Does segregation reduce socio-spatial mobility? Evidence from four European countries with different inequality and segregation contexts

Jaap Nieuwenhuis, Tiit Tammaru, Maarten van Ham, Lina Hedman, David Manley

Acknowledgements
We would like to thank Annika Väiko for her assistance in working with the Estonian data. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 615159 (ERC Consolidator Grant DEPRIVEDHOODS, Socio-spatial inequality, deprived neighbourhoods, and neighbourhood effects), and the Estonian Research Council (institutional research grant IUT2-17 on Spatial Population Mobility and Geographical Changes in Urban Regions).
Does segregation reduce socio-spatial mobility? Evidence from four European countries with different inequality and segregation contexts

Abstract. The neighbourhood in which people live reflects their social class and preferences, so studying socio-spatial mobility between neighbourhood types gives insight in the openness of spatial class structures of societies and in the ability of people to leave disadvantaged neighbourhoods. In this paper we study the extent to which people move between different types of neighbourhoods by socio-economic status in different inequality and segregation contexts in four European countries: Sweden, the Netherlands, the United Kingdom (England and Wales), and Estonia. The study is based on population registers and census data for the 2001-2011 period. For England and Wales, which has long had high levels of income inequalities and high levels of socio-economic segregation, we find that levels of mobility between neighbourhood types are low and opportunities to move to more socio-economically advanced neighbourhoods are modest. In Estonia, which used to be one of the most equal and least segregated countries in Europe, and now is one of the most unequal countries, we find high levels of mobility, but these reproduce segregation patterns and it is difficult to move to less deprived neighbourhoods for those in the most deprived neighbourhoods. In the Netherlands and Sweden, where income inequalities are the smallest, it is the easiest to move from the most deprived to less deprived neighbourhoods. The conclusion is that the combination of high levels of income inequalities and high levels of spatial segregation tend to lead to a vicious circle of segregation for low income groups, where it is difficult to undertake upward socio-spatial mobility.

Keywords: Income inequality, segregation, socio-spatial mobility, disadvantaged neighbourhoods, international comparison

Introduction

Social inequality and residential segregation is increasing in European countries and cities (Piketty 2014; Tammaru et al. 2016). Although segregation per se need not necessarily be a problem (see for instance Merry, 2016), it can lead to a range of social problems. These problems can operate through negative neighbourhood effects on, for example, education and employment (e.g. Nieuwenhuis & Hooimeijer 2016; Nieuwenhuis et al. 2013, 2017; van Ham et al. 2012), high levels of segregation may affect the opportunities people have in life and this may lead to a “vicious circle of segregation” for low income individuals, that often operates over generations (Tammaru et al. 2017). The spatial concentration of low-income groups in neighbourhoods with affordable housing arises because of their limited financial resources which restricts options in the housing market. Since most children attend the school nearest to their home, residential segregation is often reproduced in school segregation, which in turn can lead to labour market segregation (see for instance Harris 2017). Cumulatively, the residential
to school and work trajectory translates into different incomes and affects where people live (van Ham et al. 2018). These socio-spatial structures are then inherited from one generation to the next (Hedman et al. 2015; Sharkey 2013). Hence, housing and segregation become part of overall structures of social inequalities in our societies.

When the consequences of individual poverty and living in a deprived neighbourhood are observed within a life course framework (de Vuijst et al. 2016; Kleinepier et al. 2018), it becomes important to ask whether these phenomena are temporary or structural in an individual’s life. High levels of income inequalities and socio-economic segregation in a country may become an obstacle for upward social and spatial mobility (Nieuwenhuis et al. 2016), and consequently, the existing social and spatial structures may become more rigid over time. It can be expected that the ability of people to move from a deprived neighbourhood to a more affluent neighbourhood, is related to the overall opportunities for socio-spatial mobility in a country. If this is the case, and if living in a deprived neighbourhood negatively affects socio-spatial mobility, then a vicious circle of deprivation may occur (van Ham et al. 2018).

This paper investigates socio-spatial mobility defined as movement of people between different residential neighbourhoods with differing levels of social deprivation. We are particularly interested in the extent to which people can move from a more deprived to a less deprived neighbourhood — that is to undertake upward socio-spatial mobility — in different countries representing different inequality and segregation contexts. While comparative research on segregation has started to emerge (Arbaci 2007; Maloutas & Fujita 2012; Tammaru et al. 2016), there is hardly any comparative research on socio-spatial mobility. One reason for a lack of comparative studies is the lack of comparative longitudinal data. Research on patterns of segregation can rely on (repeated) cross-sectional data but studying socio-spatial mobility requires individual-level longitudinal data, where individuals can be followed between at least two points in time. This paper uses longitudinal census data and register data from Estonia, the Netherlands, Sweden and England and Wales, to answer the following research questions:

- To what extent are there between-country differences in the extent to which people move between neighbourhoods with different deprivation levels?
- To what extent are there between-country differences in people’s ability to move from the most deprived to the least deprived neighbourhoods?
- Can country-specific characteristics — most notably levels of inequality and residential segregation — help us to better understand the between-country differences in the spatial mobility patterns across neighbourhoods with different levels of deprivation?

The choice of countries for comparison Estonia, Sweden, the Netherlands and England and Wales is partially pragmatic, because of data availability, but also because they represent very different income inequality and residential segregation contexts. Estonia used to have one of the lowest levels of income inequalities and socio-economic segregation when it was part of the Soviet Union (Marcinczak et al. 2015). During the large-scale social transformations in Eastern Europe after the fall of the Berlin Wall in 1989, Estonia has become one of the most unequal and residentially segregated countries in Europe (Musterd et al. 2017). In England and
Wales income inequalities and residential segregation have been high for decades (Manley & Johnston 2014). Income inequalities in Sweden and in the Netherlands are low compared to Estonia and England and Wales, although especially in Sweden the level of inequality and segregation is rising sharply (Andersson & Kährik 2016; Musterd & van Gent 2016). To account for deprivation levels, we employed individually-linked population register data on social benefits for the Netherlands and Sweden, while for England and Wales and Estonia we used individually-linked census data on unemployment for the years 2001 and 2011.

Factors shaping differential socio-spatial mobility between socioeconomic groups

Residential segregation between socio-economic groups is largely a result of selective residential mobility into and out of different types of neighbourhood as well as between cities, albeit that in situ changes within neighbourhoods also play a role (Bailey et al. 2017). One of the first frameworks to understand socio-spatial mobility patterns generating residential segregation was provided by the Chicago School (Park et al. 1925). Their explanatory framework refers to the ‘natural forces’ that adapt people to their environment and leads to the sorting of different social groups into different parts of the city. This framework was developed further through a factorial ecological approach (Berry & Kasarda 1977) and GIS-based segregation studies and advanced spatial modelling (Wong 2003), demonstrating that residential segregation is largely a function of (a) people sorting into neighbourhoods based on their individual and household characteristics, and (b) spatial distribution of housing and a household’s preferences towards certain types of housing. This sorting is a consequence of spatial mobility between cities of different sizes and rural municipalities (Geyer & Kontuly 1993; Fielding 1998; Champion 2001), between the city and suburbs (van den Berg et al. 1982; Hochstenbach & Musterd 2018), and between neighbourhoods within cities (Clark & Onaka 1983; Madrazo & van Kempen 2012).

Individual and household characteristics affecting socio-spatial mobility

When it comes to individual and household characteristics, differences in resources are often considered to be the most important driver of differential socio-spatial mobility of socioeconomic groups (Rex and Moore 1967). Income is the most important resource as money buys choice on the housing market (Hulchansky 2010; Hedman, et al. 2011), but other resources such as education, knowledge, and networks, are also part of the mobility capital required by households (Kaufmann et al. 2004). However, income and other resources do not explain all differences in socio-spatial mobility between groups as differential residential preferences also play a role (Clark & Fossett 2008; Mulder 2007). The combination of high resources and residential preferences of the top socio-economic groups are usually driving up levels of residential segregation as they strive to translate their income into living in the most attractive cities and neighbourhoods (Hulchansky 2010; Maloutas 2016). Housing has become a key element of the investment portfolios of high-income households, pushing up house prices in the most desired neighbourhoods (Madrazo & van Kempen 2012; Prêteceille 2016). Increasing house prices and rents in certain neighbourhoods, combined with reductions in social and housing benefits, has resulted in undesired mobility of lower income households who are forced...
to leave certain neighbourhoods. Increasing prices can also lead to undesired immobility for low-income households, who are unable to move to better neighbourhoods due to a lack of resources (Coulter et al. 2015).

Residential choices are also influenced by factors such as the life course stage of a household, and the household size and composition. These factors influence the type, size, tenure and price of dwellings that households need (Leetmaa et al. 2015; Madrazo & van Kempen 2012; Rossi 1955). Previous research shows that young people aged between 20 and 35 are by far the most mobile age group; households living in small dwellings and renters are more mobile than households living in larger dwellings and owners; and mobility and residential choices are often related to events in other important life domains such as family formation and dissolution, educational and job career (Dieleman 2001; Kulu 2008; Kulu et al. 2018). Demographic trends such as population ageing or increasing numbers of single parents further affect socio-spatial mobility, often by reducing mobility because of spatially bounded social and kin networks needed to facilitate the exchange of physical care, childcare and other forms of assistance (Coulter et al. 2015). Such mutual support is especially important for lower-income groups, thus reducing further their spatial mobility and facilitating residential rootedness (Cooke 2011; Preece 2017).

In most countries there are also substantial differences in socio-spatial mobility and residential segregation between ethnic and racial groups. Although spatial assimilation theory predicts that immigrants progressively integrate residentially (Alba & Nee 1997; Park et al. 1925), levels of ethnic segregation remain high in European cities (Arbaci 2007; McAvay & Safi 2018). A main factor is the high rate of immigration, which can put the housing sector under pressure, especially in major cities (Pittini et al. 2017). Within cities, immigrants search for affordable housing which is often clustered in specific low income often already immigrant dense neighbourhoods (Andersson and Kährkik 2016; Wessel 2016). Place stratification theory highlights the constraints to socio-spatial mobility of ethnic minorities. Ethnic minorities tend to be less successful on the labour market (Semyonov 2017), and their residential choices are partly shaped by the preferences of both the major and minor groups to live together with co-ethnics (Clark and Fossett 2008), and discrimination on the labour and housing markets by the majority population (Auspurg et al. 2017; Zschirnt & Ruedin 2016). The school choice of families also matters as parents of the native population tend to choose their residential neighbourhood based on school quality, and that often means leaving or avoiding neighbourhoods with higher levels of deprivation and a higher presence of ethnic minorities (Bermelius & Vaattovaara 2016; Boterman 2013; Wessel & Nordvik 2018). As before, it is likely that those in minority groups are less likely to be able to afford to explore such choice because of financial constraints.

Housing and other institutional and macro level factors affecting socio-spatial mobility
Socio-spatial mobility is related not only to individual and household characteristics and preferences, but also to macro- and institutional-level factors and policies that affect differential access to housing by socioeconomic groups (Andersen et al. 2016; Madrazo & van Kempen 2012; Musterd & Ostendorf 1998). These factors operate at different levels (Dieleman 2001;
For example, labour market dynamics are strongly affected by global influences, while demographic developments, welfare systems and housing policies are mainly set on national levels, and housing prices and tenure structures vary between and within the cities. There is an ongoing debate about whether globalization brings along professionalization or polarization to labour markets (Butler et al. 2008; Hamnett 1994; Tammaru et al. 2016). In European immigration countries, the outcome of globalisation is rather an ethnically divided labour market with professionalization and higher incomes being more common among the native workforce compared to immigrants and ethnic minorities (Marcuse & van Kempen 2002; Costa & de Valk 2018). Globalization and its effects on labour markets is thus one of the root causes for the growth of income inequality since the 1980s (Global Inequality Report 2018).

Although the growth of income inequality is a global phenomenon, national level policies play a role in how equally or unequally incomes are distributed in a given society. In our case study countries, the Gini index is lowest in Sweden (25), followed by the Netherlands (27), England and Wales (32) and Estonia (35). Higher levels of income inequality reduce intergenerational social mobility, a phenomenon that has been popularized as a Great Gatsby Curve (Krueger 2012). In other words, differences in county-level policies lead to very different inequality and social mobility contexts. In the UK and Estonia, income inequalities are high and there is much less social mobility compared to Sweden and the Netherlands (Figure 1). Socio-spatial mobility is further shaped by access to housing; housing policies can reduce or increase the role of income inequality in generating differential socio-spatial mobility patterns of socioeconomic groups (Fujita & Maloutas 2012). Housing systems vary between countries in many ways, for example when it comes to the share of homeownership, the tenure structure, rental regimes (dual/unitary), the allocation of social housing, and housing subsidies to low-income groups (Kemeny 1995; Pittini et al. 2017). Housing is also one of the most costly policy fields and a high burden for the budgets of many European countries. The roll-back of welfare states in the past few decades has thus strongly affected housing in Europe, leading to increased importance of markets forces in the housing sector (Andersson & Kährrik 2016).

Changes in national level housing policies have been especially harmful for low-income groups (Dewilde & Decker 2016), who have retreated to residualised social housing in the cities (Kleinhans & van Ham 2013), or moved out from major cities altogether (Fitchen 1995; Hochstenbach & Musterd 2018). For high-income groups, the most important large-scale trend has been gentrification (Tammaru et al. 2016). Temporarily, this brings along social mixing, followed by an increase of segregation as high-income groups take over the city centres where socioeconomic upgrading of desirable neighbourhoods takes place (Atkinson & Bridge 2005; Leal & Sorando 2016). The out-migration of low-income groups from the central parts of major urban regions, and the clustering of high-income groups in the center has led not only to increased socioeconomic segregation within European cities (Tammaru et al. 2016), but also contributes to persistent regional socio-economic divides as well (Adams et al. 2016).

At the city level, urban planning shapes the location of different types of dwellings in different parts of the city (Clark & Fossett 2008), but planning also affects the locations of other factors important in residential decision making such as workplaces (Dieleman 2001), schools and
other amenities important for families with children (Méndez & Mayo 2018). The more homogenous neighbourhoods are in terms of housing, the more likely it is that different socioeconomic groups sort into different types of housing and into different types of neighbourhoods. For example, in cities with large numbers of modernist housing estates built in the 1960s through the 1980s, such neighbourhoods have become areas where lower-income groups tend to concentrate (Andersson & Kährik 2016; Hess et al. 2018; Wessel 2016). In countries with social mixing policies still firmly in place, such as Finland, levels of segregation rise at a slower rate (Saikkonen et al. 2018).

Relations between income inequality, residential segregation and socio-spatial mobility

Income inequality is positively correlated to socioeconomic segregation (Musterd & Ostendorf 1998) and negatively to intergenerational social mobility, with the latter relationship being popularized as a Great Gatsby Curve (Krueger 2012). It follows that, in a context of high income inequality, not only will residential segregation be high, but it follows that the fortunes of children will depend more on the fortunes of their parents compared to children growing up in a low inequality context. As income inequality reduces social mobility, there are reasons to expect that higher levels of residential segregation reduce socio-spatial mobility as certain neighbourhoods get out of the reach of low-income households. Put differently, the higher the level of income inequality and the level of residential segregation between socio-economic groups, the more rigid the socio-spatial structure of the society become and the more difficult it is to undertake socio-spatial mobility. However, at times of growing income inequality and residential segregation, socio-spatial mobility may be intense as low-income and high-income groups sort into different neighbourhoods of the city. Estonia is an interesting case in this respect. As a result of dynamic macro-economic changes, Estonia has moved from the group of countries with the lowest level of income inequality (Gini was 23 in 1990) to the group with the highest level of income inequality (35) in Europe by today.

As with social mobility, there is a strong intergenerational dimension to socio-spatial mobility as socio-spatial disadvantages tend to be transmitted from parents to children, both (a) directly as parental wealth is important for children in entering the housing market, and (b) indirectly, via the transmission of context as children end up living in similar places as their parents and are thereby subject to similar contextual influences (d’Addio 2007; Hedman et al. 2015; Hochstenbach & Boterman 2017; Sharkey 2013). Furthermore, parents have an important role not only in shaping the educational choices of their children but also influence the school choice of their children since schools are often neighbourhood based (Benson et al. 2014). Hence, the inter-generational transmission of wealth and poverty has both social and spatial dimensions (Nieuwenhuis 2018; van Ham et al. 2018).

The intergenerational transmission of residential (dis)advantage continues as children leave their parental home. Children who grow up in affluent neighbourhoods often experience a temporary drop in the socio-economic status of their neighbourhood when they leave the parental home (moving to student housing), but they are likely to end up in high status neighbourhoods later in life (van Ham et al. 2014). This is partly caused by parental wealth shaping their residential careers (Hochstenbach 2018). For young people from more affluent
families, the ‘Bank of Mum and Dad’ often helps them to co-financing the start of their housing career. In the England and Wales, about 25 percent of homebuyers rely on parental help (The Guardian 2017). What is more, such intergenerational wealth transmission elevate housing prices, with the effect that the most desirable segments of the housing market get out of the reach of those who are less well off. This leads to a weakening of the link between house prices and income from work (Marcinczak et al. 2017).

Hypotheses
Previous research has established that higher levels of income inequality tend to increase socioeconomic segregation and to reduce social mobility. We hypothesise that higher levels of residential segregation between socioeconomic groups also reduces socio-spatial mobility between neighbourhood deprivation types; in other words, that the Great Gatsby Curve characterizes not only social but also socio-spatial processes. The mechanism that links higher levels of socioeconomic residential segregation to reduced socio-spatial mobility is based on spatial differences in house prices between cities and between neighbourhoods. As income inequality rises, house price differences between neighbourhoods and levels of socioeconomic segregation rise as well; as a result there is less choice for low-income groups. At times of growing income inequalities, socio-spatial mobility can temporarily increase as high-income and low-income groups sort into different neighbourhoods.

In general, as levels of residential segregation grow, it is increasingly difficult for low-income households to undertake upward socio-spatial mobility. The saturation point is determined by country-specific contextual factors. Based on the levels of income inequality in our case study countries, we expect that it is easier to move from deprived neighbourhoods to less deprived neighbourhoods in Sweden and in the Netherlands than in England and Wales and Estonia. We also expect intense upward and downward socio-spatial mobility in Estonia since this country has moved from a low inequality to a high inequality country, which is likely to result in an intense sorting process of low-income and high-income groups into different dwellings and neighbourhoods.

Data and methods
Data for this study came from linked national registers and censuses. Because we are interested in socio-spatial mobility longitudinal data are crucial to enable the identification of moves of individuals between neighbourhood types (see below). For the Netherlands, we used population register data from the Statistics Netherlands’ System of Social Statistical Datasets (SSD). The SSD is an extensive system of longitudinal datasets, combining, amongst other, population, tax, and housing registers, covering the full population of the Netherlands since 1999. Geographic information is available on a 100x100m and 500x500m grid cell basis (Bakker et al. 2014). In this study, we used 500x500m grid cells, which is consistent with the average neighbourhood sizes of about 1,000 inhabitants.
The Swedish data source is also a population register, derived from Statistics Sweden and compiled into the GeoSweden database owned by the Institute for Housing and Urban Studies. The database contains annual demographic, geographic, socio-economic and housing information on the entire Swedish population since 1990. The lowest spatial units in the data consist of 100x100m grid cells, which have been merged into 500x500m grids for the current study, which makes them comparable to the units used for the Netherlands. Using only areas with a minimum of five in-sample inhabitants (see later in this section), the neighbourhood population in these areas varied from five to 5,465 people, with a mean of 61.19 people (due to many sparsely populated areas in the country).

The data for England and Wales were derived from the 2001 and 2011 censuses. For the purpose of this study we used Lower Super Output Areas (LSOAs) as geographical units. These areas are frequently used by the UK Government as functional neighbourhoods for policy delivery and assessment. Critically, for the analysis presented the LSOAs have remained largely consistent\(^1\) between the two census periods, allowing the comparison of population characteristics without the concern of change areal boundaries influencing results. Because we were interested in following individuals over time rather than simple comparable totals for the LSOAs the data used are specially derived from the Office for National Statistics Longitudinal Sample (ONS-LS), a 1% of the population of England and Wales. The advantage of these data is the potential for linkage over time, a disadvantage is that unlike the registers from Sweden and the Netherlands, and the Estonian data, it is a sample not the full population.

Data for Estonia came from the two last censuses of 2000 and 2011, and it included the full population of Estonia. Statistics Estonia has linked the 2000 and 2011 censuses by personal identification code. The database included the full set of demographic, geographic, socio-economic, and housing information as regularly collected in censuses, as well as the smallest spatial planning units of the country of approximately 1,000 people on average.

For each country we selected all individuals in the data living independently (i.e., not living at home with their parents in 2001 and not institutionalised in both 2001 and 2011), and who had a valid address in the data in both years. We selected both movers and non-movers, because the immobility of non-movers also reflects differences between countries’ spatial mobility patterns: in some countries it may be more difficult to be residentially mobile. For all four countries we had access to the following information: the neighbourhood in which individuals lived on 1 January 2001 and on 1 January 2011, and a measure for the level of neighbourhood deprivation of the 2001 and 2011 neighbourhoods. Because of the differences in data collection between the four countries, there was no simple way to construct comparable data. To make the data as comparable as possible, we identified the most comparable measures of neighbourhood deprivation in each of the national datasets (see Table 1).

\(^1\) Approximately 97% of all LSOAs remained consistent. Those that have change have been excluded from the analysis to keep the consistency of areas. In practice, LSOAs were changed where substantial population change had occurred rendering the previous iterations of the units unsuitable see Cockings et al., 2011.
To compare socio-spatial mobility patterns between the four countries, we created four 10x10 matrices for individuals combining deprivation in the neighbourhood of origin for 2001 with deprivation in the neighbourhood of destination in 2011 (see Appendix A; Tables A1-A4). Although deprivation is a continuous measure we categorised it into deciles measuring the proportion of individuals receiving unemployment benefits or social security benefits (the Netherlands and Sweden) or the proportion of individuals registered as unemployed (England and Wales and Estonia). The reason for choosing different indicators in different countries is pragmatic and data driven: we were unable to find suitable measures that were exactly the same. However, by choosing unemployment and people who are on unemployment or social security benefits, we used two measures that are clearly related to each other, which maximises comparability. The deciles of neighbourhood deprivation are country-based and were calculated for the full population of each country, excluding those not at risk of becoming unemployed, that is, those individuals that were older than 65, children living at home, and institutionalised individuals.

Results

By plotting a socio-spatial mobility curve for each country (Figure 2) we first examine the share of people remaining in the same decile of neighbourhood deprivation over the 2001-2011 period in the four countries. The lines show the relative stickiness of the population in neighbourhood deprivation deciles. Decile 1 are the least deprived neighbourhoods and decile 10 are the most deprived neighbourhoods. The ‘U-shape’ of the mobility curve is similar in all four countries; people who live in the least deprived and most deprived neighbourhoods are the most likely to stay in a similar neighbourhood compared to people living in more socially mixed neighbourhoods. This outcome can have two explanations. First, there may be a methodological explanation because there are both floor and ceiling effects in the data: people living in the most (and least) deprived neighbourhoods cannot move to neighbourhoods that are even more (or less) deprived. The second explanation is more substantive. Those with low incomes have fewer resources to move upwards, while more affluent people are likely to stay where they are because they are satisfied with their living conditions, thus reducing their willingness to move. People living in socio-economically mixed areas are more likely to move either downward or upward within the neighbourhood hierarchy to satisfy their desires and preferences.

-- Figure 2 about here --

If the substantive interpretation is correct, we expect to find differences in socio-spatial mobility between our case study countries that would reflect their income inequalities and residential segregation contexts. Returning to the figure, there is a stark contrast in socio-spatial mobility between England and Wales on the one hand and Estonia, Sweden and the Netherlands on the other hand. The mobility curve across neighbourhood deprivation levels is much flatter in England and Wales than in the other three countries, i.e., people living in England and Wales are more likely to remain in the neighbourhood deprivation type of origin than people living in
the other three countries. The contrast between England and Wales and the other three counties becomes even more pronounced when examining how many people live in an area with the same decile of deprivation in 2001 and 2011. In England and Wales 60–70% of the people have not experienced any change in neighbourhood type over that period, while only 10–50% of people have been socio-spatially immobile in Estonia, Sweden and the Netherlands. Thus, the substantive interpretation is supported.

Most moves take place between neighbouring decile categories, that is, people tend to move to neighbourhoods that are either one decile ‘up’ or ‘down’ compared with the origin neighbourhood. In other words, spatial mobility generally does not result in dramatic changes in the social-spatial context where people live. It is also possible that people may live in a neighbourhood that is on the ‘border’ of a decile, so a relatively small shift in socioeconomic status may move this neighbourhood to the next decile ten years later, whilst a larger move in the middle of a decline group may not be recorded at all. To avoid the former problem and because we are interested in the more substantial shifts in the socio-spatial context of mobile people and we will combine people who live in the neighbourhood with the same, and one lower, or one higher decile of deprivation between 2001 and 2011. Figure 3 shows that, having combined these groups, the difference between countries are now less pronounced, but still indicating that there is more socio-spatial stickiness in England and Wales compared to Estonia, Sweden and the Netherlands. More in-depth analysis of our data shows that only 10–20% of the change of neighbourhood deprivation context is because of neighbourhoods themselves change deprivation decile due to neighbourhood social upgrading or downgrading. This implies that most of the change we capture in our analyses is due to people moving between neighbourhoods. Still, the most common mobility pattern relates to moving to a neighbourhood with a similar socio-economic profile as the neighbourhood of origin. Comparing Figure 3 to Figure 2 shows that about 50% of the socio-spatial mobility in all four countries is micro-mobility – that is mobility between adjacent deciles.

The country ranking in Figure 3 is similar to that in Figure 2; people in England and Wales are the least mobile and people in Estonia move most between neighbourhood types. The pathways for Sweden and the Netherlands cross, indicating that, in the Netherlands, people living in the less deprived neighbourhoods are socio-spatially more mobile compared to Sweden, but in Sweden, people living in the most deprived neighbourhoods are socio-spatially more mobile than in the Netherlands. Furthermore, the mobility curve in Sweden is not ‘U-shaped’ after aggregating moves to neighbouring deprivation decile categories. This indicates stronger residential stability in the socially mixed neighbourhoods than in the other three countries.

The spatial isolation of low-income groups is often seen as the most negative side of high levels of social segregation. Hence, we are particularly interested in the ability of people in these groups to move out from the most deprived neighbourhoods into less deprived neighbourhoods (i.e., upward socio-spatial mobility). The differences between countries in the percentage of people that move to less deprived neighbourhoods by at least two deciles (Figure 4) and that
move to more deprived neighbourhoods by at least two deciles (Figure 5) shows another part of the story.

Figure 4 shows that both in England and Wales and in Estonia, people who live in less deprived neighbourhoods (lower deciles) in 2001 more often move to less deprived neighbourhoods in 2011 compared to people who live in more deprived neighbourhoods (higher deciles) in 2001. In other words, segregation between income groups seems to be growing. In contrast, in Sweden and the Netherlands the pattern is the opposite. Here people who live in more deprived neighbourhoods in 2001 more often move to less deprived neighbourhoods in 2011 compared to people who live in less deprived neighbourhoods in 2001. In comparative terms, in Sweden and the Netherlands socio-spatial mobility reproduces segregation less than in Estonia and England and Wales. Figure 5 complements this picture and shows that in England and Wales and in Estonia, people who live in more affluent neighbourhoods in 2001 (lower deciles) are less likely to move to more deprived neighbourhoods compared to people who live in more deprived neighbourhoods in 2001. And again, Sweden and the Netherlands show the opposite picture, where people who live in more affluent neighbourhoods in 2001 more often move to more deprived neighbourhoods in 2011 compared to people who already live in more deprived neighbourhoods in 2001.

Conclusions and discussion

Our main findings show that people in England and Wales are the most socio-spatially immobile in terms of moving between neighbourhood types, and that people in Estonia are the most mobile. The intensity of mobility between neighbourhoods of different deprivation levels in Sweden and Netherlands falls in-between. Furthermore, it is the easiest to move out from the most disadvantaged neighbourhoods in the Netherlands and especially in Sweden.

In England and Wales, the level of income inequality and segregation are high and taken together this has created rigid socio-spatial structures; not only social mobility but also socio-spatial mobility is low due to the large social distance between neighbourhood types. Estonia is a different story as it used to have a very equal income distribution and low levels of segregation under central planning in Soviet times, but after 1991 it has adopted a very liberal welfare regime with high levels of homeownership. This resulted in the rapid growth of income inequalities in the 1990s. As higher-income groups started to translate their economic success into better living conditions, socio-spatial mobility and sorting by income increased in the 2000s. Consequently, Estonia shifted from the position of one of the least socio-economically segregated countries to one of the most segregated countries in Europe in the 2000s. The Netherlands and Sweden, in comparative perspective, still represent strong welfare regimes that
allow not only relatively easy upward social mobility but also relatively easy upward socio-spatial mobility.

High income inequalities increase levels of socio-economic segregation (Musterd & Ostendorf 1998) through the sorting of high-income groups into more affluent neighbourhoods through a process of upward socio-spatial mobility. At the same time, low income people sort into more deprived neighbourhoods through a process of downward socio-spatial mobility. Even though both Estonia and England and Wales represent high income inequality contexts, in Estonia such a context has only been in place for a short period of time, during which we see intense sorting of high-income groups and low-income groups into different neighbourhoods, bringing along rapidly increasing levels of segregation. High levels of income inequality have a longer history in England and Wales, where over time both the social and spatial structures have become more rigid; both levels of income inequality and levels of residential segregation are high. As a result, social mobility and socio-spatial mobility is difficult because of the social distances that must be covered to improve one’s position. All other things being equal, it is easier to undertake upward socio-spatial mobility in the more equal counties of Sweden and the Netherlands.

Our analyses were limited by the available data. To compare the four countries, we strived to construct datasets that were as comparable as possible. However, we had to make decisions that can have consequences for the interpretation of the results. First, we compared neighbourhood deprivation based on unemployment and social security benefits (the Netherlands and Sweden) with neighbourhood deprivation based on unemployment (England and Wales and Estonia). On the one hand, it is possible that these two operationalisations do not exactly represent the same type of deprivation. Being on unemployment benefits is a temporal state, while being unemployed may be more long-term. On the other hand, social security benefits may also represent a long-term state in a person’s life. Furthermore, there is no way of telling whether someone who is in the census as being unemployed is long-term or short-term unemployed. Both measures contain insecurity about the temporality of deprivation. And second, urban-rural differences vary between the countries. For example, Sweden has vast areas with low population density, while the Netherlands is much more densely populated. As a result, moving from a rural area to an urban area represents a very different type of move in one country compared to another.

To conclude, our findings suggest that high levels of income inequality and segregation lead to a situation where socio-spatial mobility is difficult and where different socioeconomic groups get settled in different types of neighbourhoods. In this context spatial mobility generates higher levels of segregation and, once established, higher levels of segregation reduce, ceteris paribus, the spatial mobility between neighbourhood types (Figure 6). Thus, the Great Gatsby Curve characterizes not only social, but also spatial processes since high levels of residential segregation and low levels of socio-spatial mobility seem to be related to each other. However, the Great Gatsby Curve only partially characterizes mobility-inequality relations from a point in time when income inequalities are already high. By comparing Estonia and England and
Wales, we suggest that over time growing inequalities and segregation levels come along at first with increased spatial mobility, followed by decreased spatial mobility at later stages of the cycle when inequality and segregation levels are high. Hence for understanding the complex interplay between income inequalities, social mobility, residential segregation and socio-spatial mobility, a long-term time-frame of several decades or even generations is needed.

References

Cooke, T.J. (2011). It is not just the economy: Declining migration and the rise of secular rootedness. Population, Space and Place, 17, 193-203.

Tables and Figures

Table 1. Comparison of measures and data between the four countries.

<table>
<thead>
<tr>
<th></th>
<th>Netherlands</th>
<th>Sweden</th>
<th>United Kingdom</th>
<th>Estonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbourhood deprivation</td>
<td>% individuals on unemployment or social security benefits</td>
<td>% individuals on unemployment or social security benefits</td>
<td>% unemployed individuals</td>
<td>% unemployed individuals</td>
</tr>
<tr>
<td>Neighbourhood delineation</td>
<td>500x500 meter grids</td>
<td>500x500 meter grids</td>
<td>Lower Layer Super Output Areas (LSOAs)</td>
<td>Basic planning units</td>
</tr>
<tr>
<td>Data source</td>
<td>Population register</td>
<td>Population register</td>
<td>Census; Longitudinal Study for England and Wales</td>
<td>Census; Linked 2000-2011 censuses database</td>
</tr>
<tr>
<td>Research population size</td>
<td>9,464,704</td>
<td>4,816,034</td>
<td>313,750</td>
<td>468,381</td>
</tr>
<tr>
<td>Median age</td>
<td>43</td>
<td>41</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>Share of home-owners, %</td>
<td>68</td>
<td>71</td>
<td>64</td>
<td>82</td>
</tr>
<tr>
<td>Share of managers and professionals (2011), %</td>
<td>28.9</td>
<td>20.3</td>
<td>27.1</td>
<td>26.4</td>
</tr>
<tr>
<td>Unemployment (2011), %</td>
<td>4.9</td>
<td>8.0</td>
<td>7.8</td>
<td>14.4</td>
</tr>
</tbody>
</table>

Figure 1. Income inequality (Gini index) and intergenerational social immobility (Income elasticity) in the case study countries.

Sources:
(Chauvel & Hartung 2006)
Figure 2. Percentage of individuals that live in an area within the same decile of deprivation in 2001 and 2011. The notation [X,Y] means: X = decile in 2001, Y = decile in 2011. 1 = the least deprived decile; 10 = the most deprived decile.

Figure 3. Percentage of individuals that live in an area within the same, one lower, or one higher decile of deprivation in 2001 and 2011. The notation [X,Y] means: X = decile in 2001, Y = decile in 2011. 1 = the least deprived decile; 10 = the most deprived decile.
Figure 4. The percentage of moving individuals by country and origin decile who move to less deprived neighbourhoods by at least two deciles between 2001 and 2011. 1 = the least deprived decile; 10 = the most deprived decile.

Figure 5. The percentage of moving individuals by country and origin decile who move to more deprived neighbourhoods by at least two deciles between 2001 and 2011. 1 = the least deprived decile; 10 = the most deprived decile.
Figure 6. Trajectories of socio-spatial mobility under different income inequality-residential segregation contexts.
Appendix A

Tables A1 through A4 below show the 10x10 matrices on which the figures in this paper are based. All tables show the deprivation level (in deciles) of the neighbourhood of origin in 2001 in the rows, and the deprivation level of the destination neighbourhood in 2011 in the columns. Decile 1 are the least deprived neighbourhoods and decile 10 the most deprived neighbourhoods.

<table>
<thead>
<tr>
<th>Decile of deprivation 2001</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44.58</td>
<td>16.25</td>
<td>10.56</td>
<td>7.41</td>
<td>5.50</td>
<td>4.56</td>
<td>3.70</td>
<td>2.86</td>
<td>2.56</td>
<td>2.01</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>17.52</td>
<td>26.28</td>
<td>19.55</td>
<td>13.61</td>
<td>9.13</td>
<td>5.47</td>
<td>3.37</td>
<td>2.33</td>
<td>1.69</td>
<td>1.05</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>11.92</td>
<td>19.05</td>
<td>20.44</td>
<td>17.00</td>
<td>13.13</td>
<td>7.79</td>
<td>4.46</td>
<td>2.99</td>
<td>2.02</td>
<td>1.21</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>9.00</td>
<td>13.13</td>
<td>16.10</td>
<td>19.49</td>
<td>15.47</td>
<td>11.53</td>
<td>7.73</td>
<td>3.56</td>
<td>2.54</td>
<td>1.44</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>6.87</td>
<td>9.50</td>
<td>11.87</td>
<td>15.11</td>
<td>16.04</td>
<td>17.85</td>
<td>11.54</td>
<td>6.10</td>
<td>3.29</td>
<td>1.84</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>5.45</td>
<td>6.31</td>
<td>8.07</td>
<td>10.62</td>
<td>15.90</td>
<td>18.68</td>
<td>17.10</td>
<td>11.07</td>
<td>4.48</td>
<td>2.31</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>4.57</td>
<td>4.96</td>
<td>6.08</td>
<td>7.46</td>
<td>11.13</td>
<td>13.87</td>
<td>19.54</td>
<td>19.24</td>
<td>9.52</td>
<td>3.63</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>4.07</td>
<td>4.32</td>
<td>4.61</td>
<td>5.14</td>
<td>6.24</td>
<td>9.36</td>
<td>15.70</td>
<td>23.94</td>
<td>19.90</td>
<td>6.71</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>3.23</td>
<td>3.53</td>
<td>3.81</td>
<td>4.22</td>
<td>4.88</td>
<td>6.15</td>
<td>8.92</td>
<td>14.58</td>
<td>29.54</td>
<td>21.15</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>2.55</td>
<td>2.82</td>
<td>3.33</td>
<td>3.21</td>
<td>3.87</td>
<td>3.94</td>
<td>5.29</td>
<td>8.43</td>
<td>17.13</td>
<td>49.44</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>10.71</td>
<td>10.51</td>
<td>10.39</td>
<td>10.32</td>
<td>10.16</td>
<td>9.99</td>
<td>9.85</td>
<td>9.65</td>
<td>9.38</td>
<td>9.04</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decile of deprivation 2001</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37.50</td>
<td>9.28</td>
<td>7.35</td>
<td>6.35</td>
<td>6.41</td>
<td>6.48</td>
<td>6.31</td>
<td>4.67</td>
<td>5.36</td>
<td>10.29</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>19.22</td>
<td>20.76</td>
<td>13.56</td>
<td>10.09</td>
<td>12.95</td>
<td>8.27</td>
<td>4.66</td>
<td>3.10</td>
<td>3.64</td>
<td>3.76</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>11.46</td>
<td>15.56</td>
<td>15.61</td>
<td>16.56</td>
<td>9.15</td>
<td>13.75</td>
<td>6.96</td>
<td>3.26</td>
<td>3.81</td>
<td>3.88</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>8.65</td>
<td>11.20</td>
<td>13.82</td>
<td>13.38</td>
<td>12.28</td>
<td>13.90</td>
<td>11.07</td>
<td>6.54</td>
<td>6.37</td>
<td>2.79</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>8.99</td>
<td>9.62</td>
<td>10.67</td>
<td>15.40</td>
<td>10.61</td>
<td>14.02</td>
<td>6.34</td>
<td>12.46</td>
<td>7.16</td>
<td>4.73</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>6.36</td>
<td>8.63</td>
<td>8.78</td>
<td>8.23</td>
<td>9.14</td>
<td>9.01</td>
<td>12.95</td>
<td>6.69</td>
<td>17.97</td>
<td>12.24</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>5.02</td>
<td>7.59</td>
<td>6.09</td>
<td>7.68</td>
<td>6.35</td>
<td>5.84</td>
<td>16.43</td>
<td>14.96</td>
<td>17.13</td>
<td>12.93</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>6.65</td>
<td>7.45</td>
<td>6.41</td>
<td>5.69</td>
<td>12.36</td>
<td>5.83</td>
<td>6.91</td>
<td>15.85</td>
<td>16.38</td>
<td>16.46</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>6.12</td>
<td>5.15</td>
<td>7.08</td>
<td>3.55</td>
<td>8.66</td>
<td>11.21</td>
<td>14.20</td>
<td>18.56</td>
<td>10.93</td>
<td>14.53</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>11.66</td>
<td>5.41</td>
<td>4.41</td>
<td>3.75</td>
<td>5.39</td>
<td>6.81</td>
<td>13.50</td>
<td>13.01</td>
<td>10.94</td>
<td>25.12</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>10.22</td>
<td>9.97</td>
<td>9.64</td>
<td>9.56</td>
<td>9.58</td>
<td>9.92</td>
<td>10.22</td>
<td>10.27</td>
<td>10.47</td>
<td>10.15</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decile of deprivation 2001</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37.55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.12</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19.96</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>5.72</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>52.25</td>
<td>24.92</td>
<td>8.24</td>
<td>5.14</td>
<td>2.49</td>
<td>1.23</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>5.67</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>34.10</td>
<td>34.19</td>
<td>11.87</td>
<td>7.93</td>
<td>3.92</td>
<td>2.32</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>5.36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19.96</td>
<td>34.66</td>
<td>17.69</td>
<td>13.09</td>
<td>5.86</td>
<td>3.38</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>6.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14.28</td>
<td>28.25</td>
<td>21.19</td>
<td>16.28</td>
<td>8.87</td>
<td>4.98</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>5.49</td>
<td>-</td>
<td>-</td>
<td>11.15</td>
<td>21.66</td>
<td>22.43</td>
<td>21.68</td>
<td>11.19</td>
<td>6.40</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.37</td>
<td>-</td>
<td>8.49</td>
<td>16.64</td>
<td>19.02</td>
<td>24.54</td>
<td>16.51</td>
<td>9.41</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.78</td>
<td>-</td>
<td>6.48</td>
<td>13.01</td>
<td>14.98</td>
<td>21.76</td>
<td>20.27</td>
<td>18.72</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.83</td>
<td>-</td>
<td>4.52</td>
<td>9.42</td>
<td>13.87</td>
<td>17.07</td>
<td>40.04</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6.38</td>
<td>-</td>
<td>-</td>
<td>18.54</td>
<td>24.08</td>
<td>15.90</td>
<td>15.39</td>
<td>10.37</td>
<td>9.35</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Note: Because in 20-40% of the neighbourhoods in Sweden no one receives unemployment or welfare benefits, these deciles get collapsed into the first decile (least deprived). Therefore the matrix for Sweden shows empty cells in the least deprived deciles.

<table>
<thead>
<tr>
<th>Decile of deprivation 2001</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70.67</td>
<td>7.43</td>
<td>6.00</td>
<td>4.89</td>
<td>3.71</td>
<td>2.63</td>
<td>1.92</td>
<td>1.40</td>
<td>0.94</td>
<td>0.41</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>7.32</td>
<td>69.26</td>
<td>5.78</td>
<td>4.98</td>
<td>3.94</td>
<td>3.05</td>
<td>2.19</td>
<td>1.77</td>
<td>1.14</td>
<td>0.57</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>6.27</td>
<td>67.70</td>
<td>5.63</td>
<td>66.34</td>
<td>4.61</td>
<td>4.02</td>
<td>3.03</td>
<td>2.44</td>
<td>1.76</td>
<td>0.91</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>5.48</td>
<td>5.78</td>
<td>5.36</td>
<td>65.26</td>
<td>4.54</td>
<td>3.65</td>
<td>3.03</td>
<td>2.18</td>
<td>1.18</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.40</td>
<td>5.24</td>
<td>5.16</td>
<td>5.36</td>
<td>64.07</td>
<td>4.53</td>
<td>3.51</td>
<td>3.08</td>
<td>1.63</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.69</td>
<td>4.29</td>
<td>4.85</td>
<td>5.00</td>
<td>5.35</td>
<td>6.40</td>
<td>4.53</td>
<td>3.51</td>
<td>1.63</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3.36</td>
<td>3.89</td>
<td>4.17</td>
<td>4.67</td>
<td>4.92</td>
<td>4.88</td>
<td>63.28</td>
<td>4.60</td>
<td>3.87</td>
<td>2.36</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>2.48</td>
<td>3.41</td>
<td>3.60</td>
<td>4.03</td>
<td>4.55</td>
<td>4.83</td>
<td>5.36</td>
<td>63.25</td>
<td>5.02</td>
<td>3.47</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>1.76</td>
<td>2.38</td>
<td>2.82</td>
<td>3.60</td>
<td>3.93</td>
<td>4.65</td>
<td>5.41</td>
<td>6.36</td>
<td>63.72</td>
<td>5.37</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>1.18</td>
<td>1.71</td>
<td>1.91</td>
<td>2.34</td>
<td>3.41</td>
<td>3.87</td>
<td>4.55</td>
<td>5.98</td>
<td>7.84</td>
<td>67.22</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>12.19</td>
<td>12.50</td>
<td>11.98</td>
<td>11.44</td>
<td>10.73</td>
<td>9.78</td>
<td>9.02</td>
<td>8.46</td>
<td>7.62</td>
<td>6.28</td>
<td>100</td>
</tr>
</tbody>
</table>