
 1 

Alzheimer’s disease in humans and other animals; a consequence of post-

reproductive lifespan and longevity rather than ageing 

Danièlle Gunn-Moore1, Oksana Kaidanovich-Beilin2, María Carolina Gallego Iradi3, Frank 

Gunn-Moore4 and Simon Lovestone5 

 

1. University of Edinburgh, Royal (Dick) School of Veterinary Studies and The Roslin 

Institute, Easter Bush Campus, Roslin, EH25 9RG, UK  

2. Previously at: Samuel Lunenfeld Research Institute, Toronto, Canada 

3. University of Florida, College of Medicine, Department of Neuroscience, Center for 

Translational Research in Neurodegenerative Diseases, Gainesville, FL 32611, USA 

4. University of St Andrews, School of Biology, St Andrews, KY16 9TF, UK 

5. University of Oxford, Department of Psychiatry, Oxford, OX3 7JX, UK 

 

 

 

 

 

 

 



 2 

Abstract 

Two diseases of the modern world – Alzheimer’s and diabetes mellitus – are linked by 

epidemiology, genetics and molecular pathogenesis. They may also be linked by the 

remarkable observation that insulin signaling sets the limits on longevity. In worms, flies 

and mice, disrupting insulin signaling increases lifespan leading some to speculate that 

caloric restriction might extend lifespan in man. It is our contention that man is already a 

long lived organism, specifically with a remarkably high post-fertility life span, and that it is 

this that results in the high prevalence of Alzheimer’s and diabetes. We review evidence 

for this hypothesis that carries specific predictions including that other animals with 

exceptionally long post-reproductive lifespan will have increased risk of both diabetes and 

Alzheimer’s disease and present novel evidence that Dolphin, like man, an animal with 

exceptional longevity, might be one of the very few natural models of Alzheimer’s disease.  
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Main text 

Diabetes mellitus and Alzheimer’s disease 

As populations all over the world age, enormous challenges are posed by chronic 

disorders such as Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM). 

Alzheimer’s disease in particular is a devastating condition. With a long prodromal period 

of perhaps ten to twenty years followed by another decade of clinical symptoms, AD and 

related dementia conditions are becoming a priority for many governments, not least as it 

is estimated that 1% of global GDP is spent on dementia care 

(http://www.alz.co.uk/research/files/WorldAlzheimerReport2010.pdf). As well as growing 

older, the populations of the developed economies are also growing obese and sedentary. 

Whilst this is most marked in the developed nations, it is truly an international trend and as 

children in particular show dramatic increases in body mass index, this is a deeply 

concerning indicator of health problems to come. These health problems are significant as 

obesity increases risk of cancers, cardiovascular disease and metabolic syndromes 

including T2DM.  

 

These two health challenges – an ageing population at risk of neurodegenerative disease 

such as AD, and an increasingly obese population at risk of metabolic conditions such as 

T2DM – may seem unconnected and unfortunate consequences of modern civilization. It 

could be suggested that improved health care and sanitation leading to older populations, 

combined with seemingly unlimited access to highly processed and calorific foods and an 

increasingly sedentary lifestyle suggests entirely independent and environmental, or more 

specifically social and historical, causes of the twin challenges of AD and T2DM. It is our 

contention however, that this construct is only partially explanatory and that there is a 

molecular link between longevity and both AD and T2DM that suggests a relationship 



 4 

whereby both arise not as an unfortunate consequence of growing older in the modern 

world, but are intrinsic to it. In other words that AD and T2DM are conditions not of ageing 

as they are usually considered, but of longevity. It is not so much how long an organism 

lives for that governs whether the organism is vulnerable in particular to AD, but the 

molecular mechanisms that underlie this period; a period that is highly characteristic for 

any given species. Moreover, that this longevity-associated disease risk explains why AD 

and T2DM are disorders principally of man. Here we propose a hypothesis that AD and 

T2DM are the price we pay for the molecular underpinning that allows us to be almost 

uniquely long-lived animals. 

 

Alzheimer’s disease is a form of dementia characterised by two main pathological lesions, 

the amyloid plaque and the neurofibrillary tangle. Whilst it remains contentious whether 

these lesions are themselves causative of the neuronal loss that results in functional 

deficits or whether they are simply indicative of an underlying process, the evidence from 

molecular genetics and experimental neuroscience is compelling that the amyloid cascade 

is at the heart of the pathology of AD [1]. This cascade involves first the generation of beta 

amyloid (A) from the Amyloid Precursor Protein (APP) and subsequently the aggregation 

of highly phosphorylated tau protein. Other processes including neuroinflammation clearly 

play a role, perhaps to exacerbate the amyloid cascade, perhaps triggered by the cascade 

or perhaps independently. In addition to genetic causes of familial early onset AD and 

genetic influences on late onset AD, a considerable effort has been expended on 

searching for environmental influences on AD. Despite this, relatively few have been 

identified and arguably, other than age itself only two – head injury and obesity/diabetes – 

have been unambiguously replicated [2, 3]. The evidence that diabetes and obesity 

increase the risk of dementia has been consistently reported from many epidemiological 
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studies, themselves the subject of multiple systematic reviews [4-9]. The mechanism 

underlying this risk might be at multiple levels, the most parsimonious of which might be 

that metabolic complications increases vascular damage to the brain and this either 

exacerbates AD pathology or is an additive or independent insult [3]. However, insulin 

resistance predicts the development of cerebral amyloid pathology as measured by PET 

imaging [10] and considerable evidence from cell and animal models suggests that a 

failure of insulin signaling directly contributes to AD pathological processes, including the 

formation of tau pathology as we discuss below.  

 

Insulin actions: role of Glycogen Synthase Kinase – 3 (GSK-3)  

For a failure of insulin signaling to effect the risk of AD directly rather than through a 

mediating factor such as vascular damage, then insulin resistance in the periphery should 

be reflected in insulin resistance in the brain. Considerable evidence suggests that this is 

in fact the case [11-13]. For example, in mid-life, peripheral insulin resistance is associated 

with central glucose metabolic abnormality as well as with poorer cognitive performance 

[14, 15] and predicts amyloid deposition [10]. In turn, there is evidence that central insulin 

signaling failure or abnormality can induce peripheral insulin resistance. In mice, ablation 

of insulin receptors (IR) either from the whole brain (neuronal-specific IR knockout, 

NIRKO) or specifically from hypothalamus or midbrain dopamine neurons, induces 

hyperphagia, body weight gain, and peripheral insulin resistance [16],[17],[18]. Also, brain-

specific genetic inactivation of the insulin receptor substrate 2 (IRS2) that is essential for 

insulin signaling, results in obesity and diabetic phenotypes [19].  

 

These data demonstrate a critical link between the CNS and the periphery and, 

importantly, both mice lacking the neuronal insulin receptor and those with IRS2 deleted 
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are characterized by elevated tau phosphorylation and cognitive alterations, both 

characteristics of AD [20, 21]. Moreover, animal models of aspects of AD pathology show 

dysregulated metabolism [22] providing further experimental evidence for an intertwining of 

the molecular mechanisms of metabolic function and insulin signaling with AD. This link, 

and the increased risk of dementia in people with diabetes, suggests that there may be 

therapeutic opportunities for AD in enhancing insulin signaling, or tackling insulin 

resistance. Real-world data studies suggest that the commonly used therapy for T2DM, 

Pioglitazone a PPAR agonist that enhances insulin signalling, reduces the incidence of 

AD, [23] and intranasal insulin beneficially alters APP processing and reduces cognitive 

impairment in early AD [24-26]. Large-scale trials of both intranasal insulin and 

pioglitazone are now underway. Whilst the outcomes of these trials are some years away it 

is clear that systemic insulin signaling disruption increases the risk of AD and might do so 

through shared molecular mechanisms and not simply through end-organ damage as a 

consequence of vascular or other T2DM-induced pathology.  

 

One such molecular mechanism that might plausibly underlie this link between insulin 

signaling in the brain and AD processes is mediated by Glycogen Synthase Kinase-3 

(GSK-3) initially discovered through its ability to phosphorylate glycogen synthase [27]. 

Given its critical role in insulin signaling it is not surprising that GSK-3 has been implicated 

in the pathogenesis of obesity and insulin resistance [28, 29], but it has also been shown 

to have a fundamental role in the pathogenesis of AD [30, 31]. Tau is a physiological 

substrate of GSK-3 and transgenic mice with increased GSK-3 activity have 

neurodegeneration phenotypes including tau hyperphosphorylation and cognitive 

impairments [32]. Even before neurodegeneration sets in, GSK-3 over-activity suppresses 

long term potentiation (LTP) [33], whilst inhibition of GSK-3 is required following LTP to 
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block long term depression (LTD) [34] suggesting that the normal regulation of GSK-3 is 

essential for synaptic plasticity [35]. If GSK-3 is altered in AD, then early neuronal 

dysfunction could be a consequence of this disruption of plasticity before tau becomes 

phosphorylated, aggregated and participates in pathological spread.  

 

Given the role of GSK-3 in synaptic plasticity, as well as other functions of neurons such 

as axonal transport [36] then it is not surprising that these functions become perturbed in 

the context of metabolic dysfunction such as insulin resistance, resulting in neuronal 

dysfunction and – for example – cognitive impairment. The finding that a failure of insulin 

signaling also results in AD pathology are in line with the concept that these 

neuropathological features represent a final common pathway of disease with multiple 

influences including in this context insulin signaling but also potentially other processes 

such as a failure of calcium homeostasis  for example [37]. 

 

Insulin signaling as a key regulator of longevity 

This evidence powerfully argues for a role of insulin signaling and its downstream 

molecules, in particular perhaps GSK-3, in AD pathogenesis. It would explain, in part, the 

epidemiological evidence that insulin resistance conditions such as T2DM are risk factors 

for AD. Insulin signaling however is also, remarkably, associated with longevity. In worms, 

flies and mice, perturbations in insulin signaling leading to decreased insulin response also 

lead to a substantially increased lifespan [38-41]. The increase in life span is considerable 

– in some animals a fold change in normal longevity and in mammals up to a 50% 

increase. Both caloric restriction resulting in a decreased responsiveness of the insulin 

signaling pathway and direct knock-out of insulin signaling and associated pathway genes 

have this effect. The effect is so large, and so consistent, that there are reports of people 
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attempting to extend their own lives through caloric restriction and many web-sites offer 

advice on how to do this with various levels of warning about the potential dangers of 

partial-starvation diets. Clearly there is much to recommend avoiding obesity or even the 

moderate over-weight state that is becoming the norm in the industrialized nations. 

Moreover, there is consistent evidence from two long primate studies and one long canine 

study for the benefits of caloric restriction on health, although they differ on whether caloric 

restriction increases lifespan in monkeys and dogs as it does in mice [42-45]. However, it 

remains to be seen, and remains highly controversial, as to whether caloric restriction will 

have effects on longevity in man.  

 

Man as an exception to the longevity thesis 

We believe that this argument, which regularly escapes into the non-scientific general 

media, is missing an important observation. Man is not like most other animals. 

Specifically, humans have a notably extended post-fertility lifespan (PFLS). Whilst some 

life beyond fertility is not uniquely human, indeed it is a characteristic shared with many 

mammalian species, as Cohen in his review of the relevant literature points out [46]. 

Nonetheless, even evaluating Cohen’s own review data, it is clear that as a proportion of 

total life span, humans have a remarkable and highly extended PFLS. Women cease to 

become fecund at a maximum age of ~45 years and lifespan in man is recorded to 110 

years and above. Also from Cohen’s review only one other animal was identified with an 

extended PFLS similar to man – the killer whale, Orcinus Orca, which has a total lifespan 

of twice the fertility span (see reference [46] Table 1). Theories abound regarding why man 

has such a remarkably extended PFLS, the most popular of which is the ‘grandmother 

hypothesis’ variants of which suggest an evolutionary advantage to having members of a 

close-knit hunter-gatherer unit available for child caring and other societal functions [47]. 
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Recently, similar reasoning has been extended beyond man to that other mammal with 

extended PFLS, Orcinus Orca [48-50], with a model demonstrating that improved 

reproductive success in younger individuals combined with the usefulness of non-fertile 

related individuals provides a selection pressure that could account for the evolution of 

menopause and an extended post-fertility life [51].  

 

However, regardless of the evolutionary origins of PFLS, the link between longevity and 

the insulin signaling pathway and between insulin signaling and AD suggests a hypothesis. 

This is that increasing longevity is achieved through increases in PFLS, the molecular 

underpinning of which is a reduced ‘efficiency’ of insulin and IGF signaling (IIS) and as a 

consequence of this reduced IIS, organisms with relatively increased PFLS are at 

relatively increased risk of AD. In such a hypothesis, the ‘efficiency’ of IIS might refer to 

decreased tonic activity or control over the pathway or decreased response, for example, 

of insulin to metabolic stimulus or of cell response to signaling, or some combination 

thereof. Whatever the specific mediators of the general mechanism of ‘efficiency of IIS’, 

the hypothesis we propose here brings some specific predictions. Most obvious, and most 

testable, is the prediction that the molecular and pathological characteristics of AD will be 

more common in animals with a relatively longer PFLS as a proportion of total lifespan. In 

other words, that plaques and tangles and associated molecular events will be correlated 

not with age per se but with longevity. We would predict the features of AD to be 

associated more with PFLS than with lifespan and to be a disease not only of man but of 

other animals with a long PFLS. Specifically, to be a disease in animals such as Orca 

more than of our closer relatives, such as the Chimpanzee.  

 

Do cetaceans, or other diving animals, have dementia? 
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We are unaware of any data on AD pathology, let alone cognitive and functional 

impairment in Orca. However, a related cetacean, Stenella coeruleoalba, the striped 

dolphin, has an average lifespan of ~58 years, and the females drop fecundity at 30 years 

giving them a PFLS of ~ 48 (Prof V Janik, Scottish Oceans Institute, University of St 

Andrews, personal communication), similar to the killer whale. Therefore, we set out to 

examine this hypothesis predicting that an animal with a long PFLS would have evidence 

of AD pathology hitherto not identified in free living, wild animals. To do this, we obtained, 

8 brains from stranded dolphins from different coastal areas of Spain. RNA extraction from 

this material allowed the identification of the coding region of the APP gene covering the 

40-43 amino acid region of the A peptide and was shown to be identical across 3 species 

of dolphins, Tursiops truncatus (bottlenose dolphin), Grampus griseus (Risso´s dolphin) 

and Stenella coeruleoalba, and man (Fig. 1A) suggesting that these species of dolphins 

could generate A from the precursor protein. Three specimens belonging to Stenella 

coeruleoalba species were immuno-positive for amyloid plaques and 4 (3 Stenella 

coeruleoalba and 1 Tursiops truncatus) for tau fibrillary tangles. Specifically, 2 types of 

amyloid deposits were visualised: firstly in the parietal cortex as diffuse deposits, and 

secondly in the cerebellum, the region of the brain used for echo-location, where there 

were structures that resembled more compact senile plaques (Fig. 1B). These latter 

amyloid deposits were up to 50 m in diameter and in some areas the plaques were 

relatively numerous. Neurites surrounding these plaques were immunopositive for tau, 

similar to that seen in cortical amyloid deposits in humans. In the frontal cortex, as well as 

in the parietal cortex, thalamus and cerebellum, there was evidence of tau pathology, for 

example, seen as well-defined neurofibrillary threads in the cortex of an adult animal (Fig. 

1C). In summary, these studies found evidence of both amyloid deposits and tau 

pathology in stranded dolphins including in the same individuals (see for example Figure 
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1E), making this animal one of very few naturally occurring models of an almost uniquely 

human disease. Clearly it would be of considerable interest to know whether the pathology 

we observe in these animals had effects on cognition and indeed on behaviour and 

although such studies are unlikely to be achievable in wild animals, it may be possible to 

determine the relationship between AD-like pathology and function in captive individuals. 

We note also with considerable interest that dolphins are also prone to T2DM, showing 

blood based indicators of insulin resistance [52] and possibly being a natural model of 

metabolic syndrome [53]. Whilst this is in line with our hypothesis we cannot know if the 

individuals in this case had such deficits in insulin signaling and response in part because 

the reference values for dolphin are less certain and in part because analysis of post-

mortem samples for analytes such as glucose and insulin is challenging in man [54, 55] 

and, to our knowledge, not informative in cetaceans.  

 

These findings suggest that full AD pathology – as well as T2DM - can occur in free-living, 

wild cetaceans. In addition, recent evidence suggests other changes, perhaps indicative of 

early AD, can be found in other sea mammals. Investigating the stranding and death of 

sea-lions suffering from domoic acid toxicosis due to blue-green algae, it has been 

reported that CSF from these animals shows evidence of changes indicative of 

neurodegeneration [56]. Using untargeted mass spectrometry proteomics methods, Neely 

et al found an excess of multiple complement proteins and gelsolin, proteins we and others 

have reported to be associated with AD [57, 58]. Other proteins found in the CSF of these 

animals include Neuronal Cell Adhesion Molecule and Reelin, both proteins previously 

having been implicated in AD pathology [59, 60]. Even more remarkably to our mind is the 

observation of altered Dickkopf 3 protein (DKK3) in sea lion CSF in that study. This is of 

considerable interest as the DKK proteins are the predominant negative regulators of wnt 
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signaling, the final effector of which is GSK-3 suggesting a possible link to both insulin 

signaling and to AD pathogenesis. Evidence for a role of DKK in AD abounds. DKK1 is 

increased by A in human brain and in animal models [61], inhibition or silencing DKK1 

prevents A induced synaptic loss [62] and we have shown DKK induction by A transmits 

the toxic signal through clusterin to not only neurotoxicity but also tau phosphorylation and 

cognitive impairment [63]. Not surprisingly, given these findings, DKK1 is now of 

considerable interest as a target for therapy [64]. Most of these studies have focused on 

DKK1 but not excluded the involvement of the other, highly similar, DKK proteins; 

however, in at least one study DKK3 co-localised with A pathology in AD brain [65] and 

was increased in CSF and plasma of people with AD [66].  

 

Alzheimer’s disease; just how common is it (in other animals)? 

The finding of both amyloid and tau pathology in dolphins, as we report above, is all the 

more remarkable an observation as AD pathology has only been rarely reported in other 

mammals [67]. In a recent, detailed and comprehensive review of the ageing brain in non-

human animals Youssef et al [67] find evidence of some features of human 

neurodegenerative disease in many animals although note considerable differences from 

human disease and the absence of a natural model linking the twin features of AD 

(plaques and tangles) with each other and neuronal loss and with cognitive impairment. 

Specifically, they note that highly phosphorylated tau but not NFTs are found in sheep, 

goats, cheetah, bison, baboon, and bears. Closer to man, non-human primates, including 

Chimpanzee, Orangutan, Gorilla, Baboon, Rhesus, Cynomolgus and Green monkeys are 

all found to have amyloid plaques but not NFTs (Youssef et al Table 1 [67]) 
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Just as in many of these animals, previous studies have found evidence in dogs (cross-

breeds and beagles) of amyloid, but not tau pathology [67]. Cohen (Table 1) indicates that 

dogs (beagles) have a PFLS of 23.3, though in reality this is breed specific [68, 69], and 

some families of beagles may be prone to premature senility and develop amyloid deposits 

but not neuritic plaques [70, 71]. Our hypothesis that PFLS associates with AD pathology 

would predict that breeds with a longer PFLS than Beagle would be likely to have more AD 

pathology including neuritic plaques.  

 

The domestic cat has a longer PFLS than dog, of 38 or more (Gunn-Moore, 2016 personal 

experience), and with reference to T2DM show pathology signs more akin to humans than 

any other non-primate[72]. Moreover, cats develop early amyloid changes but not plaques 

[73, 74] although In unpublished findings noted in Youssef et al [67], Nakayama reports 

neuronal cell loss in the hippocampus of aged cats associated with NFTs composed of 

highly phosphorylated tau. In a recent comprehensive neuropathological study, Chambers 

et al, quite remarkably, found the full extent of AD pathology and proposed the cat as a 

natural model of Alzheimer’s [75].In the context of the cat, many pet animals are neutered, 

and as such their fecundity will have been dramatically reduced, while their PFLS will have 

been markedly increased. Importantly, neutering increases not only longevity in our pets 

but also their risk of obesity, and as indicated above in relation to cats, an increase in 

T2DM. It is not known whether this increase in obesity and T2DM in neutered animals 

reflects the critical change in ‘IIS efficiency’ we postulate to be the molecular mechanism 

underlying the association between PFLS and AD or whether it is central as well as 

systemic. However, our hypothesis would suggest that, to the extent that it does, then 

evidence of AD pathology would be present in aged neutered cats. Just as inter-breed 
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studies in dog might be a means to test the hypothesis then studies in neutered cats might 

be a means to test the underlying molecular mechanisms.  

 

 

Conclusions and some suggestions for further study 

In summary then, the findings we report and review here suggest that, almost uniquely 

other than in man, sea mammals and cats might have AD-like neurodegeneration. This 

ranges from sea lions with domoic acid toxicosis having CSF markers also found in AD, to 

post-mortem amyloid and tau pathology in the brains of dolphins. Moreover dolphins are 

uniquely prone to a (pre-) diabetes state and are one of the few animals, alongside other 

cetaceans and man with a naturally long post-fertility lifespan. Cats have both T2DM and 

recent evidence suggests, full AD pathology and also have a moderately long PFLS albeit 

not as long as man and Orca. Is this sharing of AD pathology, diabetes and PFLS 

important? We suggest it is and this then is our hypothesis: that humans, at some point in 

our evolutionary history, acquired an insulin pathway trait characteristic that makes it less 

responsive to external signaling or less effective in transmitting this signal to targets 

generally or to GSK3 specifically. This characteristic results in longer life relative to other 

animals but also the twin diseases of T2DM and AD (Figure 2). This hypothesis does not 

imply that insulin signaling effects only longevity, nor that the effects of insulin signaling on 

metabolism, longevity and dementia are necessarily mediated through a single 

mechanism. Nor even that defects in IIS inevitably result in dementia. Clearly there might 

be independent mechanisms at play and indeed for such a critical signaling pathway with 

pleiotropic actions on fundamental processes of physiology it would be surprising if there 

were not independent influences on processes such as metabolism, longevity and 

dementia. However, here we postulate a linked mechanism that led us to hypothesize that 
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animals with unusual longevity would be at risk of both insulin resistance and Alzheimer’s 

disease, a hypothesis that led us to a prediction that cetaceans and cats would have AD 

pathology - a prediction for which we have provided some proof. 

 

This hypothesis has important consequences for our explanatory constructs of human 

evolution and also some testable predictions. First, in evolutionary theory there has been a 

robust debate regarding the PFLS in man with some arguing for the competitive 

advantages offered by the elder in early human societies – the so-called grandmother 

hypothesis [76]. Our proposal suggests that this theory might be arguing after the effect 

and the evolutionary driver may have been at a molecular level and theorists might 

productively search instead for a competitive advantage offered by a relatively less 

‘efficient’ or responsive insulin and IGF signaling pathway. Secondly, in terms of 

predictions that follow from our hypothesis, we would suggest that AD and T2DM would be 

relatively less common in non-human mammals and moreover pathological features of 

both diseases would occur most often in those animals with a relatively longer PFLS. 

Some aspects of AD pathology have been reported in a wide range of other animals 

although in almost all cases this is very incomplete making our report here of both neuritic 

plaque and tangle pathology in dolphin all the more remarkable. Further studies including 

large variable biomolecular studies such as those that have recently been reported in sea-

lion will be of interest in exploring the relationship between AD pathology and vulnerability 

to metabolic dysfunction in sea mammals and cats. However, testing the prediction that 

follows from our hypothesis quantitatively from such case reports from wild cetaceans is 

difficult and we would not advocate the use of captive cetaceans as experimental animals. 

So we propose a specific experiment. Recombinant inbred strain mice show both variation 

in lifespan and lifespan response to caloric restriction [77]. Our hypothesis would suggest 
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that these traits would be associated with insulin signaling phenotypes and moreover, and 

more surprisingly, with phenotypes relevant to Alzheimer’s disease such as A generation, 

tau expression and phosphorylation. Finally, a word to those individuals practicing caloric 

restriction to extend lifespan. If we are right, then it’s too late; we are already long-lived 

animals and the price we pay is Alzheimer’s disease.  
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Display items 

Table 1: Lifespan and reproductive span across a range of animals (adapted from 

Cohen [46]) 

Cohen (1994) lists the mean Post Reproductive Life Span (PRLS, equivalent to the Post 

Fertility Lifespan, PFLS, used in the text of this paper and in this table) for a range of 

animals together with their maximum observed lifespan. Here we extract from Cohen, 

those where this data is known and have, where a range is given, have listed the mean 

value and in addition expressed the PFLS as a proportion of lifespan. We add data for 

man, and assume that 110 is a maximum lifespan, although older people have been 

recorded, and for PFLS have assumed a mean age at death of 85 years and a mean age 

of reproductive cessation of 40 years (see 

http://en.wikipedia.org/wiki/Age_and_female_fertility for discussion of age of fertility).  

 

http://en.wikipedia.org/wiki/Age_and_female_fertility
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Figure 1: Alzheimer pathology in striped dolphin (Stenella coeruleoalba) brain. (A) 

Aβ42 amino acid alignment between three dolphin species and other mammals. (B) 

Amyloid plaques in cerebellum tissue from a Stenella coeruleoalba specime, AB2 (Araclon 

Biotech antibody, 1:750 specific for human beta-amyloid 40); (C) amyloid plaque in parietal 

cortex from Stenella coeruleoaba AB2 (Araclon Biotech antibody, 1:750 specific for human 

beta-amyloid 40); (D) neurofibrillary tangles in frontal cortex of Stenella coeruleoalba, 5A6 

antibody (Hybridoma Bank, 1:750); (E) neurofibrillary threads and plaques in parietal 

cortex of a single Stenella coeruleaoba specimen, 5A6 antibody (Hybridoma Bank, 1:750) 

 

Figure 2: Insulin signaling protects against Alzheimer’s disease at the cost of 

longevity 

 

We postulate that for a given stimulus the response of the insulin signaling pathway from 

generation of ligand through intracellular signaling to the effector of the pathway in the 

action of GSK3 which is inhibited by insulin signaling, varies giving a relative response that 

we characterize as ‘efficient’ or ‘inefficient’. Species level differences in the efficiency of 

response to stimulus will influence the relative lifespan, risk of type 2 diabetes mellitus 

(T2DM) and risk of Alzheimer’s disease (AD); a highly efficient response resulting in 

relatively shorter lifespan but reduced risk of T2DM and AD whereas a less efficient 

response increases post fertility lifespan (PFLS) and hence longevity but at the expense of 

risk of T2DM and AD. Note that this hypothesis emphasizes that the ‘efficiency’ of the 

insulin response system is as likely to be the actor in the evolutionary pressure resulting in 

longevity in man and Orca as the fact that we are both long lived animals.  
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Table 1: Lifespan and reproductive span across a range of animals (adapted from 

Cohen [46]) 

 

Order Scientific Name Common name 

Maximum 
recorded 
life span 
(years) 

Mean 
PFLS 

(years) 

PFLS as 
a % of 

maximum 
lifespan 

      Artiodactyla Bos primigenius Cattle 30 5 16.7 

 Cervus elaphus  Red deer  21 3 14.3 

Artiodactyla 
Carnivora 

Ovis canadensis Bighorn sheep  19 2 10.5 

Canis domesticus 
Domestic dog 
(beagle) 15 3.5 23.3 

Felis silvestris catus Domestic cat 21* 8 38 

Carnivora 
Cetacea 

Panthera leo  African Lion 17 1.8 10.6 

Ursus maritimus  Polar bear 30 4 13.3 

Globicephalus 
macrorhyncus 

Short-finned pilot 
whale 63 14 22.2 

Orcinus orcus Killer whale 78 38 48.7 

Primates 

Callithrix jacchus  Common marmoset 10 2 20.0 

Gorilla gorilla Gorilla 30 4.5 15.0 

Primates 
Primates 

Lemur spp.  Lemurs (five spp.) 24 3.5 14.6 

Leontopithecus 
rosalia  Golden lion tamarin 12 4 33.3 

Macaca fuscata Japanese macaque 35 4.5 12.9 

Macaca mulatta Rhesus macaque 35 2.5 7.1 

Macaca nemestrina Pig-tailed macaque 30 4 13.3 

Macaca radiata Bonnet macaque 20 6 30.0 

Macaca sylvanu Barbary macaque 28 5 17.9 

Pan troglodytes 
Common 
chimpanzee 48 9 18.8 

Papio cynocephalus Olive baboon 27 5 18.5 

Primates Papio 
cynocephalus 
/anubis hybrids Baboon 16 3.5 21.9 

Saguinus fuscicollis Saddleback tamarin 12 4 33.3 

Saimiri sciureus Squirrel monkey 19 3.5 18.4 

     Homo sapiens Man 110 45 40.9 

      

      

 
PFLS – post-fertility lifespan. 
*But very occasional much older cats have been found – e.g. 32 years of age (seen by author 
DGM). Importantly, long-lives cats are typically neutered. 
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