
OPTIMISING THE USAGE OF CLOUD RESOURCES
FOR EXECUTING BAG-OF-TASKS APPLICATIONS

Long Thanh Thai

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

2017

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/15642

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/15642

Optimising the Usage of Cloud

Resources for Executing Bag-of-Tasks

Applications

Long Thanh Thai

School of Computer Science
University of St Andrews

This thesis is submitted in partial fulfilment for the degree of
Doctor of Philosophy

August 2017

Abstract

Cloud computing has been widely adopted by many organisations, due to its flexibility in
resource provisioning and on-demand pricing models. Entire clusters of machines can now be
dynamically provisioned to meet the computational demands of users. By moving operations
to the cloud, users hope to reduce the costs of building and maintaining a computational
cluster without sacrificing the quality of service.

However, cloud computing has presented challenges in scheduling and managing the
usage of resources, which users of more traditional resource pooling models, such as grid
and clusters, have never encountered before. Firstly, the costs associated with resource usage
changes dynamically, and is based on the type and duration of resources used; this prevents
users from greedily acquiring as many resources as possible due to the associated costs.
Secondly, the cloud computing marketplace offers an assortment of on-demand resources
with a wide range of performance capabilities. Given the variety of resources, this makes it
difficult for users to construct a cluster which is suitable for their applications. As a result, it
is challenging for users to ensure the desired quality of service while running applications on
the cloud.

The research in this thesis focuses on optimising the usage of cloud computing resources.
We propose approaches for scheduling the execution of applications on to the cloud, such that
the desired performance is met whilst the incurred monetary cost is minimised. Furthermore,
this thesis presents a set of mechanisms which manages the execution at runtime, in order to
detect and handle unexpected events with undesirable consequences, such as the violation of
quality of service, or cost overheads.

Using both simulated and real world experiments, we validate the feasibility of the
proposed research by executing applications on the cloud with low costs without sacrificing
performance. The key result is that it is possible to optimise the usage of cloud resources for
user applications by using the research reported in this thesis.

Acknowledgements

This thesis would not have been possible if it were not for for the support that I have been
fortunate enough to receive for the last three and a half years. I would like to express my
deepest gratitude to:

• My primary supervisor Dr. Adam Barker, and secondary supervisor Dr. Blesson
Varghese for their expert supervision, guidance, patience and trust.

• My parents and elder-brother for their unconditional love and support, without which I
would not have had the courage to pursue this PhD.

• The School of Computer Science, St Leonard College, the EPSRC Working Together
project, which has been led expertly by Professor Ian Miguel, and the EPSRC IAA for
their generous financial support.

• Dr. Juan Ye, Dr. Alex Voss, Dr. Mike Weir, Dr. Tristan Henderson, Dr. Edwin Brady,
and Dr. John Thomson for their constructive comments and suggestions.

• The staff and academics at the School of Computer Science for creating a fascinating,
challenging and welcoming research environment.

• My fellow PhD students for sharing ideas, times, and (mostly) drink together to make
my journey highly enjoyable.

• My best friends, Hung and Ha, and their wives, Van and Thao, for their hospitality and
long lasting friendship.

• The small but friendly Vietnamese community in St Andrews for reminding me of how
wonderful my country and its people are.

• And for anyone that I have had a pleasure to meet in the last few years, thank you for
being a part of my journey to be (hopefully) a better person.

Declaration

I, Long Thai, hereby certify that this thesis, which is approximately 34,500 words in length,
has been written by me, and that it is the record of work carried out by me, and that it has
not been submitted in any previous application for a higher degree. I was admitted as a
research student and as a candidate for the degree of Doctor of Philosophy in September
2013; the higher study for which this is a record was carried out in the University of St
Andrews between 2013 and 2017.

Date: Signature of candidate:

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regula-
tions appropriate for the degree of Doctor of Philosophy in the University of St Andrews and
that the candidate is qualified to submit this thesis in application for that degree.

Date: Signature of supervisor:

Permission

In submitting this thesis to the University of St Andrews I understand that I am giving
permission for it to be made available for use in accordance with the regulations of the
University Library for the time being in force, subject to any copyright vested in the work
not being affected thereby. I also understand that the title and the abstract will be pub-
lished, and that a copy of the work may be made and supplied to any bona fide library or
research worker, that my thesis will be electronically accessible for personal or research
use unless exempt by award of an embargo as requested below, and that the library has the
right to migrate my thesis into new electronic forms as required to ensure continued access
to the thesis. I have obtained any third-party copyright permissions that may be required
in order to allow such access and migration, or have requested the appropriate embargo below.

The following is an agreed request by candidate and supervisor regarding the publication of
this thesis: Access to printed and electronic publication of this thesis through the University
of St Andrews.

Date: Signature of candidate:

Date: Signature of supervisor:

Table of contents

List of figures xv

List of tables xix

1 Introduction 1

1.1 Cloud Computing . 1
1.2 Bag-of-Tasks Applications . 4
1.3 Research Hypotheses . 6

1.3.1 Scheduling approaches can minimise running costs of BoT appli-
cations on the cloud and achieve the desired Quality of Service
provided as user defined deadlines 6

1.3.2 Unexpected events, such as performance variation, can be detected
and handled by the execution management mechanisms at runtime . 7

1.4 Contributions . 7
1.5 Publications . 8
1.6 Organisation . 10

2 Literature Review 13

2.1 Related Work . 13
2.1.1 Overview of the Survey Methodology 13
2.1.2 Scheduling in a Homogeneous Environment 15
2.1.3 Scheduling in a Heterogeneous Environment 17

2.2 Taxonomy . 19
2.2.1 Functionality . 21
2.2.2 Requirements . 22
2.2.3 Dynamic Scheduling . 23
2.2.4 Parameter Estimation . 25
2.2.5 Solving Methods . 26

xii Table of contents

2.2.6 Application Heterogeneity . 27
2.3 Discussion . 28

2.3.1 Current Trends . 28
2.4 Requirements Analysis . 31

2.4.1 Heterogeneous Environment . 31
2.4.2 Satisfying Deadlines While Minimising the Monetary Cost 31
2.4.3 Flexible Execution . 32
2.4.4 Trade-off Aware Solving Methods 32

2.5 Chapter Summary . 32

3 Mathematical Representation of the Research Problem 35

3.1 Environment Modelling . 35
3.2 Job Execution Modelling . 38
3.3 Problem Modelling . 41
3.4 Chapter Summary . 43

4 Workload Assignment 45

4.1 Utility Functions . 46
4.1.1 Finding Preceding and Succeeding Workloads 46
4.1.2 Calculate Permissible Delay . 47
4.1.3 Shift Workloads . 47
4.1.4 Execution Pre-emption . 48

4.2 Workload Assignment Algorithm . 49
4.3 Chapter Summary . 51

5 Execution Scheduling 55

5.1 The Exact Approach . 56
5.2 Single Job Scheduling Approach . 60

5.2.1 The Hybrid Scheduling Approach 61
5.2.2 Heuristic Single Job Scheduling 64
5.2.3 Handling Multiple Jobs Using Single Job Scheduling Approaches . 66

5.3 Chapter Summary . 67

6 Execution Management 69

6.1 Dynamic Scheduling . 69
6.1.1 Progress Monitoring . 70
6.1.2 Progress Categorisation . 70

Table of contents xiii

6.1.3 Dynamic Reassignment . 74
6.2 Handling Unknown Applications . 75

6.2.1 Determine the Sampling Duration 76
6.2.2 Schedule the Sampling Phase . 76

6.3 Chapter Summary . 79

7 Design and Implementation 81

7.1 Data Transfer Object (DTO) . 82
7.1.1 Application . 82
7.1.2 Job . 82
7.1.3 InstanceType . 83
7.1.4 Instance . 83
7.1.5 Workload . 83

7.2 Components . 83
7.2.1 Assignment Service . 84
7.2.2 Scheduler . 85
7.2.3 Reassignment Service . 87
7.2.4 Unknown Handler . 87
7.2.5 Cloud Manager . 88
7.2.6 Executor . 89

7.3 Supported Features . 93
7.3.1 Submission Handling . 93
7.3.2 Execution Monitoring and Management 96

7.4 Chapter Summary . 96

8 Evaluation 97

8.1 Introduction . 97
8.2 Comparing the Scheduling Approaches 97

8.2.1 Environment Set-up . 98
8.2.2 Experiment Results and Discussion 101
8.2.3 Discussion . 107

8.3 Evaluating the Unknown Handling Mechanism 110
8.3.1 Environment Set-up . 110
8.3.2 Experiment Results . 114
8.3.3 Discussion and Summary . 120

8.4 Dynamic Reassignment . 120
8.4.1 Experiment Set-up . 120

xiv Table of contents

8.4.2 Experiment Results and Discussion 121
8.5 Cloud Experiments . 126

8.5.1 Environment Set-up . 126
8.5.2 Experiment Results . 127
8.5.3 Discussion . 130

8.6 Chapter Summary . 130

9 Conclusion 133

9.1 Thesis Summary and Contributions . 133
9.2 Lessons Learned . 135
9.3 Future Work . 137

References 139

Appendix A Experiment Results 147

A.1 Scheduling Approaches . 147
A.2 Evaluating the Unknown Handling Mechanism 156
A.3 Dynamic Reassignment . 156
A.4 Cloud Experiments . 160

List of figures

2.1 Taxonomy of Cloud Scheduling Frameworks 20

3.1 Example of the Life of an Instance . 38
3.2 Example of a Workload Assigned to an Instance 39
3.3 Example of a VM Life Based on Assigned Workload 41

4.1 Activity Diagram for the Workload Assignment Process presented by Algo-
rithm 4.5 . 52

5.1 Example of Execution Order in an Instance 57

6.1 Gap for Receiving Extra Workload . 73

7.1 Data Transfer Objects . 82
7.2 The Components of the Software Framework 84
7.3 Static Scheduler Hierarchy Structure . 85
7.4 Job Submission Handling Process . 94
7.5 Execution Management Process . 95

8.1 Experiment Result of Three Scheduling Approaches When the Number of
Jobs Varies . 103

8.2 Experiment Result of Three Scheduling Approaches When the Number of
Tasks Varies . 104

8.3 Experiment Result of Three Scheduling Approaches When the Number of
Instance Types Varies . 106

8.4 Experiment Result of Three Scheduling Approaches When the Deadline Varies108
8.5 The Task Execution Times of the Applications Retrieved by Running Sam-

pling Execution. The error bars illustrate the standard errors. 113

xvi List of figures

8.6 The total cost and violation of different settings: in the known setting, the
task execution times are already available. In the unknown setting, the
task execution times are not available but going to be estimated during
an execution. The medium.8, medium.10, large.4, large.5, xlarge.2, and
xlarge.3 settings have a fixed number of VMs of a given instance type to
execute tasks, thus do not rely on the knowledge regarding the task execution
times. The error bars illustrate the standard errors. 116

8.7 The violation costs of different settings: in the known setting, the task execu-
tion times are already available. In the unknown setting, the task execution
times are not available but going to be estimated during an execution. The
medium.8, medium.10, large.4, large.5, xlarge.2, and xlarge.3 settings
have a fixed number of VMs of a given instance type to execute tasks, thus
do not rely on the knowledge regarding the task execution times. 117

8.8 The number of used ATUs per instance Type of each setting: in the known

setting, the task execution times are already available. In the unknown

setting, the task execution times are not available but going to be estimated
during an execution. The medium.8, medium.10, large.4, large.5, xlarge.2,
and xlarge.3 settings have a fixed number of VMs of a given instance type to
execute tasks, thus do not rely on the knowledge regarding the task execution
times. 118

8.9 Resource Utilisation of each setting: in the known setting, the task execution
times are already available. In the unknown setting, the task execution
times are not available but going to be estimated during an execution. The
medium.8, medium.10, large.4, large.5, xlarge.2, and xlarge.3 settings
have a fixed number of VMs of a given instance type to execute tasks, thus
do not rely on the knowledge regarding the task execution times. 119

8.10 Average Number of Violated Tasks for Each Approach When Dynamic
Scheduling Is Turned On/Off. The error bars illustrate the standard errors. . 123

8.11 Average Amount of Violated Time for Each Approach When Dynamic
Scheduling Is Turned On/Off. The error bars illustrate the standard errors. . 124

8.12 Average Cost of Each Approach When Dynamic Scheduling Is Turned
On/Off. The error bars illustrate the standard errors. 125

8.13 Total costs of each approach. The first three bars represent the total cost
of the exact, hybrid, and heuristic approaches which aim to build a hetero-
geneous cloud clusters. The last three plots represent the total costs of the
homogeneous cloud clusters which consist of VMs of only one instance type. 128

List of figures xvii

8.14 Violation of Each Approach. The error bars illustrate the standard errors. . . 129

List of tables

2.1 Taxonomy of BoT Scheduling Methodologies 29

8.1 Summary of the Independent and Dependent Variable 99
8.2 AWS Instance Types . 111
8.3 Job Specification . 112
8.4 Experiment Results . 115

A.1 Summary of Solving Times in Milliseconds of the Experiment in which the
Number of Jobs Varied . 148

A.2 Summary of Total Costs in Dollar of the Experiment in which the Number
of Jobs Varied . 149

A.3 Summary of Solving Times in Milliseconds of the Experiment in which the
Number of Tasks Varied . 150

A.4 Summary of Total Costs in Dollars of the Experiment in which the Number
of Tasks Varied . 151

A.5 Summary of Solving Times in Milliseconds of the Experiment in which the
Number of Instance Types Varied . 152

A.6 Summary of Total Costs in Dollars of the Experiment in which the Number
of Instance Types Varied . 153

A.7 Summary of Solving Times in Milliseconds of the Experiment in which the
Deadline Varied . 154

A.8 Summary of Total Costs in Dollars of the Experiment in which the Deadline
Varied . 155

A.9 The results of the experiment evaluating the Unknown Handling Mechanism 156
A.10 Cost in Dollars of Each Approach When Dynamic Scheduling Is Turned

On/Off . 157
A.11 Number of Violated Tasks for Each Approach When Dynamic Scheduling Is

Turned On/Off . 158

xx List of tables

A.12 Average Amount of Violated Time in Seconds for Each Approach When
Dynamic Scheduling Is Turned On/Off . 159

A.13 The results of the experiments evaluating the feasibility of the proposed
research in real life cloud, i.e. AWS . 160

List of Algorithms

4.1 Find Position . 46
4.2 Calculate Permissible Delay . 47
4.3 Shift Workloads . 48
4.4 Workload Pre-emption . 48
4.5 Workload Assignment . 50
5.1 Create Initial Plan . 64
5.2 Transform Plan . 65
5.3 Single Job Scheduling . 66
6.1 Progress Categorisation . 72
6.2 Dynamic Reassignment . 74
6.3 Select Sampling VMs . 77
6.4 Schedule Sampling Phase . 78
8.1 Generate Task Execution Times . 99

Chapter 1

Introduction

1.1 Cloud Computing

Cloud computing, since it was first introduced in October 2007 when Google and IBM
cooperated to build a data centre helping students remotely program and research via the
Internet [41], has become not only a new trend of information technology research but also
a successful business model which has been widely applied. This paradigm refers to the
idea of outsourcing not only applications but also the operating platform and hardware
infrastructure through visualisation.

Although there is no unified definition of Cloud computing as different researchers
or projects focus on different aspects and functionalities in different points of view, there
is the a of characteristics which are able to provide the general view of the technology
[20, 16, 66, 46]:

• Parallel and distributed system: users access cloud’s services via the Internet which
means a system has to handle many requests at the same time without having any
concurrent access problems. In order to perform this task successfully, a cloud system
must be able to perform parallel task and support concurrent sharing and aggregation
resources which are geographically distributed.

• Virtualisation: all services, especially platforms and infrastructures, are virtualised in
order to hide the underneath architecture from users. The main benefit of virtualisation
is to allocate resources effectively, e.g. physical machines can be divided into smaller
virtual ones or grouped together to form a powerful virtual machine. Moreover,
virtualisation creates isolation between machines so that a fault on one machine does
not affect the rest.

2 Introduction

• Scalability: as cloud computing aims to provide services on demand in order to prevent
under and/or over resource utilisation, a system must be able to dynamically allocate
or deallocate resources on the demand without interrupting the operation.

• Transparency and abstract: the level of abstraction can be used to distinguish differ-
ent kind of utility computing. Some vendors allow a user to interfere with a (virtual)
hardware level, i.e. infrastructure as a service (IaaS), while others require users to run
applications on a standard built environment, i.e. platform as a service (PaaS). Last
but not least, some organisations provide their services based on Cloud computing, i.e.
software as a service (SaaS).

• Service Level Agreement (SLA): it is the contract between users and providers in
order to define what and how services are provided, i.e. Quality of Service (QoS).

• Pay-as-you-go: a user only pays for what he/she uses, i.e. there is no up-front
investment that user has to pay for. This feature is very attractive for start-ups or
organisations who do not have the large capital to build their own data centres.

A cloud computing environment can be deployed in four different models [46]:

• Public cloud: which is offered to the general public by organisations that own large
data centres such as Amazon, Google, and Microsoft.

• Private cloud: which can be used by only one organisation which owns the infrastruc-
ture in which a cloud is deployed.

• Hybrid cloud: is a combination of public and private cloud. Normally, an organisation
tries to run most of its operation on the private cloud, however, resources from public
cloud can be added in order to handle peak workload, this model is also called cloud

bursting.

• Community cloud: which is offered to an exclusive group of organisations.

In this thesis, we mainly focus on a public cloud setting, in which users pay for the
amount of resources that they use. Cloud providers often offer different pricing plans for
users to select from based on their requirements and/or preferences. The most common
pricing schemes are:

• On-demand resources: can be acquired by a user at any time and have fixed prices.
This is the most commonly used resource type due to its flexibility and guarantee, i.e.
a user is guaranteed to be able to acquired additional resources at any time. However,
it is also the most expensive.

1.1 Cloud Computing 3

• Reserved resources [4]: refer to a certain amount of resources which are reserved
specially for a user with a lower price. It is suitable for a user who has a brief estimation
of required resources in a long period of time, e.g. from one to three years. The price
reduction can go up to more than 60% [3].

• Spot resources [5], or preemptible virtual machines [8]: provide an auction-like
environment in which many users are bidding against each other. As a result, it is
possible to acquire resources which are cheaper compared to on-demand resources.
However, the price can change dynamically depending on the number of bidders.
Moreover, resources can be terminated anytime without notice in order to be reallocated
to the highest bidders.

Recently, cloud computing has become popular by offering an opportunity for organ-
isations, especially those with limited financial capacity, the ability to access computing
resources. Instead of paying an upfront investment, cloud users can employ a pay-as-you-go
pricing scheme in which they only need to pay for the amount of resources which are actually
used. Moreover, the elasticity of cloud computing allows its users to add or remove resources
at runtime seamlessly. For instance, more virtual machines (VMs) can be added to a user’s
cluster when the resource demands are high in order to accommodate a peak workload and
ensure the desired performance. Similarly, when the resource demands are low, a user can
remove some VMs in order to reduce the cost. Cloud providers (such as Amazon Web
Service (AWS) [1], Microsoft Azure [6], or Google Cloud Platform [7]) are often large
organisations with many data centres around the world. Hence, it is possible for them to
satisfy all users’ resource demands. In other words, cloud resources are virtually unlimited.
Finally, cloud providers offer a wide variety of machine types, each of which has different
hardware specification and performance. Hence, users can select a hardware specifications,
called an instance type, or a combination of many to suit the nature of their applications.
For example, a user can select compute-optimised machines for CPU intensive applications,
or memory-optimised machines for memory intensive software. The flexibility of cloud
computing resources is not limited to hardware specification but can be further extended to
software stack, e.g. operating systems and pre-installed software, and even geographical
locations as cloud providers normally have many data centres all over the world.

Even though cloud computing offers many advantages to users, it also introduces unique
challenges which need to be taken into account. Firstly, due to the pay-as-you-go pricing
scheme, every decision of using cloud resources results in monetary cost. Hence, a user
cannot simply employ a greedy approach which acquires as many resources as possible. Even
though cloud resources are virtually not limited, a user’s budget is. As a result, it requires

4 Introduction

users to have a careful scheduling plan in order to acquire enough resources to achieve the
desired performance without resulting in unreasonable monetary cost. Secondly, the wide
variety of instance types offered by cloud providers can be overwhelmed for users. More
specifically, a user must consider tens, or even hundreds, of different options. Those issues
can be further complicated when a Quality-of-Service (QoS), e.g. a desired performance
that a user wants to achieve, is taken into account. Last but not least, the heterogeneity of
cloud resources also extends to the lower hardware infrastructure. In other words, a user’s
VMs can reside on physical machines with different hardware specification, which results in
unexpected performance variation. For instance, a VM running on a new physical machine
will have better performance in comparison to another VM of the same type running on an
old physical machine.

1.2 Bag-of-Tasks Applications

For the past decades, the computational problems faced by academic and industrial have
significantly increased in complexity and volume. As a result, there has been a shift from
running the computation on a mainframe or high performing computers to distributing the
computation of a collection of commodity machines. In other words, it is common nowadays
to split a complex computation into many smaller tasks each of which can be executed
independently on a single machine. This trend in research and development explains the
raise in popularity of MapReduce programming model [27], and computing frameworks such
as Apache Hadoop [9] and Apache Spark [11]. The general idea behind these models and
frameworks is to break a computation into multiple related stages (e.g. mapping and reducing
stages). Each stage consists of a number of tasks that can be executed independently and in
parallel and can be considered as an individual application, called Bag-of-Tasks (BoT).

It should be noted that a BoT application does not always need to be a part of any
larger application. For instance, one of the popular types of BoT application is a simulation
application, e.g. Monte Carlo simulation [38]. This type of application aims to find the
pattern within a seemingly random process by repeating it hundred or thousand of times.
For example, the Molecular Dynamics Simulation is used to calculate the trajectory of the
particles and the forces they exert [37]. Moreover, Monte Carlo simulation has been widely
used in the finance sector for portfolio evaluation [33], personal financial planning [48], etc.
Similarly, a parameter sweep application [22] is a BoT application which consists of a set of
parameters. In each execution, each parameter is set to a specific value within a predefined
range. The goal is to find the optimal value for each parameter based on the predefined

1.2 Bag-of-Tasks Applications 5

criteria. For instance, a parameter sweep application can be used to find a set of parameters
for machine learning techniques, such as support vector machines [23].

In this thesis, we focus on the execution of BoT applications on the cloud. BoT ap-
plications are widely used by scientific communities and commercial organisations whose
applications are too complicated to be executed on a single machine, even a high performing
one. For instance, BoT jobs dominate the number of applications submitted to and usage of
CPU time in grid environments [35]. Similarly, the jobs executed on Facebook data centres
are reported to be mostly independent tasks [30]. However, scheduling the execution of BoT
applications can be challenging due to its uniques characteristics. More specifically, since the
tasks can be executed in parallel, it is easy to naively acquire as many resources as possible.
However, this greedy approach cannot be applied in the cloud environment in which there is
a monetary cost incurred. Cloud computing resources can be unlimited but a user’s wallet is
definitely not.

Besides BoT, there are two other application types that are common nowadays. The
first one is a workflow which that can represented as a directed acyclic graph (DAG), in
which nodes are tasks and edges are dependencies between tasks. As a result, a task in a
workflow cannot be executed unless all of its parents, i.e. tasks whose outputs are used
as its input, are executed. The second type of application is user-facing, or interactive,
application which refer to a service which directly interacts with users [31, 26]. As a result,
user-facing application must always be online, i.e. resources must always be allocated to it.
One of the main differences between scheduling BoT applications compared to workflow and
user-facing ones is the resource consumption pattern. More specifically, a BoT application
generally requires the same amount of resources throughout its execution since all tasks can
be executed in parallel. On the other hand, the amount of resources required by a workflow
application can change at different time based on the number of tasks that can be executed in
parallel. Similarly, a user-facing application requires a different amount of resources based
on the workload it needs to handle. However, at any time, it needs to maintain the minimal
amount of resources to ensure the availability. As a conclusion, scheduling the execution of a
BoT application is simpler compared to others two. However, we believe that this research
direction is worth pursuing because a workflow application and the underlying mechanism
of a user-facing application can be broken into different dependent stages, each of which is a
BoT application.

6 Introduction

1.3 Research Hypotheses

This thesis investigates two central hypotheses regarding optimising the usage of cloud
computing resources. They are related to the goal of obtaining the desired performance of
BoT applications running on the cloud while minimising the incurred monetary cost. These
hypotheses are considered through out this thesis and examined empirically in our evaluation.

1.3.1 Scheduling approaches can minimise running costs of BoT appli-

cations on the cloud and achieve the desired Quality of Service

provided as user defined deadlines

Novel multi-objective scheduling approaches that account for both the amount of resources
required for executing multiple applications in a cloud cluster and workload mapping onto
these resources are required for minimising the cost of executing BoT applications while
maintaining the desired level of performance.

In this thesis, the desired performance of an application is represented as a user-defined
deadline which indicates a time within which all tasks of an application must be executed.
The deadline constraint is widely employed by both industrial and academic communities
for BoT applications.

We believe that satisfying the deadline and minimising the cost can be achieved by
carefully constructing and assigning tasks to a heterogeneous cloud cluster that consists of
VMs created from different instance types. The combination of different virtualised hardware
specifications creates a flexible computing environment which accommodates a workload
that changes dynamically. However, this is not a simple task since a wide variety of instance
types with varying costs and performance are offered by cloud providers. As a result, it is
necessary to have an execution scheduling mechanism that is not only aware of applications
and their requirements but also the cloud environment including the performance and pricing
of different instance types.

Notably, the QoS of an application consists of other criteria such as security, reliability,
availability, etc. In this thesis, we solely focus on the performance aspect since it can be
easily used to judge the quality of an application. Moreover, other objectives (e.g. security,
reliability, availability) are normally handled by the cloud providers and a user has limited or
even no control over them.

1.4 Contributions 7

1.3.2 Unexpected events, such as performance variation, can be de-

tected and handled by the execution management mechanisms

at runtime

As mentioned earlier, performance variation is unavoidable in the cloud environment. This
can result in undesirable consequences such as deadline violation or additional cost overheads.
As a result, it is necessary to have a dynamic mechanism which monitors an execution, detects
and handles any potentially harmful events as quickly as possible.

Furthermore, certain information that are required for the scheduling process may not be
available prior to an execution. In this thesis, we investigate and propose a mechanism for
estimating the information required to schedule the execution of applications in the cloud.
We argue that it is necessary to estimate those properties during runtime and then use them
to optimise cloud usage, even though it may result in cost overheads.

1.4 Contributions

In summary, this thesis provides the following contributions:

• A mathematical model that represents the execution of multiple BoT jobs, each of
which has different characteristic and requirement, on the cloud. This model provides a
complete view of the problem that we are aiming to address as well as the environment
in which the problem takes place.

• Three different approaches for optimisation cloud resource usage. Each approach has
a different degree of optimality and complexity. More precisely, the more complex
an approach is, the more optimal its solution is. As a result, those approaches present
the trade-off between solution optimality and complexity, which is represented by the
solving time.

• The dynamic mechanism that manages the execution during runtime. This contribu-
tion can be further divided into two components. The first one detects and handles
unexpected events during an execution that can potentially result in an undesired
consequence. The second component deals with unknown parameters by estimating
them via a sampling process.

• The software framework which materialises the proposed research into a complete
application. It is able to perform an end-to-end execution which starts when jobs are
submitted and finishes after all tasks are completely executed.

8 Introduction

• Experiment results that show the improvement offered by the proposed approaches in
comparison to the existing methods. We not only evaluate each component separately
but also demonstrate the applicability of our research as a complete solution in the real
world environment.

1.5 Publications

The work detailed in this thesis has resulted in a number of peer reviewed publications as
follows:

1. Long Thai, Blesson Varghese and Adam Barker. Executing Bag of Distributed Tasks on
the Cloud: Investigating the Trade-offs Between Performance and Cost. In Proceedings
of the 6th IEEE International Conference on Cloud Computing Technology and Science
(CloudCom 2014), pages 400-407, IEEE Computer Society.

This paper acts as the starting point of this PhD research as it investigated the trade-
off between performance and cost in cloud computing environment. By showing that the
increase in performance results in the increase in monetary cost, it presented the problem of
scheduling the execution of BoT application on the cloud so that the desired performance
could be achieved with the minimum cost.

2. Long Thai, Blesson Varghese and Adam Barker. Executing Bag of Distributed Tasks
on Virtually Unlimited Cloud Resources. In Proceedings of the 5th International
Conference on Cloud Computing and Services Science (CLOSER), pages 373-380,
2015.

This paper extended the previous one by removing the limit regarding the amount of
available cloud resources. In other words, it was possible for a user to acquire as much
resource as he or she needed. However, doing so greedily could result in high monetary
cost. The paper showed that by carefully scheduling the execution on the cloud, the better
performance could be achieve with the same cost compared to other naive approaches.

3. Long Thai, Blesson Varghese and Adam Barker. Budget Constrained Execution
of Multiple Bag-of-Tasks Applications on the Cloud. In Proceedings of the 8th
IEEE International Conference on Cloud Computing (CLOUD 2015), 975-980, IEEE
Computer Society.

1.5 Publications 9

4. Long Thai, Blesson Varghese and Adam Barker. Task Scheduling on the Cloud with
Hard Constraints. In Proceedings of the 11th World Congress on Services (IEEE
SERVICES 2015), pages 95-102, IEEE Computer Society.

In these two papers, we finally viewed the cloud as a highly flexible computing environ-
ment with not only wide variety but also high amount of computing resources. The papers
presented the heuristic algorithms that determined the amount of resources and scheduled
the execution so that all requirements regarding performance and cost could be satisfied. The
Sections 4.2 and 5.2.2 are based on the work of these papers.

5. Long Thai, Blesson Varghese, and Adam Barker. 2016. Minimising the Execution of
Unknown Bag-of-Task Jobs with Deadlines on the Cloud. In Proceedings of the ACM
International Workshop on Data-Intensive Distributed Computing (DIDC ’16). ACM,
New York, NY, USA, 3-10.

The first contribution of this paper was the development of the hybrid scheduling approach
which combined both exact and heuristic algorithms. This approach is elaborated in Section
5.2.1. It also introduced a mechanism for handling unknown applications but estimating the
information required for the scheduling process. Section 6.2 will provides detail explaination
of this mechanism.

6. Long Thai, Blesson Varghese, and Adam Barker, 2016. Algorithms for optimising
heterogeneous Cloud virtual machine clusters . in 8th IEEE International Conference on
Cloud Computing Technology and Science . IEEE , 8th IEEE International Conference
on Cloud Computing Technology and Science , Luxembourg , 12-15 December .

In this paper, we developed the exact algorithm which guaranteed optimal execution in
which the monetary cost was minimised. The detailed explanation for this approach will be
presented by Section 5.1. This approach was compared with the hybrid approach presented in
the previous paper in order to demonstrate the trade-off between complexity and optimality
of scheduling approaches. Finally, the paper also presented a dynamic scheduling mechanism
which was able to detect and handle potential deadline violation caused by performance
variation. The content of Section 6.1 is largely based on this work.

Additionally, during this PhD, the author has had opportunities to participate in different
research projects which have yielded a number of peer reviewed publications:

1. Long Thai, Adam Barker, Blesson Varghese, Ozgur Akgun and Ian Miguel. Optimal
Deployment of Geographically Distributed Workflow Engines on the Cloud. In Pro-
ceedings of the 6th IEEE International Conference on Cloud Computing Technology
and Science (CloudCom 2014), pages 811-816, IEEE Computer Society.

10 Introduction

2. Blesson Varghese, Ozgur Akgun, Ian Miguel, Long Thai and Adam Barker. Cloud
Benchmarking for Performance. In Proceedings of the 6th IEEE International Confer-
ence on Cloud Computing Technology and Science (CloudCom 2014), pages 535-540,
IEEE Computer Society.

3. Adam Barker, Blesson Varghese and Long Thai. Cloud Services Brokerage: A Survey
and Research Roadmap. In Proceedings of the 8th IEEE International Conference on
Cloud Computing (CLOUD 2015), pages 1029-1032, IEEE Computer Society.

4. Blesson Varghese, Lawan Thamsuhang Subba, Long Thai and Adam Barker. Container-
Based Cloud Virtual Machine Benchmarking. In Proceedings of the IEEE International
Conference on Cloud Engineering (IC2E 2016), pages 192–201, IEEE Computer
Society.

5. Blesson Varghese, Lawan Thamsuhang Subba, Long Thai and Adam Barker. DocLite:
A Docker-Based Lightweight CloudBenchmarking Tool. In Proceedings of the 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid
2016), pages 213–222, IEEE Computer Society.

6. Blesson Varghese, Ozgur Akgun, Ian Miguel, Long Thai and Adam Barker. Cloud
Benchmarking For Maximising Performance of Scientific Applications. To appear in
IEEE Transactions on Cloud Computing.

1.6 Organisation

This thesis has nine chapters, some of which have already been reported in our peer-reviewed
publications. Chapter 1 introduces this thesis by presenting its motivations and hypothesis.

Chapter 2 reviews existing work in optimising cloud resource usage for BoT application.
Based on the the reviewed literature, we construct the taxonomy which can be used to classify
the challenges that will be addressed by the research in this thesis.

Chapter 3 builds a mathematical model that represent the problem of optimising the
execution of BoT applications on the cloud. This chapter is the result of the incremental
research process resulting in the paper [59–64].

Chapter 4 introduces a set of algorithms which assign tasks to given VMs without
resulting in any violation and will be re-used later by other mechanisms, most of which have
been presented in [63, 64].

Chapter 5 presents and discusses three different approaches for scheduling the execution
of BoT jobs on the cloud. Those approaches represent the trade-off between optimality and

1.6 Organisation 11

complexity of the optimisation process. More precisely, an optimal solution can be achieved
by a complex optimisation process. On the other hand, a less complex process can only find
a sub-optimal solution but takes less time. This chapter is the result of [61, 63, 64].

Chapter 6 describes two different mechanisms to manage the execution of BoT jobs on
the cloud in real-time. The first one aims to detect and handle potential violations which are
caused by undesired performance variation. The second one helps to estimate characteristics
of unknown applications. These two mechanisms have been presented in [63, 64].

Chapter 7 presents the software framework which materialises the research presented in
the previous chapters.

Chapter 8 presents and discusses the experiment performed in order to evaluate the
proposed research and compare it with other existing methods. The results detailed in this
chapter have partly presented and discussed in [63, 64].

Chapter 9 concludes this thesis by summarising its content and suggesting future work.

Chapter 2

Literature Review

This chapter reviews the existing work in research and development in scheduling the
execution of BoT applications on the cloud. It begins with Section 2.1 which discusses all
the existing world. The goal is to provide a detailed survey of the state of the art. Based on
the surveyed publications, Section 2.2 constructs a taxonomy that covers different aspects
and characteristics of a scheduling system. Then Section 2.4 presents a list of challenges and
objectives that will be addressed by the research in this thesis. Section 2.5 summarises this
chapter.

2.1 Related Work

In this section, we present and review existing papers, publications, and frameworks in
scheduling the execution of BoT jobs in the cloud.

2.1.1 Overview of the Survey Methodology

This section focuses on reviewing the existing work on scheduling the execution of BoT
application(s) on the cloud. The publications were manually searched and discovered via
Google Scholar. To ensure the quality of the publication, we only selected works from
major journals and respected conference venue such as IEEE Transactions on Services
Computing, IEEE Transactions on Parallel and Distributed Systems, IEEE Conference of
Cloud Computing (CloudCom), IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID), IEEE International Conference on Cloud Computing (CLOUD),
International Conference on Autonomic Computing (ICAC), IEEE International Conference
on Utility and Cloud Computing (UCC), IEEE Transactions on Parallel and Distributed

14 Literature Review

Systems, ACM International Workshop on Data-Intensive Distributed Computing (DIDC),
ect.

To ensure the relevance of the literature, all of the selected work must satisfy the following
critaria:

• The application must be BoT applications, as a result, we will not consider workflow
and user-facing applications.

• The execution must be performed fully or partly on the cloud, hence, other models of
resource pool, such as grid computing and data centre, are not considered.

• The monetary cost must be considered since this is the unique challenge of the cloud
environment.

• A cloud must be a black-box environment, which means a user may not have control
over internal operations.

We managed to find 12 publications that satisfied all above criteria. We thoroughly
analysed each selected work by looking for the answers for the following questions:

1. In what environment is the work presented? This question focuses on the characteristic
of the cloud cluster, i.e. homogeneity and heterogeneity. Furthermore, it looks at the
cloud providers, e.g. the employed pricing scheme, the applications to be executed,
etc.

2. What does the work aim to achieve? This question aims to address what users want to
achieve by executing their applications on the cloud, e.g. cost saving or performance
improvement. We are also interested in the criteria which are used by the users to
evaluate the success of the scheduling mechanism and the execution.

3. How does the work achieve the objectives? This question can be divided into two
smaller ones:

(a) By which approach can the solution, i.e. scheduling plan, be found? Execution
scheduling is an optimisation problem which aims to achieve the predefined
goals by tuning and configuring different involved parameters. Hence, it is
necessary to explore which methodologies adopted by the researchers to solve
this optimisation problem.

(b) What does the solution look like? By this question, we want to address the
activities that need to be taken in order to reconfigure the cloud cluster given a
solution, or a scheduling plan, so that a users’ goals can be met.

2.1 Related Work 15

This section considers both homogeneous and heterogeneous cloud environments. We
define a cloud environment to be homogeneous if every VM in a cloud cluster is of the same
pre-defined instance type. We define a cloud environment to be heterogeneous if VMs of
different instance types are available for an application.

2.1.2 Scheduling in a Homogeneous Environment

In homogeneous cloud environments, given that only one instance type is used to create VM,
both the expected performance and pricing are the same on all available VMs. This simulates
an ideal data center and simplifies optimisation.

Hybrid Clouds

In a hybrid cloud, both private and public clouds are used. Candeia et al. [21] propose
a framework that schedules an application such that the deadline is met while monetary
costs are minimised. The scheduling problem is modelled to simulate different scenarios by
determining the number of public cloud VMs to be rented. The scenario that results in the
highest profit is selected.

Bicer et al. [17] not only considered the monetary cost of renting cloud VMs, but also
the overhead for synchronising the private and public clouds. For example, transferring data
between two clusters. A mathematical model for predicting the execution time and the total
cost of a hybrid cloud cluster is used. This model calculates the number of VMs to be rented
from public cloud providers in order to satisfy the deadline or budget constraints.

Spot VMs

The performance of a cloud environment is normally improved by using preemptible VMs,
also referred to as spot VMs. These VMs are obtained through a bidding process and may
be terminated by the provider without any notice so that it is allocated to a higher bidder.
The pricing of spot VMs is normally lower than on-demand VMs. However, the price may
fluctuate dynamically over time based on the number of bidders. In this context, research in
scheduling focuses on finding an effective bidding strategy for scheduling applications, or
managing an application in the event of sudden termination, or both.

Yi et al. [71] develop a checkpointing mechanism that saves the progress of application
execution at different points in time. This minimises the amount of execution time an
application would loose if the VM is suddenly terminated. The framework monitors the bid
prices in real-time in order to predict a termination. When such an event is predicted, the
current process is saved.

16 Literature Review

Instead of using fixed bid prices, AMAZING [58] uses Constrained Markov Decision
Process to find an optimal bidding strategy. The proposed approach takes deadlines into
account and calculates the probability of different bidding options. When a predicted bidding
price is too high, the framework saves the current process and waits for the next billing cycle
to bid again.

Lu et al. [42] use spot resource for executing BoT jobs. The authors focus on the
robustness of the system by using on-demand VMs, which are usually more expensive.
However, the impact of termination is minimised since on-demand VMs are used as a
backup. Whenever spot instances are terminated, the workload is immediately offloaded onto
on-demand VMs.

Menache et al. [47] suggests switching to on-demand resources when there are no spot
instance available to ensure the desired performance is always achieved. The decision to use
on-demand resources is based on either a user-defined deadline or a policy to allocate a fixed
number of on-demand VMs.

Reserved VMs

Costs in cloud environments can be reduced by using reserved VMs. This requires upfront
payment for the VM, but is generally available at lower costs than on-demand VMs. This
pricing scheme is useful if a user has a long term plan regarding the usage of the resource.
Over provisioning, when a user reserves resources that is not entirely utilised may be a prob-
lem that will need to be tackled when reserving VMs. To mitigate this, cloud environments
consisting of both reserved and on-demand VMs are employed. A significant proportion
of the workload is assigned to reserved VMs to increase their running time. On demand
instances may be added in order to temporarily handle resource bursts in the workload.

Yao et al. [70] presents an approach for satisfying job deadlines while minimising
monetary cost by using both on-demand and reserved VMs. Heuristic algorithms that aim
to pack as many jobs as possible into reserved VMs are proposed for increasing utilisation
during the lease period. The remaining jobs are assigned to on-demand VMs. This resulted
in achieving the desired performance at the lowest cost.

Shen et al. [56] use reserved VMs to optimise cloud environments to achieve cost savings.
Integer Programming is used to model the assignment of tasks on VMs and the cost is
minimised by determining the number of reserved and on-demand VMs. This scheduling
problem is solved periodically in order to take into account newly submitted workloads.

2.1 Related Work 17

2.1.3 Scheduling in a Heterogeneous Environment

Having presented existing research on scheduling in homogeneous cloud environments, we
now consider research that makes use of a wider variety of VM types offered by providers. In
this section, we present the existing methodologies in scheduling in heterogeneous environ-
ments. Compared to homogeneous cloud environments, a heterogeneous environment can be
designed to offer more flexibility. This is conducive for applications that have a preference
on the hardware specification or configuration of the VM. However, this is more challenging
and the framework must take into account the trade-off between cost and performance for
different VM types.

Public Clouds with On-demand VMs

There is research that focuses on executing a single BoT application. Oprescu et al. [49]
present BaTS which is a budget-constrained scheduler for executing BoT job on the cloud.
The problem is modelled as a Bounded Knapsack Problem and is solved using dynamic
programming. The objective is to identify the number of VMs of each type for an application
so that the total monetary cost does not exceed the budget constraint while not compromising
performance. This research is extended to include the replication of tasks from running VMs
onto idle VMs with the intention of decreasing the overall execution time [50].

Ruiz-Alvarez et al. [55] model the problem of minimising the cost of executing BoT jobs
on the cloud using Integer Linear Programming. The execution of the application is divided
into multiple intervals, each of which might correspond to one billing cycle (for example,
one hour). In order to execute all tasks within a deadline, the number of tasks required to be
executed within each cycle is estimated. Then the model selects the number of VMs so that
all tasks are executed within the interval.

HoseinyFarahabady et al. [34] focus on the trade-off between performance and cost in
scheduling BoT application on the cloud. This trade-off represents a user’s preference. For
instance, a user might want to achieve high performance while knowing that it would result
in higher monetary cost. For this an algorithm using the Pareto frontier is employed by
distributing tasks onto VMs of different types for execution.

There is also research that considers the execution of multiple BoT applications. Mao et
al. [45] propose an approach to schedule the execution of multiple BoT jobs on the cloud with
both deadline and budget constraints. In this approach, prior knowledge (i.e. the number of
tasks of each job that a VM of a certain type could execute within an hour). The scheduling
problem is then modelled as an Integer Programming problem and generates a plan with the

18 Literature Review

number of VMs of each type that can meet both deadline and budget constraints. Scheduling
is performed periodically at the end of each billing cycle.

Lampe et al. [39] determine the mapping between BoT jobs and VMs so that all jobs
can be executed within their deadlines with a minimum cost. Two different approaches are
proposed for solving the problem. The first approach is modelled as a Binary Integer Problem
and the second approach is based on heuristic algorithms. The latter approach repeatedly
selects the cheapest VM to execute a list of jobs. Based on simulation studies, it is observed
that the approaches require a significantly large amount of time to find a solution that can
reduce the overall costs.

Gutierrez-Garcia et al. [32] present a policy-based approached for scheduling BoT execu-
tion on the cloud. A portfolio of 14 heuristic algorithms, each of which use a different task
ordering and resource mapping policy. Experimental results indicate that the effectiveness of
the algorithm depends on the characteristics of the workload.

Zou et al. [72] employ the Particle Swarm Optimisation (PSO) technique to execute
multiple BoT jobs with deadline on the cloud while minimising the cost. Additional con-
straints in terms of the number of CPU cores and the amount of memory each job requires is
considered. The traditional PSO technique is compared with a self-adaptive learning PSO
(SLPSO) which has greater chances of finding either a better local optimal or even a global
optimal.

OptEx [57] is a scheduling framework built on Apache Spark [11]. The framework does
not require prior knowledge regarding the execution time of a job on a VM. Instead, this
knowledge is acquired by profiling the execution of the job to construct a prediction model
that estimates a job completion time based on the number of VMs in the environment. This
estimation is used by a Non-linear Programming model to calculate the number of VMs
of each type that are required to execute a job within a deadline. Workload assignment is
performed using a built-in Spark mechanism.

Public Clouds with Spot VMs

Chard et al. [24] employ spot resources to achieve cost savings. An iterative process
repeatedly bids for spot VMs to execute jobs. The maximum bid price is always kept lower
than the on-demand resource price. However, if there is a job that is waiting for more than a
predefined amount of time, it will be executed using the cheapest on-demand VM that can
execute a task within the deadline.

2.2 Taxonomy 19

Hybrid Cloud

Wang et al. [68] propose a framework that incorporates a heuristic algorithm which greedily
assigns tasks to the best performing physical machine in a private cloud cluster. However, if
no physical machine is available on the private cloud, the framework provisions VM from a
public cloud based on a user defined budget.

Van Den Bossche et al. [65] use priority queues for scheduling BoT execution on the
hybrid cloud. Each job is associated with a specific deadline and is added a queue when it is
submitted. A mechanism that periodically scans the queue and estimates if the jobs can meet
their deadlines using a private cluster is developed. If this is not possible, a job is moved onto
a VM with the cheapest VM type.

Kang et al. [36] propose a framework that minimises the cost of a hybrid cloud for
executing BoT job with deadline. Tasks are first considered to be executed on either private
machines or existing cloud VMs since they do not incur monetary costs. However, if no
existing resources are available, then the framework selects the cheapest VM which can
execute the tasks within the deadline.

Duan et al. [28] employ game theory based scheduling on hybrid clouds. A multi-
objective scheduling mechanism in which not only the makespan and monetary cost are
minimised, but also the bandwidth and storage limit are not exceeded is proposed. A K-player
cooperative game approach in which the players represent the applications that share the
same private cluster is used. The algorithm aims to assign both private and public resources
to each player so that the makespan and cost are kept to a minimum while the storage and
bandwidth constraints are satisfied.

Pelaez et al. [53] argue that a scheduling framework should also take into account the
variation of task execution during runtime. Therefore different approaches to estimate the
task execution time during execution, which is used to constantly update the scheduling plan.
Based on the updated information, tasks are assigned to the cheapest VMs that is can execute
the tasks within the deadline by taking into account the variation of task execution time.

2.2 Taxonomy

This section identifies common themes, characteristics, requirements and challenges based
on the publications surveyed in the previous section. This taxonomy is shown in Figure 2.1
by illustrating different characteristics and categories of a cloud scheduling framework.

20 Literature Review

Taxonomy

Functionality

Requirements

Dynamic
Scheduling

Solving Methods

Type Selection

Resource
Scaling

Workload
Allocation

Constraint

Objective

Exact Algorithm

Heuristic
Algorithm

Parameter
Estimation

Application
Heterogeneity

Fig. 2.1 Taxonomy of Cloud Scheduling Frameworks

2.2 Taxonomy 21

2.2.1 Functionality

Scheduling BoT jobs on the cloud consists of three different types of functionality:

1. Type selection involves determining the combination of instance types that are used in
the cloud cluster. Scheduling frameworks must be aware of the difference in not only
prices, but also performance across all instance types.

2. Resource scaling calculates the number of VMs for each instance type. This function-
ality directly affects the incurred monetary costs (as more VMs are added to the cloud
cluster for an application, the more expensive it will be).

3. Workload allocation functionality assigns workloads to the VMs running in the cloud
cluster. The allocation needs to take into account the performance of a VM, its
current state (i.e. knowledge of the workload already on a VM), and an application’s
requirements.

Obviously, type selection is not covered by methodologies that only support a homo-
geneous cloud cluster, for example, a cluster where all resources consist of the same VM
type. However, a user must decide in advance which instance type is the most suitable for an
application.

The most straightforward method for type selection is to run the application on a few
or even all available instance types in order to determine which instance would be the
most suitable (this is suggested by AWS [2]). However, this method can be not only time
consuming but also expensive, due to the number of available instance types and applications.
Researchers have proposed approaches to find the most suitable instance type of a user’s
applications. For instance, Varghese et al. [67] proposed a framework for instance type
selection by matching VM performance, obtained via benchmarking, with an application’s
characteristics.

Some researchers have chosen to exclude workload allocation. Since Sidhanta et al. [57]
built their OptEx framework on the Spark framework, they relied on the existing built-in
mechanisms for workload allocation. On the other hand, Mao et al. [45] assumed prior
knowledge regarding the fixed distribution of task allocations to each VM type. Finally, other
researchers have chosen to describe the required performance of a job as the number of CPU
hours and degree of parallelism, which eliminates the need for workload allocating [70, 47]

The resource selection process, which consists of resource scaling and type selection (if
a cloud cluster is heterogeneous) can be performed separately from the workload allocation
process. More specifically, the former will first determine the total amount of resources within
the cloud cluster, then the latter will assign the workload to each VM. This approach usually

22 Literature Review

simplifies the scheduling process. For instance, many researchers have adopted a mechanism
in which the workload is sequentially assigned to the first idle instance [17, 21, 71, 58, 49].

Finally, the majority of the existing work treats resource selection and workload allocation
as a interrelated process [56, 50, 39, 32, 24, 42, 65, 36, 72, 28, 34, 68, 53?]. In other words,
the decision making process must consider not only the amount of required resources, but
also the allocation of the workload onto those resources. More specifically, workload can
only be assigned to VMs that are created. Similarly, VMs must only be created if there will
be workload assigned to them. We believe that this is the most demanded requirement for
running any application on the cloud, due to the incurred monetary costs which do not occur
in any other cluster systems like grid or in-house data centres. As a result, it is necessary
to provide users with a framework that helps them keep track of the cost in order to avoid
unnecessary spending. Furthermore, achieving the desired level of performance is really
important for running any type of application. For BoT applications, the desired performance
is normally represented as a deadline. The violation of deadline constraints can lead to
undesired consequences for the user such as financial penalties or a customer’s dissatisfaction
with the service [29].

2.2.2 Requirements

Requirements describe the criteria that are used to either determine if the execution of appli-
cations on the cloud is successful, or evaluate the quality of the execution. The requirements
are set by a user and it is the goal of any cloud usage optimisation methodology to satisfy
those requirements.

Requirements can be divided into two categories. Constraints are criteria that must
be satisfied. Failure to satisfy those constraints is normally unacceptable. Occasionally, it
is possible to violate a constraint given there is no other solution. However, the violation
of such constraint, i.e. soft constraint, should be kept minimal. A constraint is normally
represented as a threshold with specific value such as deadline or budget constraints [45, 17].

On the other hand, objectives are used to measure the quality of an application’s execution
on the cloud. For instance, if cost saving is an objective, the cheaper the execution is the
better. An objective is normally represented as a goal to minimise, or maximise one or more
parameters, e.g. minimise the monetary cost. Since using cloud resources incurs monetary
costs, it is necessary for a user to be aware of the cost that he/she has to pay. As a result,
one of the most common requirements for optimising cloud usage is cost minimisation
[42, 68, 56, 71, 21]. On the other hand, performance maximisation is an objective, which
aims to minimise an execution makespan [28, 32]. There are other more specific objectives

2.2 Taxonomy 23

such as the trade offs between performance and cost [34]. In this research, a user was asked
to provide a numerical value which, represented his/her preferences over cost or performance.

The majority of the existing work considers both constraints and objectives whilst making
a scheduling decision. For instance, some researchers have focused on optimising cloud
usage by minimising the monetary cost while satisfying the deadline constraint [65, 72, 53,
39, 36, 55, 57, 70, 58, 47], which aims to achieve the desired performance with the minimal
cost. Researchers [50, 50] have addressed the problem of performance maximisation with
a budget constraint with the objective of obtaining with the maximum performance within
a budgetary constraint. Chard et al. aimed to help users to acquire the desired amount of
resources with the minimum cost [24].

2.2.3 Dynamic Scheduling

Section 2.2.4 has presented the parameters used to schedule a BoT application on the cloud
based on a given set of requirements. It is clear that the optimisation decision is made based
on the value of those factors. However, these values can dynamically vary during runtime. As
a result, the initial scheduling decision may become obsolete and inaccurate. In this section,
we discuss the reason for parameter variations and how it is handled by the existing work.

Causes of Parameter Variation

The cost of on-demand and reserved resources remain for the most part constant. However,
spot instance prices vary depending on the number of bidders and their bidding prices.

Performance-related parameters can vary during runtime because of one or a combination
of the following reasons. As the task’s execution time is usually an average value, its actual
value can be either greater or less than this average value due to factors such as the input
size. Furthermore, since a cloud is running on top of a heterogeneous cluster consisting
of machines of different hardware types, it is possible for VMs of them same type to have
different levels of performance since they are located on different hardware infrastructure
[52, 51]. For instance, Ward and Barker [69] showed that the performance of different AWS’s
VMs of the same type widely varied up to 29%. Pettijohn et al. [54] and Chiang et al. [25]
also reported such performance variation between VMs on the same type but on different
data centres. Moreover, the performance of the same VM can change over time due to the
workload of the physical machine. Leitner and Cito [40] showed that the performance of IO
bandwidth on the same instance could fluctuate up to 30%. Moreover, Netflix reported that
the performance degradation due to CPU stolen time could be high enough to make it more
cost saving to replace a VM by a new one [10].

24 Literature Review

In order to effectively scale an application during runtime, a user may expect that
resources should be available as soon as she requests for them. However, in reality, it
normally takes a noticeable amount of time for cloud resources to be made available. This
type of delay, called instance start up time, is common among all cloud providers and can
vary from a few seconds up to a few minutes [44]. If a user does not take instance start
up time into account, the requested resources may be available too late to handle the peak
workload.

Dynamic Scheduling

As mentioned in the previous section, there are many reasons, which cause parameter
variation. This section presents dynamic scheduling, which is performed during runtime in
order to handle unexpected events that may result in requirements violation. Our discussion
focuses on two aspects of dynamic scheduling: i) how it is triggered and ii) how it is
performed.

The simplest way to trigger dynamic scheduling is to perform it periodically, normally
right after the monitoring process which updates the parameters to reflect the current state of
the execution [21]. On the other hand, dynamic scheduling can also be triggered periodically
at the end of each billing cycle in order to decide if VMs can be terminated for cost saving
purpose [45, 58].

Other researchers have chosen the more specific trigger. For instance, Bicer et al. [17]
proposed to perform dynamic scheduling when each group of jobs was executed. On the
other hand, since Oprescu et al. [50] aimed to exploit idle VMs, which have no tasks to
execute while still being in the current billing cycle, to decrease makespan, the authors started
the dynamic scheduling process when an idle VM was detected. Other researchers have
proposed to dynamically reschedule when the requirements are predicted to be violated. The
potentially violated requirements can be constraints such as deadline [36, 65, 24] or budget
[49]. If spot instances are used, rescheduling is required in case of unexpected termination
[71, 42]. Finally, rescheduling should be performed when the requirements change [28].

Dynamic scheduling can be performed by simply re-running the optimisation process
given the updated parameters [17, 21, 45, 58, 71, 49, 36, 28]. However, since it can be
time consuming to perform the whole optimisation process again, there are other, simpler
approaches. For instance, some researchers have focused on re-allocating tasks between VMs
in order to improve performance [50] while others have proposed approaches to dynamically
resize the cluster at runtime [65, 24, 42].

2.2 Taxonomy 25

2.2.4 Parameter Estimation

After understanding the functionality, it is necessary to be aware of not only the parameters
or factors, which are involved in the decision making process, but also their availability.

Monetary Factor

Since a user must pay in order to use cloud resources, the first and foremost parameter that
he or she needs to be aware of is the price of cloud resources. As discussed earlier, there are
three popular pricing schemes for cloud resources: on-demand, spot, and reserved resources.
The price of on-demand and reserved resource is always available. However, spot resource
pricing is unknown since it changes over time depending on the number of bidders and their
bidding prices. As a result, some researchers have decided to set a fixed bidding price, which
is lower that the cost of the same amount of on-demand resource.

Performance Factor

The performance factor defines the performance of a specific application running on a VM
instance type. Notably, the performance factor is specific to each unique pair of application
and instance type. For instance, task execution time is the time it takes for a VM to execute
one task of an application. By using task execution time, researchers can have a fine-grained
control and view of an execution. As a result, this type of parameter is used by the majority of
the existing research [65, 21, 28, 34, 36, 47, 49, 50, 53, 72]. Other researchers have used not
only the task execution time, but also the data transferring time, which denotes the amount of
time it takes to transfer data between private and public clouds [17]. On the other hand, the
research of Sidhanta et al. [57] represented performance in a more coarse-grained way by
using job execution time, i.e., makespan.

The performance factor can also be indirectly represented using different forms. For
instance, some existing work used resource capacity, i.e. the number of tasks can be
executed by each instance type within a billing cycle, as the performance factor [45, 55]. On
the other hand, Chard et al. [24] used the queueing or waiting time to indicate that a task
could not wait to be executed more than a certain amount of time.

Resource demands can also be used to indirectly represent the performance. More
precisely, a resource demand indicates that a desired performance can be achieved if a
certain amount of resource is allocated to execute an application. Resource demand can be
represented as the number of VMs required by the application in each billing cycle and has
been used by some researchers as a performance factor [39, 56, 68]. On the other hand, other

26 Literature Review

researchers have represented a resource demand as the number of VM hours required to
execute an application [58, 70, 71].

Most of the time, researchers assume that the performance parameters are available
prior to the optimisation process. However, other researchers have decided not to make this
assumption and incorporated the process to estimate the performance parameters as a part of
the optimisation process. For instance, Oprescu et al. [49] performed a sampling execution,
in which a portion of a job was executed on VMs of all available types in order to estimate
the task execution time. On the other hand, Sidhanta et al. [57] estimated the job execution
time using profiling techniques.

2.2.5 Solving Methods

Optimising the execution of a BoT job on the cloud can take two algorithmic approaches as
presented in literature. The first approach is referred to as Exact algorithms and the second
approach is heuristic based algorithms which are considered in this survey. These algorithms
typically generate a scheduling plan for the BoT job on the cloud.

Exact Algorithm

The approach of using exact algorithm is proposed in literature. The scheduling problem
is represented as a mathematical model and then solved using an existing solver to find the
optimal solution [43].

The popular approach is using Linear Programming, in which a set of linear formulas are
used to model the problem [58]. Integer Linear Programming is another choice which requires
all decision variable to be integers [45, 55, 21], or Binary Integer Programming in which the
decision variables are binary values (either one or zero) [39]. Other exact algorithms that are
reported in literature include Non-Linear Convex Optimisation Problem [57].

Exact algorithms guarantee an optimal solution. However, they require a significant
amount of time to solve and obtain a scheduling plan. Therefore, these are not suitable
suitable for real-time system in which a decision must be made in a timely manner.

Heuristic Algorithm

Researchers have adopted the heuristic algorithm approach to reduce time taken by exact
algorithm. Heuristic algorithms aim to find a solution in a relatively shorter amount of time,
but do not guarantee global optimality. For generating scheduling plans there may be little
difference between local and global optimal solutions.

2.2 Taxonomy 27

One of the simplest heuristic approach is the greedy algorithm which makes the best
decision possible given knowledge of the current state. For instance, scheduling algorithms
that iteratively select the cheapest instance type during each iteration have been proposed [36,
65, 24, 53]. Greedy algorithms which select the best solution given the current states of
multiple criteria are proposed [68].

Heuristic algorithms can incorporated rule-based approaches in which the scheduling
decision is based on a set of pre-defined rules. For instance, Gutierrez-Garcia et al. [32] use
a set of rules defining the order and allocation of tasks to VMs. Other research use rules to
acquire resources for achieving the desired performance [17, 42, 56, 47].

Another heuristic algorithm is based on dynamic programming, which breaks the schedul-
ing problem into smaller sub-problems [49, 50, 70]. Meta-heuristic approaches, such as
Particle Swarm Optimisation, is a general purpose approach which is employed in this
space [72].

Custom heuristic algorithms are also employed. For instance, Yi et al. [71] use approxi-
mation techniques to predict the termination time of spot VMs. The scheduling algorithm
of Duan et al. [28] is based on the game theory approach. The cloud bursting approach
proposed by HoseinyFarahabady et al. [34] uses the concept of Pareto optimality.

2.2.6 Application Heterogeneity

Application heterogeneity indicates the variety of applications to be scheduled for execution
on the cloud. In other words, methodologies that do not support application heterogeneity are
only able to schedule a single application. On the other hand, application heterogeneity is
supported when multiple BoT applications are scheduled at the same time. Which means that
the cloud cluster is shared between multiple applications, each of which performs differently,
e.g. has a different task execution time, on the same hardware specification. Supporting
application heterogeneity is challenging since each application prefers different VM type.
For example, a computation-intensive application prefers a CPU-optimised machine to a
memory-optimised instance. As a result, a scheduling mechanism must take into account
instance type preferences of all applications in order to select a suitable combination of
resource types in a cloud cluster.

Some researchers have supported application heterogeneity by splitting a cluster into
smaller sub-clusters, each of which execute only one application [47, 24, 65]. In other words,
there is not resource sharing between jobs, i.e. each VM only executes tasks of one job.
However, this approach is not efficient since it limits the flexibility of a cloud cluster. For
instance, if only few tasks of a job are assigned to a VM, it would be wasteful to not use that
VM to execute tasks of other jobs.

28 Literature Review

Resource sharing between applications have been investigated by other researchers. The
simplest approach is to predefine the distribution of jobs on each instance type, as adopted
by Mao et al. [45]. On the other hand, other researchers have proposed to assign a group of
jobs, instead of just a single one, to be executed on a sub-cluster [70, 34]. The authors have
developed mechanisms which create a group of jobs so that the resource wastefulness in
each sub-cluster can be minimised. Finally, the most of complicated but also most efficient
approach is to assign all jobs to all instances without predefined task distribution or job
grouping [56, 39, 32, 72, 68, 36, 28, 53]. This approach results in a workload assignment in
which each VM receives a different task distribution. As a result, it can potentially maximise
resource efficiency. However, this approach is challenging since it may have to consider a
countless possibilities of workload allocation between jobs and VMs.

2.3 Discussion

Based on the survey of existing work presented in Section 2.1 and the taxonomy developed
in Section 2.2, this section will summarise the current trends in this research area. Further,
we propose research directions that will improve the usage of cloud resources.

2.3.1 Current Trends

Table 2.1 summarises all methods reviewed in this paper and categorises them using our
proposed taxonomy framework.

Functionality: Resource scaling is a key feature that is supported by all research. It is
noted that type selection can only be obtained on frameworks that support heterogeneous
cloud environments. The majority of existing research supports workload allocation since it
provides fine-grained control over task distribution between jobs and VMs.

Requirement: Performance constraints (for example, deadline constraint) with cost
objective (for example, cost minimisation) is the most popular requirement. The main reason
for this is to achieve a desirable level of performance while being aware of the monetary cost
incurred in real time. This is unique to using cloud resources in contrast to grid or cluster
computing.

Dynamic Scheduling: Less than half of the surveyed research support dynamic scheduling.
For the sake of simplicity a number of papers assume that the performance of cloud computing
resources remain unchanged during execution. However, this assumption does not hold on
real clouds and when heterogeneous resources are used.

2.3
D

iscussion
2
9

Table 2.1 Taxonomy of BoT Scheduling Methodologies

Functionality Requirement Dynamic
Scheduling

Parameter
Estimation

Solving
Method Application

HeterogeneityConstraint Objective
Type

Selection
Resource
Scaling

Workload
Allocation Cost Perf Cost Perf Exact Heur

[58] X X X X X X
[21] X X X X X X
[47] X X X X X X
[70] X X X X X X
[56] X X X X X X
[65] X X X X X X X X
[39] X X X X X X X X
[72] X X X X X X X
[57] X X X X X X
[24] X X X X X X X X
[68] X X X X X X X
[53] X X X X X X X X

30 Literature Review

Parameter Estimation: Only four papers we surveyed support parameter estimation. This
reflects the common belief that the necessary parameters can be obtained prior to executing a
job. However, obtaining this information prior to execution may not be feasible given that a
cloud environment is usually shared between many users.

Solving Method: The majority of research adopt a heuristic approach, since this approach
finds solutions faster than alternate exact algorithm approaches. Approaches that are required
for real-time systems need to converge on a scheduling plan as quickly as possible. Although
exact algorithms are guaranteed to find an optimal solution, they are not widely used since
they are time consuming and is adopted in only seven research papers we surveyed.

Application Heterogeneity: The vast majority of existing work supports application
heterogeneity - scheduling the execution of multiple applications that perform differently on
the same type of VM. This reflects the trend in developing cloud environments that can be
shared between different users with different applications.

Based on Table 2.1, we summarise the current trends in optimising the usage of cloud
resources as follows:

• Supporting heterogeneous cloud environments: Cloud computing environment
need to be flexible in accommodating multiple applications with diverse needs by
supporting VMs with different hardware specification. Therefore, cloud environments
are supporting VMs of different instance types.

• Minimising monetary cost while ensuring the desired performance: Monetary
cost is one of the most important concerns of cloud users. Hence, there is research to
produce scheduling plans that keeps the cost as low as possible without sacrificing the
desired quality of service.

• Handling unexpected events at runtime: In any large scale and real-time system,
unexpected events, such as missing information or performance variation during
runtime, inevitably occur. Hence, mechanisms are put in place to detect and handle
such events in order to prevent, or at least minimise their impact.

• Using heuristic algorithms: Heuristic algorithms are popularly used in the space of
optimising resources for the execution of BoT applications. This is because they can
produce timely results although there is a trade-off with the optimality of solutions
obtained.

2.4 Requirements Analysis 31

2.4 Requirements Analysis

It can be seen from Table 2.1 that there is no existing work that covers all aspects of optimising
the usage of cloud resources for executing BoT application. For instance, even though the
work of Oprescu et al. [49, 50] supported both dynamic scheduling and parameter estimation,
the authors only focused on scheduling a single application on the cloud. Similarly, none
of the existing work that supports application heterogeneity is able to perform parameter
estimation. Furthermore, none of the papers surveyed by us investigates combining both
exact and heuristic algorithms. This thesis aims to address those shortcomings.

Based on the review of the existing work and the resulted taxonomy, we are able to
construct the set requirements that need to be addressed by the research in optimising the
execution of BoT job on the cloud. These requirements are used as a guide for the research
presented in this thesis.

2.4.1 Heterogeneous Environment

In order to make full use of the wide variety of instance types provided by the providers, we
believe that our framework must support the heterogeneous cloud cluster. By doing so, we
will be able to create a flexible cluster which can dynamically adapt to the demand that keeps
changing in real-time.

Our research also aims to support the execution of multiple applications, i.e. application
heterogeneity. Furthermore, those applications will be submitted in real time, which means
the workload that the cluster must handle change dynamically. We believe that this assump-
tion reflects a cloud cluster in real world which has to handle a variety of different submitted
applications.

To support the heterogeneous environment is very challenging since it requires a full
awareness of the diversity of not only the resource types but also the applications.

2.4.2 Satisfying Deadlines While Minimising the Monetary Cost

In this research, we choose to focus on satisfying the deadline constraints while minimising
the monetary cost. We believe that this is the most demanded requirement for running any
application on the cloud due to the incurred monetary cost which does not happen in any
other cluster system like grid. As a result, it is necessary to provide users which a framework
that helps them keep track of the cost in order to avoid unnecessary spending. Furthermore,
achieving desired performance is really important for running any type of application. For
BoT application, the desired performance is normally represented as a deadline. The violation

32 Literature Review

of deadline constraints can lead to undesired consequences such as financial penalties or a
customer’s dissatisfaction with the service [29].

Satisfying deadline constraint and minimising monetary costs are inter-related require-
ments. More precisely, the deadline constraint can only be satisfied when the cloud VM
cluster achieve a desired capacity by acquiring, and paying for, cloud resources. This problem
is further complicated when there are multiple jobs, each of which not only has different
deadline but also performs differently on the same VM type.

2.4.3 Flexible Execution

Since our goal is to develop a real time system, it is very important to be prepared for any
unexpected events. For instance, since parameter variation is unavoidable, the proposed
framework must be able to constantly re-evaluate its decision and make a new one when
necessary. More specifically, we plan to develop a dynamic scheduling mechanism which
is able to detect any potential issues during an execution and perform necessary action to
reduce, or completely prevent, those issues.

Most of the current research assume the prior knowledge regarding task execution time.
However, this assumption may not be applied since a user may submit a new application to a
cluster for execution. As a result, it is necessary for have a mechanism which estimates task
execution time during runtime instead of relying on existing knowledge.

2.4.4 Trade-off Aware Solving Methods

As mentioned in Section 2.2.5, there is a trade-off between using exact and heuristic algo-
rithms. Hence, a part of this research is to investigate that trade-off. More precisely, we are
going to develop different scheduling approaches ranging from exact to heuristic. Intensive
experiments are performed in order to compare the differences in optimality and solving time
between each approach.

Such kind of work was already performed by Lampe et al. [39]. However, we believe that
this should be investigated more thoroughly in order to not only compare different approaches
but also find out the affect of other factors on the their performance.

2.5 Chapter Summary

This chapter has presented and reviewed the existing work in scheduling the execution of
BoT jobs on the cloud. The classification framework has been constructed in order to better
analyse the work and provide a systematic view. Finally, we present a set of requirements

2.5 Chapter Summary 33

which need to be taken into account while developing a new research approach for optimising
the execution of BoT jobs on the cloud. These requirements will be addressed by the rest of
this thesis.

Chapter 3

Mathematical Representation of the

Research Problem

This chapter constructs a complete but concise mathematical model that represents the
problem of optimising the usage of cloud resources. The first goal of this chapter is to provide
to the reader a coherent view of not only multiple parties involved but also the relationships
and constraints between them. Secondly, the mathematical notations and formulas introduced
in this chapter will be used by the later ones in order to create the concise representation and
understandable representation solutions for the complex scheduling problem in this thesis.
The portion of this chapter has been published as "Minimising the Execution of Unknown
Bag-of-Task Jobs with Deadlines on the Cloud" [63]. The research is then extended and
published as "Algorithms for optimising heterogeneous Cloud virtual machine clusters" [64].

This chapter is structured based on the incremental approach. In other words, the problem
is broken into different components, each of which is represented as one section and is built
on top of the previous ones. Section 3.1 introduces a mathematical representation of the
cloud environment, the applications and their jobs. Then the execution of jobs on VMs are
mathematically modelled in Section 3.2. All of the mathematical representations are then
combined to construct an optimisation problem of minimising the monetary cost of executing
BoT jobs with deadlines on the cloud in Section 3.3. Section 3.4 summarises this chapter.

3.1 Environment Modelling

This section introduces and mathematically models all the involved parties, namely the cloud
and the application(s), and the relationship between them.

36 Mathematical Representation of the Research Problem

Let T be a set of instance types offered by cloud providers. Each instance type is a
blueprint that defines the virtualised hardware specification of a VM (e.g. number of CPU
cores, amount of memory and storage. . .). Moreover, VMs of the same instance type cost
the same amount of money for each Accountable Time Unit (ATU), e.g. hour. The cost per
ATU of a VM type t 2 T is denoted as pt . Notably, cloud providers can update their offered
instance types in order to add new types, remove obsolete ones, and update the specification
and/or their prices once or twice a year. However, due to the rarity of those events, we assume
that the set T and all instance types in it are unchanged.

Let A be a set of BoT applications executed on the cloud. It is possible for users to have
full knowledge which applications are executed on the cloud. This is particularly true in a
data centre environment in which the same set of applications are executed repeatedly and/or
periodically. It is also possible to execute new/unknown applications which have never been
executed before. Which means that new applications can be added to A during runtime.

Let ea,t be a task execution time which is the average amount of time in second taken to
execute one task of an application a 2 A on an instance of type t 2 T . In other words, task
execution times are the mapping that represents the performance of users’ applications on
cloud providers’ instance types. It should be noted that task execution times are not exact
values but average ones. Which means that the actual values can vary during runtime.

Let J be a set of jobs that are submitted to be executed on the cloud. Each job j 2 J
belongs to one application a j 2 A. The reason behind separating applications and jobs is
to make it possible for the same application to be executed multiple times, each of which
corresponds to one job. In fact, this is a common practice in industrial data centres whose
workloads are mostly recurring [29, 19].

A job j can be divided into n j tasks. Which means that a job is executed when all of its
tasks are executed. Let s j be an instant of time at which a job j is submitted, i.e. submission

time. Similarly, d j is a job’s deadline, i.e. an instant of time by which all tasks of j must be
completely executed. It is obvious that a job’s deadline must be in the future compared to its
submitted time, i.e. d j > s j. The amount of time from a job’s submission to its deadline is
called available execution time of a job and denoted as e j:

e j = d j� s j (3.1)

In other words, all of its tasks must be fully executed within in e j seconds.
Let V be a set of cloud VMs or instances. For each instance v 2V , its type is tv 2 T . A

task execution time of a job on a VM is equal to a corresponding value of a job’s application
on an instance type of a VM, i.e. e j,v = ea j,tv .

3.1 Environment Modelling 37

In order to make the size of V fixed, we assume that there is a upper bound for a number
of VMs of each instance type that a user can have. In fact, many cloud providers have
enforced this policy in order to limit a size of a user’s cloud cluster. For instance, AWS
allows a user to create only 10 instances for each type by default. Even though this value can
be increased upon request, there is always a limit for resources that a user can have. Hence,
we assume that V contains the maximum number of VMs of each type that a user is allowed
to have.

The creation time and termination time of an instance v 2V are denoted as crv and tev,
respectively. Let rv � 0 denote a VM’s running time, which is the difference between its
termination time and a creation time.

rv = tev� crv (3.2)

When an instance’s termination time equals to its creation time, i.e. the running time is
zero, an instance is not created.

It should be noted that it takes a certain amount of time of an newly created instance to
be ready for execution. Hence, let b be an VM creation overhead of any instance. Similar
to task execution time, creation overhead is an average value instead of an exact one. It has
been reported that the actual creation overhead for each VMs can vary significantly [44].

An instance is only ready to execute workloads after b seconds after its creation. Let rev

denote an instance of time at which an instance is ready to execute workload, i.e. rev = stv+b .
The Figure 3.1 presents an example for an instance’s life. It is created at crv. After b

second, an instance is ready at rev. An instance is terminated at tev. Finally, a running time
of an instance is rv, which is the amount of time from crv to tev.

Assuming that each ATU consist of 3600 seconds, i.e. one hour, its number of ATUs can
be calculated by dividing its running time to 3600 and then rounding up to the nearest ATU:

atuv = d
rv

3600
e (3.3)

The cost of an instance can be calculated by multiplying its number of ATUs to the cost
per ATU of its type:

cv = atuv⇥ citv (3.4)

Finally, the total cost of using cloud computing to execute all tasks is the summation of
the cost of all VMs:

38 Mathematical Representation of the Research Problem

v

rev

β

rv

Time

tevcrv

Fig. 3.1 Example of the Life of an Instance

c = Â
v2V

cv (3.5)

3.2 Job Execution Modelling

The previous section has presented the mathematical representation of the cloud environment
which includes the applications and their jobs. In this section, we attempt to model the
execution of jobs on VMs.

After being submitted, a job’s tasks must be assigned to one or more VMs to be executed.
The assignment of some tasks of a job j 2 J to an instance v2V is represented as a workload

w j,v. In other words, each workload w j,v is a subset of a job j that is assigned to be executed
on an instance v, i.e.

S
v2V w j,v = j. Moreover, a workload is empty, i.e. w j,v = /0 when there

is no task of j that is assigned to be executed on v.
Given a workload w, its job is denoted as jw. Similarly, an instance that a workload is

assigned to is vw.
On an instance, the start and finish times of a workload w are denoted as stw and f iw

respectively. Which means that an instance vw starts executing tasks of a job jw at the time
stw and finishes an execution at the time f iw. Thus, the execution time of a workload is the
difference between its finish time and start time:

3.2 Job Execution Modelling 39

v w1

rev = stw1
fiw1

β ew1
Time

dw1
tevcrv

Fig. 3.2 Example of a Workload Assigned to an Instance

ew = f iw� stw (3.6)

The execution time of a workload must be non-negative. If an execution time is zero that
means no task of a job is assigned to be executed by an instance.

As mentioned earlier, when an instance is created, it takes a certain amount of time, i.e.
b , for an instance to be booted into ready state. In other words, a workload cannot start
before a ready time of an instance:

stw � revw = stvw +b (3.7)

Similarly, it is impossible for an instance to execute any workload after being terminated,
i.e. after its termination time:

f iw tevw (3.8)

Since each workload is tied to a specific job, its deadline is equal to its job’s deadline,
i.e. dw = d jw . In order to avoid deadline violation, all workload finish times must not exceed
their deadlines:

f iw dw (3.9)

The example of a workload assigned to an instance is illustrated by Figure 3.2: a workload
w1 is assigned to an instance v. As a workload is executed right after an instance is ready,

40 Mathematical Representation of the Research Problem

its start time is equal to the ready time of an instance, i.e. stw1 = rev. On the other hand, a
workload must finish before not only its deadline (i.e. f iw1 < dw1) but also a termination time
of an instance (i.e. f iw1 < tev). Finally, a workload execution time is from the start to the
finish times, i.e. ew1 = f iw1� stw1 .

We assume that an instance can execute only one task of one workload at the time. Which
means, on the same instance, if a workload starts to be executed, it must be finished before
another one starts. In other words, given two workloads assigned on the same instance, if a
start time of the first one is less than the second one’s, its finish time must also be less than or
equal to the start time of the second workload:

stw1 stw2 () f iw1 stwl2 , vw1 = vw2 (3.10)

The number of tasks of a job in a workload can be calculated by dividing its execution
time to the task execution time of an application of a workload’s job on a type of its instance:

nw = b ew

ea jw ,tvw

c (3.11)

The floor function is used in Formula 3.11 since each tasks must be fully executed. In
other words, task execution pre-emption is not supported.

Let Wj denote all workloads of a job j. Since a job, i.e. all of its tasks, must be fully
executed before its deadline, the summation of number of tasks of all workloads belonging
to a same job must be equal to its total number of tasks:

Â
w2Wj

nw = n j (3.12)

Since execution overlap in the same instance is not allowed, it is possible to calculate a
running time of a VMs based on the execution time of its workloads.

Let Wv be all workloads assigned to an instance v 2V , its running time can be calculated
by adding the creation overhead to the summation of all assigned workloads:

rv =

8
<

:
b +Âw2Wv ew, if Âw2Wv ew > 0

0, otherwise
(3.13)

Formula 3.13 states that a running time of a VM is greater than zero if and only if it
actually executes one or more workload. On the other hand, if no workload is assigned to
it, i.e. the summation of execution time is equal to zero, an instance is not created and its
running time is zero as well. This condition aims avoid creating and paying for idle instances,
which do not execute any tasks at all.

3.3 Problem Modelling 41

Time

w1 w2 w3

crv stw1
fiw1

= stw2
fiw2

= stw3
fiw3

 = tev

β ew1
ew2

ew3

Fig. 3.3 Example of a VM Life Based on Assigned Workload

Figure 3.3 presents an example in which a VM’s life can be determined by its assigned
workloads. It can be seen that the terminated time of an instance is the finish time of the last
workload. As the result, an instance’s running time can be calculated by adding b to the sum
of all workloads’ execution times.

3.3 Problem Modelling

Based on the mathematical formulas constructed in the earlier sections, the problem of
statically scheduling multiple BoT jobs with deadlines on the cloud in order to achieve
minimum cost is presented by Model 3.14. Verbally, it can be described as to calculate the
creation and termination times of all instances, the start and finish times of all workloads so
that all jobs can be executed before their deadline while the monetary cost is kept minimal.

42 Mathematical Representation of the Research Problem

minimise c = Â
v2V

cv (3.14a)

subject to cv = atuv⇥ pitv (3.14b)

atuv = d
rv

3600
e (3.14c)

rv =

8
<

:
b +Â j2J ew j,v , if Â j2J ew j,v > 0

0, otherwise
(3.14d)

ew = f iw� stw (3.14e)

stw � crvwb (3.14f)

f iw tevw (3.14g)

f iw d j = d jw (3.14h)

stw1 stw2 () f iw1 stwl2 , vw1 = vw2 (3.14i)

nw = b ew

ea jw ,tvw

c (3.14j)

Â
w2Wj

nw = n j, 8 j 2 J (3.14k)

The breakdown of Model 3.14 is as following:

• Formula 3.14a is the objective to minimise the total monetary cost, which is the
summation of the cost of each individual VM.

• Formula 3.14b is used to calculate the costs of each VM.

• Formula 3.14c calculates the number of ATUs of each VM based on its running time.

• Formula 3.14d shows the calculation of a running time of each VM. If a VM it not used,
its running time is 0. Otherwise, the running time is the summation of all workload
execution times on that VM and the creation overhead time.

• Formula 3.14e calculates an execution time of each workload, which is the difference
between its finish and start times.

• Formula 3.14f states that a start time of a workload must be greater than or equal to the
ready time of an instance, i.e. a workload cannot start executing on an instance when it
is not ready.

3.4 Chapter Summary 43

• Formula 3.14g states that the finish time of a workload must be less than or equal to
the termination time of an instance, i.e. a workload cannot be executed on an instance
when it is already terminated.

• Formula 3.14h states that the finish time of a workload must be less than or equal to
its job’s deadline. This is an important constraint which aims to enforce a desired
performance.

• Formula 3.14i prevents execution overlap within each instance by requiring each
workload to finish before another one, on the same VM, starts. In other words, there is
at most one workload in execution on an instance at any time.

• Formula 3.14j calculates the number of tasks executed in each workload by dividing
its execution time to a task execution time.

• Formula 3.14k requires that the total number of tasks executed in all workloads of the
same job must be equal to a job’s number of tasks, which means that all tasks must be
executed.

3.4 Chapter Summary

In this chapter, we have introduced the mathematical representation of the cloud environment,
the application and their jobs. Second, the execution of jobs on VMs has been represented
as workloads, each of which consist of the number of assigned tasks, the start and finish
times. The result of this chapter is Model 3.14 whose solution describes the scheduling of
an execution on the cloud so that all jobs are executed within their deadlines while the total
monetary cost is minimised. Another contribution of this chapter is the set of annotations and
formulas which help to present the scheduling problem that we are trying to investigate and
its solution in a concise way. As the result, those formulas and annotations will be frequently
used by the next chapters.

Chapter 4

Workload Assignment

In the previous section, we have introduced the concept of a workload, which represents an
execution of a job’s tasks on an instance. However, a workload cannot be simply constructed
by assigning a job’s tasks to a VM. On the contrary, the process of constructing a workload,
named workload assignment, needs to consider different factors of not only a job but also a
VM. For instance, if a VM receives too many tasks of a job, it may fail to execute all of them
within the predefined deadline. On the other hand, if too little tasks of a job are assigned
to each VM, it will require many VMs to execute a job, which will result in unnecessary
cost. Not only a current job but also other ones which are already assigned to a VM must
be taken into account. For instance, if a VM has received many tasks from different jobs, it
may no longer be available to execute any more tasks. Hence, it is necessary for a scheduling
approache to have a mechanism which is able to effectively a assign tasks for many jobs to a
given set of VMs, which is the main focus of this chapter.

The effectiveness of the workload assignment is based on two main criteria. First of all,
it must be able to assign as many tasks from a job to a VM as possible. Secondly, it must
avoid both deadline violation or incurred monetary cost. It should be noted that the workload
assignment process requires a set of instances to be given to it, which means that it is not
involved in resource selection, which will be discussed in the later chapter.

This chapter takes a bottom-up approach by first introducing a sets of small algorithms
(Section 4.1) which are later combined to construct the complete workload assignment
process (Section 4.2). This chapter is summarised by Section 4.3.

46 Workload Assignment

4.1 Utility Functions

This section introduces a set of four utility functions that provide common functionalities and
are used to construct not only the workload assignment but also other algorithms presented
later in this thesis. The name utility function is inspired by Java’s util classes [18].

4.1.1 Finding Preceding and Succeeding Workloads

Each cloud VM can execute many workloads sequentially. Hence, a new workload can be
assigned to an instance with existing workloads. It is necessary to find a place in the waiting
queue to put a new workload into without resulting in any deadline violations. The idea is
to split the existing workload into two sub-lists, the first of which contains all workloads
that need to be executed before a new one. The remaining existing workloads, which can be
executed after a new workload, is put in the second sub-list.

This process is implemented as a function named FIND_POSIT ION and is presented by
Algorithm 4.1. Its inputs are a job from which a new workload is created and a list of existing
workloads within a VM. The workloads are sorted by deadline in ascending order. Which
means that a workload with a earlier deadline is executed before those with later deadlines.

Algorithm 4.1 Find Position
1: function FIND_POSITION(j,Wv)
2: Wp /0
3: for w 2Wv do

4: if dw d j then

5: Add w to Wp
6: else

7: break
8: Ws Wv�Wp
9: return (Wp,Ws)

The algorithm loops through all the given workloads and adds those with deadlines
smaller than or equal to a job’s deadline to the list of preceding workloads, denoted as Wp

(Line 5). When a workload whose deadline is greater than a job’s deadline is found, the
loop is terminated (Line 7). This is due to the fact that workloads are sorted in ascending
order, which means the deadlines of all remaining workload must also be greater than a job’s
deadline. As a result, the set of succeeding workloads, denoted as Ws, are those not in the set
of preceding ones (Line 8).

4.1 Utility Functions 47

4.1.2 Calculate Permissible Delay

When a new workload is put and executed before existing ones in the same instance, the
execution of those existing ones is delayed. This delay can result in a deadline violation
when an execution of an existing workload is delayed for too long. Hence, it is necessary
to calculate a permissible delay for all succeeding workload in order to avoid deadline
violation.

A permissible delay of a workload is the amount of time that a workload execution can
be delayed without resulting in a deadline violation and can be calculated as the difference
between its deadline and finish time. Hence, the permissible delay of a set of workloads is
the amount of time to delay their execution without resulting in violation for any of them, its
calculation is presented by Algorithm 4.2.

Algorithm 4.2 Calculate Permissible Delay
1: function CALCULATE_DELAY(v,Ws)
2: delay max(NOW,rev)� tev
3: for w 2Ws do

4: delay0 min(tev,dw)� f iw
5: if delay > delay0 then

6: delay delay0

7: return delay

At the beginning, the delay is set to the maximum value possible, which is the difference
between an instance’s termination time and either the current time or an instance ready time
(Line 2).

Then, the succeeding workloads are considered one by one. For each workload, a delay
is the difference between its estimated finish time and the lesser value between its deadline
and a instance’s termination time (Line 4). An instance’ termination time is considered in
order to avoid additional cost, which is caused when a workload is delayed long enough for
its finish time to exceed a termination time and results in an additional ATU. A total delay is
updated if it is greater than a permissible delay of a workload (Line 6). When the loop is
finished the final value is returned.

In summary, the Algorithm 4.2 calculates the minimum values between the permissible
delays of all given workloads.

4.1.3 Shift Workloads

In an instance, when a new workload is added before its succeeding ones, it is necessary to
update the start and finish times of them, i.e. shift their execution. This process is called

48 Workload Assignment

workload shifting and is presented by Algorithm 4.3. The inputs are the set of workloads
and the amount of time to shift them.

The algorithm loops through all given workloads and updates their start/finish times
with the given amount of time. It should be noted that Algorithm 4.3 can shift a workload
backward and forward depending on a value of the amount of time to shift. If this value is
positive, all workloads are shifted backward, which means they will start and finish later than
previously estimated. On the other hand, if this value is negative, all workloads are shifted
forward so that they can start and finish earlier than previously estimated.

Algorithm 4.3 Shift Workloads
1: function SHIFT_WORKLOADS(e,Ws)
2: for w 2Ws do

3: stw stw + e
4: f iw f iw + e
5: return delay

4.1.4 Execution Pre-emption

Algorithm 4.4 Workload Pre-emption
1: function PREEMPTION(v)
2: wc current workload of v
3: w1 new workload containing all finished tasks of wc
4: stw1 stwc

5: f iw1 NOW
6: w2 new workload containing all remained tasks of wc
7: stw2 NOW
8: f iw3 f iwc

9: Add w2 to the front of the queue of unfinished workload
10: Remove wc from the queue of unfinished workload

Workload pre-emption happens when an execution of a BoT job on an VM is tem-
porarily stoppped so that another job can be executed instead. It should be noted that we
only allow workload pre-emption but not task execution pre-emption. More specifically, a
task has to be fully executed. Otherwise, if a task execution is halted, it has to be executed
from the beginning. On the other hand, when pre-emption is performed on a workload,
its remaining tasks will be saved to be executed later. Workload pre-emption is beneficial
when there is an urgent job is submitted to an instance and has a deadline which is earlier
than all existing workloads’, including a workload which is in execution. In this case, it

4.2 Workload Assignment Algorithm 49

is necessary to temporarily stop an execution of a current workload. The other benefit of
workload pre-emption will be presented in the later chapter.

Algorithm 4.4 shows the logic for workload pre-emption. The algorithm splits a current
workload, which is currently in execution, into two new ones. The first one, denoted as w1,
contains all finished tasks and is marked as a finished workload (Line 3). The second one,
denoted as w2, contains all the unfinished tasks, including the one currently in execution
(Line 6). Then the second new workload is added to the queue of the unfinished workloads,
from which the current workload is removed (Lines 9 and 10).

4.2 Workload Assignment Algorithm

.
The workload assignment process is presented in detail by Algorithm 4.5. It aims to

assign as many tasks of a given job to a given list of VMs as possible without resulting
in any deadline violation and additional cost. The inputs of the Algorithm are a job j, its
remaining number of tasks n j, and the list of VMs to execute those tasks V . The output of the
Algorithm is the number of remaining tasks, i.e. tasks that are not assigned to any instances
for execution. Which means that the Algorithm 4.5 does not guarantee to assign all tasks
since it depends on the available capacity of the given VMs.

The first step is to find the position of a new workload among the existing ones using the
FIND_POSIT ION method already presented in the Algorithm 4.1.

The next step is to calculate a possible start time of a new workload. Since a new
workload can start immediately right after its preceding workload finishes, its possible start
time can be the finish time of its preceding workload (Line 6). However, if there is no
preceding workloads, a workload can start as soon as possible, i.e. either now or when an
instance is ready if it is just created and is not ready yet (Line 8).

Since a new workload will be inserted in between the preceding workloads and the
succeeding ones, it is necessary to calculate the available "space" between those two groups.
This space is created by delaying the execution of the succeeding workloads without vi-
olating their deadlines, i.e. permissible delay. This value can be calculated using the
CALCULAT E_DELAY method which we already introduced by Algorithm 4.2.

Next, the algorithm calculates the possible finish time of a new workload. The possible
finish time is the least value among three possibilities: i) a new workload’s deadline, ii) a
estimated terminated time of an instance (if there is no succeeding workload), or iii) the
latest start time possible of the next workload calculated by adding a permissible delay to
a its current start time (Line 10). In other words, the finish time of a new workload must i)

50 Workload Assignment

Algorithm 4.5 Workload Assignment
1: function WORKLOAD_ASSIGNMENT(j,n j,V)
2: for v 2V do

3: Wv unfinished workload(s) of v
4: (Wp,Ws) FIND_POSIT ION(j,Wv)
5: if Wp 6= /0 then

6: st finish time of the last workload in Wp
7: else

8: st max(NOW,rev)

9: delay CALCULAT E_DELAY (v,Ws)
10: f i min

�
(st +delay),d j, tev

�

11: e f i� st
12: n b e

e j,v
c

13: if n > 0 then

14: n min(n,n j)
15: e n⇥ e j,v
16: f i st + e
17: if Wp = /0 and v is executing the first workload in Ws then

18: PREEMPT ION(v)
19: SHIFT _WORKLOADS(e,Ws)
20: w new workload of a job j on an instance v
21: nw n
22: stw st
23: f iw f i
24: Assign w to an instance v between Wp and Ws
25: n j n j�n
26: if n j = 0 then

27: return 0
28: return n j

4.3 Chapter Summary 51

not exceed its deadline and an instance’s termination time, and ii) not result in any deadline
violation to the existing workload after it.

By having the start and finish times, it is possible to calculate an available execution
time of a new workload and the number of tasks that can fit into it (Lines 11 and 12). A new
workload can be created only if the number of tasks is positive, i.e. it is possible to assign
some tasks of a job to an instance (Line 13).

If the assignment is possible, the next step is to find an actual number of tasks to be
assigned, which is the least value between the number of tasks calculated above and the
number of unassigned tasks (Line 25). This is done in order to avoid assigning more tasks
than necessary to an instance. Based on the actual number of tasks to be assigned, an
execution time and a finish time are updated (Lines 15 and 16).

Workload execution pre-emption may be required when an instance is executed the first
workload in a list of succeeding ones (Line 17), i.e. a current workload has a deadline which
is greater than a new workloads. Workload pre-emption is performed by calling the function
PREEMPT ION whose logic is already presented by the Algorithm 4.4.

Next, all the succeeding workloads need to be shifted backward in order to create space
for a new workload. This can be done using the SHIFT _WORKLOADS method presented
by the Algorithm 4.3.

After that, based on the calculated start time, finish time, and a number of tasks, a new
workload is created and assigned to an instance (from Line 20 to Line 24).

Finally, a number of unassigned tasks is updated by being subtracted with a number of
assigned tasks (Line 25). If this value is 0, which means all tasks of a job are assigned, the
Algorithm terminates (Line 27). Otherwise, it continues to the next VM.

The Algorithm 4.5 is graphically illustrated by the Figure 4.1 which outlines the main
steps.

4.3 Chapter Summary

In this chapter, we have presented a greedy algorithm that assigns tasks of a job to a set
of given instances while avoiding not only a potential deadline violation to both new and
existing workloads but also extra cost. The algorithm is constructed using a set of smaller
logics called utility functions.

Compared to other existing algorithms [65, 58], our proposed approach offers some
improvements. First of all, instead of assigning each individual task to any available VM,
it calculate the number of tasks that a VM can receive which reduce the complexity of the
computation. Secondly, not only resource availability (i.e. the number of VMs and their

52 Workload Assignment

Fig. 4.1 Activity Diagram for the Workload Assignment Process presented by Algorithm 4.5

4.3 Chapter Summary 53

current workloads) but also resource requirements (i.e. jobs and their deadlines) are taken
into account. As a result, the algorithm is able to assign as many tasks as possible while
avoiding deadline violation. Finally, the urgency of the workload is also considered. More
specifically, a workload execution can be delayed or pre-empted so that the more urgent
one can be executed first. As a result, the workload assignment algorithm is crucial to the
effectiveness of all of the scheduling approaches introduced in the next chapters since they
are built on top of it.

Chapter 5

Execution Scheduling

The workload assignment presented in Chapter 4 requires to be given a set of VMs. In other
words, it raises a question of selecting resources based on given requirements. That question
will be answered by this chapter which presents and discusses execution scheduling. This
chapter also aims to find a solution for the optimisation problem introduced in Chapter 3.
In other words, execution scheduling aims to determine the execution of all submitted BoT
jobs on cloud VMs so that their deadlines are not violated and the total monetary cost is kept
as low as possible. The result of the execution scheduling is an execution plan which is a
list of workloads, each of which represents an execution of a job on an instance in term of
number of tasks, start time, and finish time. Based on the framework discussed in Chapter
2, the research presented in this chapter, and thesis, can be categorised as scheduling in a

heterogeneous cloud cluster and consists of two activities:

• Resource selection: to determine the number of VMs of different types in a cloud VM
clusters. Resource selection must ensure that there are enough processing capability
of execute all tasks within their deadlines. Moreover, it also directly related to the
monetary cost that a user has to pay.

• Workload assignment: to allocate tasks of jobs to the VMs rented by users. There
are many constraints that workload assignment need to follow. For instance, all tasks
should be executed before the deadline. On the other hand, it is impossible to execute
tasks on an instance which is either not created yet or already terminated.

It should be noted that resource selection and workload assignment are interrelated to
each other. Workloads can only be assigned to selected resources, i.e. VM that are created
and not yet terminated. On the other hand, enough resources must be selected in order to
ensure that all all tasks are executed within deadlines.

56 Execution Scheduling

In Section 5.1, we are going to simplify the Model 3.14 into a Quadratic Programming
(GP) problem, whose solution is optimal, i.e. an execution plan with minimum monetary
cost. Since finding an optimal solution requires performing exhausted search on the search
space, it may take a considerable amount of time. As a result, in Section 5.2, we propose
two others approaches which sacrifice the optimality of a solution in order to achieve faster
solving time. Section 5.3 concludes this chapter.

5.1 The Exact Approach

In Chapter 3, we have introduced the mathematical representation of the statically scheduling
problem. However, the optimisation presented in the Model 3.14 is complicated since it
consists of not only many decision variables but also conditional constraints. As a result,
even though Constraint Programming (CP) can be applied to find the solution, it can be time
consuming due to the complexity of the problem.

In this section, we attempt to simplify the optimisation problem presented in the Model
3.14 into a Quadratic Programming (QP) problem which can be solved faster. This approach
is named exact approach since the optimal solution can still be found using the proposed
approach. We have already presented and discussed a large portion of this Section in the peer
reviewed paper [64].

First of all, we make an assumption that the submitted jobs are arranged in a predefined
order and the execution of jobs on instances must follow that order. Which means, upon
submission, if a job j1 is placed before a job j2, then j1 must be executed before j2 in all
instances. Furthermore, since execution overlap is not supported, the execution of j2 can
start only when the execution of j1 finishes. In summary, we have the following formula:

stw j1,v
 f iw j1,v

= stw j2,v
(5.1)

Formula 5.1 also states that a workload starts as soon as its preceding one finish, which
means the start time of a workload is equal to the finish time of its preceding workload.

Notably, it is possible for a job not to be executed on an instance while its succeeded one
is, e.g. j1 is not executed on an instance v while j2 is. The constraint presented in Formula
5.1 can still be satisfied as the finish time of j1 will be equal to its start time, which results in
its execution time to be zero.

There are different ways for determine the order of jobs. For instance, jobs can be ordered
based on the urgency represented by their deadlines, e.g. earliest-deadline-first. Similarly,
each user can have his/her own way to order jobs based on their importances, e.g. assigning

5.1 The Exact Approach 57

Time

w1 w2 w3

crv stw1
fiw1,

stw2
fiw2,

stw3
fiw3

dw3

β ew1
ew2

ew3

Fig. 5.1 Example of Execution Order in an Instance

a priority value to each job. In this thesis, we adopt the earliest-deadline-first ordering
approach.

Figure 5.1 illustrates an example in which three workloads w1, w2, and w3 are scheduled
to be executed on an instance. A workload w1 must be executed first, which is immediately
when an instance is ready. Hence, its start time is equal to an instance’s ready time, i.e.
stw1 = rev = crv +b .

When an instance finishes executing w1, it immediately starts executing w2. Thus, a
finish time of w1 is equal to a start time of w2, i.e. f iw1 = stw2 . Similarly, a finish time of w2

is equal to a start time of w3, i.e. f iw2 = stw3. Since there is no more workload after w3, an
instance does not start executing any workload after finish executing w3.

Notably, in order to satisfy the deadline, the finish times of all workloads must be less
than or equal to their jobs’ deadlines. For instance, as shown in the Figure 5.1 a workload w3

has to finish before its deadline, i.e.:

f iw3 dw3 (5.2)

Since an execution time of a workload is the difference between its finish and start
times, it is possible to calculate a finish time given an execution time and a start time, e.g.
f iw3 = stw3 + ew3 . Furthermore, as a workload w3 starts executing right after its previous one
(i.e. w2) finishes, we have stw3 = f iw2 . In other words, a finish time of a workload can be
calculated by adding its execution time to a finish time of its preceding one. If a workload
has no preceding one (e.g. w1) its start time is the same as an instance’s ready time, assuming

58 Execution Scheduling

that a workload is executed as soon as an instance is ready. As a result, a finish time of a
workload w3 can be calculated as follow:

f iw3 = crv +b + ew1 + ew2 + ew3 (5.3)

Replacing Formula 5.2 to Formula 5.3, we have:

crv +b + ew1 + ew2 + ew3 dw3 (5.4)

Or,

ew3 dw3� (ew3� ew2 +b + crv) (5.5)

Formula 5.5 is a constraint which states that an execution time of a workload w3 must
be less than or equal to its deadline subtracting the sum of execution times of preceding
workloads, the instance creation overhead, and an instance creation time. This constraint can
be generalised as follow:

ew j,v d j� (
j�1

Â
j0=1

ew j0,v +b + crv) (5.6)

Formula 5.8 states that on the same instance, an execution time of a workload must
be less than or equal to a its deadline subtracting the summation of execution times of the
preceding workloads, the creation overhead, and an instance’s created time.

It should be noted that we do not assume the prior knowledge regarding job submission,
i.e. we do not know when jobs are submitted. As a result, we cannot create a VM before a
job submission. In other words, a VM can only be create as soon as a job is submitted, i.e.:

crv = s j (5.7)

Replacing Formulas 5.7 and 3.1, which states that a job’s available execution time is the
difference between its deadline and its submitted time, to Formula 5.6, we have:

ew j,v d j� s j�
j�1

Â
j0=1

ew j0,v�b = e j�
j�1

Â
j0=1

ew j0,v�b (5.8)

Formula 5.8 states that an execution time of a workload on an instance must be less than
or equal to its job’s available execution time (i.e. e j) subtracting the summation of execution
times of the preceding workloads, and the creation overhead. In other words, an execution
time of a workload is limited by not only the creation overhead but also execution times

5.1 The Exact Approach 59

of exceeding workloads. The formula simplifies the initial Model 3.14 by removing the
necessity of finding the start and finish times of each workload on an instance. Moreover, the
condition which prevents execution overlap on the same instance, i.e. Formula 3.14i, is also
eliminated.

In other to further simplify the problem, we want to remove the remaining conditional
constraint, i.e. Formula 3.14d regarding if an instance is created or not. In order to do so, we
introduce a set X which consists of binary values, i.e. x = {0,1}, indicating if an instance is
used or not. Which means:

xv =

8
<

:
1, if an instance v is used

0, otherwise
(5.9)

Using Formula 5.9, an execution time of a workload on an instance, which is presented
in Formula 5.8, can be redefined as follow:

ew j,v xv⇥ (e j�b �
j�1

Â
j0=1

ew j0,v) (5.10)

If an instance v is created, which means xv = 1, the Formula 5.10 is similar to the Formula
5.8. On the other hand, if an instance v is not created, i.e. xv = 0, an execution time of a
workload w j,v must be equal to zero. Since the number of assigned tasks is calculated based
on a execution time, as presented in Formula 3.11, this also means there is no task of a job j
assigned to an instance v.

Similarly, a running time of an instance, which is presented in the conditional Formula
3.13, can be redefined as:

rv = xv⇥ (b + Â
j2J

ew j,v) (5.11)

If an instance v is created, i.e. xv = 1, its running time is positive and its cost (i.e. cv) can
be calculated based on the Formula 3.4. On the other hand, if an instance v is not created, i.e.
xv = 0, its running time and cost have to be zero and a user does not have to pay for instances
which are not created.

By removing all the conditional constraints, the constraint programming problem pre-
sented by Model 3.14 can be simplified into an Integer Quadratic Programming problem as
follow:

60 Execution Scheduling

minimise c = Â
v2V

cv (5.12a)

subject to cv = atuv⇥ pitv (5.12b)

atuv = d
rv

3600
e (5.12c)

rv = xv⇥ (b + Â
j2J

ew j,v) (5.12d)

ew j,v xv⇥ (e j�b �
j�1

Â
j0=1

ew j0,v) (5.12e)

xv = {0,1}8v 2V (5.12f)

nw = b ew

ea jw ,tvw

c (5.12g)

Â
w2Wj

nw = n j, 8 j 2 J (5.12h)

Most of the formulas in Model 5.12 are similar to those in Model 3.14. On the other
hand, some of them are different

• Formula 5.12d calculates a running time of each instance, taken into account whether
an instance is created or not, indicated by the parameter x.

• Formula 5.12e calculates the execution times of workloads assigned to VMs, taken
into account whether an instance is created or not, indicated by the parameter x.

• Formula 5.12f defines that the value all items in set X must be either 1, if an instance
is created, or 0, if an instance is not created.

In comparison to Model 3.14, Model 5.12 reduces the complexity of finding a scheduling
plan by removing the conditional constraints. Moreover, the number of decision variables to
be found is reduced as well. More specifically, Model 3.14 aims to find the execution times
of workloads on each instance instead of calculating their start and finish times.

5.2 Single Job Scheduling Approach

The Exact approach introduced in Section 5.1 considers all jobs at the same time for schedul-
ing. Moreover, since this approach aims find an optimal solution, it may require a considerable
amount of time to find a solution, especially when the number of jobs is high, which results

5.2 Single Job Scheduling Approach 61

in the delay in executing all jobs. In this section, we attempt to further simplify the problem
by considering one job at a time. In other words, instead of handling a submission consisting
of multiple jobs, the approaches presented in this section will handle multiple submissions
each of which consists only one job. We believe that by doing so, a solving time can be
reduced. Moreover, after a job is scheduled, its execution can start immediately instead of
waiting for the succeeding jobs. Similarly to the previous section, jobs are scheduled based
on the predefined order which is earliest-deadline-first.

5.2.1 The Hybrid Scheduling Approach

In this section, we introduce the hybrid approach, which combines Integer Linear Pro-

gramming (ILP) technique to find a scheduling plan for a single job and heuristic algorithm
for combining the individual scheduling. This approach guarantees that the scheduling plan
for each job is optimal but does not ensure the optimality of the overall scheduling for all
jobs. This approach has already been presented in peer reviewed papers [63, 64].

As mentioned earlier, an available execution time of a job is the difference between its
deadline and submitted time. However, if a job is executed on a new instance, it has to wait
for an instance to be ready. As a result, its available execution time needs to be updated in
order to consider the creation overhead time. Notably, since VMs should be created as soon
as a job is submitted in order to accommodate its workload, a VM’s created time is equal
to a job’s submitted time. Thus, an available execution time of a job on a new VM is the
difference between a job’s deadline and a VM’s ready time:

e j = d j� s j�b (5.13)

For any given VM of a type t 2 T , the capacity of a VM for a given job, denoted as
cp j,t , is the maximum number of tasks that can be executed within a job’s deadline. This
value can be calculated by dividing its available execution time to a task execution time
corresponding to a job and an instance type:

cp j,t = b
e j

ea j,t
c (5.14)

In a cloud VM cluster consisting of instances of different type, let Y be a set whose each
item is a number of VMs for each type. For instance, there are yt VMs created for an instance
type t 2 T in a cluster. Hence, the number of tasks that yt VMs of type t can execute within
j’s deadline, denoted as n j,t , is:

62 Execution Scheduling

n j,t = yt⇥ cp j,t (5.15)

Given a cluster of cloud VMs, in which there are yt VMs of type t, the capacity of the
whole cluster corresponding to a job j, denoted as cp j, can be calculated as the summation
of the capacity of each type:

cp j = Â
t2T

n j,t (5.16)

In order to fully executed a job, all of its tasks must be executed, thus, the following
constraint is added to ensure that the capacity of a cloud VM cluster must be greater than or
equal to a job’s number of tasks:

cp j � n j (5.17)

Assuming that the workload is evenly distributed among all VMs, which means each of
them is used for the similar amount of time, which is less than or equal to a job’s available
execution time e j, hence the maximum total number of ATUs used by each instance is:

atu = d
e j

3600
e (5.18)

The total monetary cost for each type can be calculated by multiplying the number of
ATUs to the cost for each ATU and the number of created VMs for that type:

ct = atu⇥ pt⇥ yt (5.19)

In a conclusion, the problem of calculating the amount of VMs required to execute a job
within its deadline can be represented as the following optimisation model:

5.2 Single Job Scheduling Approach 63

minimise c = Â
t2T

ct (5.20a)

subject to ct = atu⇥ pt⇥ yt (5.20b)

yt � 0 (5.20c)

atu = d
e j

3600
e (5.20d)

e j = d j�b (5.20e)

cp j,t = b
e j

ea j,t
c (5.20f)

n j,t = yt⇥ cp j,t (5.20g)

cp j = Â
t2T

n j,t (5.20h)

cp j � n j (5.20i)

The breakdown of Model 5.20 is as follow:

• Equation 5.20b calculates the total cost for each instance type based on its number of
VMs (presented by Equation 5.20c), and the number of ATUs (calculated by Equation
5.20d).

• Equation 5.20e calculates the available execution time for a job.

• Equation 5.20f calculates the maximum number of tasks that an instance of a certain
type can execute.

• Equations 5.20g and 5.20h calculate the capacity of a cloud VM cluster, i.e. the number
of tasks can be executed by all VMs of all types.

• Equation 5.20i is a constraint which states that the capacity of a cloud VM cluster must
be greater than or equal to the number of tasks of a job.

In summary, the Model 5.20 aims to select the cheapest amount of VMs of different types
so that the total capacity is enough to handle a job within its deadline. After resources are
selected, tasks of a job can be assigned to them using a Workload Assignment algorithm
which is presented by Algorithm 4.5 in Chapter 4.

64 Execution Scheduling

5.2.2 Heuristic Single Job Scheduling

In the previous section, we have introduced an Integer Linear Programming approach to
schedule an execution of a BoT job on the cloud so that its deadline is ensure and the monetary
cost is minimised. However, as the hybrid approach still aims for an optimal solution for each
job, it still may have a high solving time. In this section, we propose a heuristic approach

which aims to reduce a complexity. However, since the proposed mechanism takes a greedy
approach, which selects the best options given the current state, it does not guarantee that an
optimal solution, i.e. one with cheapest cost, is found. Hence, it presents a trade-off between
solving time and solution quality.

The main idea of the proposed heuristic approach is to start with an initial scheduling
plan which is quick and simple to find. Then, an iterative process is performed in order to
transform an initial plan so that either a monetary cost or a total execution time is reduced.
This approach has been investigated by us and proven to be able to increase the performance
and reduce the cost of a cloud VM cluster [59, 60, 62]. In this case, the algorithm starts with
a heterogeneous cluster, i.e. all VMs are created from the same type, and then transform it to
a homogeneous cluster, which results in lower cost as concluded by our previous research
[61].

Algorithm 5.1 Create Initial Plan
1: function CREATE_INITIAL_PLAN(j,V)
2: e j d j� s j�b
3: atu d e j

3600e
4: c •
5: t NULL
6: yt 0
7: for t 2 T do

8: cpvt b
e j

ea j ,t
c

9: yt = d
n j

cpv j,t
e

10: ct yt⇥atu⇥ pt
11: if ct < c then

12: c ct
13: t t
14: yt yt

15: V create yt VMs of type t
16: return V

Algorithm 5.1 illustrates how to create an initial plan which consists of VMs of only one
type, i.e. homogeneous cloud VM cluster.

5.2 Single Job Scheduling Approach 65

Firstly, based on a job’s deadline, its available execution time and the corresponding
number of ATUs used by each VM are calculated (Lines 2 and 3).

Then, instance types are considered one by one. For each of them, the capacity per VM,
the total number of VMs required to execute all tasks and the total cost are calculated (Lines
8, 9, and 10).

An instance type which results in the lowest cost to execute all tasks within a job’s
deadline is selected (denoted as t). Finally, a homogeneous cluster of VMs of type t is
created (Line 15). In summary, Algorithm 5.1 tries to find the cheapest homogeneous cloud
VM cluster to execute all tasks of a job within its deadline.

Algorithm 5.2 Transform Plan
1: function TRANSFORM(V , atu, t , yt , h)
2: if h > yt or yt = 0 then

3: return V
4: f h⇥ pt ⇥atu
5: V 0 remaining VMs after removing h instances of type t
6: nV 0 numbers of tasks executed by the remaining VMs
7: n0 n j�nV 0

8: t 0 NULL
9: y0 0

10: for t 2 T do

11: if t 6= ts
then

12: yt b f
pt⇥atuc

13: ct yt⇥ pt⇥atu
14: n j,t yt⇥ cpv j,t
15: if n j,t � n0 and ct < c0 then

16: f ct
17: t 0 t
18: y0 yt

19: if t 0 6= NULL then

20: V replace h VMs of type t by y0 VMs of type t 0

21: return T RANSFORM(V,atu,t,yt � y0,h)
22: else

23: return T RANSFORM(V,atu,t,yt ,h +1)

With homogeneous cloud VM cluster of type t created by Algorithm 5.1, the next step is
to transform it into a heterogeneous cluster in order to reduce the cost while ensuring that all
tasks are still executed within a job’s deadline. This transformation process is presented in
Algorithm 5.2.

66 Execution Scheduling

In general, the transformation algorithm is a recursive and greedy process, in which each
iteration tries to replace a certain number of the selected type t by VMs of other type so that
a cost can be reduced.

At the beginning, based on the number of VMs of the selected type t to be replaced,
which is denoted as h and set to one at the beginning, the algorithm calculates the available
fund f which is the amount of money paid to h VMs of type t to be replaced (Line 4). For
example, if the algorithm is trying to replace 4 VMs, each of which is estimated to cost 2,
the available fund is 4⇥2 = 8.

Next, the number of tasks that a new set of replacing VMs is required to execute is
calculated. More specifically, this value is the difference between the total number of tasks
and the number of tasks executed by the remaining VMs which are not considered to be
replaced (Line 7).

Then, Algorithm 5.2 loops through all available instance types different than t . For each
type, it calculates the number of VMs affordable by the available fund f and the number of
tasks that those VMs can execute. The cheapest instance type that can execute all tasks and
has the total cost lower than the available fund is selected (Lines 10 to 18).

VMs of type t is replaced by a replacement type if one is found (Line 20). And a process
continues. On the other hand, if no replace type is found, h , i.e. a number of VMs of type t
to be replace, is increased by one before continuing the process. By increasing the number of
VMs to be replaced, the available fund is increased as well. However, this also results in the
higher number of tasks that a replacing VMs must be able to handle.

Algorithm 5.2 terminates if either h is greater than the actual number of VMs of type t
or there is no VM of type t left (Line 2).

5.2.3 Handling Multiple Jobs Using Single Job Scheduling Approaches

The approaches introduced in Sections 5.2.1 and 5.2.2 are able to schedule only one job.
Hence, in order to handle an submission consisting of multiple jobs, it is necessary to combine
them with the ASSIGN_WORKLOAD method presented by Algorithm 4.5 in Section 4.2.

Algorithm 5.3 Single Job Scheduling
1: function SINGLE_JOB_SCHEDULING(J,V0)
2: for j 2 J do

3: n j ASSIGN_WORKLOAD(j,n j,V0)
4: if n j > 0 then

5: V 0 new VMs for the remaining tasks of j
6: V0 V0[V 0

5.3 Chapter Summary 67

Algorithm 5.3 presents a process of handling multiple jobs using single job scheduling
approaches. The inputs of an algorithm are the list of submitted jobs, and the list of existing
instances (denoted as v0), which can be empty if there is no created VM yet.

Algorithm 5.3 goes through each job and first tries to assign it to the existing VMs (Line
3) using the WORKLOAD_ASSIGNMENT method presented by Algorithm 4.5. It takes a
job, its number of tasks, and a set of existing instances. It returns the number of remaining
tasks, i.e. those that cannot be assigned to the existing instances.

After the assignment, if there are remaining tasks of a job, i.e. the existing VMs are not
enough to handle all tasks of the submitted job, new VMs must be created using either the
Hybrid approach of the Heuristic approach (Line 5). Then, the new VMs are added to the list
of existing ones and will be considered to schedule the succeeding jobs (Line 6).

5.3 Chapter Summary

In this chapter, we have presented different approaches for scheduling the execution of BoT
jobs on the cloud. More precisely, our proposed approaches determine the workloads, each
of which corresponds to a job and consists of the number of tasks, the start and finish times,
assign to each instance. They aim to not only ensure that all tasks are executed within the
deadlines but also keep the total monetary cost as low as possible.

There are three scheduled approaches which have been proposed in this chapter:

• The exact approach which aims to find an optimal scheduling plan but may require
very high solving time.

• The hybrid approach which manages to find optimal scheduling plans for each job
but does not ensure that the complete scheduling plan for all jobs is optimal. However,
it is less complicated and is believed to have a moderate solving time.

• The heuristic approach which does not guarantee the optimality. Nevertheless, due
to its simplicity, we believe this approach can find a solution in a very short time.

The three proposes approaches also demonstrate the trade-off between solution optimality
and solving time. We believe that finding an optimal solution which guarantees minimum cost
has high computational complexity, which may result in high solving time. On the contrary, it
is possible to have another approach which is less complex, i.e. lower solving time, however,
such approach does not guarantee to find an optimal solution. The difference in performance
and solving times between the proposed approach will be evaluated in Chapter 8.

Chapter 6

Execution Management

The previous chapter discussed the approaches to schedule an execution of multiple BoT
applications with deadlines on the cloud. Those approaches are also called static-scheduling
which mean they are performed prior to the actual execution based on given parameters.
However, as mentioned earlier, it is possible for the given parameters to vary during runtime,
as a result, the results of the static scheduling process can become obsolete and needs to be
update.

This chapter presents the execution management which is performed during the ex-
ecution in real-time. The execution management consists of two separated components
with different objectives. Dynamic scheduling aims to handle unexpected events during
runtime and is presented by Section 6.1. Unknown handling mechanism estimates unknown
variables and is discussed in Section 6.2. This chapter is concluded by Section 6.3

6.1 Dynamic Scheduling

In the previous chapter, we have discussed the methods to schedule the execution of multiple
BoT applications with deadlines on the cloud. These methods are performed prior to the
actual execution and rely on task execution times to estimate the start and finish times of
each workload. However, as we already mentioned, a task execution time is just an average
value, which means its actual value can vary during runtime.

As mentioned in Chapter 2, the variation of both the task execution time and creation time
overhead can affect an estimation of workload execution and result in inaccurate scheduling
plan during an execution. In other to prevent potential violations during runtime, in this
section, we present the execution management process which i) monitors execution during
runtime, ii) detects potential violations, and iii) resolves them. The research in this section
has been discussed and presented in peer reviewed papers [63, 64].

70 Execution Management

This section is structured as follows: Section 6.1.1 briefly presents the monitoring process
to retrieve execution progresses of all VMs. Section 6.1.2 describes a process to detect
potential violation by categorising VMs into groups based on their execution progresses
Section 6.1.3 presents an algorithm to reassign workloads between VMs in order to reduce
deadline violation without risking creating new ones.

6.1.1 Progress Monitoring

During execution, the progress monitoring process is performed periodically in order to
retrieve the current execution progress of all VMs. For each instance, its execution progress
consists of the list of finished tasks of a current workload, i.e. the one that is being executed
by an instance, and their actual execution times. The actual execution times are recorded in
order to be used in the later section.

6.1.2 Progress Categorisation

Given the progresses of all running VMs, the next step is to categorise them into different
groups, each of which is handled differently. This process, which is named progress

categorisation, will be discussed in this section.
Based on a current execution progress, a VM can be put into one of the following

categories:

• IDLE: instance that does not have any workload to execute.

• CAN_RECEIV E: instance that has remaining workloads to execute but can receive
extra ones.

• NOT _RECEIV E: instance that has finished executing current workloads and must
start executing the next ones immediately, so it cannot receive an extra workload.

• NOT _GIV E: instance that is executing the last task of its current workload so it cannot
give any workload.

• V IOLAT ING: instance that is predicted to violate the deadlines of its current workload.

• CAN_GIV E: instance that is executing its current workload and is predicted to not
violate a deadline but can still give workload if possible.

In terms of reassignment, instances in categories IDLE and CAN_RECEIV E can receive
extra tasks, i.e. new workloads from those of category V IOLAT ING and CAN_GIV E.

6.1 Dynamic Scheduling 71

Algorithm 6.1 presents the logic to categorise an instance based on its current progress.
The inputs of the algorithm are an instance, its current workload and the number of finished
tasks (denoted as n f

w). The output of the algorithm is a category of an instance. Moreover,
Algorithm 6.1 also calculate the amount of time that an instance either can use to receive
extra workload or need to give away in order to avoid deadline violation.

First of all, an instance needs to be checked if it has finished its current workload. This
can be done by comparing the number of finished tasks to the total number of tasks assigned
to a workload (Line 4). In other words, an instance has finished executing its current workload
if the number of finished tasks is equal to the number of tasks assigned to a workload. On
the other hand, if the number of finished tasks is less than the number of assigned tasks, a
VM has not finish its execution yet. Instances are handled differently based on the fact that
they finish their current workloads or not.

Categorise Finished Instances

For VMs which have finished its current execution, the next step is to check if there are any
unfinished workloads assigned to them (Line 6). An instance that has no remaining workload
is called idle instance and its label is set to IDLE (Line 7). Since each VM is charged by
hour, it is possible to keep an idle instance running until the end of the nearest ATU without
paying any additional cost. Hence, an idle instance is free to receive extra workload as long
as it does not exceed a termination time. In other words, its available time to receive extra
workload is the difference between termination time and the current time (Line 9). The idle
workload is illustrated by Figure 6.1a.

On the other hand, if a VM has remaining workload(s) left, it is necessary to check the
expected start time of the immediately next workload. If an expected start time is in the
future, i.e. there is gap between current time and an expected start time of the next workload,
it is possible for an instance to receive extra workload and its label is set to CAN_RECEIV E
(Lines 16 and 17). Its available time to receive extra workload is the difference between a
start time of the next workload and the current time (Line 18), as illustrated by Figure 6.1b.

However, if an expected start time is not in the future, i.e. an instance finishes its execution
either on time or later than estimated, a VM, whose label is START _NEW , cannot receive
additional workload and has to start executing the next workload immediately (Lines 13 and
14).

72 Execution Management

Algorithm 6.1 Progress Categorisation

1: function CATEGORISE(v,w,n f
w)

2: LABEL NULL
3: e 0
4: if n f

w = nw then

5: An instance has finished its current execution
6: if v has no remaining workload then

7: v is idle
8: LABEL IDLE
9: e tev�NOW

10: else

11: wn next workload
12: if stwn NOW then

13: v cannot receive additional tasks
14: LABEL START _NEW
15: else

16: v can receive additional tasks
17: LABEL CAN_RECEIV E
18: e stwn�NOW
19: else

20: nr
w nw�n f

w�1
21: if nr

w = 0 then

22: v is executing the last task
23: LABEL NOT _GIV E
24: else

25: er
w = nr

w⇥ e jw,vw

26: f iuw = NOW + er
w

27: if f iuw > d jw then

28: Possible deadline violating detected
29: LABEL V IOLAT ING
30: e f iuw�d jw
31: else

32: LABEL CAN_GIV E
33: e f iuw�NOW

2

34: return (LABEL,e)

6.1 Dynamic Scheduling 73

Time

w1

fiw1
= NOW tev

gap

v

(a) Gap of an Idle Instance

Time

w1 w2

fiw1
= NOW stw2

gap

v

(b) Gap of a Non-Idle Instance

Fig. 6.1 Gap for Receiving Extra Workload

Categorise Unfinished Instances

For instances which have not finished executing the current workloads yet, the first step is to
calculate the number of remaining tasks, which is denoted as nr

w. The number of remaining
tasks can be calculated by subtracting the current workload’s total number of tasks to the
number of finished tasks. Notably, since there is one task currently in execution, the result is
them subtracted to one (Line 20).

If the number of remaining tasks is equal to zero, which mean an instance is executing
the last task of a workload and has no task left be reassigned (Lines 22 and 23).

On the other hand, if there are tasks left to be reassigned, i.e. nr
w > 0, the next step is to

calculate the remaining execution time by multiplying the number of remaining tasks to the
task execution time (Line 25). Then, an updated expected finish time, denoted as f iuw, can be
calculated by adding a remaining execution time to the current time (Line 26).

A potential deadline violation is detected if an instance is estimated to finish executing
its current workload after a deadline, i.e. an updated finish time is greater than a workload’s
job’s deadline (Lines 28 and 29). An instance’s label is set to V IOLAT ING. In order to
resolve a violation, the goal is to reduce an execution time of a violating workload an amount
of time which is equal to the difference between an updated finish time and a deadline (Line
30).

On the other hand, an instance which is not predicted to be deadline violating if an updated
finish time is less than or equal to a deadline (Line 32), its label is set to CAN_GIV E. Notably,
it is possible to reassign tasks from a non-violating VM in order to improve performance.
For instance, given an instance v1 has 10 tasks left and is predicted to not violate a deadline.
However, there is another VM v2 which can receive 5 tasks from v1. In this case, it is
advisable to send 5 tasks from v1 to v2 so that a workload can be finished earlier than

74 Execution Management

estimated, thus improve an overall performance. Hence, it is beneficial to reassign at most
half of the remaining execution time of this workload, if it is possible (Line 33).

6.1.3 Dynamic Reassignment

After categorising VMs into different groups, the next step is to perform dynamic reassign-

ment. This is a process in which tasks are moved between VMs in order to reduce the risk of
deadline violation. More specifically, it aims to move tasks from VMs that need to give (i.e.
those of groups V IOLAT ING and CAN_GIV E, called task-giving instances) to VMs that
can receive tasks (i.e. those of groups IDLE and CAN_RECEIV E, called task-receiving

instances).

Algorithm 6.2 Dynamic Reassignment
1: function REASSIGNMENT(IDLE, CAN_RECEIV E, V IOLAT ING, CAN_GIV E)
2: IDLE sort IDLE by receiving times in descending order
3: CAN_RECEIV E sort CAN_RECEIV E by receiving times in descending order
4: V r IDLE [CAN_RECEIV E
5: V IOLAT ING sort V IOLAT ING by giving times in descending order
6: CAN_GIV E sort CAN_GIV E by giving times in descending order
7: V g V IOLAT ING[CAN_GIV E
8: for vg 2V g

do

9: w current workload of vg

10: eg amount of time that vg needs to give
11: ng d eg

ea jw ,tvg
e

12: ng min(ng,number of remaining tasks of w)
13: n0 ASSIGN(jw,ng,V r)
14: if n0 < ng

then

15: Remove n0 tasks from w of vg

16: Remove all VMs that receive extra workloads from V r

17: if V r = /0 then

18: Break

Algorithm 6.2 describes the dynamic reassignment process. First of all, the lists of
task-receiving and -giving instances are constructed. The list of task receiving VMs consists
of all instances in the IDLE and CAN_RECEIV E groups, each of which is sorted based
on their receiving times in descending order (Lines 2 and 3). Which means a VM that can
receive a higher workload is considered first. Notably, in the list of task-receiving instances,
IDLE VMs are placed in front of CAN_RECEIV E ones (Line 4). In other words, we prefer
to assign tasks to idle VMs since they do not have to execute any workloads. On the other

6.2 Handling Unknown Applications 75

hand, if workload is assigned to a VM with remaining tasks, a delay in an extra workload
can cascade to other ones.

Similarly, the list of task-giving instances consists of VMs from V IOLAT ING group
is placed in front of CAN_GIV E group, both of them are sorted by their giving times in
descending order (Lines 5, 6, and 7). Which means that violating instances are considered
for reassignment before CAN_GIV E ones.

Next, all task-giving instances are considered one by one (Line 8). For each task-giving
instance, the number of tasks needed to be reassigned is calculated by dividing the giving
time to the task execution time of a workload on a VM (Line 11). Notably, in order to avoid
over-reassigning tasks, the result must then be compared with the actual number of remaining
tasks, and the smaller value is the actual number of tasks to be given (Line 12).

After that, tasks from the giving instance are assigned to the receiving one using Algorithm
4.5 proposed in Chapter 4 The algorithm returns the number of remaining tasks, if this value
is less than the number of tasks to give, that means reassignment is performed (Lines 14 and
15). Finally, all task-receiving VMs that receive extra workloads are removed, i.e. they will
not be consider to receive more extra workloads (Line 16). This is done in order to avoid
aggressively reassign tasks from many task-giving VMs onto one task-receiving instance. If
an instance is able to receive more than one extra workloads, it needs to finish the first one
before being considered to receive another.

The Algorithm 6.2 terminates if either all task-giving instances are considered or all
task-receiving instances are removed. Notably, the algorithm does not guarantee to reassign
all tasks from |V g| task-giving instances to |V r| task receiving VMs. In other words, it
is possible that there are not enough task-receiving VMs to handle all workload given by
task-giving VMs, even the violating ones. As a result, Algorithm 6.2 does not guarantee to
resolve all potential violations. One of the way to resolve potential violations is to add extra
VM, and suffer extra cost. However, this approach is not considered in this thesis. Moreover,
we argue that potential violation may be resolved automatically, since it is possible for the
remaining tasks to be executed faster than estimated due to the performance variation.

6.2 Handling Unknown Applications

In Chapter 5, task execution times are required in order to perform execution scheduling
and management. This values can be known for recurring applications. However, when
a new application is executed for the first time, its task execution times corresponding to
all instance types are not available. In this section, we present an approach for handling
unknown applications, whose task execution times are not yet available. In our proposed

76 Execution Management

approach, instead of performing scheduling as a job is submitted, we perform a sampling

phase in which a small portion of a job is executed on VMs of all available types. After
this phase is over, the task execution times are estimated based on the actual execution
times. Within the newly estimated task execution times, a job can be scheduled using any
of the scheduling approaches proposed in the Chapter 5. This mechanism has already been
published in a peer reviewed paper [63].

6.2.1 Determine the Sampling Duration

When a job of an unknown application is submitted, a sampling phase starts. In this phase,
some tasks of a job are assigned to an instance of each type for execution. The actual
execution time of an task is retrieved and later used to estimate the average task execution of
a job’s application on each instance type.

The most important factor to consider before running a sampling phase is the sampling

duration, i.e. how amount of time that a sampling phase lasts. If a duration is too short,
only few, or even none, of the sampling tasks are executed, hence the retrieved data is not
be sufficient to estimate the average task execution time. On the other hand, if a duration
is too long, the full execution phase is delayed further, which results in a short available
time to execute tasks of a job. Notably, while calculating this duration, the instance creation
overhead must be taken in to account since it may require to create new instances in both
the sampling duration, when an instance type has no available instance to receive sampling
tasks, and the full execution phase, when new instances are required to execute a job within
its deadline.

In our approach, a duration of a sampling phase is calculated as a fraction of a job’s
available execution time, the amount of time from when a job it submitted to its deadline.
For instance, a sampling phase can take 5% or 10% of a job’s available execution time. As
a result, we assume that when a job of an unknown application is submitted, its available
execution time must be large enough to have a sufficient amount of time for a duration of a
sampling phase.

Formally, given a job j with available execution time e j, if the sampling duration takes
10% of a job’s available deadline then es = 10%⇥ e j.

6.2.2 Schedule the Sampling Phase

In a sampling phase, a VM of each instance type is selected in order to execute the sample
tasks. Ideally, if it is possible to select only existing instances, there will be no additional
cost. However, if there is a type that either has no existing VMs or has existing VMs but

6.2 Handling Unknown Applications 77

their capacities are not enough to handle sampling tasks, a new instance of that type needs
to be created, thus resulting in additional cost. Obviously, this will result in additional cost,
however, we argue that it is worthwhile to estimate the task execution times, regardless the
overhead. This claim will be verified by the experiments in Chapter 8.

Select VMs for the Sampling Phase

In order to estimate the task execution time between an unknown application and all available
instance types, tasks must be executed on VMs of all types. In other words, it is necessary
to select VMs of each type. Existing VMs are considered to be selected first since they are
already paid for, i.e. running a sampling phase on them does not result in additional cost.
However, a new instance must be created for a type that does not have any VM available for
executing task since either all VMs of that type do not have enough capacity or there is no
existing VM of that type.

Algorithm 6.3 Select Sampling VMs
1: function ASSIGN_SAMPLING(es)
2: Vs /0
3: for t 2 T do

4: Vt all existing VMs of type t
5: et es
6: vs NULL
7: for v 2Vt do

8: Wv all unfinished workloads in v
9: delay CALCULAT E_DELAY (v,Wv)

10: if delay� et then

11: et delay
12: vs v
13: if vs = NULL then

14: vs new instance of type t
15: Add vs to Vs

16: return Vs

The Algorithm 6.3 presents a logic for selecting VMs for a sampling phase. Its input
is a duration of a sampling phase, i.e. es. The algorithm loops through each instance type
and its existing VMs. In each VMs, the permissible delay of all unfinished workloads,
including the current one, is calculated using the CALCULAT E_DELAY algorithm presented
by Algorithm 4.2 in Chapter 4. Only VMs whose the delays are greater than equal to a
duration of a sampling phase are able to execute sample tasks. Among those VMs, the one
with the highest permissible delay is selected (From Line 7 to Line 12).

78 Execution Management

On the other hand, if no VM of a given type is selected, a new instance is created (Line
14). Which means a user has to pay for the incurred cost.

Finally, the Algorithm returns the list of VMs that can be used for the sampling phase.

Schedule the Sampling Workloads

After selecting a set of VMs to perform in a sampling phase, the next step is to assign tasks
to them. This process is presented in the Algorithm 6.4 whose inputs are the list of VMs
used in a sampling phase (Vs), a job (j), and a duration of a sampling phase (es).

Algorithm 6.4 Schedule Sampling Phase
1: function SCHEDULE_SAMPLING(Vs, j,es)
2: n0 b n j

|Vs|c
3: for v 2Vs do

4: w new workload with n0 tasks of j
5: if v is new instance then

6: stw NOW +b
7: else

8: PREEMPT ION(v)
9: SHIFT _WORKLOADS(wv,es)

10: stw NOW
11: f iw NOW + es
12: Assign workload w to an instance v

First, the number of tasks assigned for each VM is calculated. Since the task execution
times are unknown, tasks are evenly distributed to each VM (Line 2). It should be noted that
each instance does not need to execute all the tasks assigned to it. Instead, they just need to
execute as many tasks as possible within a sampling phase.

For each instance, a new workload is created (Line 4). If an instance is just created, its
ready time, which is calculated by adding the creation overhead to the current time, is a start
time of a new workload (Line 6). On the other hand, for an existing instance, a start of a
new workload is the current time (Line 6). Notably, pre-emption must be performed on an
existing instance in order to to stop an execution of the current workload (Line 8). Then, all
remaining workloads on an instance is shifted backward in order to create space for a new
workload (Line 9).

Next, a finish time of a workload is calculated by adding the current time to its duration
(Line 11). Finally, a workload is added to an instance to be executed either immediately (if
an instance is already existing) or when it is ready.

6.3 Chapter Summary 79

Terminate a Sampling Phase and Estimate Task Execution Times

After assigning and start executing sampling tasks on instances, the execution is monitored
in order to retrieve the actual execution of each task on an instance.

The sampling phase is completed when either all sampling tasks are executed or the
sampling phase times out, i.e. the end of a sampling phase’ duration is reached. After that,
all the actual execution times of each tasks are used to estimate the task execution time of a
job’s application on all instance types.

The task execution time of a job’s application on an instance type is calculated as the
average value of the actual execution times of all sampling tasks assigned to an instance
of that type. For example, if an instance is able to execute 3 tasks of a jobs and the actual
execution times are 13, 14, and 15 seconds, then the task execution time of an application
corresponding to an instance type is 13+14+15

3 = 14 seconds.
However, if an instance is not able to execute even a single task, a very large value is

used as the task execution time so that an instance type will not be considered.
After the termination, the task execution time of a new application on all available types

are estimated. This value can be used to schedule the remaining tasks of a job using any
scheduling approaches presented in Chapter 5.

6.3 Chapter Summary

In this chapter, we have presented two different execution management mechanisms. Dy-
namic scheduling process detects any potential deadline violations during runtime and
performs task reassignment between VMs in order to prevent such violations. Unknown
handling mechanism estimates task execution times of an unknown application by performing
sampling phase in which some tasks of an application are executed on VMs of all available
instance types.

Chapter 7

Design and Implementation

This chapter is going to present how the scheduling approaches and execution management
mechanisms introduced in Chapters 3 and 6 are materialised and implemented into a com-
plete software framework. We will discuss the design and implementation of the software
framework which is developed in Scala. This system is able to handle the submission of
one or more BoT jobs at any time, schedule and manage their execution on cloud VMs. Its
objective is to minimise the monetary cost incurred by using cloud resources while ensuring
that all jobs are executed by their deadlines.

The main design goal that we are trying to accomplish is loose coupling. In other
words, we want to make the system consist of many independent components or services,
i.e. each service has no knowledge and is not affected by the internal structure of others.
The communication between services is done using the Actor Model, supported by the Akka
framework, a toolkit for building a concurrent and distributed system [13]. Moreover, this
design goal also helps to avoid code duplication which can be caused by reusing mechanisms,
for instance the assignment mechanism presented in Chapter 4 is used by both execution
scheduling and managing mechanisms.

This chapter is structured as follow. Section 7.1 presents the Data Transfer Objects
(DTOs) which represent the domain objects and are used to carry information between
components. Section 7.2 presents the general design of our framework and its components.
Section 7.3 explains the features supported by the framework in term of the interaction
between different components. This chapter is concluded by Section 7.4.

82 Design and Implementation

Fig. 7.1 Data Transfer Objects

7.1 Data Transfer Object (DTO)

Data and information are represented by DTOs in order to be stored and transferred between
different components. Moreover, the DTOs also represent the domain objects that exist in
our framework.

As illustrated by the Figure 7.1, there are total 5 DTOs that are related to each other.

7.1.1 Application

The Application class represents BoT application whose jobs are submitted to be exe-
cuted on the cloud. It only has one attribute, named appId, which is unique and used to
represent each application.

7.1.2 Job

The Job class represents a BoT job. Each Job object corresponds to one and only one
Application object. On the other hand, there can be many jobs of the same application.
Besides an unique identifier jobId, other attributes of a Job are its number of tasks, the
submitted time, and a deadline. Notably, the submitted time can represent the time in the
future, which can be used to support scheduled jobs.

7.2 Components 83

7.1.3 InstanceType

The InstanceType class represents an available instance type offered by the cloud
provider. Each InstanceType object has an unique identifier typeId and a cost per
ATU value, denoted as price.

7.1.4 Instance

The Instance class represents a cloud VM which are created to execute tasks of BoT jobs.
Each instance is tied to an InstanceType object. Moreover, it also stores the creation,
read, and termination time of an instance.

It should be noted that the ready and termination time can be either estimated or actual
values. For instance, when an instance is created but not ready yet, its ready time is estimated
using the creation overhead b . Later, an instance’s ready time is replaced by its actual
ready time. Similarly, if an instance is still executing workload at its termination time, the
termination time will be delayed, i.e. updated.

7.1.5 Workload

The Workload class represents a workload between a job and an instance. As a result, each
Workload object has to be tied to exactly one Job and one Instance objects. Similarly,
a Job object also has a list of its workloads, i.e. Wj. On the other hand, in an Instance
object, its workloads, i.e. Wv, are divided into two queues containing finished and unfinished
workloads. Both queues are sorted based on order of execution, thus, the current workload of
an instance is the one in the front of its unfinished workloads queue.

The other attributes of a Workload object are its number of tasks, start and finish times.
It should be noted that the start and finish times can either be estimated or actual values. For
instance, when a workload is scheduled but not yet executed on an instance, its start time is
estimated. But since it is possible for a workload to be executed before or after its estimated
start time, this value must be updated when an execution starts. Similarly, a workload’s finish
time can be updated during its execution.

7.2 Components

This section introduces the components, or services, each of which serves a particular role
in the system. The supported features are performed based on the interaction between
the services and will be discussed later in the next section. The Figure 7.2 illustrates the

84 Design and Implementation

Fig. 7.2 The Components of the Software Framework

components in the software framework and their interaction. There are totally 6 components
which are going to be presented and discussed in the following sections.

7.2.1 Assignment Service

The Assignment Service component implements all the logics presented in Chapter 4 and
are used by other components. More precisely, this component supports assigning tasks of
jobs to the set of existing VMs while ensuring that there is no deadline violation.

Assigning tasks from jobs to VMs is performed using Algorithm 4.5. However, for
convenience, we break it into two processes and add an extra one, those three processes are
presented by three methods as follow:

• assignJobToVm: assigning tasks of one job to one VM. More precisely, this method
creates a new workload of a given job and assigns it to an instance as long as it does
not result in any violation.

• assignJobToVms: assigning task of one job to a set of VMs. Given a job, this
method loops through each VM and invokes the above assignJobToVm method.
This feature is used in a hybrid and heuristic scheduling approaches which require to
schedule a job to existing VMs before calculating the amount of new instances to rent.

• assignJobsToVms: assigning tasks of multiple jobs to a set of VMs. This method
loops through each job and invokes the above assignJobToVms method. This
feature is used in a exact scheduling approach which requires to schedule all jobs to
existing VMs before calculating the amount of new instances to rent.

Furthermore, the component also consists of the implementations of the utility methods
presented in Section 4.1, which are:

• findPrecedingAndSucceedingWorkloads: to find preceding and succeed-
ing workloads in a VM in order to put a new workload in between them (Algorithm
4.1 of Section 4.1.1).

7.2 Components 85

Fig. 7.3 Static Scheduler Hierarchy Structure

• calculatePermissbleDelay: to calculate permissible delay (Algorithm 4.2 of
Section 4.1.2).

• shiftWorkloads: to shift workloads in a VM (Algorithm 4.3 of Section 4.1.3).

• preempt: to perform execution pre-emption (Algorithm 4.4 of Section 4.1.4).

7.2.2 Scheduler

The Scheduler component implements all the approaches presented in Chapter 5. As we have
proposed three different approaches, which are exact, hybrid, and heuristics, the Scheduler
component also consists of three different scheduling services. The actual approach is
selected based on the configuration parameter which is set when the system starts.

The component’s hierarchy is illustrated by the Figure 7.3. StaticScheduler is a
trait, which is a Scala concept similar to Java’s interface, which defines the supported be-
haviours to schedule a set of BoT jobs with deadlines. The signature of the scheduleJobs
method is presented in the Listing 7.1.

def scheduleJobs(jobs: List[Job],

existingInstances: List[Instance],

instanceTypes: List[InstanceType],

taskExecTimes: Map[Application, Map[InstanceType, Double]])

: Map[Instance, List[Workload]]

Listing 7.1 scheduleJobs Method

The method takes the inputs as i) the list of jobs and their tasks, ii) the list of existing
instances, iii) the list of available instance types and their prices, and iv) the task execution
times, which are represented as the map from jobs’ applications to instance type and then to

86 Design and Implementation

the actual values. The output of the method is the map from cloud VMs (both existing and
new ones) to the list of new workloads.

The scheduleJobs method is implemented by the children of StaticScheduler,
namely ExactScheduler and SingleScheduler.

ExactScheduler

The ExactScheduler object implements the exact scheduling approach presented in
Section 5.1. More specifically, in order to handle a submission of jobs, it first assign them to
the existing VMs. Then, the remaining jobs are then scheduled to new VMs based on the
Model 5.12.

In order to solve the optimisation problem presented in the Model 5.12, we use Gurobi
[12], the optimisation solver. Gurobi provides a Java API to construct an optimisation model
as the combination of decision variables, expressions, and constraints. The model is then
solved, or optimised, in order to find an optimal solution.

SingleScheduler

The SingleScheduler trait is implemented based on the logic presented in Section 5.2.
More specifically, each submitted job is first assigned to existing instances before being
scheduled on new VMs, which results in additional monetary cost. The process which assigns
tasks to existing VMs are implemented within the SingleScheduler trait, while the
selecting new resources feature will be implemented by its children. This method is named
selectResources and has the signature as follow:

def selectResources(job: Job,

numTasks: Int,

instanceTypes: List[InstanceType],

taskExecutionTimes: Map[InstanceType, Double])

: List[Instance]

Listing 7.2 selectResources Method

As shown by Listing 7.2, the inputs of the selectResources method are: i) a
submitted jobs, ii) its number of remaining tasks after assigning to existing VMs, iii) list of
available instance types and their prices, and iv) the task execution times of a job’s application
to all available instance types. The method returns the list of new instances.

The method selectResources of the SingleScheduler trait is implemented
by two objects HybridScheduler and HeuristicScheduler, corresponding to the
hybrid and heuristic scheduling approaches respectively.

7.2 Components 87

In the HybridScheduler object, we once again use Gurobi to model the solve the
optimisation problem presented by the Model 5.20. In order words, it is able to find the
optimal number of new instances required to execute all remaining tasks of a submitted job
with the lowest monetary cost.

In the HeuristicScheduler object, we implement the logic presented in the Section
5.2.2. More precisely, the object consists of two main sequential processes: the first one
creates an initial homogeneous plan based on the Algorithm 5.1, the initial plan is then
transformed and improved based on the Algorithm 5.2.

7.2.3 Reassignment Service

The Reassignment Service aims to perform the dynamic reassignment presented presented
in the Section 6.1.3.

The Listing 7.3 presents the signature of the reassign method, whose logic is based
on the Algorithm 6.2. The inputs of the method are i) the list of task-giving instances, ii) the
list of task-receiving instances, iii) the map storing the necessary reassign time of task-giving
instances, and iv) the task execution times.

The method returns two lists. The first one is the list of task-receiving instances with new
workloads already added to their queues. The second one is the list of task-giving instances
and the number of tasks that are reassigned, i.e. need to be removed.

def reassign(givingInstances: List[Instance],

receivingInstances: List[Instance],

instancesToReassignTime: Map[Instance, (Workload, Int)],

taskExecTimes: Map[Application, Map[InstanceType, Double]])

:(List[Instance], List[(Instance, Workload, List[Task])])

Listing 7.3 reassign Method

It should be noted that the input of the reassignmethod are the result of the monitoring
and progress categorisation processes. They are implemented in the different component and
will be presented later.

7.2.4 Unknown Handler

The Unknown Handler component implements the logic presented in Section 6.2. As shown
by the Listing 7.4, its inputs include: i) an unknown job, ii) the list of existing instances, iii)
the sampling duration, and iv) the list of all available instance types.

def scheduleUnknownJob(job: Job,

existingInstances: List[Instance],

88 Design and Implementation

samplingDuration: Int,

allInstanceTypes: List[InstanceType])

:(List[Task], Map[Instance, List[Workload]])

Listing 7.4 scheduleUnknownJob Method

The method will performs two steps. The first step is to select a VM of each available type
as a sampling VM. As presented in the Algorithm 6.3, the method tries to select existing VM
and only creates new VM if necessary. The second step is to schedule a sampling execution
on all sampling VMs, as presented by the Algorithm 6.4. This step also set a timeout for a
sampling phase to end.

7.2.5 Cloud Manager

The Cloud Manager component provides the features to interact with the cloud. This
component is in charged of managing not only the cloud VMs but also the workload execution
within each VM. Moreover, the Cloud Manager component provides the interfaces which
need to be implemented for each cloud platform.

Manage Cloud VMs

In order to create a new VMs, the Cloud Manager support a createInstance method
which receives an instance type as input. Its output is a running instance, as shown by the
Listing 7.5.

def createInstance(instanceType: InstanceType) :Instance

Listing 7.5 createInstance Method

The termination feature requires an instance and does not return any thing, as shown by
the Listing 7.6. Notably, there is a flag, i.e. Boolean value, named forcedTermination
which indicates whether a termination must be done. If this value is set to false, a
termination may not be performed if an instance is still executing workload. Instead, an
instance’s termination is delayed for another ATU which results in additional cost.

def terminateInstace(instance: Instance, forcedTermination: Boolean)

Listing 7.6 terminateInstace Method

It should be noted that when an instance is created, it is also scheduled to be terminated
at the end of its ATU. In other words, an VM’s termination is triggered automatically when
time out. Since we do not allow assigning workload whose finish time exceeds an instance’s
terminated time, an instance’s termination should not be changed. However, if an instance is

7.2 Components 89

not yet idle, i.e. is still executing tasks, at its termination time, its termination is delayed for
another ATU, which results in unavoidable additional cost.

Manage Workload Execution

In order to start a new workload on an instance, the Cloud Manager provides a startWorkload
method whose input is an instance. An instance will automatically start a workload at a top
of the unfinished workloads queue, which is sorted by their deadlines.

def startWorkload(instance: Instance)

Listing 7.7 startWorkload Method

In order to move tasks between workloads during execution, it is necessary to support
removing tasks from a workload. This method, named removeTasks is presented by the
Listing 7.8. Its input is the Instance object, the Workload, and the list of tasks to be removed.

def removeTasks(instance: Instance, workload: Workload, removedTasks:

List[Task])

Listing 7.8 removeTasks Method

In order to support execution management during runtime, it is necessary to support a mon-
itoring functionality. The Cloud Manager component provides the monitorInstance
method whose signature is presented by the Listing 7.9.

def monitorInstance(instance: Instance): (String, List[Int])

Listing 7.9 monitorInstance Method

Taking an instance as a input, the monitorInstance returns a pair whose first value
is a identifier of the current workload. The second value of a returned pair is a list whose
items are the actual times that tasks of a current workload are executed. This list serves two
purposes: i) the number of its items is the number of executed tasks, ii) the actual execution
times can be used to estimate task execution time while handling unknown application.

7.2.6 Executor

The Executor component is a centralised manager which not only supports but also connects
other components. It has many features that will be presented in the next few sections.

90 Design and Implementation

Receiving Submission

Before job submissions are sent to the Scheduler component, they must be received by the
Executor. In this framework, we assume that all the required library and data are already
available in the cloud, e.g. they can be stored in cloud storing service such as AWS S3 [14]
or Azure Storage [15]. Hence, a job submission can be simply expressed by stating a job id,
its application id, the number of tasks, the submitted time and deadline. In our framework,
we use JSON to represent job submission.
{

"jobs": [

{

"jobId": "Job_1",

"appId": "Application_1",

"numTasks": 30,

"expectedStartTime": "now",

"deadline": 1200

},

{

"jobId": "Job_2",

"appId": "Application_2",

"numTasks": 50,

"expectedStartTime": "now" + 1200,

"deadline": 1500

}

]

}

Listing 7.10 Job Submission JSON File Example

The Listing 7.10 presents an example of a JSON file that consist of two jobs. The first one
named Job_1 belongs to an application Application_1 and has 30 tasks. A job needs
to be scheduled and executed immediately and its deadline is 1200 seconds from now. The
second one named Job_2 belongs to an application Application_2 and has 50 tasks. A
job needs to be scheduled and executed 1200 from now, thus "now" + 1200. Its deadline
is 1500 seconds after its start time, which is 1200+1500 = 2700 seconds from now.

Using the JSON file, we are able to not only submit jobs to be executed immediately but
also schedule job execution in the future, e.g. recurring jobs.

Caching Data

Since all other components are stateless, i.e. they do not store data, the Executor store
all the data in the series of caches. For instance, there are five caches corresponding to

7.2 Components 91

five DTOs classes, namely ApplicationCache, JobCache, InstanceTypeCache,
InstanceCache, and WorkloadCache.

Since we assume that the available instance types and their prices are available prior to the
execution and unchanged, the InstanceTypeCache is populated when the framework
started. The data is stored in a JSON file whose format is illustrated by the Listing 7.11.

{

"instanceTypes": [

{

"instanceTypeName": "m3.medium",

"price": 0.073

},

{

"instanceTypeName": "m3.large",

"price": 0.146

},

{

"instanceTypeName": "m3.xlarge",

"price": 0.293

}

]

}

Listing 7.11 A JSON File Which Stores Instance Types and Their Prices

Similarly, the ApplicationCache can be populated based on predefined data in form
of a JSON file, as presented by the Listing 7.12. However, this cache can also be updated at
runtime when unknown jobs are submitted.

{

"applications": [

{

"applicationName": "COMPRESS"

},

{

"applicationName": "MOLECULAR"

},

{

"applicationName": "SVM"

}

]

}

Listing 7.12 A JSON File Which Stores Applications

92 Design and Implementation

Jobs are added to the JobCache when they are submitted to the system. Similarly,
instances and workloads are added to theInstanceCache and WorkloadCache when
they are created in order to execute jobs’ tasks and are updated during runtime.

Moreover, the Executor also maintains the TaskExecutionTimes cache which stores
a task execution times between applications and instance types. This cache can be populated
using pre-defined data or during runtime by the unknown application handling process. The
Listing 7.13 presents a JSON file which store task execution times data. For example, a task
execution time for a COMPRESS application on VM of type m3.medium is 44.5 seconds.

{

"taskExecTimes": [

{

"instanceTypeName": "m3.medium",

"applicationName": "COMPRESS",

"taskExecTime": 44.5

},

{

"instanceTypeName": "m3.medium",

"applicationName": "MOLECULAR",

"taskExecTime": 60.0

},

{

"instanceTypeName": "m3.medium",

"applicationName": "SVM",

"taskExecTime": 22.65

},

{

"instanceTypeName": "m3.large",

"applicationName": "COMPRESS",

"taskExecTime": 21.35

},

{

"instanceTypeName": "m3.large",

"applicationName": "MOLECULAR",

"taskExecTime": 20.0

},

{

"instanceTypeName": "m3.large",

"applicationName": "SVM",

"taskExecTime": 13.35

},

{

"instanceTypeName": "m3.xlarge",

7.3 Supported Features 93

"applicationName": "COMPRESS",

"taskExecTime": 16.0

},

{

"instanceTypeName": "m3.xlarge",

"applicationName": "MOLECULAR",

"taskExecTime": 10

},

{

"instanceTypeName": "m3.xlarge",

"applicationName": "SVM",

"taskExecTime": 13.3

}

]

}

Listing 7.13 A JSON File Which Stores Task Execution Times between Instance Types and
Applications

Finally, in order to support handling unknown applications, there is a cache named
SamplingCache which stores the actual execution times of unknown applications on all
available instance types.

Connecting Other Components

The final features of the Executor Component is to be a middleman connecting other compo-
nents. As presented in the previous sections, other components are loosely coupled and have
different objective, hence, it is necessary to have the Executor to coordinate the execution by
invoking services based on the predefined order.

7.3 Supported Features

In this section, we are going to present and discuss all the features supported by the software
framework. The supported features are presented in form of processes, each of which involves
the interaction between components introduced in the Section 7.2.

7.3.1 Submission Handling

Figure 7.4 is the sequence diagram illustrating the job submission handling process. There
are four components that involve in this process: the Executor, Scheduler, CloudManager,
and UnknownHandler.

94 Design and Implementation

Fig. 7.4 Job Submission Handling Process

7.3 Supported Features 95

Fig. 7.5 Execution Management Process

The process starts when one or more jobs are submitted to the system via the Executor
component.

First, all the known jobs, whose tasks execution times are known, are sent to the Scheduler
component to be assigned to existing VMs and/or scheduled to new ones. The result of the
scheduling process, i.e. the scheduling plan, is returned to the Executor.

After that, the scheduling plan is sent to the CloudManager to either create new VMs if
necessary or start executing tasks on existing ones.

After all the known jobs are scheduled, the unknown one is sent to the UnknownHandling
component which schedules a sampling phase. The result, i.e. the sampling plan, is sent back
to the Executor which again forwards to the CloudManager to start a sampling phase.

96 Design and Implementation

7.3.2 Execution Monitoring and Management

Figure 7.5 presents the sequence diagram illustrating the execution management process. It
starts when the Executor asks the CloudManager for execution progresses, which can be
triggered periodically.

After receiving all the VM progresses from the CloudManager, the Executor pre-processes
them, e.g. performing progress categorisation, before sending the result to the DynamicSched-
uler module. This module performs dynamic reassignment by moving tasks from violating
VMs to those that can receive extra workloads. The result, which is called reassignment plan,
is sent back to the Executor which forwards to the CloudManager.

7.4 Chapter Summary

In this chapter, we have presented the design and implementation details of the software
system which incorporates all the research presented in the previous chapters in order to
schedule the execution of BoT jobs on the cloud.

The proposed system consists of many loosely coupled services which interacting with
each other in order to perform supported features. The interaction is performed using
the Actor modelled supported by the Akka framework. Data are stored and transferred
using DTOs. We employ Gurobi, the off-the-shelf mathematical solver, in order to solve
optimisation problems and produce exact solutions.

The main drawback of our framework is it centralised nature, more specifically, all the
communication must go through the Executor component which becomes the single point of
failure. Investigating the way to decentralise the Executor component will be investigated in
the future work.

Chapter 8

Evaluation

8.1 Introduction

In this chapter, our proposed research and framework are thoroughly evaluated via the set
of different experiments. First, we perform simulation experiment to evaluate different
mechanisms presented in Chapters 5 and 6 individually (Sections 8.2, 8.3, and 8.4). It should
be noted that by running our experiments in the simulated environment, our results were
exposed to a certain degree of bias due to the fact that the simulated environment could not
completely replicate the behaviours of the real cloud environment. As a result in Section 8.5,
we evaluated our proposed research against AWS cloud environment in order to demonstrate
its applicability in the real world.

A majority of this chapter has been presented in the peer reviewed papers [63, 64].

8.2 Comparing the Scheduling Approaches

In Chapter 5 we presented three different scheduling approaches, namely Exact Approach,
Hybrid Approach, and Heuristic Approach.

The Exact Approach aims to find a global optimal solution. More specifically, it
considers all submitted jobs at the same time and produces a fine-grained scheduling plan
which assigns the certain number of tasks of each job to each cloud VMs. As a result, the
Exact Approach can achieve the lowest cost possible. However, it can take a considerable
amount of time in order to find a scheduling plan.

The Hybrid Approach aims to find an optimal solution for each job and combines them
using a heuristic algorithm. In other words, this approach considers one job at a time and
applies Integer Linear Programming techniques to calculate the amount of VMs of each

98 Evaluation

instance type that can execute a job with the lowest cost. Hence, even though this approach
is able to achieve the optimal solution for each job, it does not guarantee the scheduling plan
for all jobs are optimal. On the other hand, we believe it can be solved faster compared to the
Exact Approach.

The Heuristic Approach considers one job at a time, similar to the Hybrid Approach.
However, it uses the greedy and best-effort algorithm in order to find the scheduling plan
with lowest cost possible. In other words, the optimality of the solution is not guaranteed.
We believe this approach will have the lowest solving time, however, the resulted monetary
cost is highest compared to the other approaches.

The three approaches present the trade-off between the solving time, the time it takes to
find a scheduling plan, and the optimality of the solutions. This trade-off will be thoroughly
investigated by the experiments performed in this section. The objective of this section
is to show the actual difference in solving time and solution optimality between the three
approaches. Furthermore, we also aim to investigate the influence of different parameters on
the scheduling problem.

8.2.1 Environment Set-up

Programmatically speaking, this section solely focuses on testing the Scheduling service
presented in Section 7.2.2. More specifically, the experiment is performed by invoking the
scheduleJobs methods of three services: ExactScheduler, HybridScheduler,
and HeuristicScheduler. In order to compare the three approaches, we use the
following two metrics: i) the time it takes to produce a scheduling plan, i.e. solving time,
and ii) the cost of the returned scheduling plan, i.e. solution optimality.

Dependent and Independent Variables

In our experiment, there are two sets of variables. The first one is related to the input, i.e.
cloud environment and problem, and are called independent variables. The independent
variables used in our experiments are i) number of jobs, ii) number of tasks, iii) number of
available instance types, and iv) the job deadline. In our experiment, we assume that the
number of applications is equal to the number of jobs. The other set of variables is called
dependent variables and consists of i) solving time, and ii) the cost of a scheduling plan.
Any changes in the independent variables will affect the dependent variables.

Each independent variable is assigned a default value, which is used as a baseline. In
each experiment, we change only one independent variable while keeping the remaining
variables unchanged. As a result, we are able to not only compare the solving time and

8.2 Comparing the Scheduling Approaches 99

Table 8.1 Summary of the Independent and Dependent Variable

Name Type Default Description

Number of Jobs Independent 5 The number of jobs
Number of Tasks Independent 100 The number of tasks per job
Number of Type Independent 4 The number of available instance types
Deadlines Independent 600 The amount of time in which a job must

be fully executed
Solving Time Dependent N/A The time it takes to find a scheduling plan

for a given problem
Total cost Dependent N/A The cost of a returned scheduling plan

solution optimality between three approaches but also investigate the affect of the independent
variables on them.

Table 8.1 summarises all the independent and dependent variables used in this section.
It also shows the default values of the independent variables. In other words, when one
independent variable is changed, the others are set to their default values.

Input Synthesiser

In order to evaluate and compare the scheduling approaches, we need to generate the input
which consists of available instance types, application, jobs (and their tasks), and the task
execution times between instance types and applications. Automatically generate instance
types, applications, and jobs based on the set of given independent variables is simple,
however, generating task execution times is more complicated.

We develop the task execution generator, which automatically generates task execution
times of given application and instance types. The main idea is to calculate a task execution
time between an application and an instance type based on the task execution time of the
same application on the nearest cheaper instance type. The logic is presented by Algorithm
8.1 which generate the task execution time between an application an all instance types.

Algorithm 8.1 Generate Task Execution Times
1: function GENERATE_TASK_EXEC_TIMES(a,T)
2: Sort T by their prices in ascending order
3: t0 first type in T
4: ea,t0 a random value
5: for i 2 {1...|T |�1} do

6: d random number between 0.1 and pti
pti�1

7: ea,ti d ⇥ (ea,ti�1⇥
pti�1
pti

)

100 Evaluation

First, the instance types are sorted based on their prices in ascending order (Line 8.1),
which means the first type on the list, denoted as t0, has the cheapest price. The execution
time of an application on the cheapest type is assigned to a random positive value (Line 4).

Then, the algorithm loops through the remaining instance type. For each type, its task
execution time is calculated based on the performance improvement factor d which represents
the relationship between the task execution times and prices of two instance types t1 and t2,
assuming pt1 < pt2 , as follow:

et2
et1

= d ⇥ pt1
pt2

(8.1)

Hence, it is possible to calculate a task execution time of t2 given a task execution time
of t1 and their prices:

et2 = d ⇥ et1⇥
pt1
pt2

(8.2)

Based on Formula 8.2, it is possible to make the following remarks:

• If d = 1, then et2 = et1⇥
pt1
pt2

, which means the decrease in task execution time is equal
to the increase in price. For example, if pt2 = 2⇥ pt1 then et2 = et1/2. In this case, it
makes almost no difference selecting two VMs of t1 or one VM of t2.

• If d < 1, then et2 < et1⇥
pt1
pt2

, which means the decrease in task execution time is greater
than the increase in price. For example, if pt2 = 2⇥ pt1 then et2 < et1/2. In this case,
selecting one VMs of t2 is more cost effective than selecting two VMs of t1.

• If d > 1, then et2 > et1⇥
pt1
pt2

, which means the decrease in task execution time is less
than the increase in price. For example, if pt2 = 2⇥ pt1 then et2 > et1/2. In this case,
selecting two VMs of t1 is more cost effective than selecting one VM of t2.

• If d =
pt2
pt1

, then et2 = et1 , which means a task execution time remains the same between
two instance types. For example, even if pt2 = 2⇥ pt1 , et2 and et1 are identical. In this
case, selecting two VMs of t1 is more cost effective than selecting one VM of t2.

In other words, d represents the performance/cost trade-off between two instance types.
For each instance type, d takes a random value between 0.1 and pti

pti�1
, i.e. the ratio between

its price and the previous type’s (Line 6). It is then used to calculate a task execution time of
an instance type (Line 7).

Algorithm 8.1 is applied for each application. The final result is the task execution times
between all given applications and all available instance types.

8.2 Comparing the Scheduling Approaches 101

8.2.2 Experiment Results and Discussion

We performed four sets of experiment. In each set, one independent variable varied while the
rest were set to the default values presented in Table 8.1. The experiment was performed
five times for each value of the selected independent variable. The dependent variables, i.e.
solving time and total cost, were recorded after each run.

Varied Numbers of Jobs

In this set of experiment, we selected 10 different values corresponding to the different
numbers of job which varied from 5 to 14. The results are illustrated by Figure 8.1.

Figure 8.1a presents the solving times of three approaches when the number of jobs
varies. The x-axis shows the number of jobs which goes from 5 to 14. The y-axis shows the
solving time in milliseconds. Notably, log-10 scale is used for the y-axis.

It is evident that the solving times of the Exact approach are higher than the Hybrid
approach’s which are higher than the solving times of the Heuristic approach. However,
the difference between the Exact and Hybrid approaches is substantial compared to the
difference between the Hybrid and Heuristic approaches. For instance, when there are 5 jobs,
the solving time of the Exact approach (804.2 milliseconds) is nearly 14 times higher the
solving time of the Hybrid approach (58.4 milliseconds), which is only 1.4 times higher than
the solving time of the Heuristic approach (41 milliseconds). Furthermore, when there are 14
jobs, the solving time of the Exact approach (545362.8 milliseconds) is about 7400 times
higher the solving time of the Hybrid approach (73 milliseconds), which is only 1.2 times
higher than the solving time of the Heuristic approach (62.4 milliseconds).

The Exact approach’s solving time not only are higher than other approaches but also
suffers substantial growth. As the number of jobs increases from 5 to 14, the solving
time of the Exact approach grows 67714%, from 804.2 milliseconds to more than 540000
milliseconds, i.e. more than 9 minutes. On the other hand, the solving times of the Hybrid
and Heuristic approaches only increase 25% and 52% respectively.

Figure 8.1b presents the total cost of the scheduling plans produced by the three ap-
proaches when the number of jobs varies. The x-axis shows the number of jobs while the
y-axis shows the total cost. It can be seen that as the number of jobs increases, the cost
increases as well.

The Exact approach always manages to find the scheduling plan with the cheapest cost.
Interestingly, the costs of Hybrid and Heuristic approaches are nearly identical. In average,
the cost of using the Exact approach is 3.5% and 4.9% cheaper compared to the Hybrid and

102 Evaluation

Heuristic approach respectively. Using the Hybrid approach results in the cost which is 1.1%
cheaper compared to the Heuristic approach.

Varied Numbers of Tasks

In this set of experiment, we selected 10 different values corresponding to the different
numbers of tasks which varied from 100 to 1000. Since there are 5 jobs by default, the total
number of tasks varies from 500 to 5000 tasks. The results are illustrated by Figure 8.2.

Figure 8.2a presents the solving times of three approaches when the number of jobs
varies. The x-axis shows the number of tasks which goes from 500 to 5000. The y-axis
shows the solving time in milliseconds. Notably, log-10 scale is used for the y-axis.

It is evident that the solving times of the Exact approach are higher than the Hybrid
approach’s which are higher than the solving times of the Heuristic approach. However, the
difference between the Exact and Hybrid approaches is substantial compared to the difference
between the Hybrid and Heuristic approaches. For instance, when there are 500 tasks, the
solving time of the Exact approach (927 milliseconds) is more than 15 times higher the
solving time of the Hybrid approach (58.8 milliseconds), which is only 1.6 times higher than
the solving time of the Heuristic approach (37.4 milliseconds). Furthermore, when there are
5000 tasks, the solving time of the Exact approach (259813.2 milliseconds) is nearly 3000
times higher the solving time of the Hybrid approach (86.4 milliseconds), which is only 1.05
times higher than the solving time of the Heuristic approach (82.6 milliseconds).

The Exact approach’s solving time not only are higher than other approaches but also
suffers substantial growth. As the number of tasks increases from 5 to 14, the solving time of
the Exact approach grows 27900%, from 927 milliseconds to more than 250000 milliseconds,
i.e. more than 4 minutes. On the other hand, the solving times of the Hybrid and Heuristic
approaches only increase 47% and 120% respectively.

Figure 8.2b presents the total cost of the scheduling plans produced by the three ap-
proaches when the number of tasks varies. The x-axis shows the number of tasks while the
y-axis shows the total cost. It can be seen that as the number of tasks increases, the cost
increases as well.

Figure 8.2b shows that the total costs of three approaches are almost identical. In average,
the cost of using the Exact approach is 1.8% and 2.5% cheaper compared to the Hybrid and
Heuristic approach respectively. Using the Hybrid approach results in the cost which is 0.7%
cheaper compared to the Heuristic approach.

8.2 Comparing the Scheduling Approaches 103

(a) Average solving times of three scheduling approaches when the number of jobs varies. The x-axis
presents the number of jobs, the y-axis presents the solving time in log scale.

(b) Average cost of three scheduling approaches when the number of jobs varies. The x-axis presents
the number of jobs, the y-axis presents the total cost of a cloud cluster constructed to execute all the
jobs. The error bars illustrate the standard errors.

Fig. 8.1 Experiment Result of Three Scheduling Approaches When the Number of Jobs
Varies

104 Evaluation

(a) Average solving times of three scheduling approaches when the number of tasks varies. The x-axis
presents the number of tasks, the y-axis presents the solving time in log scale.

(b) Average cost of three scheduling approaches when the number of tasks varies. The x-axis presents
the number of tasks, the y-axis presents the total cost of a cloud cluster constructed to execute all the
jobs. The error bars illustrate the standard errors.

Fig. 8.2 Experiment Result of Three Scheduling Approaches When the Number of Tasks
Varies

8.2 Comparing the Scheduling Approaches 105

Varied Numbers of Instance Type

In this set of experiment, we selected 10 different values corresponding to the different
numbers of instance types which varied from 5 to 14. The results are illustrated by Figure
8.3.

Figure 8.3a presents the solving times of three approaches when the number of jobs
varies. The x-axis shows the number of types which goes from 5 to 14. The y-axis shows the
solving time in milliseconds. Notably, log-10 scale is used for the y-axis.

It is evident that the solving times of the Exact approach are higher than the Hybrid
approach’s which are higher than the solving times of the Heuristic approach. However, the
difference between the Exact and Hybrid approaches is substantial compared to the difference
between the Hybrid and Heuristic approaches. For instance, when there are 5 instance type,
the solving time of the Exact approach (1611.6 milliseconds) is more than 26 times higher
the solving time of the Hybrid approach (60.8 milliseconds), which is only 1.3 times higher
than the solving time of the Heuristic approach (44.6 milliseconds). Furthermore, when there
are 14 instance type, the solving time of the Exact approach (1494 milliseconds) is more than
37 times higher the solving time of the Hybrid approach (39.8 milliseconds), which is only
1.7 times higher than the solving time of the Heuristic approach (23.2 milliseconds).

Figure 8.3a also shows that increasing the number of available instance types does not
significantly increase the solving time. In other words, the number of instance type does not
affect the solving time as much as the number of jobs and the number of tasks do.

Figure 8.3b presents the total cost of the scheduling plans produced by the three ap-
proaches when the number of tasks varies. The x-axis shows the number of instance types
while the y-axis shows the total cost. Similar to the solving time, the total cost seems to be
not affected by the increase in the number of instance types. Notably, the plot seems to vary
due to the random process that creates applications, jobs, and task execution times.

The figure shows that the Exact approach always has the lowest cost in comparison to
the other approaches, whose costs are almost identical. In average, the cost of using the
Exact approach is 4.8% and 5.3% cheaper compared to the Hybrid and Heuristic approach
respectively. Using the Hybrid approach results in the cost which is 0.5% cheaper compared
to the Heuristic approach.

Varied Deadlines

In this set of experiment, we selected 10 different values corresponding to the different
deadlines which varied from from 600 to 1500 seconds. More specifically, each value

106 Evaluation

(a) Average solving times of three scheduling approaches when the number of instance types varies.
The x-axis presents the number of instance types, the y-axis presents the solving time in log scale.

(b) Average cost of three scheduling approaches when the number of instance types varies. The x-axis
presents the number of instance types, the y-axis presents the total cost of a cloud cluster constructed
to execute all the jobs. The error bars illustrate the standard errors.

Fig. 8.3 Experiment Result of Three Scheduling Approaches When the Number of Instance
Types Varies

8.2 Comparing the Scheduling Approaches 107

denoted the amount of time within which all tasks of a job must be fully executed. The
results are illustrated by Figure 8.4.

Figure 8.4a presents the solving times of three approaches when the number of jobs
varies. The x-axis shows the deadline which goes from 600 to 1500. The y-axis shows the
solving time in milliseconds. Notably, log-10 scale is used for the y-axis.

It is evident that the solving times of the Exact approach are higher than the Hybrid
approach’s which are higher than the solving times of the Heuristic approach. However, the
difference between the Exact and Hybrid approaches is substantial compared to the difference
between the Hybrid and Heuristic approaches. For instance, when the deadline is 600 seconds,
the solving time of the Exact approach (2122.6 milliseconds) is more than 41 times higher
the solving time of the Hybrid approach (51.6 milliseconds), which is only 1.1 times higher
than the solving time of the Heuristic approach (46.6 milliseconds). Furthermore, when the
deadline is 1500 seconds, the solving time of the Exact approach (197.6 milliseconds) is more
than 19 times higher the solving time of the Hybrid approach (10.2 milliseconds), which is
only 2 times higher than the solving time of the Heuristic approach (2.04 milliseconds).

Figure 8.4a also shows that the solving time decreases as the deadline increases. In
average, the solving times of the Exact, Hybrid, and Heuristic approaches decreases 90.7%,
80.2%, and 89% respectively. This can be explained as follow: since the deadline increases,
it is possible to assign more tasks to be executed on each instance. This results in the lower
number of instances required to execute all tasks. As a result, the scheduling approaches
need to consider the lower number of instances, which reduces the solving time.

Figure 8.4b presents the total cost of the scheduling plans produced by the three ap-
proaches when the deadline varies. The x-axis shows the deadline while the y-axis shows the
total cost. Similar to the solving time, the total cost decreases as the deadline increases with
the same reason, i.e. lower number of VMs is required to execute all tasks, which results in
the lower total cost.

The figure shows that the Exact approach always has the lowest cost in comparison to
the other approaches, whose costs are almost identical. In average, the cost of using the
Exact approach is 6.6% and 7.6% cheaper compared to the Hybrid and Heuristic approach
respectively. Using the Hybrid approach results in the cost which is 1% cheaper compared to
the Heuristic approach.

8.2.3 Discussion

In the previous section, we have presented the experiment results comparing three proposed
scheduling approaches. Based on the results, this section presents the remarks and conclusion,
some of which are previously hypothesised.

108 Evaluation

(a) Average solving times of three scheduling approaches when the deadline varies. The x-axis
presents the length of deadlines, the y-axis presents the solving time in log scale.

(b) Average cost of three scheduling approaches when the length of deadlines varies. The x-axis
presents the length of deadlines, the y-axis presents the total cost of a cloud cluster constructed to
execute all the jobs. The error bars illustrate the standard errors.

Fig. 8.4 Experiment Result of Three Scheduling Approaches When the Deadline Varies

8.2 Comparing the Scheduling Approaches 109

The total cost is affected by the intensity of the submission. As shown by Figures
8.1b and 8.2b, intensive workloads, i.e. higher number of tasks/jobs or shorter deadlines,
also results in higher costs, since it requires more instances. On the contrary, high deadline,
i.e. low urgency, can reduce the number of instances and result in lower cast. as shown by
Figure 8.4b

The solving time is affected by the intensity of the submission. As shown by Figures
8.1a and 8.2a, the solving times of all three approaches increase when the number of jobs
or tasks increases. Moreover, as shown by Figure 8.4a, the solving time can decrease if the
deadline decrease, i.e. the urgency decreases.

The number of instance types does not affect the solving time and cost. As shown in
Figure 8.3, there is no correlation between the number of instance types and the solving time.
This can be explained as all approaches are able to quickly focus on the certain instance types
which discarding the rest. Similarly, the total cost is not affected by the number of instance
types.

The Exact approach is the most cost efficient. In all of our experiment, the Exact
approach is able to achieve the lower cost than the other two. It can reduce cost as much as
6.6%.

The Exact approach is not scalable. As shown by Figures 8.1a and 8.2a, the solving
time of the Exact approach grow significantly. It can take few minutes to find a solution. This
is not ideal for a real time system which should schedule job execution as soon as possible.

Both the Hybrid and Heuristic approaches are scalable. In our experiments, both
approaches are able to produce the scheduling plan within 100 milliseconds at any type of
workload intensity. In other words, they both scale well and are suitable for a real time
system which requires quick scheduling decision making.

The Hybrid approach is the best of both world. Even though the Hybrid approach is
able to find a cheaper scheduling plan compared with the Heuristic approach, its cost saving
is not significant since it always around 1%. However, taking into account that the solving
time of the hybrid approach is still very fast (less than a second), there is no disadvantage of
using this approach.

As a conclusion, we believe the both the Hybrid and Heuristic approach are suitable for a
real time system which not only needs to handle intensive workload but also is required to
make quick scheduling decision. On the other hand, even though the Exact approach can
achieve cost saving up to 6.6%, its solving time is too high to be suitable highly intensive
system.

110 Evaluation

8.3 Evaluating the Unknown Handling Mechanism

In Section 6.2, we presented a mechanism to estimate the task execution time of an unknown
application on all available instance types by performing a sampling phase. This section
presents thorough experiments in order to test the effectiveness of the Unknown Handling
mechanism. More specifically, we are going to evaluate whether the proposed approach can
achieve cost saving in comparison with others which do not rely on task execution time for
scheduling job execution.

8.3.1 Environment Set-up

In order to shorten the length of each experiment run, we define each ATU to be 10 minutes
(600 seconds). The overhead to create new instance, i.e. b , is set to 15 seconds. We also set
the length of a sampling phase to 10% of a job’s available execution time.

Simulation Framework

The experiment in this section is performed on the simulated environment. In other words,
instead of interacting with the cloud, we have developed a simulation framework which
supports creating offline cloud VMs, executing tasks on instances, and monitoring the
execution progresses.

The simulation framework is implemented based on the methods defined by the Cloud
Manager service presented in Section 7.2.5. The framework creates a simulated cloud
environment in a single machine. Each VM is represented by a threat.

The task execution on each VM is simulated using Scala’s Thead.sleep method
which temporarily ceases an execution of a threat, i.e. VM, for a given amount of time. The
amount of sleeping time is determined based on the predefined task execution times data. In
order to simulate the variation of task execution times, we create a normal distribution in
which a task execution time is a mean of the distribution.

For progress monitoring, each threat, i.e. VM, keeps track of its own execution process
and has a method which returns the list of actual execution times for all finished tasks of a
current workload.

Simulated Instance Types

For the experiment, we simulate three general purpose instance types provided by the AWS
cloud. Their hardware specifications and prices are shown in Table 8.2.

8.3 Evaluating the Unknown Handling Mechanism 111

Table 8.2 AWS Instance Types

Name vCPU ECU Mem (GiB) Storage (GB) Price per Hour ($)
m3.medium 1 3 3.75 4 0.073
m3.large 2 6.5 7.5 32 0.146
m3.xlarge 4 13 15 80 0.293

Simulated Applications

In the simulated experiment, we use the traces of three real world applications.
The first is a Molecular Dynamics Simulation (MDS) of a 250 particle system in which

the trajectory of the particles and the forces they exert are solved using a system of differential
equations [37]. MDS is embarrassingly parallel and CPU intensive. Which means that all the
computation is performed on CPU. Moreover, there is no communication between processes
running on all CPU cores. The second one uses SV Mlight1 to classify data sets provided
as input files ranging from 100MB to 500MB. This application only uses one CPU core
on a machine. The third one uses lbzip22, a parallel compression utility, to compress files
ranging from 500MB to 1GB. This application can run on multiple CPU cores, there is
communication between processes running on CPU cores.

Prior to the experiment, a sampling process to generate the average task execution time
of all applications on the instance types was performed as shown in Figure 8.5.

According to Figure 8.5a, MDS application enjoys significant performance improvement.
More specifically, doubling the number of cores reduces the task execution time by half. This
is because MDS is an embarrassingly parallel application, which means the workload can be
evenly distributed and executed independently on all cores. Moreover, it can be seen that the
task execution times of MDS suffer no variation. We believe that since all the computation
are performed in the CPU, whose performance remains stable all the time.

According to Figure 8.5b, the performance of lbzip2 improves when moving to more
expensive and better performing instance type. However, the performance improvement is
not as high as MDS’s. This is due to the communication overhead between processes which
increases as more cores are used. Furthermore, the task execution times of lbzip2 have high
variation since it requires IO operations, i.e. reading and writing files, which have been
reported to suffer unstable performance [40].

According to Figure 8.5c, SV Mlight experience little improvement in performance be-
tween different instance type. This is not surprising since the application requires only one
core, which mean the number of cores does not affect the overall performance. However,

1http://svmlight.joachims.org/
2http://lbzip2.org/

112 Evaluation

Table 8.3 Job Specification

Job Application Submission Time Number of Tasks Deadline
j1 MDS 0 50 600
j2 SV Mlight 300 50 900
j3 lbzip2 600 50 1200
j4 MDS 900 100 1500
j5 SV Mlight 1200 100 1800
j6 lbzip2 1500 100 2100

there is still a performance improvement between m3.large and m3.xlarge compared to
m3.medium. We believe this is because these two instance types are equipped with better
CPU than m3.medium, i.e. each single core is better performing. Finally, since SV Mlight has
to read data files from local drive, its task execution times varied, although not as much as
lbzip2.

Job Submission Pattern

Table 8.3 presents the job submission pattern used in our experiment. Overall, there are six
jobs with two jobs for each application. Each job is submitted 300 second apart from each
other. The first three jobs have 50 tasks each while the last three have 100 tasks each. All
jobs have the same deadline, which is 600 seconds from their submission.

Evaluating Approaches

In order to evaluate our proposed approach, which schedules unknown BoT jobs with
deadlines on the Cloud and is denoted as unknown, we also perform experiment using other
settings. The first one is the ideal setting which has full knowledge regarding executing times
of applications on all instance types and is denoted as known.

Our approach is also compared with other approaches which do not require task execution
time. More specifically, they use the fixed amount of resources at all time and apply the
round-robin method to assign tasks to any available idle VMs. We use totally six different
configurations which are selected since their costs per ATU are quite similar:

• medium.8: 8 instances of m3.medium

• medium.10: 10 instances of m3.medium

• large.4: 4 instance of m3.large

• large.5: 5 instances of m3.large

8.3 Evaluating the Unknown Handling Mechanism 113

(a) MDS (b) lbzip2

(c) SV Mlight

Fig. 8.5 The Task Execution Times of the Applications Retrieved by Running Sampling
Execution. The error bars illustrate the standard errors.

• xlarge.2: 2 instances of m3.xlarge

114 Evaluation

• xlarge.3: 3 instances of m3.xlarge

8.3.2 Experiment Results

In order to evaluate the unknown handling mechanism and compare it with others settings,
we use three metrics: i) the total cost, ii) the number of tasks that finish after deadline, and
iii) the total amount of time by which deadlines are exceeded. The results are presented by
Table 8.4 and illustrated by Figure 8.6.

In term of monetary cost, Figure 8.6a shows that in comparison to the ideal known
setting when the tasks execution times are already known, the monetary cost of the unknown
approach is 10% higher. This is due to the fact that VMs of all types need to be created
in order to perform the sampling phases. Moreover, the monetary cost of the unknown is
comparable to those of the medium.8, medium.10, and large.5 settings. Interestingly, the
large.4 setting has the lowest cost compared to others setting, including the ideal known one.
Finally, the xlarge.2 and xlarge.3 settings have higher cost than any other settings.

In term of violation, it is evident that the our unknown handling approach is able to
reduce the violation as low as the ideal known setting, as illustrated by Figures 8.6b and 8.6c.
More specifically, in the unknown setting, by average there are 2.8 late tasks in comparison
to 2.4 late tasks when the task execution times are known priori. However, the average late
time of the unknown setting is 34.6 seconds and is even lower than 46 seconds, which is the
average late time of the known setting. We believe that is due to the fact that the total amount
resources of the unknown setting is higher than the known’s, since it is more expensive.

Compared to other approaches in which resources are fixed, the unknown handling
mechanism is able to reduce the number of late tasks from 100% to more than 12785%.
Similarly, by perform the sampling phase to retrieve tasks execution times, which are then
used to perform scheduling, the amount of exceed time is reduced from nearly 150% to
almost 111430%.

As mentioned earlier, using 4 instances of type m3.large results in the lowest cost, even
lower than the known setting, which has full knowledge regarding task execution times.
However, this setting also has a high degree of violation. On an average, the number of late
tasks is 27 times higher than the proposed unknown approaches. Its late time is 66 times
higher as well.

Using either 2 or 3 m3.xlarge instances performs poorly in comparison with other
approaches. They not only are the most expensive options but also have the highest numbers
of late tasks. This can be explained using Figure 8.5 which presents the task execution
times of all applications on all instance types. It can be seen that in comparison to a
m3.medium (or m3.large) instance, a m3.xlarge one does not have any significant speed-

8.3 Evaluating the Unknown Handling Mechanism 115

up. Moreover, a SV Mlight application has nearly identical performance on both of them.
On the other hand, because m3.xlarge is two and four times more expensive compared to
m3.large and m3.medium, respectively, with the same amount of money, the number of
m3.xlarge instances is always less than the number of instances of other types, which results
in lower execution parallelism, since each instance can only execute one task at a time. In
summary, using instances of m3.xlarge has insignificant performance speed-up per instance
but significantly reduces the number of instances to execute tasks in parallel. As a result, its
overall performance is lower in comparison to other settings.

Between all fixed resources settings, large.5 is the best one overall. Its cost is almost
identical to the cost of the unknown handling approach. It also manages to achieve the least
violation in comparison to other fixed resource setting as well. However, its number of late
tasks and amount of exceed time are still more than twice of the unknown setting’s.

Table 8.4 Experiment Results

Approach Mean Cost Mean Number of Late Tasks Mean Amount of Late Time
known 2.62 2.4 46.0
unknown 2.9 2.8 34.6
medium.8 2.91 126.0 6174.2
medium.10 2.92 19.4 865.6
large.4 2.42 76.6 2292.0
large.5 2.92 5.6 85.8
xlarge.2 3.51 360.8 38812.4
xlarge.3 4.04 203.4 5582.6

Violation Cost

In order to provide a better comparison between all approaches, we introduce the violation

cost metric which represents the violation of a execution in term of monetary cost. First of all,
the cost of each non-violated tasks can be calculated by dividing the number of non-violated
tasks to the total cost:

cost_per_tasks =
total_cost

number_o f _non_violating_tasks
(8.3)

Then, the violation cost is calculated as:

violation_cost = cost_per_tasks⇥number_o f _late_tasks (8.4)

116 Evaluation

(a) Total costs

(b) Number of late tasks

(c) Amount of Late Time in Seconds

Fig. 8.6 The total cost and violation of different settings: in the known setting, the task
execution times are already available. In the unknown setting, the task execution times are
not available but going to be estimated during an execution. The medium.8, medium.10,
large.4, large.5, xlarge.2, and xlarge.3 settings have a fixed number of VMs of a given
instance type to execute tasks, thus do not rely on the knowledge regarding the task execution
times. The error bars illustrate the standard errors.

8.3 Evaluating the Unknown Handling Mechanism 117

Fig. 8.7 The violation costs of different settings: in the known setting, the task execution
times are already available. In the unknown setting, the task execution times are not available
but going to be estimated during an execution. The medium.8, medium.10, large.4, large.5,
xlarge.2, and xlarge.3 settings have a fixed number of VMs of a given instance type to
execute tasks, thus do not rely on the knowledge regarding the task execution times.

The violation cost of an approach can also be described as the additional cost required to
finish all tasks within their deadline. Hence, it is desirable to achieve as low violation cost as
possible.

As shown by Figure 8.7, the violation costs of the unknown approach is 29% higher than
the known one. This is understandable since our approach not only costs more but also has
the higher number of late tasks. On the other hand, the proposed approach still outperforms
the rest, whose violation costs are from 2 (e.g. large.5) to more than 700 times higher (e.g.
xlarge.3).

118 Evaluation

Fig. 8.8 The number of used ATUs per instance Type of each setting: in the known setting,
the task execution times are already available. In the unknown setting, the task execution
times are not available but going to be estimated during an execution. The medium.8,
medium.10, large.4, large.5, xlarge.2, and xlarge.3 settings have a fixed number of VMs
of a given instance type to execute tasks, thus do not rely on the knowledge regarding the
task execution times.

Numbers of ATU

In order to give a better understanding why the unknown, and known, approaches outperform
other ones which use the fixed amount of VMs of the same type, Figure 8.8 illustrates the
overall number of used ATUs corresponding to each instance types for each approaches.

It can be seen that, apart from the settings which use the same instance types, the known
and unknown approaches use the combination of different ones. In other words, those two
approaches are able to build a heterogeneous cluster of cloud VMs in order to execute given
workload while ensuring the quality of service, i.e. deadline, and minimising the cost.

Notably, the known approach does not use any instance of type m3.xlarge which is
expensive without any significant speed-up, as explained earlier. On the other hand, since the
sampling phase requires tasks to be executed on instances of all types, the unknown approach
has to create some instances of m3.xlarge. Due to the cost-inefficiency of this type which

8.3 Evaluating the Unknown Handling Mechanism 119

results in lower execution parallelism without significant performance improvement, our
proposed approach is outperformed by the ideal one.

Fig. 8.9 Resource Utilisation of each setting: in the known setting, the task execution times
are already available. In the unknown setting, the task execution times are not available but
going to be estimated during an execution. The medium.8, medium.10, large.4, large.5,
xlarge.2, and xlarge.3 settings have a fixed number of VMs of a given instance type to
execute tasks, thus do not rely on the knowledge regarding the task execution times.

Resource Utilisation

Finally, we evaluate the resource utilisation of each approach. There are two types of
mis-utilisation: resource over-utilisation is when the amount of allocated resources is more
than necessary and results in idle VMs. The over-utilisation is calculated as the total idle
times of all instances. Notably, jobs are submitted in the way so that their execution overlap
with each other. Hence, ideally, there should not be any idle instances.

On the other hand, resource under-utilisation happens when the amount of resources is
not enough to execute all tasks within their deadlines. As a result, resource under-utilisation
is calculated as the total violation time.

120 Evaluation

Figure 8.9 illustrates the average resource utilisation of each approach. It can be seen that
both the known and unknown manage to achieve very low resource over- and under-utilisation
in comparison with other ones.

On the other hand, most of the fixed resources setting have high under-utilisation due to
the fact that they have enough resources to finish some jobs very early before the submission
of the next one. However, occasionally, they do not have enough resources to execute some
other jobs within deadlines, hence the over-utilisation is also very high.

Finally, the xlarge.2 setting has no idle time but very high late time. In other words, the
allocated resources of this setting is always less than required.

In summary, the known and unknown approaches are able to not only achieve low cost
but also minimise violation by flexibly adjust the amount of allocated resources based on
current workload.

8.3.3 Discussion and Summary

In this section, we have presented and discussed the experiment results evaluating the
unknown handling approach. It is shown the the proposed approach, which performs a
sampling phase in order to retrieve required knowledge, is able to deliver the scheduling
decision within 10% cost and 16% violation compared to the ideal setting which has full
knowledge from the beginning. It also outperforms other approaches that use a fixed amount
of resources by reducing the monetary cost of violation by at least two times.

8.4 Dynamic Reassignment

This section presents thorough experiments in order to evaluate the benefits of the dynamic
reassignment feature.

8.4.1 Experiment Set-up

In this section, we use the same simulation set-up as mentioned in Section 8.3. Which means
that the instance types, applications, task execution times, and job submission pattern used in
this experiment is similar to those used in evaluating the unknown handling mechanism. On
the other hand, since the focus of the experiments performed is the dynamic reassignment
feature, i.e. to show the difference in execution when this feature is turned on and off, we
will not use any naive approaches. In other words, the experiments are performed on three
proposed scheduling approaches, i.e. Exact, Hybrid, and Heuristic approaches.

8.4 Dynamic Reassignment 121

Moreover, in order to investigate the affect of performance variation, it is simulated
using coefficient of variation, which is the ratio between standard variation and mean. As
mentioned in the previous section, the actual task execution time is generated using its mean
and standard deviation time. My manipulating the standard deviation, we can manipulate the
performance variation. Given a coefficient of variation CV and a mean task execution time e,
the standard deviation s can be calculated as: s =CV ⇥ e.

In our experiments, we use 5 different values of CV: 0, 0.25, 0.5, 0.75, and 1. When
CV is equal to 0, then s = 0, which means there is no performance variation. On the other
hand, when CV = 1, then s = e, which means the actual execution time can reach as much
as twice the mean value.

Notably, in the cloud einvironment, the performance variation is random instead of
following a statistical model. However, since the scheduling framework is not aware of
the statistical model used to model the performance variation, we believe that this does
not greatly affect the outcome of the experiment. Moreover, we decided not to consider
sudden termination of VMs due to the rarity of such event. For instance, AWS, Google Cloud
Platform, and Microsoft Azure guarantee the availability of their cloud systems to be more
than 99%.

8.4.2 Experiment Results and Discussion

Each experiment is performed 5 times. We use the number of tasks finished after deadlines
and the amount of exceeded time in order to evaluate the dynamic reassignment feature.
Figures 8.10 and 8.11 illustrate the experiment results.

First of all, it is evident that increasing the performance variation, i.e. coefficient of
variation, affects the violation of the execution. When there is no performance variation, i.e.
CV = 0, deadline violation does not occur at all. As the performance variation increases,
both the number of violated tasks and exceed time increase as well.

Secondly, using the dynamic reassignment feature lessens the effect of performance
variation and reduces the deadline violation. As illustrated by Figures 8.10 and 8.11, when
performance variation occurs (i.e. CV > 0), using dynamic reassignment always results in
lower number of violated tasks and exceeded time. More specifically, the number of violated
tasks was reduced from 3.8% up to 99.5%. Similarly, the amount of violation time was
reduced from 17% to 93.7%.

Interestingly, using the dynamic reassignment feature also results in lower costs as
illustrated by Figure 8.12. The total cost while the dynamic reassignment feature is on is
always less than or equal to the cost when it is off. We believe this is caused as some VMs
are behind schedule, they are not available to receive extra tasks from a newly submitted job.

122 Evaluation

As a result, more VMs are required to handle new workload. Which means the total cost is
higher as well.

8.4 Dynamic Reassignment 123

(a) Average Number of Violated Tasks of the Exact Approach

(b) Average Number of Violated Tasks of the Hybrid Approach

(c) Average Number of Violated Tasks of the Heuristic Approach

Fig. 8.10 Average Number of Violated Tasks for Each Approach When Dynamic Scheduling
Is Turned On/Off. The error bars illustrate the standard errors.

124 Evaluation

(a) Average Amount of Violated Time of the Exact Approach

(b) Average Amount of Violated Time of the Hybrid Approach

(c) Average Amount of Violated Time of the Heuristic Approach

Fig. 8.11 Average Amount of Violated Time for Each Approach When Dynamic Scheduling
Is Turned On/Off. The error bars illustrate the standard errors.

8.4 Dynamic Reassignment 125

(a) Average Cost of the Exact Approach

(b) Average Cost of the Hybrid Approach

(c) Average Cost of the Heuristic Approach

Fig. 8.12 Average Cost of Each Approach When Dynamic Scheduling Is Turned On/Off. The
error bars illustrate the standard errors.

126 Evaluation

8.5 Cloud Experiments

In the previous sections, we have evaluated the proposed research in an simulated environment.
This section presents the set of experiments which were performed in real world in order to
provide the proof of concept that our research can be applied to real world cloud.

8.5.1 Environment Set-up

The instance types, applications, and task execution times used in the experiment are similar
to the simulation experiment. On the other hand, the job submission pattern is changed as
follow: the jobs are submitted in two batch. The first one is submitted when an experiment
started and consists of three jobs, corresponding to each application, with 100 tasks each.
Their deadlines are 1200 seconds. The second batch is submitted 300 seconds later. It
also contains 3 jobs, but each of them has 150 tasks. The deadlines are also 1200 seconds.
Notably, all tasks execution times are known.

Experiment Framework

In order to interact with AWS cloud, we use the library AWScala

3. The library allows us to
create and terminate AWS VMs programmatically.

In order to perform and monitor execution within each VM, we develop a RESTful
python web service using cherrypy

4. The web service is pre-deployed inside a Amazon
Machine Image (AMI). In other words, when a new VM is created based on the AMI, the
python service is already running. Similarly, all the applications used in the experiment
are also pre-deployed in an AMI in term of scripts file. The execution can be performed
by executing those scripts. And required data is also stored in the cloud and all VMs can
access them directly. The service provides the following functionalities which can be invoked
remotely using a HTTP call:

• StartWorkload: this functionality takes a name of a workload, its jobs, and tasks
in order to execute one of the applications mentioned above by executing the batch
scripts.

• RemoveTasks: this functionality takes a number of tasks to be removed from the
currently executed workload.

3https://github.com/seratch/AWScala
4http://cherrypy.org

8.5 Cloud Experiments 127

• CheckProgress: this functionality returns the list of integer values, each of which
is a number of second it takes to execute a task.

We use the library scalaj-http

5 which allows us to make HTTP call the the RESTful
web service. Finally, play-json

6 is used for parsing the response which is in JSON format.

Evaluated Approaches

Three propose approaches are evaluated in the real world cloud environment: Exact, Hybrid,
and Heuristic approaches. For each of time, the dynamic reassignment feature is turned on
and off.

The proposed approaches are compared to commonly used approaches that only use
one instance type to create a homogeneous cloud VM cluster. Those approaches use task
execution time to calculate the number of VMs required to execute all tasks within deadlines.
As mentioned earlier, n j,t is the number of tasks of job j that one instance of type t can
execute before a deadline. Hence, the number of VM of t required to execute all tasks of j
is n j

n j,it
. It should be noted that those homogeneous approach can use existing instances to

execute tasks before renting new ones.
There is one approach for each available instance type that we use in this experiment. In

other words, there are Medium, Large, and XLarge approaches which only use m3.medium,
m3.large, and m3.xlarge instance types respectively. The dynamic reassignment feature is
also turned on and off.

8.5.2 Experiment Results

Cost Evaluation

Figure 8.13 illustrates the cost of each approach. It also presents the ratio of costs spent on
each instance type.

Firstly, it is evident that the Exact approach has the lowest cost compared to other ones.
Its cost is 4% lower than other heterogeneous approaches. Compared to the heterogeneous
approaches, using the Exact approach can lower the cost from 9% to 46%. The costs of Hybrid
and Heuristic approaches are identical and are lower than the cost of other homogeneous
approaches. They are able to lower the cost from 4% to 40%. Between the remaining
homogeneous approaches, using only m3.large instance results in the lowest cost while the
cluster with only m3.xlarge VMs has the highest monetary cost.

5https://github.com/scalaj/scalaj-http
6https://www.playframework.com/documentation/2.5.x/ScalaJson

128 Evaluation

Fig. 8.13 Total costs of each approach. The first three bars represent the total cost of the
exact, hybrid, and heuristic approaches which aim to build a heterogeneous cloud clusters.
The last three plots represent the total costs of the homogeneous cloud clusters which consist
of VMs of only one instance type.

Secondly, all the heterogeneous approaches do not employ instances of m3.xlarge type.
This can be explained since this type does not have significant performance improvement
compared to the other two types. For instance, even a VM of type m3.xlarge costs twice as
much as a VM of type m3.large, their performance corresponding to the application SV Mlight

is almost identical.

Violation Evaluation

Figure 8.14 represents the number of violated tasks and exceeded time for each approach.
Once again, it is evident that the dynamic reassignment feature greatly reduces the violation
in all approaches. More specifically, there are cases when deadline violation is completely
avoided.

8.5 Cloud Experiments 129

(a) Average Number of Violated Tasks of Each Approaches

(b) Average Amount of Violated Time of Each Approaches

Fig. 8.14 Violation of Each Approach. The error bars illustrate the standard errors.

130 Evaluation

8.5.3 Discussion

In this section, we have performed the experiment on the AWS cloud in order to demonstrate
the feasibility of our research in real life scenario. The results have confirm the finding of the
simulated experiments presented the the previous sections:

• Constructing heterogeneous cloud cluster using one of the three proposed scheduling
approach reduced the monetary cost while satisfying the deadlines.

• Dynamic scheduling mechanism was able to reduce or even completely prevent dead-
line violation caused by performance variation during runtime.

However, we believe that more experiments with higher degree of complexity are required
in order to confidently evaluate the proposed research. In other words, our evaluation is
limited in a certain aspects due to financial constraint:

• Each kind of experiment was performed 5 times. If more experiments had been
perform, we would be able to confirm our hypotheses with higher confidence.

• The total workload of each experiment was rather small, for example, the difference
in cost between two approaches was normally less than $1. Hence, it was difficult to
clearly demonstrate the cost effectiveness of the proposed research.

• Finally, each experiment lasted for less than an hour. Hence, we was not able to
evaluate our approaches for long running cluster.

As a conclusion, the experiments presented in this section are just the first step to evaluate
the feasibility and applicability of our proposed research in the real world. Further experiment
will be left for the future work.

8.6 Chapter Summary

In this chapter, we have evaluated our research in both simulated and real-world environment.
First of all, we compare three scheduling approaches and conclude that the Heuristic

approach is the best of both world. It is able to find a solution a lot quicker than the Exact
approach. Moreover, the cost of its solution is lower compared to the Heuristic approach.

Our experiments also demonstrate the benefit of the Unknown Handling approach which
estimates the task execution times of a new application. With the 10% overhead in monetary
cost, the proposed mechanism was able to keep the deadline violation as low as when the task

8.6 Chapter Summary 131

execution times were fully known prior to the execution. Compared with other configurations
which executed jobs without estimating the task execution times, our approach was able to
lower the violation rate from 2 to more than 700 times.

The dynamic scheduling mechanism was also evaluated. It was shown that this mecha-
nism was able to reduce deadline violation, with the presence of performance variation, up to
99%. Furthermore, using the dynamic scheduling also lowered the total cost up to 12.6%.

Finally, our proposed research was evaluated in the real world environment. The results
showed that it was still able to achieve cheaper cost in comparison to other homogeneous
approaches. Once again, the benefit of dynamic scheduling was demonstrated as it greatly
reduced and even occasionally completely prevent any deadline violation. However, in
order to confidently claim the benefit of the proposed approaches and mechanism, extensive
experiment and evaluation are required.

Chapter 9

Conclusion

Scheduling is an important part of the execution of any application in any environment. Its
goal is to ensure that the desired performance is guaranteed with the reasonable amount of
resources. The role of scheduling has become more and more important in a distributed
environment in which multiple applications have to share the same resource pool. This
importance is further emphasised, and complicated, when cloud computing is adopted for
several reasons. Firstly, the size of a user’s resource pool is not fixed. Instead it can grow (by
adding more machines) or shrink (by removing machines) almost instantaneously. Secondly,
there is the monetary cost that also almost instantaneously added to a user’s bill. Without a
proper scheduling mechanism, a user may end up with a massive bill with no guarantee that
the desired performance is met.

In this thesis, we have set out to address the problem of scheduling multiple applications
on the cloud based on a user’s requirements, which are described in term of satisfying
execution deadlines and minimising the monetary cost. As the result of this journey, we
have proposed three different scheduling approaches, each of which has different degrees of
optimality and complexity. We have also developed mechanisms to manage the execution
at runtime to handle unexpected events and estimate important metrics required for the
scheduling process. All the research have materialised into a complete software framework
that we also use to perform a thorough evaluation.

9.1 Thesis Summary and Contributions

• Chapter 1 discussed the background and presented motivation of our research. It also
introduced the definition and characteristics of cloud computing and BoT applications.

134 Conclusion

• Chapter 2 surveyed the existing work in scheduling BoT jobs on the cloud. Based on the
survey, relevant concepts and themes were identified. Then, they were used to construct
a taxonomy reflecting different aspects of the research in workload scheduling. Finally,
we presented a set of requirements which were later addressed by the research of this
thesis.

• Chapter 3 presented a mathematical model of the problem of scheduling the execution
of BoT jobs on the cloud. It also introduced the basic concepts such as task execution
time or workload. The result of this chapter was a complete optimisation problem
whose solution was a scheduling plan for executing multiple BoT jobs with different
deadlines on the cloud so that the monetary cost could be minimised.

• Chapter 4 presented a heuristic algorithm which assign tasks of different BoT jobs to
existing running VMs. The objectives were to assign as much workload as possible
while preventing not only potential deadline violation but also additional monetary
cost. We took the bottom-up approach and built this algorithm upon the smaller ones
which were also presented in the chapter.

• Chapter 5 presented different approaches for scheduling an execution of BoT jobs on
the cloud. There are three different approaches, namely Exact, Hybrid, and Heuristic
approaches. All of them aim to not only select the cloud resources but also allocate
workloads to them so that a user’s requirements are satisfied. Each of them had a
different degree of complexity and solution optimality. One of the goals of this chapter
was to present the trade-off between the complexity of a scheduling approaches and
their corresponding solution optimality.

• Chapter 6 consisted of two sections each of which addressed the different aspects of
managing an execution in runtime.

– Section 6.1 introduced an algorithm to handle performance variation at runtime.
The proposed algorithm was able to detect possible deadline violation which
could be caused by performance variation. By reassigning tasks between VMs,
the algorithm aimed to effectively reduce the possible deadline violation.

– Section 6.2 proposed a mechanism to deal with jobs of unknown applications,
i.e. when the information required to perform scheduling was not available. By
running a sampling phase in which a portion of a job were executed on VMs of
all available instance type, we were able to get the actual task execution times
and used them to estimate the mean task execution times of an application on all

9.2 Lessons Learned 135

VM type. The result was then used to schedule an execution of the remainder of
a job.

• Chapter 7 contained the design and implementation of the framework which incor-
porated all the research presented in the previous chapter. Our framework consisted
of different loosely coupled services which communicated with each other using the
actor model. We also described the supported features which were the results of the
interactions between different components.

• Chapter 8 presented the detailed evaluation of the research presented in this thesis.
Simulated experiments were performed in order to evaluate static scheduling, dynamic
scheduling, and unknown handling mechanism. We also performed a real world
experiment on AWS cloud in order to prove the applicability of our research. From the
experiment result, we are able to conclude that our research is suitable for scheduling
the execution of BoT jobs with deadlines on the cloud.

9.2 Lessons Learned

By employing the scheduling approaches, the cost of executing BoT applications is

minimised while maintaining the desired performance. As shown in by the experiments,
the heterogeneous cloud clusters constructed by the proposed scheduling approaches were
able to satisfy the application deadlines with the lower costs compared to homogeneous
cloud clusters.

The Exact approach for static scheduling is not scalable. Out of three proposed
scheduling approaches, the Exact approach aims to find the optimal solution in which the
monetary cost is minimised. The optimality of this approach was demonstrated by our
experiment which showed that its cost was always lower than those of the other approaches.
However, its complexity results in the high solving time. As our experiments have shown,
the solving time of an Exact approach could be up to minutes while other approaches only
needed less than a second. Hence, we can conclude that it is not suitable for a real time
system which has high submitted workload and requires decisions to be made as soon as
possible.

The Hybrid approach is the best of both worlds. Overall, the cost of the hybrid
approach is lower compared to the heuristic approach. Its solving time is only tens of
milliseconds higher than the heuristic approach. As a result, we can conclude that the Hybrid
approach can achieve both lower cost and fast solving time, which makes it a good candidate
for any real time system.

136 Conclusion

The solving time of all approaches depends on the intensity of the workload. More
precisely, the number of jobs and/or the number of tasks per job directly affect the solving
time. The deadline also affects the solving time since the shorter deadline requires a higher
number of instances.

The number of available instance types does not have a significant effect on the

solving time of all three approaches. We believe the main reason for this is that all
approaches are able to quickly identify a handful of instance types that are cost-effective, so
it is not necessary to consider all instance types.

Task execution time is important for effectively scheduling job execution on the

cloud. It is evident that scheduling based on task execution time is more cost effective
than the naive approaches which employ fixed amount of resources and round-robin task
allocation mechanism. As a result, even when task execution times are not available prior to
the execution, employing the unknown application handling mechanism is still beneficial.

Deadline violation can happen due to performance variation. As shown in our exper-
iments, deadline violation is directly correlated with performance variation. In other words,
the higher the performance variation is, the more serious deadline violation is.

Deadline violation can be reduced or even completely prevented using dynamic

scheduling. Our experiment has shown that with the same set-up, dynamic scheduling is
able to greatly reduce the effect of deadline violation. It is also able to reduce the incurred
monetary cost as fewer VMs are required in order to handle the extra late tasks.

Our proposed research is applicable in real world experiment. By performing ex-
periment on AWS, we are able to show that our proposed research is able to achieve lower
cost in real world setting in comparison to other naive approaches. Moreover, the dynamic
scheduling approach can reduce and even completely prevent deadline violation caused by
performance variation.

As a conclusion, this thesis has been successful in addressing the research hypotheses
presented in Chapter 1.

• All of the proposed scheduling approach have been able to achieve cost saving

while maintaining the desired quality of services. Compared to other existing ap-
proaches, our methods were always be able to construct cloud clusters with not only
lower cost but also lower deadline violation

• By employing the execution management mechanisms, potential violations caused

by either performance variation or parameter unavailability can be reduced.

More specifically, the dynamic scheduling mechanism could reduce, or even com-
pletely prevent, deadline violation caused by performance variation. On the other hand,

9.3 Future Work 137

the parameter estimation mechanism was able estimate the task execution times of
unknown applications, thus resulted in a lower cost compared to scheduling without
task execution times.

9.3 Future Work

Scheduling job executions in a distributed environment, especially cloud computing, in order
to achieve a desired performance is a challenging problem. In this thesis, we have set out to
address one aspect of that problem. However, our research is far from completed and there
are some additional work that can be done.

First and foremost, more experiments with higher degree of complexity and work-

load are required in order to thoroughly evaluate our proposed research, especially in the
cloud environment. This requires the experiment to be repeated many times to increase the
confidence in the result. Moreover, the higher amount of workload, i.e. number of jobs and
tasks, is needed to show if our research can significantly reduce to monetary cost.

Update parameter dynamically during runtime. At the moment, the dynamic schedul-
ing mechanism is only able to reassign tasks between VMs. However, we believe that it will
be beneficial to update the parameters, e.g. task execution time, during runtime as well in
order to have a better data for scheduling.

Handle multiple unknown jobs concurrently. Currently, the unknown application
handling is able to handle only one unknown job at a time. In order to make our research
suitable to be used by multiple parties, it is necessary to update the mechanism so that
multiple unknown application can be handled at the same time.

Better approaches for estimating task execution time. Our unknown application
handling mechanism estimates task execution times. However, this method implicitly assumes
that the tasks execution times of an application follow a normal distribution. In other to
support application whose performance is non-deterministic, we should investigate other
approaches to estimate an application’s task execution times.

Supporting different types of application. In this thesis, we only focus on one type
of application, namely Bag-of-Tasks. There are many other types of application such as
workflow, MapReduce, user-facing, etc. Each of them has different characteristics and
requirements. However, they all require an effective scheduling mechanism in order to
achieve the desired performance with minimum cost while being executed on the cloud.

Apply our research in existing framework. In order to present our research to wider
audience, it is necessary to make it a pluggable component to existing resource management
and/or execution scheduling frameworks, such as Hadoop or Spark.

References

[1] Amazon web service, . URL https://aws.amazon.com/.

[2] Amazon ec2 instance types, . URL https://aws.amazon.com/ec2/instance-types/.

[3] Amazon ec2 pricing, . URL https://aws.amazon.com/ec2/pricing/.

[4] Amazon ec2 reserved instances, . URL https://aws.amazon.com/ec2/
purchasing-options/reserved-instances/.

[5] Amazon ec2 spot instances, . URL https://aws.amazon.com/ec2/spot/.

[6] Microsoft azure: Cloud computing platform and services. URL https://azure.microsoft.
com/en-gb/.

[7] Google cloud platform, . URL https://cloud.google.com/.

[8] Preemptible virtual machines, . URL https://cloud.google.com/preemptible-vms/.

[9] Apache hadoop. URL http://hadoop.apache.org/.

[10] Netflix and stolen time. URL http://blog.sciencelogic.com/
netflix-steals-time-in-the-cloud-and-from-users/03/2011.

[11] Apache spark - lightning-fast cluster computing. URL http://spark.apache.org/.

[12] Gurobi Optimizer Reference Manual, 2015. URL http://www.gurobi.com.

[13] Akka, 2016. URL http://akka.io/.

[14] Amazon s3, 2016. URL https://aws.amazon.com/s3/.

[15] Azure storage, 2016. URL https://azure.microsoft.com/en-gb/services/storage/.

[16] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. Above the clouds: A berkeley view of cloud computing. Technical Report
UCB/EECS-2009-28, EECS Department, University of California, Berkeley, Feb 2009.
URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html.

[17] Tekin Bicer, David Chiu, and Gagan Agrawal. Time and cost sensitive data-intensive
computing on hybrid clouds. In Cluster, Cloud and Grid Computing (CCGrid), 2012
12th IEEE/ACM International Symposium on, pages 636–643, May 2012. doi: 10.1109/
CCGrid.2012.95.

https://aws.amazon.com/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/purchasing-options/reserved-instances/
https://aws.amazon.com/ec2/purchasing-options/reserved-instances/
https://aws.amazon.com/ec2/spot/
https://azure.microsoft.com/en-gb/
https://azure.microsoft.com/en-gb/
https://cloud.google.com/
https://cloud.google.com/preemptible-vms/
http://hadoop.apache.org/
http://blog.sciencelogic.com/netflix-steals-time-in-the-cloud-and-from-users/03/2011
http://blog.sciencelogic.com/netflix-steals-time-in-the-cloud-and-from-users/03/2011
http://spark.apache.org/
http://www.gurobi.com
http://akka.io/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-gb/services/storage/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

140 References

[18] Joshua Bloch. Effective Java (2Nd Edition) (The Java Series). Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2 edition, 2008. ISBN 0321356683, 9780321356680.

[19] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian, Ming
Wu, and Lidong Zhou. Apollo: Scalable and Coordinated Scheduling for Cloud-Scale
Computing. In USENIX Symposium on Operating Systems Design and Implementation,
pages 285–300, 2014.

[20] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Generation Computer Systems, 25(6):
599–616, 2009. ISSN 0167-739X. doi: http://dx.doi.org/10.1016/j.future.2008.12.001.

[21] David Candeia, Ricardo Araujo, Raquel Lopes, and Francisco Brasileiro. Investigating
business-driven cloudburst schedulers for e-science bag-of-tasks applications. In Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second International
Conference on, pages 343–350, Nov 2010. doi: 10.1109/CloudCom.2010.67.

[22] Henri Casanova, Dmitrii Zagorodnov, Francine Berman, and Arnaud Legrand. Heuris-
tics for scheduling parameter sweep applications in grid environments. In Proceedings
9th Heterogeneous Computing Workshop (HCW 2000) (Cat. No.PR00556), pages
349–363, 2000. doi: 10.1109/HCW.2000.843757.

[23] Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee. Choosing
multiple parameters for support vector machines. Machine Learning, 46(1):131–159,
2002. ISSN 1573-0565. doi: 10.1023/A:1012450327387. URL http://dx.doi.org/10.
1023/A:1012450327387.

[24] Ryan Chard, Kyle Chard, Kris Bubendorfer, Lukasz Lacinski, Ravi Madduri, and
Ian Foster. Cost-Aware Elastic Cloud Provisioning for Scientific Workloads. 2015
IEEE 8th International Conference on Cloud Computing, pages 971–974, 2015. doi:
10.1109/CLOUD.2015.130. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=7214142.

[25] Ron C. Chiang, Jinho Hwang, H. Howie Huang, and Timothy Wood. Matrix:
Achieving predictable virtual machine performance in the clouds. In 11th Inter-
national Conference on Autonomic Computing (ICAC 14), pages 45–56, Philadel-
phia, PA, June 2014. USENIX Association. ISBN 978-1-931971-11-9. URL
https://www.usenix.org/conference/icac14/technical-sessions/presentation/chiang.

[26] Walfredo Cirne and Eitan Frachtenberg. Job Scheduling Strategies for Parallel
Processing: 16th International Workshop, JSSPP 2012, Shanghai, China, May 25,
2012. Revised Selected Papers, chapter Web-Scale Job Scheduling, pages 1–15.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-35867-8. doi:
10.1007/978-3-642-35867-8_1. URL http://dx.doi.org/10.1007/978-3-642-35867-8_1.

[27] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, January 2008. ISSN 0001-0782. doi:
10.1145/1327452.1327492. URL http://doi.acm.org/10.1145/1327452.1327492.

http://dx.doi.org/10.1023/A:1012450327387
http://dx.doi.org/10.1023/A:1012450327387
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7214142
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7214142
https://www.usenix.org/conference/icac14/technical-sessions/presentation/chiang
http://dx.doi.org/10.1007/978-3-642-35867-8_1
http://doi.acm.org/10.1145/1327452.1327492

References 141

[28] Rubing Duan, Radu Prodan, and Xiaorong Li. Multi-objective game theoretic schedul-
ing of bag-of-tasks workflows on hybrid clouds. IEEE Transactions on Cloud Comput-
ing, 2(1):29–42, Jan 2014. ISSN 2168-7161. doi: 10.1109/TCC.2014.2303077.

[29] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo Fonseca.
Jockey: Guaranteed Job Latency in Data Parallel Clusters. In Proceedings of the ACM
European Conference on Computer Systems, pages 99–112, 2012.

[30] Andrey Goder, Alexey Spiridonov, and Yin Wang. Bistro: Scheduling Data-Parallel
Jobs Against Live Production Systems. In USENIX Annual Technical Conference, pages
459–471, 2015.

[31] Nikolay Grozev and Rajkumar Buyya. Inter-cloud architectures and application broker-
ing: taxonomy and survey. Software: Practice and Experience, 44(3):369–390, 2014.
ISSN 1097-024X. doi: 10.1002/spe.2168. URL http://dx.doi.org/10.1002/spe.2168.

[32] J. Octavio Gutierrez-Garcia and Kwang Mong Sim. A family of heuristics for agent-
based elastic cloud bag-of-tasks concurrent scheduling. Future Gener. Comput. Syst., 29
(7):1682–1699, September 2013. ISSN 0167-739X. doi: 10.1016/j.future.2012.01.005.
URL http://dx.doi.org/10.1016/j.future.2012.01.005.

[33] Martin Haugh. The monte carlo framework, examples from finance and generating
correlated random variables. Course Notes, 2004.

[34] Mohammad Reza HoseinyFarahabady, Young Choon Lee, and Albert Zomaya. Pareto-
optimal cloud bursting. IEEE Transactions on Parallel and Distributed Systems, 25
(10):2670–2682, Oct 2014. ISSN 1045-9219. doi: 10.1109/TPDS.2013.218.

[35] Alexandru Iosup and Dick Epema. Grid computing workloads. IEEE Internet Comput-
ing, 15(2):19–26, March 2011. ISSN 1089-7801. doi: 10.1109/MIC.2010.130. URL
http://dx.doi.org/10.1109/MIC.2010.130.

[36] Hyejeong Kang, Jung-in Koh, Yoonhee Kim, and Jaegyoon Hahm. A sla driven vm
auto-scaling method in hybrid cloud environment. In 2013 15th Asia-Pacific Network
Operations and Management Symposium (APNOMS), pages 1–6, Sept 2013.

[37] Huafeng Xu Ron O. Dror Michael P. Eastwood Brent A. Gregersen John L. Klepeis
Istvan Kolossvary Mark A. Moraes Federico D. Sacerdoti John K. Salmon Yibing Shan
David E. Shaw Kevin J. Bowers, Edmond Chow. Scalable Algorithms for Molecu-
lar Dynamics Simulations on Commodity Clusters. In ACM/IEEE Supercomputing
Conference, pages 43–43, 2006.

[38] Dirk P. Kroese, Tim Brereton, Thomas Taimre, and Zdravko I. Botev. Why the monte
carlo method is so important today. Wiley Interdisciplinary Reviews: Computational
Statistics, 6(6):386–392, 2014. ISSN 1939-0068. doi: 10.1002/wics.1314. URL
http://dx.doi.org/10.1002/wics.1314.

[39] Ulrich Lampe, Melanie Siebenhaar, Ronny Hans, Dieter Schuller, and Ralf Steinmetz.
Economics of Grids, Clouds, Systems, and Services: 9th International Conference,
GECON 2012, Berlin, Germany, November 27-28, 2012. Proceedings, chapter Let
the Clouds Compute: Cost-Efficient Workload Distribution in Infrastructure Clouds,

http://dx.doi.org/10.1002/spe.2168
http://dx.doi.org/10.1016/j.future.2012.01.005
http://dx.doi.org/10.1109/MIC.2010.130
http://dx.doi.org/10.1002/wics.1314

142 References

pages 91–101. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-
642-35194-5. doi: 10.1007/978-3-642-35194-5_7. URL http://dx.doi.org/10.1007/
978-3-642-35194-5_7.

[40] Philipp Leitner and Jürgen Cito. Patterns in the chaos—a study of performance
variation and predictability in public iaas clouds. ACM Trans. Internet Technol., 16
(3):15:1–15:23, April 2016. ISSN 1533-5399. doi: 10.1145/2885497. URL http:
//doi.acm.org/10.1145/2885497.

[41] Steve Lohr. Google and I.B.M. Join in ’Cloud Computing’ Research. 2007.
http://www.nytimes.com/2007/10/08/technology/08cloud.html.

[42] Sifei Lu, Xiaorong Li, Long Wang, H. Kasim, H. Palit, T. Hung, E. F. T. Legara, and
G. Lee. A dynamic hybrid resource provisioning approach for running large-scale
computational applications on cloud spot and on-demand instances. In Parallel and
Distributed Systems (ICPADS), 2013 International Conference on, pages 657–662, Dec
2013. doi: 10.1109/ICPADS.2013.117.

[43] Zoltán Ádám Mann. Allocation of virtual machines in cloud data centers—a
survey of problem models and optimization algorithms. ACM Comput. Surv., 48
(1):11:1–11:34, August 2015. ISSN 0360-0300. doi: 10.1145/2797211. URL http:
//doi.acm.org/10.1145/2797211.

[44] Ming Mao and M. Humphrey. A performance study on the vm startup time in the cloud.
In Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on, pages
423–430, June 2012. doi: 10.1109/CLOUD.2012.103.

[45] Ming Mao, Jie Li, and M. Humphrey. Cloud auto-scaling with deadline and budget
constraints. In Grid Computing (GRID), 2010 11th IEEE/ACM International Conference
on, pages 41–48, Oct 2010. doi: 10.1109/GRID.2010.5697966.

[46] Peter M. Mell and Timothy Grance. Sp 800-145. the nist definition of cloud computing.
Technical report, Gaithersburg, MD, United States, 2011.

[47] Ishai Menache, Ohad Shamir, and Navendu Jain. On-demand, spot, or both: Dy-
namic resource allocation for executing batch jobs in the cloud. In 11th Interna-
tional Conference on Autonomic Computing (ICAC 14), pages 177–187, Philadel-
phia, PA, June 2014. USENIX Association. ISBN 978-1-931971-11-9. URL
https://www.usenix.org/conference/icac14/technical-sessions/presentation/menache.

[48] John Norstad. Financial planning using random walks, 1999.

[49] A. Oprescu and T. Kielmann. Bag-of-Tasks Scheduling under Budget Constraints. In
IEEE International Conference on Cloud Computing Technology and Science, pages
351–359, 2010.

[50] Ana-Maria Oprescu, Thilo Kielmann, and Haralambie Leahu. Stochastic tail-phase
optimization for bag-of-tasks execution in clouds. In IEEE Fifth International Con-
ference on Utility and Cloud Computing, UCC 2012, Chicago, IL, USA, Novem-
ber 5-8, 2012, pages 204–208, 2012. doi: 10.1109/UCC.2012.23. URL http:
//doi.ieeecomputersociety.org/10.1109/UCC.2012.23.

http://dx.doi.org/10.1007/978-3-642-35194-5_7
http://dx.doi.org/10.1007/978-3-642-35194-5_7
http://doi.acm.org/10.1145/2885497
http://doi.acm.org/10.1145/2885497
http://doi.acm.org/10.1145/2797211
http://doi.acm.org/10.1145/2797211
https://www.usenix.org/conference/icac14/technical-sessions/presentation/menache
http://doi.ieeecomputersociety.org/10.1109/UCC.2012.23
http://doi.ieeecomputersociety.org/10.1109/UCC.2012.23

References 143

[51] Zhonghong Ou, Hao Zhuang, Jukka K. Nurminen, Antti Ylä-Jääski, and Pan Hui.
Exploiting hardware heterogeneity within the same instance type of amazon ec2. In
Proceedings of the 4th USENIX Conference on Hot Topics in Cloud Ccomputing,
HotCloud’12, pages 4–4, Berkeley, CA, USA, 2012. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=2342763.2342767.

[52] John O’Loughlin and Lee Gillam. Good performance metrics for cloud service brokers.
In The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization,
pages 64–69. Citeseer, 2014.

[53] Victor Pelaez, Antonio Campos, Daniel Garcia, and Joaquin Entrialgo. Autonomic
scheduling of deadline-constrained bag of tasks in hybrid clouds. In 2016 International
Symposium on Performance Evaluation of Computer and Telecommunication Systems
(SPECTS), pages 1–8, July 2016. doi: 10.1109/SPECTS.2016.7570526.

[54] Eric Pettijohn, Yanfei Guo, Palden Lama, and Xiaobo Zhou. User-centric heterogeneity-
aware mapreduce job provisioning in the public cloud. In 11th International Con-
ference on Autonomic Computing (ICAC 14), pages 137–143, Philadelphia, PA, June
2014. USENIX Association. ISBN 978-1-931971-11-9. URL http://blogs.usenix.org/
conference/icac14/technical-sessions/presentation/pettijohn.

[55] Arkaitz Ruiz-Alvarez, In Kee Kim, and Marty Humphrey. Toward optimal resource
provisioning for cloud mapreduce and hybrid cloud applications. In Cloud Computing
(CLOUD), 2015 IEEE 8th International Conference on, pages 669–677, June 2015. doi:
10.1109/CLOUD.2015.94.

[56] Siqi Shen, Kefeng Deng, Alexandru Iosup, and Dick Epema. Scheduling jobs in the
cloud using on-demand and reserved instances. In Proceedings of the 19th International
Conference on Parallel Processing, Euro-Par’13, pages 242–254, Berlin, Heidelberg,
2013. Springer-Verlag. ISBN 978-3-642-40046-9. doi: 10.1007/978-3-642-40047-6_
27. URL http://dx.doi.org/10.1007/978-3-642-40047-6_27.

[57] Subhajit Sidhanta, Wojciech Golab, and Supratik Mukhopadhyay. Optex: A deadline-
aware cost optimization model for spark. In 2016 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages 193–202, May
2016. doi: 10.1109/CCGrid.2016.10.

[58] Shaojie Tang, Jing Yuan, and Xiang Yang Li. Towards optimal bidding strategy
for Amazon EC2 cloud spot instance. Proceedings - 2012 IEEE 5th International
Conference on Cloud Computing, CLOUD 2012, pages 91–98, 2012. ISSN 2159-6182.
doi: 10.1109/CLOUD.2012.134.

[59] Long Thai, Blesson Varghese, and Adam Barker. Executing Bag of Distributed Tasks
on the Cloud: Investigating the Trade-Offs between Performance and Cost. In IEEE
Conference on Cloud Computing Technology and Science, pages 400–407, 2014.

[60] Long Thai, Blesson Varghese, and Adam Barker. Budget constrained execution of
multiple bag-of-tasks applications on the cloud. In 2015 IEEE 8th International
Conference on Cloud Computing, pages 975–980, June 2015. doi: 10.1109/CLOUD.
2015.131.

http://dl.acm.org/citation.cfm?id=2342763.2342767
http://blogs.usenix.org/conference/icac14/technical-sessions/presentation/pettijohn
http://blogs.usenix.org/conference/icac14/technical-sessions/presentation/pettijohn
http://dx.doi.org/10.1007/978-3-642-40047-6_27

144 References

[61] Long Thai, Blesson Varghese, and Adam Barker. Task scheduling on the cloud with
hard constraints. In Services (SERVICES), 2015 IEEE World Congress on, pages
95–102, June 2015. doi: 10.1109/SERVICES.2015.22.

[62] Long Thai, Blesson Varghese, and Adam Barker. Executing bag of distributed tasks
on virtually unlimited cloud resources. In CLOSER 2015 - Proceedings of the 5th
International Conference on Cloud Computing and Services Science, Lisbon, Portugal,
20-22 May, 2015., pages 373–380, 2015. doi: 10.5220/0005403303730380. URL
http://dx.doi.org/10.5220/0005403303730380.

[63] Long Thai, Blesson Varghese, and Adam Barker. Minimising the Execution of Unknown
Bag-of-Task Jobs with Deadlines on the Cloud. In ACM International Workshop on
Data-Intensive Distributed Computing, pages 3–10, 2016.

[64] Long Thai, Blesson Varghese, and Adam Barker. Algorithms for optimising heteroge-
neous cloud virtual machine clusters. In Cloud Computing Technology and Science
(CloudCom), 2016 IEEE 8th International Conference on, Dec 2016.

[65] Ruben Van Den Bossche, Kurt Vanmechelen, and Jan Broeckhove. Online cost-efficient
scheduling of deadline-constrained workloads on hybrid clouds. Future Gener. Comput.
Syst., 29(4):973–985, June 2013. ISSN 0167-739X. doi: 10.1016/j.future.2012.12.012.
URL http://dx.doi.org/10.1016/j.future.2012.12.012.

[66] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in the
clouds: towards a cloud definition. SIGCOMM Comput. Commun. Rev., 39(1):50–55,
2009. ISSN 0146-4833. doi: http://doi.acm.org/10.1145/1496091.1496100.

[67] Blesson Varghese, Ozgur Akgun, Ian Miguel, Long Thai, and Adam Barker. Cloud
benchmarking for performance. In Cloud Computing Technology and Science (Cloud-
Com), 2014 IEEE 6th International Conference on, pages 535–540, Dec 2014. doi:
10.1109/CloudCom.2014.28.

[68] Bo Wang, Ying Song, Yuzhong Sun, and Jun Liu. Managing deadline-constrained
bag-of-tasks jobs on hybrid clouds. In Proceedings of the 24th High Performance
Computing Symposium, HPC ’16, pages 22:1–22:8, San Diego, CA, USA, 2016. Society
for Computer Simulation International. ISBN 978-1-5108-2318-1. doi: 10.22360/
SpringSim.2016.HPC.039. URL http://dx.doi.org/10.22360/SpringSim.2016.HPC.039.

[69] Jonathan Stuart Ward and Adam Barker. Observing the clouds: a survey and taxonomy
of cloud monitoring. Journal of Cloud Computing, 3(1):24, 2014. doi: 10.1186/
s13677-014-0024-2. URL http://dx.doi.org/10.1186/s13677-014-0024-2.

[70] Min Yao, Peng Zhang, Yin Li, Jie Hu, Chuang Lin, and Xiang Yang Li. Cutting
your cloud computing cost for deadline-constrained batch jobs. In Web Services
(ICWS), 2014 IEEE International Conference on, pages 337–344, June 2014. doi:
10.1109/ICWS.2014.56.

[71] Sangho Yi, Artur Andrzejak, and Derrick Kondo. Monetary cost-aware checkpoint-
ing and migration on amazon cloud spot instances. IEEE Transactions on Services
Computing, 5(4):512–524, Fourth 2012. ISSN 1939-1374. doi: 10.1109/TSC.2011.44.

http://dx.doi.org/10.5220/0005403303730380
http://dx.doi.org/10.1016/j.future.2012.12.012
http://dx.doi.org/10.22360/SpringSim.2016.HPC.039
http://dx.doi.org/10.1186/s13677-014-0024-2

References 145

[72] Xingquan Zuo, Guoxiang Zhang, and Wei Tan. Self-adaptive learning pso-based
deadline constrained task scheduling for hybrid iaas cloud. IEEE Transactions on
Automation Science and Engineering, 11(2):564–573, April 2014. ISSN 1545-5955.
doi: 10.1109/TASE.2013.2272758.

Appendix A

Experiment Results

This chapter presents the detailed experiment results which were illustrated in Chapter 8.

A.1 Scheduling Approaches

1
4
8

Experim
entR

esults

Table A.1 Summary of Solving Times in Milliseconds of the Experiment in which the Number of Jobs Varied

Number
of Jobs

Exact Approach Hybrid Approach Heuristic Approach
Mean Std Min Max Mean Std Min Max Mean Std Min Max

5 804.2 517.13 226 1212 58.4 41.11 23 124 41 21.08 19 64
6 1974 1706.08 922 4977 45.6 32.04 23 102 33.2 21.88 12 68
7 5365 5728.27 2144 15485 50.4 27.87 26 91 44 32.86 16 98
8 122597.2 267324.94 1732 600792 31.8 6.02 26 40 19.4 3.97 14 24
9 19686 11961.77 6092 35153 36.4 5.86 30 44 28.8 8.76 19 40
10 185662.2 242698.15 17834 603303 43.6 4.83 38 49 34 10.77 24 48
11 190486.8 239852.84 26773 604623 61.4 12.90 43 75 36 11.51 26 55
12 395315 238504.11 99183 609248 60.4 9.63 51 75 41.6 8.76 28 52
13 494983.4 146981.08 266490 609168 64.6 14.59 44 84 44 15.25 32 70
14 545362.8 151698.30 274066 617591 73 11.07 60 86 62.4 14.57 53 88

A
.1

Scheduling
A

pproaches
1
4
9

Table A.2 Summary of Total Costs in Dollar of the Experiment in which the Number of Jobs Varied

Number
of Jobs

Exact Approach Hybrid Approach Heuristic Approach
Mean Std Min Max Mean Std Min Max Mean Std Min Max

5 25.2 7.60 14 32 26.6 7.92 15 34 27.2 8.58 15 36
6 36.2 7.40 31 49 37.8 8.17 32 52 38.2 8.07 32 52
7 46.6 9.76 39 60 47.8 9.63 40 61 48.2 10.33 40 63
8 53.8 9.31 39 64 55.8 9.31 41 66 56.4 9.48 41 67
9 74.2 12.91 53 85 76.6 13.76 54 88 77.6 12.90 56 88
10 98.4 17.04 79 122 101.6 17.60 81 125 102.4 18.93 81 128
11 111.8 18.66 98 143 115.2 19.41 101 148 116.4 19.93 100 150
12 145.8 28.80 113 191 149.6 29.16 116 195 152.2 29.89 117 197
13 158 18.07 126 169 164 18.73 131 177 165.2 18.75 132 177
14 181.4 28.66 152 213 187.2 29.52 158 219 187.6 28.94 158 220

1
5
0

Experim
entR

esults

Table A.3 Summary of Solving Times in Milliseconds of the Experiment in which the Number of Tasks Varied

Number
of Tasks

Exact Approach Hybrid Approach Heuristic Approach
Mean Std Min Max Mean Std Min Max Mean Std Min Max

100 927 335.62 491 1317 58.8 41.91 28 131 37.4 19.92 21 70
200 6571.2 10145.68 839 24657 42.2 11.99 27 60 34.2 12.60 21 54
300 96982.4 196785.23 824 448698 41.8 17.31 25 68 36.6 10.64 23 51
400 9790.4 3327.00 5050 12912 33.6 4.93 27 40 28.4 7.47 19 37
500 17973.8 13331.18 2825 36816 34.8 13.41 20 50 24.2 12.07 11 41
600 145527.6 255658.24 16943 602483 35.8 8.47 28 49 28 7.81 21 41
700 372816.2 316189.49 18021 604518 48 16.31 27 69 51.2 23.37 25 87
800 147298.6 255060.25 27572 603507 50 12.92 31 61 48.2 17.82 21 68
900 78128.6 21256.75 60276 111231 60.2 21.41 44 96 52.8 18.07 36 80
1000 259813.2 148914.66 80561 458990 86.8 21.99 58 111 82.6 25.95 45 107

A
.1

Scheduling
A

pproaches
1
5
1

Table A.4 Summary of Total Costs in Dollars of the Experiment in which the Number of Tasks Varied

Number
of Tasks

Exact Approach Hybrid Approach Heuristic Approach
Mean Std Min Max Mean Std Min Max Mean Std Min Max

100 26.4 5.18 22 35 27.8 5.63 23 37 28 5.57 23 37
200 53.8 9.93 40 68 54.8 10.01 41 69 55.6 9.58 42 69
300 71 15.60 49 91 72.2 15.93 50 93 73 16.17 51 95
400 98.2 17.74 75 118 99.6 17.92 76 120 100.6 18.39 77 123
500 128 39.38 76 163 129.4 39.70 77 165 131 40.36 78 168
600 163.2 13.83 146 183 166 13.73 149 186 167 12.67 151 185
700 219.2 37.24 175 256 222 38.21 177 261 222 38.18 177 260
800 207.6 27.40 180 245 210 28.64 181 249 210.8 28.49 182 250
900 268 34.96 231 319 270.2 34.69 234 321 271 34.56 235 322
1000 313.6 39.18 278 361 318.6 41.42 281 372 318.8 42.53 280 373

1
5
2

Experim
entR

esults

Table A.5 Summary of Solving Times in Milliseconds of the Experiment in which the Number of Instance Types Varied

Number
of Types

Exact Approach Hybrid Approach Heuristic Approach
Mean Std Min Max Mean Std Min Max Mean Std Min Max

5 1611.6 1151.78 517 3317 60.8 43.08 32 137 44.6 34.40 27 106
6 631.6 400.76 168 1112 26 4.69 22 34 17.4 3.85 13 22
7 995.4 931.59 310 2588 21.4 2.79 19 26 14.2 2.49 12 18
8 1022.8 623.45 440 2034 21.4 6.54 14 30 13 4.36 9 20
9 1502.2 988.64 438 2622 17.4 1.95 15 20 9.8 1.48 8 12
10 1436.2 467.97 832 1892 16.4 2.51 14 20 9.2 3.56 5 13
11 1370.6 832.80 664 2308 16.2 1.10 15 18 10.4 1.52 9 12
12 1252.4 554.98 686 2161 15.4 1.14 14 17 8 2.24 5 11
13 2513 2522.01 559 6343 16.2 3.27 13 21 8 2.92 5 12
14 1494 690.92 635 2520 39.8 29.69 15 91 23.2 15.66 7 47

A
.1

Scheduling
A

pproaches
1
5
3

Table A.6 Summary of Total Costs in Dollars of the Experiment in which the Number of Instance Types Varied

Number
of Types

Exact Approach Hybrid Approach Heuristic Approach
Mean Std Min Max Mean Std Min Max Mean Std Min Max

5 28.4 5.22 20 33 29.8 5.07 22 35 30 5.34 22 36
6 26 4.95 20 33 27.2 5.07 21 34 27.6 5.41 21 35
7 30.4 7.20 25 43 31.6 7.64 26 45 31.2 7.33 26 44
8 23.4 4.72 18 31 24.8 4.38 20 32 25 4.36 20 32
9 29 7.04 22 37 30 7.04 23 38 30.4 7.33 23 39
10 27 3.32 23 32 28.2 3.42 24 33 28.2 3.70 23 33
11 31.2 5.12 27 40 32.8 5.26 29 42 32.8 5.26 29 42
12 27.2 5.89 20 34 28.6 5.94 21 35 28.6 5.94 21 35
13 30.6 7.96 20 41 32.2 8.44 21 43 32.4 8.56 21 44
14 27.2 7.66 17 38 28.6 8.11 18 40 29 8.15 18 40

1
5
4

Experim
entR

esults

Table A.7 Summary of Solving Times in Milliseconds of the Experiment in which the Deadline Varied

Deadline
Exact Approach Hybrid Approach Heuristic Approach
Mean Std Min Max Mean Std Min Max Mean Std Min Max

600 2122.6 2311.69 626 6208 51.6 28.52 30 101 46.8 21.74 28 82
700 304.8 145.78 165 545 22.6 8.47 16 36 21.6 7.30 16 34
800 351.4 103.34 205 457 16.2 3.42 13 22 11 3.16 7 15
900 966 1100.81 90 2680 16 1.58 14 18 11.4 1.52 10 13
1000 177 65.49 105 270 12 2.24 9 15 7.2 1.92 5 10
1100 162 61.48 77 249 9.8 0.84 9 11 5.4 0.55 5 6
1200 298.6 158.65 116 543 10.8 1.30 9 12 6.2 1.30 5 8
1300 145.2 60.69 61 220 9.4 1.14 8 11 4.6 0.89 4 6
1400 192.8 114.02 54 340 10 0.71 9 11 5.2 0.45 5 6
1500 197.6 60.16 111 281 10.2 2.77 7 14 5 0.71 4 6

A
.1

Scheduling
A

pproaches
1
5
5

Table A.8 Summary of Total Costs in Dollars of the Experiment in which the Deadline Varied

Deadline
Exact Approach Hybrid Approach Heuristic Approach
Mean Std Min Max Mean Std Min Max Mean Std Min Max

600 25.4 6.07 17 32 27 5.61 19 33 27.4 6.11 18 33
700 20.2 4.76 16 27 21.4 4.72 17 28 22 5.00 17 29
800 18.6 3.36 14 21 19.2 3.03 15 22 20 3.24 16 23
900 18.8 1.92 16 21 20 2.24 17 23 20 2.24 17 23
1000 13.8 0.84 13 15 14.6 1.14 13 16 14.6 1.14 13 16
1100 11.8 3.03 9 17 12.6 3.13 10 18 12.6 3.13 10 18
1200 14.2 2.28 12 18 15 2.45 13 19 15 2.92 13 20
1300 10.4 1.95 8 13 11.4 1.82 9 14 11.4 2.30 9 15
1400 10.6 1.52 9 13 11.4 1.14 10 13 11.6 0.89 11 13
1500 9.6 1.52 8 11 10.4 1.82 8 12 10.4 1.82 8 12

156 Experiment Results

A.2 Evaluating the Unknown Handling Mechanism

Table A.9 The results of the experiment evaluating the Unknown Handling Mechanism

Late Task Late Time Cost (In Dollars)
Violation Cost

Mean Std Mean Std Mean Std
known 2.4 1.2 46.0 30.69 2.63 0.17 0.0141
unknown 2.8 3.43 34.6 38.12 2.91 0.17 0.0182
medium.8 126.0 14.18 6174.2 514.49 2.91 0.03 1.1299
medium.10 19.4 1.36 865.6 62.37 2.92 0 0.1316
large.4 76.6 34.56 2292.0 1602.29 2.42 0.12 0.4972
large.5 5.6 4.08 85.8 69.35 2.92 0 0.0368
xlarge.2 360.8 16.79 38812.4 2922.91 3.52 0 14.2217
xlarge.3 203.4 42.32 5582.6 1946.4 4.04 0.34 3.3351

A.3 Dynamic Reassignment

A
.3

D
ynam

ic
R

eassignm
ent

1
5
7

Table A.10 Cost in Dollars of Each Approach When Dynamic Scheduling Is Turned On/Off

Coefficient
of
Variation

Exact Approach Hybrid Approach Heuristic Approach
Dyna NoDyna Dyna NoDyna Dyna NoDyna
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

0.00 2.12 0.00 2.12 0.00 2.12 0.00 2.12 0.00 2.13 0.03 2.19 0.00
0.25 2.23 0.07 2.42 0.09 2.34 0.12 2.45 0.12 2.41 0.19 2.41 0.17
0.50 2.63 0.15 2.67 0.10 2.60 0.06 2.73 0.15 2.42 0.05 2.64 0.13
0.75 2.74 0.14 3.14 0.13 2.86 0.18 3.11 0.14 2.73 0.17 2.96 0.07
1.00 3.33 0.13 3.33 0.19 3.26 0.11 3.39 0.15 3.15 0.17 3.29 0.10

1
5
8

Experim
entR

esults

Table A.11 Number of Violated Tasks for Each Approach When Dynamic Scheduling Is Turned On/Off

Coefficient
of
Variation

Exact Approach Hybrid Approach Heuristic Approach
Dyna NoDyna Dyna NoDyna Dyna NoDyna
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.25 0.60 0.80 7.40 1.85 2.00 1.90 49.20 77.91 0.20 0.40 46.40 78.32
0.50 5.20 3.31 26.40 6.53 3.40 3.93 26.80 6.85 1.20 1.47 25.20 4.71
0.75 21.00 11.71 87.60 15.91 22.80 11.92 75.40 25.68 29.20 20.72 68.40 12.37
1.00 115.60 37.36 120.20 17.96 93.60 28.71 150.60 16.70 98.00 33.54 140.80 17.03

A
.3

D
ynam

ic
R

eassignm
ent

1
5
9

Table A.12 Average Amount of Violated Time in Seconds for Each Approach When Dynamic Scheduling Is Turned On/Off

Coefficient
of
Variation

Exact Approach Hybrid Approach Heuristic Approach
Dyna NoDyna Dyna NoDyna Dyna NoDyna
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.25 7.80 10.17 76.40 13.92 40.40 35.83 106.00 26.43 6.00 12.00 93.60 36.82
0.50 83.40 47.49 385.20 57.69 55.20 61.69 308.80 48.14 18.80 24.90 298.20 120.31
0.75 377.80 236.43 1249.60 187.58 360.40 142.94 1041.40 205.37 347.20 153.51 746.20 37.39
1.00 1228.20 302.46 1479.40 327.77 1269.60 449.23 1626.00 188.15 910.20 271.02 1409.00 159.80

160 Experiment Results

A.4 Cloud Experiments

Table A.13 The results of the experiments evaluating the feasibility of the proposed research
in real life cloud, i.e. AWS

Total
Cost (In Dollars)

Dyna NoDyna
Late Task Late Time Late Task Late Time
Mean Std Mean Std Mean Std Mean Std

Exact 1.61 0.0 0.0 0.0 0.0 2.33 1.25 39.0 29.22
Hybrid 1.68 0.0 0.0 0.0 0.0 11.0 4.97 157.33 110.08
Heuristic 1.68 0.0 0.0 0.0 0.0 25.67 36.3 22.67 32.06
Medium 1.97 0.67 0.94 7.67 10.84 35.67 4.78 411.0 84.25
Large 1.75 0.0 0.0 0.0 0.0 11.33 3.09 160.33 55.42
XLarge 2.34 0.0 0.0 0.0 0.0 0.33 0.47 7.67 10.84

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Cloud Computing
	1.2 Bag-of-Tasks Applications
	1.3 Research Hypotheses
	1.3.1 Scheduling approaches can minimise running costs of BoT applications on the cloud and achieve the desired Quality of Service provided as user defined deadlines
	1.3.2 Unexpected events, such as performance variation, can be detected and handled by the execution management mechanisms at runtime

	1.4 Contributions
	1.5 Publications
	1.6 Organisation

	2 Literature Review
	2.1 Related Work
	2.1.1 Overview of the Survey Methodology
	2.1.2 Scheduling in a Homogeneous Environment
	2.1.3 Scheduling in a Heterogeneous Environment

	2.2 Taxonomy
	2.2.1 Functionality
	2.2.2 Requirements
	2.2.3 Dynamic Scheduling
	2.2.4 Parameter Estimation
	2.2.5 Solving Methods
	2.2.6 Application Heterogeneity

	2.3 Discussion
	2.3.1 Current Trends

	2.4 Requirements Analysis
	2.4.1 Heterogeneous Environment
	2.4.2 Satisfying Deadlines While Minimising the Monetary Cost
	2.4.3 Flexible Execution
	2.4.4 Trade-off Aware Solving Methods

	2.5 Chapter Summary

	3 Mathematical Representation of the Research Problem
	3.1 Environment Modelling
	3.2 Job Execution Modelling
	3.3 Problem Modelling
	3.4 Chapter Summary

	4 Workload Assignment
	4.1 Utility Functions
	4.1.1 Finding Preceding and Succeeding Workloads
	4.1.2 Calculate Permissible Delay
	4.1.3 Shift Workloads
	4.1.4 Execution Pre-emption

	4.2 Workload Assignment Algorithm
	4.3 Chapter Summary

	5 Execution Scheduling
	5.1 The Exact Approach
	5.2 Single Job Scheduling Approach
	5.2.1 The Hybrid Scheduling Approach
	5.2.2 Heuristic Single Job Scheduling
	5.2.3 Handling Multiple Jobs Using Single Job Scheduling Approaches

	5.3 Chapter Summary

	6 Execution Management
	6.1 Dynamic Scheduling
	6.1.1 Progress Monitoring
	6.1.2 Progress Categorisation
	6.1.3 Dynamic Reassignment

	6.2 Handling Unknown Applications
	6.2.1 Determine the Sampling Duration
	6.2.2 Schedule the Sampling Phase

	6.3 Chapter Summary

	7 Design and Implementation
	7.1 Data Transfer Object (DTO)
	7.1.1 Application
	7.1.2 Job
	7.1.3 InstanceType
	7.1.4 Instance
	7.1.5 Workload

	7.2 Components
	7.2.1 Assignment Service
	7.2.2 Scheduler
	7.2.3 Reassignment Service
	7.2.4 Unknown Handler
	7.2.5 Cloud Manager
	7.2.6 Executor

	7.3 Supported Features
	7.3.1 Submission Handling
	7.3.2 Execution Monitoring and Management

	7.4 Chapter Summary

	8 Evaluation
	8.1 Introduction
	8.2 Comparing the Scheduling Approaches
	8.2.1 Environment Set-up
	8.2.2 Experiment Results and Discussion
	8.2.3 Discussion

	8.3 Evaluating the Unknown Handling Mechanism
	8.3.1 Environment Set-up
	8.3.2 Experiment Results
	8.3.3 Discussion and Summary

	8.4 Dynamic Reassignment
	8.4.1 Experiment Set-up
	8.4.2 Experiment Results and Discussion

	8.5 Cloud Experiments
	8.5.1 Environment Set-up
	8.5.2 Experiment Results
	8.5.3 Discussion

	8.6 Chapter Summary

	9 Conclusion
	9.1 Thesis Summary and Contributions
	9.2 Lessons Learned
	9.3 Future Work

	References
	Appendix A Experiment Results
	A.1 Scheduling Approaches
	A.2 Evaluating the Unknown Handling Mechanism
	A.3 Dynamic Reassignment
	A.4 Cloud Experiments

