Accepted Manuscript

Geochronology and landscape evolution of the strand-plain of the Usumacinta and Grijalva rivers, southern Mexico

Esperanza Muñoz-Salinas, Miguel Castillo, David Sanderson, Tim Kinnaird

PII: S0895-9811(17)30269-9
DOI: 10.1016/j.jsames.2017.08.021
Reference: SAMES 1762

To appear in: Journal of South American Earth Sciences

Received Date: 3 July 2017
Revised Date: 25 August 2017
Accepted Date: 28 August 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Geochronology and landscape evolution of the strand-plain of the Usumacinta and Grijalva rivers, southern Mexico

Esperanza Muñoz-Salinas1,*, Miguel Castillo2, David Sanderson3, Tim Kinnaird4

1Instituto de Geología, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria 3000, P.C. 02510, Mexico City, Mexico. Email: Esperanzam@ownmail.net, telephone: +52 (55) 522 4300 Ext. 109

2Instituto de Geología, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria 3000, P.C. 02510, Mexico City, Mexico. Email: Castillom@geologia.unam.mx, telephone: +52 (55) 56224288 Ext. 241

3Scottish Universities Environmental Research Centre, SUERC, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, Glasgow, UK. Email: David.Sanderson@glasgow.ac.uk, telephone: (+33) 01355270110
Abstract

The strand-plain of the Usumacinta and Grijalva rivers is the largest of the Gulf of Mexico as it is characterized by a sequence of well-preserved beach-dune ridges \((n > 100)\) distributed \(~150\) km along the shoreline. This prominent coastal landform is part of the delta plain of Tabasco and Campeche. We present geochronological data of the beach-dune ridges sequence of the Usumacinta and Grijalva rivers. Radiocarbon dating failed in providing consistent ages of the ridges in contrast to optically stimulated luminescence (OSL), which yielded coherent and robust dates. The oldest beach-dune ridges were formed \(~2.5\) ka. The presence of blocked-valley lakes evidences a recent process of sediment aggradation on the delta plain caused by a marine transgression. Using a regression model with the OSL ages and the distance of beach-dune ridges from the shoreline we estimate
that the autoretreat yielded the sediment accumulation ∼7 ka. Our estimation agrees with other general models of sea level rising in the Gulf of Mexico that consider a marine stabilization initiated about ∼6 to 7 ka. The progradation rates of the beach-dune ridges (4.7 to 8.9 m yr\(^{-1}\)) place this strand-plain among those with high sedimentation rates in the Gulf of Mexico and, perhaps, around the world.

Keywords

Strand-plain of Usumacinta and Grijalva rivers, delta plain of Tabasco and Campeche, landscape evolution, OSL, Gulf of Mexico

1. **Introduction**

Strand-plains are present in all continents but they are more frequent in wave-dominated beaches where there is a large amount of terrigenous sediment in the foreshore that is delivered by rivers (Nordstrom et al., 1991; Otvos, 2000; Tamura, 2012). This type of landform is composed of beach-dune ridges sequences that form in decadal time-scales and prograde toward the sea. In cases where the geochronology of ridges is well constrained the progradational rates are established using the distance of the ridges from inland to the sea. In the Gulf of Mexico, the progradational rates for strand-plains range from 0.08 m yr\(^{-1}\)
in the Apalachicola Barrier (Rink and López, 2010) to 1.57 m yr$^{-1}$ for Merrit Island in Florida (Rink and Forrest, 2005). For other strand-plains around the world, low progradational rates have been reported in SW Australia, with 0.57 m yr$^{-1}$ in the coast of New South Wales (Thom et al., 1978) and 0.38 m yr$^{-1}$ in Guichen Bay, south Australia (Murray-Wallace et al., 2002); moderate progradational rates in Phra Thong Island, in Thailand, with 2.7 m yr$^{-1}$ (Brill et al., 2012); and higher rates in Skalligen Spit in Denmark with 30 m yr$^{-1}$ (Aagaard et al., 2007).

We investigate the strand-plain of the Usumacinta and Grijalva rivers (southern Mexico) which forms part of a large delta plain (Fig. 1). The Usumacinta-Grijalva strand-plain is the largest of the Gulf of Mexico as ∼150 km wide, that includes part of the coast of Tabasco and Campeche and extends for more than 25 km inland. This landscape preserves more than 100 beach-dune ridges, and constitutes a unique sedimentary record for understanding the sedimentation rates of the coastal plain of Tabasco and Campeche, and denudation rates for the highlands of southern Mexico and northern Guatemala. Moreover, the strand-plain is also direct evidence for the evolution of the Usumacinta and Grijalva rivers, which together form a river system ranked in the 10th position of the largest rivers of
North America with a mean annual discharge of ~2,678 m3 s$^{-1}$ (Hudson et al., 2005; Benke, 2009).

Despite its extension and geological significance, the region has remained largely understudied (Davis, 2011). Psuty (1965; 1967) and West et al. (1969) conducted the pioneering study of this strand-plain in the 1960s. Based on the projection of the subparallel beach-dune ridges toward the sea, they recognized three progradational phases associated with the relocation of the mouth of the Usumacinta and Grijalva rivers. They, however, did not provide ages of the strand-plain and they only considered the strand-plain as recent fluvial feature of the Quaternary. More recently, Hernández Santana et al., (2007) delineated the translocation of the shoreline of the coasts of Tabasco and Campeche based on the interpretation of aerial photographs.

Our main goal is to provide a robust dating of the beach-dune ridges of this strand-plain to tease out the different phases of its evolution. For this purpose, we use Accelerator Mass Spectrometry (AMS) 14C and Optically Stimulated Luminescence (OSL) analysis. OSL has been proved to provide accurate dates of strand-plain deposits because these tend to be well-reset due to the aeolian redistribution of sediment during the beach-dunes formation.
The role of aeolian processes in the formation of beach-dune ridges among different strand-plains around the world is under debate (Tamura, 2012), however, the studies of Psuty (1965; 1967) and West et al. (1969) indicate that aeolian processes are important in the formation of beach-dune ridges in the coast of Tabasco and Campeche. They observed that the sand transported to the beach by middle intensity waves is redeposited to the top of berms by winds (Psuty, 1965; 1967).

2. Methods

2.1. Radiocarbon and OSL analysis

In November 2015, fieldwork was undertaken in Tabasco and Campeche to extract the samples from different beach-dune ridges on the strand-plain for dating. Our sampling strategy consisted of collecting samples from along two transects perpendicular to the coast. We carefully selected only those lands with undisturbed beach-dune ridges and avoided in all cases those sites with evidences of anthropic perturbation. We sampled eight sites with well-preserved crests around the strand-plain of Usumacinta and Grijalva rivers (Figs. 2 and 3).
To extract samples for OSL and AMS 14C dating we excavated a hole in the top of crests. We covered the hole with a black opaque blanket and we took samples at ~0.5 m of depth by inserting a plastic tube of 20 cm long and 5 cm diameter into the deposit. Once the tube was filled with sediment, we extracted and covered it with aluminum foil. The sampled material was used for both luminescence analysis and determination of the environmental dose rates in the laboratory. We removed the sediment adjacent to the place where we extracted the tube and collected ~500 g of material in a bag that was used in the laboratory for the determination of the gamma dose rates. These samples were analyzed at the Scottish Environmental Research Centre (SUERC), in the United Kingdom, using the single aliquot regenerative (SAR) method on grains of quartz. For radiocarbon analysis, we extracted chunks of organic matter, charcoal and organic sediment from inside the same holes from the same ridge where we extracted the OSL samples. Four of the samples were sent to the Beta Analytic Laboratory in USA for their analysis with an AMS.

2.2. Terrain analysis

We used Landsat 8 images and ASTER digital elevation models (DEMs) of 30 m resolution for photointerpretation of major phases of evolution of the Usumacinta and Grijalva strand-plain. Both products were downloaded from the USGS webpage.
We also analyzed the available high-resolution digital elevation models (HRDEM) of 3 m of resolution from LIDAR datasets offered by the INEGI in their webpage (http://www.inegi.org.mx) which was manipulated in ArcGIS 10.1.

3. Results and discussion

3.1 Phases of evolution of the strand-plain of the Usumacinta and Grijalva rivers according to photointerpretation

The three progradational phases of evolution of the strand-plain identified by Psuty (1965; 1967) and West et al. (1969) were confirmed based on photointerpretation of Landsat 8 images and ASTER digital elevation models (DEMs) of 30 m resolution.

During phase I the Usumacinta and Grijalva rivers flowed separately into the Gulf of Mexico. The evidence of this formative period is in the western sector of the strand-plain where the beach-dune ridges are oriented from NW to SE (Fig. 2). The NW-SE orientation indicates that a river inlet flowed ~10 km west from Grijalva River current position. The Grijalva River migrated toward the east in previous episodes to the phase I. This is
confirmed by the presence of palaeo-channels along the coastal plain of Tabasco and the eroded beach-dune ridges found in the river mouth of Tonala and Rio Seco rivers (Fig. 1B). During this phase the Usumacinta River probably discharged into the sea, near to Laguna de Terminos (Fig. 1).

During phase II the orientation of the beach-dune ridges indicates that the Usumacinta and Grijalva rivers joined a few kilometers inland and flowed into the sea through the San Pedro-San Pablo (SPSP) River (Fig. 2). Projecting this set of beach-dune ridges toward the sea, we reconstructed a delta lobe that protruded ~6 km seaward. In this phase, a palaeo-channel in the western sector of the strand-plain evolved contemporaneously with the delta lobe at the SPSP River. This palaeo-channel has a distributary channel that was created when the Grijalva River flowed into the sea during phase I and it incises part of the beach-dune ridges built in the phase II.

Phase III initiated with the migration of Usumacinta and Grijalva rivers toward the west where they have remained in their current position (Fig. 2). In this phase these rivers have built the modern delta lobe. In this phase the SPSP River dropped its rate of sediment delivered to the sea and the sea waves started to erode the delta lobe formed during phase II.
(see Fig. 4). The precise timing when phase II changed to phase III is when the modern
delta lobe grew up and the old delta lobe at SPSP River started to be eroded.

3.2. OSL and Radiocarbon results

Radiocarbon samples resulted in very young ages ranging from 233 ± 236 BP to post 0 BP. The sample extracted close to the shoreline provided post 0 BP, in the middle part of the strand-plain, the closer sample to the coast is of 180 ± 44 BP and the farther inland of 233 ± 236 BP. The sample located in the furthest point inland yield an age of post 0 BP. Three of the four AMS 14C dates contain younger dates toward the shoreline but the sample located farther inland yield a post 0 BP age (see Table 1). All the AMS 14C dates are yielding very recent ages making difficult to constrain the age of strand-plain. We interpreted that the ages are indicative of the colonization of vegetal species on the strand-plain rather than the beach-dune ridges formation.

OSL ages ranged from 560 ± 40 BC (2.57 ± 0.04 ka) in the ridge sampled farther inland to 1880 ± 5 AD (0.14 ± 0.01 ka) for the sample extracted close the shoreline and in the current delta lobe. We observed a strong linear correlation between OSL ages versus their distance from the shoreline ($R^2 = 0.88$; $p<0.01$; $F<0.01$) (Fig. 2 and Table 2). This trend agrees with
a simple progradational sequence model of deposits. OSL ages are within historical time, spanning through the Middle and Late Preclassic, and the Classic periods of the Maya chronology (Mascarelli, 2010).

3.3. Contrasting OSL results with historical records

OSL ages suggest that the strand-plain of the Usumacinta and Grijalva rivers was under formation during the time of the Maya Civilization apogee. The spatial distribution of the Maya archeological sites in Tabasco and Campeche are located outside the strand-plain of the Usumacinta and Grijalva rivers (see Fig. 1). Although this fact does not prove by itself that the strand-plain was under sedimentation during the time of the Maya Civilization, the lack of evidences of human occupation in the strand-plain supports the fact that this landform was in formation during that time.

The first historical record of the Usumacinta and Grijalva rivers area is from the writings of the Spanish Armada that arrived to the southern coasts of the Gulf of Mexico in 1518 AD [García-Icazbalceta, 1972]. These documents described how the ship of Juan de Grijalva navigated the mouth of the Usumacinta and Grijalva rivers. This historical evidence
indicates that in 1518 AD the strand-plain was in phase III of evolution. We used the age of samples D6 and D8 to calculate the time of transition between phases II and III, assuming a constant progradational rate. The distance between samples is 5.5 km, and the transition between phase II to III occurred ~4.5 km seaward from sample D8. Using the progradational rate model of $\partial 8.87 \text{ m yr}^{-1}$ we calculated that the transition between phase II and III, that is also the starting date of phase III occurred ~1383 AD. This date agrees with the fact that in 1510 AD, when Juan de Grijalva arrived to the coasts of Tabasco and Campeche, the strand-plain was on its phase III of evolution.

Projecting the orientation of the truncated beach-dune ridges of the delta lobe of the SPSP River (phase II) we estimated the mean erosion rate on this delta lobe, constraining the date for transition between phases II and III at 1405 AD. The mean erosion rate was 10 m yr^{-1}. Hernández Santana et al (2007) calculated a mean erosion rate of 8 m yr^{-1} in this same delta lobe between 1943 to 1995 by using aerial photographs of the coasts of Campeche and Tabasco. In this case, this independent study agrees with our estimation of the erosion rates for the delta lobe of the SPSP River using the OSL ages.
3.4. Landscape evolution of the strand-plain of the Usumacinta and Grijalva rivers according to OSL ages

Our regression model demonstrates that there is a linear relationship between distance from the shoreline and age of the sampled sites (Fig. 2). All the ages prograde towards the coast with exception of sample D2 (2.57 ± 0.04 ka) that is in phase II but is older than D1 (Table 2). Because D2 is very close to a paleo-channel (Fig. 2) we suspect that partially bleached grains transported in this fluvial environment were deposited on the top of the ridge at the time the paleo-channel was active. Thus, the OSL age of D2 yields an older age than it should be according to its position in the strand-plain.

Using the OSL ages we propose that phase I of evolution of the strand-plain initiated ∼2.5 ka, as the sample located farther inland, D1, yielded 2.37 ± 0.07 ka. To calculate the beginning of Phase II, we considered that the first beach-dune ridge was located at ∼1 km inland from D8. Using the same progradational model of ∂8.87 m y⁻¹ used to estimate the beginning of Phase III, we calculated that Phase II initiated ∼1.25 ka by adding 113 years to the age of D8 (1.14 ± 0.03 ka). As mentioned above, Phase III initiated ∼0.63 ka (i.e. 1383 BC).
The progradation rates in the strand-plain variate among the different OSL samples between 4.7 to 8.9 m yr\(^{-1}\) and a mean period of bar formation of 13.5 m/yr. These values place the strand-plain of the Usumacinta and Grijalva rivers among those with high sedimentation rates in the Gulf of Mexico and around the world (Fig. 5).

3.5. The strand-plain of the Usumacinta and Grijalva rivers in the delta plain of the Tabasco and Campeche

We recognized two sectors of the delta plain: (1) the western sector, which is composed by abandoned river channels and some remnants of eroded beach-dune ridges sequences located along the shoreline (Fig. 1B) and (2) the eastern sector, which contains the strand-plain of the Usumacinta and Grijalva rivers and where the current channels of these rivers distribute and flow into the sea (Fig. 1B). The western sector has a lower elevation than the eastern sector (Fig. 1), supporting our interpretation that the sedimentation rates in the delta plain are higher in the east.
The boundary between the delta plain and the sierra that is marked by an abrupt change in elevation at an average distance from the current shoreline of 90 km, characterized by the presence of blocked-valley lakes, particularly in the eastern sector (Fig. 1). These kinds of lakes indicate that a process of sediment aggradation dammed valleys with insufficient discharge to incise into the coastal plain, like in the case of some tributaries of the Fly River in Papua New Guinea (Lauer et al., 2008). The aggradation process of the delta plain suggests that a marine transgression inundated the surface, more recently in the eastern part of the delta which has a lower elevation, and it was followed by a process of sediment accumulation initiated in the boundary between the delta plain and the sierra and progressively moving towards the sea (Muto and Steel, 1997; Canestrelli et al., 2010). Therefore, the strand-plain of the Usumacinta and Grijalva rivers, that occupies ~25% of the southern sector of the delta plain, correspond to the youngest feature only. To calculate the moment in which the deltaic autoretreat stopped and started the sediment accumulation in the delta, we used a regression model of the OSL ages to distance to the shoreline. For this purpose, we assumed that the sediment delivery from the Usumacinta and Grijalva rivers has remained constant. We obtained that the model of aggradation of the eastern sector delta plain occurred ~7 ka (Fig. 2). Considering that the sea-level rise started to cease about ~6 ka time in the Gulf of Mexico (Balsillie and Donoghue, 2004), our
estimation of the formation of the delta is plausible. Finally, we propose that after the marine transgression, the sediment accommodation in the southern sector of the delta plain must have initiated under shallow waters that inhibited beach-dune ridge formation; as the intensity of waves should have been reduced. When the shoreline moved toward deeper waters, wave energy increased enough to form beach-dune ridges. This explains the lack of beach-dune ridges in the inland part of the delta plain.

4. Conclusions

We introduce a robust geochronological record of the largest strand-plain of the Gulf of Mexico and one of the most important worldwide. Eight OSL ages allow us to constrain the different phases of evolution of the strand-plain of the Usumacinta and Grijalva rivers and to provide progradation rates during it formation. Based on a regression model between OSL ages and distance we propose that aggradation in the coastal plain of Tabasco and Campeche initiated ~7 ka by the onset of sea-level stabilization on the Gulf of Mexico. Results of this study strongly suggest that the strand-plain of the Usumacinta and Grijalva rivers is among the highest denudational rates reported for the Gulf of Mexico and among the world.
Acknowledgements

Fieldwork and OSL laboratory analysis were funded by the project UNAM-PAPIIT (IA102615). We thank Dr. Correa-Metrio and an anonymous reviewer for their thoughtful comments which improved the final version of the manuscript.

References

Figure captions

Figure 1. Location map of the strand-plain of the Usumacinta and Grijalva rivers in the delta plain of Tabasco and Campeche. In A Current position of the Usumacinta and Grijalva rivers in the delta plain and location of blocked-valley lakes. Numbers correspond to arqueological sites, 1 = Comacalco; 2 = Palenque; 3 = Balancan and 4 = El Tigre. The topographic data is from ASTER Global DEM of 30 m of resoltion, ASTER GDEM is a product of METI and NASA. In B is shown the former delta of Grijalva river at western sector of the delta plain and prior to the formation of the Usumacinta and Grijalva strand-plain (see Fig. 2). Topography extracted from 5m LIDAR DEM produced by INEGI.

Figure 2. Phases of evolution of the strand-plain of the Usumacinta and Grijalva rivers and OSL ages. The inset shows the correlation between OSL ages and the distance of samples from shoreline confirming a markedly progradation of beach-dune ridges from inland towards the sea. The delta plain initiated the aggradation process at ~ 7 ka evidence by the blocked-valley lakes located 90 km off the shoreline (see Fig. 1A). The satellite images are from Landsat 8 by the NASA) and available in the USGS webpage (https://earthexplorer.usgs.gov).
Figure 3. Well-preserved beach-dune ridges of the strand-plain of the Usumacinta and Grijalva river in Campeche. In this site, crests over the inundated terrain in the swales allowing the identification of these parallel geomorphological forms. The width of ridges is about 2-3 m and difference of elevation between top of crests and bottom of swales is > 1 m.

Figure 4. Erosive shoreline at SPSP River. Notice that a remaining ridge in the front of the picture is partially destroyed by the effect of the waves.

Figure 5. Progradation rate (m yr⁻¹) and period of formation (years per bar) for different reported strand-plains around the world. The Usumacinta-Grijalva is among the highest progradation rates and shortest periods of bar formation. Data of Tagueman Bay and Grand Traverse Bay by Argyilan et al., (2005); Canaveral Peninsula and Merrit Island by Rink and Forrest, (2005); Grinchen Bay by Murray-Wallace et al., (2002); Skallingen Spit by Aagaard et al., (2007); Phra Thong Island by Brill et al., (2012); New South Wales by Thom et al., (1978) and Apalachicola Barrier by Rink and Lopez, (2010).
Table 1. List of the age of samples dated for AMS 14C analysis in Beta Analytic Laboratory.

<table>
<thead>
<tr>
<th>ID</th>
<th>Lab code</th>
<th>Easting</th>
<th>Northing</th>
<th>14C age</th>
<th>Cal. 14C agea</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>D9</td>
<td>Beta - 442567</td>
<td>18°36’40.04395</td>
<td>92°40’40.62489</td>
<td>106.8 +/- 0.3 pMC</td>
<td>Post 0 BP</td>
<td>Plant material</td>
</tr>
<tr>
<td>D8</td>
<td>Beta - 442568</td>
<td>18°36’42.32562</td>
<td>92°14’36.39035</td>
<td>210 +/- 130 BP</td>
<td>233 ± 236 BP</td>
<td>Plant material</td>
</tr>
<tr>
<td>D3</td>
<td>Beta - 442569</td>
<td>19°30’55.06019</td>
<td>92°41’21.52405</td>
<td>180 +/- 30 BP</td>
<td>180 ± 44 BP</td>
<td>Charred material</td>
</tr>
<tr>
<td>D1</td>
<td>Beta - 442570</td>
<td>18°19’44.06024</td>
<td>92°47’48.30420</td>
<td>100.7 +/- 0.3 pMC</td>
<td>Post 0 BP</td>
<td>Organic sediment</td>
</tr>
</tbody>
</table>

aCalibration using IntCal 13.14C (Reimer et al. 2013) using the code “CLAM” (Blaawn 2010) written for R (R Development Core Team 2009).
Table 2. Sample names, location and OSL ages obtained for the eight sites around the strand-plain of the Usumacinta and Grijalva rivers. Errors stated are ± standard error (weighted standard deviation). Dose rate was estimated from high-resolution gamma spectrometry (using a EG&G Ortec Gamma-X detector) and a thick source beta counting system (Sanderson, 1988). Effective beta and gamma dose rates followed water corrections with grain size attenuation factors of Mejdahl (1979) for K, U, and Th, and including cosmic dose contribution (Prescott and Hutton, 1994). Equivalent doses were performed in grains of quartz using a Risø DA-15 automatic reader and following a single aliquot regeneration (SAR) protocol (Murray and Wintle, 2000) (For further details on the analytical procedures consult the laboratory report of Kinnaird et al., 2016).

<table>
<thead>
<tr>
<th>ID</th>
<th>Lab code</th>
<th>Location and Elevation</th>
<th>OSL ages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Field no.</td>
<td>Northing</td>
<td>Easting</td>
</tr>
<tr>
<td>D1</td>
<td>2842</td>
<td>18° 19’44.06024</td>
<td>92° 47’48.30420</td>
</tr>
<tr>
<td>D2</td>
<td>2843</td>
<td>18° 22’35.39771</td>
<td>92° 46’59.04204</td>
</tr>
<tr>
<td>D3</td>
<td>2844</td>
<td>19° 30’55.06019</td>
<td>92° 41’21.52405</td>
</tr>
<tr>
<td>D4</td>
<td>2845</td>
<td>18° 27’23.88197</td>
<td>92° 49’24.17609</td>
</tr>
<tr>
<td>D5</td>
<td>2846</td>
<td>18° 40’11.78538</td>
<td>92° 15’21.74478</td>
</tr>
<tr>
<td>D6</td>
<td>2847</td>
<td>18° 39’26.48189</td>
<td>92° 13’52.57510</td>
</tr>
<tr>
<td>D8</td>
<td>2849</td>
<td>18° 36’42.32562</td>
<td>92° 14’36.39035</td>
</tr>
<tr>
<td>D9</td>
<td>2850</td>
<td>18° 36’40.04395</td>
<td>92° 40’40.62489</td>
</tr>
</tbody>
</table>
➢ A robust OSL geochronological record for the strand-plain of Tabasco and Campeche
➢ Different phases of evolution of the strand-plain of Usumacinta and Grijalva rivers
➢ Aggradation of the coastal plain of Tabasco and Campeche initiated ~7 ka