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ABSTRACT: Photopolymerization is a powerful technique to
create arbitrary micro-objects with a high spatial resolution.
Importantly, to date all photopolymerization studies have been
performed with incident light fields with planar wavefronts and
have solely exploited the intensity profile of the incident beam.
We investigate photopolymerization with light fields possess-
ing orbital angular momentum, characterized by the
topological charge . We show both experimentally and
theoretically that, as a consequence of nonlinear self-focusing
of the optical field, photopolymerization creates an annular-
shaped vortex-soliton and an associated optical fiber, which
breaks up into | | solitons or microfibers. These microfibers exhibit helical trajectories with a chirality determined by the sign of
due to the orbital angular momentum of the light field and form a bundle of helical-microfibers. This research opens up a new
application for light fields with orbital angular momentum, and our generated microfibers may have applications in optical
communications and micromanipulation.
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Photopolymerization, the process of using ultraviolet (UV)
light to activate polymerization within resins, is a powerful

approach to create arbitrary, transparent micro-objects with a
resolution below the diffraction limit.1 Such microstructures
have been optimized for optical manipulation2,3 and are finding
application elsewhere, including micro-optics,4,5 mechanical
microstructures,6 and polymer crystallography.7 Furthermore,
due to self-focusing and self-trapping, the polymerized material
can form a waveguide when irradiated by a Gaussian beam (the
so-called laser-induced self-written waveguide or LISW), which
develops into a single-induced fiber, that can be as long as
millimeters in length.8−10 Importantly, to date all photo-
polymerization studies have been performed with incident light
fields possessing planar wavefronts. A few studies have utilized
optical vortex beams, which carry helical phase fronts
possessing orbital angular momentum (OAM), to fabricate
annular profiles.11,12 Crucially, however, these techniques are
yet to exploit more complex forms of incident beam wavefronts
going beyond the standard planar wavefront form.
The origin of OAM is inherently linked to the local direction

of the Poynting vector, which denotes the direction of the
energy flux density. Considering any point in the beam, the
Poynting vector is perpendicular to the helical phase front and

hence possesses an azimuthal momentum component. Such
fields have a characteristic ϕ±iexp( ) phase variation with ϕ
the azimuthal angle in cylindrical coordinates, and may be
described by Laguerre-Gaussian (LG) transverse modes.13 The
topological charge or azimuthal index of the beam denotes
the integer multiple of 2π that the field phase accumulates
upon circling the beam center. OAM has generated immense
interest over the last two decades and led to a diverse range of
applications. Examples include studies in optical manipulation
of both mesoscopic particles14,15 and quantum gases,16

micromachining,17−19 and quantum information process-
ing.20,21

In this Article, we investigate photopolymerization with an
incident optical vortex and show for the first time that using
such light fields that possess OAM for photopolymerization
leads to “spiraling” of the generated polymerized fibers, with a
chirality determined by the sign of (see Figure 1 for
schematic representation). In particular, due to a transverse
modulation instability in the nonlinear self-focusing photo-
polymer, the vortex beam breaks up into the | | solitons or
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microfibers, each of which exhibit helical trajectories and
together form a bundle of helical microfibers. This therefore
represents a new physical manifestation of the use of OAM
light fields. Our numerical simulations, based on the nonlinear
paraxial wave equation for the photopolymer, captures all the
experimental observations for a variety of optical vortices
characterized by . In a broader context, our work adds a new
facet to the emergent field of helical fibers that have themselves
recently come to the fore in the photonic crystal community as
a route to generating fields with OAM.22,23

■ RESULTS AND DISCUSSION
UV curing resins are a mixture of photoinitiator, monomer and
oligomer molecules. Upon irradiation of UV light, the
photoinitiators are excited then emit electrons to become
radicals, which are highly reactive to the monomers and
oligomers. Consequently photopolymerization takes place with
a time lag of about 0.1 s and induces a permanent refractive
index change of Δn ≈ 0.04 from nunc = 1.52 to ncur = 1.56 at
405 nm for the resin used in this experiment (see the Materials
and Methods for the experimental details). As a result, the

incident optical beams are self-focused and self-trapped upon
photopolymerization.24

Gaussian Beam with l = 0. Figure 2a shows time-lapse
images of the photopolymerization process induced by
irradiation of a Gaussian beam with = 0. The beam is
focused (depicted as two arrows) at the glass/resin boundary
(indicated as dashed lines) starting at time t = 0 s. The resin is
continuously irradiated for 0.9 s while recording the photo-
polymerization process by cameras CMOS1 and CMOS2 for
side and axial views (see Materials and Methods for details). It
is evident that the beam propagating in the photopolymer is
self-focusing and self-trapping with the formation of a single-
induced fiber with a length >150 μm (see also Supporting
Information, video 1).
After photopolymerization, the glass substrate with the

polymerized structure is rinsed with acetone and is dried for
SEM imaging. Figures 3a−c show SEM images of the
photopolymerized structure produced by irradiation of a
Gaussian beam with = 0. A cylindrically symmetric fiber is
formed with a length of 160 μm, where the diameter of the
fiber decreases from dini = 2.5 μm at the glass/polymer
interface to dend = 0.9 μm.

LG Beams with |l| = 1. LG beams carrying OAM with
topological charge = ±1 also form single fiber structures but
with broken cylindrical symmetry along the beam propagation
direction (see Figure 2b and the associated Supporting
Information, video 2). Most intriguingly, its rotation is evident
in the axial view recorded in Supporting Information, video 2.
Figure 3g shows a helical-fiber with its chirality (clockwise) set
by the LG beam with = 1. Two parts of the twisted features
observed are indicated by the enclosed dashed-line squares and
are expanded in Figures 3h,i. Importantly, the opposite
handedness of the LG beam with = −1 creates a helical-
fiber with counterclockwise rotation (see Figures 3d−f). This
is the first direct demonstration that photopolymerization is
itself spiraling in line with the nature of the spiraling
wavefronts present within an incident beam. We note that

Figure 1. Schematic of a beam propagating through a light-curing
resin, which is photopolymerized into optical fibers due to self-
focusing and self-trapping. (a) Planar wave propagating in the
photopolymerized fiber, which is straight and parallel to the beam
axis. (b) A vortex beam with a helical wavefront photopolymerizing
the resin, which evolves into | | helical fibers. The arrows indicate the
Poynting vectors or the energy flow relative to their wavefronts.

Figure 2. Time-lapse images of the photopolymerization process. (a) Gaussian beam with = 0 (see Supporting Information, video 1 for side-/
axial-views). LG beams with (b) = 1 (Supporting Information, video 2 for side-/axial-views), (c) = −2, (d) = 2 (Supporting Information,
video 3 for side-views of | | = 2), (e) = 4. White arrows indicate the beam focused at the glass/resin boundary (indicated as dashed lines). The
scale bar shows 50 μm and applies to all figure panels. Beam exposure starts at time t = 0 s and ends at t = 0.9 s with an optical power of 3 mW.
Inset panels show focused beam profiles projected onto the glass surface for each topological charge = ∓ −0, 1, 2, 4 where the beam waist radius
is 0.35, 0.50, 0.63, and 0.79 μm, respectively. The scale bar (inset) indicates 2 μm and applies to all inset panels.
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the spiraling structure in this case still constitutes one fiber that
is not breaking apart (see Figures 2b and 3d,g).
Higher Order LG Beams with |l| ≥ 2. Figures 2c,d show

time-lapse images of growing fibers by LG beams with = ±2
(see also Supporting Information, video 3 for the side views of
| | = 2). The polymerized fiber is split into two microfibers,
which are coiled around each other either counterclockwise
( = −2) or clockwise ( = 2) along the beam propagation
axis. We further investigate the case of an LG beam with = 4
with an annular beam diameter ≥2 μm focused at the glass/
resin interface (see Figure 2e). The time-lapse images reveal
that the polymerized fiber exhibits at least three branches (with
potentially a fourth out-of-focus and invisible) of microfibers.
Figures 3j,k show the SEM images of the fibers polymerized by
the vortex beams with = 2 and = 4, which exhibit the
corresponding number of branches. We note that this is
consistent with photopolymerization with = 3 showing three
microfibers (see Supporting Information, Figure S1). For the
case of = | |2 , it is evident that the two microfibers are
attracted each other and form a double helix with chirality
determined by the sign of . We note that a photopolymerized
fiber produced by an LG beam with | | ≥ 1 exhibits a hollow-
core structure with a short beam exposure time of <0.2 s (see
Supporting Information, Figure S2). However, for a long
exposure time, the hollow center of the fiber will be
polymerized because the optical field extends into the uncured
photopolymer.
Spatial Profile of Microfibers and V-Value. In order to

gain further insight into photopolymerization with an optical
vortex, we have characterized the spatial profile of the
polymerized fibers fabricated by different LG modes
(| | ≤ 4). Figure 4a shows the fiber diameter as a function of
distance from the initial curing facet towards the fiber end
based on the SEM images. The initial diameter of the fiber
scales with the annular beam diameter at the focus, which is
dependent on | | + 1 (see Supporting Information, Figure

S3).25 As for the Gaussian beam ( = 0, black squares in
Figure 4a) and the first order LG mode ( = 1, red circles in
Figure 4a), the polymerized fiber diameter becomes gradually

Figure 3. SEM images of the photopolymerized fiber structures created by laser irradiation of a Gaussian beam with = 0 and LG beams with
| | ≥ 1. (a) = 0. (b, c) Expanded views of the selected areas in (a) showing the cylindrical structures. (d) = −1. (e, f) Expanded views of the
selected areas in (d) showing the counterclockwise helix. (g) = 1. (h, i) Expanded views of the selected areas in (g) showing the clockwise helix.
(j) = 2 exhibiting two fiber branches. (k) = 4 exhibiting four branches. The 20 μm scale bar in panel (a) applies to (d), (g), and (j), while the
5 μm bar in panel (b) applies to (c), (e), (f), (h), and (i). Experimental parameters are the same as in Figure 2.

Figure 4. Fiber dimensions for different and rotation rate at different
P. (a) Spatial profile of the fibers photopolymerized by LG beams
with | | ≤ 4. Fiber diameter and the corresponding V-value are plotted
as a function of fiber length or distance from the initial cure-facet.
Error bars indicate 2σ. (b) Number of revolutions of the
photopolymerized fiber as a function of time when irradiated by an
LG beam with = 1 for different optical power levels, where error
bars show 2σ and arrows indicate the time when photopolymerization
starts for each power level. The gradient of the curves yields their
rotation rates, which are 3.5 ± 0.4 Hz (2σ), 5.9 ± 0.4 Hz, and 10.5 ±
0.1 Hz for P = 1, 2, and 3 mW, respectively. Experimental parameters
are the same as in Figure 2 except for the optical power which is
varied in the range of 1 mW ≤ P ≤ 3 mW in (b).
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smaller towards the fiber end (see also Figures 3a,d). On the
other hand, for = 2, 4, there are transitions in fiber diameter
due to the branching behavior. Notably, the minimum fiber
diameter was always measured to be dend ≈ 0.9 μm at the end
of each fiber.
A photopolymerized fiber has a higher refractive index than

the uncured resin, which can be regarded as a single-core step-
index optical fiber. It is relevant to consider the fiber
parameter, V, which determines the fraction of the optical
power confined to the fiber core for a specific mode and is

defined as26 π λ= −V a n n(2 / ) cur
2

unc
2 , where a denotes the

radius of the fiber, λ = 405 nm is the wavelength of light, and
ncur = 1.56 and nunc = 1.52 are the refractive indices of the
polymer before and after curing. The linearly polarized (LP)
lowest order mode (LP01) has an intensity profile similar to
that of a Gaussian beam. For single mode fibers, the fraction of
optical power transmitted is the confinement factor
(0 ≤ Γ ≤ 1), which reaches Γ ≈ 0.9 near the single-mode
cutoff at V ≈ 2.405. This means that higher order modes
require higher V values, which in turn requires a wider core
radius of the fiber to support their propagation.
In this regard, LP modes in a step index fiber are well

understood, while there is little or no direct information is
available about LG modes. However, they can be approximated
by the most overlapping beam profiles of the LP modes, for
example, LP11 ≈ LG01, LP21 ≈ LG02, LP41 ≈ LG04, within
certain limits.27 By calculating the V values for those LP
modes, we can estimate the “cutoff” diameters of the fiber for
the corresponding LG modes. The second vertical axis in
Figure 4a indicates the V value corresponding to the fiber
diameter on the first vertical axis, where the three threshold
lines correspond to LG04, LG02, and LG01 from the top.
Irrespective of the topological charge , all the fibers have
dend ≈ 0.9 μm, which is larger than the cutoff diameter of LP11
or LG01 mode. As for higher order modes LG02 and LG04, the
polymerized fibers are split into | | microfibers, whose diameter
is similar to that of the fiber polymerized with LG01, which
allows its mode propagation. It is noteworthy that the
scattering of light at the cured/uncured-resin boundary and
the diffusion of free radials beyond the illuminated region
contribute to the increase in fiber core diameter.
We note that linear polarization may lead to a nonuniform

temperature gradient around the beam focus due to polar-
ization dependent light absorption in a resin, which in turn
may affect the polymerized structure.28 A more detailed
polarization study would shed further insight into the role of
both the electric field enhanced heat conduction and spin
angular momentum of light in the photopolymerization
process and be worthy of future investigation.
As experimentally shown by Jezěk et al., a zeroth order

Bessel beam can create a centimeter long polymerized fiber
using single photon photopolymerization.10 One could there-
fore use an optical vortex embedded in a Bessel beam, making
it a beam of higher order, for the creation of a longer helical
fiber. This would also be an area of future investigation. It is
also interesting to speculate about the use of perfect vortex
beams,15,29,30 where the beam radius and the radial intensity
profile are both independent of . Here we would likely observe
the overall dimensions of the fiber to be the same for any ,
allowing for a direct comparison between the fibers with
different in terms of fiber branching.

Rotation Rate. In order to associate the OAM of ℏ per
photon with the optical power, we measure the rotation rate of
the polymerized fiber induced by an LG beam with = 1 at
different optical powers in the range P = 1−3 mW. The
forward scattered light through the fiber along the beam axis
allows a direct measurement of its rotation rate. Supporting
Information, video 2 recorded by both CMOS1 and CMOS2
(see Materials and Methods for details) includes the axial view
of the polymerized fiber with = 1 at a power level of 3 mW.
Figure 4b shows the number of revolutions of the fiber as a
function of time where t = 0 s denotes the start of beam
irradiation. Here we observe a time lag between the application
of the laser field and the appearance of the refractive-index
change, as indicated by arrows for different optical power. The
gradient of each curve determines the rotation rate, which
linearly scales with optical power in the range of P = 1−3 mW
within an error of ±15%. We stress here that the rotation rate
and the associate pitch of the helix are primarily determined by
the induced refractive index change of the medium and are not
commensurate with the helical pitch of the vortex wavefront
(see Model and Simulations for details). Furthermore, we have
investigated photopolymerization with circularly polarized
beams compared to the linearly polarized case (see Supporting
Information, Figure S4).

■ MODEL AND SIMULATIONS
We employ the same model and notation for propagation of
UV light of frequency ω in a curing resin as described by
Kewitsch and Yariv in ref 24. Then the paraxial wave equation
for the slowly varying electric field envelope E(r, t) propagating
dominantly along the z-axis is

α∂
∂

= ∇ + Δ ′ −E
z k

E ik n t E Er
1

2
( , )

2T
b

2
0

(1)

where kb = nbk0, nb being the background refractive index,
k0 = ω/c, and ∇T

2 is the transverse Laplacian describing beam
diffraction. In this model it is assumed that the field
polarization state remains fixed thereby allowing for a scalar
field approach, and the electric field is scaled such that |E|2 is an
intensity. Furthermore, Δn′(r, t) is the real part of the index
response due to the UV light-induced photopolymerization
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where τ is the monomer radical lifetime, which dictates the
time lag between the application of the laser field and the
appearance of the optically induced refractive-index change,
and U0 is the critical exposure needed for photopolymerization.
In contrast to ref 24, we do not include the imaginary part of
the index response but rather simply include single-photon
absorption via the coefficient α (see below).
For the NOA63 sample considered and a UV wavelength of

405 nm we set nb = 1.52, Δn0′ = 0.04, and the lag time was
estimated from measurements as τ = 0.1 s (see Figure 4b). It is
known that in the wavelength range 350−380 nm the critical
exposure is around U0 = 4.5 J/cm2. However, due to the low
value of the single-photon absorption at 405 nm based on
absorption measurements we estimate that U0 = 500 J/cm2

under the conditions of our experiment (see Supporting
Information, Figure S5). Finally, due to the smallness of the
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single-photon absorption we neglect it (α = 0) over the 200
μm propagation lengths considered.
We have performed simulations based on eqs 1 and 2 using

the Beam Propagation Method for a variety of initial
conditions corresponding to optical vortices characterized by
their topological charge . Inspection of the inset panels in
Figure 2 reveals that the incident fields utilized in the
experiment may be characterized as Laguerre-Gaussian (LG)
beams31 with topological charge , and associated radial mode
index = | | +p ( 1), so for ≠ 0, the corresponding intensity
profiles are composed of concentric rings of differing maximum
intensities. In the numerics we have modeled the input beams
as focused LG beams based on a Gaussian spot size w0 = 3 μm,
which is in the range | | ≤ 4 gives radii of the ring of peak
intensity in the range 1−2 μm (see inset panels of Figure 2). In
addition, the incident input power of 0.3 mW in the
experiment translates to 0.1 mW at the sample surface and
yields peak input intensities around Ip = 1−2 kW/cm2.
Therefore, for the exposure time of around 1 s for the
experiment an incident fluence of 1 kJ/cm2 exceeds the critical
exposure U0 = 0.5 kJ/cm2, and the simulations are expected to
display the photopolymerization process.
The results of the simulations are displayed as isometric

plots of the induced real index change Δn′(r, t) evaluated at
the exposure time t = 0.9 s, as this will reveal the formation of
any permanently induced fibers during the photopolymeriza-
tion process. Figure 5a is for = 0 and shows the self-focusing
and self-trapping previously reported in ref 24 with the
formation of a single induced fiber (and associated optical
soliton) with a high degree of cylindrical symmetry around the
z-axis throughout the propagation, see Figure 2a for the
experimental result. In contrast, Figure 5b is for = 1 and
around z = 100 μm we see that the induced fiber breaks to one
side and therefore clearly breaks the cylindrical symmetry
around the z-axis (see also Supporting Information, video 4).
This behavior is similar to that seen at the bottom of panel (b)
in Figure 2 for the experiment. In this context we remark that
in all of the simulations a 1% amplitude noise was added to the

incident LG beams to model unavoidable imperfections in the
input beams, and without this added noise all of the
simulations remained cylindrically symmetric: The noise was
varied between 0.1−10% with similar qualitative results,
though the noise was starting to overwhelm the dynamics as
the upper value was approached. Finally, Figures 5c−e show
the main results of the simulations for = 2, 3, 4, and clearly
support the conclusion of the experiment that helical
microfibers are formed whose chirality is controlled by (see
also Supporting Information, video 5 for the case of = 3).
The initial vortex beams generate | | fibers that spiral around
each other as also seen in the bottom plots of Figures 2c−e for
the experiment. For the case of = −4, Figure 5f illustrates
that reversing the sign of the topological charge reverses the
direction of the spiraling and the chirality of the helical
microfibers, compared with Figure 5e for = 4.
These simulations demonstrate that the main features of the

experiment are captured by the model of Kewitsch and Yariv,24

and it remains to provide a physical context for the
observations. Previous studies of propagation in nonlinear
Kerr media or saturable nonlinear media have shown that
initial vortex beams with ring intensity profiles can produce
necklace beams32 composed of circumferentially arranged
solitons via transverse Modulational Instabilities (MIs), and
under propagation, the solitons fly off tangential to the ring,
akin to free particles, as demanded by conservation of field
OAM.33−36 We note that even in this case the trajectories of
the emitted solitons have a sense of handedness, or chirality,
see the plots in the right-hand columns of Figures 2 and 3 of
ref 35, which is reversed when the sign of is changed. Such a
transverse MI37 underlies the breakdown of the initial
cylindrical symmetry seen in Figures 5c−e, where each initial
vortex of topological charge = 2, 3, 4 breaks into | | fibers.
Changing the noise strength modifies when the symmetry
breaking sets in along the z-axis but the qualitative picture
remains the same. However, in our case, the solitons and fibers
so formed are seen to spiral around each other as opposed to
flying off tangentially. There are two main differences between

Figure 5. Isometric plots of the induced real index change Δn′(r, t) evaluated at the exposure time t = 0.9 s revealing the formation of helical
microfibers during the photopolymerization process: (a) Gaussian beam ( = 0), (b) = 1 (see Supporting Information, video 4), (c) = 2, (d)

= 3 (see Supporting Information, video 5), (e) = 4, and (f) = −4 showing the reversal of the chirality with respect to = 4 in plot (e).
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our present simulations and the above referenced papers: First,
we have a time integrated nonlinear response with a time lag,
which means that the induced index inhomogeneity accumu-
lates in time and becomes permanently imprinted within the
medium. A consequence of this is that the field OAM need not
be conserved under propagation once the MI and associated
symmetry breaking leading to the formation of the fibers has
occurred. This is the case since the propagating field now
experiences an inhomogeneous medium in the form of the
fibers, and one cannot appeal to conservation of field OAM to
argue that the solitons and associated fibers need to travel
tangentially. Second, the index changes involved in photo-
polymerization are large, ≃0.04, even by the standards of
photorefractive effects, ≃0.005, so that forces that are known
to arise between spatial solitons and give rise to spiraling are
expected to be large.38,39 Furthermore, inspection of our
numerical results for the fields propagating in the medium just
following the formation of the individual fibers shows that the
underlying solitons comprising the necklace beam are largely
in-phase, not precisely due to the added noise, and based on
this we expect attractive forces to arise between the spatial
solitons.38,39 An example of this is shown in Figure 6, which for

= 3 and z = 100 μm shows the intensity profile of the three
solitons and its associated phase profile. The solitons and
associated fibers generated in our photopolymerization
simulations then exhibit helical trajectories due to the
combined actions of the OAM supplied by the initial vortex,
which on its own would lead to tangential motion with
chirality determined by the sign of , plus the attractive
interactions between the solitons, which pulls the solitons and
fibers towards each other and leads to the helical microfibers.
Finally, we mention that although the results of our model

simulations agree qualitatively with the experiment in that they
yield | | helical microfibers for an input vortex of topological
charge , the rotation rate with propagation distance of the
helical fibers is consistently lower in the simulations, within a
factor of 2 or so. We attribute this as likely due to the fact that
our model uses a paraxial approximation to the electric field
propagation which does not reflect the spiraling Poynting
vector of the electromagnetic field. If the action of this spiraling
Poynting vector was also incorporated into the material
equation as an extra torque acting on the index change this
could enhance the rotation rate, but this would require a
vectorial treatment of the field propagation and a general-
ization of the material equation which is a study outside the

scope of this present paper. On the other hand, for the beam
sizes employed here corrections to the paraxial approximation
are not expected to be large, meaning that our paraxial results
should give the dominant contribution and the rotating
Poynting vector is not essential to understanding the basic
phenomenon.

■ CONCLUSIONS
We have both theoretically and experimentally investigated
photopolymerization of UV curing resins with an optical vortex
carrying OAM. The propagation of light in a photopolymer is
described by the nonlinear wave equation for the slowly
varying electric field due to the permanent refractive index
change dependent on optical exposure. As a consequence of
nonlinear self-focusing and self-trapping of the optical field,
photopolymerization creates an optical soliton and an
associated optical fiber with lengths up to a submillimeter
scale. Due to modulation instability, the annular vortex beam
breaks up into the | |-solitons or microfibers, each of which
exhibit helical trajectories with a chirality determined by the
sign of . These microfibers exhibit helical features that are
indicative of the helical nature of the incident OAM field. This
thus represents a new physical manifestation of the use of
OAM light fields.
This result opens up a range of new possibilities for the use

of structured light to photopolymerization and more broadly to
applications such as writing novel mesoscopic structures in
optical communications and for particle manipulation.

■ MATERIALS AND METHODS
Sample Preparation.We prepare a thin closed sample cell

made of a vinyl sticker spacer (200 μm in thickness) with a
hole (10 mm in diameter), which is placed in between two
type-1 borosilicate glass coverslips (VWR International,
150 μm in thickness). μ10 of a UV curing resin (Norland
Optics, NOA63) is loaded onto the first coverslip in the
middle of the vinyl sticker hole. The second coverslip is placed
over the vinyl spacer and is sealed with a thin layer of nail
polish to form an enclosed cell.

Experimental Setup. Figure 7 shows a schematic diagram
of the experimental setup. A continuous wave (CW) diode
laser with an emission wavelength of 405 nm (TOPTICA

Figure 6. Spatial solitons. (a) Intensity profile of the three solitons
and (b) the phase profile of the associated field.

Figure 7. Schematic of experimental setup. A linearly polarized
Gaussian beam is converted to an LG beam by a spiral phase plate
(SPP). The vortex beam is focused by a microscope objective (MO)
at the glass/resin interface to initiate the photopolymerization
process, which is monitored by side- and axial-view cameras
(CMOS1; CMOS2). Other labels denote the half-wave plate
(HWP), condenser lenses (CD1, ×50, NA = 0.55; CD2, ×100, NA
= 0.70), long-pass filter (LPF, λ > 450 nm), and light emitting diode
(LED).
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Photonics AG, iBeam) is used to photopolymerize the UV
curing resin in the sample cell. A linearly polarized beam after a
polarizing beam splitter (PBS) cube is directed to a spiral
phase plate (SPP, RCP Photonics, VPP-1c), where the
Gaussian beam is converted to a Laguerre-Gaussian beam
carrying topological charge in the range of | | ≤ 4. The vortex
beam is focused by a high numerical aperture (NA)
microscope objective (MO, Olympus, ×60, NA = 1.1 water
immersion) to achieve an annular beam profile with a diameter
of 1−2 μm depending on (see Figure 2 inset panels and
Supporting Information, Figure S3). The beam focus is
carefully located at the glass/resin boundary in order to
initiate the photopolymerization process on the glass surface of
the sample cell. The laser power and the exposure time are
fixed at 3 mW and 0.9 s, respectively, unless stated otherwise.
Time-Lapse Imaging. Temporal evolution of the photo-

polymerization is recorded by two complementary metal-
oxide-semiconductor based cameras, for the side- and axial-
views (CMOS1; CMOS2, Basler AG, acA1300−200um, 203
fps) at a frame rate of 100 fps. Time-lapse images recorded by
the side-view camera visualize the growth of photopolymerized
fibers and reveal their helical structure along the beam axis.
The axial-view camera, on the other hand, can visualize the
rotation of the fiber and its handedness.
SEM Imaging. After irradiation by the LG beam, the

photopolymerized microstructure attached on the glass surface
is rinsed with acetone to remove any uncured resins. A
scanning electron microscope (SEM, JEOL, JSM-6010LA) is
used to image the photopolymerized microstructure and
quantify relevant microstructural features, such as helical
pitch and dimensions of fabricated microfibers.
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