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ABSTRACT
We introduce PHI, a fully Bayesian Markov chain Monte Carlo algorithm designed for the
structural decomposition of galaxy images. PHI uses a triple layer approach to effectively and
efficiently explore the complex parameter space. Combining this with the use of priors to
prevent non-physical models, PHI offers a number of significant advantages for estimating
surface brightness profile parameters over traditional optimization algorithms. We apply PHI

to a sample of synthetic galaxies with Sloan Digital Sky Survey (SDSS)-like image properties
to investigate the effect of galaxy properties on our ability to recover unbiased and well-
constrained structural parameters. In two-component bulge+disc galaxies, we find that the
bulge structural parameters are recovered less well than those of the disc, particularly when
the bulge contributes a lower fraction to the luminosity, or is barely resolved with respect to
the pixel scale or point spread function (PSF). There are few systematic biases, apart from for
bulge+disc galaxies with large bulge Sérsic parameter, n. On application to SDSS images, we
find good agreement with other codes, when run on the same images with the same masks,
weights, and PSF. Again, we find that bulge parameters are the most difficult to constrain
robustly. Finally, we explore the use of a Bayesian information criterion method for deciding
whether a galaxy has one or two components.

Key words: methods: data analysis – methods: statistical – techniques: image processing –
techniques: photometric – galaxies: photometry – galaxies: structure.

1 IN T RO D U C T I O N

Galaxy morphologies are complex, arising from many different
processes that dictate the formation and evolution of the galaxy as a
whole. Accurately characterizing galaxy structure, i.e. bulges, discs,
bars, and further complex components, is crucial for furthering our
understanding.

The human brain is extremely adept at pattern recognition and the
classification of galaxy images began with the ‘Hubble tuning fork’
(Hubble 1936; Sandage 1961). Today visual classification is still
widely used and has been recently revitalized by the Galaxy Zoo
project enabling amateur galaxy classifiers from across the globe to
process vast amounts of galaxy structural information (Lintott et al.
2008, 2011; Willett et al. 2013; Simmons et al. 2017). Furthermore,
the introduction of new techniques to mimic how the human brain
captures the full, complex distribution of light has further advanced
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the usefulness of visual classification (Huertas-Company et al. 2008,
2015; Dieleman, Willett & Dambre 2015).

An alternative and complementary approach is through the quan-
titative description of galaxy structures, using either parametric or
non-parametric methods. Examples of non-parametric classifiers
are concentration, clumpiness, and asymmetry (Conselice 2003;
Lotz, Primack & Madau 2004; Pawlik et al. 2016). Parametric meth-
ods include Sérsic profile fitting (Sersic 1968) and multi-Gaussian
expansion (Bendinelli 1991; Emsellem 1998; Fasano & Filippi
1998; Cappellari 2002; Odewahn et al. 2002). Sérsic profile fit-
ting has become increasingly popular in recent decades due to its
ability to reproduce the basic structures of many nearby and distant
galaxies with typically only one or two (bulge and disc) compo-
nents. Initially ellipticity-averaged 1D surface brightness profiles
were used to fit the photometric components. However, this was
shown to lead to systematic errors, as it does not account for the
intrinsic shapes or position angle of the bulges (Kormendy 1977;
Boroson 1981), and most modern studies now fit the 2D images
pixel-by-pixel.
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There are a large number of 2D fitting algorithms: GIM2D (Simard
1998), GALFIT (Peng et al. 2002, 2010), BUDDA (de Souza, Gadotti
& dos Anjos 2004), GASP2D (Méndez-Abreu et al. 2008, 2017),
IMFIT (Erwin 2015), GALPHAT (Yoon, Weinberg & Katz 2011), and
PROFIT (Robotham et al. 2017). Some of these codes (e.g. GALFITand
GASP2D) use minimization algorithms to efficiently search for the
best solution using the gradient of the model with respect to the
parameters. Although these frequentist algorithms have commonly
been employed to solve multicomponent, non-linear fits, they suffer
from some important drawbacks when faced with a problem as com-
plex as photometric decomposition. Lange et al. (2016) listed five
commonly occurring factors that lead to failure of the Levenberg–
Marquardt (LM) fitting algorithm: (i) local minima trapping; (ii) un-
realistic solutions; (iii) reversal of components (Allen et al. 2006);
(iv) indecisiveness as to which model to use; and (v) bad represen-
tation of final errors. To avoid some of these issues, they advocated
the use of a grid of starting values combined with a convergence
test to obtain robust parameter values. Typically 20–30 per cent of
automatic fits are deemed physically unrealistic; previous studies
have often employed logical filters to weed these out (e.g. Allen
et al. 2006; Simard et al. 2011; Meert, Vikram & Bernardi 2015;
Méndez-Abreu et al. 2017).

To circumvent these difficulties, a more modern approach is to
embed the galaxy morphology analysis into the broader context of
inference and hypothesis testing with the use of Bayesian inference.
The above problems can then be solved in turn: the exploration of
parameter space can overcome runs that become trapped in local
minima; initial priors can prevent unrealistic solutions and the re-
versal of components; model comparison tests can help determine
the most probable morphology; and the posterior distribution gives
a proper description of the parameter uncertainties. GALPHAT, PROFIT,
and IMFIT (version 1.4) offer a Markov chain Monte Carlo (MCMC)
approach to help overcome these problems.

This paper introduces a new adaptive Bayesian MCMC algo-
rithm, which has been purpose designed to obtain robust galaxy
morphologies from galaxy images. We demonstrate its use on
two-component bulge–disc decomposition of both synthetic and
real galaxy images. The aim is to provide a flexible, open source
code in which it is simple for users to define their own mod-
els, point spread functions (PSFs), priors, and likelihoods. The
code is available for download in IDL (Interactive Data Language,
https://github.com/SEDMORPH/PHI/). A PYTHON version is also
under development.

In Section 2, we describe the basic formalism of the inference
methodology, including an overview of Bayesian statistics and de-
tails of the priors used. In Section 3, we apply the method to an
ensemble of synthetic galaxy images and discuss the interpretation
of the outputs. In Section 4, the algorithm is applied to real galaxies
within the Sloan Digital Sky Survey (SDSS). In Section 5, we inves-
tigate a method to formally compare the one- and two-component
model fits. Finally, in Section 6, we discuss and summarize the
results of this paper.

2 IN F E R E N C E M E T H O D O L O G Y

In this section we describe the main attributes of the code PHI (2D
PHotometric decompositions using Bayesian Inference). The key
steps of our inference method to perform 2D photometric decom-
positions, illustrated in Fig. 1, are as follows.

Figure 1. The flow chart of the code PHI (2D PHotometric decompositions
using Bayesian Inference).

(i) PHI reads in the flux and error maps of an image in FITS format.
A PSF must either be provided as an image or specified in functional
form.

(ii) The user provides functions describing the components they
wish to fit (Section 2.1) and defines the priors. Initial guesses for
the model parameters may be provided, but are not essential for the
algorithm to function correctly.

(iii) PHI simulates the galaxy image with the chosen model and
initial model parameters, and uses a fast Fourier transform (FFT) to
convolve the simulated image with the PSF.

(iv) The likelihood and posterior probability are calculated for
the model and data.

(v) The MCMC engine commences by iteratively updating the
model parameters and repeating steps (iii)–(iv) until the full pos-
terior distribution has been mapped, or the user-defined maximum
iteration number is reached.

2.1 2D photometric model functions

PHI has been designed to easily fit any parametric model to a galaxy
image. However, for simplicity, in this paper we focus on the two
main observed components of galaxies: spheroids and discs. In
general, discs are well described by an exponential profile (Freeman
1970), with the intensity I changing with radius R as

I (R) = I0 exp

(
−R

h

)
, (1)

where I0 is the central intensity and h is the disc scale length. The
spheroid component of galaxies can be modelled by Sérsic’s (1968)
generalization of de Vaucouleurs (1948) R1/4 function to give the
R1/n surface density profile,

I (R) = Ie exp

{
−bn

[(
R

Re

)1/n

− 1

]}
, (2)

where Ie is the intensity at the effective radius Re that encloses
half of the total light from the model, and n, the Sérsic index,
describes the concentration of the light profile. The final parameter,
bn, is specified by n. When n = 1 the model follows an exponential
surface intensity profile and n = 4 reproduces the de Vaucouleurs’
model; thus the Sérsic profile can describe the two main observed
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Table 1. Details of the prior distributions set for each of the model parameters used in this paper. U[a, b] specifies a uniform distribution between lower and
upper limits a and b, and δ(a) specifies a Kronecker delta function with probability of 1 at a and 0 otherwise. Simage is the size of the image.

Parameter Symbol Prior Range

Individual parameters
Effective intensity Ie Uniform in log (Ie) log (Ie/counts) ∈ U[0.01, 10]
Effective radius Re Uniform in log (Re) log (Re/pixels) ∈ U[0.01, 10]
Sérsic index n Uniform in n n ∈ U[0.4, 8]
Central intensity I0 Uniform in log (I0) log (I0/counts) ∈ U[0.01, 10]
Scale length h Uniform in log (h) log (h/pixels) ∈ U[0.01, 10]
Axial ratio q Uniform in q q ∈ U[0.2, 1]
Position angle PA Uniform in PA PA/◦∈ U[ − 360, 360]
Central coordinates x0, y0 Uniform in x0andy0 x0andy0 ∈ U[0, Simage]
Combined parameters
Effective radius/scale length Re/h Uniform in Re/h Re/h ∈ U[0.05, 1.678]
Bulge-to-total flux ratio B/T Uniform in B/T B/T ∈ U[0.01, 1]
Bulge-to-disc flux ratio (< Re) B/D(< Re) Uniform in B/D(< Re) B/D(< Re) ∈ U[1, −]
Number of crossing points Nx δ(Nx) = 1 for Nx = 1

components of galaxies. A detailed review of the Sérsic profile and
associated quantities is given by Graham & Driver (2005).

We characterize the intensity profile of a galaxy by concentric
elliptical isophotes with position angle θPA in degrees counterclock-
wise from the vertical axis of the image, and ellipticity ε = 1 − q,
where q = b/a is the ratio between the semiminor and semimajor
axis of the ellipse. The projected radius is given by

r = x2
p + y2

p

q2
, (3)

where xp and yp are coordinates in the reference frame centred on
the image centre (x0, y0) and rotated to the position angle relative
to the image x-axis (PA = θPA + 90◦),

xp = (x − x0) cos (PA) + (y − y0) sin (PA),

yp = −(x − x0) sin (PA) + (y − y0) cos (PA).
(4)

Many previous studies have shown that a careful analysis of
the PSF is needed to perform robust photometric decompositions.
Méndez-Abreu et al. (2008) found that errors of ∼2 per cent in the
PSF full width at half-maximum (FWHM) led to errors of up to
10 per cent in the Re and n of the bulge. Gadotti (2009) found that
to reliably retrieve the structural properties of bulges, the effective
radius must be larger than ∼80 per cent of the PSF FWHM. It is
therefore crucial that an accurate model for the PSF is provided
to PHI, and that PHI then treats the PSF correctly. Given the large
number of models that must be built for comparison with the data
during the running of PHI, we explored a variety of methods for
convolving the model image with the PSF. We found that the FFT
returns the required accuracy for the decomposition of images.

2.2 Bayesian framework

Bayesian methods combine prior knowledge about a model with
data to obtain a probabilistic description of the model. This is de-
scribed by Bayes’ theorem,

p(θ |D) = L(D|θ )p(θ )∫
L(D|θ )p(θ )dθ

, (5)

where the model is characterized by the parameter vector θ , p(θ |D)
is the posterior probability of a set of parameters θ given the data
D, L(D|θ ) is the likelihood function or the probability of the data
given θ , and p(θ ) is the prior probability of the parameter vector θ .

The denominator ensures that the probability is unity when summed
over all possible models.

2.2.1 Likelihood

For a large number of photons detected in each independent CCD
pixel, the measurement errors can be considered to be Gaussian
with mean zero and no covariance. The likelihood for a given pixel
i is then given by

p(di |θ ) = 1

(2πσ 2
i )1/2

exp

{
−1

2

[
di − f (xi ; θ )

σi

]2
}

, (6)

where f(x;; θ ) is the model function consisting of known quantities x
(i.e. constants, control variables, etc.) and the unknown parameters
θ . Since each pixel is considered to be an independent measurement,
the combined −2 ln likelihood of all the N pixels is

− 2 ln p(D|θ ) = χ2 +
N∑

i=1

ln σ 2
i + N ln 2π, (7)

where

χ2 =
N∑

i=1

[di − f (xi ; θ )]2

σ 2
i

. (8)

2.2.2 Priors

The prior distribution expresses our knowledge and prejudices about
certain values of the parameters, or relationships between them.
Where we know some values to be more probable than others,
a carefully selected prior distribution can encode this knowledge.
However, biases may arise if the prior distribution is informative,
e.g. a Gaussian probability distribution function (PDF) with a nar-
row width. For the purpose of galaxy image analysis, where the
parameter space is known to have many local minima, it is only
advisable to use an informative prior where there is a clear justifi-
cation. PHI will accept any valid function for the prior distributions
defined by the user. In this paper we demonstrate the use of PHI with
maximally uninformative priors, i.e. a uniform distribution between
certain parameter limits.

The top section of Table 1 lists the prior functions used in this
paper for each parameter of the model in Section 2.1. In the case
of photometric decompositions of galaxy images there are some
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Figure 2. The intensity profiles for two-component models, where the radius has been normalized by the effective radius of the bulge. The solid black line
shows the bulge profile in the case of a Sérsic model with n = 4. The coloured lines show the exponential disc component, with different bulge-to-total flux
ratios (B/T) as given in the large colour bar, or bulge-to-disc flux ratios (B/D) within one effective radius as shown by the individual colour bars. The black
dashed lines show the combined (total) intensity profiles. Each panel shows models with different ratios of bulge effective radius to disc scale length (Re/h) as
given in the legend.

clearly physically motivated limits on the parameters. For example,
negative or very large values for the radius are unphysical. We allow
values for the Sérsic index, n, to take any value within the range 0.5
< n < 8. Larger values produce unphysical concentrations of light
in the centre.

One advantage of the Bayesian inference framework for the pho-
tometric decomposition of two-component galaxy images is that
the accidental fitting of a one-component model, or the reversal of
bulge and disc components, can be explicitly avoided through the
use of combined priors. To illustrate the use of combined priors,
we restrict our models to fit a bulge defined to be an excess of light
over the inner extrapolation of an exponential disc. We note that this
particular model may not be appropriate for all science goals, for
example in the study of embedded discs. To do this we must con-
strain our two-component galaxies to be a combination of an inner
Sérsic profile (the bulge) and outer exponential profile (the disc).
Unfortunately, this is less straightforward than it sounds: for a bulge

profile with Sérsic parameter n > 1 and an exponential disc profile,
at some (large) radius the inner component will again dominate
over the outer. To explore where the reversal of components could
occur in practice, Fig. 2 shows the effect on the intensity profiles
of varying each of the model parameters presented in Section 2.1,
for a bulge with n = 4. The bulge component dominates at large
radii when the ratio of bulge effective radius to disc scale length
(Re/h) is large and the bulge-to-total flux ratio (B/T) is large. In
this example, we employ combined priors to enforce our prejudice
about the relative strength and positioning of the two components in
three ways: (i) preventing the disc effective radius (Rdisc = 1.678h)
becoming smaller than the bulge Re; (ii) ensuring the bulge-to-disc
flux ratio (B/D) within one effective bulge radius is always larger
than unity; and (iii) ensuring that the number of crossing points in
the bulge and disc 1D light profiles (Nx) is unity. This third prior
ensures that two components are fit, yet prevents the light profile of
the bulge becoming dominant in the outer edges. It is implemented
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Figure 3. The MCMC trace plots for some of the profile parameters in
a two-component model. The left-hand column shows the bulge (Sérsic)
profile parameters: the effective intensity (Ie), effective radius (Re), and
Sérsic index (n). The right-hand column shows the disc (exponential) profile
parameters: the central intensity (I0) and scale length (h). The red, green,
and blue correspond to the three levels of the algorithm. The orange shows
the transition between first and second levels, and the light blue shows the
burn-in part of the third level that is discarded.

via a Newton–Raphson algorithm, which is run until the total model
intensity falls below the mean of the sky background; after this a
second crossing point can occur (and is inevitable for galaxies with
n > 1). These combined priors are summarized in the second half
of Table 1, where we again use maximally uninformative priors for
simplicity. More complex priors may be included trivially by the
user, depending on their science goals.

2.3 Model comparison

The aim of model fitting is to construct probabilistic models that
represent, or sufficiently approximate, the data. Once the simplest
model has been fit, we can increase the complexity of the model by
adding extra parameters. It is important to then test whether each
additional parameter is justified on the grounds of a significantly
improved fit, given the increased number of degrees of freedom.

In this paper we investigate the use of the Bayesian informa-
tion criterion (BIC; Schwarz 1978), which compares the maximum
likelihood of each model L(D|θML),

BIC = −2 ln(p(D|θML)) + m ln(N ), (9)

where N is the number of data points and m is the number of
free parameters in the model (θML is the corresponding maximum

likelihood parameter vector). The difference between the BIC of
two models (A and B) is

�BIC = −2 ln

(
p(D|θA)

p(D|θB)

)
+ (mA − mB) ln(N ). (10)

The actual calculation of the BIC requires the Bayes factor, which is
not provided by the PHI algorithm. We therefore approximate �BIC
by fitting both models to the data and taking the posterior medi-
ans for each set of fitted parameters. Unfortunately, the appropriate
demarcation to distinguish between the models is somewhat depen-
dent on the problem in hand. We therefore carry out simulations in
Section 5 to determine the appropriate values for our data set.

2.4 The MCMC engine

Exact Bayesian analysis is restricted by the need to perform inte-
grations analytically. For a simple model with two or three param-
eters, one can obtain a good estimate of the posterior probability
by exploring all possible parameter values on a grid. For a high-
dimensional parameter space, such as the models used to describe
the surface brightness distribution of galaxies, the characterization
of the posterior distribution becomes increasingly difficult, and the
use of a grid is prohibitively time consuming. Sampling-based meth-
ods allow the exploration of highly multidimensional and complex
parameter spaces. One example of these methods is MCMC: by gen-
erating repeated states by a first-order Markovian process, MCMC
asymptotically converges to the posterior distribution.

The purpose-built MCMC algorithm used in PHI consists of three
levels that aim to achieve an efficient convergence and accurate
estimation of the posterior distribution. Fig. 3 shows a typical run
of the entire algorithm with different colours depicting the three
levels and transitions between them. In the following subsections
we will address the intricacies of each level individually.

2.4.1 Level one: blocked adaptive Metropolis

PHI begins with a variation on the adaptive-Metropolis-within-Gibbs
algorithm introduced in Roberts & Rosenthal (2009). The purpose
of this level is to obtain an estimate of the scale of each parameter
in the Markov chain. By knowing how each parameter scales PHI

can efficiently sample from the parameter space, which overcomes
problems with poorly chosen initial parameter values, as well as
complex probability distributions with many local minima. Given a
current value in the Markov chain, Xi, a new value or set of values Y
is proposed, where i denotes the ith step in the Markov chain. The
new values Y are either accepted as a valid move so the next starting
location is Xi + 1 = Y, or are rejected and Xi + 1 = Xi, according to
the criteria,{

Xi+1 = Y if U < min[1,π(Y )/π(Xi)],
Xi+1 = Xi if U ≥ min[1,π(Y )/π(Xi)],

(11)

where U is a uniformly chosen random number U ∼ U(0, 1) and
π(·) is the target distribution (i.e. the combination of likelihood and
prior distributions in equation 5). This process is repeated for every
parameter sequentially.

The proposed new parameters are drawn from a Gaussian func-
tion Y ∼ N (Xi,j , σ

2
i,j ), where σ i, j represents the size of the step

the algorithm makes when choosing the proposed values at each
iteration i and for each parameter j. The correct value for σ i, j will
provide a compromise between being able to jump from one region
of parameter space to another quickly, and being able to explore in
detail the target distribution. If σ i, j is too large we see a drop in the
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Figure 4. Example marginal posterior distributions for a two-component synthetic SDSS i-band galaxy image. The marginal distribution for each of the
structural parameters is shown on the diagonal. Joint marginal distributions for pairs of parameters are shown in the off-diagonal panels. The three colour
contours represent the 68, 95, and 99 per cent confidence levels. The solid grey line shows the true value of this synthetic galaxy, and the dashed line indicates
the median of the posterior distribution.

acceptance rate, as we are drawing from a region of parameter space
with low probability. For a σ i, j that is too small we will accept values
at almost every iteration. The optimal acceptance rate is 0.44 for a
one-dimensional Markov chain and 0.23 for dimensions greater than
one (Roberts & Rosenthal 2001). The adaptive-Metropolis-within-
Gibbs algorithm uses information from past iterations to adapt σ i, j

until the desired acceptance rate is achieved.
To accomplish diminishing adaptation we initially calculate the

average acceptance rate for the past nstep (default nstep = 100) of
iterations and allow an update to the σ i, j by adding or subtracting
5 per cent of σ i, j to adjust the acceptance rate closer to the optimal
value (Roberts & Rosenthal 2001). Once the acceptance rate falls
within 0.15 and 0.32, the average acceptance rate is calculated over
the last 2nstep until every parameter (or blocked set of parameters)
again has an average acceptance rate within 0.15 and 0.32. We then
monitor the acceptance rate for a further 4nstep iterations, and adjust

σ i, j until the acceptance rate falls between 0.15 and 0.32. At that
point, adaptation is stopped and the final σ i, j values are saved.

It is important that the final Markov chain closely matches the
target distribution, so the chain is continued without any further
adaptation of the σ j until the chain’s gradient tends to zero. This
is done by calculating the average parameter value after every 200
iterations, and once five averages are obtained a line is fit and the
gradient of this line determined. When this gradient is close to zero
the chain is converging to the target distribution and the algorithm
can move onto Level two.

2.4.2 Level two: adaptive Metropolis

The aim of this level is to obtain a similar covariance structure for
the proposal distribution (Y) to that of the target distribution, which
leads to greater success rates for the proposal distribution (Haario,
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Table 2. Ranges for structural and geometric parameters used to simu-
late synthetic elliptical and bulge+disc galaxies. Geometric parameters are
independently determined for each component.

Parameter [min, max]

Synthetic elliptical
Sérsic magnitude (mS, i) [14, 17]
Effective radius (Re in arcsec) [1.5, 6]
Sérsic index (n) [1.9, 7.5]
Synthetic bulge+disc
Sérsic magnitude (mS, i) [15, 21]
Effective radius (Re in arcsec) [0.4, 2.24]
Sérsic index (n) [0.5, 7]
Exponential magnitude (mE, i) [15, 18]
Scale length (h in arcsec) [1.3, 7]
Geometric parameters of bulge or disc
Axial ratio (q) [0.6, 1]
Position angle (PA in ◦) [−360, 360]
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Figure 5. The posterior fractional error distribution for the entire ensemble
of synthetic elliptical galaxies. The marginalized error distributions for each
structural parameter are shown on the diagonal. Joint marginal error distri-
butions are shown in the off-diagonal panels. The colour contours represent
the 68, 95, and 99 per cent confidence levels. The solid grey lines indicate
the true values and the dashed lines represent the median of the posterior
error distributions. A positive (negative) value indicates the fitted value is
larger (smaller) than the true value.

Saksman & Tamminen 2001; Roberts & Rosenthal 2009). Y is drawn
in a similar way to before: Y ∼ N(Xi, c	i), again where Xi is the
current state of the chain, and the same accept/reject Metropolis
rule is used as in Level one. 	n is the covariance matrix of all the
previously generated values of the chain since the adaptation of
Level one finished, and c is a constant that is included to yield an
optimal acceptance rate: c = 2.3822/d, where d is the number of
parameter dimensions (see Haario et al. 2001; Roberts & Rosenthal
2009).

To establish if further adaptation will improve the chain the al-
gorithm tests that the covariance structure of the target distribution
has been correctly identified. This can be determined directly from

the past iterations of the chain. Every NL2 (user input) iterations the
mean squared difference between each successive iteration (Xi − 1 −
Xi)2 for each parameter is calculated, and after 5NL2 a linear model
is fit. If the gradient of the mean squared differences appears to have
an increasing or decreasing gradient, then the algorithm continues
to adapt; if the gradient is close to zero, then adaptation stops and
the algorithm moves to the final level.

2.4.3 Level three and chain convergence

The final level of PHI involves a symmetric random walk Metropo-
lis algorithm drawing the proposed values from Y ∼ N(Xi, c	L2),
where 	L2 is the last covariance matrix calculated before adaptation
stopped in Level 2 and c is again the constant to help achieve the
target acceptance rate. In PHI the default method to test for conver-
gence is to run multiple chains simultaneously, and then to use a
Gelman–Rubin diagnostic (Gelman & Rubin 1992). Alternatively,
a Geweke diagnostic (Geweke 1992) can be used to determine
whether a single Markov chain has converged. Once the Markov
chains have converged, the chains are combined to form the final
sample distribution that will be used in the analysis stage.

2.5 Run time

In a typical run the IDL version of PHI requires between 104 and
104.5 iterations for three simultaneously running chains to converge.
The median total generation time for a 250 × 250 pixels image is
ttotal = 0.029 s for a single Sérsic model and ttotal = 0.041 s for a
Sérsic+exponential model. The wall clock time for a complete run
on a 2.5 GHz Intel core i5 CPU is ∼10 and ∼20 min for a single
Sérsic and a Sérsic+exponential model, respectively. Run times
are similar for real and mock galaxies. The quoted times are for
convolution with a 50 × 50 pixels PSF.

3 A PPLI CATI ON TO SYNTHETI C GALAXY
IMAG ES

In this section, we use synthetic galaxy images to test the accuracy
and robustness of PHI. Synthetic galaxies lack the complexity present
in real galaxies, but allow us to check for any systematic errors
inherent in the method. The images were made to mimic SDSS
(Strauss et al. 2002) i-band images as closely as possible, with a
pixel scale of 0.396 arcsec pixel−1, CCD gain of 4.86e/ADU and
read-out noise of 5.76e. The appropriate noise level was estimated
from the SDSS data frames by removing all objects and fitting a
Poisson distribution to the residual counts.

Fig. 4 shows the posterior distribution produced by PHI for fitting
an example two-component synthetic galaxy image with an inner
Sérsic and outer exponential component as described in Section 2.1
and with priors as described in Section 2.2.2. The medians of the
posterior distributions have a fractional error of at most 2 per cent
in relation to the true values. We also clearly see that there is a
strong covariance between parameters within the individual com-
ponents, i.e. Ie, Re, and n for the Sérsic profile and I0 and h for the
exponential component. There is also some covariance between the
two components, i.e. n versus h. The quantification of these covari-
ances is important, as it may cause correlations between physical
parameters (e.g. scaling relations) to appear stronger than they are
in reality. The entire posterior distribution for a galaxy can be used
when testing hypotheses about galaxy populations and this will be
explored in a subsequent paper.
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Figure 6. Same as Fig. 5, but for the synthetic two-component bulge+disc galaxies.

Table 3. The 16th, 50th, and 84th percentiles of the posterior fractional
error distributions for the synthetic elliptical and bulge+disc galaxies.

Parameter Median 16% 84%

Synthetic elliptical
�Ie/Ie, in 0.003 −0.022 0.049
�Re/Re, in 0.004 −0.021 0.018
�n/nin −0.004 −0.033 0.012
Synthetic bulge+disc
�Ie/Iin 0.005 −0.25 0.22
�Re/Re, in −0.001 −0.15 0.14
�n/nin −0.014 −0.19 0.05
�I0/I0, in −0.002 −0.09 0.04
�h/hin 0.0001 −0.02 0.03

3.1 Population of synthetic galaxies

To test PHI on a realistic range of galaxy structural parameters, we
take the parameters of 260 elliptical and 380 bulge+disc galax-
ies in the SDSS fitted by Gadotti (2009) with single Sérsic and

Sérsic+exponential profiles, respectively. Further details about this
sample are given in Section 4. Table 2 summarizes the range of
parameters tested in this way. In particular, we test a large range
in the bulge-to-total flux ratio of bulge+disc galaxies with 0.01 <

B/T < 0.8. For each synthetic galaxy we also assume a Gaussian
PSF with FWHM as provided by Gadotti (2009). According to
this paper, these values were largely taken from the SDSS Data
Release 2 (DR2) imaging headers, although erroneous values were
corrected for by fitting nearby stars. The mean FWHM of the sample
is 1.5 arcsec, with a range between 0.4 and 2.6 arcsec.

3.2 Fractional errors on structural parameters

To visualize the errors over a large sample of galaxies, we calculate
the fractional error distribution on each parameter as (xout − xin)/xin,
where xin is the input parameter value and xout are the values given
in the MCMC output. The stacked posterior fractional error distri-
butions of all the synthetic galaxies are shown in Fig. 5 for elliptical
galaxies and in Fig. 6 for bulge+disc galaxies. The clear covari-
ances between the model parameters seen in Fig. 4 lead to a high
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Figure 7. Box plots representing the fractional error on n for bulge+disc synthetic galaxies as a function of input parameters: Ie, Re, n, B/T, Re/h, as well as
the ratio between input Re and the PSF FWHM. The box limits represent the 16th and the 84th percentiles of the posterior fractional error distributions and
the horizontal line shows the 50th percentile. The whiskers show the total extent of the distributions. The value above each box gives the number of galaxies
in each bin.

degree of correlation in the fractional errors. These figures clearly
show the well-known degeneracies inherent in Sérsic fits: (i) if the
effective intensity is overestimated (underestimated), the effective
radius will be underestimated (overestimated) to compensate; (2)
if the effective radius is overestimated (underestimated), the Sérsic
index will also be overestimated (underestimated) to increase the
concentration of intensity within a now larger effective radius.

Table 3 presents the statistics of the posterior fractional error
distributions. It can be seen that the systematic bias on parameters
is minimal for both elliptical and bulge+disc galaxies, and the 1σ

errors (16th and 84th percentiles) are usually <20 per cent. In the
following subsections we look in more detail at the impact of de-
generacies between parameters on obtaining unbiased estimates for
the structural parameters and B/T.

3.2.1 Impact on bulge+disc structural parameters

Fig. 7 shows the fractional error on n as a function of a selection of
structural parameters for the two-component bulge+disc synthetic
galaxies, as well as the ratio between Re and the PSF FWHM. The
blue box indicates the 16th and 84th percentiles of the marginalized
posterior fractional error distribution, with the horizontal line show-
ing the median, and the whiskers indicating the maximum extent of
the posteriors. As we saw in Fig 6 the fractional errors are typically
<20 per cent and the median shows no overall bias. However, this
figure shows how the errors on n increase for models with smaller
Ie, smaller B/T, smaller Re, smaller ratio of Re to PSF FWHM, and
smaller Re/h. The errors appear to be largest for n ∼ 2 bulges.
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Figure 8. The fractional errors on Ie, I0, Re, and h as a function of input n (left) and I0 and h as a function of Ie/I0 and h (right). See the caption of Fig. 7 for
more details.

Similarly, the two left-hand panels of Fig. 8 show the fractional
error on the other structural parameters as a function of input n. As
before we see that there is typically no overall bias in the estimation
of parameters, with the median sitting close to zero. The exception
is at large n where a bias of ∼12 and ∼10 per cent is found on
Re and Ie, respectively, for n = 6. For high values of Sérsic index
the algorithm also takes longer to converge, suggesting difficulties
in this region. Further investigation suggests these difficulties are
caused by a flattening in the likelihood space for galaxies with
higher n values (n ≥ 4.5). Subsequent changes in the n > 4.5
region therefore result in little variation in the likelihood values,
thus decreasing the accuracy and precision. We explore this specific
case of high-n bulges in more detail in Appendix A, finding that
they are particularly susceptible to strong degeneracies between Re

and n when B/T is low.

3.2.2 Impact on B/T

Galaxy morphology is commonly parametrized by the bulge-to-
total flux ratio (B/T), it is therefore important to assess the biases
on this particular parameter caused by correlations in the parameter
errors observed in Fig. 6. Fig. 9 shows the fractional error on the
measured B/T as a function of input parameters Ie, B/T, Re, I0, n,
and h. The median values are remarkably stable for the whole range
of models tested here, indicating that B/T should provide a robust
parametrization of galaxy morphology.

3.2.3 Impact on the disc parameters

The two right-hand panels of Fig. 8 show the fractional errors on the
disc structural parameters I0 and h, as a function of input Ie/I0 and
h. Additionally, the centre left-hand column of Fig. 8 shows how
the Sérsic index affects for the same parameters. The fractional
errors on the disc scale length h are the smallest of all structural
parameters, this is because the disc is well resolved in the images.
There is no clear bias in the measured disc parameters, although
as expected the fractional errors increase where the disc becomes
less dominant (as traced by the Ie/I0 ratio) and the disc scale length
becomes smaller.

4 A PPLI CATI ON TO DATA

The next step is to apply PHI to a sample of real galaxy images
to assess the functionality and robustness of the method in a fully
realistic scenario. It is first useful to visualize the fits from PHI. To do
this, we collapse the 2D data and model images into 1D using ellipse
averaging. In order to represent the full posterior uncertainty on the
fitted parameters, and therefore the profiles, we draw randomly from
the parameter posterior distributions to estimate the median surface
brightness and 1σ errors as a function of radius.

Fig. 10 shows the 1D surface brightness profile of a bulge+disc
galaxy in the Gadotti (2009) sample to which we have fitted
both a one-component Sérsic model (left-hand panel) and a two-
component Sérsic+exponential model (right-hand panel). The black
dots and grey region show the image data and root-mean-square of
the flux values in a given ellipse. The green band shows the en-
semble of model fits generated from drawing parameters randomly
from the posterior distribution and convolving the resulting model
with the PSF. Residuals from the model generated from the median
posterior parameters are shown in the lower panels. In the case of
the one-component model, the central region is well fitted, but the
model deviates significantly from the data beyond 3 arcsec. This is
improved by the two-component model, with an acceptable fit out
to 8 arcsec, although the residuals beyond this radius suggest that
this galaxy has a truncated disc.

Fig. 11 shows the 2D surface brightness profile of the same
bulge+disc galaxy presented in Fig. 10. The top row shows the
image, the fitted one-component Sérsic model, and the residual.
The middle and bottom rows show an exponential-only and the
Sérsic+exponential models, respectively, with their residuals. The
exponential-only model is a one-component Sérsic model with fixed
n = 1; this model is not used in this paper, but presented here to
aid understanding. The models were generated from the posterior
medians from the MCMC outputs. As in Fig. 10 we see that the one-
component Sérsic model fits the central region well, which cannot
be fit with a pure n = 1 profile (middle panel). The two-component
model provides the lowest residuals in both the central and outer
regions, leaving a clear signal from the spiral arms that are not
included in the model.
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Figure 9. Same as Fig. 7, but showing the fractional errors on B/T as a function of input Ie, B/T, Re, I0, n, and h.

Although the graphical and visual representation are useful tools
to ensure the code is working as it should, the quantitative model
comparison presented below in Section 5 is required in order to
make statistical claims about which model is best.

4.1 Analysis of SDSS images

We study SDSS i-band images of galaxies with stellar masses
>1010M�, 0.04 ≤ z ≤ 0.06, and q ≥ 0.9 that were previously
analysed by Gadotti (2009) using the BUDDA code (de Souza et al.
2004) to perform bulge/disc/bar 2D photometric decompositions.
Gadotti (2009) selected 1000 galaxies and separated them into el-
liptical and bulge+disc based on the i-band Petrosian concentration
index, C, as given in the SDSS data base, defining ellipticals to have
C > 3, disc galaxies to have C < 2.5, and bulge+disc galaxies to
lie in between. Despite the constraints imposed on axis ratio and
concentration parameter, the sample is considered to be a fair repre-
sentation of the galaxy population in the local Universe. We select

only those galaxies that were classified as elliptical or bulge+disc,
and remove from the sample any galaxies that were found to have
a bar (visually identified from residual fits). As noted above, for
this code presentation paper we have chosen to focus on one- and
two-component galaxies, although the code is able to fit any model
specified by the user. Barred galaxies will be studied with PHI in
a future publication. This leaves us with 260 elliptical and 380
bulge+disc galaxies.

In Gadotti (2009) the imaging used to classify the sample and
perform the 2D photometric decompositions was from the SDSS
DR2 (Abazajian et al. 2004). For this study we use the SDSS Data
Release 7 (DR7; Abazajian et al. 2004) images. Moffat PSFs were
obtained for each individual galaxy by fitting a Moffat function to 5–
10 stars nearby to each galaxy and using the median value for each
parameter. Segmentation maps were created following a similar
approach to that used by SEXTRACTOR (Bertin & Arnouts 1996).
There is no concern about overlapping sources as the galaxies were
originally selected to be isolated. We took the gain, read noise, and
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Figure 10. Ellipse-averaged radial profile of the surface brightness of SDSS galaxy J084149.16+504711.1 (black dots) with the root-mean-square error of
the flux values in a given ellipse (grey region). The green band shows the synthetic galaxies generated from random draws from the posterior parameter
distributions output by PHI, with the resulting models convolved with the PSF. The lower panels show the residuals between the data and the model created
with the posterior median parameters. Left: for a one-component Sérsic model. Right: for a two-component Sérsic+exponential model. The blue and red bands
show the random draws for the exponential and Sérsic components, respectively, without PSF convolution. The �BIC for this galaxy is 137, indicating that an
improved fit is provided by the two-component model (see Section 5).

sky values from the SDSS image headers, and combined these with
the galaxy shot noise to compute the weight maps in the standard
way.

PHI was run on a square cut-out image, typically 250 × 250 pixels
in size, following removal of unwanted sources using the segmen-
tation map. The size of the cut-out was selected to include the entire
galaxy, although slightly smaller cut-outs were used in a few cases
where the galaxy fell close to the edge of the image. We ran PHI

with three simultaneous chains for both one-component Sérsic and
two-component Sérsic+exponential models on every galaxy present
in both samples, in order to perform a model comparison in Sec-
tion 5. We additionally analysed the same images using GASP2D (see
Méndez-Abreu et al. 2014, 2017), with the same PSF, weight maps,
and masks. Finally, we compared our results to those presented in
Gadotti (2009) that use SDSS DR2 images, and primarily takes the
PSF values from the SDSS image headers. GASP2D uses the LM and
BUDDA uses the Nelder–Mead simplex minimization method so we
can investigate whether any differences that arise are due to different
codes or different images/treatment of the images.

4.2 Comparison of elliptical galaxies

Fig. 12 compares the measured Sérsic profile parameters for the
galaxies classified as elliptical in Gadotti (2009). The blue circles
show the difference between PHI and GASP2D and the red diamonds
the difference between PHI and Gadotti (2009). We removed any
catastrophic failures that occurred when running GASP2D, leaving
250 elliptical and 350 bulge+disc galaxies for the final sample.

We focus first on the comparison between PHI and GASP2D, where
the same images are fit with the same PSFs, weight maps, and
segmentation maps. The results are well correlated and agree on
average. The standard deviations for the parameter differences are
σlog(Ie) = 0.10 counts, σRe = 2.0 pixels, and σ n = 0.49. There is a
subtle deviation from an exact one-to-one match at larger values of
Re and n. In GASP2D, a run is determined to have reached the global
minimum when the deviations between the χ2 of two consecutive
iterations are lower than a given threshold. This threshold cut results
in changing errors with parameter values: due to the exponential
nature of the Sérsic profile, changes to n where n ≤ 2 have a greater
impact on the surface brightness profile than at larger values of
n. This effect is not seen in PHI due to the efficient exploration of
parameter space and adaptable step sizes.

When we compare the median posterior parameter values mea-
sured by PHI to the best-fitting values obtained by Gadotti (2009) we
see significant differences for all the parameters. Most notably, the
values fit by PHI span larger ranges than found by Gadotti (2009).
For example, the distribution of n in Gadotti (2009) has a mean
of 3.8 and standard deviation of 0.9, compared to a mean of 4.1
and standard deviation of 1.2 found by PHI. This difference in range
results in the visible trend between the size of the offset and the
value of the fitted parameter.

4.3 Comparison of bulge+disc galaxies

Fig. 13 compares the results between PHI, GASP2D, and Gadotti (2009)
for the sample of bulge+disc galaxies. The results found by GASP2D
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Figure 11. A 2D representation for the SDSS galaxy presented in Fig. 10. The top row shows the data (left), the Sérsic-only model fit (middle), and the
residual (right). The second row shows an exponential only fit (i.e. with fixed n = 1) and corresponding residual. The bottom row shows the bulge–disc model
fit and corresponding residual. All the models were made using the medians from the posterior distributions.

and PHI are broadly consistent, with no obvious bias. Standard devi-
ations for the parameter differences are σlog(Ie) = 0.4 counts, σRe =
2.0 pixels, σ n = 1.9, σlog(I0) = 0.1 counts, and σ h = 1.5 pixels.

Comparing between the posterior median values found by PHI and
the best-fitting values found by Gadotti (2009), we see that the bulge
components are systematically different, as a function of parameter
value. This is identical to the pattern seen for the elliptical galax-
ies and is caused by the much smaller range of parameter values
that is fitted by Gadotti (2009) compared to PHI. On the other hand,
the values found for the disc parameters are much more consistent,
which agrees with our analysis of synthetic galaxies where disc
parameters show much smaller fractional errors. It is clear from our
analysis of both single Sérsic and Sérsic+exponential galaxies with
BUDDA, GASP2D, and PHI that significant disagreements appear in the
fitted bulge parameters when different code, images (DR2 versus
DR7), weights, and PSFs are used. This highlights a fundamen-
tal limitation of bulge+disc decomposition, in that the estimation
of bulge parameters will always be susceptible to biases and sys-
tematics when they are barely resolved in comparison to the PSF.
We explore this issue with the synthetic galaxies in Section 3.2.1
and Appendix A. Using a fully Bayesian code such as PHI allows
one to explore potential biases, errors, and covariances with ease,
but ultimately a full code comparison study is clearly required to
understand the limitations in more detail.

5 MO D E L C O M PA R I S O N

In this section we test the use of the �BIC introduced in Section 2 to
formally distinguish between one- and two-component galaxies. We
define the �BIC = BIC1c − BIC2c, so a larger value indicates that
a two-component model is preferred. In simple and ideal situations
a �BIC > 10 is typically taken to be decisive evidence that a more
complex model is preferred over a simpler one. However, in the
case of image decomposition simulations are required to inform the
choice of boundaries.

For every synthetic galaxy in Section 3 we have performed a one-
and two-component fit; the distributions in �BIC are shown in the
top panel of Fig. 14 with statistics of the distributions summarized
in Table 4. The one-component/elliptical synthetic galaxies show
a very tight �BIC distribution centred on zero, while the two-
component/bulge+disc synthetic galaxies have larger �BIC values.
The results from the synthetic galaxies suggest that a minimum
�BIC value of 13.4 could be used to differentiate one- and two-
component galaxies. This would incorrectly classify 16 per cent of
one-component galaxies as two-component (i.e. contaminant level),
but would identify 82 per cent of two-component galaxies correctly
(i.e. high completeness).

The middle panel shows the �BIC distribution for the galax-
ies studied in Section 4 and classified by their concentration index
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Figure 12. The differences between parameter estimates for elliptical
galaxy images fit with a one-component Sérsic profile. From top to bot-
tom the parameters are: the effective intensity (Ie), effective radius (Re), and
Sérsic index (n). The blue circles and red diamonds are the posterior medi-
ans given by PHI compared to the best fit from GASP2D and Gadotti (2009),
respectively (i.e. PHI – GASP2D and PHI – GAD09). The projected distributions
are shown to the right, with the blue and red histogram comparing PHI to
GASP2D and Gadotti (2009), respectively.

as either elliptical or bulge+disc. Table 4 shows that the low con-
centration index galaxies have a significantly higher median �BIC
= 99.43 than the high concentration index galaxies with �BIC =
2.78. However, there is no clear differentiating line between the two
samples. 22 per cent of galaxies with C > 3 are classified as two-
component systems by this method, and 38 per cent of galaxies with
C < 2.5 are classified as one-component. This shows that classify-
ing galaxies by concentration index is not equivalent to classifying
them by the results of 2D photometric bulge–disc decomposition.

Finally, we compare with a machine learning morphological clas-
sification method by Huertas-Company et al. (2011), based on sup-
port vector machines. They assign a probability to each galaxy that
it is an elliptical, S0, SAB, or SCD. The algorithm was trained on
visual classifications from the Galaxy Zoo first release catalogue
(Lintott et al. 2008, 2011). We classify as elliptical any galaxy with
p(E) > 0.5, and plot the distributions of �BIC in the lower panel of
Fig. 14 for galaxies above and below this cut. We see a similar result
to the case of classification by concentration index, with galaxies
with higher �BIC more likely to have a disc, however, there is no
clean demarcation between the two samples. 36 per cent of galaxies
with p(E) > 0.5 are classified as two-component systems by their
�BIC, and 38 per cent of galaxies with p(E) < 0.5 are classified as
one-component. We note that this will include one-component disc
galaxies, so their classification may in fact agree if we were to look
in detail at the fitted parameters.

In the synthetic galaxies the �BIC can clearly be used as a clas-
sification method to separate one- and two-component galaxies.
However, for real galaxies the lack of any significant demarca-
tion between galaxies classified by other methods suggests that
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Figure 13. The same as Fig. 12, but for the sample of bulge+disc galaxies.
From top to bottom we have the effective intensity (Ie), the effective radius
(Re), the Sérsic index (n), the central intensity (I0), and the scale length (h).

the complex structure of real galaxies limits the usefulness of the
�BIC approach, certainly for a simple bulge+disc model as studied
here. While galaxies with higher values of �BIC will have a higher
probability of having a disc, we advocate that the �BIC should be
used in combination with other methods to determine the number
of structural components in a galaxy.

6 SU M M A RY

We have used a new fitting algorithm (PHI) to perform 2D photomet-
ric decompositions of galaxy images from a Bayesian perspective.
PHI offers a number of significant advantages for estimating surface
brightness profile parameters over traditional downhill optimization
algorithms.

(i) PHI uses a triple layer approach to effectively and efficiently
explore the complex parameter space. The first layer uses a blocked
adaptive Metropolis algorithm to obtain an estimate of the scale
for each parameter in the chain. The second layer uses an
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Figure 14. Histograms and cumulative distributions showing the �BIC =
BIC1c − BIC2c distributions. A positive value shows that the two-component
model is preferred. Top: synthetic one- and two-component galaxies shown
as red and blue lines, respectively. Middle: SDSS galaxies classified by their
concentration index as elliptical (red line) or bulge+disc (blue line). Bottom:
SDSS galaxies classified as elliptical (red line) or discy (blue line) by the
machine learning algorithm of Huertas-Company et al. (2011).

adaptive Metropolis algorithm with the purpose of estimating the
target covariance matrix. The final level uses this estimated covari-
ance matrix to quickly and effectively explore the parameter space.
This reduces the chances of local minima trapping.

(ii) The algorithm naturally and explicitly incorporates priors
that force the parameters to be realistic and physical, e.g. positive
in the case of the dimensions and intensities. These priors replace
the need for filtering processes to remove non-physical parameter
outcomes.

(iii) Priors on parameters can be combined to further strengthen
the model in an explicit way. In this paper, to prevent the reversal of
components (i.e. the desired inner component profile switching to

Table 4. The statistics of the �BIC distributions for the synthetic and
SDSS samples. Where C is the i-band concentration parameter provided in
the SDSS catalogue, and p(E) is the probability that the galaxy is an elliptical
from the machine learning classification of Huertas-Company et al. (2011).

Mean Median 16% 84%

Synthetic �BIC
Elliptical −427.47 −31.09 −149.74 13.36
Bulge+disc 1218.51 341.64 35.13 2272.50

SDSS �BIC
C > 3 −89.70 2.78 −25.30 89.63
C < 2.5 225.67 99.43 −4.29 480.77
p(E) > 0.5 −16.88 18.82 −21.91 152.45
p(E) < 0.5 280.88 134.56 3.69 551.71

fit the outer and vice versa) we use a prior combination that specifies
that the bulges of galaxies are better modelled by a Sérsic profile
and the discs are described by an exponential profile. We do this
via a Newton–Raphson algorithm to determine the crossing points
in the total light profile, as well as ensuring that the bulge is the
dominant component in the central region.

(iv) PHI gives the full posterior probability distribution for a
set of model parameters. This is a powerful description of the
model uncertainties that can be used in further analyses of galaxy
structures.

We used a sample of synthetic galaxies with SDSS-like image
properties to ensure that there are no internal systematics due to the
code, and to investigate the effect of galaxy properties on our ability
to recover unbiased and well-constrained structural parameters. In
bulge+disc galaxies we find that the bulge structural parameters are
recovered less well than those of the disc, particularly when the
bulge contributes a lower fraction to the luminosity, or is barely
resolved with respect to the pixel scale or PSF. The only systematic
biases occur in bulge+disc galaxies with high bulge Sérsic index
(n > 5), where the code fits a bulge with an effective radius that
is too large by 50 per cent and a central intensity that is too small
by 20 per cent. No bias is found in the bulge-to-total luminosity
ratio, which is important given the popularity of this quantity for
parametrizing galaxy morphologies.

We have also applied PHI to a sample of SDSS galaxies to com-
pare with previous algorithms. Under the same image conditions,
i.e. images with the same masks, weights, and PSF, PHI achieves con-
sistent results with a standard minimization code, with a low level of
scatter. This validates both algorithms and approaches when assess-
ing galaxy structures in the nearby Universe. However, we found
less consistency when comparing to results from a previous analy-
sis performed on different images, with different image conditions.
The bulge structural parameters were the most affected, which we
believe is due to the limited resolving power of SDSS images for
local galaxy bulges.

Finally, we investigated the BIC as a method for deciding whether
a galaxy has one or two components. In synthetic images the BIC
cleanly separates the two types of galaxies, however, for real galax-
ies there was a less clean demarcation between galaxies classified as
elliptical or bulge+disc by other methods in the literature. This sug-
gests that the complexities of real galaxies are preventing a clean
statistical test, and the BIC may need to be used in tandem with
other methods to ensure that the correct model is selected.

For future large-area, deep optical surveys such as Euclid
and Large Synoptic Survey Telescope (LSST), a full Bayesian
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analysis of local galaxy morphologies will be essential for unlocking
the remaining unanswered questions about galaxy structures. Both
fast, non-parametric approaches and full Bayesian fitting methods
will need to be employed to quantify galaxy structures and suc-
cessfully link them to the assembly history of galaxies. In the era
of massive cosmological simulations taking galaxy evolution into a
quantitative comparative science, observers must be careful to ac-
count for degeneracies between structural parameters when scaling
relations are calculated. The addition of PHI into the 2D photometric
decomposition toolbox will help advance our future understanding
of galaxy properties.
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APPENDI X A : LI MI TATI ONS TO MODELLING
G A L A X Y BU L G E S

Here we use a library of synthetic galaxies to investigate how the
final parameter distributions are dependent on the resolution of
the components, i.e. the total number of pixels that make up each
component. It is clear that the ability to resolve the inner component
(the bulge) will diminish as Re tends to the Nyquist limit. A decrease
in resolution will affect the precision of other parameters of interest,
which we demonstrate here. For these synthetic galaxies we fix h
= 10 pixels and keeping I0 = 102.8 counts to ensure the disc is well
resolved. These values are typical for the SDSS sample studied in
Section 4.

We define the extent of the bulge region, RBD, by subtracting
the modelled disc component from the modelled bulge component
and fitting an ellipse to the positive central pixels. This provides a
good description of where the bulge is dominant in the bulge+disc
galaxy model. Fig. A1 shows RBD as a function of B/T for models
with a range of values of n (coloured lines) and Re/h ratio (different
panels).

The figure clearly illustrates the highly non-linear relation be-
tween the structural parameters and the extent of the bulge region.
We see that galaxies with B/T > 0.7, n > 2, and Re/h > 0.2 will have
the greatest number of data points available to fit. Understandably,
bulges with n = 1 will be more difficult to fit, as will bulges with
low Re/h or B/T. Interestingly, galaxies with high B/T values will
still have small bulge extents where Re/h is low.

In Fig. A2 we focus on galaxies with bulges with high n but low
B/T, i.e. small bulges with profiles highly distinct from a disc-like
structure. We show the posterior fractional error distribution in n
versus Re for nine synthetic galaxies with different values of n and
B/T. The figure shows the strong degeneracy between the fitted n
and Re, resulting in very large errors on the median values, when
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Figure A1. Bulge extent RBD (see text) as a function of bulge-to-total luminosity ratio (B/T). Different colour lines represent different Sérsic indices and each
panel shows a different Re/h ratio. For these synthetic galaxies h =10 pixels and I0 = 102.8counts.

B/T is very small. This degeneracy can lead to biases in population
fits, as found in Section 3.2.1 and Fig. 8.

This is relevant, because it is commonly believed that galaxies
with a dominant bulge (high B/T) component are more likely to have
a higher n, while lower B/T galaxies tend to have low n values (e.g.
this claim is demonstrated in fig. 11 of Gadotti 2009, and also in fig.
6 of Laurikainen et al. 2010, who use more complex decompositions
of higher resolution data). One implication of Figs A1 and A2 is that

both these parameter combinations are easier to model, compared
to galaxies with low B/T and high n, or high B/T and low n. This is
a clear example of where studies need to be aware of degeneracies
between parameters, and the potential for systematic biases. Future
studies should be aware that the B/T–n relation may be influenced
by the resolution effects described here.
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Figure A2. The posterior fractional error distribution between Re and n for nine synthetic galaxies. Each column (left to right) represents synthetic galaxies
with true n values of n = 4, 5, and 6, while each row (top to bottom) has a different B/T, B/T = 0.1, 0.3, and 0.5. The contours are the 68, 95, and 99 per cent
confidence regions. The dashed line shows the median of the distribution.
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