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Summary

Revealed preference analysis revolves around the theoretical identification and empirical
testing of falsifiable restrictions (or “axioms”) on people’s observable choice behavior that
are necessary and/or sufficient for it to be thought of as being compatible with some the-
oretical model of preference-maximizing choice. This methodological approach originates
in the works of Samuelson (1938), Houthakker (1950), Arrow (1959), Richter (1966) and
Afriat (1967), who focused on the textbook model of rational choice that portrays the
decision maker as maximizing a complete, transitive and stable binary preference relation
(possibly with additional properties) on a set of choice alternatives. The vast literature
generated by these works has contributed in essential ways to the empirical analysis of
individual and collective decision making under certainty, risk and uncertainty, in both
budget-constrained and more general choice domains (Chambers & Echenique, 2015; I.
Crawford & De Rock, 2014; Halevy, Persitz, & Zrill, 2018; Nishimura, Ok, & Quah, 2017).

The growing development of theoretical revealed-preference tests for budgetary datasets
(i.e. ones where choices are price- and income-constrained) and their successful and con-
tinuously expanding application in empirical studies have been facilitated by the devel-
opment of relevant computer algorithms. Such algorithms have been coded, for example,
in:

1. Mathematica (Beatty & Crawford, 2011; Varian, 1996);

2. Fortran (Cherchye, Crawford, De Rock, & Vermeulen, 2009);

3. R (Boelaert, 2014);

4. MATLAB (Dean & Martin, 2016; Heufer & Hjertstrand, 2015).1

The resulting computer programs allow the user to test if a given budgetary dataset
complies with certain axioms of choice consistency, or to compute various indices that are
suggestive of “how close” a given decision maker’s choices are to the model of rational
choice/utility maximization.

Yet, despite the plethora of choice-theoretic models that are operational on discrete finite
sets of general alternatives in non-budgetary environments and predict rational as well

1MATLAB code files for standard revealed-preference tests on budgetary data have been created by
the Group for the Advancement of Revealed Preference and are currently available for download in
http://www.revealedpreferences.org/assets/CodeAndData/revpref.zip.
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as bounded-rational behavior2, no computational revealed preference tools are currently
available for this important class of choice environments and models.

Hereby announced Prest is a user-friendly desktop application that, for the first time,
combines standard revealed-preference analysis on budgetary datasets with novel axiom-
consistency and model-based goodness-of-fit analysis on general choice datasets.

In summary, Prest3:

1. Has a user-friendly graphical interface, through which all tasks can be performed.
Prest consists of two separate communicating programs:

GUI implements the user-facing graphical interface. It executes the core compo-
nent (described below) as a subprocess and uses it to compute tasks as re-
quested by the user. It is written in Python4 and uses PyQt5. This program
is released under the GNU GPL license.

Core implements the computations and communicates with the GUI using syn-
chronous binary messages sent over its standard input/output. It is written
in Rust5 for speed, reliability, and ease of parallelisation. This program is
released under the 3-Clause BSD license.

The components of the GUI wrapper (or the binary protocol itself) can be reused to
create other clients to the core. For example, we have implemented an (unreleased)
command-line interface to model estimation for easier testing and benchmarking.

2. Offers a detailed analysis of consistency for budgetary-choice data.
For each such dataset we construct a graph as follows:

• Vertices represent k observations (pi, xi) in each graph, where pi, xi ∈ Rn
+ are,

respectively, the observed prices and demanded quantities for the n goods in
question;

• Edges are defined in two variants:
non-strict i ⊵ j if pixi ≥ pixj .
strict i ▷ j if pixi > pixj .
Every strict edge is also non-strict.

Prest finds and counts the following:

GARP violations: elementary cycles (i.e. cycles with no repeating vertices) of
non-strict edges where at least one edge is strict.

SARP violations: elementary cycles of non-strict edges where for at least one
edge i ⊵ j in the cycle, xi ̸= xj .

WARP (strict) violations: SARP violations of length 2.
WARP (non-strict) violations: GARP violations of length 2.

2An example of such bounded rationality is when choices are guided by maximization of an incomplete
preference relation. Allowing the preference relation to be incomplete is a natural way to model the
decision maker’s indecisiveness between some choice alternatives, which is ruled out by the model of
rational choice.

3For the definitions of the axioms and indices mentioned below see Chambers & Echenique (2015) or
https://prestsoftware.com.

4https://www.python.org.
5https://www.rust-lang.org.
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Houtman-Maks (1985) index: This is the number of observations that need to
be removed from a subject’s choice data to make it comply with GARP, SARP
or WARP (non-)strict. We compute both the upper and lower bound of each
such index for every subject. If the bounds coincide, we report their value as
the exact Houtman-Maks index, otherwise we report the bounded interval.

3. Offers a detailed consistency analysis for general-choice data. This includes both
forced- and non-forced choice data, as well as data where one of the feasible market
alternatives is the default/status quo option.
Here we construct a multigraph where:

• Vertices represent the alternatives in a finite set X;
• Edges represent the observations where the subject chose an alternative over

another. Like in budgetary data, each edge here is either just non-strict, or
also strict: for example, the choice of {x, y} from menu {x, y} ⊆ X, denoted
C({x, y}) = {x, y}, induces a non-strict edge x ≿ y, while the choice of {x}
from menu {x, y, z} induces two strict edges x ≻ y and x ≻ z.
More formally, we define edges as follows:
non-strict x ≿ y if x ∈ C(A) and y ∈ A for each observation with choice

C(A) ⊆ A from menu A.
strict x ≻ y if x ∈ C(A) and y ∈ A \ C(A) for each observation with choice

C(A) ⊂ A from menu A.
Again, every strict edge is also non-strict.

Then we find elementary cycles in the graph, counting consistency violations as
follows:

Congruence violations: Elementary cycles of non-strict edges where at least one
edge is strict.

Strict Choice Consistency violations: Elementary cycles of strict edges.
WARP violations: Congruence violations of length 2.
Binary Choice Consistency violations: Congruence violations restricted to

menus with 2 alternatives.
Strict Binary Choice Consistency violations Strict Choice Consistency viola-

tions restricted to menus with 2 alternatives.

4. Features choice-merging and supports the analysis of multi-valued choice.
For general-choice datasets, if the same menu of alternatives was presented to some
subject more than once, then Prest allows for merging the various choices at that
menu. This feature allows the user to subsequently treat the observed choices as
if they were multi-valued (this is also allowed and/or predicted by many choice-
theoretic models).

5. Features novel non-parametric goodness-of-fit tests for models defined on general
choice environments.
These tests identify which of the relevant model(s) that are embedded in Prest’s
current toolkit offer(s) the best explanation for a given subject’s behavior.
Each model supported by Prest describes a decision process determined by one
or more preorders (these include linear orders, weak orders and partial orders as
special cases), possibly coupled with additional information. A “configuration” of all
determinants influencing which alternative(s) will be chosen by the decision model
from a menu is called an instance of the model.
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In model estimation, Prest generates all possible instances for each selected model
and computes the number of disagreements between the choices of the model and
the examined subject from the given dataset. The best-matching model for each
subject is chosen as the model that has an instance with the lowest number of
disagreements. The latter is called the distance score of the model in question.
This model-based extension of the Houtman-Maks method for non-budgetary data
originates in Costa-Gomes, Cueva, Gerasimou and Tejiščák (2016).
The list of models currently supported by Prest is available in the software’s docu-
mentation pages in https://prestsoftware.com.
Importantly, as with consistency analysis on general-choice data, models assuming
the presence of default/status quo market alternatives and models of non-forced
choice are also supported.6

6. Features Monte-Carlo simulations of random behavior.
The choices of an arbitrary number of (uniform-)random-behaving artificial decision
makers can be simulated in ways that allow for the distributions of variables of in-
terest such as the number of an axiom’s violations and a model’s distance score to be
derived. These can then be used to understand which of the available human choice
data can be thought of as having been generated randomly. This methodological
approach (for budgetary choice data) originates in Bronars (1987).
Prest currently supports simulations for both forced- and non-forced choice general
datasets, and also for ones with default/status quo market alternatives.
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