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This supplemental material provides further details of
the polynomial-scaling algorithm used to exactly solve
the Holstein–Tavis–Cummings model and get the condi-
tional reduced vibrational density matrices for the three
conditions discussed in the paper. Section I describes the
set of basis states, section II the form of the Hamiltonian
matrix elements in this basis, and section III discusses
how to extract reduced conditional density matrices from
the wavefunction in the given representation.

I. BASIS SET

The basis states can be divided into two distinct sub-
spaces, corresponding to whether one has states |X〉i or
|P 〉.

For the states corresponding to |X〉i (which we call
the excitonic subspace), one molecule is excited, and
N − 1 are unexcited. The vibrational state of the ex-
cited molecule is represented explicitly by the occupa-
tion m∗ ∈ [0,M ]. For the N − 1 unexcited molecules,
the vibrational state must be permutationally symmet-
ric, thus we may pick a representative state {mj 6=i} to
stand for the superposition of all states related by per-
mutation symmetry, |SN−1{mj}〉. To uniquely specify
the representative state, we choose the state where the
occupations are in ascending order. For example, with
N − 1 = 4, we may denote |S4{0112}〉 as representing
the linear superposition of all permutations of this pat-
tern of occupations:

|S4{0112}〉 ≡

(
|0112〉+ |1012〉+ |1102〉+ |1120〉

+ |0211〉+ |2011〉+ |2101〉+ |2110〉
+ |0121〉+ |1021〉+ |1201〉+ |1210〉

)√
P4({0112})

where PN ({mj}) counts the number of distinct permu-
tations, i.e. P4({0112}) = 12 for this example.

The complete vibrational state, where molecule i is ex-
cited, can then be written as |m∗i ,SN−1{mj 6=i}〉V . Since
states with other molecules excited are related by permu-
tation symmetry, the most general state with an excited
molecule can be written as:

|X〉 ⊗ |m∗,SN−1{m}〉V

≡ 1√
N

N∑
i=1

|X〉i ⊗ |m
∗,SN−1{mj 6=i}〉V . (S1)

If the occupation of the vibrational modes is restricted
to m ≤ M , then the number of distinct coefficients for

an excited molecule is (M + 1) · M+N−1CM , where the
combinatoric factor is the number of distinct sets {m}.

For the states with a photon present (i.e. the photonic
subspace), no molecule is electronically excited, so there
is full permutation symmetry. These states can thus be
written immediately as

|P 〉 ⊗ |SN{m}〉V . (S2)

As the set of permutations now refers to N molecules,
the total number of such states is just M+NCM .

II. MATRIX ELEMENTS OF HAMILTONIAN

1. Diagonal Terms

The terms â†â,
∑
i σ̂

+
i σ̂
−
i are diagonal in the above

basis, and have the value 0(1) or 1(0) respectively in the

photon(exciton) subspace. The term
∑
i b̂
†
i b̂i is also di-

agonal, and is given by m∗+
∑
imi in the exciton block,

and
∑
imi in the photon block.

2. Vibrational Coupling

The term coupling the electronic and vibrational
states,

Hλ =
∑
i

σ+
i σ̂
−
i (b̂†i + b̂i),

is not diagonal, but is straightforward. It vanishes when
acting on states involving |P 〉. For states involving |X〉i,
it is diagonal in the vibrational state of the other N − 1
molecules, and so takes the form:(
〈X|⊗〈m∗′,SN−1{m}|V

)
Hλ

(
|X〉⊗|m∗,SN−1{m}〉V

)
=
√
m∗′δm∗−1,m∗′ +

√
m∗δm∗,m∗′−1

where m∗ and m∗′ are vibrational occupations of the ex-
cited molecule.

3. Matter-Light Coupling

The only complicated term is the matter-light cou-
pling:

HR =
∑
i

(
σ̂+
i â + σ̂−i â

†) ,
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as this mixes the two sectors, which are labeled differ-
ently.

We focus on the photon emission term, as the other
term follows by conjugation. We need to find:(
〈P |⊗〈SN{m′}|V

)∑
i

σ̂−i â
†
(
|X〉⊗|m∗,SN−1{m}〉V

)
≡ O{m′},m∗,{m} (S3)

In order for this not to vanish, the set of final occupations
{m′} must have an element equal to m∗ and the rest of
the set equal to {m}. If this is true, then we have:

O{m′},m∗,{m} =
NPN−1({m})√

NPN−1({m})
√
PN ({m′})

where PN−1({m}) is the count of distinct permuta-

tions as defined above. The factors
√
NPN−1({m}) and√

PN ({m′}) in the denominator come from the normal-
ization of |m∗,SN−1{m}〉V and |SN{m′}〉V . The factors
in the numerator come from the distinct ways in which
the overlap may occur — a choice of N molecules that
may be excited, and PN−1({m}) ways of arranging the
unexcited molecules in the overlap.

The conditions given above means that by taking a sin-
gle element m∗ out of {m′}, the rest should become equal
to {m}. Since coefficients are indexed over these sets,
we can consider this as requiring a mapping MN−17→N
from the pair of integers (m∗, IN−1({m})), to the integer
IN ({m′}), where IN ({m}) is the index of an ordered set
of N occupations. We compute this mapping once and
store for later use.

III. CONDITIONAL DENSITY MATRICES

In the paper, we plot the conditional Wigner func-
tions of the vibrational state of a single molecule. These
correspond to the reduced density matrices subject to
the three possible conditions, denoted by |P 〉 , |X〉i and
|X〉j 6=i in the paper. By using the basis states described
above, we can numerically diagonalize to find the ground
state wavefunction |ψ〉 in the basis of states described
above. This section discusses how to extract the corre-
sponding reduced conditional density matrices from such
a representation of the state.

a. Photonic sector |P 〉 We calculate the conditional
reduced density matrix ρ|P 〉 which corresponds to re-
stricting to the subspace involving |P 〉. We then need to
trace out the vibrational state of N − 1 of the molecules.
To do this, we can re-use the mapMN−17→N . This map-
ping finds which set of indices for the N − 1 molecules
we trace out combine with the state m of the molecule
of interest to find a given index for the full N molecule

problem. To find the element ρ
|P 〉
m,m′ , we need to find all

pairs of states of the N molecule problem which are re-
duced to the same N − 1 molecule state when m,m′ are
taken out. For example, if we denote jN = IN ({m}) as

an index of a state of N molecules, we need to find states
such that

kN =MN−17→N (m, jN−1),

k′N =MN−1 7→N (m′, jN−1).
(S4)

This is so that we can trace over jN−1, describing the
state of the other molecules. Using these labels we can
then write

ρ
|P 〉
m,m′ =

NN−1∑
jN−1=1

ψ∗P,kNψP,k′N
PN−1(jN−1)√

PN (kN )PN (k′N )
(S5)

where the summation is over all NN−1 ≡ N−1+MCM vi-
brational states of N−1 molecules. Note that the indices
kN , k

′
N appearing here are related to jN by Eq. (S4).

As defined above, ψP,kN is the coefficient of the state
with index kN in the |P 〉 subspace, and we have used
the number of distinct permutations PN (kN ) as short-
hand for PN ({m}) where kN = IN ({m}). The factors
in the denominator come from the normalization of the
basis states, and the factor in the numerator comes from
counting the number of terms contributing to the trace.

b. Excited molecule, |X〉i For ρ|X〉i , the conditional
reduced density matrix is straightforward, as the vibra-
tional state of the excited molecule is represented explic-
itly. We need only to trace over the otherN−1 molecules.
Using jN−1 as the index of these states we find

ρ
|X〉i
m,m′ =

1

N

NN−1∑
jN−1=1

ψ∗X,m,jN−1
ψX,m′,jN−1

(S6)

Here ψX,m,jN−1
is the coefficient of the state in with in-

dex (m, jN−1) in the |X〉 subspace, and the factor of N
appears from the normalization of basis states.
c. Other molecule excited, |X〉j 6=i To calculate

ρ|X〉j 6=i , the conditional reduced density matrix corre-
sponding a different molecule being electronically ex-
cited, we must trace over the excited molecule, and over
N−2 of the N−1 unexcited molecules. This is similar to
the case for |P 〉, but this time we must use the mapping
MN−27→N−1, from the indexing of distinct patterns of
N − 2 molecules and one explicit index, to the indexing
of N − 1 molecules.

kN−1 =MN−27→N−1(m, jN−2),

k′N−1 =MN−2 7→N−1(m′, jN−2).
(S7)

Then, using similar notation to Eq. (S5) we may write:

ρ
|X〉j 6=i

m,m′ =

NN−2∑
jN−2=1

M∑
m′′=0

ψ∗X,m′′,kN−1
ψ∗X,m′′,k′N−1

× N − 1

N

PN−2(jN−2)√
PN−1(kN−1)PN−1(k′N−1)

. (S8)
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