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Abstract 18 

The potential impact of exposure to polychlorinated biphenyls (PCBs) on the health and 19 

survival of cetaceans continues to be an issue for the conservation and management, yet 20 

few quantitative approaches for estimating population level effects have been developed.  21 

An individual based model (IBM) for assessing effects on both calf survival and immunity 22 

was developed and tested.  Three case study species (bottlenose dolphin, humpback whale 23 

and killer whale) in four populations were taken as examples and the impact of varying levels 24 

of PCB uptake on achievable population growth was assessed.  The unique aspect of the 25 

model is its ability to evaluate likely effects of immunosuppression in addition to calf survival, 26 

enabling consequences of PCB exposure on immune function on all age-classes to be 27 

explored.  By incorporating quantitative tissue concentration-response functions from 28 

laboratory animal model species into an IBM framework, population trajectories were 29 

generated.  Model outputs included estimated concentrations of PCBs in the blubber of 30 

females by age, which were then compared to published empirical data.  Achievable 31 

population growth rates were more affected by the inclusion of effects of PCBs on immunity 32 

than on calf survival, but the magnitude depended on the virulence of any subsequent 33 

encounter with a pathogen and the proportion of the population exposed. Since the starting 34 

population parameters were from historic studies, which may already be impacted by PCBs, 35 

the results should be interpreted on a relative rather than an absolute basis.  The framework 36 

will assist in providing quantitative risk assessments for populations of concern. 37 

 38 

Keywords: Individual based model, risk assessment, marine mammal, contaminants 39 

 40 

Capsule 41 

Current exposure levels of particular cetaceans to PCBs may significantly affect their 42 

population growth rates, through effects on immunity as well as calf survival. 43 
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Introduction 44 

Polychlorinated biphenyls (PCBs) are ubiquitous persistent organic pollutants that 45 

biomagnify through the food chain, resulting in high concentrations in the blubber of marine 46 

mammals, particularly piscivorous cetaceans (Jepson et al., 2016; Yordy et al., 2010b).  47 

These compounds are known to cause a range of adverse health effects that are likely to 48 

have consequences for cetacean abundance (Hall et al., 2006a; Kannan et al., 2000; 49 

Schwacke et al., 2012) through impacts on reproduction and survival.  Often organic 50 

pollutants are only one of many anthropogenic stressors facing endangered wildlife 51 

populations (Côté et al., 2016).  For example, three anthropogenic threats – namely prey 52 

limitation, noise and disturbance from vessels and chemical contaminants – have been 53 

identified as factors in the at-risk status of resident, fish-eating killer whales (Orcinus orca) in 54 

the northeastern Pacific Ocean (Canada, 2011; Krahn et al., 2004). The effects of prey 55 

limitation on survival and reproduction have been quantitatively assessed (Ford et al., 2010) 56 

but pollutants have only been treated in a qualitative way in conservation and management 57 

plans, thereby making it difficult to rank threats.   58 

An individual-based model (IBM) framework was developed (Hall et al., 2006b) to simulate 59 

the impact of PCBs on the achievable growth rate (λ) of cetacean populations over a number 60 

of decades. Density dependence is not included in the model so the comparisons made are 61 

on a relative achievable population growth rate basis rather than an absolute basis.  IBM 62 

approaches have been used to assess the population consequences of other harmful 63 

agents, including pathogens and parasites, as well as pollutants, for terrestrial and fish 64 

species (Ajelli and Merler, 2009; Gaba et al., 2010; Murphy et al., 2008).  An initial 65 

framework was previously developed which modelled the effects of maternal PCBs on calf 66 

survival probability (Hall et al., 2006b), an exposure pathway that remains of concern.  In 67 

certain cetacean populations, where have females with high concentrations of PCBs in their 68 

blubber, there continues to be an association between low-recruitment and declining 69 

abundance (Jepson et al., 2016), consistent with uptake affecting reproduction. However, 70 

adverse effects of PCBs on the immune system are also well-established and are of 71 

particular concern for marine mammals (De Guise et al., 1995; Ross et al., 1996). A number 72 

of disease epidemics, primarily involving morbillivirus, have led to large-scale mortalities in 73 

marine mammal populations over the past several decades (Van Bressem et al., 2014). The 74 

magnitude of these events has raised questions as to whether PCBs or other pollutants 75 

could be increasing the impact of natural infections by suppressing immune function and 76 

decreasing host resistance thus decreasing the probability of survival (Ross et al., 1996).  77 

In the current study, the tissue concentration-response function for calf survival from the 78 

initial IBM framework was expanded to also include tissue concentration-response functions 79 

for the effects on immunity.  This approach was chosen as empirical exposure data for these 80 

species is generally only available as levels of PCBs in blubber samples (Balmer et al., 81 

2011).  The approach taken here does not explicitly model the toxicokinetics of PCBs in 82 

cetaceans which has been carried out in a number of previous studies (Hickie et al., 2000; 83 

Hickie et al., 2013; Hickie et al., 1999; Weijs et al. 2013).  Often the diet composition and 84 

consumption rate of prey for the cetaceans of interest is unknown and whilst including a 85 

bioenergetics and toxicokinetic model into the IBM might be desirable, empirical data for 86 

model comparison in cetaceans over time is generally only available as blubber 87 

concentrations (Law, 2014).  Thus the starting point here is taken as the PCBs assimilated 88 

into the blubber as an indication of exposure, using the tissue concentration-response 89 
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functions available for model species (Fuchsman et al., 2008), rather than the ingested 90 

dose-response functions, to estimate the impact of PCBs on cetacean calf survival and 91 

immunity. 92 

The model was applied to three cetacean species and four populations as examples; 93 

bottlenose dolphins (Tursiops truncatus), two populations of killer whales and humpback 94 

whales (Megaptera novaeangliae).  The additional complexity and originality in this approach 95 

was to include PCB effects on immune status.  However, for such effects to be evaluated at 96 

the population level, the model must allow for animals to be subsequently exposed to an 97 

infection with an associated survival probability.  The population consequences of varying 98 

the proportion of the population that encounter a novel infectious pathogen each year was 99 

explored.  This was achieved by integrating the relationship between an in vitro immune 100 

function assay, T lymphocyte proliferation in response to concanavalin A (Con A) 101 

stimulation, and exposure to PCBs in bottlenose dolphins from field studies (Schwacke et al., 102 

2012) with the results of the U.S. National Toxicology Program studies (Luster et al., 1993) 103 

that quantified the link between this immune assay and host resistance in mice. This 104 

improved the reality of the model whilst also capturing the level of uncertainty around the 105 

resulting population trajectories. 106 

PCB concentrations in the blubber of bottlenose dolphins are among some of the highest 107 

concentrations reported in wildlife globally (Balmer et al., 2011; Hansen et al., 2004; Pulster 108 

et al., 2009; Fair et al., 2010; Schwacke et al., 2012), and studies in this species have 109 

documented adverse health effects in association with high PCB uptake.  For example, 110 

samples of blubber from free-ranging dolphins along the southern coast of Georgia, on the 111 

east coast of the US, had concentrations up to 2900 mg/kg lipid (Balmer et al., 2011; Pulster 112 

and Maruya, 2008).  Health evaluations among free-swimming captured and released 113 

dolphins in this region found that thyroid hormone levels (hypothyroidism) were significantly 114 

negatively correlated with increased blubber PCB concentrations (Schwacke et al., 2012) 115 

and that T-lymphocyte proliferation and indices of innate immunity were also significantly 116 

negatively correlated (Schwacke et al., 2012).  Based on their study findings, the authors 117 

concluded that bottlenose dolphins are vulnerable to PCB-related toxic effects mediated 118 

through the endocrine system.  This is in contrast to other populations, such as those 119 

inhabiting Sarasota Bay and the Indian River Lagoon, Florida that have much lower PCB 120 

levels in their blubber (mean total PCBs in males ~70 - 80 mg/kg lipid as compared to 170 121 

and 450 mg/kg lipid from two sites along the southern Georgia coast, (Fair et al., 2010; 122 

Kucklick et al., 2011; Schwacke et al., 2014; Wells et al., 2005)).  123 

Killer whales can also be significantly exposed to PCBs and concentrations of approximately 124 

400 mg/kg lipid have been reported in blubber samples from animals in Japanese waters 125 

(Ono et al., 1987) and the west coast of the North America (Hayteas and Duffield, 2000) 126 

since the late 1980s.  During this same time frame, high mean PCB concentrations (> 250 127 

mg/kg lipid) were also reported in the blubber of transient male killer whales from British 128 

Columbia (Ross et al., 2000) and the west coast of the U.S. (Krahn et al., 2007b) and 129 

transient females from British Columbia had mean levels exceeding 50 mg/kg lipid (Ross et 130 

al., 2000).  These concentrations are above estimated thresholds for endocrine disruption, 131 

effects on reproduction and immunity in cetaceans (~17-20 mg/kg lipid) (Hickie et al., 2013; 132 

Kannan et al., 2000).  Transient killer whales feed on marine mammals (Baird and Dill, 133 

1995), unlike the fish-eating resident killer whales, and the higher trophic level of the 134 

transient population would help to explain these very high levels. In contrast, large mysticete 135 
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cetaceans such as humpback whales, have lower blubber PCB concentrations (2-4 mg/kg 136 

lipid) (Elfes et al., 2010; Metcalfe et al., 2004), as they feed at a lower trophic level, on 137 

copepods (Simon et al., 2012), schooling fish and crustaceans (Witteveen et al., 2011).  138 

Long term studies on the population dynamics of humpback whales in the Gulf of Maine 139 

indicate that their abundance has been increasing since the 1980s (Robbins, 2007) and 140 

combined with data on their blubber PCB concentrations, this population provided an 141 

example of a species and population with lower exposure.  Thus, these species were chosen 142 

as examples for the model because not only do they have contrasting PCB concentrations in 143 

their blubber and therefore different levels of exposure, but four populations also have 144 

published population vital rates that could be used to parameterize the model. 145 

 146 

Methods  147 

Model Structure 148 

The overall structure of the model is shown in Fig. 1.  The model has been constructed using 149 

the statistical and modelling package R (R Development Core Team, 2014) and it simulates 150 

the fate of individual females using published fecundity and survival data for each cetacean 151 

species to construct an initial, appropriately sized, population of animals with a stable age 152 

structure.  The population parameters used in a Leslie matrix model to construct these initial 153 

populations for each species are given in Table 1.  Since the model predicts what effects 154 

PCBs may have on achievable population growth into the future, starting population 155 

parameters were chosen using historical rather than current data.  This allowed for the 156 

model outputs and projections to be compared, as far as possible, with the dynamics of the 157 

various populations in the intervening years.  However, it should be noted that these 158 

populations and vital rates may already have been influenced by exposure to PCBs which 159 

were ubiquitous and maximal in the environment during the 1960s and 70s. So whilst the 160 

parameters are not from populations in pristine environments, the aim here is to provide a 161 

framework to investigate the impact of exposures across a continuum, starting at some point 162 

in time, using reasonable values from the literature, in which the result of varying the annual 163 

accumulation of PCBs into the blubber on potential population growth can be explored. 164 

The model simulates the accumulation of PCBs through transplacental transfer, suckling and 165 

prey ingestion, and the loss of PCBs from the mature females’ blubber during gestation and 166 

lactation.  Maternal blubber PCB concentrations then affect the calf survival probability in a 167 

dose-dependent matter.  Additional exposure-response relationships are included to 168 

simulate the impact of PCB uptake on immune function.  The model is stochastic so that 169 

each of the birth and survival outcomes are determined by whether a random number 170 

(drawn from a uniform distribution) is less than or equal to the probability associated with 171 

that event.   172 

Each animal is assigned a state variable of 1 (alive), or 0 (dead), an age and blubber PCB 173 

concentration (mg/kg lipid).  The model is a post-breeding census and age class 1 is 174 

equivalent to newborn calves.  Each model simulation spans a period of 100 years and a 175 

starting abundance is based on the specific populations being simulated.  For any given set 176 

of fecundity or survivorship values, the stable age structure is calculated by multiplying a 177 

random seed age structure by the appropriate Leslie matrix 100 times.  Fecundity here also 178 

accounts for differences in calving intervals between the different species.  The stable age 179 
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structure is used as the underlying population structure of the initial population of n females 180 

that is then projected forward in the simulations.  At first, each animal is assigned zero PCB 181 

level and after the first year, animals are then allocated an appropriate blubber PCB 182 

concentration depending on their age class and reproductive status (i.e. calves, juveniles 183 

and adults, Wells et al., 2005; Ross et al., 2000; Metcalf et al., 2004) following a simulation 184 

run-in.  A plausible range of annual accumulation of PCBs into the blubber is chosen, which 185 

includes uptake from contaminated prey.  This is combined with the concentrations obtained 186 

through maternal legacy (in utero and lactational transfer). The annual accumulations ranged 187 

from 1 to 5 mg/kg lipid and the different achievable population growth rates from each set of 188 

simulations were compared. Whilst these accumulation rates are not equivalent to PCB 189 

ingestion rates (Hickie et al., 2013), the resulting concentrations in the blubber of the 190 

females from the model outputs can be compared to the empirical data. The annual 191 

accumulation concentrations are arbitrarily chosen, however additional information on the 192 

slope of the linear relationship between blubber PCB concentrations and age in males gives 193 

some indication of the annual accumulation for a given population (since unlike females, 194 

males do not depurate PCBs through gestation and lactation processes and show a general 195 

increase in blubber concentrations with age (Wells et al., 2005; Ross et al., 2000)). These 196 

age-specific male data provide annual accumulation rates that implicitly include metabolism 197 

and excretion, as the blubber concentrations include these processes since they are only 198 

what ends up stored in the blubber.  Whilst this is a simplification of the variation in 199 

concentrations that could occur in an individual during a year, for the purposes of this 200 

blubber-based model they are indicative of the general pattern of blubber PCB 201 

concentrations that are seen in the empirical data. The aim of this model framework is to 202 

allow researchers and conservation managers to investigate the impact of variation in the 203 

annual accumulation rate, indicative of PCB exposure, for the different cetacean species. 204 

Thus, for comparative purposes each accumulation rate (from 1 to 5 mg/kg lipid) was 205 

investigated for each case study and the model outputs (population growth and age-specific 206 

female blubber concentrations) were compared with empirical data (historical or current).  207 

The model is a female-only individual based population model.  When females reach sexual 208 

maturity they become pregnant with a certain probability then during gestation and lactation 209 

offload a proportion of their blubber PCB to the calf (Tanabe et al., 1982).  The probability of 210 

survival of the offspring is modified by a tissue concentration-response function relating 211 

maternal PCB to offspring survival estimates.  The variation in achievable population growth 212 

rate with varying annual PCB accumulation rates can then be investigated, incorporating 213 

uncertainty from the tissue concentration-response relationships.  For each 100-year 214 

simulation, this is achieved by the model choosing random tissue concentration-response 215 

model coefficients from a set of 500 coefficients generated by data resampling.  Juvenile and 216 

adult survival are then also modified using the blubber PCB immune suppression tissue 217 

concentration-response function following exposure of a specified proportion of the 218 

population to a pathogen.  219 

After approximately the 40th simulation year, the effect of the PCB concentrations on 220 

achievable population growth stabilises.  From the population trajectories after the first 40 221 

years, the mean achievable growth rate is calculated, and the 2.5 and 97.5 percentiles are 222 

estimated from the ranked individual simulation growth rates.   223 
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 224 

Fig. 1.  Schematic diagram of individual based model to estimate impact of PCB exposure 225 

on cetacean population growth. 226 
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 227 

Tissue concentration-response relationship for maternal PCB concentration and calf survival 228 

probability 229 

It has been well demonstrated in a number of laboratory animal models that PCB exposure 230 

can, in addition to other effects, reduce offspring early survival probability (Barsotti et al., 231 

1976; Kihlstrom et al., 1992).  The studies carried out on mink provided data for the tissue 232 

concentration-response relationship used in the first probabilistic risk assessment study into 233 

the effects of PCBs on bottlenose dolphin populations published by Schwacke et al. (2002).  234 

More recently Folland et al. (2016) also used mink as an appropriate model for cetaceans 235 

due to the logistical constraints posed by using homologous species and the fact that 236 

genomically mink are more closely related to marine mammals than rodents and they 237 

occupy upper aquatic trophic levels.  Further considerations in using the surrogate mink data 238 

are also given in the Discussion.  Fuchsman et al. (2008) reported a comprehensive 239 

quantitative analysis of published results of PCB effects on mink reproduction. A subset of 240 

six studies where concentrations of total PCBs in the maternal tissues and details of off 241 

spring survival were listed (Bursian et al., 2006; Heaton et al., 1995; Jensen et al., 1977; 242 

Kihlstrom et al., 1992; Platonow and Karstad, 1973; Restum et al., 1998).  These raw data 243 

produced the tissue concentration-response relationship shown in Fig. 2.  A generalized 244 

linear quasibinomial model with a logit link function, weighted by the number of animals in 245 

each study, was fitted to the data.  The uncertainty around the relationship was again 246 

estimated using resampling with replacement (n=500, also shown in Fig 2).  The resulting 247 

EC50 from the best fit relationship was 46.5, SE 8.8 mg/kg.   248 

Fig. 2.   Logistic regression model predicting probability of kit survival in relation to maternal 249 

blubber PCB concentration using a subset of the mink studies. The triangles represent the 250 

data points from the six individual published studies (Barsotti et al., 1976; Fuchsman et al., 251 

2008; Heaton et al., 1995; Jensen et al., 1977; Platonow and Karstad, 1973; Restum et al., 252 

1998), black lines show 500 resampled regression models and the blue line shows the best 253 

fit. 254 
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 255 

Tissue concentration-response relationship between blubber PCB concentration and T-256 

lymphocyte proliferation (Con A response) in bottlenose dolphins 257 

A two stage process was implemented whereby the functional response between the 258 

proportional decrease in T-lymphocyte response to Con A stimulations and decrease in 259 

survival (Luster et al., 1993) was combined with the function relating T-lymphocyte 260 

proliferation response to Con A to blubber PCB concentrations from wild bottlenose dolphins 261 

from several sites along the east coast of the US using the data from Schwacke et al. (2012)  262 

The steps involved in this process are shown in Fig. 3. 263 

 264 

Fig. 3.  Steps involved in estimating the expected change in survival probability in relation to 265 

exposure to PCBs through immune suppression. 266 

 267 

In order to utilise the Luster et al. (1993)  predictive relationships, data from Schwacke et al. 268 

(2012) were converted to a proportional change in response to Con A in relation to an 269 

estimated maximal response.  Thus the “control” was taken as the T-lymphocyte response to 270 

Con A at the intercept (Fig. 4a).  This relationship was then converted to an estimate of 271 

whole animal immunosuppression (Luster et al., 1993) (Fig. 4b).  This was given in terms of 272 

the dose of an immunosuppressant compound (cyclophosphamide) administered to the 273 

animals.  Both cyclophosphamide and PCBs act on T cells and while at high doses 274 

Blubber PCB concentration

 ConA ~ PCBs

 Decreased T-lymphocyte proliferation (ConA) 
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total PCBs (Figure 4a)

Immunosuppression ~ ConA

Reduced T-lymphocyte proliferation (ConA)

causes decreased host resistance (Figure 4b)
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T-lymphocyte proliferation (Figures 4c and 4d)
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cyclophosphamide can completely eradicate haematopoietic cells, both compounds act on 275 

the same arms of the immune system (Harper et al.,1993; Ahlmann and Hempel 2016).  The 276 

final step was to estimate a parameter that could be used in the model taking the previous 277 

relationship and converting it to a decrease in host resistance following exposure to a 278 

pathogen, either of low (Fig. 4c) or higher virulence (Fig. 4d) (Luster et al., 1993).  These 279 

three steps resulted in a multiplier, which was used to modify the probability of survival – so 280 

a factor of 1 did not change the background survival probability even after exposure to a 281 

pathogen but a factor of 0.5 resulted in a halving of the survival probability.  Figures 4e and 282 

4f show the overall error associated with predicting the decrease in host resistance from 283 

PCBs in blubber (500 predictions were carried out for each PCB level) for low and high 284 

virulence pathogens.   285 

The effect of exposure of either 5% or 20% of the population to a higher virulence, class II 286 

pathogen was assessed.  It was assumed that a novel pathogen was introduced into the 287 

population, affecting the specified proportion of individuals each year.  Such novel 288 

pathogens may have a dramatic effect on a naïve population, causing an epidemic in a 289 

single year and then fading from the population.  An exploration of this effect on a slowly 290 

increasing cetacean population was also included. 291 

 292 

Fig. 4.  (a) Relationship between change in T-Lymphocyte response to Con A and log 293 

blubber PCBs in bottlenose dolphins (Schwacke et al., 2012); (b) proportional decrease in 294 

Con A response in relation to immunosuppressant dose in mice (Luster et al., 1993); (c) 295 

decrease in host resistance (probability of survival) in relation to immunosuppressant dose 296 
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for a pathogen with low virulence (Luster et al., 1993); (d) decrease in host resistance 297 

(probability of survival) in relation to immunosuppressant dose for a pathogen with high 298 

virulence (Luster et al., 1993); (e and f) the error associated with predicting decrease in host 299 

resistance from blubber PCBs, low and high virulence pathogens respectively, black lines 300 

connect the 95% intervals for each PCB level prediction.  The blue line indicates the mean. 301 

Model parameters and case study populations  302 

The vital rates (fecundity and survival) and other explicit model parameters such as age at 303 

first reproduction and maximum age class used in the Leslie matrices for the baseline 304 

populations for the four case study species are given Table 1. 305 

Table 1.  Model parameters, including those used in a Leslie matrix model for a baseline 306 

population with a stable age structure to then simulate effect of maternal PCB concentrations 307 

on achievable population growth rate. 308 

Parameter Bottlenose 
Dolphin 

Humpback 
Whale 

Northern 
Resident 
Killer Whale 

Southern 
Resident Killer 
Whale 

Maximum age 
(years) 

40 35 50 50 

First year calf 
survival 

0.811 0.875 0.97 0.97 

Adult survival 0.962 0.960 0.999 0.990 

Fecundity at sexual 
maturity 

0.177 0.111 – 0.241, 
depending on 
age 

0.200 0.180 

Length of lactation 
(years) 

2  1 2  2 

Age at sexual 
maturity(years) 

8 8 14 14 

Population growth 
(baseline λ) 

1.014 1.065 1.019 1.013 

Starring population 
size 

100 1000 200 100 

Source Reference Wells and Scott, 
1990 (Wells and 
Scott, 1990) 

Barlow and 
Clapham, 1997 
Zerbini, 
Clapham and 
Wade 2010 
(Barlow and 
Clapham, 
1997; Zerbini 
et al., 2010) 

Olesiuk et al 
1990 (Olesiuk 
et al., 1990)  

Olesiuk et al 
1990 (Olesiuk 
et al., 1990) 

 309 

 310 

311 
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 312 

Bottlenose dolphins 313 

The population of bottlenose dolphins in Sarasota Bay, Florida has been well studied and 314 

both historical vital rate and contaminant data exist for this population (Wells et al., 2005).   315 

Humpback whales 316 

For the humpback whale, the main source of survival and fecundity rates were obtained from 317 

Barlow and Clapham (1997).  The population in the Gulf of Maine has been extensively 318 

studied (Clapham et al., 1995; Payne et al., 1986) and therefore provides reliable life history 319 

parameters for this species.   320 

Northern and Southern resident killer whales 321 

Using published historic population parameters for the northern (NRKW) and southern 322 

resident populations of killer whales (SRKW), which inhabit the coasts of British Columbia, 323 

Canada and Washington State, USA (Ford et al., 2000), the outcome for the same species 324 

which have slightly different population dynamics and contaminant burdens can be 325 

compared.   326 

The population of SRKW has not increased at the same rate as the NRKW population and 327 

the trend from 1975-1987 indicated that the population was increasing at approximately 328 

1.3% per annum during that period (Olesiuk et al., 1990).  However, it should be noted that 329 

the parameters from this era are likely to already include PCB-induced effects and that this 330 

should be taken into consideration when interpreting changes in potential population growth 331 

over time. 332 

In all four case studies, data from various sources was used to estimate the proportion of 333 

PCBs transferred from the female to the calf in utero (0.6) and an additional proportion 334 

during lactation (0.77) (Cockcroft et al., 1989; Salata et al., 1995; Tanabe et al., 1982).  335 

Where the calf died within its first year, we assumed death occurred at 6 months and the 336 

depuration for that year was halved to 0.38.  Subsequently the fate of male calves was 337 

ignored by the model. 338 

Validation using empirical data  339 

One output from the model was the estimated PCB concentration in each individual female.  340 

By comparing these with distributions of concentration found in the mature females within a 341 

given example population, it was possible to estimate the equivalent annual accumulation of 342 

PCBs and resultant achievable population growth, assuming the source concentration is not 343 

changing substantially over time which could be an oversimplification.   344 

 345 

Results 346 

Population model simulations  347 

For each population, 100 model simulations were run for each PCB annual accumulation 348 

value.  An example of the model output population trajectories from the simulations is given 349 

in the Supplementary material (Fig. S1).  Fig. 5a-5d shows the change in achievable 350 

population growth rate for different annual accumulations of blubber PCBs for the four 351 
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examples. Firstly, in each case achievable population growth rates taking only the effects of 352 

PCBs on calf survival into account were generated and compared to the population growth 353 

without accounting for the impact of PCB uptake.  354 

Bottlenose dolphins 355 

For the bottlenose dolphin example, an increase from 0 to 5 mg/kg lipid PCB annual 356 

accumulation was predicted to cause a decrease in annual achievable population growth 357 

rate from 1.4 to 0.43%.  The population trajectory declines from a growing to a static 358 

population (Fig. 5a), representing an approximately 69% (95% CI 53% - 85%) decrease in 359 

the annual population growth, a significant reduction between the baseline unexposed 360 

population and the population with an annual PCB accumulation of 5 mg/kg lipid. 361 

Secondly, achievable population growth rates were estimated taking effects on immunity into 362 

account and with two example pathogen exposure levels (i.e., 5 or 20%).  As expected, this 363 

caused the population to decline at lower PCB annual accumulation levels. When 5% of the 364 

population were exposed to a novel pathogen, it did not start to decline until the annual 365 

accumulation was between 4 and 5 mg/kg lipid.  However, when 20% of the population was 366 

exposed, the population started to decline at annual accumulation levels of between 1 and 2 367 

mg/kg lipid (Fig. 5a).  By 5 mg/kg lipid annual accumulation, the achievable annual 368 

population growth had declined by 230% (95% CI 211% - 248%) compared to the baseline 369 

annual population growth (Fig. 5a). 370 

Humpback whales 371 

The achievable population growth rate for the baseline population in this example was high 372 

at ~6.5% per annum, resulting in exponential trajectories. The impact of PCB annual 373 

accumulations of again between 1 and 5 mg/kg lipid on population growth for all three 374 

scenarios was less pronounced (Fig. 5b).  Although the population growth rates declined as 375 

expected, these were proportionally lower than for the bottlenose dolphin example, being 376 

between approximately 10% (95% CI 6% - 15%) up to a maximum of 76% (95% CI 69% – 377 

83%) decline in achievable population growth  378 

Northern resident killer whale 379 

This baseline population was growing at ~2% per annum without the effects of PCBs and in 380 

the first set of simulations with impacts on calf survival only, the mean estimated potential 381 

population growth declined by between 2% (95% CI 15% - +19%) and 37% (95% CI 20% - 382 

55%) at the 5 mg/kg lipid weight annual accumulation concentration.  However, the mean 383 

estimated λ at this level was greater than 1.0 (Fig. 5c) indicating the population would still be 384 

increasing by ~0.9% per annum. 385 

 386 

 387 

 388 

 389 

 390 

 391 
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 392 

 393 

Fig 5. Change in the achievable population growth for different annual accumulations of 394 

blubber PCBs in (a) bottlenose dolphins, (b) humpback whales, (c) Northern resident killer 395 

whales and (d) Southern resident killer whales with different proportions of the population 396 

exposed to a class II pathogen.  The vertical line indicates the 95% range obtained from 100 397 

simulations.  Calf survival effects only = black circles, 5% exposed to a pathogen = red 398 

circles, 20% exposed to a pathogen = blue circles. Horizontal line = stable population, λ=1.0. 399 

400 

Fig. 5a Bottlenose dolphin Fig. 5c Northern Resident Killer Whale  

Fig. 5d Southern Resident Killer Whale  Fig. 5b Humpback whale  
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 401 

In the second set of simulations, PCB effects on immunity were also included in the model 402 

(Fig. 5c).  At 5% of animals exposed to a pathogen the achievable population growth rate 403 

decreased up to 86% (95% CI 68% - 104%) per annum at the highest accumulation rate 404 

resulting in a mean achievable population growth of only 0.2% per annum but with 405 

confidence limits spanning 1.0. A similar result was observed when the proportion of the 406 

population exposed to a high virulence pathogen increased to 20%.  The population declined 407 

further, up to 226% (95% CI 203% – 250%) at the highest annual uptake level. Under this 408 

most extreme scenario, the mean achievable population growth rate fell below 1.0, indicating 409 

that the population is expected to decline at a rate of ~2% per annum.  410 

Southern resident killer whale 411 

The results of the simulations for the SRKW population are shown in Fig. 5d and indicate 412 

that when only calf survival effects are included in the model the population would still 413 

increase slightly even at the highest uptake of 5 mg/kg lipid annual accumulation, with an 414 

achievable λ just above 1.0.  However, when immunity effects are taken into consideration 415 

with 5% of the population exposed to a novel pathogen, at the highest uptake level, the 416 

population is likely decline with a mean λ of 0.999 (although the confidence limits span 1.0, 417 

indicating that in some simulation runs the populations did not decline Figure 5d).  In terms 418 

of a percentage change in λ from the baseline however, this represents a decrease of up to 419 

110% (95% CI 97% - 124%) at the 5 mg/kg level. 420 

When 20% of the population was exposed to a novel pathogen, the mean λ fell below 1.0 at 421 

the 2 mg/kg annual accumulation level, representing a ~75% decrease compared to the 422 

baseline.  By the 5 mg/kg level, the mean λ was 0.979 (95% confidence limits 0.969, 0.993), 423 

representing an annual population decline of ~2% and a decrease in λ of 289% (95% CI 424 

265% - 312%) compared to baseline. 425 

 426 

Comparisons with empirical data  427 

In order to determine the annual accumulation concentration relevant to each case study 428 

population, an estimate of the total PCB concentrations in the blubber of the adult females 429 

from the various case study populations was used.  These were compared to the age-430 

specific concentrations estimated by the model runs.  In addition, the relationship between 431 

the annual accumulation rates (1 – 5 mg/kg) and the mean concentration in the blubber of 432 

the adult females (above the age at sexual maturity), estimated from 25 model runs including 433 

only effects of PCBs on calf survival is shown in Figs. 6a-6d. This allows the accumulation 434 

rates to be interpreted in relation to blubber PCB concentrations.  A positive linear 435 

relationship was seen for all four case studies, within similar ranges. 436 

Bottlenose dolphins 437 

For populations that have underlying vital rates similar to those published for the Sarasota 438 

Bay population and used in these simulations, the resulting estimated annual accumulation 439 

would be approximately 0.5 mg/kg lipid for the lower exposed populations such as those 440 

monitored in Florida and the Gulf of Mexico (Fig. 6a, Schwacke et al., 2014) whereas it 441 

would be almost 6 mg/kg lipid for more highly exposed populations, such as those in 442 

Georgia (Schwacke et al., 2012).  In these situations, a decline in the abundance of animals 443 
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would be predicted, given no compensatory population inputs or changes in vital rates over 444 

time. 445 

Humpback whales 446 

A study published in 1975 reported levels of chlorinated hydrocarbons in a number of 447 

cetacean species in the north Atlantic including humpback whales (Taruski et al., 1975) and 448 

in 1997 a more detailed study reported levels in four female humpback whales from the Gulf 449 

of St Lawrence (Gauthier et al., 1997) which ranged between ~2 and 4 mg/kg lipid. Although 450 

these data were collected some years ago from animals outside the Gulf of Maine Region, 451 

this equated to an annual accumulation of only between 0.2 and 0.4 mg/kg lipid (Fig. 6b).  452 

This suggests exposure levels are considerably lower than for the other species and 453 

populations included here.  More recently (Elfes et al., 2010) published data only reported on 454 

levels in males collected from the North Atlantic (Gulf of Maine) population.   455 

Northern Resident Killer Whales 456 

The model runs resulted in an estimated concentration of PCBs in NRKW adult females 457 

(aged 14 to the maximum age class 50 years).  For the 1 mg/kg and 3 mg/kg lipid annual 458 

accumulations this resulted in a mean concentration for the females of 10.43 mg/kg lipid and 459 

30.53 mg/kg lipid, respectively.  Empirical data (Ross et al., 2000; Ylitalo et al., 2001) 460 

reported total PCBs in adult females in the order of ~10 mg/kg lipid which would suggest an 461 

annual accumulation of ~1 mg/kg although this comparison assumes sampled animals come 462 

from a population with a similar age structure as the modelled population (Fig 6c).   463 

Southern Resident Killer Whales 464 

The model outputs suggest that accumulations are unlikely to be very much higher than ~5 465 

mg/kg in SRKWs, because at this rate the mean level of total PCBs in the adult females was 466 

~50 mg/kg lipid weight (Fig 6d and Supplementary Fig. S2).  This is in line with the small 467 

amount of published data for adult female SRKWs of ~ 45-55 mg/kg lipid weight (Krahn et 468 

al., 2007a; Ross et al., 2000). 469 
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 470 

Fig. 6.  Relationship between annual accumulation of PCBs and mean concentration in adult 471 

females for the four case studies (a) Bottlenose dolphin (BND) (b) Humpback whale (HW) (c) 472 

Northern Resident Killer whale (NRKW) (d) Southern Resident Killer whale (SRKW).  Black 473 

circles indicate the results from the 25 model simulations.  Red dots indicate the 474 

concentrations of PCBs and estimated annual accumulations reported for each of the case 475 

studies. 476 

Effect of an epidemic 477 

The effect of pathogen exposure during an epidemic in a given year was also be 478 

investigated using this model framework.  An example of the impact of increasing the 479 

proportion of individuals exposed to a pathogen in a population of bottlenose dolphins is 480 

shown in Fig. 7.  Here, the annual accumulation was set at 3 mg/kg lipid and the in a given 481 

year (here year 60 of the 100 year timeline) 80% of the population was exposed to a 482 

pathogen at some time during the year. The population trajectories showed a stable or 483 

slightly increasing population then a steep decrease in abundance in year 60 of the 484 

simulations when the outbreak is clearly seen as a step in the population trajectories in the 485 

year when the epidemic occurred.  Interestingly, due to the stochastic nature of the model, 486 

not all the simulated population trajectories showed a step decline in the epidemic year.  487 

Clearly, the impact will be dictated by the virulence of the pathogen and the proportion of the 488 

population exposed. 489 

(a) (b) 

(c) (d) 
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 490 

Fig. 7.  Population trajectories from the individual based model with simulations showing the 491 

effect of an epidemic with 80% of the population exposed to a higher virulence pathogen in 492 

year 60.  100 simulations were run but the results for 25 are shown for clarity. Black line 493 

shows median population growth, blue lines 2.5th and 97.5th percentiles from the ordered 494 

population growth trajectories. 495 

496 
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 497 

Discussion 498 

 499 

The IBM described here was used to explore the achievable population level impacts of PCB 500 

uptake by cetaceans, mediated through calf survival and immunosuppression.  The model 501 

provides an important insight into the likely effects of PCBs on achievable population growth 502 

in a range of species, using four case studies as examples.  However, it should be 503 

recognised that the starting population parameters for these cases are generally from 504 

historic studies which means in some cases the parameters may already be affected by 505 

exposure to PCBs.  This may have resulted in a more pessimistic outcome than is currently 506 

the case, thus we would caution against interpreting the findings in absolute terms rather 507 

that they represent relative changes in potential population growth at different levels of PCB 508 

exposure mediated through different effect endpoints. 509 

Nonetheless some general patterns have emerged.  When populations are growing at a 510 

modest rate of 1 - 2% per annum (as in the bottlenose dolphin and killer whale examples), 511 

incorporating only calf survival effects into the model was not sufficient to cause a population 512 

decline until relatively high levels of annual accumulation of PCBs, and correspondingly high 513 

levels of PCBs in the blubber of females, had been reached (annual accumulation 514 

concentrations > 5 mg/kg lipid).  However, the very high levels of blubber PCB 515 

concentrations that would result in accumulation concentrations above 5 mg/kg lipid are 516 

seen in some populations of bottlenose dolphins (Balmer et al., 2011; Pulster et al., 2009), 517 

and for at least one of these populations, significant adverse health conditions have been 518 

documented (Schwacke et al., 2012).  In light of these findings and the result of our IBM 519 

simulations, this population would be expected to decline over time.  520 

In addition, impacts of PCBs on adult survival (i.e., with immunocompromised individuals 521 

showing increased vulnerability to novel pathogens) strengthen these effects.  Recent 522 

analysis in 2014 reported the NRKW population to be composed of 290 whales with a mean 523 

annual growth rate of 2.2% since 1974 and 2.9% since 2002 (range -0.4 – 8.6%) (Towers et 524 

al., 2015). The maximum intrinsic growth rate for this species is estimated to be 2.6% 525 

(Olesiuk et al., 2005). By contrast, and in line with our predictions, the SRKW population has 526 

hovered below 90 individuals since the late 1990s (Center for Whale Research, unpublished 527 

data). This indicates that current accumulation rates are ~5 mg/kg lipid, resulting in females 528 

with blubber PCB concentrations of ~ 50 mg/kg lipid (Ross et al., 2000, Krahn et al. 2009) 529 

and inferring that the continued high exposure of this population to PCBs is one of the 530 

factors constraining its recovery, particularly in conjunction with other highlighted issues 531 

such as dietary limitation (Ford et al., 2010). Conversely, the population of humpback 532 

whales, increasing near its maximum plausible growth rate, is unlikely to suffer a decline 533 

even at the highest PCB concentrations measured in Gulf of Maine or Gulf of St Lawrence 534 

humpback whales.  The minimal risk for this population is primarily driven by the lower 535 

trophic level of their prey.  536 

The model is stochastic and whilst it captures some of the uncertainty in the model 537 

parameters not all the potential sources of error have been included.  For example, the vital 538 

rates used to generate the baseline population are fixed, as are the depuration and 539 

lactational transfer approximations estimated from various sources (Cockcroft et al., 1989; 540 

Tanabe et al., 1982) and inclusion of the uncertainty associated with these parameters 541 
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would increase the variability of population growth estimates. The model also does not 542 

include all potential health effects of PCB uptake, such as effects on fecundity (Barsotti et 543 

al., 1976), which would potentially increase estimated risks of decline.  This is a female 544 

based model and the fate of males is excluded.  However, males may be similarly impacted 545 

by effects of immunosuppression.  In addition, the tissue concentration-response relationship 546 

for PCBs and calf survival and associated uncertainty was estimated from published 547 

laboratory studies of a surrogate species (mink).  Additional uncertainty for the application of 548 

this tissue concentration-response function stems from potential interspecies differences in 549 

metabolism of the various PCB congener groups, which may be a particular issue when 550 

dosing is conducted using non-weathered technical mixtures of PCBs (e.g., commercially 551 

sold Aroclor mixtures) or specific PCB congeners.  While the uncertainty resulting from 552 

interspecies extrapolation could not be included in the model due to the lack of empirical 553 

data, uncertainty was reduced by focusing on laboratory studies where dosing was 554 

conducted via contaminated prey (i.e. environmentally relevant mixtures), the results from 555 

which contributed the majority of the data to the tissue concentration-response function. 556 

Incorporating effects of PCBs on immunity in this model required including a three-stage 557 

process.  This was necessary in order to relate the concentration of PCBs in the blubber of 558 

cetaceans to the ability of an individual animal to respond to infection (host resistance).  The 559 

only data currently available are from an extensive study carried out by the US National 560 

Toxicology Program (NTP) in the 1990s using laboratory animal models (Luster et al., 1993) 561 

and from a study of free-living dolphins from various populations for which the relationship 562 

between blubber PCBs and a single immune function assay, the in vitro response to Con A 563 

stimulation, was available (Schwacke et al., 2012).  The NTP studies relating immune 564 

function assays to proportional changes in host resistance and survival, suggested that, 565 

given the different magnitude of responses between different immune function assays and 566 

between innate and acquired immunity, more than one assay should be included in a battery 567 

of tests.  As such, we would recommend the future inclusion of a second assay.  For 568 

example, investigating natural killer cell activity in relation to blubber PCB concentrations in 569 

cetaceans would provide a further insight into the impact on an arm of the innate immune 570 

system important in defence against viral infection (De Guise et al., 1997).  571 

Setting a realistic level at which to set the proportion of the population exposed to a 572 

pathogen is also problematic and the 5% level chosen here is arbitrary.  Most studies on 573 

disease occurrence in marine mammals are based on serological studies which, whilst 574 

indicating the prevalence of exposure to a pathogen in a population, do not measure the 575 

occurrence or incidence of disease (i.e. the number of new cases of infection occurring in a 576 

particular time period).  Prevalence studies can only suggest how many animals have 577 

historically been in contact with a particular pathogen but not when contact occurred.  578 

However, a study of bottlenose dolphins in Florida reported that the annual incidence rate of 579 

lobomycosis (lacaziosis) was 2.66% (Murdoch et al. 2008).  This might indicate the rate of 580 

pathogen exposure in a population outside an unusual mortality event.  To be on the 581 

conservative side this was therefore increased to 5%.  However, in a free-ranging population 582 

of cetaceans even exposing 5% of the population each year to a relatively virulent pathogen 583 

may be an overestimation.  And other aspects for a given species should be considered, 584 

such as social organisation and pod structure which could affect pathogen exposure 585 

dynamics.  The laboratory animal model data are based on controlled exposure of caged 586 

mice in which pathogen uptake is highly likely due to the dosing regimen.  However, this may 587 

ensure a degree of precaution in the model outputs and the conclusions drawn from them.  If 588 



21 

 

a novel pathogen were to be introduced into this population or particularly during an 589 

epidemic (as recently occurred during the 2013-2105 cetacean morbillivirus event that 590 

occurred along the US east coast (Morris et al., 2015)), the risk of observing a reduction in 591 

population growth may be considerably higher, depending on the persistence and 592 

transmission of the pathogen in the population, as increased mortality may be experienced 593 

by all age classes of animals, in addition to increased calf mortality.   Including the potential 594 

impact that a single year epidemic may have on a population could be investigated 595 

empirically, particularly in populations for which vital rates before and after an infectious 596 

disease outbreak are available.   597 

This model only investigates the effect of a single class of persistent organic pollutants, the 598 

PCBs and it should be noted that cetaceans are likely to be simultaneously exposed to many 599 

other compounds, including heavy metals, polycyclic aromatic hydrocarbons and pesticides 600 

(Yordy et al., 2010a).  Effects caused by these pollutant mixtures are not being considered 601 

here, because data are only available from PCBs to quantify relationships between lipid 602 

concentration and effects on vital rates.  However, the fact that we have included data which 603 

relates Con A response to blubber PCB concentrations combined with the observation that 604 

many persistent organic pollutant concentrations in cetacean blubber co-vary (Krahn et al., 605 

2009) would suggest that we are indirectly including the potential impact of other 606 

contaminants. In the meantime, the use of toxic equivalency factors to simulate potential 607 

effects (van den Berg et al., 2013) may provide some guidance but this is likely to be 608 

problematic for emerging and poorly studied contaminants but there may be cases for which 609 

it is better to test plausible scenarios in the absence of data than to ignore entire classes of 610 

contaminants altogether.  Whilst in the scenarios presented here are based on fixed annual 611 

exposures over time, the model can be modified to include a reduction in PCB exposure 612 

level over time, as has been seen in some populations and species (Lebeuf et al., 2014). 613 

In conclusion, this approach allows broad and general achievable population dynamic 614 

predictions to be made for specific populations when estimates of PCB concentrations, 615 

particularly in mature, breeding females, are known.  These impacts can then be compared 616 

to other population pressures (such as interactions with boats, shipping and fisheries) so that 617 

the overall effect of pollutant exposures can be placed into a relative management context 618 

(Williams et al., 2016).  Interest in understanding the cumulative impacts of man’s activities 619 

on cetacean populations is growing (Côté et al., 2016). The approach presented in this study 620 

will provide an important contribution to these initiatives, by placing the effects of 621 

contaminants in the same demographic currency as other anthropogenic stressors.   622 
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