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Abstract
Pearson’s product moment correlation coefficient (more commonly Pearson’s r) tends to underestimate correlations that 
exist in the underlying population. This phenomenon is generally unappreciated in studies of ecology, although a range of 
corrections are suggested in the statistical literature. The use of Pearson’s r as the classical measure for correlation is wide-
spread in ecology, where manipulative experiments are impractical across the large spatial scales concerned; it is therefore 
vital that ecologists are able to use this correlation measure as effectively as possible. Here, our literature review suggests 
that corrections for the issue of underestimation in Pearson’s r should not be adopted if either the data deviate from bivariate 
normality or sample size is greater than around 30. Through our simulations, we then aim to offer advice to researchers in 
ecology on situations where both distributions can be described as normal, but sample sizes are lower than around 30. We 
found that none of the methods currently offered in the literature to correct the underestimation bias offer consistently reli-
able performance, and so we do not recommend that they be implemented when making inferences about the behaviour of 
a population from a sample. We also suggest that, when considering the importance of the bias towards underestimation in 
Pearson’s product moment correlation coefficient for biological conclusions, the likely extent of the bias should be discussed. 
Unless sample size is very small, the issue of sample bias is unlikely to call for substantial modification of study conclusions.
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Introduction

The essence of much of the statistical treatment of data is 
making inferences about an underlying population from a 
sample. For example, to explore the foraging behaviour of 
bumblebees we might collect a sample of 25 Bombus ter-
restris and explore the relationship between distance from 
the nest and body masses of these 25 individuals. We might 
expect that heavier individuals forage more widely. A natural 
way to quantify such a relationship would be through the 
Pearson’s product moment correlation coefficient (hereaf-
ter called Pearson’s r). Advice on the effective use of this 
statistical measure was recently summarised by Puth et al. 
(2014), who also presented the results of a survey of pub-
lished papers that suggested that this measure of association 
was commonly used across biology. We found 26 papers 
published in Oecologia in the last 12 months, for which a 
primary outcome of the study involved calculation of this 
statistic (see Supplementary Information). In this hypotheti-
cal bumblebee example, interest lies not in the association 
between foraging range and body mass in this sample of 
25 individuals, but in the underlying population. That is, 
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we want to use the sample to make inferences about the 
association between these two traits in the underlying popu-
lation of all individuals of this species that could theoreti-
cally have been included in this sample. In fact, Pearson’s 
r is unusual among commonly used statistical measures in 
that the sample measure is not an unbiased estimator of the 
population value. Specifically, the correlation measured on 
the sample tends to underestimate the correlation that exists 
in the whole population. This phenomenon is well known in 
the statistics literature (see below), but is generally not men-
tioned in statistics texts aimed at biologists. Consequently, 
this effect generally goes unacknowledged and unappreci-
ated in the biology literature [but see brief mention on p. 
566 of Sokal and Rohlf (1981), and more full treatment in 
DeGhett (2014) for exceptions]. The large spatial scale at 
which ecologists work makes manipulative experiments 
often impractical, so correlative studies are more common 
than in fields such as animal behaviour. For this reason, it is 
vital that ecologists use the classical measure of correlation 
(Pearson’s r) as effectively as they can. Our aim here is to 
provide a summary of existing evidence supplemented by 
our own investigations to offer researchers in ecology clear 
advice on what to do about the bias in Pearson’s r.

Materials and methods

Review of the existing literature

A range of correction factors are available in the statistics 
literature, which might be applied to the value of r calcu-
lated from a sample to reduce the bias, i.e., to make it more 
reflective of the population value. Shieh (2010) compared 
five such measures and found that the most effective of them 
was due to Olkin and Pratt (1958). Under this correction 
(generally called OPA after the original authors), if the sam-
ple measure is r, then they recommend correcting this to 
OPA(r) where

Here, N is the sample size. However, Shieh points out that 
while such corrections can reduce the bias in estimation, 
they can increase the mean square error (MSE). That is, 
the corrected version is less likely to be consistently lower 
than the population value, but will on average be further 
away from the population value (reducing bias at a cost of 
reduced precision). Shieh further argued that the problem of 
increasing MSE was particularly acute for less strong cor-
relations. Shieh offered the rule of thumb that if the mag-
nitude of the sample r is less than 0.6, then no correction 
should be applied because the issue of increased uncertainty 

(1)OPA(r) = r

(

1 +
1 − r2

2(N − 4)

)

.

would dominate the issue of bias, but if the magnitude of r 
is greater than 0.6 then the OPA correction should be con-
sidered. If the sample size is very small (ten or less), then 
Sinsomboonthong et al. (2013) offer a method of correction 
based on jackknife sampling that might be more effective 
than OPA, but any improved performance would be rela-
tively modest compared to the considerable increase in cal-
culation complexity. Gorsuch and Lehmann (2010), on the 
basis of their simulations and a review of the literature, offer 
the rule of thumb that bias is strongest for moderate levels of 
r (with magnitudes between 0.3 and 0.7), but when N > 30 
then issues of underestimation can be considered trivial. 
Zimmerman et al. (2003) also recommended the OPA cor-
rection after comparing it to alternatives in a simulation 
study (although note that they, in common with some other 
authors, utilise a formula with a “3” rather than “4” in the 
denominator). Although Pearson’s r is generally quite robust 
to deviation of the underlying assumption of normality in the 
underlying traits (Bishara and Hittner 2012), the corrections 
designed to reduce bias in bivariate normal data (like OPA) 
increase bias when underlying populations are non-normal 
(Bishara and Hittner 2015).

Thus, on the basis of previous literature, it is already pos-
sible to offer clear advice to the researcher in many situa-
tions. Correction for the issue of underestimation should not 
be adopted if either or both of the underlying distributions 
deviate from normality—in such a situation the issue of vio-
lation of the assumption of normality is more of a concern 
than that of underestimation, alternative measures of asso-
ciation may be appropriate; and Bishara and Hittner (2012) 
and Puth et al. (2014) provide clear advice on how to deal 
with this. Secondly, if sample size is greater than around 30, 
then the issue of underestimation is trivial, and so there is 
no benefit in complicating the analysis of data by applying a 
correction. In the next section, we focus on closing the gap 
in the literature, to offer advice on correction for the situa-
tion where both distributions are well approximated by the 
normal distribution and the sample size is low (N < 30). In 
our survey of 26 recent Oecologia papers, sample size was 
30 or less in 6 cases and could not be determined from the 
paper in 12.

Plan of our simulation studies

We evaluate the performance of different statistical 
approaches over 1000 samples drawn from a population 
with normal marginal distributions and a specified cor-
relation (ρ), using the same methodology as Puth et al. 
(2014). We first consider the estimation of the 95% con-
fidence interval for the population value of Pearson’s r. 
Puth et al. (2014) considered three methods for calculating 
the confidence interval: the BCa method of bootstrapping, 
the method due to both Muddapur (1988) and Jeyaratnam 
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(1992) utilising F statistics, and the most commonly used 
version (due to Fisher, 1925) based on a z-statistic. For 
the first two of these, we compared the uncorrected ver-
sions used by Puth et al. (2014) with modifications where 
OPA correction is applied to all calculated r values. For 
the z-method, we compare the uncorrected method used 
in Puth et al. (2014) with one where after the value of z 
is calculated, it is then replaced by a value (z*) that was 
designed to correct for bias that causes z to be slightly 
larger than it should be. This correction is originally due 
to Hotelling (1953), was recommended by DeGhett (2014) 
and is given by:

In Table  1, we evaluate this technique for samples 
drawn using the method described by Puth et al. (2014) 
with sample sizes N = 10, 20 and 30 for population cor-
relations ρ = 0, 0.1, 0.3, 0.5, 0.7, 0.9. For each of the six 
methods, we calculate the mean coverage of the confi-
dence intervals, defined as the fraction of 1000 confidence 
intervals that include the actual population value ρ. Values 
higher than 0.95 suggest that the confidence interval is 
too large, and values lower than 0.95 suggest that it is too 
narrow. For each combination of sample size and under-
lying correlation, we present a 3 × 2 set of numbers. For 
each of the three methods, we embolden whichever of the 
corrected or uncorrected situations offers coverage closer 
to 0.95, and we underline whichever of the six values is 
closest to 0.95.

We then turn to testing the null hypothesis ρ = 0 (at the 
significance level α = 0.05) in Table 2 for the same combi-
nation of sample sizes and underlying ρ values. For ρ = 0 
we give the type I error rate, otherwise we give the power. 
Again, there is a 3 × 2 combination of numbers in each cell, 
the first column being uncorrected and the second corrected. 
The three rows again refer to three methods considered in 
Puth et al. (2014). Firstly, we consider the standard method 
where t* is given by:

t* is compared to a t-distribution with N − 2 degrees of free-
dom, the null hypothesis being rejected if the absolute value 
of t* is greater than the (1 – α/2) quantile of the respective 
t-distribution. Secondly, we consider a permutation test, 
where the null hypothesis is rejected if the observed value of 
r lies outside the 2.5 and 97.5 percentiles of a distribution of 
r scores calculated from permutations of the original sample. 
Finally, we use Fisher’s method, first calculating a z score as:

(2)z
∗ =

{

z −
3z+r

4(N−1)
, ifN > 10

z −
3z+r

4(N−1)
−

23z+33r−5r3

96(N−1)2
, ifN ≤ 10

.

(3)
t
∗ =

r
√

1−r2

N−2

.
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Then we compare

with the (1 − α/2) quantile of the standard normal distribu-
tion (i.e., 1.96 if α = 0.05), rejecting the null hypothesis if the 
absolute value of the calculated value is bigger than or equal 
to 1.96. To implement correction for underestimation, for the 
first two methods we replace all calculated values of r with 
the OPA-corrected value at all stages of the procedure; for 
the final method, we replace z with the appropriate corrected 
value z* as defined above. Results are shown in Table 2; for 
each combination of sample size and the three methods, we 
calculate the power (or type I error rate for ρ = 0), using both 
the uncorrected and corrected methods (columns “r” and 
“r*”, respectively). For each pair of uncorrected or corrected 
values, we embolden whichever offers the higher power (or 
type I error rate closest to the nominal 0.05 level). For each 
group of six values, we underline whichever uncorrected or 
corrected method performs best of the six (in terms of high-
est power or type I error rate closest to the nominal level).

In Fig. 1a, we then plot the OPA-corrected value divided 
by the original r value calculated from a sample, for sample 
sizes 8–30 and r values 0.1, 0.3, 0.5, 0.7 and 0.9. In Fig. 1b, 
we do the same for z correction where, after the correction 
has been made to Fisher’s z, the corrected r value is recov-
ered using:

Finally, in Fig. 2a, we investigate the spread of sample 
values by plotting the frequency of r values calculated from 
1000 samples with N = 15 and ρ = 0.25, drawing attention 
to the mean, standard deviation and mean squared error. In 
Fig. 2b, we show the same for the OPA(r)-corrected values 
for the same sample size and r.

Results

Table 1 gives no evidence to support adoption of the OPA 
correction for calculation of confidence intervals. Regard-
less of the method used, correction does not cause a general 
tendency to give coverage values closer to the nominal 0.95 
value. There is perhaps a tendency for correction to lead to 
confidence intervals that are too wide (hence with coverage 
above 0.95), but this tendency is not consistent.

(4)z = 0.5 loge

(

1 + r

1 − r

)

.

(5)
Z =

z
√

1

N−3

,

(6)r =
exp (2z∗) − 1

exp (2z∗) + 1
.
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We now turn to Table 2 for testing the null hypothesis 
that ρ = 0. Considering type I error rate first, we find that 
all methods are overwhelmingly conservative, with type I 
error rates being mostly below 0.05: something that cor-
rection does not substantially change. Turning to power 
(with ρ = 0.1, 0.3, 0.5, 0.7, 0.9), we find unsurprisingly 

that the power for all (corrected and uncorrected) methods 
increases with sample size and with the population value 
of ρ . Puth et al. (2014) did not find a strong difference in 
power between the three uncorrected methods, and our 
results agree with this. We find the same to be true when 
comparing powers of the three corrected versions. Most 

Fig. 1  a OPA-corrected values 
divided by the original r value, 
for sample sizes 8–30 and r 
values 0.1, 0.3, 0.5, 0.7 and 0.9. 
b Corrected r values divided by 
the original r values produced 
via the z-method using Eq. (2), 
for sample sizes 8–30 and r 
values 0.1, 0.3, 0.5, 0.7 and 
0.9. The corrected r values are 
recovered after the correction 
has been made to Fisher’s z by 
the formula given in Eq. (6)

Fig. 2  a Histogram of r values 
calculated from 1000 samples 
with N = 15 and ρ = 0.25; mean 
(full line), standard deviation 
(SD) (dashed line) and mean 
squared error (MSE) are shown. 
b Histogram of OPA(r) values 
calculated from 1000 samples 
with N = 15 and ρ = 0.25; mean 
(full line), standard deviation 
(SD) (dashed line) and mean 
squared error (MSE) are shown
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importantly, for any specific method we do not observe 
correction offering a conspicuous and consistent improve-
ment in power. Hence, we do not find strong evidence in 
support of correcting calculated correlation coefficients as 
part of null hypothesis testing.

Figure 1 shows that it appears that—irrespective of the 
size of r—where sample sizes are > 15, there is very little 
difference between r and OPA(r), a similar trend can be seen 
for the correction to z in Fig. 1b. From Fig. 2, it can then 
be observed that, firstly, such small samples can produce a 
broad range of different r values across our 1000 samples. 
Secondly, the mean r of the 1000 samples is lower than 
the population value of 0.25 (i.e. it is downwardly biased, 
as expected), but the mean value of OPA(r) is noticeably 
(slightly) closer to 0.25 (so the correction slightly reduced 
bias on average). Finally, the standard deviation and the 
mean squared error of the OPA-corrected values are larger 
than for the r values; this suggests that the reduction in bias 
through the use of OPA corrections comes at a cost in impre-
cision—and imprecision is a more dominant feature than 
bias in this example situation.

Discussion

On the basis of our survey of the literature and our own 
simulations, we can offer clear advice to the many research-
ers in ecology who use Pearson’s r in the statistical treatment 
of their data.

Firstly, they should be aware that the value measured on 
their sample will be more often biased towards underesti-
mating than overestimating the true value of the underlying 
population they are interested in. This possible bias was not 
discussed in any of the papers in our survey.

Further, they should be aware that testing the null hypoth-
esis of no association is conservative, rejecting the null 
hypothesis when it is true at lower than the nominal rate 
α. This hypothesis was tested in 21 of the 26 papers in our 
survey; but none of these discussed the conservatism of this 
test.

Next, they should not attempt any of the methods offered 
in the literature for correcting bias. No method yet devel-
oped offers consistently reliable performance. Additionally, 
the fact that the standard deviation of OPA-corrected values 
(Fig. 2b) was greater than that for the r values (Fig. 2a) illus-
trates that any reduction in bias through corrections could 
increase imprecision.

Finally, when discussing the importance of this bias 
towards underestimation for the biological conclusions to 
be drawn from their study, they should quantify the likely 
extent of this bias. We see in Fig. 1a that (regardless of the 
size of the actual correlation ρ) as long as N > 15, the differ-
ence between r and OPA(r) is less than 5% of r. Sample size 

was less than 15 in 3 papers out of 26 in our survey. Thus, 
unless sample size is very small, the issue of sample bias 
is unlikely to call for substantial modification of biological 
conclusions. For such sample sizes, statistical power is likely 
to be very low (see Tables 1, 2) and thus imprecision may 
often be a greater concern than bias even in this situation. 
In our survey of 26 papers, 1 provided a confidence interval, 
and none of the others discussed precision in any way. We 
have demonstrated here three simple and general ways that 
such a confidence interval can be calculated as a very useful 
aid to discussing imprecision of estimation.
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