and mCherry cassette (red). There are no promoters. SmaI 

restriction site is indicated with an arrowhead (red). 

 

The PCSK6 promoter-pminTol2R4-R2 integrated successfully as indicated by the 

RT PCR (Figure 4.6), however, following the image analysis, the level of mCherry 

expression was below detection at 2dpf or 5dpf (Figure 4.7 PCSK6 promoter).  
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Figure 4.6 Agarose gel image of RT PCR products for PCSK6 and the controls  

The RT PCR was performed using primers 275/281 in order to screen for successful integration of 

PCSK6 intronic promoter in zebrafish genome. A 1.8kb promoter region was integrated in the 

genome. When injection only with DNA (no transposase), the PCSK6 transcript could not be 

detected. There is no PCSK6 in the WT embryos. No template (H2O) control is clean.  

 

 

The injected embryos were imaged at 2dpf and 5dpf. The zUBI-promoter 

pminTol2R4-R2 drives a mosaic mCherry expression at 2dpf (Figure 4.7 A Positive 

control – UBI promoter), which was persisting up to 5dpf (Figure 4.7 B A Positive 

control – UBI promoter). When injected with the negative control, an empty p5E-

MCS pMinTolR4R2 without added transposase (Figure 4.7 Negative control – 

DNA only), no mCherry expression could be detected using the same settings as 

for the positive control.  
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Figure 4.7 Bright field and fluorescence images of Zebrafish injected with different pminTol-

R4-R2 Destination vectors  

A) 2dpf zebrafish embryos injected with positive control (zebrafish ubiquitous promoter), negative 

control (DNA only) and test sequence (PCSK6 promoter). The mCherry expression is visible only 

in the positive control. B) 5dpf embryos injected with the same constructs as A. The mCherry signal 

can be observed in the positive control. Red signal in negative control and PCSK6 promoter 

corresponds to mCherry autofluorescence detected under TexasRed Filter on Leica microscope. 
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4.3.2 Concluding remarks 

In this chapter I describe the application of a complex protocol for testing the spatial 

and temporal effects on gene expression of human regulatory sequences in zebrafish 

embryos. The KIAA0319 promoter sequence was chosen based on previous 

published work in which Dennis et al. identified single nucleotide polymorphisms 

(SNPs) associated with reading-related traits [Dennis et al., 2009]. Paracchini et al. 

(2006) identified a reduction in KIAA0319 expression influenced by risk haplotype 

for dyslexia on the chromosome 6p22.2. The reduction of Kiaa0319 by shRNA led 

to impaired neuronal migration in rat cerebral neurocortex [Paracchini et al., 

2006a]. The SNP rs9461045 was identified close to KIAA0319 transcription start 

site and shown to have an effect on binding of transcription factors. Additionally, 

Dennis et al. characterized a minimal promoter sequence, which I have altered for 

the purpose of this study [Dennis et al., 2009] (see Figure 4.1).   

Once the method was established, I applied it to the PCSK6 locus, to study a 

regulatory region associated with handedness, as described by Shore et al. (2016). 

Firstly, I aimed to test for the activity of the human regulatory regions in zebrafish. 

If successful, the same protocol would then be used for testing the effects of above-

mentioned variants on the activity of regulatory regions.  

In order to control for the optimal effect of transposition, I have injected a mix of 

the positive control plasmid (zUBI-promoter pminTol2R4-R2) and the transposase 

mRNA in various concentrations.  Through the imaging and the percentage of 

survival, I have acquired the optimal concentration of injected mixture. At the 

equimolar concentration of 150 ng/µl, the zebrafish embryos exhibit a clear 

mCherry signal and their survival rate remained over 80%. Approximately 100 

embryos have been injected with the same construct. No mCherry signal was 

detected by any of these two regulatory sequences when inserted in the 

pDestTol2pACryGFP backbone. Despite the lack of mCherry expression, I could 

observe a clear EGFP signal in the zebrafish retina (Figure 4.4). The following RT 

PCR (Figure 4.3) confirmed the presence of the promoter sequence cDNA in all of 

the injected embryos. When using the pMinTolR4R2 backbone, the positive and 
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negative controls worked as expected (Figure 4.6). The vectors including 

KIAA0319 or PCSK6 regulatory region have been integrated in the genome (Figure 

4.3) but did not drive any mCherry expression.  

The results could be explained in different ways: 1) we have missed the time of 

KIAA0319 and PCSK6 Tol2 promoter activity (resulting in the lack of mCherry 

expression); 2) the promoters are active in single cells, which could be detected 

under the higher magnification and using a better imaging system. 3) The failure to 

detect the mCherry expression driven by the human regulatory sequences could also 

be due to zebrafish transcription machinery inability to recognise this particular 

sequence. This could be due to the conservation of the sequences, but as shown in 

the Section 1.3.2.3, the Tol2 protocol may work also for sequences with low 

conservation. 

Based on the preliminary data obtained in Chapter 2, the highest expected activity 

of KIAA0319 promoter sequence would be in the first 5 hours post fertilisation. 

Time constrains made it impossible to obtain data for the first 5 hpf, possibly 

missing the peak activity of the promoter. In addition to above mentioned reasons, 

the inability of the KIAA0319 promoter sequence to drive mCherry expression 

could also be due to its design. The designed promoter sequence is not causing any 

out of frame rearrangements, however there might be certain zebrafish 

transcriptional factors that are not able to bind to the human promoter sequence.  

Additional work on human promoter sequences is required. In order to say with 

confidence whether human KIAA0319 promoter sequence drives a time and tissue 

specific expression in zebrafish, I would need to clone the exact sequence, as used 

in the previous study by Dennis et al. The promoter would then be tested for its 

activity during early zebrafish embryogenesis. Once characterised, I would design 

a new construct, containing the entire regulatory sequence, including the 

rs9461045. Furthermore, I would perform a point mutagenesis in order to change 

the rs9461045 variant. This would enable me to test for the effect of rs9461045 

minor allele on KIAA0319 activity in zebrafish neurodevelopment. 
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5  Discussion 

 

The KIAA0319 is a strong dyslexia candidate gene. It was shown to be highly 

expressed in human, mouse and rat brain [Paracchini et al., 2006a]. Independent 

association studies support KIAA0319 role in dyslexia phenotype with the 

associated genetic variants residing mostly within the KIAA0319 promoter region.  

[Luciano et al., 2007; Harold et al., 2006; Paracchini et al., 2008; Dennis et al., 

2009; Cope et al., 2005; Paracchini et al., 2006a; Francks et al., 2004; Couto et al., 

2010; Pinel et al., 2012]. In this thesis I have mapped zebrafish kiaa0319 expression 

pattern throughout embryonic development using in situ hybridisation. Due to the 

sequence homology and its involvement in dyslexia [Couto et al., 2008], I have 

decided to map the expression of kiaa0319-like (kiaa0319l) in parallel. 

Additionally, I have attempted to generate kiaa0319 knock out (CRISPR/Cas9) and 

knock down (morpholino) lines, to study kiaa0319  function. As for most of genetic 

associations with complex traits, the KIAA0319 variants associated with dyslexia 

reside in noncoding region. Cellular studies have shown that these variants affect 

gene expression regulation [Shore et al., 2016; Dennis et al., 2009] . Similarly, the 

genetic variants at the PCSK6 locus have shown to affect the efficiency of an 

intronic promoter. I used the Tol2 Gateway system to test for spatio-temporal 

function of mentioned human promoters. 

In this project I have aimed to 1) characterise zebrafish kiaa0319 expression 

throughout development, 2) identify the function of kiaa0319 throughout 

embryonic development and 3) test for temperospatial activity of human regulatory 

sequences using zebrafish as a model organism. 
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5.1 Kiaa0319 and Kiaa0319-like expression pattern 

throughout zebrafish development 

To date, there are no kiaa0319 studies conducted in zebrafish. I have conducted the 

first ever study mapping zebrafish kiaa0319 expression throughout early 

developmental stages. In Chapter 2, I have performed in situ hybridisation (ISH), 

using 3 different techniques: Whole mount ISH (WISH), Fluorescence ISH (FISH) 

and a novel technique: RNAScope. My results indicate the highest expression of 

kiaa0319 (Figure 2.7) and kiaa0319l (Figure 2.19) in the first 5 hours post 

fertilisation (hpf). In the later embryonic development and especially at around 30 

hpf, a strong and consistent signal is limited to the sensory organs (eyes, otic 

vesicle), brain and notochord (Figure 2.9 B and C). The notochord is a chordate 

embryonic midline structure leading to the development of vertebrae in zebrafish 

[Stemple, 2005]. It is a transient structure, which is also evident in the RNAScope 

kiaa0319 expression data.  The kiaa0319 gene is expressed in the notochord of 2 

and 3 days old zebrafish embryos but becomes less abundant the older the embryo 

becomes (Section 2.3.5). The 3D modelling of kiaa0319-labelled zebrafish 

indicates a strong expression in the notochord, more specifically in the notochord 

sheath at 72hpf (3 days). This expression almost completely disappears by day 5 

post fertilisation (Figure 2.15). The pattern of kiaa0319 expression is in line with 

the maturation of the notochord, where approximately 70% of notochord cells 

migrate outward to form the sheath epithelium [Dale and Topczewski, 2011; 

Yamamoto et al., 2010]. The residual signal is very scarce, consistent with the 

hypothesised transition of notochord into the vertebrae.  

Interestingly, when comparing kiaa0319 expression profile to the homologous 

dyslexia candidate gene kiaa0319-like (kiaa0319l), the levels of the kiaa0319l 

expression in the notochord are very low (Figure 2.20). The human data (Figure 

1.2) and the data shown in this thesis (Figure 2.19) indicate kiaa0319l expression 

levels are much higher than kiaa0319 (Figure 2.7). However, when testing for 

kiaa0319l expression with a more sensitive technique, such as qPCR, I have been 
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able to detect the expression in the eyes, with the expression levels pattern similar 

to the one of the kiaa0319. This finding indicates the kiaa0319 and kiaa0319l could 

have a specific role in the development of the sensory organs, however, only the 

kiaa0319 is involved in the notochord biology.  

The strong expression of kiaa0319 in the zebrafish brain and a subset of cells in the 

spinal cord opens a question of the cell identity. I have used a transgenic line 

tg(gfap:GFP; Oligo2:dsRed) with GFP labelled oligodendroglia cells and DsRed 

labelled motor neurons and oligodendrocytes to see whether the kiaa0319 and 

GPF/DsRed signals in the cells overlap. Confocal imaging indicated that kiaa0319-

positive cells are in fact not oligodendroglia, motor neurons or oligodendrocytes. 

Due to the large amount of data implicating kiaa0319 in neuronal migration, it 

would be of importance to identify the kiaa0319-positive cells. This information 

would help us expand the understanding of the kiaa0319 role, may it be involved 

in the neuronal migration or not. 

 

5.2 Kiaa0319 function in zebrafish development 

To test for Kiaa0319 function throughout zebrafish development, I have conducted 

a knockdown (morpholino, MO) and a knockout (CRISPR/Cas9) studies. The 

optimal concentration for the MO knockdown was confirmed through the qPCR 

reaction, comparing transcript levels of WT fish to the ones injected with various 

concentrations of splice junction (SJ) MOs (Figure 3.4). Analysis of ~100 MO 

injected zebrafish embryos returned no significant phenotype (Figure 3.7). The 

translational blocking (TB) MO knockdown remained unconfirmed. The 

characterisation of the protein levels was not possible due to the lack of appropriate 

antibodies. However, no phenotype was detected when injected with translational 

blocking TB1 or TB2 MOs (Figure 3.5).  

Furthermore, the KO CRISPR/Cas9 study failed to produce a kiaa0319 mutant 

zebrafish. The genotyping revealed no indel mutations in the ~200 embryos injected 
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with the gRNA plasmid and Cas9 mRNA (Figure 3.10). The fish were screened by 

fin clip genotyping, followed by a PCR and a diagnostic digest reaction. In the 

presence of the mutation, the restriction site in PCR fragment would be destroyed 

and the fragment would not be digested. However, all the digested PCR fragments 

returned a double strand indicating no successful mutation was introduced in the 

designed sites. Further knock out design, testing for a variety of conditions such as 

titrating the concentration of the mRNAs, would be necessary in order to say with 

confidence that CRISPR/Cas9 returned no successful knockout.  

 

Taken together, while I cannot completely rule out technical artefacts leading to 

possible experimental failure, the MO results are in line with the latest research by 

Martinez-Garay and Guidi [Guidi et al., 2017; Martinez-Garay et al., 2017]. 

Kiaa0319 knock out mice exhibit no phenotype in gross morphology and no 

impaired neuronal migration [Martinez-Garay et al., 2017]. Additionally, when 

kiaa0319 and kiaa0319l are simultaneously knocked out,  no phenotype was 

observed, however, novel behavioural changes in sensory processing have been 

displayed [Guidi et al., 2017]. These data are in line with the magnocellular theory 

of dyslexia, which suggests dyslexia is a result of the visual and auditory system 

impairment (reviewed in Section 1.1.1) 

To check for behavioural changes in kiaa0319 knock down and knock out zebrafish, 

we have established a collaboration with Dr Caroline Brennan at the Queen Mary 

University London, who studies learning and attention in the various zebrafish lines 

by the means of automated assays [Parker et al., 2012b, 2013b, 2012a, 2013a]. The 

Brennan lab is planning to conduct behavioural analyses on the knock down and 

knock out zebrafish with the emphasis on the sensory perception. 
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5.3 Testing for human regulatory sequences using zebrafish 

as a model organism 

Dyslexia is a complex trait involving multiple genetic factors (reviewed in Section 

1.2). An increasing amount of association studies revealed variations associated 

directly with dyslexia or dyslexia-related traits (reading, phonological awareness, 

phoneme recognition, etc). The KIAA0319 minimal promoter sequence has so far 

been characterised using a cell culture model [Dennis et al., 2009]. To test for the 

human KIAA0319 promoter region spatiotemporal function in zebrafish, I have 

cloned the minimal promoter region as characterised by Dennis et al (2009) in the 

Tol2 Gateway system. The Tol2 is a transposone system with random integration 

into the zebrafish genome through the assistance of the transposase enzyme 

[Kawakami et al., 2000]. The advantage of this system provides the integration of 

any regulatory sequence in the zebrafish genome, independent of the sequence 

conservation [Korzh, 2011]. The KIAA0319 promoter was cloned upstream to the 

mCherry reporter cassette, aiming to activate mCherry expression when the 

promoter is active. I have designed a positive control containing zebrafish 

uniquitous promoter, a human ubiquitin C promoter and a negative control 

containing no regulatory sequence. The zebrafish positive control manifested in 

mosaic mCherry expression, confirming the efficient cloning design. Finally, a 

KIAA0319 promoter region was cloned upstream mCherry, however no mCherry 

signal was observed in the first 5 days post fertilisation.  

In addition to the KIAA0319 promoter, I have tested also for the recently 

characterised bidirectional promoter in the PCSK6 intornic region [Shore et al., 

2016]. The PCSK6 has been associated with handedness in  dyslexic population 

[Scerri et al., 2011a; Brandler et al., 2013b]. Furthermore, Shore et al (2016) 

characterised the variant rs11855145 within the intronic promoter region, which has 

been shown to alter the binding site for nuclear factor(s) [Shore et al., 2016]. In this 

thesis, I have taken the bidirectional promoter as characterised by Shore et al (2016) 
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and cloned it into the Tol2 Gateway system. As with the KIAA0319 human 

promoter, no mCherry signal was observed in the first 5 days post fertilisation. 

There could be several possible explanations to why mCherry signal was not 

present in the KIAA0319 and PCSK6 containing embryos:  

1) The timing of detection was misaligned with the promoter activity. Considering 

the kiaa0319 expression data from Chapter 2, the highest expression is observed 

within the first 5 hours post fertilisation (Figure 2.7) and in adult brain (Figure 2.5). 

However, when detecting for promoter activity, the first analysis was conducted at 

24hpf and onward. This could well be the reason I have missed the peak of 

expression and would have to be looking into the specialised cells (notochord) to 

be able to detect mCherry signal. As the PCSK6 is involved in the Nodal pathway 

and setting up the early embryonic asymmetry, the promoter would be expected to 

be active in the early time points of zebrafish development. The zebrafish laterality 

organ, the Kupffer’s vesicle, develops around 12 hours post fertilisation [Essner et 

al., 2005]. As the Kupffer’s vesicle is a transient structure, I might have missed the 

distribution of mCherry at 24hpf and later stages. However, the tested region is an 

intornic promoter and we cannot predict it to have the same function as the main 

promoter sequence. 

2) The mCherry expression could not be detected due to the imaging settings I have 

been using. The integration of mCherry into the zebrafish genome has been 

confirmed through reverse transcription PCR at day 4 post fertilisation (Figure 4.5), 

which could not have been seen if there was only the residual plasmid of the 

unincorporated transposone. I can conclude the KIAA0319 and PCSK6 promoters’ 

activity cannot be detected at an organism-wide level and advise for further, more 

detailed analysis.  

3) The activity of the promoters could be regulated by distal regulatory sequences, 

which would work in tandem. Some promoters require the presence of cis or trans 

elements to function, such as enhancers. This, however, is not possible when the 

promoter sequence is cloned in isolation into the foreign genome.  
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5.4 Summary 

I have conducted the first ever study of kiaa0319 expression and function in 

zebrafish during early embryonic development. My data indicate kiaa0319 is 

expressed ubiquitously in the first 5 hours post fertilisation and later becomes 

restricted to the eyes, otic vesicle and notochord. Assuming there were no technical 

issues, no obvious changes in zebrafish phenotype were pinpointed when kiaa0319 

function is knocked down.  In parallel, I have tested for kiaa0319l expression, an 

additional dyslexia candidate gene with high homology to the kiaa0319. The 

expression is similar to the one of the kiaa0319, however no kiaa0319l was detected 

the notochord. This indicates kiaa0319 has a specific role in early development of 

sensory organs and body axis formation (notochord) but is not necessary for the 

function of these structures. The localisation of kiaa0319 to the sensory organs and 

the lack of phenotype in the knock down is in line with the magnocellular theory of 

dyslexia. This is the first time the zebrafish has been used to study these specific 

dyslexia genes. My data suggest that further work is required to test for potential 

kiaa0319 involvement in sensory processing. More generally, I have demonstrated 

how zebrafish is a valid model organism to address important questions of gene 

expression distribution, its function and the function of noncoding sequences 

throughout time and tissue. My work suggest that zebrafish has the potential to 

advance the field on neurogenetics by providing a range of protocols to study both 

genes and genetic associations with neurodevelopmental disorders to overcome 

challenges presented by other more widely used models (i.d. cell lines and rodents) 

in this field.    
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7 Appendices  

7.1 Appendix A  

7.1.1 Appendix A1 Enzyme catalogue  

 

Table 7.1 List of enzymes with reference numbers and the company 

Enzyme Reference number Company 

DNaseI  79254 QIAGEN 

EcoRI R0101S NEB 

GoTaq Green M7122 Promega 

LR Clonase® II Plus 

enzyme 

12538120 Life Technologies Ltd 

NotI-HF R3189S NEB 

Poly-A tailed M0276S NEB 

Pronase 101659210-01 Roche Diagnostics Ltd. 

Proteinase K 11588916 ThermoFisher Scientific 

RNase Inhibitor, Murine M0314S NEB 

Shrimp Alkaline 

Phosphatase rSAP 

M0371S NEB 

SmaI R0141S NEB 

SP6 polymerase  M0207S NEB 

T3 RNA polymerase M0378S NEB 

T4 DNA ligase M0202S NEB 

Vaccinia Capping System M2080S NEB 
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7.1.2 Appendix A2 Buffers and solutions 

 

Table 7.2 List of buffers and solutions   

Name Recipe 

0.1% Methylene 

Blue Stock Solution 

0.1 g methylene blue-trihydrate, H2O to 100mL 

0.2x SSCT SSC + 0.01% Tween20 

3M KOAc pH 4.8  Mix 29.4 g of potassium acetate, 40 mL of dH2O, add 

HCl to pH 4.8, and dH2O to 100 mL (Filter sterilize) 

(store at 4oC) 

10x PBS 80g NaCl, 2g KCl, 7.62g Na2HPO4, 0.77g KH2PO4, 

H2O to 1000mL (pH 7.4) 

1M Tris-HCl 27g Tris-HCl, 23g Tris base, H2O to 1000mL (pH 9) 

20x SSC 175,3g NaCl, 88,2g Na Citrate, H2O to 1000mL (pH 7.0) 

4% PFA 4 g Paraformaldehyde powder, H2O to 100mL PBS 

Alkaline phosphatase 

buffer (NTMT) 

1ml NaCl 5M, 2.5ml (2M) Tris-HCl pH9.5, 1.25ml 

MgCl2 (2M), 5ml Tween20 10%, Top up to 50ml with 

H2O 

Blocking solution 10% normal goat serum (NGS), 1% DMSO, 0.5-0.8% 

Triton-X100 in PBS 

Danieau solution 101.7g NaCl (1740mM), 1.56g KCl (21mM), 2.96g 

MgSO4•7H2O (12mM), 4.25g Ca(NO3)2 (18 mM), 

35.75g HEPES buffer (150 mM)  

Hybridisation 

solution 

50% formamide, 5X SSC, 1%Tween20, 0.5mg/ml 

Torula yeast  mRNA, 50µg/ml heparin  

Homogenisation 

buffer   

50 mM Hepes, 0.25M sucrose, 5 mM MgCl2 (0.5 mM 

EDTA, optional) and 1 x Roche Complete protease 

cocktail inhibitors, pH 7.4 
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Maleic Acid Buffer 

(MAB) 

150 mM NaCl, 100mmMalic Acid, pH  7.5 

Methanol series 100% MeOH, 75% MeOH:25% PBT, 50% MeOH:50% 

PBT, 25% MeOH: 75% PBT, 1x PBT 

Methylene Blue 

Working Solution 

2ml of 0.1% methylene blue, Danieau solution to 

1000mL 

MS-222 (Tricaine) 400mg Tricaine, 2.1mL Tris-HCl (1M), H2O to 100mL 

(pH 7) 

Solution 1  40 ml PBS, 4g non-fat milk powder, 0.08 ml Tween 20  

Solution 2 16 ml PBS, 4 ml Solution 1, 0.1 ml Tween 20 

Solution 3 500 ml PBS, 1 ml Tween 20 

Solution 4 10 ml PBS, 10 ml Solution 1, 0.1 ml Tween 20 

Tail Buffer  100mM TrisHCl, pH 8.5, 200mM NaCl, 5mM EDTA, 

0.2% SDS 
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7.1.3 Appendix A3  Catalogue of Cells used in experiments 

 

Table 7.3 List of competent cells use for transformations 

Cells Reference number Company 

One Shot® TOP10 Chemically 

Competent E. coli cells 

C4040-06 Invitrogen 

Subcloning Efficiency™ DH5α™ 

Competent Cells 

18265-017 Life Technologies 

Ltd 

One Shot® Mach1™ T1 Phage-

Resistant Chemically Competent E. coli 

C862003 Life Technologies 

Ltd 
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7.1.4 Appendix A4  catalogue of Kits used in experiments 

 

Table 7.4 List of kits with reference number and the company 

Kit Reference 

number 

Company 

FISH Tag™ RNA Multicolor Kit F32956 ThermoFisher 

Scientific 

mMESSAGE mMACHINE® T7 

ULTRA Transcription Kit 

AM1345 ThermoFisher 

Scientific 

PrimeScript RT reagent kit RR037A TAKARA 

QIAprep® Spin Miniprep Kit 27104 QIAGEN 

QIAquick Gel Extraction Kit 28704 QIAGEN 

Quick Blunting™ Kit E1201S QIAGEN 

RNeasy columns 74106 QIAGEN 

 

 

  



 Appendices 

   

184 

 

7.1.5 Appendix A5  Plasmids 

 

Table 7.5 List of plasmids used in the Gateway Tol2 cloning protocol 

Plasmid name Reference 

number 

Company att sites 

p5E-MCS 26029 Addgene L4/R1 

p3E-mcs1 49004 Addgene R2/L3 

pME-Cherry 26028 Addgene L1/L2 

pDestTol2pACryGFP 64022 Addgene R3/R4 

pCR™-Blunt II-TOPO® 

Vector 

K280002 ThermoFisher 

Scientific 

 

pUB-GFP 11155 Addgene  

pENTR5'_ubi 27320 Addgene  

pCS-zT2TP  Kawakami 

lab 
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7.1.6 Appendix A6  Primer catalogue  

 

Table 7.6 List of primers used in this thesis 

Primer number Primer sequence 5’ - 3’ 

275 ACCCCGAGTACTACTGCTTTT 

281 CTGGCTCTAAATGGCAGCCT 

410 TTGAGAAGAAAATCGGTGGTGCTG  

411 GGAACGGTGTGATTGAGGGAAATTC  

443 GCAGAAGGAGATCACATCCCTGGC 

444 CATTGCCGTCACCTTCACCGTTC 

496 CCGCAACCTACTCTGAAAGC 

497 TGACTTGGGGTAATGGTGCT 

512 ACCAGCAAACGTGTCCTTTC 

513 CCTGTGCTGCAAGTATCCAC 

516 CACAGGTGGAGCAAGGTTG 

517 CTGGCTAACACGGTGAAACC 

518 AACCATCGCTGTGAAAAGGC 

519 CTTTCAGAGTAGGTTGCGGC 

520 CGCAGCCACATGTAGAGTCT 

521 AGAAGACATGTCCTGCTCCG 

524 CGACATCCCCGACTACTTGA 

525 CTTCTTCTGCATTACGGGGC 

T750 AGGGTCAGTACACGTTTCAGC 

T751 CGCAATTAACCCTCACTAAAGGGACA

CAGAGGGTCACAGGAACAG 
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7.2 Appendix B  

A map of pCR™-Blunt II-TOPO® vector containing kiaa0319 cDNA sequence 

 

 

Figure 7.1 A zebrafish kiaa0319 cDNA sequence in pCR™-Blunt II-TOPO® vector 

A 4114bp pCR™-Blunt II-TOPO® vector containing kanamycin resistance (Kan), SP6 and T7 

promoters (blue) and a 595bp kiaa0319 cDNA sequence (red). SP6 drives the sense transcription, 

T7 drives antisense transcription. 
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7.2.1 Appendix B1 A standard PCR reaction using Phusion DNA 

Polymerase 

 

Table 7.7 PCR mastermix for obtaining PCSK6 promoter sequence 

Compound Concentration 1 reaction [µl] 1 reaction [µl] 

Phusion® GC Buffer 50mM 4 10 

dNTPs 10µM 0.4 1 

Fwd 281 Primer  10µM 1 2.5 

Rev 275 Primer 10µM 1 2.5 

Human gDNA 65ng/µl 1.2 3 

Phusion® High-Fidelity 

DNA Polymerase 

2,000 units/ml 0.2 0.5 

H2O  12.4 30.5 

Total Volume  20µl 50 µl 

 

The mastermix was incubated in the thermocycler under the following conditions: 

 

Denaturation 98°C 30s,  

Annealing 58°C 20s 

Elongation 72°C  2min 

  

30 cycles 
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7.3 Appendix C 

kiaa0319 isoform profiling  

 

7.3.1 Appendix C1  Primer catalogue  

 

Table 7.8 List of primers used in kiaa0319 isoform analysis 

Primer number Primer name Primer sequence 5’ - 3’ 

447 kiaa_iso_Fwd_1 AGGGCCCTGTTGAAAGTAGC 

448 kiaa_iso_Rev_1 CAGATTTGTTGTGCTGCCCC 

449 kiaa_iso_Fwd_2 CATGCTGCCCCAAAACACTG 

450 kiaa_iso_Rev_2 GCTCAGCCCCTCAGAATCAG 

451 kiaa_iso_Fwd_3 CTGCCTCTCAACCACCTCAC 

452 kiaa_iso_Rev_3 ATCCCAGATCTCAGGCCTGT 

453 kiaa_iso_Fwd_4 CCCTCCAGGCTTGAAGATGA 

454 kiaa_iso_Rev_4 GCGGATCAGGTCGTACTTCC 

455 kiaa_iso_Fwd_6 ATTCAGGTTCTCGGTGCAGG 

456 kiaa_iso_Rev_6 TGTTCACTGTCCAGCTCTGAT 

506 kiaa_iso_1F ATCAGCTCTTCACCACAGCT 

507 4kiaa_iso_1R TCTGAAGTCATCTGCGGTGT 

508 kiaa_iso_2F GCCCTGTTGAAAGTAGCACC 

509 kiaa_iso_2R ACTGCGTAAACACCCTCTGA 

510 kiaa_iso_3F GCTGCCCCAAAACACTGTTA 

511 kiaa_iso_3R AGTGCGATGTCTGAGTCCAA 

512 kiaa_iso_4F ACCAGCAAACGTGTCCTTTC 

513 kiaa_iso_4R CCTGTGCTGCAAGTATCCAC 
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7.3.2 Appendix C2 Screenshot of zfin.org database on kiaa0319 and 

kiaa0319l  

 

 

Figure 7.2 kiaa0319 and kiaa0319l information as in zfin.org database 

 

A) The zfin.org database screenshot shows the official gene name for kiaa0319, the previous name, 

location on the chromosome and the data published. There is a single expression data study by Thisse 

et al (2005) on AB.TU strain claiming there is no expression (black box on the right). B) The zfin.org 

database screenshot for kiaa0319l. No expression studies have been performed to date 
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7.3.3 Appendix C3  RT-qPCR standard curve 

 

 

 

Figure 7.3 Standard curve using kiaa0319 primers 518 and 519 

Square points represent individual replicate of the same dilution. Ct is the cycle threshold. Quantity 

represents the number of cycles. 
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7.4 Appendix D   

7.4.1 Appendix D1  RNAScope 

 

The RNAScope probes were created by the Advanced Cell Diagnostics, Inc. (ACD) 

based on the Ensembl accession numbers. The probes consist of 20 double Z (ZZ) 

oligonucleotides and are targeting approximately 1kb sequence all together (see 

below). The channels represent the labelling combination options for each probe. 

The kiaa0319l was linked to C1 channel, myod to C2 and kiaa0319 to C3 channel. 

 

Table 7.9 RNAScope probes with their name and Ensembl accession number 

Channel Name Ensembl accession 

number 

Target Probe size 

C1 kiaa0319l ENSDART00000051723.5 545-

1425 

880bp 

C2 myod1 ENSDART00000027661.7 

 

2-1083 1081bp 

C3 kiaa0319 ENSDART00000160645 239-

1147 

908bp 
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7.4.2 Appendix D2 RNAScope Amp4 dye combination  

 

Table 7.10 RNAScope dye combination in Amp4 channels A, B and C 

Probe channel ID Amp4 A Amp4 B Amp4 C 

C1 (kiaa0319l) Alexa 488 ATTO 550 ATTO 550 

C2 (myod) ATTO 550 Alexa 488 ATTO 647 

C3 (kiaa0319) ATTO 647 ATTO 647 Alexa 488 

 

7.4.3 Appendix D3  RNAScope probe design kiaa0319l 

 

 

Figure 7.4 kiaa0319l cDNA sequence 

The 20ZZ RNAScope probe is labelled red. 
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7.4.4 Appendix D4  RNAScope probe design myod 

 

Figure 7.5 myod cDNA sequence 

The 20ZZ RNAScope probe is labelled purple. 

 

7.4.5 Appendix D5  RNAScope probe design kiaa0319 

 

Figure 7.6 kiaa0319 cDNA sequence  

The 20ZZ RNAScope probe is labelled green 
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7.5 Appendix E  

Multisite recombination 

Table 7.11 List of att recombination site sequences 

att recombination sites sequence 

attL1 CAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGT

TGCAACAMATTGATGAGCAATGCTTTTTTATAATGCCAAC

TTTGTACAAAAAAGCAGGCT 

attL2 ACCCAGCTTTCTTGTACAAAGTTGGCATTATAAGAAAGCA

TTGCTTATCAATTTGTTGCAACGAACAGGTCACTATCAGT

CAAAATAAAATCATTATTTG 

attL3 CAACTTTATTATACAAAGTTGGCATTATAAAAAAGCATTG

CTTATCAATTTGTTGCAACGAACAGGTCACTATCAGTCAA

AATAAAATCATTATTT 

attL4 AAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTT

GCAACAAATTGATAAGCAATGCTTTTTTATAATGCCAACT

TTGTATAGAAAAGTTG 

attR1 CAAGTTTGTACAAAAAAGTTGAACGAGAAACGTAAAATG

ATATAAATATCAATATATTAAATTAGATTTTGCATAAAAA

ACAGACTACATAATACTGTAAAACACAACATATGCAGTC

ACTATGAATCAACTACTTAGATGGTATTAGTGACCTGTA 

attR2 TACAGGTCACTAATACCATCTAAGTAGTTGRTTCATAGTG

ACTGCATATGTTGTGTTTTACAGTATTATGTAGTCTGTTTT

TTATGCAAAATCTAATTTAATATATTGATATTTATATCATT

TTACGTTTCTCGTTCAACTTTCTTGTACAAAGTGG 

attR3 CCATAGTGACTGGATATGTTGTGTTTTACAGTATTATGTA

GTCTGTTTTTTATGCAAAATCTAATTTAATATATTGATATT

TATATCATTTTACGTTTCTCGTTCAACTTTATTATACATAG

TTG 

attR4 CAACTTTGTATAGAAAAGTTGAACGAGAAACGTAAAATG

ATATAAATATCAATATATTAAATTAGATTTTGCATAAAAA

ACAGACTACATAATACTGTAAAACACAACATATCCAGTC

ACTATGG 



 Appendices 

   

195 

 

7.5.1 Appendix E1 kiaa0319 human promoter 

 

Table 7.12 The components and the volume needed for the multisite recombination creating a 

pDest-Cherry-kiaa0319 destination vector 

 

 

COMPONENT VOLUME 

p3E-mcs1  [124 ng/µl] 1.2 µl 

p5E-MCS-kiaa0319 [209  ng/µl] 0.7 µl 

pME-cherry  [99 ng/µl] 1.5 µl 

pDestTol2pACryGFP [350 ng/µl] 0.4 µl 

TE buffer 4.2 µl 

TOTAL 8 µl 
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7.5.2 Appendix E2 Positive control HUMAN 

 

Table 7.13 The components and the volume needed for the multisite recombination creating a 

pDest-Cherry-hUBI destination vector 

 

 

COMPONENT VOLUME 

p3E-mcs1 [124 ng/µl] 1.2 µl 

p5E-mcs_hUbi  [105 ng/µl]    1.4 µl 

pME-cherry [99 ng/µl]  1.5 µl 

pDestTol2pACryGFP  [350 

ng/µl] 

 0.4 µl 

TE buffer     4.5 µl 

TOTAL     8 µl 
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7.5.3 Appendix E3 Positive control ZEBRAFISH 

 

Table 7.14 The components and the volume needed for the multisite recombination creating a 

pDest-Cherry-zfUBI destination vector 

 

 

COMPONENT VOLUME 

p3E-mcs1  [124 ng/µl] 1.2 µl 

pENTR5’_ubi  [177 ng/µl]      0.8 µl 

pME-cherry 2  [99 ng/µl]  1.5 µl 

pDestTol2pACryGFP [350 ng/µl]  0.4 µl 

TE buffer      4.1 µl 

TOTAL     8 µl 
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7.5.4 Appendix E4 Negative control 

 

Table 7.15 The components and the volume needed for the multisite recombination creating a 

pDest-Cherry-MCS destination vector 

 

 

COMPONENT VOLUME 

p3E-mcs1     [124 ng/µl] 1.2 µl 

p5E-mcs  [150 ng/µl]   1 µl 

pME-cherry [99 ng/µl]  1.5 µl 

pDestTol2pACryGFP  [350 ng/µl]  0.4 µl 

TE buffer     3.9 µl 

TOTAL     8 µl 
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7.5.5 Appendix E5      Catalogue of multisite recombination plasmids 

 

7.5.5.1 Appendix E5.1 pME-Cherry 

 

 

Figure 7.7 A pME-cherry vector 

The 3261bp vector contains Kan resistance (orange) and an mCherry cassette (red), flanked by attL1 

and attL2 recombination sites (blue). 

  

attL1

attL2

Kan

pME-Cherry

3261 bp

mCherry
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7.5.5.2 Appendix E5.2 p5E-MCS 

 

               

Figure 7.8 A p5E-MCS vector 

The 2810bp vector contains Kan resistance (orange) and a SmaI restriction site (red). It contains 

attL4 (blue) and attR1 and R2 (pink) recombination sites. 
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7.5.5.3 Appendix E5.3 p3E-mcs1 

 

Figure 7.9 A p3E-mcs 1 vector 

The 2665bp vector contains Kan resistance (orange) and a attL3 (blue) and R2 (pink) recombination 

sites. 

  



 Appendices 

   

202 

 

7.5.5.4 Appendix E5.4 pDestTol2pACryGFP 

 

 

Figure 7.10 A pDestTol2pACryGFP vector 

The 7487bp vector contains Kan and Cam resistance (orange) and an EGFP cassette (green). It 

contains attR3 and attR4 recombination sites (pink). 

  

attR4

pDestTol2pACryGFP

7487 bp

attR3
Cam

Amp

EGFP
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7.5.5.5 Appendix E5.5 kiaa0319-promoter pDestTol2pACryGFP 

 

 

Figure 7.11 A kiaa03919-promoter pDestTol2pACryGFP destination vector 

The 7912bp vector contains Amp resistance (orange) and an EGFP (green) and mCherry (red) 

cassettes. The mCherry is driven by the human kiaa0319 promoter (blue). 

 

  

EGFP

KIAA0319 promoter

Amp

KIAA0319-promoter_pDestTol2pACryGFP

7912 bp

mCherry 
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7.5.5.6 Appendix E5.6 p5E-MCS_pDestTol2pACryGFP 

 

 

Figure 7.12 An empty p5E-MCS pDestTol2pACryGFP destination vector 

The 76785bp vector contains Amp resistance (orange) and an EGFP (green) and mCherry (red) 

cassettes. SmaI restriction site is indicated with an arrowhead (red). 
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7.5.5.7 Appendix E5.7 zUBI-promoter pDestTol2pACryGFP  

 

 

Figure 7.13 A zebrafish ubiquitous promoter in destination vector 

The zebrafish zUBI-promoter pDestTol2pACryGFP is a 10153bp vector contains Amp resistance 

(orange) and an EGFP (green) and mCherry (red) cassettes. The mCherry is driven by the zebrafish 

ubiquitin promoter (blue). 
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7.5.5.8 Appendix E5.8  hUC-promoter pDestTol2pACryGFP  

 

 

Figure 7.14 A human ubiquitous promoter in destination vector 

The human hUC-promoter pDestTol2pACryGFP vector is a 8084bp vector contains Amp resistance 

(orange) and an EGFP (green) and mCherry (red) cassettes. The mCherry is driven by the human 

ubiquitin C promoter (blue). 
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7.5.5.9 Appendix E5.9 pminTol2R4-R2 

 

 

Figure 7.15 A pminTol2R4-R2 vector 

The 5347bp vector contains Amp and CAT/CamR resistance (orange). It contains attR1 and 

attR1/R2 recombination sites (pink). 

 

 

  

attR1

attR1
attR2

pminTolR4-R2

5347 bp

Amp

CAT/CamR
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7.5.5.10 Appendix E5.10 p5E-MCS-PCSK6 

              

Figure 7.16 A p5E-MCS-PSK6 vector 

The 4704bp entry vector contains Kan resistance (orange). It contains attR1 and attR1/R2 

recombination sites (pink) flanking a human PCSK6 promoter sequence (blue) 
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7.5.5.11 Appendix E5.11 PCSK6-promoter pminTol2R4-R2 

 

Figure 7.17 A PCSK6 promoter pminTol2R4-R2 vector 

The 6491bp destination vector contains Amp resistance (orange) and an mCherry (red) cassette 

driven by the human PCSK6 promoter (blue). It contains att/L1 and attL2 recombination sites (blue 

arrowheads). 
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7.5.5.12 Appendix E5.12 pENTR5’_ubi  pminTol2R4-R2 

 

 

Figure 7.18 A zebfrafish ubiquitous promoter in pminTol2R4-R2 destination vector 

The zebrafish zUBI-promoter pminTol2R4-R2 is a 7965bp vector containing Amp resistance 

(orange) and an mCherry cassette (red). The mCherry is driven by the zebrafish ubiquitin promoter 

(blue). 

 

 

  

ubi promoter

mCherry

pENTR5’_ubi  pminTol2R4-R2

7965 bp

Amp
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7.5.5.13 Appendix E5.13 p5E-MCS pMinTolR4R2 

 

Figure 7.19 An empty p5E-MCS pMinTolR4R2 destination vector 

The 4597bp vector contains Amp resistance (orange) and mCherry (red) cassette. There are no 

promoters. SmaI restricition site is indicated with an arrowhead (red). 
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7.6 Appendix F   

kiaa0319 Knock out – CRISPR/Cas9  

7.6.1 Appendix F1 

 

Table 7.16 The list of primers used to create oligo duplexes for gRNA 

 

 

Construct 

name 

number sequence Enyme 

 

81 T780 ATAGGGGCCTGCTGTGATCTCCC SmaI/XmaI 

T781 AAACGGGAGATCACAGCAGGCC 

 

85 T784 ATAGCTCCTCGAACCAGGGACTGC PstI/SfcI 

T785 AAACGCAGTCCCTGGTTCGAGGAG 

 

89 T788 ATAGAGATCCTTCATGGGATCCT BamHI 

T789 AAACAGGATCCCATGAAGGATCTC 
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7.6.2 Appendix F2 

 

Table 7.17 List of primers for PCR genotyping of CRISPR/Cas9 injected embryos 

 

 

Construct 

name 

number sequence Sequence length 

 

81 T782 GCAATTGTGCGGTGAAGAGA 555 

 T783 CAGAGGCTGCCAATGGTTTG 

 

85 T786 TCTGAAAGCGTGGTGTCTCC 566 

 T787 GCTACTTTCAACAGGGCCCT 

 

89 T790 TGTGACCTGGCCTGGTTTTT 461 

 T791 GCTACTTTCAACAGGGCCCT 
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7.6.3 Appendix F3   kiaa0319 Knock down – Morpholino 

7.6.3.1 Appendix F3.1  Morpholino sequences in kiaa0319 genome 

GTCTTTATCTGCTGACACTCCCTCCCGCAGACAAACACACACACACCTCAGCATCTTTCCAGCTATATCAGAGCTTTCATTACA

AGATCATTGCCGCAATATCAGCTCTTCACCACAGCTTTAGTTTACTCCATCAGCTTGTGTCCAGCACGAATTCGCCATGGAGTA

GCAGCACGGAAGCAGATCCTCGATATCATGGAAACAGATGCTTGAATAAGAGCGTCACATCCCTCTGgtactgtaggctacagctaaaacta

atacatttttgatgtcttcccaaagGGTTTGAAGAAGTAATGTCTGTTAGAAACCATCGCTGTGAAAAGGCGGCAGTGGCATCATGAACTTCT

TACCAGTTCTTTCACTTTTGATACTCTTATGTATCAGAGgcaagtataaaattctgcattattcatttgtttatttgtggcccattcagTATCAGGACAGTGCTGG

CAGGCCGCAACCTACTCTGAAAGCGTGGTGTCTCCGGAGCTGAGGAGCAGCAGTATTTTACGTGTCCCGGATGTGTCGTCCCT

GGCTCAGTGTGCCGGGGCCTGCTGTGATCTCCCGGGCTGTGACCTGGCCTGGTTTTTTGAGCACCGATGCTATGTGCTCAGTTG

TCAGCACACAGAAAACTGCCAGCCGAAGAAGAGACCTGGTACAGACTCTTACCTGGCCTTCCTGCAACGTGGGCCCCCACAA

ACACTTGTCCTGCAGTCCCTGGTTCGAGGAGAGTCTTTCCCAAACCATTGGCAGCCTCTGGCCAGACACCGGGGATCCGAGGA

TCCCATGAAGGATCTCGCTCTGCTTGAAGGGATTCAGGATTCGGACAACCCTGAGCCTGAGTATGCAGAGAGTTTTCGAAGTT

TGGAAGACAAAAGAGCTGAAGACATAGACCTAAAAGCGGTAGAGCAAGAAGAGCAAACTGGGCTTTATGATTGGCCACCTG

TTCAAAGAAAAGAGGAATTCAACCAATCAGAGACGGAGAGAGGCAGTAAAAGATTGACAACTGTTCAGGGCCCTGTTGAAA

GTAGCACCATTACCCCAAGTCATCTTTCAGAAGAGAGAAATGAAAGCAGATCAACCATTATTGAAGCAGAATCTAATGTTAC

GGTACCATCAACCACTGTATTTGACATTAAGgtgagattttttttaagataatgaatatgaaaacacttttatcattaaagGTTGAAGAAGAGCCACAGAACAC

ATCGTCTGCAACTACTGCACCTAAAGTCGTGGAAGACCTCAGTACAGAGACCGCAAACTTTAGTGCAGTCAACGGTTCATTCA

TCACTCCAGCCAACACTGAAGCTACACCGCAGATGACTTCAGAACAGCCAGgtactgtgcgcaatattggggaaaggtcttgttattctctctttgttcagTA

AGAGCTCTGACTGTGTCCATTGAAGGCCCTGTTGAAGCCATGCTGCCCCAAAACACTGTTAAACTAACAGCTTTAGTTAGTCC

AGATGATACTGCCGgtacgaccttctacattctgaattttttttttattttaaatttcctctagAATCTCCTTACACATATGAGTGGACTTTTGTGATCTCACCAGA

AGGACAACGTAGGGTGATGGAGGGGCAGCACAACAAATCTGTCATACTTTCTGAAgtgagatttaattcatttaatacacagcatttctgtatcctttattcca

gCTGTCAGAGGGTGTTTACGCAGTCAGAGTGATTGTGAAAGCACATCAAGCATATGGAGAAGGTTCTGTGGACTTGACCGTAC

ACCCTGgtacaactataccctctttgcatcaaattggcttccttttcattctacagCAGAGAAAATAAACAAGCCTCCTAAAGCAGTCGTTCTTCCCAAGAGCC

AAGATGTGCTGTTCAAAAAAGATTCTGTCTTAATCATTAACGGAAGTGgtatgtggcctgtttccttttttctgttttaactaaatttgcatttccagAGAGTAT

GGATGATGCAGGGATTGTCAGTTATCTGTGGAAAAAGGTGGACGGCCCGTTTTGGACACCTGAAGGTCCTGTTAACAAACCT

GTACTGCAGCTGAAAAATCTTTTACCTGGAGAATATACCTTCGAgtaaggacttttgttttacaaaaaactgatttttgcttggcctacattagGCTGACAGTG

TCTGATTCTGAGGGGCTGAGCGACTCCAGCACTGCCACCTTGAGGGTCAGCATCCCAAAAGATGAGCCTCCTCTGGCCAGAG

CGGGCACAGACCGGGTCATTACCCTGCCTCTCAACCACCTCACCCTGTGGGGAAACCAAAGCACAGATGACCAGGCCATTAC

AAGCTACCTCTGGACACTCCATCCCAGCAGCCCGACCCGAAAGGTCACCATGCAGgtaattagatctttacttcacccagatgttttcatatgctccatcttta

gGATGTGAGATCAGCATTTCTGCTAGTCTCTGATCTAGAGGAGGGTCAGTACACGTTTCAGCTCACAGTCACTGACTCAAGAG

GTCAACAGGATTCAGACACCATCTCTGTCACTGTGCTGCCTGgtaaaacacaaccccggcaccaatagttgacattttattatttgtggcagCAAACAGAGCA

CCAGTGGCTGTAACAGGACCAGACATACAGCTACTCCTGCCGGTCAACAGCATCACACTGAATGGCAGCGGCAGCACTGATG

ATCAGGCCATCAGCAGATACCAGTGGGACGTGATGAGgtattgttttatttatttatttattattcttctcttatataatgatgaagTGGCCCTCCAGGCTTGAAG

ATGAAAGATGCCAATAAAGCGGTTGCCATCGCGACAGGCCTGAGATCTGGGATTTACAAGTTGAAGTTGACTGTGGTGGATG

AGCAGGGAGAAACAGACAGTGCAGTCCTGAGCATCACAGTTAAAGAAGgtgagctgaaacatgcacatgcataaacagttctaatgttaaattcacagCTA

AAAGCCTGCCACTGGTGGCTCATGCCAGCGGCAGCCATACACTCACTTTGCCCAACAACTCTCTGGTGCTCAGAGGTTCAGTG

TCCAACAGCGGACCAGCAAACGTGTCCTTTCTGTGGGTTAGAGATGAACAGAGCCCTGCTGCGGGGgtgagtgatattgttggattgttttttgttt

tcacatcttttgagagtagGATGTGTTGTATGGTTCAGATCACGAGGCCTCGCTTTACCTTGCCAACCTGGTAGAAGGAACATACCTGTTC

CAGCTGCGGGTCACCGATGTCCAGGGCCGCTCAAGCACGGCTACAGCCACTGTGGAAGTACGACCTGgtaagatattacttacttttaataggc

tttttgttgatattgatgtgcagATNCGCGTGAGCNAGAGGAGGTGGAACTTGAGCTGCAGGTGAGCGTGGCTCAAGTCAGTCAGCAACAGA

GAGACACAGTGATCAGACAGCTGGCCGCACTTCTNCATGTGTTGGACTCAGACATCGCACTAAAGGCTCTACATGGACAGTC

TGACATCAGgtacagtacatctcacacattagccttataaatgtgcctcctgtgtttagCACAGTATTCAGGTTCTCGGTGCAGGGTCCTGATGGTTTGATCCC

TGGCCCTAAACTTGCCCGCCTGCTGAGAAACCAGCTGTTGAGAGAGAAAAGCGACTTCTTGCTCTTTAGGGTCTTAAGAGTGG

ACACAGTCAgtgagtgacttgaatcctttactaatatattatcttaatgaacactgcagTGTGTTTGCTGCTGTGTTCTGGGCGTGGTCAGTGTGACCCCATTAC

AAAAAGCTGTTCCTGTGACCCTCTGTGGATGGAGAACCCCATCCGCCTCTTCATAGACGATGGAGAGAGCAATTGTGgttagtatga

cctttcctatttaaactgagatgctgtgtcctctctgcagACTGGAGTGTGCTGTATGTCACAATCTCTTGTTTTGTGACAATCATTTTCATCTTGTCCGT

CAGCTGGATCTGCGTCTGCTGCTGTAAAAGgtgataaagggtttatcgtcattcatgtgtgtgtgttttgtcctcttcagACATTAAACACAGAAGCACAGAGC

ACAACTCTAGCCTGATGATGTCTGAATCAGAGCTGGACAGTGAACAGGACAACATTTACAATTACGGGAGAGTCCAAAAAGC

TCATAACAGAATCAGAAACGGAGACACTCTCAGCCTTTGCCCTGTGGAGAGTTGAGTCGCATGGACAAAAGGACATTTCTTC

ATCGTGGATACTTGCAGCACAGGGGTATTGCTGAATTTACCACTAATACAAAGACAGACAGAATTGAATG 
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Figure 7.20 The location of morpholino sequences in zebrafish kiaa0319 gene 

Turquoise colour represents translational blocking morpholino (TB MO) sequence located between 

the 5’ UTR and exon 2. Green colour represents TB2 located upstream of TB. Blue colour represents 

exon sequences, grey are intron sequences, brown are UTRs. Missense and synonymous variants 

are labelled yellow and green respectively. 

 

  

 

7.6.3.2 Appendix F3.2 Comparison of single to co-injected TB MOs survival 

rates 

Table 7.18 The survival rate and the number of embryos exhibiting phenotype of embryos 

injected with TB1 MOs, TB2 MOs and a coinjection of both MOs at a 100µM concentration 

 

Concentration MO #Dead 

1dpf 

#Dead 

5dpf 

#Live 

5dpf 

%live 

5dpf 

#Phenotype 

100µM TB1 37 1 112 99.1 0 
 

TB1© 24 2 123 98.4 4 

100µM TB2 18 0 155 100.0 1 
 

TB2© 35 0 132 100.0 1 

100µM TB+TB2 38 2 129 98.5 2 
 

TB©+TB2© 33 0 138 100.0 1 
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7.6.4 Appendix F4  Sequence alignment of Kiaa0319 protein and Kiaa0319-

like protein against the peptide sequences of the chosen antibodies. 

 

7.6.4.1 Appendix F4.1 Zebrafish Kiaa0319 protein sequence 

MNFLPVLSLLILLCIRVSGQCWQAATYSESVVSPELRSSSILRVPDVSSLAQCAGACCDLPGCDLAWFFEHRCYVL

SCQHTENCQPKKRPGTDSYLAFLQRGPPQTLVLQSLVRGESFPNHWQPLARHRGSEDPMKDLALLEGIQDSDNPE

PEYAESFRSLEDKRAEDIDLKAVEQEEQTGLYDWPPVQRKEEFNQSETERGSKRLTTVQGPVESSTITPSHLSEERN

ESRSTIIEAESNVTVPSTTVFDIKVEEEPQNTSSATTAPKVVEDLSTETANFSAVNGSFITPANTEATPQMTSEQPVR

ALTVSIEGPVEAMLPQNTVKLTALVSPDDTAESPYTYEWTFVISPEGQRRVMEGQHNKSVILSELSEGVYAVRVIV

KAHQAYGEGSVDLTVHPAEKINKPPKAVVLPKSQDVLFKKDSVLIINGSESMDDAGIVSYLWKKVDGPFWTPEGP

VNKPVLQLKNLLPGEYTFELTVSDSEGLSDSSTATLRVSIPKDEPPLARAGTDRVITLPLNHLTLWGNQSTDDQAIT

SYLWTLHPSSPTRKVTMQDVRSAFLLVSDLEEGQYTFQLTVTDSRGQQDSDTISVTVLPANRAPVAVTGPDIQLLL

PVNSITLNGSGSTDDQAISRYQWDVMSGPPGLKMKDANKAVAIATGLRSGIYKLKLTVVDEQGETDSAVLSITVK

EAKSLPLVAHASGSHTLTLPNNSLVLRGSVSNSGPANVSFLWVRDEQSPAAGDVLYGSDHEASLYLANLVEGTYL

FQLRVTDVQGRSSTATATVEVRPDPREREEVELELQVSVAQVSQQQRDTVIRQLAALLHVLDSDIALKALHGQSD

ISTVFRFSVQGPDGLIPGPKLARLLRNQLLREKSDFLLFRVLRVDTVMCLLLCSGRGQCDPITKSCSCDPLWMENPI

RLFIDDGESNCDWSVLYVTISCFVTIIFILSVSWICVCCCKRH 

 

 

7.6.4.2 Appendix F4.2 Zebrafish Kiaa0319-like protein sequence 

MPNVELRMHRWKWQTRFTSLYLSCVYLLCSVSGVSGSICSVTGGVLGIHWSSVIGLGWQPLAVDQGGSRCWESC

CLEPSCGAVWSLGGRCVLLACSQRETCGISSLPQPHVESLGLLQLLNKSKRRKTRSAQDIRAIRDTEQDMSSNPSEP

LTTSNSAASSSSSGEQTAEHNTTLDSDAANHSTLNNSNQSPQSTVAPATTPAVTVRELVVSAGQNVEVTLPRNEV

KLSAYVVPAPPTGTNYDFDWRLITHPKDYSGEMEGKHTMTLKLSKLTVGLYEFEVVVDGEGAHGEGYVNVTVK

PEPRVNKPPVAVVSPKYQEISLPTSSTVIDGSRSTDDDKVVLWHWEEVKGPLREEKASGDTDILTLTNLVPGNYTF

SLTVTDSDGAQNSTQAMLLVNKATDYRPTANAGPNQVITLPHNYITLNGNQSTDDHDNLSYEWSLSPESKGKVV

EMQGVRTPTLQLSAMQEGDYTFELTVTDSSGQQDTTQVTVIVQPENNQPPVADAGPDKELTLPVDHTTLDGGKS

TDDQKIVTYHWKKTKGPEGVKLDNAETVVATVTGLQEGEYIFMLTVTDERNLESSDTVSVIVREENDQPPVAKV

VSSPPITLPVRTAVLDGSRSSDDKGSISYLWTREENSPAAGDVLNHSDHQAVLFLGNLVEGKYSFTLTVTDSKGKT

SSDSGVVDVRPDVYERDLVELILEVAVAQVSRRQKDMYIRQVGVLLGVLDSDITIREISAFNEHSTRLVFLVSGGP

GRPPLTGHSVAMELRNKFRKQKNEFLIFKARRVDTVICQLNCSGHGECDSFTRRCVCHLFWMENLFSTYFGDAES

NCEWSVLYVTIASFMIVVAIATVIWGLVCCCRRRKSKVRRKSRYKMLNEDDQETMELKLPRPGRLKSVPAPTSSA

LMHSDSDLESDDGQAGIPWSDRERGKLLPPQNGSLRNGQGPHKPKKTREELL  
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7.6.4.3 Appendix F4.3 Pairwise sequence alignment for R7, 70 and Abcam anti-KIAA0319 antibody 

 

Figure 7.21 Pairwise sequence alignment for R7, 70 and Abcam anti-KIAA0319 antibody 

The anti-KIAA0319 R7 antibody consists of 2 peptide sequences (A, B), which are 45.5% and 50.0% identical to the Kiaa0319 sequence and 57.1% and 66.7% 

identical to Kiaa0319-like sequence. The Abcam anti-KIAA0319 antibody exhibits 42.8% identity with Kiaa0319 protein sequence and 40.6% identity with 

Kiaa0319-like sequence. The anti-KIAA0319 70 antibody is in 50% identical to the Kiaa0319 sequence and 82.0% to Kiaa0319-like protein sequence.
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7.7 Appendix G 

 

Figure 7.22 Zebrafish developmental stages as per Kimmel et al (1995) 

Developmental stages of zebrafish embryos ranging from 50% epiboly to 72 hours post 

fertilisation. [Kimmel et al., 1995a] 
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Abstract 

Dyslexia is a common neurodevelopmental disorder caused by a significant 

genetic component. The KIAA0319 gene is one of the most robust dyslexia 

susceptibility factors but its function remains poorly understood. Initial RNA-

interference studies in rats suggested a role in neuronal migration whereas 

subsequent work with double knock-out mouse models for both Kiaa0319 and its 

paralogue Kiaa0319-like reported effects in the auditory system but not in neuronal 

migration. To further understand the role of KIAA0319 during neurodevelopment, we 

carried out an expression study of its zebrafish orthologue at different embryonic 

stages. We used different approaches including RNAscope in situ hybridization 

combined with light sheet microscopy. The results show particularly high gene 

expression during the first few hours of development. Later, expression becomes 

localised in well-defined structures. In addition to high expression in the brain, we 

report for the first time expression in the eyes and the notochord. Surprisingly, 

kiaa0319-like, which generally shows a similar expression pattern, was not expressed 

mailto:sp58@st-andrews.ac.uk
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in the notochord suggesting a role specific to kiaa0319 in this structure. This 

observation was supported by the identification of notochord enhancers enriched 

upstream of the KIAA0319, both in zebrafish and in humans. This study supports a 

developmental role for KIAA0319 in the brain as well as in other developing structures, 

particularly in the notochord which is key for establishing the body patterning in 

vertebrates. 

 

  

Keywords: dyslexia, neurodevelopment, zebrafish, KIAA0319, gene 

expression, notochord.  

 

Introduction 

Developmental dyslexia is a specific impairment in learning to read in the 

absence of any other obvious impairing factors. It affects at least 5% of school-aged 

children and its heritability is estimated to be above 60% [Shaywitz and Shaywitz, 

2005]. Studying the genetic contribution to dyslexia may help to dissect the underlying 

neuropsychological mechanisms, which remain hotly debated [Goswami, 2014]. While 

a phonological deficit is the most commonly accepted cause for dyslexia, sensory 

dysfunction in the visual and auditory systems have also been observed in a number 

of studies [Ramus and Ahissar, 2012; Shaywitz and Shaywitz, 2005; Goswami, 2014].  

The DYX1C1, DCDC2, ROBO1 and KIAA0319 genes are known as the classical 

dyslexia susceptibility genes and they are supported by a number of independent 

replication studies [Newbury et al., 2014; Carrion-Castillo et al., 2013]. A role in cortical 

development, and specifically in neuronal migration, has been proposed for these 

genes [Paracchini et al., 2007], in line with earlier post-mortem observations that 

reported subtle cortical defects in individuals with dyslexia  [Humphreys et al., 1990; 

Galaburda et al., 2006]. In particular, KIAA0319 variants have been found to be 

associated with dyslexia and reading abilities in multiple clinical and epidemiological 

cohorts [Paracchini, 2011; Newbury et al., 2014]. A specific dyslexia-associated 

variant was shown to affect KIAA0319 transcription regulation and gene expression 

levels, providing a mechanism to link genetic variation with the disorder [Dennis et al., 

2009; Paracchini et al., 2006b]. Its paralogous gene, KIAA0319-LIKE or KIAA0319L, 
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has also been reported to be associated with dyslexia but with weaker evidence [Couto 

et al., 2008]. Both KIAA0319 and KIAA0319L are transmembrane proteins [Velayos-

Baeza et al., 2007], but their exact cellular functions remain unclear.  

A new role in cilia biology is emerging for dyslexia candidate genes [Brandler and 

Paracchini, 2013; Paracchini et al., 2016b]. A transcriptome study showed differential 

regulation for KIAA0319, DCDC2 and DYX1C1 in ciliated tissues [Ivliev et al., 2012b]. 

Functional studies for Dyx1c1 and Dcdc2 showed a role in ciliogenesis in different 

biological models, including zebrafish, [Tarkar et al., 2013a; Chandrasekar et al., 2013; 

Massinen et al., 2011b] and some patients with ciliopathies have been found to 

harbour mutations in both genes [Schueler et al., 2015a; Tarkar et al., 2013a]. While 

there is no direct evidence supporting a role for KIAA0319 in cilia, the presence of five 

PKD domains in KIAA0319 lends support to this notion [Velayos-Baeza et al., 2008]. 

Mutations in PKD genes, which play key roles in cilia, lead to ciliopathies and laterality 

defects [Hildebrandt et al., 2011b]. KIAA0319 has been shown to be a target of T-

Brain-1 (TBR1), a transcription factor implicated in autism which regulates different 

brain developmental processes, such as neuronal migration, axon guidance [Chuang 

et al., 2015] and the determination of left-right asymmetries in bilaterians [Kitaguchi et 

al., 2002]. KIAA0319 has been shown to be involved in axon growth and regeneration 

supporting a role in the adult peripheral nervous system [Franquinho et al., 2017]. 

Both KIAA0319 and KIAA0319L have been implicated in neuronal migration 

following knockdown experiments that specifically targeted neurons at the early stages 

of brain development using in utero shRNA in rats [Peschansky et al., 2010; 

Szalkowski et al., 2012b; Adler et al., 2013; Platt et al., 2013; Paracchini et al., 2006b]. 

However, knockout (KO) mouse models do not display any cortical abnormalities that 

could be explained by defective neuronal migration [Martinez-Garay et al., 2017; Guidi 

et al., 2017]. Instead, the KO mice presented auditory system defects [Guidi et al., 

2017] in line with observations reported in adult rats that underwent KIAA0319 knock-

down in utero [Centanni et al., 2014b, 2014a; Szalkowski et al., 2012b]. Therefore, 

while a role for KIAA0319 in neurodevelopment is supported by different lines of 

evidence, its exact function remains largely unclear.  

Here, we report a gene expression study for the kiaa0319 gene in zebrafish to 

further understand the role of this gene during vertebrate development. We observed 
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a spatiotemporal expression pattern beyond the brain including in the eyes and the 

notochord. Surprisingly, kiaa0319-like, which presents a widespread expression in 

other species, was not expressed in the notochord, suggesting role specific to 

kiaa0319. These data support a role for KIAA0319 both in the brain and in other 

structures and suggest for the first time a function in the notochord.   

 

Materials and Methods  

Fish care. All the experimental procedures were approved by the Animal Welfare 

Ethics Committee (AWEC) at the University of St Andrews in compliance with the 

Home Office regulations. All researchers who conducted work with animals held a 

Personal License issued by the Home Office. 

Wild type zebrafish (Danio rerio) (WIK and AB/TU) and the double transgenic 

Tg(gfap:GFP);Tg(Oligo2:dsRed) were raised at The Queen's Medical Research 

Institute at the University of Edinburgh according to standard procedures in a Home 

Office approved facility. Developmental stages, maintained at 28.5°C, were identified 

as previously described [Kimmel et al., 1995b]. Animals were handled in accordance 

with the guidelines from European Directive 2010/63/EU and euthanised in 

accordance with Schedule 1 procedures of the Home Office Animals (Scientific 

Procedures) Act 1986. Zebrafish embryos were obtained using the Mass Embryo 

production system (MEPs) of the wild type line Wik. 

PCR and qPCR. Total RNA from developmental stages between 16 – 32 cells, up to 

120 hours post-fertilisation (hpf) was extracted using the RNeasy Mini kit according to 

the manufacturer’s instructions (QIAGEN) using at least 50 embryos at each stage. 

The heart, liver and brain were dissected from five adult fish, flash-frozen on dry ice 

and stored at -80°C until the RNA was extracted. Eyes were dissected (N= 40 eyes 

total) at 48hpf stage and flash frozen on dry ice.  

 The PrimeScript RT reagent kit (Takara) was used to transcribe the RNA into 

the cDNA following the manufacturer’s protocol. The presence of kiaa0319 transcripts 

was verified by electrophoresis following PCR amplification. Gene expression was 

assessed by quantitative PCR (qPCR) conducted with the Luna Universal RT-qPCR 

Kit (NEB) and using a Viia7 instrument (Life Technologies, Paisley, UK). For protocol 
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details see Supplementary materials. Primer sequences and accession numbers are 

shown in Supplementary Table S1.  

Whole-mount in situ hybridization (WISH). WISH was carried out following a 

previously described protocol [Thisse and Thisse, 2008]. Briefly, a DIG-labelled 

riboprobe targeting kiaa0319 was transcribed using a T3 Polymerase with a DIG RNA 

Labelling Mix (Roche) according to the manufacturer's instructions and, as a template, 

a 1066 bp PCR fragment amplified from cDNA (Supplementary Table S1). Zebrafish 

embryos were collected and processed at 3 somite, 14 somite, 30 hpf and 48 hpf. 

Embryos were imaged with a Leica MZ16F or MZFLIII bright field microscopes 

following treatment with an anti-DIG antibody (Roche, diluted 1:5000 in blocking 

buffer) and a staining solution (NBT and BCIP, Roche). 

RNAscope. RNAscope in situ hybridization (ISH; Advanced Cell Diagnostics) 

was modified from a previously described protocol [Gross-Thebing et al., 2014]. 

Samples were fixed in 4% PFA at room temperature for a length of time dependent on 

the developmental stage (Supplementary Table S2). Samples were hybridized with 

RNAscope target probes (kiaa0319l, nt 545-1425 of ENSDART00000051723.5, 

Channel 1; myoD1, nt 2-1083 of ENSDART00000027661.7, Channel 2; kiaa0319, nt 

239-1147 of ENSDART00000160645, Channel 3) overnight at 40°C. Images were 

taken with a Leica TCS SP8 confocal microscope under 20x magnification and 

processed in Leica Application Software X (LAS X), unless otherwise specified. Light 

sheet microscopy (LSM) was conducted with a bespoke microscope built in-house 

(Supplementary Materials). 

Sequence analysis. The zebrafish orthologues of the human KIAA0319 and 

KIAA0319L genes were identified in the zebrafish genome using the UCSC genome 

browser [Kent et al., 2002]. The 10kb regions upstream of the zebrafish and human 

KIAA0319 (danRer10 chr16:36946809-36952809; hg38 range= chr6:24645946-

24652021) and KIAA0319L (danRer10 range= chr19:4401525-44013525; hg38 

range= chr1:35,557,338-35563413) transcription start sites (TSS) were scanned for 

the presence of FOXA2 (a key regulator for genes expressed in the notochord 

[Tamplin et al., 2011]) consensus sequences (5′-T(G/A)TTT(A/G)(C/T)T-3’) with the 

FIMO software [Grant et al., 2011].  
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Results 

Exploratory analysis. As a first step of our analysis, we verified the expression of 

kiaa0319 during early zebrafish development using RT-PCR (Figure 1A). The 

expression of kiaa0319 was observed across all the developmental stages that were 

analysed. In the adult, expression was much higher in the brain compared to heart 

and liver, where it is barely detectable. The brain-specific expression pattern is 

consistent with the expression profile observed for KIAA0319 in humans in contrast to 

KIAA0319L which is widespread across human tissues (Supplementary Figure S1). 

Quantification of expression by qPCR confirmed kiaa0319 expression at different 

developmental stages and showed that the highest level was detected in the earliest 

stages of development (Figure 1B), whereas the lower expression was observed at 

12hpf. 

For an initial localization assessment we conducted WISH (Supplementary 

Figure S2). Consistent with the qPCR data, we observed high kiaa0319 expression 

during the early stages of embryonic development (Supplementary Figure S2A). As 

development progresses, this widespread expression becomes restricted to specific 

structures. At the 14 somite stage (16 hpf), kiaa0319 expression can be visualized in 

the developing brain and the body midline (Supplementary Figure S2A.3 and S2A.4). 

At 30 hpf, expression is detected in the eye, the otic vesicle and in the midbrain-

hindbrain boundary (Supplementary Figure S2B). The midline expression appears 

localised to the notochord rather than the spinal cord. At 48 hpf expression becomes 

weaker in the eyes and otic vesicles and is more pronounced in the telencephalon 

(Supplementary Figure S2C).The WISH analysis therefore confirmed expression of 

kiaa0319 both in the brain, as expected, as well as in other tissues where a role for 

KIAA0319 was not described before.  

RNAscope analysis. To verify this expression pattern and to achieve higher 

resolution, and specificity we used the highly sensitive RNAscope Fluorescent 

Multiplex Assay (Figure 2). In particular, we focussed on tissues other than brain. 

These included the body midline, the otic vesicles and the eyes following the 

observations made by WISH. For comparison, we included in the analysis the 

kiaa0319-like gene. Consistent with the qPCR and the WISH results, at 24 hpf 

kiaa0319 expression is widespread but stronger in the brain and body midline (Figure 
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2A). Expression in specific structures, such as the otic vesicles was visible at 48 hpf. 

The kiaa0319-like presented a similar pattern of expression but, surprisingly, a much 

weaker signal was observed in the notochord (Figure 2B). Therefore, we further 

investigated the expression of kiaa0319 in the notochord with fluorescence LSM 

combined with RNAscope probes targeting kiaa0319 (Figure 3C). Transverse and 

lateral images at different developmental stages allowed us to accurately distinguish 

the spinal cord from the notochord. We detected much higher kiaa0319 signal intensity 

in the notochord which became weaker as development progressed. Although weaker, 

a signal in the spinal cord was also observed. This was strongest at 96 hpf but, rather 

than increasing or stabilising as development progressed, it became weaker at 120 

hpf. Finally, analysis in the double Tg(gfap:GFP);Tg(Oligo2:dsRed) transgenic 

embryos further confirmed  localization of kiaa0319 expression in the notochord 

(Figure 2D). This line presents i) secondary motor neurons, interneurons, and 

oligodendroglia cells labelled with GFP and ii) motor neurons and oligodendrocytes 

labelled with DsRed [Shin et al., 2003] and therefore is useful to distinguish the 

developing neural tube. 

Among the elements controlling gene expression in the notochord, FOXA2 is a 

key transcription factor [Tamplin et al., 2011]. We scanned the genomic sequences 

upstream of the KIAA0319 and KIAA0319L TSS in both humans and zebrafish for 

FOXA2 consensus motifs (Figure 3; Supplementary Table S3).  We analysed the 10 

kb region upstream of the TSS, which is the genomic interval that would most likely 

regulate the downstream genes [Metzakopian et al., 2012]. In zebrafish, six and three 

FOXA2 motifs were found upstream of kiaa0319 and kiaa0319-like, respectively. 

Three out of the six motifs upstream of kiaa0319 were within the 6 kb upstream of the 

TSS, while all three of the FOXA2 motifs were more distant to the kiaa319-like TSS. 

In humans, FOXA2 motifs were found only upstream of KIAA0319 (N=2) and not of 

KIAA0319L. Figure 3B shows the position of these two motifs relatively to KIAA0319 

and to the dyslexia-associated SNPs [Paracchini et al., 2006b; Newbury et al., 2014].     

Both the WISH and RNAscope analyses suggested expression of kiaa0319 at 

the otic vesicles (Figure 4), which is of interest in the context of previous reports of a 

possible role of Kiaa0319 in the auditory system of rodents [Guidi et al., 2017; 

Centanni et al., 2014b, 2014a; Szalkowski et al., 2012b]. However, this structure tends 
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to accumulate non-unspecific signal when conducting in situ hybridization because of 

technical artefacts, such as probe trapping. Detailed RNAscope analysis showed a 

signal for both kiaa0319 (Figure 4.2) and kiaa0319-like (Figure 4.3) in the otic vesicles, 

however a signal was detected also in the negative controls (Figure 4.6 and 4.7). In 

comparison to the controls, both genes showed stronger expression and a signal 

characterised by a speckled pattern including within the main structures, suggestive 

of a genuine expression. In contrast, the controls showed a weaker signal, mainly 

localised along the contour of the otic vesicles suggesting probe trapping. However, 

given this background noise, we cannot confirm with confidence that kiaa0319 and 

kiaa0319l are expressed at these structures. 

The WISH analysis also suggested expression in the eyes, another structure that 

might lead to unspecific signals. The RNAscope analysis at the eyes showed 

expression for both kiaa0319 (Figure 5A.2 and 5B.2) and kiaa0319-like (Figure 5A.3 

and 5B.4). Both genes are expressed on the surface of the eyes and, most strongly, 

around the eye lens. The negative controls had no signal confirming the specificity of 

the probes. Expression in the eyes was further confirmed by qPCR (Figure 5C). 

 

Discussion 

We conducted the first zebrafish characterization of the dyslexia susceptibility 

KIAA0319 gene. The expression pattern described in our study supports a specific 

role for kiaa0319 in neurodevelopmental processes and adds novel findings towards 

our understanding of its function. We found that kiaa0319 is highly expressed at the 

very first stages and, in addition to the expected expression in the brain, we show that 

it is expressed in the notochord, the eyes and possibly the otic vesicles. For 

comparison, we analysed the kiaa0319-like gene, which showed a similar expression 

pattern but presented a very weak signal in the notochord. This observation is 

surprising given the generally higher and ubiquitous expression of KIAA0319-LIKE 

reported in human tissues (Supplementary Figure S1) and suggests a specific role to 

kiaa0319. To the best of our knowledge, this is the first study reporting expression of 

kiaa0319 during the very first hours of development and clearly showing its expression 

in specific structures other than the brain.   
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The function of the KIAA0319 protein has been studied in human cell lines and 

in rodent models, however it is not yet fully understood. The first functional 

characterization was conducted in rats and suggested a role in neuronal migration 

[Paracchini et al., 2006b] while more recent studies in mice indicate an involvement in 

biological processes beyond brain development [Guidi et al., 2018, 2017; Franquinho 

et al., 2017]. 

Consistent with the latest studies, we observed expression in the brain, but also 

observed expression in other organs. Guidi and colleagues [Guidi et al., 2017] 

generated a double KO mouse model for the Kiaa0319 and Kiaa0319l genes and the 

most notable phenotype reported was an impairment of the auditory system. Analysis 

of individual KO for both genes showed mild effects for Kiaa0319l but no effects for 

Kiaa0319 alone. Rodent models for other dyslexia candidate genes (i.e. Dcdc2 and 

Dyx1c1) have also suggested an impairment in auditory processing [Truong et al., 

2014; Szalkowski et al., 2013]. The potential expression of both Kiaa0319 and 

Kiaa0319l in the otic vesicles (Figure 2, Figure 4 and Supplementary Figure S2) would 

be interesting in the context of the rodent data. However, further work will be required 

to establish whether these genes are expressed at the otic vesicles given possible 

probe trapping in these structures (Figure 4). Instead, given the eye-specific 

expression observed in our study (Figure 5), it would be expected for vision-related 

phenotypes to have also been observed in the rodent models. Accordingly, we 

recommend conducting a thorough visual assessment in future studies of Kiaa0319 

knock-out models. 

Whether dyslexia is the result of a deficit in sensory systems, as predicted by the 

magnocellular theory [Stein, 2001a], remains highly debated [Paracchini et al., 2016b]. 

Defects in both the visual and auditory systems have been reported in individuals with 

dyslexia across different studies, but heterogeneity and inconsistency across studies 

remain significant challenges [Goswami, 2014].  The kiaa0319 expression in the eyes 

during zebrafish development could be considered in line with a role of sensory 

organs. While it would be tempting to reach conclusions, it is worth noting that it is not 

possible to generalise and make strong assumptions based on observations for genes 

analysed in isolation. Moreover, the KIAA0319 genetic associations (as with most 
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genetic associations with complex traits) explains only a small fraction of dyslexia 

heritability [Paracchini et al., 2016b].  

The most compelling observation of our study is the notochord expression of 

kiaa0319, which instead was very weak for kiaa0319-like (Figure 2). The notochord is 

a transient embryonic structure in zebrafish essential for guiding the development and 

patterning of the early embryo [Stemple, 2005]. Because of the important functions of 

the notochord, the identification of the notochord-expressed genes is important to 

understand these developmental processes. The notochord is a source of signalling 

to the surrounding tissues to guide structural development, particularly for the spinal 

cord. For example, the notochord is the source of sonic hedgehog (SHH) signalling 

which controls many processes including the development of motor neurons, the 

establishment of the dorsal-ventral axis and left/right asymmetries [Echelard et al., 

1993; Schilling et al., 1999]. The notochord also controls in a highly specific 

spatiotemporal manner the trajectories of dorsal root ganglion (DRG) axons through 

repressive signals mediated by aggrecan, one of the chondroitin sulfate proteoglycans 

(CSPGs) specifically found in the cartilage [Masuda et al., 2004]. A similar repressive 

role has been described for Kiaa0319 in mice, including the repression of axon growth 

in hippocampal and DRG neurons [Franquinho et al., 2017]. The same study also 

showed that Kiaa0319 was expressed in sensory and spinal cord neurons in post-

natal and adult mice. Our data are consistent with these findings suggesting an 

evolutionary conserved function for kiaa0319 beyond brain development.  

A specific expression pattern is likely to result from a fine-tuned regulation. Most 

of markers associated with dyslexia map to the KIAA0319 regulatory regions (Figure 

3; [Paracchini et al., 2006b; Newbury et al., 2014]. Previously, we showed that a 

dyslexia-associated allele (rs9406145) at this region affects the affinity for a 

transcription factor and reduce the expression of KIAA0319 [Dennis et al., 2009]. 

FOXA2 is a key transcription factor involved in the regulation of genes expressed in 

the notochord [Tamplin et al., 2011]. However, FOXA2 motifs are not sufficient to 

predict expression in the notochord as other transcription factors (e.g. Brachyury, 

GLIS3 and RFX3) might be required and would function through enhancer located at 

specific distances [Farley et al., 2016]. Nevertheless, the FOXA2 consensus motifs 

upstream of KIAA0319 TSS support the patterns observed in Figure 2 showing a much 
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stronger expression for kiaa0319 in the notochord compared to kiaa0319l. The region 

upstream of kiaa0319 had more FOXA2 consensus sequences and in more proximal 

position compared to kiaa0319l. In humans, FOXA2 motifs were found for KIAA0319 

only suggesting a conserved role for KIAA0319 across vertebrates. These 

observations also provide a framework to interpret the genetic associations with 

dyslexia reported in KIAA0319 non-coding regions (Figure 3)[Paracchini et al., 2006b; 

Dennis et al., 2009]. Genetic variation at this locus might affect not only gene 

expression levels as previously shown [Dennis et al., 2009] but also perturb the 

regulation of a specific spatiotemporal pattern.  

In summary, our characterization of the KIAA0319 dyslexia susceptibility gene in 

zebrafish reveals a specific pattern of expression during development. In addition to 

the expected expression in the brain, we show for the first time high embryonic 

expression during the first hours of development and, later on, at specific structures 

such as the eyes and the notochord. Our study therefore supports a developmental 

role for KIAA0319 which is not restricted to the brain and may contribute to the ongoing 

discussion around the role of neuronal migration in dyslexia. While our data do not 

exclude a role in the developing brain and in neuronal migration, they suggest an 

involvement in other developmental processes as well.   
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Figure 1. kiaa0319 is expressed during different stages of development. A) The top panel 

shows RT-PCR amplicons generated with primers targeting different kiaa0319 exons using cDNA 

prepared at different zebrafish developmental stages (hours post-fertilisation, hpf) and in selected adult 

tissues. The amplicons have the expected size of 1024 bp. The lower panel shows fragments (322 bp) 

for bactin2 used as a control for cDNA quality at the corresponding stages and tissues. Genomic DNA 

(gDNA) in the last lane demonstrate the specificity of the assay with no band for the kiaa0319 reaction 

and a fragment of 407 bp for the bactin2 as expected. kiaa0319 is expressed throughout the different 

development stages and in the adult brain but with only weak signal in the hearth and liver. The adult 

data are consistent with the expression profiles observed in human adult tissue (Supplementary Figure 

S1). The top and lower panel are images from two separate gels where samples were loaded in the 

same order. B) Quantification of the expression of kiaa0319 by qPCR measured during the first five 

days of development. Expression is measured against the eef1a1l2 gene, used as reference. Mean 

values are derived from biological triplicates and error bars indicate standard deviations. 
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Figure 2. kiaa0319 is specifically expressed in the notochord. The expression of kiaa0319 (A) and 

kiaa0319l (B) was examined at three embryonic stages (12, 24 and 48 hpf; WT zebrafish) using the 

RNAScope Fluorescent Multiplex Assay with results shown for the head (top panels) and the body 

(lower panels). kiaa0319 (red) is expressed throughout the three stages. High expression is detected 

in the developing brain and body midline. At 48 hpf, kiaa0319 is still highly expressed in the brain and 

strong signal is detected in the otic vesicles (top panel; white arrows and white triangle in reference 

image) and in the notochord (lower panel). kiaa0319l shows a similar pattern of expression, including a 

strong signal in the otic vesicles, but the expression in the notochord at 48hpf is very weak. Black area 

in the brain at 48 hpf correspond to the pigmentation of the embryo. C) Transverse (top panels) and 

lateral (lower panels) 3D reconstructions from light-sheet microscopy images at three developmental 

stages (72, 96 and 120 hpf; WT zebrafish) on samples labelled with the kiaa0319 probe. kiaa0319 

expression is localised to the notochord (white triangle). The signal diminishes as development 

progresses and this transient structure regresses. A well-defined signal in the spinal cord (white arrow) 

is also detected but it weakens at the later stages of development. D) kiaa0319 expression in the 

notochord was confirmed with the Tg(gfap:GFP);Tg(Oligo2:dsRed) transgenic line, which present GFP 

(green) in  the spinal cord. Images were collected at 42 hpf by confocal microscopy. myoD1 (myogenic 

differentiation 1, a universal target for myogenic cells [Weinberg et al., 1996]) was used as positive 

control and demonstrates the specificity of the assay. For reference, the bottom right image shows a 

wild type embryo treated with the kiaa0319 RNAscope probe (red) together with DAPI staining (blue). 

The white arrow indicates the spinal cord where only isolated dots are visible while a strong signal is 

detected throughout the notochord. The scale bar indicates 50 µm in all panels. For the positive and 

negative controls see Supplementary Figure S3.  
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Figure 3. FOXA2 consensus sequences at the KIAA0319 and KIAA0319-LIKE regulatory 

regions. A) The 10 kb regions upstream of the transaction start sites (TSS) of KIAA0319 and 

KIAA0319L in the zebrafish and human genomes were scanned for the presence of FOXA2 consensus 

sequences (Indicated in the top left corner). The results are visualised as black triangles with right and 

left orientation in reference to the positive and negative strand where the consensus sequence was 

found. The number of motifs is indicated at the right side of the figure. The exact position of the 

consensus sequences is shown in Supplementary Table S3. B) A snapshot from the UCSC Genome 

Browser shows the genomic location of the human FOXA2 consensus sequences (top track). The two 

sequences are located in introns of TDP2, within the KIAA0319 dyslexia-associated region, indicated 

by the SNPs in the bottom track. The brace at the bottom provides a visualization of where the FOXA2 

sequences map within the dyslexia associations.   
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Figure 4 RNAscope analysis at the otic vesicles. kiaa0319, labelled in red (panel 2), and 

kiaa0319-like, labelled in green (panel 3) are compared against the negative controls (panels 6 and 7). 

The signal for both kiaa0319 and kiaa0319-like is characterised by the presence of speckles which can 

be detected also in the brain (white arrows; panels 2 and 3), which are both signs suggestive of genuine 

expression. In contrast, expression is not detected in the negative control in the brain, suggesting that 

the signal observed could be due to probe trapping at the contour of the otic vesicles.  DAPI (panels 1 

and 5) shows nuclear staining and panels 4 and 8 show the merged signal for all channels. All images 

show the left side of WT zebrafish at 48 hpf oriented with brain on the left and tail on the right. The scale 

bar is 50 µm in all panels. 
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Figure 5. kiaa0319 and kiaa0319-like are expressed in the eyes. A) and B) show two different views 

of RNAscope analysis in the eyes for kiaa0319 (labelled in red; panels A2 and B2) and kiaa0319-like 

(labelled in green; panel A3 and B4). The triple negative control shows no signal (A6 and A7). DAPI 

(A1, A5, and B1) shows nuclear staining and panels A4, A8 and B3 shows the merged signal for all 

channels. All images show the left side of animals oriented with brain on the left and tail on the right at 

48 hpf (WT zebrafish). The scale bar is 50 µm in all panels. C) Quantification of expression by qPCR of 

kiaa0319 and kiaa0319-like. Expression is measured as 1/∆Ct referenced against the eef1a1l2 gene. 

The measurement is derived after pooling a total of forty eyes collected at 48 hpf. The mean values 

were derived from three technical replicates. The error bars indicate standard deviations. 
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Supplementary Methods 

Quantitative PCR. Gene expression was assessed by quantitative PCR (qPCR) conducted 

with the Luna Universal RT-qPCR Kit (NEB) and using a Viia7 instrument (Life Technologies, 

Paisley, UK). Cycling conditions were as follows: 95°C for 1’ followed by 40 cycles of 

denaturing (95°C) for 10’’ and annealing for 30’’ (60°C). The primer pairs were designed to 

span across kiaa0319 and kiaa0319-like exons. Reaction efficiency was calculated using a 5-

point standard curve generated by 2 fold dilutions starting from 50 ng. A no-template sample 

was included as negative control. Melt curve analysis showed a single clear peak for each 

assay. Gene expression was plotted as 1/∆Ct referenced against the eef1a1l2 gene with each 

gene expression value derived from at least three technical replicates. All primers used are 

listed in Supplementary Table S1 and were designed from the annotations of the University of 

California, Santa Cruz (UCSC) and ENSEMBL genome browsers. 

Light-sheet microscopy. We used an in-house built light-sheet microscope based on the 

OpenSPIM design [Pitrone et al., 2013b]. The original setup was modified to achieve an 

inverted configuration to accommodate larger varieties of samples. The microscope fits on a 

450 mm × 300 mm breadboard (MB3045/M, Thorlabs), as in the original OpenSPIM design. 

A 488 nm wavelength laser (Solstis with frequency doubler, M Squared) provides the 

illumination through a single mode fibre. A beam expander is followed by an adjustable slit 

(VA100/M, Thorlabs) to control the width of the beam and a cylindrical lens (LJ1695RM-A, FL 

50mm, Thorlabs) to focus the beam into a sheet of light. A steering mirror directs the beam to 

the illumination objective (UMPLFLN 10XW, water dipping, NA=0.3, Olympus) through a relay 

lens. The two objectives are mounted on a customized holder which not only simplifies the 

system but also minimizes adjustment required. This holder also allows a change of objective 

lens if needed. The fluorescence signal is first collected by a detection objective (LUMPLFLN 

20XW NA=0.5, water dipping, Olympus) coupled with an achromatic lens (as tube lens, 

LA1708-A-ML, FL 200 mm, Thorlabs) and is then projected onto a sCMOS camera (ORCA-

Flash4.0 sCMOS camera, Hamamatsu). 

The imaging was performed by scanning the sample through the light sheet with a manual 

scanning stage. The 3D images were reconstructed by choosing an arbitrary z step using 

ImageJ [Schindelin et al., 2012] or through the VTK library Visualization Tool Kit  [Schroeder 

et al., 2006b] in the open source software Icy [de Chaumont et al., 2012].  
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Supplementary Table S1. List of primers 

Gene 
Zebrafish gene 

name 
ENSEMBL gene ID Sequences 

Fragment size 

(bp) 
Experiment 

kiaa0319  

si:ch73-215d9.1 ENSDARG00000103001 

AGGGTCAGTACACGTTTCAGC 
1024 RT-PCR 

CACAGAGGGTCACAGGAACAG 

kiaa0319  
AACCATCGCTGTGAAAAGGC 

121 qPCR 
CTTTCAGAGTAGGTTGCGGC 

kiaa0319  
AGGGTCAGTACACGTTTCAGC 

1066 WISH probe 
CGCAATTAACCCTCACTAAAGGGACACAGAGGGTCACAGGAACAG 

kiaa0319-

like 
si:ch211-193k19.1 ENSDARG00000035660 

CGCAGCCACATGTAGAGTCT 
119 qPCR 

AGAAGACATGTCCTGCTCCG 

β-actin2 actb2 ENSDARG00000037870 
GCAGAAGGAGATCACATCCCTGGC 322 

(407, genomic) 
RT-PCR 

CATTGCCGTCACCTTCACCGTTC 

eef1a1l2  eef1a1l2 ENSDARG00000020850 
TTGAGAAGAAAATCGGTGGTGCTG  

91 qPCR 
GGAACGGTGTGATTGAGGGAAATTC 
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Supplementary Table S2. PFA treatment duration for the RNAscope protocol 

Stage Pre-treatment (min) PFA treatment (h) 

>12hpf  4 (with chorion) 

12hpf 1.5 1 (with chorion) 

24hpf 3 0.5 (without chorion) 

36hpf 5 0.5 

48hpf 7 0.5 

72hpf 10 0.5 

96hpf 12 0.5 

120hpf 15 0.5 

 

Supplementary Table S3. Location of FOXA2 consensus sequences 
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Gene Genome Start End p-value Strand Matched Sequence

kiaa0319-like danRer10 -7558 -7551 8.32E-05 + tgtttact

kiaa0319-like danRer10 -6948 -6941 8.32E-05 + tgtttact

kiaa0319-like danRer10 -6030 -6023 8.32E-05 - TGTTTGTT

kiaa0319 danRer10 -9449 -9442 8.32E-05 + tgtttgtt

kiaa0319 danRer10 -8439 -8432 8.32E-05 - TGTTTGTT

kiaa0319 danRer10 -7999 -7992 8.32E-05 + tgtttact

kiaa0319 danRer10 -5770 -5763 1.79E-05 + tgtttgct

kiaa0319 danRer10 -4354 -4347 8.32E-05 - TGTTTGTT

kiaa0319 danRer10 -2746 -2739 8.32E-05 + tatttgct

KIAA0319 hg38 -8603 -8596 1.79E-05 + tgtttgct

KIAA0319 hg38 -5499 -5492 1.79E-05 - TGTTTGCT

The target motif was TRTTTRYT; The Start and End position refers to the transcription 

start site of the gene
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Supplementary Figure S1. KIAA0319 is specifically expressed in the human brain. 

Expression profiles across human adult tissues are shown for the KIAA0319 (A) and the 

KIAA0319-LIKE (B) genes. KIAA0319 is specifically expressed in the adult brain. In 

comparison, KIAA0319-LIKE expression is higher, including in the brain, and widespread 

across tissues. The images are screenshots following queries to the GTEx database using 

the default settings [Consortium, 2013]. TPM = transcript per million.  
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Supplementary Figure S2. In situ hybridization suggests a specific spatiotemporal 

expression pattern for kiaa0319. A) At the 3 somite stage, kiaa0319 is expressed 

throughout the embryo with the strongest signal in the head (A1) and to a lesser extent, in 

the tail bud (A2). At the 14 the somite stage, high expression continues in the head (A3) 

and is visible along the developing body midline and in the tail (A3 and A4). All images are 

dorsal views with the head on the left side. B) At 30 hpf kiaa0319 is still expressed 

throughout the embryo but strong expression emerges in specific structures observed from 

dorsal (B1) and lateral (B2) views. Details of expression are shown for the eyes (B3; 

dorsolateral view), the midbrain-hindbrain boundary (B4; dorsal view), the otic vesicles (B5; 

dorsolateral view) and the notochord (B6; lateral view). C) In a dorsal view at 48 hpf, 
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kiaa0319 expression in the eyes is diminished, while signal in the telencephalon emerges 

(C1). The signal in the telencephalon is particularly visible in a lateral view (C2) along with 

expression in the eyes and the region around the notochord. Detailed dorsolateral views of 

the eye (C3) and otic vesicle (C4) show weaker intensity at these structures when 

compared to the pattern observed at 30 hpf. 

 

 

Supplementary Figure S3. Controls for the RNAScope Fluorescent Multiplex Assay. 

For all experiments a probe for myoD1 (myogenic differentiation 1) was used as a positive 

control (panels A and C) and three unspecific probes for each of the three channels were 

used as a triple negative control (panel B and D). The picture shows representative lateral 

views along the body of animals (120 hpf) taken with a confocal microscope to test the 

settings of the channels used for the detection of the kiaa0319 and kiaa0319l probes. The 

scale bar indicates 50 µm in all panels. 


