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Abstract 32 

A genus is a taxonomic unit that may contain one species (monotypic) or thousands. Yet 33 

counts of genera or families are used to quantify diversity where species-level data are not 34 

available. High frequencies of monotypic genera (~30% of animals) have previously been 35 

scrutinised as an artefact of human classification. To test whether Linnean taxonomy 36 

conflicts with phylogeny, we compared idealised phylogenetic systematics in silico with real-37 

world data. We generated highly-replicated, simulated phylogenies under a variety of fixed 38 

speciation/extinction rates, imposed three independent taxonomic sorting algorithms on these 39 

clades (2.65x108 simulated species), and compared the resulting genus size data with quality-40 

controlled taxonomy of animal groups (2.8x105 species). ‘Perfect’ phylogenetic systematics 41 

arrives at similar distributions to real-world taxonomy, regardless of the taxonomic 42 

algorithm. Rapid radiations occasionally produce a large genus when speciation rates are 43 

favourable; however, small genera can arise in many different ways, from individual lineage 44 

persistence and/or extinctions creating subdivisions within a clade. The consistency of this 45 

skew distribution in simulation and real-world data, at sufficiently large samples, indicates 46 

that specific aspects of its mathematical behaviour could be developed into generalised or 47 

nomothetic principles of the global frequency distributions of higher taxa. Importantly, 48 

Linnean taxonomy is a better-than-expected reflection of underlying evolutionary patterns.  49 

50 
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Introduction 51 

 The classification of organisms (systematics) does not always conform to their 52 

evolutionary history (phylogenetics). The identification of species pre-dates any kind of 53 

evolutionary paradigm, and indeed pre-dates any kind of science (Hopwood, 1959; Mayr, 54 

1982), so it is reasonable for specialists to consider how to reconcile older and widely-used 55 

systems of classification with tree-based thinking. Treatment of taxonomic ranks above the 56 

species level is the subject of extensive ongoing debate in the field of biological systematics 57 

and macroevolution (Hendricks et al., 2014; Giribet, Horminga & Edgecombe, 2016). Many 58 

authors suggest that species are real products of evolution, while higher-ranked groupings are 59 

arbitrary constructs (e.g., Stork et al., 2015). Meanwhile, Linnean ranked taxa, that represent 60 

nested groups of species, are accepted as biologically ‘real’ in other fields of science and 61 

beyond.  62 

 Most fields of biology simply use taxonomic names to address their own questions. 63 

Taxonomic ‘surrogacy’ (using counts of families or genera to measure biodiversity), is 64 

applied where species-level identifications are not readily available (Gaston & Williams, 65 

1993; Ricotta, Ferrari, & Avena 2002; Bertrand, Pleijel & Rouse 2006; Heino, 2014). At 66 

small scales, environmental impact assessments of a single local ecosystem will generally 67 

yield equivalent results whether all present taxa are identified to species level or not 68 

(taxonomic sufficiency: Ellis, 1985; Timms et al., 2013). Taxonomic surrogacy is also used 69 

in synoptic study of the global fossil record, where species-level identifications may not be 70 

available because of preservational limitations. Counting the succession of fossil genera and 71 

families – not species – is the basis for the current understanding of macroevolution and 72 

global extinction patterns (Raup & Sepkoski, 1986; Lu, Yogo & Marshall, 2006; Alroy et al., 73 

2008; Hendricks et al., 2014).  74 
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A genus can contain many species, or it can contain a single species. The issue of 75 

inconsistent genus size has been mooted as a major impediment to studying extinction, 76 

though it has rarely been addressed directly (Quental & Marshall, 2010). Taxonomic 77 

conventions for what constitutes sufficient distinction for a particular rank are not formally 78 

articulated, but appear to differ among organismal groups (Avise & Liu, 2011). A better 79 

understanding of the diversity represented by the genus rank is important for attempts to 80 

estimate species diversity in any field that uses taxonomic surrogacy. The genus is the lowest 81 

commonly-used rank among supraspecific classifications and the most widely used for 82 

taxonomic surrogacy; in this study we focus on the genus to enable the gathering of a large 83 

empirical dataset.  84 

 Many groups of living animals and plants have a high frequency of monotypic genera, 85 

and decreasing numbers of larger genera; this skew distribution is termed the ‘hollow curve’ 86 

and has been recognised and discussed since the early 20th Century (e.g. Yule, 1925; Kendall, 87 

1948; Holman, 1985). Such diversity patterns have many applications beyond the field of 88 

systematics itself. Early work compared the skew distributions seen in taxonomic rank and 89 

other natural patterns, such as body size and species-area curves (Yule, 1925; Anderson, 90 

1974), though the interactions of these processes are not straightforward. Building directly on 91 

the observation that ranked taxonomic frequency distributions appear consistent, the ‘hollow 92 

curve’ pattern has been used to predict global species richness from higher ranked taxa (Mora 93 

et al., 2011). Global taxonomic initiatives for living diversity face the same data limitations 94 

as studies of macroevolutionary trends in the fossil record: most higher-rank taxa have been 95 

discovered while a large proportion of species remain undescribed (Costello, May & Stork, 96 

2013), and they are dependent on primary taxonomic datasets that may themselves be 97 

controversial (e.g. Bass & Richards, 2011). A demonstration that the hollow curve is an 98 

emergent property of evolutionary processes and consistent across various groups of 99 
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organisms, rather than a potentially inconsistent taxonomic artefact, would thus have 100 

considerable power. 101 

This hollow curve has been repeatedly observed for almost a century, yet often 102 

considered puzzling (Yule, 1925; Holman, 1985; Aldous, 2001; Aldous, Krikun & Popovic, 103 

2011). Some of the variability in genus size has even been attributed to taxonomic cultural 104 

factors, such as personality-driven tendencies in individual taxonomists toward ‘splitting’ or 105 

‘lumping’ or human preferences for classification in smaller or larger groups (Fenner, Lee & 106 

Wilson, 1997; Scotland & Sanderson, 2004). Previous studies of genus size have focussed on 107 

‘top down’ approaches, developing simulations that accurately replicate the observed size-108 

frequency distribution of taxonomic datasets (e.g. Yule, 1925; Maruvka, 2013), or compare 109 

observed patterns with specific probability distributions (e.g. Scotland & Sanderson, 2004). 110 

Our aim in the present study is to use a ‘bottom up’ approach, starting with species evolution 111 

and applying a perfectly objective classification, to examine whether or not the skew 112 

distribution in higher taxa is in conflict with underlying phylogenetic processes.  113 

Within a phylogeny, sister-taxa are not necessarily of equivalent rank. The sister 114 

taxon of a genus may also be a genus, or it may be a species, a family or other higher taxon, 115 

or an unranked group of genera. This has raised questions about the viability of ranked taxa 116 

in a phylogenetic framework, though it is not necessarily problematic (Giribet et al., 2016). 117 

Importantly, it also means that observed patterns in established taxonomic classification are 118 

not equivalent to phylogenetic ‘imbalance’ or the relative size of nested and adjacent clades 119 

(Aldous, Krikun & Popvic, 2008). This is because the size-frequency distributions of 120 

subclades predicted a priori by birth-death processes may not be equivalent to those of 121 

taxonomic units recognised a posteriori.  122 

Species richness in living clades is controlled not by speciation alone, but also by 123 

times of lineage persistence and extinction events, as these create ‘space’ within a clade, gaps 124 
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that separate living species into discrete groups that may be treated as higher taxonomic 125 

entities (e.g. genera). Extinction processes are a critically important process to producing the 126 

species richness in a clade (Marshall, 2017). Extinction is inevitable over evolutionary time, 127 

and lineage loss within a clade creates discontinuities in phenotypic or genetic gradients, 128 

while accumulated branch lengths over clade evolution results in more diversity and hence 129 

more potential for generic splitting. Thus, there is only one evolutionary pathway to a large 130 

genus (a single rapid radiation), but many ways to create a small genus, such as a persistent, 131 

unbroken and relatively unchanging evolutionary lineage, or the extinction of other closely-132 

related species in a clade, or lineage persistence or extinction events nested within a larger 133 

clade that separate species into multiple genera. This may explain why clade size, like many 134 

natural phenomena, has a hollow curve (Yule, 1925; Strand & Panova, 2014).  135 

Literature in phylogenetics is often focussed on analysing rapid radiations and the 136 

causative explanations of their evolutionary history (e.g. Bond & Opell, 1998; Alfaro et al., 137 

2009; Harmon & Harrison, 2015). Our goal here was to return to basic principles and 138 

examine large-scale emergent patterns in diversification, regardless of individual clade 139 

history, that could provide a more fundamental basis to identify where taxonomically defined 140 

genera may constitute genuine outliers. 141 

It is unclear to what extent these repeatedly observed skew distributions in 142 

conventional taxonomic genus size are influenced by the real evolutionary history of clades, 143 

and consequently it is unclear whether supraspecific diversity can be confidently translated to 144 

a probabilistic approximation of species diversity. That is, if a taxon is only identified to 145 

genus level, is it possible to establish a probability envelope of how many species it 146 

represents globally? To address this question, we compared empirical and simulation data to 147 

determine the range of behaviour in genus size frequency distributions, and the variability of 148 

these distributions under different taxonomic algorithms and evolutionary rates. Consistent 149 
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behaviours in ‘real world’ taxonomy and in evolutionary simulations would indicate that 150 

generalised principles of systematics could lead to robust quantification of diversity from 151 

taxonomic surrogacy.  152 

 Early work on mathematical approaches to macroevolution used birth-death models 153 

(Kendall, 1948) to explore the impact of speciation and extinction rates on patterns of 154 

cladogenesis (Rannala et al., 1998; Huelsenbeck & Lander, 2003). David Raup (1933-2015) 155 

and colleagues produced a computer program they referred to as ‘MBL’ after a meeting in the 156 

Marine Biological Laboratory at Wood’s Hole, Massachusetts (Raup et al., 1973; Raup & 157 

Gould, 1974). Their explorations of the performance of birth-death models with this tool 158 

demonstrated the importance of the interplay of speciation and extinction rates (Sepkoski, 159 

2012). These systems continue to provide a robust and elegant framework to explore 160 

macroevolutionary dynamics (Nee, 2006; Budd & Jackson, 2016).  161 

Tree simulation based on birth-death systems, with high replication resulting from 162 

modern computing power, is here used to assess whether or not genus size distribution in 163 

real-world taxonomic data can be reproduced using simple models. We imposed three 164 

algorithmic taxonomic classifications on large samples of simulated trees, to compare a range 165 

of speciation and extinction parameters and their potential impacts on genus size trends. We 166 

also analysed a broad sampling of taxonomic data from living metazoans, to assess the 167 

consistency of size-frequency patterns. The present work thus uses a ‘null model’ approach to 168 

assess the degree of disparity between deliberately idealised simulations with empirical data 169 

drawn from real historical taxonomy. This framework is designed to address the question of 170 

whether ranked groups are arbitrary, or whether they can be reconciled with underlying 171 

phylogenetic patterns, and presents a significant first step in developing a predictive approach 172 

to infer species-diversity information from data with genus-level resolution. 173 

 174 
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Methods 175 

Real-world taxonomy 176 

 We gathered comprehensive taxonomic datasets for a broad selection of 177 

animal groups. These datasets were selected primarily based on taxonomic completeness and 178 

global species coverage, and their acceptance and/or use by the community of relevant 179 

taxonomic experts. In each dataset, taxa were treated to the same stringent quality checking. 180 

Each database was filtered to exclude fossil species where present, and line checked to 181 

remove incomplete binomial epithets or false duplication due to genuine typographical errors. 182 

To facilitate comparisons across groups with potentially very different taxonomic 183 

conventions, it is necessary to impose certain a priori filters that could be applied to all the 184 

datasets. We did not include subspecies or subgenera in this analysis (following e.g. Alroy et 185 

al., 2001; Heim & Peters, 2011), because taxonomic species and genus ranks are the 186 

universal binomial epithet that are consistently available for all taxa. While all species are 187 

assigned to a genus, not all species are associated with a subgenus, and not all species are 188 

split into subspecies. Some prior studies on well-curated datasets of marine taxa ‘elevated’ 189 

subgeneric taxa to genus level (e.g. Raup, 1978). We consider such adjustments to be 190 

taxonomic revision that is the prerogative of relevant experts, and an aim of our study is to 191 

demonstrate whether the generic concept as normally expressed is comparable between 192 

groups, at least in terms of size distributions. We hence did not make any adjustments to the 193 

classification presented in the global taxonomic datasets we used here, even in the few groups 194 

where we have an appropriate level of expertise.  Fossils were excluded both to ensure 195 

consistency across different datasets, but also to facilitate comparison with our simulations 196 

where all extinct species are excluded. We did not impose any further taxonomic refinement 197 

or interpretation, but where datasets recorded synonyms and reported them as such, only the 198 

valid accepted form was included in our analysis. These datasets include both monophyletic 199 



 10 

and non-monophyletic groupings. (Further, within the large non-monophyletic dataset of 200 

marine invertebrates, some contained subgroups are incomplete because of non-marine 201 

species not included in the database.) We used these data to quantify the number of species in 202 

each valid genus for birds (Gill & Donsker, 2014), fish (Froese & Pauly, 2015), marine 203 

invertebrates (Boxshall et al., 2015), odonate insects (Schorr & Paulson, 2015), reptiles (Uetz 204 

& Hošek, 2014), and mammals (Wilson & Reeder, 2005).  205 

 206 

Model background 207 

 Branching phylogenies can be modelled using ‘birth-death’ type models, and some 208 

emergent patterns can be understood from relatively simple mathematical properties that have 209 

been productively applied to macroevolutionary studies, and have a long history in 210 

mathematical literature (e.g. Watson, 1875). The standard birth-death type model begins with 211 

a single parent lineage. At each iterative time-step there is a set probability that the lineage 212 

will split into two daughter lineages (a ‘birth’ with probability noted lambda, λ), go extinct (a 213 

‘death’ with probability noted mu, μ) or persist unchanged (with probability 1-λ-μ). The 214 

interactions of these parameters control several important properties of the descendent clade 215 

(fig. 1). Firstly, the probability of total extinction of the descendant clade is determined by 216 

the ratio μ/λ: if the extinction rate is higher than the speciation rate, then the descendant clade 217 

will eventually go extinct; otherwise the probability of total extinction decreases as μ/λ drops. 218 

This ratio is illustrated in figure 1 as the shades of grey in the probability space, where the 219 

black half above the diagonal μ=λ indicates inevitable total extinction. Secondly, the expected 220 

number of living descendent lineages at time t increases exponentially dependent on the 221 

difference (λ-μ) between speciation and extinction rates. This second property has been more 222 

frequently discussed in previous literature, especially in terms of the potential for rapid 223 

exponential growth of clades when the speciation rate exceeds the extinction rate (Raup, 224 
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1985). In biologically realistic scenarios, the values are near balanced (Marshall, 2017). This 225 

constraint, and the interaction of λ and μ have several interesting emergent properties. Any 226 

pair of parameters that have the same difference (λ-μ = constant), have the same (average) 227 

number of descendents in a fixed span of time (fig. 1). Thus, if the speciation rate (λ) is lower 228 

than the extinction rate (μ), the expected number of descendent species goes to zero (λ-μ < 0), 229 

and the clade inevitably goes extinct (μ/λ > 1). If the speciation rate is much higher than the 230 

extinction rate, the population rapidly explodes into biologically unrealistic species richness.  231 

 232 

Synthetic taxonomy 233 

  In the case of the present models, fixed speciation (λ) and extinction (μ) rates were 234 

used within each individual simulation in order to constrain the behaviour of the simulation. 235 

However, each individual simulation was relatively short (400 generations) so results are 236 

combined from large-scale replication.  237 

We generated synthetic trees using a fast C++ implementation of the MBL model 238 

(Raup et al., 1973; Supplementary Data, SD1). Random numbers were imported as 32-bit 239 

unsigned integers from a 100Mb set of quantum random numbers downloaded from 240 

https://qrng.anu.edu.au (see Symul, Assad & Lam, 2011). Tree growth was initiated with one 241 

lineage at time t=0, and iterated for 400 generations. The code was tested through comparison 242 

of 10,000-tree runs with predicted theoretical values of rates of total extinction and mean 243 

survivorship at t=400. Observed values for both lay within 0.1% of predicted values 244 

(Supplementary Data SD2). We set no limit on tree size (unlike Raup et al., 1973, who were 245 

constrained by available computer memory). The software interface allows readers to run 246 

these simulations and to manipulate generation time, and threshold values for the taxonomic 247 

algorithms (Supplementary Data SD1). 248 

https://qrng.anu.edu.au/
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 We selected five pairs of values for the parameters λ (speciation probability at each 249 

iteration) and μ (extinction probability at each iteration) for use in this study. These were 250 

selected to give the same value of λ-μ = 0.01, and hence to provide the same value for mean 251 

number of species at t=400 in all cases (calculated as et (λ-μ) = e4 ≈ 54.6 living species at time 252 

t=400). The parameter pairs were: λ=0.015, μ=0.005; λ=0.025, μ=0.015; λ=0.055, μ=0.045; 253 

λ=0.125, μ=0.115 and λ=0.200, μ=0.190 (fig. 1). For each parameter-pair we generated 254 

10,000 successful trees – i.e. all trees that experienced total extinction before t=400 were 255 

discarded and the simulation was continued until 10,000 lineages survived to t=400. 256 

 In the surviving trees, we excluded all extinct lineages and only considered the 257 

species (tips) extant at t=400. We then imposed synthetic taxonomies to delineate species 258 

alive at the final sampling into ‘genera’. Three approaches to taxonomy were used, here 259 

termed Relative-Difference Taxonomy (RDT), Internal-Depth Taxonomy (IDT), and Fixed-260 

Depth Taxonomy (FDT). All three algorithms produce only monophyletic genera, identified 261 

using different features of the internal topology of the tree (fig. 2; Supplementary Data fig. 262 

SD2.1).  263 

 Relative-Difference Taxonomy (RDT) makes no assumption that genera should be 264 

similar in age and implements a relatively complex set of rules, to formally articulate sorting 265 

from the general principles of phylogenetic systematics. This asserts that a genus should be a 266 

grouping containing those species that are relatively phylogenetically closer to each other 267 

than they are to anything outside the genus group. In our algorithm, all sister-species pairs 268 

were de facto united in a genus, along with any additional taxa that formed a clade without 269 

exceeding the relative-distance threshold. Where the threshold is 0.5, this means more than 270 

doubling the phylogenetic distance between nodes. We tested the algorithm’s sensitivity to 271 

the relative distance threshold with four different values (0.3, 0.5, 0.6, 0.75). All extant 272 
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species not placed in a genus by this pairing/expansion algorithm are left as monospecific 273 

genera (fig. 2; Supplementary Data, fig. SD2.1).  274 

Internal-Depth taxonomy (IDT) operates on a similar principle of relative 275 

differentness but uses an unrelated algorithm. Under IDT, a genus is a group of species 276 

lineages whose internodal distances are always less than a fixed threshold. Where a lineage 277 

persists without splitting for longer than the threshold distance, the downstream branches 278 

establish a new genus, and any paraphyletic genera are automatically split into monophyletic 279 

units. Four threshold values were tested, at 3.75%, 5%, 10%, and 15% of total simulation 280 

time (15, 20, 40, and 60 time-iterations).  281 

 Fixed-Depth taxonomy (FDT) defines a genus to comprise all species diverging for 282 

less than a constant amount of time. Avise and Johns (1999), for example, suggested 283 

divergence in the interval 2–5Ma for contemporary species. FDT groups into one genus all 284 

species whose most recent common ancestor occurred at or after a ‘threshold’ number of 285 

time-iterations from the end of the simulation. This threshold was tested at 3.75%, 5%, 10%, 286 

and 15% of total simulation time  (15, 20, 40, and 60 time-iterations)  for this study. The 287 

approach provides a naïve but easily understood taxonomy in which there is an absolute 288 

upper limit to the degree to which any two congeneric species can be separated from each 289 

other. 290 

Simulations were repeated with four different thresholds for each algorithm, thus 291 

producing 12 taxonomic schemes for each speciation/extinction rate parameter set. Our 292 

software allows sorting to be completed in parallel for the three algorithms, thus 20 293 

simulations were performed (4 threshold sets on each of 5 rate parameter pairs). Each 294 

simulation was run until 10,000 trees were produced. 295 

 296 

Results 297 
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Real-world taxonomy 298 

 Size-frequency data of genus-level species richness are remarkably consistent among 299 

all sampled datasets (fig. 3; table 1; supplementary data SD2). The largest fraction of genera 300 

in any group is monotypic genera (size = 1 species), decreasing nonlinearly in frequency with 301 

increasing genus size. The proportion of monotypic genera was around one-third of genera in 302 

all sampled groups (28% to 43%; Table 1). The behaviour of the non-monophyletic groups 303 

sampled (fish, marine invertebrates) did not differ from the other datasets. The same 304 

universal behaviour emerges in sufficiently large samples. The general pattern of (a) a 305 

skewed frequency-distribution of genus size, and (b) approximately one-third of genera being 306 

monotypic, holds true in other subsampled partitions of monophyletic taxonomic orders (data 307 

not shown).  308 

The frequency distribution patterns among different organisms are visually similar 309 

and may be statistically equivalent. While the distributions differ slightly in terms of the 310 

proportion of monotypic taxa (the spread of values see on the left side in Fig 3), the question 311 

of relevance is whether these frequency distributions deviate significantly from each other 312 

over the whole span of genus sizes. Statistical tests to compare discrete distributions may 313 

have limited information value, but pairwise two-tailed Kruskal-Wallis tests on proportional 314 

frequencies (i.e. percentages of genera in each species-richness size for each taxonomic 315 

group) found no significant difference at α=0.05 between any two groups (all pairwise 316 

comparisons p < 0.039), with the single exception of mammals and birds (pairwise 317 

comparison, D = 0.255, p = 0.0914; Supplementary Data SD2). Mammalia is the smallest 318 

dataset included in the analysis, and that deviation was driven by the size of the largest 319 

mammal genera. The two largest mammal genera, are Myotis bats with 102 spp. and 320 

Crocidura shrews at 173 spp. (the largest bird genus, Zosterops, is 87 spp.). Datasets were 321 

compared based on percentages to accommodate the range of total size, and thus the one 322 
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large mammal genus represents a larger proportion of total mammal genus diversity. 323 

Mammal genera have a broader range of species-richness relative to birds, but neither of 324 

these two groups was significantly different from any other group, including the total group. 325 

 Size-frequency distributions followed a similar pattern in all groups; however, the 326 

sizes of the largest genera were distinctly different. The largest marine invertebrate genera 327 

are an order of magnitude larger than other groups that we examined (fig. 3; table 1). 328 

Nonetheless, the proportions of monotypic genera were consistent (table 1) and the overall 329 

frequency distributions are statistically equivalent (see above). Maximum genus size was also 330 

independent of taxonomic group, and did not correlate with the number of genera or total 331 

group species richness (genera: p = 0.740, species: p = 0.780).  332 

 333 

Synthetic taxonomy 334 

 The real-world taxonomic data (fig. 3) and all three taxonomic rule-sets in simulation 335 

(RDT, IDT, FDT) consistently recovered broadly hollow-curve distributions of genus size, 336 

with proportionally higher numbers of small genera and smaller numbers of large genera (fig. 337 

4). In summative simulation data (combining heterogenous speciation and extinction rates), 338 

the distributions are strongly similar to real-world data, and the proportion of monotypic 339 

genera is equivalent to that in real-world taxonomy (fig. 4d). Simulations, however, 340 

recovered maximum genus sizes that were substantially smaller than some reported from 341 

organismal taxonomy.  342 

To exclude the possibility that maximum genus size was constrained primarily by 343 

clade size, we visualised the maximum genus size for every individual tree (10,000 trees per 344 

parameter set) under the three different taxonomic sorting algorithms (supplementary data 345 
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SD2). Under a combination of higher speciation/extinction parameters, and under higher 346 

(more lenient) threshold values, the maximum genus size does increase slightly with 347 

increasing clade size, but has a clear upper threshold that is orders of magnitude lower than 348 

the clade size. Genus size is hence not saturated or constrained by simulation tree size.   349 

In simulation, the largest genus size recovered was a single instance of a genus with 350 

675 species, under a broad threshold in IDT that was selected to examine extreme behaviour 351 

(supplementary data SD2, fig SD2.2; IDT threshold = 15%). In that simulation the frequency 352 

distribution of genus size becomes extremely flat with only 6% of species in monotypic 353 

genera, significantly diverging from patterns seen in ‘real world’ taxonomy. The largest 354 

genera recovered under more moderate threshold values were all under 350 species (fig 4).  355 

The distributions of genus size from RDT simulations did not change substantially 356 

with different speciation/extinction-rate parameter pairs (fig. 4a). Changes in threshold value 357 

had no substantial effect on the resulting patterns (fig. 4a, Supplementary Data SD2, fig 358 

SD2.2). In these simulations, two-species genera are recovered most frequently, and the 359 

second-largest group is monotypic genera. This somewhat violates the expected ‘hollow 360 

curve’ where monotypic groups are otherwise the largest fraction of genera. This artefact 361 

arises from the RDT rules, in which any pair of sister-species form a genus regardless of the 362 

depth of their common ancestor. However, the artefact does not appear to extend to the rest 363 

of the curve, and we note that the combined proportion of one- and two-species genera is 364 

similar across all taxonomic algorithms. While this has some implications for the use of 365 

topological criteria (discussed below), we do not consider than the overall pattern undermines 366 

the expectation of dominant monotypes in taxonomy.  367 

The proportion of monotypic genera, and the size of the largest genera recovered, 368 

were less sensitive to changing parameters than under either FDT or IDT. Among all the 369 
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parameter sets tested, the proportion of monotypic genera ranged from 36.6% to 47.2%, and 370 

the size of the largest genera recovered ranged from 8 to 36 species per genus 371 

(Supplementary Data SD2, fig SD2.2, SD2.3), closely in line with proportions in real-world 372 

taxonomy (Table 1).  373 

 The IDT algorithm consistently recovered larger maximum genus sizes than the other 374 

two algorithms. Increasing rates of speciation resulted in broader and flatter genus size-375 

frequency distributions (fig. 4b). This ‘flattening’ decreased the left skew of the frequency 376 

distribution as evidenced in both a relatively lower proportion of monotypic species and 377 

larger maximum genus sizes. Speciation parameters at both extremes of our range of test 378 

values produce frequency distributions that deviate from the patterns seen in real-world 379 

taxonomic data. Variation in the threshold value did not alter the overall shape of the 380 

frequency distribution under any particular parameter set (fig. 4b), but increasing the 381 

threshold value caused the same flattening effect as increasing speciation rate 382 

(Supplementary Data SD2, fig SD2.2). The proportion of monotypic genera, and the size of 383 

the largest genus co-vary, ranging from 6.1% monotypic with a maximum genus size of 674 384 

species, under the highest speciation rate and highest threshold tested (λ=0.20, threshold 385 

15%) to up to 79.2% and a largest genus size of 10 species under the lowest parameters 386 

(λ=0.015, threshold 3.75%).   387 

 Fixed-Depth taxonomy (FDT) recovers distribution patterns that are similar to IDT 388 

However, fixed-depth taxonomy is much more sensitive to changes in speciation-/extinction-389 

rate parameters, varying slightly more than IDT with changing speciation rates, and like IDT 390 

an increase in speciation rate resulted in increasingly broad genus size-frequency 391 

distributions (fig. 4c). Under all variations, the proportion of monotypic genera ranged from 392 

only 4% of genera monotypic to 79% of genera monotypic (Supplementary Data SD2, fig 393 

SD2.2). For the lowest speciation rate applied (λ=0.015), up to 73.7% of FDT simulated 394 
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genera were monotypic under a 10% threshold, compared to 13.2% of genera monotypic 395 

under the highest speciation rate applied (λ=0.200). FDT recovers lower maximum genus 396 

sizes than IDT. Increasing rates of speciation produced increasingly larger maximum genus 397 

sizes, ranging from 10 species per genus under the lowest speciation rate to a genus with 75 398 

species under the highest simulated speciation rate, or up to 156 species in the largest single 399 

genus from a 15% threshold (fig. 4c). Increases in threshold values, like IDT, created the 400 

same effect on the resulting frequency distribution as increasing speciation rate parameters 401 

(Supplementary Data SD2, fig SD2.2). 402 

 Combining the data for all five speciation/extinction parameter sets provides a 403 

visualisation of the central tendency of the behaviour for each algorithm (fig 4d). All three 404 

taxonomic algorithms produced frequency distributions that were similar to each other and 405 

strongly similar to the hollow curve distributions found in real-world taxonomy.  406 

 407 

Discussion 408 

Size-frequency distributions 409 

Discussion abounds over the potential inconsistency of taxonomic delimitations (Gift 410 

& Stevens, 1997). Different organismal groups are classified with different interpretations of 411 

rank, especially comparing invertebrate and vertebrate groups (Avise & Johns, 1999; Avise 412 

& Liu, 2011). This inconsistency or apparent instability may seem to be a fundamental 413 

handicap to modernising systematic classifications. In this context it is interesting that the 414 

size frequency of metazoan genera converges on a strongly consistent pattern, and that 415 

pattern also agrees mathematically with distributions that emerge from idealised phylogenetic 416 

simulations.  417 

Our results demonstrate that the sizes of higher ranks behave in a predictable fashion, 418 

supporting their use as a proxy for specific diversity (taxonomic surrogacy) in synoptic 419 
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studies. These patterns emerge consistently, at sufficiently large samples. Taxonomic 420 

surrogacy has many practical advantages for measuring biodiversity, which underlie the 421 

widespread use of that approach. Work on morphological disparity in living species has 422 

supported the utility of higher ranked taxa (Triantis et al., 2016). And, even more frequently, 423 

synoptic work on the fossil record has reinforced the importance of evolutionary information 424 

from higher ranks (Raup & Boyajian, 1988). For a few well-studied groups, there is 425 

demonstrable congruence in species phylogeny and morphologically defined genera (e.g. 426 

Jablonski & Finarelli, 2009; Humphreys & Barraclough, 2014; Holt & Jønsson, 2014). These 427 

provide significant hope or reassurance that it is theoretically possible to apply traditional 428 

Linnean classifications where taxonomic ranks have a clearly articulated evolutionary or 429 

temporal delimitation. Nonetheless, the question of whether genera represent real biological 430 

or evolutionary entities has not been directly addressed outside those very few groups for 431 

which phylogenetic studies with dense taxon sampling are available. A lack of certainty 432 

about which patterns are universal or artefactual remains a persistent criticism of the 433 

transferable meaning of ranked taxonomy (Lee, 2003).  434 

 The dominance of monotypic genera, and the rarity of large genera, is an established 435 

consistent pattern that has been ‘re-discovered’ repeatedly for more than a century (Aldous, 436 

2001). Indeed, the pattern should be expected from birth-death models (Kendall, 1948). One 437 

of our taxonomic algorithms recovered a high number of two-species genera, but only under 438 

a highly unrealistic taxonomic scenario (forcing sister-species to share a genus even if they 439 

deeply divergent). There is a significant body of work on the long-tailed distribution of 440 

species richness among genera (Yule, 1925; Maruvka et al., 2013), but the idea still persists 441 

that supraspecific groups are more arbitrary than species definitions and the skewed 442 

frequency distribution might be an artefact of taxonomic practice (e.g. Scotland & Sanderson, 443 

2004; Strand & Panova, 2014). Our new data show, however, that this frequency pattern is 444 
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strongly consistent across independent groups, with different taxonomic approaches and 445 

evolutionary histories. Our modelling demonstrates that it can arise from the interaction of 446 

phylogeny and taxonomy alone.  447 

 The difference between taxonomic units and nested clades is a persistent 448 

misunderstanding in controversies about the utility of ranked taxonomy (Giribet et al., 2016). 449 

Even though our simulated genera are all monophyletic, the sister taxon of a genus is rarely 450 

another genus. This is not problematic; it is a reflection of the intentionally relativistic nature 451 

of ranked taxonomy. The patterns of nested clades in phylogenetic trees are informative to 452 

evolutionary processes, but they are not equivalent to taxonomy. Mathematical patterns that 453 

arise from topology have been referred to as tree ‘imbalance’ in computational phylogenetics 454 

(Mooers & Heard, 1997). Perfectly balanced bifurcating trees can only arise under very 455 

narrowly constrained circumstances, so phylogenetic imbalance, or a skew distribution in the 456 

size of daughter clades, is the expected condition and arises from random splitting in birth-457 

death models (Nee, 2006). Metrics of tree imbalance examine nested clades; real applied 458 

taxonomy and our synthetic taxonomy are not so restricted. Even though our simulated 459 

genera are all monophyletic, the sister taxon of a genus is rarely another genus.  Most 460 

phylogenetic simulations differ from patterns observed in taxonomy in that the models 461 

recover far fewer monotypic clades (Scotland & Sanderson, 2004). This is in contrast to our 462 

compiled real-world datasets, which show a consistent proportion of monotypic genera, and 463 

our simulations, which recover frequencies of monotypes that closely match real-world data 464 

(fig. 4d). 465 

Substantial previous research has explored genus-size, or more generally clade-size, 466 

frequency distribution with simulation and modelling. In this context we differentiate 467 

between what we term ‘top down’ and ‘bottom up’ approaches. ‘Top down’ includes any 468 

model that directly generates the size or origination of higher taxa as units themselves. The 469 
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most direct ‘top down’ models have examined the patterns in real-world, empirical data for 470 

taxonomic classification, and then derived comparable mathematical descriptions that could 471 

be used to understand underlying evolutionary patterns (e.g. Yule, 1925; Maruvka et al., 472 

2013). Others used phylogenetic simulations from branching processes with the origination 473 

of higher taxa embedded as a term included in the model, and examined the species richness 474 

of directly-generated genera or ‘paraclades’ (e.g. Patzkowsky, 1995), comparing simulation 475 

results with empirical data (Przeworski &Wall, 1998; Foote, 2012). A very few prior studies 476 

used a ‘bottom up’ approach (as we did herein), by which we mean that they first generated a 477 

simulated species phylogeny, and then applied classification. However, this approach 478 

previously was primarily used as a tool to examine cladogenesis and lineage origination over 479 

time (Sepkoski &Kendrick, 1993; Robeck, Maley & Donoghue 2000). Our novel ‘bottom up’ 480 

approach, or synthetic taxonomy, is the most direct approximation of the process of 481 

classifying living taxa in context of their evolutionary relationships. 482 

Previous ‘top down’ models fitted to observed genus-size distributions produced 483 

closer matches to real-world data than we obtain here through artificial taxonomy, because 484 

that was their explicit aim (Maruvka et al., 2013). Other studies have also obtained good fits 485 

to empirical data with birth-death models that include direct simulation of higher taxa as 486 

cladogenic events (Foote, 2012). By contrast, our results come from a new bottom-up 487 

approach that compares ways that species might be partitioned into genera, given total 488 

knowledge of their phylogeny in simulation. This is an important distinction, because we are 489 

modelling the patterns of species origination, not controlling the origination of genera nor 490 

deriving a model to emulate their observed patterns. 491 

Our approach was designed to address the central question of whether human-492 

determined, historical taxonomy can be rationalised with phylogenetic patterns. While we 493 

had no a priori expectation that synthetic phylogenetically driven taxonomy should replicate 494 
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real-world data, there are clear similarities. None of the algorithms we used to recover 495 

simulated ‘genera’ were intended to closely mimic any taxonomic process. Rather we aimed 496 

to test the consistency of emergent patterns under several different idealised, monophyletic 497 

taxonomic definitions. We also used large sample sizes compared to real taxonomy, on the 498 

order of 108 simulated living species, compared to maximum global species estimates on the 499 

order of 107 (Mora et al., 2011; Scheffers et al., 2012; Stork et al., 2015). The observations 500 

and data discussed here represent large-scale emergent patterns in global biodiversity. In 501 

smaller sample sizes, the contingencies of either taxonomic history, or evolutionary history, 502 

could lead to the deviations that have previously been interpreted as evidence that the overall 503 

skew distributions are artefactual.  504 

 Skew distributions are common in natural systems, despite great variety in underlying 505 

mechanisms for sorting objects into frequency groups. Certain standard skew distributions 506 

approximately mimic the frequencies of genera of different sizes (Reed & Hughes, 2002), as 507 

well as patterns of word frequencies in language, or the sizes of corporations or cities (Reed 508 

& Jorgensen, 2004). Emergent global patterns in taxonomic diversity do not belie the many 509 

particular mechanisms that lead to the origination of large or small genera in particular 510 

clades. Large corporations are the minority of companies, but that does not mean that all 511 

large corporations are successful for the same reason(s). The same applies to the species 512 

richness of genera. Similarly, any particular explanation for the evolutionary dynamics in a 513 

particular group (a key adaptation, or contraction through extinction) may not undermine its 514 

role in a larger stochastic process. Smaller samples can easily find a pattern that appears to 515 

deviate from central tendency, which has previously caused some doubt about whether this 516 

skew distribution is artefactual (e.g. Strand & Panova, 2014).  We contend that the repeated 517 

finding of nearly identical patterns in taxonomic datasets at varying scales (e.g. Yule, 1925; 518 

Holman, 1985; Mora et al., 2011; Maruvka et al., 2012; Strand & Panova, 2014; and herein) 519 
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is evidence that skew distribution in taxonomic size frequency is mathematically valuable. 520 

The new insight afforded by our simulations it is that this is a realistic product of species 521 

evolution. 522 

The question of monophyly in real-world taxonomic data could influence patterns at 523 

multiple levels. The frequency distribution of genus size does not change when restricted to 524 

phylogenetically-defined clades; we selected ‘real world’ taxonomic datasets based on 525 

taxonomic completeness and acceptance by relevant experts, and they include both 526 

monophyletic clades (e.g. Aves), and non-monophyletic assemblages (marine invertebrates, 527 

fish).  Yet the overall frequency distributions appear similar. Within each dataset, most 528 

genera are defined by morphology; most genus names pre-date molecular phylogenetics, and 529 

the vast majority of species lack sequence data (Appeltans et al., 2012). Most genera and 530 

families (especially in under-studied groups) have also not been tested for monophyly, 531 

although the absence of a test does not imply that all will fail. But this pattern cannot be 532 

blamed on ‘lumping’, ‘splitting’, or cryptic species complexes. Some genera included in our 533 

datasets are undoubtedly paraphyletic, though previous simulations have shown this does not 534 

necessarily affect overall patterns, at least when including extinct lineages (Sepkoski & 535 

Kendrick, 1993). The emergence of a hollow-curve distribution in real-world taxonomic data 536 

is not dependent on genera being monophyletic, yet it also emerges consistently from 537 

simulations using strict monophyly.  538 

Future generalisations about species diversity should account for the underlying 539 

frequency distribution of genus size. In a strongly skewed distribution, central-tendency 540 

measures such as the arithmetic mean are relatively uninformative. Many authors (e.g. Qian 541 

& Ricklefs, 2000; Krug, Jablonski & Valentine, 2008; Mora et al., 2008; Foote, 2012) have 542 

relied on a species-per-genus ratio, or used such a ratio as a proxy for maximum genus size. 543 

While many authors have discussed or made adjustments for genus size distributions, 544 
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nonetheless this approach is equivalent to using an average of species-per-genus, and 545 

implicitly assumes an underlying normal distribution for genus size. Though authors may 546 

have a thorough understanding of the taxonomic patterns within their group or even the 547 

global patterns discussed here, it should be emphasised that taxonomic metadata are applied 548 

to many other fields of science. Other work has highlighted the potential pitfalls of 549 

extrapolations based on unsubstantiated assumptions of a universal species-per-genus ratio 550 

(e.g. Scheffers et al., 2012). The modal genus size is very likely to always be 1 (Aldous, 551 

2001), and the mean is hence not a useful measure of central tendency in genus diversity. 552 

Future studies can expand on the present work to estimate diversity using a modelling 553 

approach for reconstructing species diversity from a more accurate generalised probability 554 

distribution for genus diversity. 555 

 556 

Large genera 557 

 Evolutionary biology is intellectually focussed on large and rapidly evolving groups 558 

(Seehausen, 2006; Rabosky & Lovette, 2008; Losos et al., 1998; Thorpe & Losos, 2004). The 559 

‘success’ of a genus is considered nearly synonymous with its species richness (Minelli, 560 

2015). Indeed, a substantial proportion of species are included in large genera – in reptiles the 561 

five largest genera (Anolis, Liolaemus, Cyrtodactylus, Atractus, Hemidactylus) comprise 562 

slightly more than 10% of nominal reptile species, and the species in monotypic genera 563 

account for less than 10% of species in each of the taxonomic datasets included herein.  564 

Among relatively under-studied groups, large genera are often ‘bucket’ taxa awaiting 565 

taxonomic revision, rather than interesting evolutionary phenomena. In our datasets, there are 566 

only five genera with more than 500 species (all marine invertebrates). Some have additional 567 

structure; the gastropod Conus, for example, was recently divided into 57 sub-genera 568 

(Puillandre et al., 2015). Flowering plants and fungi, not sampled here, contain some of the 569 
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largest eukaryotic genera with thousands of species (Minelli, 2015); these too often have 570 

recognised additional phylogenetic structure and are split into many subgenera. Among all 571 

groups, most very large genera appear to represent units that are not ‘real’ either in that they 572 

are non-monophyletic or not appropriate to the rank of genus.  573 

In order to compare like with like, across a broad range of organisms, we considered 574 

that it was better use the taxonomic ranks assigned by experts rather than impose our own re-575 

interpretation. For instance, some groups have sub-generic divisions that could arguably be 576 

the equivalent to the genera of other groups; we did not impose this equivalence as it would 577 

involve overturning the decision of experts as to what relevant level of distinctiveness is 578 

required to differentiate a genus in that group. It is interesting then that using a sampling of 579 

the current taxonomic status quo recovered consistent patterns of genus-size distribution 580 

across all the animal groups we investigated.   581 

The main goal of our study was to determine whether taxonomic rank in general, but 582 

genera in particular, can predict species biodiversity; one immediate outcome is that our 583 

findings can be used to assess where biological groups may deviate from that null model. We 584 

suggest for example that this is further evidence to support critical re-examination of 585 

unusually large genera especially among marine invertebrates, and unusually high 586 

frequencies of small genera, such as in mammals.  587 

 588 

Rates of evolution 589 

 There are real, predictable patterns in systematics, and the skew distribution in 590 

generic size occurs across variety of rate parameters and taxonomic algorithms. Our 591 

simulations deliberately used fixed rates of speciation and extinction to facilitate comparisons 592 

between rate parameters; this led to well-constrained behaviour in the resulting trees. There is 593 
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a clear mathematical behaviour to trees, influenced by speciation and extinction rates, which 594 

translates to mathematical behaviours of clades (Aldous et al., 2008).  595 

Our taxonomic algorithms were also deliberately defined in an idealised way that is 596 

not realistically similar to practical taxonomy. Taxonomy almost always operates with 597 

limited data, inferring relationships based on key characters with established utility (whether 598 

molecular or morphological), as available for the specimens under study. In simulation, we 599 

have omniscient knowledge of the underlying phylogeny, so this provides a way to assess 600 

how constrained or variable genus size frequency would be, in comparing perfectly complete 601 

and accurate phylogenies under a range of evolutionary rates. 602 

 Our first approach to simulated taxonomy, RDT (fig. 4b), extends the phylogenetic 603 

species concept so that ranks are assigned based on the relative similarity of proximate 604 

monophyletic groupings (sensu Cracraft, 1983). The second approach, IDT (fig. 4c) is 605 

conceptually similar in that it separates clusters of taxa where they have diverged ancestrally 606 

for more than some fixed threshold of time. Fixed-depth taxonomy (FDT; fig. 4a), 607 

approximates the chronological approaches promoted by some authors, who advocate the use 608 

of divergence times to determine rank (Avise & Johns, 1999; Avise & Mitchell, 2007). It 609 

should be expected that FDT simulations would deviate from ‘real world’ taxonomy because 610 

this is not how taxa are defined in practice; however, it may be successfully applied post hoc 611 

to a well-resolved phylogeny (Holt & Jønsson, 2014). Lineage depth is of interest in 612 

delimiting taxonomic groups, but it is not information that is generally accessible or available 613 

for most species-level taxa (Ricotta et al., 2012). Age of origin is variable in different 614 

groups—a topological phenomenon that is explored in our other taxonomic algorithms—and 615 

information that is simply not known for many. This potential problem has been well known 616 

for decades (e.g. Hennig, 1979; Avise & Liu, 2011). Our simulations demonstrate that the 617 

FDT approach is highly sensitive to permutations of speciation and extinction rates (fig. 4c), 618 
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whereas ‘real world’ taxonomy is evidentially not, at comparable sampling magnitudes. 619 

Small changes in evolutionary rates caused the FDT and IDT simulations to shift away from 620 

biologically realistic distributions. More importantly perhaps, different depth (age) thresholds 621 

actually had relatively less impact on the resulting frequency distributions. This sensitivity 622 

illustrates a significant weakness in using time of origin as a criterion for defining higher 623 

taxa.  624 

 Under the RDT model, varying rate parameters had very limited impact on frequency 625 

distributions, even less variable than in the real-world data. While RDT is also not intended 626 

to mimic genuine taxonomic practice, this pattern demonstrates that similarly shaped 627 

distributions can arise directly from different evolutionary scenarios, which is undoubtedly 628 

the case in comparing groups of real organisms. This method still uses branch lengths as well 629 

as topology to define genera (Barraclough & Humphreys, 2015), yet recovers rather different 630 

frequency distributions. The large number of bitypic genera recovered by RDT is an artefact 631 

reflecting the effects of forcing the classification to seek sister-relationships even when those 632 

taxa may be separated by deep divergences. In real species, characterised by genetic or 633 

morphological characters, deeply-separated sister taxa would probably not be considered a 634 

bitypic genus but rather two monotypic genera. 635 

 The three taxonomic algorithms we used to classify our simulated trees, usually 636 

recovered genera that had smaller maximum sizes than in ‘real world’ data. Large genera in 637 

some cases reflect the existence of ‘bucket’ para- or polyphletic genera in real-world 638 

taxonomy; these are never present in our simulations. Other very large genera in the real 639 

world are undoubtedly monophyletic and may be already subdivided into subgenera, which 640 

may in fact be more equivalent to the genus rank in other clades (e.g. the mollusc genus 641 

Conus, noted above). More likely, large genera may be absent in the simulations because the 642 



 28 

model did not allow for synergistic effects of speciation rates and environment, which are 643 

thought to underpin rapid radiations (Harmon & Harrison, 2015).  644 

 It is increasingly well understood that both speciation rates and extinction rates vary 645 

among clades and even within clades over time (Marshall, 2017), although these rates may be 646 

approximately equal (zero net diversification) across all clades over time (Ricklefs, 2007) or 647 

with a narrow tendency for globally increasing diversity (Bennett, 2013). The convergence of 648 

genus size-frequency distributions under our various models, and the similar convergence in 649 

real-world taxonomic data, suggest that there is perhaps a long term equilibrium in 650 

evolutionary rates. Recent work has highlighted the potential heritability of speciation as a 651 

trait itself (e.g. Purvis et al., 2011; Rabosky & Goldberg, 2015). The constrained sizes of the 652 

largest genera recovered from our simulations with fixed speciation rates provides strong 653 

additional evidence that heterogeneous rates of speciation are fundamental to the origination 654 

of large genera. 655 

 There are two significant hurdles that have been raised as potentially impeding the use 656 

of higher-ranked taxa to measure species diversity: First, whether the units (genera) are 657 

defined by consistent criteria that make them comparable across different groups, and second, 658 

whether the genera are monophyletic units (Hendricks et al., 2014). Our simulations 659 

addressed these issues by using strict algorithms to define monophyletic genera.  Applying 660 

these criteria highlighted the variability introduced by changing evolutionary rates, and also 661 

illustrated the comparatively constrained range of distributions found in real world taxonomy.  662 

 663 

Conclusions 664 

Mathematical approaches are important tools to separate real excursions in speciation 665 

rates, that might require special explanations, from patterns that can be predicted within a 666 

well-described probability distribution. If we begin with a premise that large genera represent 667 
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evolutionary anomalies, then it is logical to seek an explanation for the process that generated 668 

that excursion. However, as we demonstrate here, taxonomic genera arise from phylogeny in 669 

a probability space that accommodates both small and large genera, with decreasing 670 

frequency as genera get larger. From these simulations, one could infer that genera of sizes 671 

up to around 50 species are not exceptional, genera of several hundred species are unusual 672 

and perhaps deserve taxonomic scrutiny, and certainly monotypic genera are commonplace. 673 

Special adaptive significance is not necessarily required to explain a monotypic genus, or a 674 

large genus, or a genus with four species.  675 

 Our results provide novel evidence that Linnean ranks applied to groups of species 676 

can have transferable meaning between unrelated clades, even though monotypic units of 677 

classification are not equivalent to topological nested clades. Genus sizes should follow a 678 

skew-distribution; monotypic genera are expected to be very common, and large genera are 679 

expected to be very rare. The largest genera, of sizes that dramatically exceed anything 680 

recovered in simulation, are probably not appropriate phylogenetic or systematic units.  681 

 Understanding the frequency distribution of supraspecific taxa, and their behaviour as 682 

mathematical units, is crucial to a more robust understanding of taxonomic surrogacy. It is 683 

essential to know how diversity, when measured in terms of genera or families, can be 684 

translated into species richness. The skewed distribution of genus sizes, which is a real 685 

phenomenon, precludes using a simple count of genera or higher ranked taxa to answer many 686 

questions about comparative species diversity. The present study provides a foundation for a 687 

new approach to quantify the error introduced by taxonomic surrogacy. Our results 688 

demonstrate for the first time that determining this is an achievable target, and that 689 

established systematics already holds the key to robust quantitative analyses of global 690 

diversity. 691 

  692 
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Figures Captions  912 

 913 

Fig 1. The probability space of birth-death models that generate simulated phylogenies, for 914 

rates of speciation (λ, horizontal axis) and extinction (μ, vertical axis), illustrating the main 915 

emergent properties of the model. The probability of eventual total extinction of the 916 

descendant clade is relative to the ratio μ/λ, the slope within this space illustrated with 917 

varying shades of grey from guaranteed extinction (μ/λ >1, black) to increasing probability of 918 

clade persistence (paler wedges correspond to ratios indicated on right vertical axis). The 919 

average number of living descendant species at a fixed sampling time point (t) is relative to 920 

the difference λ-μ, visualised as the negative intercept of a line with slope 1, and increases 921 

exponentially as et·(λ-μ). Thus when λ-μ = 0.01, at t = 400, simulations produce an average of 922 

55 species; a small increase to λ-μ = 0.02 would result in 3000 species per tree in the same 923 

timeframe. The parameters selected for simulations herein (coloured circles) were chosen to 924 

represent a span of model behaviours with consistent average clade size, but varying clade-925 

extinction probabilities (shades of grey in background). 926 

 927 

 928 

Fig 2. Schematic representation of three independent taxonomic algorithms, applied to sort 929 

simulated species trees into monophyletic genus units.In Relative-Distance Taxonomy, tips 930 

(species) that are relatively closer to each other than to the previous common ancestor are 931 

united in a genus. Here, the threshold is 0.5 or 50% of the relative depth. The depth between 932 

node a1 and b1 is more than 0.5 the depth from b1 to its alternate descendant. Thus the two 933 

descendent lines from  b1 are split into two genera. Internal-Depth Taxonomy separates 934 

monophyletic of clades of tips wherever an inter-nodal distance exceeds a given threshold 935 

(paraphyletic clusters are divided into monphyletic genera). Fixed-Depth Taxonomy defines 936 

genera to be the monophyletic groups of descendants of nodes after a given depth threshold. 937 
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 938 

Fig 3. Size-frequency of genera in real world taxonomic data: the percentage of genera 939 

containing a set number of valid nominal species, summarised from global datasets for select 940 

groups.  941 

 942 

Fig. 4. Size-frequency of genera in synthetic taxonomy derived from simulated data, using 943 

five parameter sets for rates of speciation (λ) and extinction (μ), shown in different colours; 944 

the size-frequency distribution of the total ‘real world’ dataset is included for comparison 945 

(summed from data shown in fig. 3). In each panel, solid and dotted lines indicate different 946 

thresholds for the algorithms that define synthetic genera. A) genera defined by Relative-947 

Difference Taxonomy, with a threshold of 50% difference in depth (dotted lines) or 60% 948 

(solid lines). B) genera defined by Internal-Depth Taxonomy: defined by monophyletic 949 

clades of tips (species) within 20 generations (5% of tree depth, solid lines) or 40 generations 950 

(dotted lines) from any adjacent tips. C) genera defined by Fixed-Depth Taxonomy: defined 951 

by monophyletic clades of tips (species) within 20 generations (5% of tree depth, solid lines) 952 

or 40 generations (dotted lines) from the most recent common ancestor. D) frequency 953 

distributions for each algorithm, summed over all speciation and extinction rate parameters 954 

(showing six different datasets from simulations, grey, and real-world taxonomic data, black; 955 

symbols, and dotted and dashed lines correspond to algorithm thresholds as in other parts).  956 

  957 

  958 
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Table 959 

 960 

Table 1. Summary information for valid, and taxonomically accepted, non-extinct species 961 

and genera compiled from comprehensive global taxonomic datasets. 962 

 963 

 Mammals 

Marine 

invertebrates Birds Reptiles Fish Dragonflies Total 

Number of 

species  5,492   214,417  

 

10,695   10,178  

 

32,324   6,043  

 

279,149  

Number of 

genera  1,242   29,316   2,278   1,176   4,914   688   39,614  

Maximum 

genus size  173   1,028   87   398   291   147   1,028  

Number of 

monotypic 

genera  538   10,970   903   329   1,704   195   14,639  

Species in 

monotypic 

genera 9.8% 5.1% 8.4% 3.2% 5.3% 3.2% 5.2% 

Proportion 

of genera 

monotypic 43.3% 37.4% 39.6% 28.0% 34.7% 28.3% 37.0% 

 964 
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