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Abstract 

Highly dense proton conducting materials of BCZYSZn (BaCe0.8-xZrxY0.15Sm0.05O3-δ  (x = 0.15, 

0.20) with 4 wt.% ZnO as sintering additive), to be used as an intermediate temperature solid 

oxide fuel cells (IT-SOFCs) electrolyte, have been processed by the conventional solid state 

reaction method. The crystalline phase, microstructure, electrical properties, cell performance 

and chemical stability of the materials have been investigated. The ionic conductivity of 

BCZYSZn 3 (x = 0.20) material has been measured to be ~2.56  10
-3

 S cm
−1

 and ~8.32  10
-3

 S 

cm
−1

 at 600 °C and 850 °C, respectively in wet 5%H2 in Ar atmosphere. Microstructural 

characterizations of the zinc containing materials (BCZYSZn) show the formation of highly 

dense morphology with very large grains. The chemical stability test of BCZYSZn in pure CO2 
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shows that the material is very stable up to 1000 °C. The maximum power density for the 

BCZYSZn 3 electrolyte cell is found to be 0.42 W/cm
2
 at 700 °C under the testing atmosphere. 

The performed characterizations reveal that these are suitable proton-conducting candidate 

materials for efficient electrochemical devices.  

  

Keywords: perovskite; SOFC; proton conductor; electrolyte; impedance spectroscopy; power 

density.   

1. Introduction 

Due to high efficiency (up to 60%), fuel flexibility and low pollution, solid oxide fuel cells 

(SOFCs) are considered promising alternative sources of energy production. They have major 

impact in solving the global energy demand. IT-SOFCs have attracted great attention because of 

their low temperature operation, potential long term stability, environmental friendliness and 

economic affordability for many applications (including stationary and automotive) [1–6]. The 

operation temperature range of oxide ion conducting SOFC is 800–1000 °C which is quite high 

and dictated by the choice of electrolyte material (oxide-ion conductors) such as Yttria-Stabilized 

Zirconia (YSZ), put numerous challenges like high cost and long-term stability issues  [7]. While 

the state of the art SOFC electrolyte for high operating temperatures (800-1000 
o
C) is YSZ, for 

intermediate temperatures doped ceria appears to be used for fuel-cell operation below 600 °C 

[8]. Some significant issues still remain with doped ceria including residual electronic 

conductivity and insufficient mechanical integrity under fuel-cell operating conditions.  

Searching for a new solid oxide electrolyte which operates at low-temperature is still a major 

challenge for the SOFCs community. To overcome the high operation temperature issues, there 

is growing interest in proton conducting electrolyte materials for SOFCs which can operate in 
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intermediate temperature (400–700 °C) range. Proton conductors can operate lower temperature  

due to lower activation energy required for conduction [3,7]. Great benefits that results from its 

employment include cheaper interconnect materials, easier and more reliable sealing, shorter 

start-up and shut-down time, less chances of materials and performance degradation. 

Additionally, as water form at the cathode side of an SOFC, hence fuel dilution can be avoid 

which results in advanced fuel utilization efficiency and higher OCV values [3,9]. 

Doped barium cerates (BaCeO3) and zirconates (BaZrO3) are extensively investigated in the 

literatures [10–16]. These are perovskite (ABO3) type oxides which showing good proton 

conduction. Doped barium cerate, possesses high proton conductivity in the intermediate 

temperature range especially with 15 or 20 mol% of Y; aliovalent co-doped B-site shows even 

better proton conductivity than Y-doped BaCeO3 [17–20]. However, the poor to carbonation (in 

CO2 containing atmospheres) as well as the instability in water vapors (atmospheres containing 

stream, H2O) are major challenges for practical applications. On the contrary, Y-doped BaZrO3 

e.g., BaZr0.8Y0.2O3-δ, possesses very high chemical stability in CO2 and stream containing 

atmospheres due to high covalence of the ZrO bond [7,15,21]. However, though it has higher 

symmetry (cubic) as compared to cerates (orthorhombic), it still shows lower ionic conductivity 

than the cerates due to high grain boundary resistance, limiting its practical applications [22]. It 

has also an inconsistent variation in the reported conductivity values in the literature, as it 

depends very much on the synthesis procedure, thermal treatment, etc. The typical sintering 

temperature of cerates is generally ~1700 °C which is also very high and makes the electrode 

supported cells development quite difficult [7].  

The solid solutions between BaCeO3 and BaZrO3 has been suggested to find a balance between 

ionic conductivity and chemical stability [22–30]. To date, Ba(Zr0.1Ce0.7Y0.2)O3−δ (BZCY) is the 
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most widely used proton conducting electrolyte material to possess the high chemical stability as 

well as high ionic conductivity of 9.0 × 10
−3

 S cm
−1

 at 500 °C and there was no evidence [24] of 

any carbonation or change in structure after exposing it to an atmosphere containing 2% CO2 and 

15% H2O at 500 °C for one week [28]. But later it has been reported that BZCY shown 

instability when it was exposed in 3% CO2 (balanced with air) at 600 °C for 24 h and diffraction 

peaks corresponding to BaCO3 and CeO2 were observed in XRD [29]. Additionally, aliovalent Y 

and Yb co-doped BCZY showed better performance than BZCY and higher ionic conductivity of 

14 × 10
−3

 S cm
−1

 at 500 °C [30,31]. However, though initially BaZr0.1Ce0.7Y0.2Yb0.1O3−δ 

(BZCYYb) was reported to be stable in CO2 atmospheres, later it was found to be unstable when 

heated up to 800 °C in CO2/N2 (1:2 ratio) atmosphere [32]. 

The higher doping of zirconia always improve the chemical stability of BaCeO3–BaZrO3 solid 

solutions but this causes a drop in ionic conductivity as well as in sintering temperature. While 

investigating Ba(Ce0.8-xZrx)Y0.2O3−δ system, Fabbri et al. found carbonation even for x = 0.5 i.e., 

BaCe0.3Zr0.5Y0.2O3−δ after exposure to CO2 at 900 °C for 3 h [36]. After sintering at 1600 °C for 

8 h, the relative density was  90%. The searching for a chemically stable electrolyte materials 

was continuous and a novel composition Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3−δ (BSCZGY) with 50 

mol% Sr doping at the A site and Y, Gd co-doping at the B site showed high stability in CO2 and 

H2O containing atmospheres [37]. There was no evidence of carbonation when kept in flowing 

pure CO2 at 800 °C for 24 h and conductivity of 4 × 10
−3

 S cm
−1

 at 600 °C was measured, which 

is good enough for practical applications [37]. It showed a relative density of ~95% after firing at 

1450 °C as well as better densification when processed via solid state reaction method; while for 

BZCY and BZCYYb, a sintering temperature 1550 °C was required for getting a densification  

90% when processed by the same (solid state reaction) method [31,33].  
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Among the perovskite oxides, doped barium cerates exhibit mixed oxide and proton ion 

conductivity [38] upon exposure to stream atmospheres. Proton conductivity can be significantly 

improved by doping various rare earth ions such as Y, Yb, Eu, Gd, Nd, etc or using Sr [39–41]. 

However, it is difficult to get high density of doped barium cerate/zirconate materials at a 

sintering temperature below 1400 
o
C.  Getting theoretical density above 90% of the material we 

need to sinter at high temperature (above 1400 
o
C) where Ba could evaporate to a certain degree 

[42,43]. To decrease the sintering temperature of ceramics materials, applying a sintering aid is 

one of the most effective ways [44–47]. In the previous years, to improve the sinterability of 

ceramic proton conductors, researchers have tried with different additives. The effect of MOx 

metal oxides (where M = Ti, Fe, Co, Ni, Cu, Zn) on the densification behavior found that the 

addition of small amounts of these metal oxides could lower the sintering temperature by 150-

250 
o
C [46]. Further study showed that the Cu and Zn containing materials have significantly 

higher conductivity than the others in both moistened air and humidified hydrogen atmospheres. 

However, adding of CuO led to the formation of a Ba2YCu3Ox impurity phase [48]. On the other 

hand, under a reduced atmosphere the decrease of CuO to metallic copper is a large anxiety in 

practical fuel cell applications. Therefore, as a sintering aid ZnO in doped BaCeO3-BaZrO3, is 

the most encouraging metallic oxide. Formerly, the sintering behavior of proton conductors with 

ZnO as a sintering aid was investigated by many researchers [46,48–52]. These researchers 

usually examined the sintering behavior of thick pellets [46,48,50–52] but applying such 

electrolytes in real fuel cell fabrication was rare. 

In order to solve the density and high sintering temperature issues, Zn was introduced into Y and 

Zr doped BaCeO3 [48][50]. In 2005, Balibo and Haile first reported that ZnO is an excellent 

sintering aid for yttrium-doped BaZrO3, lowering the densification temperature from 1700 
o
C to 
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1300 
o
C [48]. In 2006, Tao and Irvine found that the introduction of small amount of Zn

2+
 for 

Y
3+

 at the B-site into the perovskite structure allows a reduction in high sintering temperatures 

and a notable progress in the stability, relative density and conductivity [50]. Slodczyk and Sharp 

showed that Zinc doped Barium Cerium Zirconium Yttrium oxide has been offering the benefits 

of both stability and elevated proton conductivity [53] as potential high performance proton 

conductor. Another group reported [39] by co-doping of Zr and Zn in the lattice displayed the 

stable proton-conducting electrolyte BaCe0.5Zr0.3Y0.16Zn0.04O3-δ, sintered at lower temperature 

which was dense and showed the  enhanced chemical stability. Iwahara reported that these 

oxides also exhibit mixed proton and oxide ion conductivity upon exposure to humid atmosphere 

[40]. Recently, our group have proved that Zn doped Barium Cerium Zirconium Yttrium Oxide 

(BCZYZn) offers high proton conductivity and high stability as being electrolyte for proton 

conducting SOFCs [47,54].  

As the physical and electrochemical property of materials depends on the composition, we 

worked on other compositions with Zn-doping. The Zn doping not only lowered the sintering 

temperature, but also increased the stability of BaCeO3-based materials. Considering the issues 

of low density and stability of various metallic doped BaCeO3, we have motivated to the present 

research to doped samarium, yttrium, zirconium together at the B site as the compositions of 

BaCe0.8-xZrxY0.15Sm0.05O3- δ (x = 0.15, 0.20) with 4 wt. % ZnO as sintering additive, promising 

and novel potential electrolyte material, These two new compositions were prepared and, 

materials structures, properties, morphology, stability and performance were investigated.  

 

2. Experimental 

2.1. Preparation of the samples 
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The perovskite samples of BaCe0.8-xZrxY0.15Sm0.05O3- δ (x = 0.15, 0.20, named as BCZYS 2 and 

BCZYS 3) sintered in air at 1500 °C for 12 hours inside a muffle furnace. The materials were 

processed by the conventional solid state reaction method using the chemicals supplied from the 

company Sigma Aldrich. Initially, powders of BaCO3, CeO2, ZrO2, Y2O3 and Sm2O3 (purity of 

all chemicals were stated as more than 99.95%) were used in precise stoichiometric ratios. The 

powders were preheated at 200 
o
C for 3 hours inside a muffle furnace and then weighed quickly 

to prevent re-carbonation, individually using a precise digital micro balance and then thoroughly 

mixed in an agate mortar with small amount of ethanol. After that the samples were ball milled 

and mixed intimately with appropriate amount of ethanol using a ball-mill machine for 4 hours. 

Then the mixture was naturally dried overnight inside a fume hood and then heated on a 

magnetic hotplate at a temperature of 80 
o
C for 2 hours of each composition.  The powders were 

then heated at 900 °C for 14 hours inside the muffle furnace in an alumina crucible with a 

heating and cooling rate of 5 °C per min for calcination. Then the calcined samples were ground 

in a mortar pestle for half an hour of each and then mixed with a small amount of binder 

(Decoflux
TM

) and ground again for about 30 minutes before pressed into the pellets of 2 g of 13 

mm diameter under the hydraulic press of 3 ton pressure. The pellets were heated at 1200 °C for 

12 hours inside the furnace in air. The heated samples were re-ground using a small amount of 

binder and pressed into pellets again. The pellets of BCZYS were heated at a final temperature of 

1500 
o
C for 12 h. For more complete reaction, the grinding and pelleting were repeated and were 

done two intermediate heating at 1350 
o
C and 1450 

o
C for 12 and 10 hours respectively. After 

sintered at 1500 
o
C for 12 hours of BCZYS, 4 wt. % ZnO was used with BCZYS (as sintering 

additive) to prepared BCZYSZn. Then the powders (BCZYS plus 4 wt. % ZnO) were mixed 

with ethanol, grinded for 1 hour of each and then heated at 1350 
o
C for 14 hours to improve the 
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densification. After the confirmation of the pure phase and enough density of BCZYSZn 

(obtained by sintered powder of BCZYS plus 4% wt. ZnO powder), the larger amount of 

BCZYSZn (two samples named as BCZYSZn 2 and BCZYSZn 3) were prepared with the initials 

powers and pure ZnO by the same process and were finally sintered at 1400 
o
C for 10 hours in 

air for the further characterizations.  

 

2.2. Characterizations of the materials  

The PANalytical Empyrean Diffractometer was used to analyze the phase of the calcined and 

sintered samples of BCZYS and BCZYSZn. The high resolution XRD patterns of the sintered 

samples were analyzed by the Rietveld method using the Fullprof software. For microstructural 

studies, the powders were pressed into pellets by uniaxial press, sintered before using in a JEOL 

5600 SEM instrument. A dc conductivity jig of 4-terminals (van der Pauw, an in house built dc 

conductivity jig) was used to measure the dc conductivities of the materials. The dc conductivity 

pellets (rectangular bars of BCZYS 2 and BCZYS 3) were prepared by the sintered BCZYS 

powders. The powders (BCZYS) were mixed with ethanol, ground, dried and then added little 

amount of deionized water and Decoflux and then rectangular pellets were prepared. Four small 

gold wires were connected to the each bar with the help of gold paste for the four probes 

connections, dried in the oven and then heated at 700 °C for 30 min. Electrical conductivity was 

measured from 200 to 850 
o
C with the interval of 50 

o
C with the heating rate of 3 

o
C/min in wet 

5%H2. The ionic conductivities of the samples BCZYSZn 2 and BCZYSZn 3 were measured 

using a Solartron impedance spectrometer with frequency response analyzer. The 13 mm dia, 

1.3 mm thick pellets of BCZYSZn were well sintered, polished, and gold painted, dried in the 

oven and then heated at 700 °C for 30 min. The current of amplitude of 50 mA was applied to 



9 

 

measure the impedance from 200 to 850 
o
C with the interval of 50 

o
C and heating rate of 3 

o
C/min in air and wet 5%H2 in the frequency range of 1 MHz – 10 mHz. The cell performance 

was studied with a single cell of Ni-BCZYSBCZYSZnLSCM. The anode and cathode was 

prepared with the powders of NiO, BCZYS and LSCM ((La0.75Sr0.25)0.97Cr0.5Mn0.5O3±δ). Initially 

the anode substrates were prepared with NiO and BCZYS 3 (weight, 1:1) and, then BCZYSZn 3 

electrolyte and LSCM cathode were screen printed on the anode substrate one after another. Pt 

paste was used at the anode and cathode sides as current collector. The single cell was fixed on 

the testing jig with Ceramabond from Aremco Scientific Co. and the measurements were done at 

850 °C to 600 °C with an interval of 50 °C using air at cathode side and 5%(H2/Ar) at anode side 

with the flow rate of 100 ml/s. Thermogravimetric analysis (TGA) was performed to study the 

chemical stability of the materials. TGA data were collected from the powder samples in CO2 

atmosphere with a heating rate of 5 °C/min from 30 to 1000 °C. The samples were kept 

isothermally for 30 min at the final temperature and then cooled down to 50 °C at the same rate 

with the CO2 flow rate of 50 ml/min for both the carrier and protection. The XRD data were 

collected on the samples after TGA measurements to check any phase change for the 

experiments.  

 

3. Results and discussion 

3.1. Phase analyses of the samples 

The indexing of XRD data of the compound exhibits the orthorhombic symmetry. The Fullprof 

software was used for Rietveld refinement which confirms the orthorhombic symmetry with the 

Pbnm space group. This space group was used in the data refinement process for generating the 

calculated diffraction profiles to compare with observed profiles after justified with some other 
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crystal structures and space groups. Rietveld refinement profile of the XRD data of 

BaCe0.65Zr0.15Y0.15Sm0.05O3−δ and BaCe0.6Zr0.2Y0.15Sm0.05O3−δ (i.e., BCZYS 2 and BCZYS 3) 

after sintered at 1500 °C for 12 h in air are shown in Fig 1. Both of the samples confirm the 

single phase perovskite structure after the Rietveld analyses of the X-ray diffraction patterns. 

 

Fig. 1. Rietveld refinement X- ray diffraction data of as-prepared BaCe0.65Zr0.15Y0.15Sm0.05O3−δ 

and BaCe0.6Zr0.2Y0.15Sm0.05O3−δ at room temperature. The red dots are observed, black line is 

calculated and the blue line is the difference pattern (observed minus calculated results), and the 

vertical lines are the Bragg positions.  

  

The refinement parameters from Rietveld analysis are listed in Table 1. From the refinement 

results it is found that the lattice parameters decrease with the increasing in zirconium content 
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which is due to the smaller ionic radius of zirconium (radius of Zr
4+

 = 0.72 Å, coordination 

number (CN) = 6) than that of cerium (radius of Ce
4+

 = 0.87 Å in the same CN). 

Table 1. Crystallographic parameters of BCZYS from Rietveld analysis of the XRD data. 

Chemical compounds Space Group a (Å) b (Å) c (Å) 

BaCe0.65Zr0.15Y0.15Sm0.50O3- Pbnm 6.1693(8) 6.1785(4) 8.7739(2) 

BaCe0.6Zr0.2Y0.15Sm0.50O3- Pbnm 6.1541(4) 6.1598(4) 8.7297(7) 

 

The samples which contain 4 wt.% ZnO as additive i.e., BCZYSZn were sintered at 1400 °C for 

10 hours for XRD characterization and shown the pure phase (X-ray patterns are shown in Fig. 

2). The Rietveld refinements of BCZYSZn show that the lattice parameters, atomic positions and 

temperature factors are similar to non Zn-added (BCZYS) samples.  

 

Fig. 2. The X- ray diffraction patterns of as-prepared BCZYS (sintered at 1500 
o
C for 12 h) and 

BCZYSZn (sintered at 1400 
o
C for 10h) at room temperature. Samples names are inserted in the 
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top right. The peaks of ZnO added samples (BCZYSZn) show sharper than non-ZnO added 

samples (BCZYS).                                                                      

The theoretical densities from the Rietveld refinement of BCZYS 2 and BCZYS 3 were 

measured to be 6.054 and 6.167 g/cm
3
, respectively and the empirical density measured by the 

Archimedes’ principle were 4.044 g/cm
3
 and 4.056 g/cm

3
,
 
respectively. The percentage of 

relative density of BCZYS 2 and BCZYS 3 were 66.8% and 65.76%, respectively. Similarly, the 

densities of BCZYSZn 2 and BCZYSZn 3 were also measured where the percentage of relative 

densities were 96.6% and 98.96%, respectively. The relative densities were increased by 29.8% 

and 33.20% for addition of ZnO in BCZYS 2 and BCZYS 3, respectively.  So, it is concluded 

from XRD that addition of ZnO in BCZYS significantly decreases the sintering temperature and 

increases the relative densities.  

 

3.2. Microstructural analysis  

Fig. 3 (a-b) show the SEM images of BCZYS samples obtained after sintered at 1500 °C for 12 

hours. These microstructures were porous which became highly dense after added 4 wt. % ZnO 

as the sintering additive as shown in Fig. 3(c-f).  

The SEM micrographs (Fig. 3 (c-f)) of the fracture surfaces of BCZYSZn materials show that the 

samples sintered at 1350 
o
C and 1450 

o
C were highly dense without any pores or cracks.  The 

sample BCZYSZn 3 was smoother, free of cracks and the grain was well grown making it highly 

dense material. The images show that the grains are completely compact and are large which 

give high density as the requirement of the electrolyte materials. 
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Fig. 3. SEM micrographs of as-prepared (a) BCZYS 2 and (b) BCZYS 3 sintered at 1500 
o
C for 

12 hours; (c) BCZYSZn 2 and (d) BCZYSZn 3 sintered at 1350 
o
C for 14 hours; and (e) 

BCZYSZn 2 and (f) BCZYSZn 3 sintered at 1400 
o
C for 10 hours. 

 

From the SEM images of BCZYSZn 2 and BCZYSZn 3 (Fig. 3 (c-f)) it is clear that the grain 

sizes are quite large and uniform. Normally, the average grain size for ceria rich compositions 

are larger than that for Zr rich compositions [36]. This indicates that the nature of dopant 

influences the overall grain size distribution. The larger grain size of the sample offers less 

overall grain boundary resistance, which is beneficial for the total conductivity of the sample. It 

can be observed from the SEM studies that samarium, yttrium, zirconium doped at the B-site and 

adding zinc as sintering additive increasing the density quite high and making grain sizes large. 

The distribution of grain size of the BCZYSZn materials were relatively uniform and sizes (the 

grain size is  8 m for sintering temperature of 1350 
o
C and the size is more larger for sintering 

temperature of 1400 
o
C) were larger in comparison  with the doped BaZr0.1Ce0.7Y0.1M0.1O3-δ (M 

= Fe, Ni, Co and Yb) after sintering at 1250 °C for 24 h, 1350 °C for 24 h and 1550 °C for 12 h, 

respectively [35] and the grains of 2–8 μm range of BaCe0.5Zr0.3Y0.2O3−δ which was sintered at 

1600 °C for 8 hours [36]. The grains sizes were larger than the reported grain size for BZCY and 

BZCYYb which were 5 μm and 3 μm after sintering at 1400 °C for 6 h, respectively [55]. Also it 

is very larger than the grain size of BaZr0.7Pr0.1Y0.2O3- (BZPY) [56] which was 1.7 μm after 

sintering at 1600 °C for 8 h or the grain size of about 1.0 μm reported for BZCYYb which was 

finally sintered at 1400 °C for 5 h [57]. So, adding ZnO (4 wt. %) with doped Sm, Y and Zr at B-

site of BaCeO3 was found to be very beneficial not only for good densification but also for grain 

growth.  
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On the top surface of the grains a very few sub-micron crystals were observed in SEM images 

(in Fig. 3 (c), (e) and (f)).  But the elemental distribution of BCZYSZn by using energy 

dispersive X-ray (EDX) shows that the materials are very close to the provided value (%EDX) to 

the calculated value from the formula (%F) (see Table 2).  

 

Table 2. Elemental distribution analysis of BCZYSZn by chemical formula and EDX 

experiment. 

Sample 

 

 

BCZYSZn 2 BCZYSZn 3 

Formula EDX Formula EDX 

Element 

Symbol  

Weight 

% 

Atomic 

% 

Weight 

% 

Atomic 

% 

Weight 

% 

Atomic 

% 

Weight 

% 

Atomic 

% 

Ba 50.69 48.0 50.53 47.89 51.17 48.0 51.13 47.86 

Ce 35.02 32.5 34.98 32.57 32.63 30.0 32.62 30.08 

Zr 5.26 7.5 5.37 7.47 7.11 10.0 7.17 10.07 

Y 5.13 7.5 5.27 7.56 5.15 7.5 5.22 7.56 

Sm 2.89 2.5 2.86 2.53 2.92 2.5 2.86 2.46 

Zn 1.01 2.0 0.99 1.98 1.02 2.0 1.00 1.97 

 

From the EDX analysis, it is observed that the reporting materials have similar ratio of elements 

and the grains of the samples are quite large. The presence of any extra phase was also below the 

detection limit in the electron image (in EDX-SEM analysis) and not any unreacted initial or 

primary particle was found that did not sinter in this synthesis method (solid state reaction). 
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3.3. Conductivity measurements  

Fig. 4 (a) and (b) show the conductivity evolution for BCZYS sintered at 1500 
o
C for 12 hours, 

measured in humidified 5%H2/Ar on cooling using a four-terminals -van der Pauw method. The 

BCZYS 2 shows the conductivity value of 2  10
-3

 S cm
-1

 at 600 
o
C and 7  10

-3
 S cm

-1
 at 850 

o
C 

and for BCZYS 3 it is found to be 1.7  10
-3

 S cm
-1

 at 600 
o
C and 5  10

-3
 S cm

-1
 at 850 

o
C, 

respectively. As it can be seen from the graphs, the conductivity increases with the temperature, 

indicating the presence of p-type conduction, with two changes in slope, around 475 
o
C and 700 

o
C, as in this temperature range the conductivity is increasing much slower with the temperature.  

(a) 

 

 

(b) 
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Fig. 4. DC conductivity of (a) BCZYS 2 and (b) BCZYS 3 in wet 5%H2/Ar sintered at 1500 
o
C.  

 

The range 10
−2

–10
−3

 S cm
−1

 at 600 °C temperature, an ionic conductivity is considered suitable 

for practical applications of proton conducting oxides. In order to disseminate between different 

responses (grain/grain boundary), ac impedance technique was employed to measure the ionic 

conductivities of BCZYSZn in air and wet 5%H2/Ar atmospheres are shown in Fig. 5 (a-d). 

Arrhenius plots are shown in Fig. 6 (a-b). The measured value of ionic conductivity at 600 °C in 

wet 5%H2 is ~1.24×10
−3

 S cm
−1

 and ~2.56×10
−3

 S cm
−1

 for BCZYSZn 2 and BCZYSZn 3, 

respectively, higher than those reported for the Y/Yb doped compositions  [8], [36], [58].   

The impedance spectra at 400 
o
C consist of 2 responses that can be attributed to the grain 

boundary response (C~ nFcm
-1

) and a dominating electrode response (C~µFcm
-1

) for 

geometrical capacitance values. At this temperature the grain response of reporting materials is 

not visible, being assimilated to the high frequency intercept with the Z

 axis.  The Arrhenius plot 

of conductivity of the BCZYSZn samples in wet 5%H2 is plotted in Fig. 6 (b). In air atmosphere, 
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the total resistivity is dominated by the grain boundary above 700
o
 C. All total conductivities are 

higher in wet 5%H2 than those in air , indicating that the significant improvement in conductivity 

is due to the absorption of steam resulting in enhanced proton conduction [59].  

The conductivities for both samples in air are significantly lower than that of wet 5%H2 

atmosphere, at intermediate temperature, an indication of the proton conductivity existence.  The 

p-type conduction of Y-doped BaZrO3 at higher pO2 is well known [60] and it is reasonable to 

assume that reporting materials exhibit the similar behavior. Similar behavior was observed for 

Ba0.97Zr0.77Y0.19Zn0.04O3- [51], as  the total conductivity of BaZr0.8Y0.2O3- in wet 5%H2 at 900 

o
C was 2.0210

-4
 S cm

-1
 which was twice of that in dry 5%H2. The total conductivity 

measurements on Ba0.97Zr0.77Y0.19Zn0.04O3- sintered at 1325 
o
C at 900 

o
C was 1.9410

-2
 S cm

-1
 

which was nearly double that of BaZr0.8Y0.2O3- under the same condition. 

(a) 

                                                                                                                                                

 

(b) 
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(c) 

 

 

(d) 
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Fig. 5. Nyquist plots of (a) BCZYSZn 2 in air and (b) in wet 5%H2 atmosphere at temperature 

range of 400-850 °C; (c) BCZYSZn 3 in air and (d) in wet 5%H2 atmosphere at temperature 

range of 300-850 °C; and the right hand side figures are the magnified views for the specific 

temperatures (
o
C) shown. The equivalent circuits of EIS analyses are inserted in the figures. 

 

The total conductivities of BCZYSZn 2 and BCZYSZn 3 are in wet 5%H2 at 600 
o
C are 1.2310

-

3
 and 2.5610

-3
 S cm

-1
 and, at 700 

o
C are 2.3810

-3
 and 3.8910

-3
 S cm

-1
,
 
respectively. The 

samples of BCZYSZn may be therefore used as the electrolyte above 600 
o
C if thin film 

technology is applied. 
 

The Arrhenius plots of the total ionic conductivity of the materials in air compared to wet 

hydrogen atmosphere in the temperature range of 400-850 
o
C are shown in Fig. 6 (a) and (b). It is 

found that the conductivity increases with increasing in temperature due to thermally activated 

atoms and transport ions contribution to the conductivity mechanism. In the humidified reducing 

atmosphere, the conductivity increases compared to that of in air.   
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(a) 

 

(b) 
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Fig. 6. Arrhenius plots of total conductivity measured in (a) air and (b) wet 5%H2 at temperature 

range of 400 – 850 °C (the samples names are inserted in the top right). 

 

Table 3 shows the conductivity and activation energy for the compositions of BCZYSZn. As the 

conductivity in wet 5%H2 is higher than that of in air, activation energy in wet 5%H2 is lower 

compared to that of in air environment due to atoms in compounds perform their ability to 

conduct ion requiring less activation energy to support. The activation energy performances of 

BCZYSZn are comparable with 0.39 eV of BaCe0.8Y0.2O3- and lower than 0.61 eV of 

BaZr0.8Y0.2O3- [36]. 

 

Table 3. Conductivity and activation energies of BCZYSZn under air and wet 5%H2 

environments. 

Material 

Composition 

Conductivity (S cm
-1

) Activation energy (eV) 

400 
o
C 700 

o
C    400 

o
C       700 

o
C 

Air Wet 5% H2 Air Wet 5% H2 Air Wet 5% H2 

BCZYSZn2 1.92  10
-4 

2.95  10
-4

 1.55  10
-3

 2.38  10
-3

 0.4395 0.3519 

BCZYSZn3 4.64  10
-4

 7.67  10
-4

 2.73  10
-3

 3.89  10
-3

 0.3938 0.3243 

 

In proton conducting perovskite, the protons at elevated temperatures are supposed to follow 

Grotthuss mechanism [61], and transport in the following steps: i) a proton associates with a 

fixed oxygen atom; ii) under the influence of the neighboring oxygen atoms, the proton oxygen 

bond reorients; and finally iii) the proton begins to vibrate between the two oxygen atoms and 

ultimately transfers to the adjacent oxygen. The binding energy between OH˚ and MB varies 
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with the dopant. The binding energies simulation results of OH˚ MB (hydroxyl  dopant pairs 

at the nearest neighbor sites) for Y, Yb and In were -0.26, -0.35 and -0.58 eV, respectively which 

has good agreement with the experimental results. A more stable state for hydroxyl  dopant pair 

will be found for a more negative value of the binding energies [62].   

The conductivity in wet 5% H2 is higher than in air indicating proton conduction. In general, the 

well-sintered and highly dense samples of BCZYSZn exhibit much higher conductivity than the 

less dense materials under the same conditions. The conductivity of the BaZrO3 based proton 

conducting materials strongly depends on the synthesis and measuring environments. For the 

electrolyte materials high total conductivity is desired for any practical electrochemical cell. 

From this point of view, the BCZYSZn 3 exhibits the highest total proton conductivity among 

the materials studied here.  

   

3.4. Fuel cell performance  

Single cell performance test was done at 850 °C to 600 °C with an interval of 50 °C. The highest 

power density is obtained at 700 °C for BCZYSZn 3 electrolyte cell and is shown in Fig. 7 (a).  

The maximum power density for this electrolyte cell is found to be 0.42 W/cm
2
 at 700 °C and 

0.25 W/cm
2
 at 850 °C using air at cathode side and 5%H2/Ar at anode side with the rate of 100 

ml/S. In Fig 7 (a), the open-circuit voltage (OCV) of 1.01 V at 700 °C indicates that the 

electrolyte membrane, prepared by the screen printing process is sufficiently dense.  
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Fig. 7. (a) Current-voltage characteristics and corresponding power densities curves at two 

different temperatures for the fuel cell with BCZYS 3 anode and BCZYSZn 3 electrolyte; (b) 

Crosse-sectional image of the single cell.   

 

Fig. 7 (b) shows the cross sectional image of the single cell. In the single cell the electrolyte 

membrane is found to be highly dense and 39 m thick and cathode layer is found to be around 

63 m thick. Although the performance study of BCZYS and BCZYSZn based fuel cell is still 

not as high as the authors expected, the high chemical stability and large grain morphology of 

BCZYSZn are very promising and suggest that a different generation of intermediate 

temperature SOFCs may become conceivable. 

  

3.5. Chemical stability 

The stability issues of cerium based proton conducting electrolyte materials in CO2 containing 

atmosphere is the main challenge [17–20]. In CO2 containing atmosphere BaCeO3 reacts with 

CO2 and forms BaCO3 and CeO2 as shown in Eq. (1),                                       
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                                              BaCeO3 + CO2 → BaCO3 + CeO2                 (1)  

In Eq. (1), the chemical reaction has been reported to occur at 1141 °C [26]. But our interests for 

these reporting materials are in applications in intermediate temperature, below the temperature 

of 1000 
o
C. So, all the samples of BCZYS and BCZYSZn for comparison were heated up to 

1000 °C in CO2 at 5 °C/min from 30 to 1000 °C, held isothermally for 30 min, and then cooled 

down to 50 °C at the same rate, with flowing the CO2 gas at a rate of 50 ml/min for both the 

carrier and protection gas. In the literatures by many authors [19,50,58,63,64], the heat treatment 

in CO2 up 1200 °C or a bit higher has already been reported.   

The thermogravimetric analysis (TGA) curves of BCZYS and BCZYSZn are illustrated in Fig. 8 

(a). For measuring the chemical stability of the samples the TGA data were collected. The mass 

of BCZYS 2, BCZYS 3, BCZYSZn 2, and BCZYSZn 3 has been changed by 7.49%, 7.22%, 

3.22% and 0.99%, respectively.  

The samples of Zn additive materials were found relatively more stable than without Zn, and no 

minor peaks in XRD were observed after the TGA experiments as shown in Fig. 8 (b); i.e., the 

original structure is unaffected.  

(a) 
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(b) 
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Fig. 8. (a) TGA curves for BCZYS and BCZYSZn with the flowing of pure CO2 gas at a rate of 

50 ml/min for both the carrier and protection and (b) the XRD patterns of BCZYSZn 3 after the 

TGA experiment. 

 

There is a small weight gain of  1% after stability test as can be seen from curve Fig. 8 (a) for 

the sample BCZYSZn 3 which is much smaller than weight gain of 1.79% for BZ3C5YYb and 

3.22% for BCZYSZn 2 (which is higher than that of BZ3C5YYb). The weight gain of 

BCZYSZn 2 and BCZYSZn 3 are higher than the weight gained for a composition with higher 

Zr content of 70 mol% at the B site i.e., BaCe0.2Zr0.7Y0.1O3-δ,  which was roughly 0.3–0.4%, 

when heated in pure CO2 up to 1250 °C with a heating and cooling rate of 2 °C/min [58]. For the 

material with 30 mol% of Zr at the B site; i.e., BaC0.6Zr0.3Y0.1O3-δ, the weight gain was about 2% 

under the same conditions [58]. In case of BZCYYb, the weight gain was 7.7%, when heated to 

1200 °C in pure CO2 with a heating and cooling rate of 10 °C/min. Similarly, the weight gain 

was  9% for BaCe0.5Zr0.3Y0.2O3-δ when heated up to 1200 °C with a heating/cooling rate of 5 

°C/min [50]. 

Fig. 8 (b) shows the XRD patterns of BCZYSZn 3 after the TGA experiment with other added 

materials as the small amounts of samples used for thermogravimetrical analysis, each sample 

was mixed with silicon standard powder in a Teflon lined XRD holder. The XRD peaks after the 

TGA in CO2 environment show the same pattern i.e., no extra or impurity peak was detected.   

Hence, no extra peak corresponding to CeO2 for the samples of BCZYS and BCZYSZn have 

been seen, it is quite stable. A proton conducting electrolyte material heating below the 

carbonation say up to 800 °C in CO2 is not a good representative for testing its chemical stability 

and for this reason some well-known materials, like BZCY and BZCYYb proton conducting 
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electrolyte materials were initially reported to be stable in CO2, but later found to be unstable 

when tested at higher temperatures [31–33,35,37]. Hence, the chemical stability test in CO2 up to 

1000 °C is vital for intermediate temperature IT-SOFCs. Nevertheless, for practical applications 

the relative density and stability is still quite high.  

 

4. Conclusions  

The BaCeO3-BaZrO3 based samarium, yttrium doped novel materials of BCZYS adding 4 wt. % 

ZnO as sintering aid have been successfully prepared at 1350 
o
C. This temperature is lower than 

the required sintering temperature of 1700 
o
C without additive. The relative density and stability 

of the materials are also quite high. It is observed in the formation of single phase material that 

samarium doped and ZnO addition significantly improves the density and stability where Zn 

expected to occupy the B-site of the perovskite on forming a solid solution. All samples were 

single phase orthorhombic structure with space group Pbnm. The conductivity of the dense and 

well sintered sample was much higher than the lower density samples. In general, the 

conductivity in wet 5%H2 is higher than that in air indicating proton conduction. The total 

conductivities of BCZYSZn 2 and BCZYSZn 3 are in wet 5%H2 are 1.2310
-3

 and 2.5610
-3

 S 

cm
-1

 at 600 
o
C. The maximum power density for BCZYSZn 3 electrolyte cell is found to be 0.42 

W/cm
2
 at 700 °C. The proton conductivity and power density values, together with the large 

grain, low temperature sinterability and good stability in CO2 make the material suitable for 

practical application in IT-SOFC. 
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