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Abstract 

Background: Computer-Aided Drug Design has strongly accelerated the development of 

novel antineoplastic agents by helping in the hit identification, optimization, and evaluation. 

Results: Computational approaches such as cheminformatic search, virtual screening, 

pharmacophore modeling, molecular docking and dynamics have been developed and applied 

to explain the activity of bioactive molecules, design novel agents, increase the success rate 

of drug research, and decrease the total costs of drug discovery. Similarity searches and 

virtual screening are used to identify molecules with an increased probability to interact with 

drug targets of interest, while the other computational approaches are applied for the design 

and evaluation of molecules with enhanced activity and improved safety profile. Conclusion: 

In this review are described the main in silico techniques used in rational drug design of 

antineoplastic agents and presented optimal combinations of computational methods for 

design of more efficient antineoplastic drugs. 

Keywords: antineoplastic agents; pharmacophore; QSAR; rational drug design; 

cheminformatics; virtual screening; virtual docking 

Introduction 

Since cancer is a leading cause of death worldwide, discovery of novel, more potent 

antineoplastic agents is one of the most important and active drug discovery fields [1,2]. Even 

though drug research is a challenging, time consuming and expensive process, the number of 

compounds available to consider in the lead discovery stages of the drug discovery pipeline 

has significantly increased due to cheminformatics and Computer-Aided Drug Design 

(CADD) methodologies. In silico drug design mainly involves ligand-based methods, such as 

Quantitative Structure Activity Relationship (QSAR), Ligand-Based Pharmacophore 

Modeling, and structure-based methods, such as Virtual Docking (VD), Structure-Based 
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Pharmacophore Modeling, and Molecular Dynamics (MD) [3]. It is now widely accepted that 

rational drug design provides essential molecular understanding of drug-target interactions 

that is not easily and completely accessible from experimental techniques. Application of the 

in silico techniques has had a great impact on the efficient discovery of novel drug candidates 

[4-7].  Structure-based drug design requires the three-dimensional-structure of target or 

ligand-target complex to have been previously obtained by crystallography, Nuclear Magnetic 

Resonance (NMR) spectroscopy, or homology modeling. These 3D-structures are used as 

templates for performing virtual screening and virtual docking. Such structure-based studies 

have been employed for selection of molecular determinants for ligands binding and rational 

drug design. Finally, MD simulations of ligand-target complexes have been used to analyze 

the target structure conformations and to evaluate the affinity and stability of ligand-target 

complexes.  

The 3D-structures of ligand-target complexes have been employed for identifying structural 

origins of selectivity and chemical scaffolds of novel ligands as drug candidates with 

improved efficacy and safety profiles. In the rational drug design of antineoplastic agents, 

these structure-based methodologies are very useful and powerful tools in the early phases of 

the drug discovery process [8]. However, ligand-based drug design methods, which provide 

information about essential structural characteristics for biological activity based on the 

ligands alone, have also shown themselves to be efficient techniques for the identification of 

potential lead structures, and some have argued that they are more efficient than methods 

based on target protein structures [9]. A recently developed method that combines structure 

and pharmacophore activity relationship studies into a single drug-target interaction 

evaluation represents an exciting novel approach in drug discovery [10]. Finally, combination 

of results obtained from ligand-based and structure-based virtual screening and integrated 
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with virtual docking and QSAR data has been claimed to be the most comprehensive rational 

drug discovery procedure with the highest success rate [10-13]. 

This review will describe and discuss some of the most recent investigations in which these 

in silico tools were used for the optimization and rational design of novel antineoplastic 

drugs. 

 

QSAR studies in the rational design of antineoplastic drugs 

 

QSAR methods have been widely applied in medicinal chemistry in order to gain insight into 

the critical structural requirements for compounds to interact with the biomolecules of 

interest. This computational tool uses information from molecular structures of ligands, 

correlates this with corresponding activities by employing different mathematical algorithms, 

determines the most important structural features controlling the bioactivity, and facilitates 

their application for design of novel drug candidates with enhanced activity on the drug target 

[11-13]. Furthermore, pharmacophores selected in QSAR studies can be used as search 

queries to screen the databases, leading to the identification of novel potential antineoplastic 

drugs [14-16]. Such QSAR models can predict the bioactivities of novel designed compounds 

and prioritize them for in vitro evaluation. 

In order to increase the interpretability and reduce the risk of overfitting, 3D-QSAR models 

are usually built by using only a few descriptors [17]. Those commonly used include 

topological indices (TIs), geometrical, constitutional and physicochemical descriptors. 

Constitutional descriptors including number of atoms, bond count, atom type counts, ring 

count, and molecular weight (MW) are simple features that reflect the molecular 

composition. TIs are 2D descriptors which encode information about molecular size, shape, 

degree of branching, presence of heteroatoms and multiple bonds [18]. They include Wiener 
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index [19], Connectivity indices [20], Kier shape [21], Balaban J index [22] and Zagreb 

indices [23]. Physicochemical descriptors are also usually computed simply from 2D 

molecular structure. However, 3D geometrical descriptors require information obtainable 

only from 3D structures of molecules, and thus are conformation dependent and require some 

form of geometry optimization (e.g. WHIM, MoRSE and GETAWAY, etc.) [24]. 

Historically, QSAR methodologies used quite simple mathematical methods such as linear 

and multi-linear regression, to describe and derive that relationship between the descriptors 

and the property to be predicted. In recent years, Partial Least Squares (PLS) [25] and 

Multiple Linear Regression (MLR) are the most common techniques applied to examine 

linear correlations between molecular descriptors and corresponding activity against targets 

of interest [26-32]. However, in many cases there is no such linear relationship between 

molecular determinants and bioactivity, and for that reason a range of more sophisticated 

machine learning methods have been introduced to computational chemistry [33]. While the 

ultimate advantage of such methods is their ability to generate more accurate predictive 

models, this is often achieved through their flexibility in representing non-linear relationships 

and often in handling relatively large descriptor sets. Many machine-learning techniques 

including Support Vector Machines (SVM), Artificial Neural Network (ANN), k-Nearest 

Neighbors (k-NN), Random Forest (RF) and genetic algorithms have been applied for better 

exploration of the bioactive chemical space of examined compounds. For example, Singh et 

al. [34] used RF to build a QSAR model for EGFR inhibitors. Beyond the QSAR domain, RF 

is also useful for other tasks in the drug discovery process; Riddick et al. [35] used RF to 

assess which cancer cell lines were likely to respond to which drugs, while Statnikov et al. 

[36] classified different types of cancer, and Carlsson et al. [37] used both RF and SVM to 

assess the mutagenicity of compounds. 
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One of the first 3D-QSAR methodologies was based on electrostatic interaction energies of 

superimposed 3D-conformations of a data set of ligands that are effectively included in 

Comparative Molecular Field Analysis (CoMFA) [38] or Comparative Molecular Similarity 

Index Analysis (CoMSIA) [39]. The main limitation of the approach is that dynamical 

properties of the examined compounds could not be included in the calculation [40]. On the 

other hand, the Molecular Interaction Field (MIF) methodology considers conformations of 

multiple ligands for determining Grid-Independent Descriptors (GRID) and pharmacophores 

in 3D-QSAR modeling [41,42]. The GRIDs are used as independent variables for 3D-QSAR 

modeling, pharmacophore study, and drug design [43-45]. Some very promising novel 

rational drug discovery methodologies have been developed as combinations of 3D-QSAR 

modeling and complementary drug target fields [46-49].  

Over the past few years, several advanced computer-aided drug design studies have been 

carried out on a number of epigenetic targets, such as histone arginine methyltransferases, 

histone deacetylase, and Hsp90 heat shock protein, by use of extensive molecular docking 

programs combined with 3D-QSAR [50,51] and comparative binding energy [49,52]. These 

in silico approaches were used to understand the activity of known ligands of epigenetic 

targets and to design novel epigenetic inhibitors. Epigenetic enzymes modulate expression of 

particular genes and regulate dynamic changes of histone proteins [53], DNA [54], RNA [55] 

and non-coding RNA [56]. Therefore, the enzymes associated with epigenetics, such as DNA 

methyltransferases (DNMT) [57], histone deacetylases (HDAC) [58], bromodomains [59], 

lysine demethylases [60], and lysine methyltransferases [61], are now considered to be very 

important anticancer drug targets [6]. Over the past few years, a significant increase in 

inhibitors of histone and non-histone proteins has successfully translated into clinical study 

[6]. 
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The human HDACs are divided into eleven isoforms (HDAC 1-11) [62,63]. Several 

pharmacological studies have confirmed that HDAC isoform selective inhibitors could have 

broader and safer clinical applications than pan-HDAC inhibitors. Recently determined 

crystal structures of several HDAC isoforms in complex with inhibitors [64,65] will 

significantly facilitate structure-based drug design of selective HDAC inhibitors and provide 

important information for understanding the enzymes’ functions [5,64]. Both 2D- and 3D-

QSAR approaches have been very useful in the design of novel HDAC inhibitors with 

enhanced potency and isoform selectivity. The developed QSAR models were employed to 

identify HDAC pharmacophores, optimize HDAC inhibitors and evaluate the inhibitory 

potency of the novel designed inhibitors [7,66,67]. The CoMFA and CoMSIA 3D-QSAR 

methodology has been used for development of novel HDAC inhibitors [68-72]. Also, a MIF-

based 3D-QSAR approach has been applied on four structurally diverse types of HDAC 

inhibitors [73]. Combination of the 3D-QSAR modeling and virtual docking has successfully 

identified compound ZINC70450932 as a novel inhibitor of HDAC1 [7] (Figure 1). 

Developed 3D-QSAR pharmacophore models were used to identify structural requirements 

for inhibitors binding to the HDAC enzyme [74,75], while Choubey et al. [7] developed a 

pharmacophore model of histone deacetylase 1 (HDAC1) inhibitors with two hydrogen bond 

acceptors, one hydrogen bond donor and one aromatic ring, employing 38 structurally diverse 

inhibitors. HDAC1 has been found to have a crucial role in multiple types of cancers.  Also, 

the electronic structure-activity relationship model, developed by use of an electronic 

structure-based algorithm, was applied for defining the inhibitory mechanism of the 

oligodeoxynucleotide DNMT1 inhibitors [76]. 

Numerous successful cases of 3D-QSAR studies being used in antineoplastic drug discovery 

have been reported so far. For example, this approach has been applied in the discovery of 

new Bcl-2 inhibitors [77], Bcl-xl inhibitors [78], mTOR inhibitors [79], and CDK1 inhibitors 
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[29] (Table 1). Actually, most modelling studies for identification of inhibitors of the Bcl-2 

family of proteins are based on structure-based methodologies [80-84]. Bcl-2 inhibitors 

exhibit potent anticancer activity against breast cancer cells (MDA-231) and leukemia cells 

(HL-60) which overexpress Bcl-2 protein [85,86]. Several QSAR models have also been 

developed for this class of inhibitors [77,78,87] . Almerico and coworkers [78] developed a 

3D-QSAR pharmacophore model of Bcl-xl inhibitors from the set of 42 

biarylacylsulfonamides. This model was used to identify the structural factors, including an 

aromatic moiety, negative charge and hydrogen bond acceptor, that govern the activity of 

these derivatives. Then the model was used as a 3D search query to screen the ZINC database 

and six hits with new scaffolds were identified (ZINC00784464, ZINC00788197, 

ZINC03200686, ZINC03212331, ZINC03243504, ZINC03356310) (Figure 1) [78]. 

Recently, Aboalhija et al. performed QSAR analysis to explore the structural features 

important for Bcl-2 inhibitory activity within a large and potent list of 98 inhibitors. Genetic 

function algorithm (GFA) coupled with k nearest neighbor (kNN) or multiple linear 

regression (MLR) analysis was applied to generate the best predictive QSAR models. The 

resulting QSAR-selected pharmacophores were used as in silico search queries to screen the 

National Cancer Institute (NCI) database and several hits that exhibit low micromolar 

cytotoxic activity against MDA-MB-231 were identified [77]. The same procedure and 

methodology were used for identification of new nanomolar mTOR inhibitors [79].  

Nowadays, drug resistance is one of the major problems in cancer therapy. This obstacle 

could be overcome by using a combination of drugs with different mechanisms or by 

designing a single chemical entity that simultaneously modulates several targets [88,89]. As a 

result, development of agents able to interact with more than one biological target for cancer 

treatment is an interesting new concept in cancer drug design [6]. The first multi-target (mt) 

approach for the virtual screening has been published for anti-colorectal cancer (anti-CRC) 
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and anti-breast cancer (anti-BC) agents [90,91]. In this study, its authors designed more 

efficient anti-CRC and anti-BC drugs against ten and thirteen cell lines, respectively, by using 

multi-target QSAR and virtual screening techniques. The mt-QSAR models were developed 

by use of linear discriminant analysis (mt-QSAR-LDA). By analyzing these models, it was 

possible to identify substructural features responsible for the anticancer activity and thus to 

design novel potent and versatile agents.   

 

Virtual Screening and Virtual Docking methods 

 

Ligand- based virtual screening operates on the hypothesis that molecules with similar values 

of molecular descriptors should possess similar biological activity [92-95], the so-called 

similar property principle. This approach analyses the structural and physicochemical 

similarities between one or more lead compounds and large virtual library of plausible 

molecular structures, which need not yet actually have been synthesised, while structure-

based virtual screening is based on direct modelling of ligands binding to the 3D structure of 

the drug target.  Scores obtained by either or both virtual screening methodologies are then 

used to rank the examined ligands and to select novel hit compounds for further chemical 

modifications and testing [9].  

Ligand- or structure-based pharmacophore screening on compound databases compares each 

query molecule with the previously defined spatially located pharmacophore features, such as 

hydrogen-bond donor, hydrogen-bond acceptor, hydrophobic interactions, steric interactions, 

aromatic interactions, and positive and negative ionizable regions. Pharmacophore screening 

algorithms typically use overlay-based scoring functions and root-mean-square deviation for 

final ranking of hit compounds [96]. Pharmacophore screening has been successfully applied 

in the search for novel epigenetic inhibitors, such as selective HDAC inhibitors [97,98] and 
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inhibitors of protein arginine methyltransferases (PRMTs) [99]. Various combinations of 

ligand and structure-based virtual screening permit very comprehensive study of various 

aspects of drug action and therefore have higher hit success rates [3,14,100,101]. In 

particular, parallel [102,103] and hybrid [95,104] virtual screening approaches have been 

promoted as very precise rational drug design methodologies. 

Molecular docking is widely used as a rational drug design tool for protein-ligand complex 

modelling, indeed nowadays docking studies are considered an essential structure-based drug 

design strategy [105,106]. Docking into a known binding site of a single target protein can be 

an affordable and efficient computational technique which allows us to study the ligands’ 

interactions with targets and to estimate the potential energy of the protein–ligand complexes. 

A relatively simple and quick-to-evaluate objective function is generally used for the many 

calculations required to search the various possible conformations and positions of ligands in 

the binding site of the target and to optimize the 3D docked ligand-protein complex 

structures. However, more elaborate and expensive scoring functions may be used for the 

relatively few further calculations then required to rank these conformations and to select 

those corresponding to the strongest binding between the ligand and the target. Using these 

more sophisticated scoring functions, top ranked conformations of each ligand are compared 

and used for final ranking of all ligands in the data set [107]. The scoring functions used for 

the final ranking can be derived by a variety of approaches. One is to design a function which 

has separate empirical energy terms corresponding to different physicochemical contributions 

to binding, often including van der Waals, electrostatic, hydrogen bonding, steric, and 

desolvation terms, each described by a suitable parametric functional form [108].  While the 

resulting scoring function is thus expressed as a sum of apparently meaningful components, 

only the total interaction free energy is actually fitted to real data in most cases and hence 

there is cancellation of error between terms and the interpretability of the individual 
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components is obscured. A second approach is to base each of the contributing interactions on 

the corresponding term in a molecular mechanics force field [109]. A third possibility is to 

derive a statistically based scoring function from analysis of the crystal structures, and in 

some versions also the binding energies, of known ligand-protein complexes [110]. Thus, the 

molecular docking approach provides insight into the binding mode of the ligand and target, 

compares different ligands, and estimates their binding energies. The objective and scoring 

functions used in docking reflect the fact that binding of a ligand to its target is partly based 

on their chemical complementarities and physicochemical interactions, and partly on shape 

complementarities, which may well be conformation-dependent. Flexibility of the target 

biomolecule can be modelled either by performing virtual docking to set of rigid protein 

conformations or by examining dynamic ligand-target complexes [111].  

Several structure-based virtual screening studies have recently been performed on epigenetic 

targets using some of the most popular molecular docking programs, such as DOCK [112], 

AutoDock [113,114], GOLD [115], and Glide [116]. These investigations resulted in the 

discovery of selective and potent inhibitors of histone arginine methyltransferases [117,118], 

bromodomain (BRD) type 4 inhibitors [119,120] and DNA methyltransferases type 1 

[121,122]. This methodology also found new scaffolds that can be used for experimental 

optimization or as a starting point for chemical space exploration. 

Successful applications such as development of Bcl-2xL agents [80], topoisomerase I and II 

inhibitors [123], COX-2/5-LOX dual inhibitors [124], Rac1 agents [125], inhibitors of Hsp90 

[126], inhibitors of Tip 60 [127], mTOR [128], histone deacetylase inhibitors [129], hTERT 

inhibitors [130,131] and CDK [29] agents highlight the importance of this virtual docking 

technique (Table 2). These, like many other targets involved in cellular events such as cell 

growth, differentiation and proliferation, could serve as potential targets for drug discovery 

directed towards various types of cancer. Since the topoisomerases are essential enzymes 
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involved in various cell processes, their inhibition is one of the most important mechanisms 

of anticancer drugs. Ashour et al. [123]  designed analogues of oleanolic acid with enhanced 

activity against topoisomerase I and IIα inhibition based on information obtained from active 

sites using docking techniques (based on PDB structures 1t8i and 1bgw for topoisomerase I 

and IIα, respectively) [132,133]. Ten designed compounds with good docking scores and 

promising binding modes were synthesized, and five of them (known as S2, S3, S5, S7 and 

S9) showed greater inhibitory activity against topoisomerase I than did the reference 

molecule camptothecin (CPT). Also, it was found that S2, S3, S5 and S6 showed greater 

topoisomerase II inhibitory activity than etoposide. Four compounds (S2, S3, S5 and S7) act 

as dual inhibitors of both enzymes, therefore potentially having an important role in cancer 

prevention (Figure 2) [123]. Based on structure-based drug design, several series of 

compounds, including N-substituted-dihydropyrazoles, dihydropyrazole-coumarin and 

myricetin, were designed and synthesized as potential human telomerase inhibitors. The 

binding mode of these compounds was explored in docking studies which provide 

information that supports rational design of more efficient telomerase inhibitors [130,131]. 

Apart from providing an insight into the binding mode of the ligands to their target, docking 

techniques are widely used in virtual screening studies of large databases. An example of this 

rational design approach was published by Cardama and coworkers [125]. Rac1, a member of 

Rho family of small GTPases, appears to be a promising and relevant target for the 

development of novel anticancer drugs since it is overexpressed in breast, colorectal, gastric, 

testicular, lung and brain cancer [134-137]. Docking-based virtual library screening was 

conducted on the ZINC database considering the portion of the Rac1 surface area containing 

a critical Trp56 as the target (PDB ID code 1MH1), and the Rac1 inhibitor ZINC69391 was 

identified. It was shown that ZINC69391 exerts an antimetastatic effect in vivo. A novel 

analog of this compound (1A-116) with a high docking score was developed by rational 
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design and it has proved to be more specific and potent at lower doses than its parent 

compound, both in vivo and in vitro (Figure 3). These results show that these novel Rac1 

inhibitors, developed by docking techniques, have a good prospect of being useful as novel 

agents in anticancer therapy. 

Several docking and molecular dynamic studies on epigenetic targets have recently been 

performed and resulted in the discovery of more selective and potent inhibitors of HDAC 

[138-141], bromodomain [119,120,142], DNMT [143-145], the histone methyltransferases 

(HMT) and the histone acetyltransferases (HAT) [146]. The results of these in silico studies 

are very helpful for defining the reaction mechanisms and identifying the key interactions  

between known active ligands and their epigenetic targets. 

 

Target Prediction 

 

Earlier, we discussed drugs that can interact with more than one target [88,89]. This may on 

occasion give rise to polypharmacology, beneficial pharmacological effects from a drug 

inhibiting or modulating multiple protein targets [147]. Another application of multi-target 

ligands is drug repurposing, where drugs are redirected from one originally intended 

therapeutic area to another [148]. If computational predictions can identify previously 

unrecognized drug-target associations, then drug repurposing may progress from serendipity 

and trial-and-error to being a more mature evidence-based science, and more frequently and 

reliably deliver significant health benefits to patients. 

Too frequently, off-target interactions result in adverse side-effects, which it is important both 

to understand and to predict [149]. In recent years, such off-target drug interactions with 

unexpected proteins have led to a significant number of serious adverse drug reactions 

(ADRs). This has affected both compounds in development, many of which fail to reach the 
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market due to these unforeseen side-effects, and also marketed drugs whose safety and 

viability can be seriously compromised in this way [150], and may have to be withdrawn 

from sale. Both patients and pharmaceutical companies suffer when such withdrawals are 

required. 

The development of multiple target prediction techniques requires the existence of copious 

molecule-target assay data, incorporating a good range of both ligands and targets. Various 

experimental technologies, such as target and phenotype based assay, are currently employed 

to find the underlying macromolecular targets involved in complex biological mechanisms 

[151]. 

Typically, target prediction methods work via molecular similarity. For a given target, the set 

of molecules experimentally known to bind to it are encoded using descriptors, and used as 

training data to build up a profile of what a ligand of this protein typically looks like. In some 

cases, such binders may form two or more quite separate clusters, possibly corresponding to 

different ligand scaffolds or to different binding sites. Given that most molecules have not 

been publicly assayed against most targets, this matrix of training data is sparse and careful 

interpolation is required. While the problem may be mathematically formulated in different 

ways [147,152-155], its essence is to use descriptor-based molecular similarity to estimate the 

probability that a query compound belongs to the set of binders for the given target. 

Helpfully, Gfeller et al.  [156] have made their SwissTargetPrediction server publicly 

available. Where a model makes explicit use of known binding constants to predict 

quantitative binding affinities for putative compound-target pairs, the method is termed 

proteochemometric [147,157]. 

Another, rather computationally expensive, approach to the same problem is to dock a library 

of ligands into a panel of protein targets in silico. Glen and Allen [158] discussed the 

application of multiple dockings to cancer research, whilst when Favia et al.  [159] carried 
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out a study of this kind, their main purpose was protein function prediction as they aimed to 

identify the native substrates of enzymes. As various authors [152,160] have pointed out, 

however, the same cross-docking method could be used for multi-target and off-target 

prediction, provided that the scoring function was accurate enough to compare dockings into 

diverse protein structures. Meeting this criterion might be problematic, as Warren et al. [107] 

found no correlation between experimental binding affinities and calculated docking scores 

for a small but diverse set of targets. Nonetheless, the relative success achieved by 

Schomburg et al. [161] indicates that target prediction by docking is becoming 

computationally and methodologically tractable. 

Emig et al. [162] have used a target prediction approach to consider both drug repositioning 

and potential novel targets for cancer along with a number of other diseases. They consider 

the relationships between the pathological processes involved in different cancers such as 

hepatocellular carcinoma, colon cancer, ovarian cancer, thyroid cancer, melanoma, and acute 

myeloid leukemia. They suggest that there is a common core of cancer drug targets relevant 

to each of these diseases. Nigsch and Mitchell [163] carried out a target prediction study in 

which they algorithmically grouped together a diverse panel of protein targets according to 

their associated toxic effects.  They found that proteins associated with breast cancer, along 

with those linked to side effects of breast cancer drugs, clustered together.  

 

Conclusion 

 

Rational drug design has become essential methodology in discovery of antineoplastic agents. 

The pharmacophore and QSAR approaches employ the chemical structures of experimentally 

confirmed anticancer compounds to define molecular determinants for activity and use these 

results to design and evaluate novel molecules. Cheminformatic and virtual screening tools 
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have been used to rank the designed compounds and to identify new lead structures by 

searching in various databases. 

The 3D-structures of specific drug targets provide essential information for performing 

structure based virtual screening, molecular docking and dynamic studies. Based on these 

analyses have been filtered and ranked compounds from large databases, explained binding 

mode and activity of known ligands, and evaluated the conformational changes and stability 

of the ligand-target complexes. 

Further development of computer-aided drug design approaches, along with improvement in 

crystallographic and biological methods, will provide deeper knowledge of drug-target 

interactions and augment discovery of more efficient and safer anticancer drugs.  

 

Conflict of Interest Statement 

The Authors declare that the research was conducted in the absence of any commercial or 

financial relationships that could be construed as a potential conflict of interest. 

 

 

Acknowledgments 

Support was kindly provided by the EU COST Action CM1406 and CA15135. KN and JV 

kindly acknowledge national project number 172033 supported by the Ministry of Education, 

Science and Technological Development of the Republic of Serbia. 

  



Rational drug design of antineoplastic agents 

17 
 

References 

[1] Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA 

Cancer J Clin. 2011, 61(2), 69-90. 

[2] Stearns, V.; Davidson, N.E.; Flockhart, D.A. Pharmacogenetics in the treatment of breast cancer. 

Pharmacogenomics J. 2004, 4(3), 143-153. 

[3] Wilson, G.I.; Lill, M.A. Integrating structure-based and ligand-based approaches for 

computational drug design. Future Med Chem. 2011, 3, 735-750. 

[4] Alvarez, J.C.  High-throughput docking as a source of novel drug leads. Curr Opin Chem Biol. 

2004, 8, 365–370. 

[5] Roche, J.; Bertrand, P. Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem. 

2016, 121, 451-483. 

[6] Ganesan, A. Multitarget drugs: an epigenetic epiphany. Chem Med Chem. 2016, 11, 1227-1241. 

[7] Choubey, S.K.; Jeyaraman, J. A mechanistic approach to explore novel HDAC1 inhibitor using 

pharmacophore modeling, 3D-QSARanalysis, molecular docking, density functional and molecular 

dynamics simulation study. J Mol Graph Model. 2016, 70, 54-69. 

[8] Kufareva, I.; Abagyan, R. Type-II kinase inhibitor docking, screening, and profiling using 

modified structures of active kinase states. J Med Chem. 2008, 51 (24), 7921-7932. 

[9] Ripphausen, P.; Nisius, B.; Peltason, L.; Bajorath, J. Quo vadis, virtual screening? A 

comprehensive survey of prospective applications. J Med Chem. 2010, 53, 8461-8467. 

[10] Hu, B.; Lill, M.A. PharmDock: a pharmacophore-based docking program. J Cheminform. 2014, 

6, 14. 

[11] Wong, Y.H.; Lin, CL.; Chen, T.S.; Chen, C.A.; Jiang, P.S.; Lai, Y.H.; Chu, L.; Li, C.W.; Chen, 

J.J.; Chen, B.S. Multiple target drug cocktail design for attacking the core network markers of four 

cancers using ligand-based and structure-based virtual screening methods. BMC Med Genomics. 

2015, 8 Suppl 4, S4. 

[12] Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.;  



Rational drug design of antineoplastic agents 

18 
 

Gramatica, P.; Martin, Y.C.; Todeschini R.; Consonni, V.; Kuzmin, V.E.; Cramer, C.; Benigni, R.; 

Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A. QSAR modeling: Where 

have you been? Where are you going to? J Med Chem. 2014, 57, 4977-5010. 

[13] Cramer, R.D. The Inevitable QSAR Renaissance. J Comp Aided Mol Des. 2012, 26, 35-38. 

[14] Vucicevic, J.; Srdic-Rajic, T.; Pieroni, M.; Laurila, J.M.; Perovic, V.; Tassini, S.; Azzali, E.; 

Costantino, G.; Glisic, S.; Agbaba, D.; Scheinin, M.; Nikolic, K.; Radi, M.; Veljkovic, N. A combined 

ligand- and structure-based approach for the identification of rilmenidine-derived compounds which 

synergize the antitumor effects of doxorubicin. Bioorg Med Chem. 2016, 24(14), 3174-3183. 

[15] Gagic, Z.; Nikolic, K.; Ivkovic, B.; Filipic, S.; Agbaba, D. QSAR studies and design of new 

analogs of vitamin E with enhanced antiproliferative activity on MCF-7 breast cancer cells. J Taiwan 

Inst Chem Eng. 2016, 59, 33–44. 

[16] Ivkovic, B.M.; Nikolic, K.; Ilic, B.B.; Zizak, Z.S.; Novakovic, R.B.; Cudina, O.A.; Vladimirov, 

S.M. Phenylpropiophenone derivatives as potential anticancer agents: Synthesis, biological evaluation 

and quantitative structure activity relationship study. Eur J Med Chem. 2013, 63, 239-255. 

[17] Shahlaei, M. Descriptor selection methods in quantitative structure-activity relationship studies: a 

review study. Chem Rev. 2013, 113(10), 8093-8103. 

[18] Harary, F. Recent results in topological graph theory. Acta Mathem Academ Scient Hung. 1964, 

15, 405-412. 

[19] Wiener, H. Structural determination of paraffin boiling points. J Am Chem Soc. 1941, 69, 17-20. 

[20] Randic, M. On characterization of molecular branching. J Am Chem Soc. 1975, 97, 6609-6614. 

[21] Kier, L.B. Indexes of molecular shape from chemical graphs. Acta Pharm Jugosl. 1986, 36, 171-

188. 

[22] Balaban, A.T. Highly discriminating distance-based topological index. Chem Phys Lett. 1982, 89, 

399-404. 

[23] Kier, L.B.; Hall, L.H. Molecular Connectivity in structure activity analysis. Wiley&Sons: New 

York 1986. 

[24] Todeschini, R.; Consonni, V. Handbook of molecular descriptors. Wlley-VCH, New York, 2000. 



Rational drug design of antineoplastic agents 

19 
 

[25] Wold, S.; Ruhe, A.; Wold, H.; Dunn, W.J. The Collinearity Problem in Linear Regression. The 

Partial Least Squares (PLS) Approach to Generalized Inverses. SIAM J Sci Stat Comput. 1984, 5, 735-

743. 

[26] Taha, M.O.; Bustanji, Y.; Al-Ghussein, M.A.; Mohammad, M.; Zalloum, H.; Al-Masri, I.M.; 

Atallah, N. Pharmacophore Modeling, Quantitative Structure-Activity Relationship Analysis, and in 

Silico Screening Reveal Potent Glycogen Synthase Kinase-3beta Inhibitory Activities for Cimetidine, 

Hydroxychloroquine, and Gemifloxacin. J Med Chem. 2008, 51, 2062−2077. 

[27] Al-Nadaf, A.; Abu Sheikha, G.; Taha, M.O. Elaborate LigandBased Pharmacophore Exploration 

and QSAR Analysis Guide the Synthesis of Novel Pyridinium-Based Potent Beta-Secretase Inhibitory 

Leads. Bioorg Med Chem. 2010, 18, 3088−3115. 

[28] Al-Sha’er, M.A.; Taha, M.O. Discovery of novel CDK1 inhibitors by combining pharmacophore 

modeling, QSAR analysis and in silico screening followed by in vitro bioassay. Eur J Med Chem. 

2010, 45, 4316-4330. 

[29] Abdula, A.M.; Khalaf, R.A.; Mubarak, M.S.; Taha, M.O. Discovery of New Beta-D-

Galactosidase Inhibitors via Pharmacophore Modeling and QSAR Analysis Followed by in silico 

Screening. J Comput Chem. 2011, 32, 463−482. 

[30] Habash, M.; Taha, M. O. Ligand-Based Modelling Followed by Synthetic Exploration Unveil 

Novel Glycogen Phosphorylase Inhibitory Leads. Bioorg Med Chem. 2011, 19, 4746−4771. 

[31] Shahin, R.; Alqtaishat, S.; Taha, M.O. Elaborate Ligand-Based Modeling Reveal New 

Submicromolar Rho Kinase Inhibitors. J Comput-Aided Mol Des. 2012, 26, 249−266. 

[32] Suaifan, G.A.; Shehadehh, M.; Al-Ijel, H.; Taha, M.O. Extensive Ligand-Based Modeling and in 

Silico Screening Reveal Nanomolar Inducible Nitric Oxide Synthase (iNOS) Inhibitors. J Mol 

Graphics Modell. 2012, 37, 1−26. 

[33] Mitchell, J.B.O. Machine learning methods in chemoinformatics. WIREs Comput Mol Sci. 2014, 

4, 468-481. 

 [34] Singh, H.; Singh, S.; Singla, D.; Agarwal, S.M.; Raghava, G.P.S. QSAR based model for 

discriminating EGFR inhibitors and non-inhibitors using Random forest. Biology Direct. 2015, 10, 10. 



Rational drug design of antineoplastic agents 

20 
 

[35] Riddick, G.; Song, H.; Ahn, S.; Walling, J.; Borges-Rivera, D.; Zhang, W.; Fine, H.A. Predicting 

in vitro drug sensitivity using Random Forests. Bioinformatics 2011, 27(2), 220-224. 

[36] Statnikov, A.; Wang, L.; Aliferis, C. A comprehensive comparison of random forests and support 

vector machines for microarray-based cancer classification. BMC Bioinformatics 2008, 9, 319. 

[37] Carlsson, L.; Helgee, E.A.; Boyer, S. Interpretation of Nonlinear QSAR Models Applied to Ames 

Mutagenicity Data. J Chem Inf Model. 2009, 49, 2551-2558. 

[38] Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative Molecular Field Analysis (CoMFA). 1. 

Effect of Shape on Binding of Steroids to Carrier Proteins. J Am Chem Soc. 1988, 110, 5959-5967. 

[39] Klebe, G.; Abraham, U.; Mietzner, T. Molecular Similarity Indexes in a Comparative-Analysis 

(CoMSIA) of Drug Molecules To Correlate and Predict Their Biological-Activity. J Med Chem. 1994, 

37, 4130−4146. 

[40] Acharya, C.; Coop, A.; Polli, J.E.; Mackerell, A.D. Jr. Recent advances in ligand based drug 

design: relevance and utility of the conformationally sampled pharmacophore approach. Curr Comput 

Aided Drug Des. 2011, 7, 10–22. 

[41] Goodford, P.J. A Computational Procedure for Determining Energetically Favorable Binding 

Sites on Biologically Important Macromolecules. J Med Chem. 1985, 28, 849-857. 

[42] Dixon, S.L.; Smondyrev, A.M.; Rao, S.N. PHASE: A Novel Approach to Pharmacophore 

Modeling and 3D Database Searching. Chem Biol Drug Des. 2006, 67, 370-372. 

[43] Pastor, M.; Cruciani, G.; McLay, I.; Pickett, S.; Clementi, S. GRid-INdependent Descriptors 

(GRIND): A Novel Class of Alignment- Independent Three-Dimensional Molecular Descriptors. J 

Med Chem. 2000, 43, 3233-3243. 

[44] Durán, A.; Zamora, I.; Pastor, M. Suitability of GRIND-Based Principal Properties for the 

Description of Molecular Similarity and Ligand-Based Virtual Screening. J Chem Inf Model. 2009, 

49, 2129-2138. 

[45] Ballante, F.; Ragno, R. 3-D QSAutogrid/R: an alternative procedure to build 3-D QSAR models. 

Methodologies and applications. J Chem Inf Model. 2012, 52(6), 1674-1685. 

[46] Ortiz, A.R.; Pisabarro, M.T.; Gago, F.; Wade, R.C. Prediction of Drug Binding Affinities by 

Comparative Binding Energy Analysis. J Med Chem. 1995, 38, 2681-2691. 



Rational drug design of antineoplastic agents 

21 
 

[47] Gohlke, H.; Klebe, G. DrugScore Meets CoMFA: Adaptation of Fields for Molecular 

Comparison (AFMoC) or How To Tailor Knowledge-Based Pair-Potentials to a Particular Protein. J 

Med Chem. 2002, 45, 4153−4170. 

[48] Varela, R.; Walters, W.P.; Goldman, B.B.; Jain, A.N. Iterative Refinement of a Binding Pocket 

Model: Active Computational Steering of Lead Optimization. J Med Chem. 2012, 55, 8926−8942. 

[49] Silvestri, L.; Ballante, F.; Mai, A.; Marshall, G. R.; Ragno, R., Histone deacetylase inhibitors: 

structure-based modeling and isoform-selectivity prediction. J Chem Inf Model. 2012, 52, 2215-2235. 

[50] Ragno, R.; Simeoni, S.; Castellano, S.; Vicidomini, C.; Mai, A.; Caroli, A.; Tramontano, A.; 

Bonaccini, C.; Trojer, P.; Bauer, I.; Brosch, G.; Sbardella, G., Small molecule inhibitors of histone 

arginine methyltransferases: homology modeling, molecular docking, binding mode analysis, and 

biological evaluations. J Med Chem. 2007, 50, 1241-1253. 

[51] Ballante, F, Caroli, A.; Wickersham, R.B., 3rd; Ragno, R. Hsp90 inhibitors, part 1: definition of 

3-D QSAutogrid/R models as a tool for virtual screening. J Chem Inf Model. 54(3), 956-969. 

[52] Caroli, A.; Ballante, F.; Wickersham, R.B., 3rd; Corelli, F.; Ragno, R., Hsp90 inhibitors, part 2: 

combining ligand-based and structure-based approaches for virtual screening application. J Chem Inf 

Model. 2014, 54, 970-977. 

[53] Zentner, G.E.; Henikoff, S. Regulation of nucleosome dynamics by histone modifications. Nat 

Struct Mol Biol. 2013, 20, 259-266. 

[54] Heyn, H.; Esteller, M. DNA methylation profiling in the clinic: applications and challenges. Nat 

Rev Genet. 2012, 13, 679-692. 

[55] Meyer, K.D.; Saletore, Y.; Zumbo, P.; Elemento, O.; Mason, C.E.; Jaffrey, S.R. Comprehensive 

analysis of mRNA methylation reveals enrichment in 30 UTRs and near stop codons. Cell. 2012, 149, 

1635-1646. 

[56] Mercer, T.R.; Mattick, J.S. Structure and function of long noncoding RNAs in epigenetic 

regulation. Nat Struct Mol Biol. 2013, 20, 300-307. 

[57] Fahy, J.; Jeltsch, A.; Arimondo, P.B. DNA methyltransferase inhibitors in cancer: a chemical and 

therapeutic patent overview and selected clinical studies. Expert Opin Ther Pat. 2012, 22, 1427-1442. 



Rational drug design of antineoplastic agents 

22 
 

[58] Huang, H.; Lin, S.; Garcia, B.A.; Zhao, Y. Quantitative Proteomic Analysis of Histone 

Modifications. Chem Rev. 2015, 115, 2376–2418. 

[59] Filippakopoulos, P.; Knapp, S. Targeting bromodomains: epigenetic readers of lysine acetylation. 

Nat Rev Drug Discov. 13(5), 337-356. 

[60] Zheng, Y.; Ma, J.; Wang, Z.; Li, J.; Jiang, B.; Zhou, W.; Shi, X.; Wang, X.; Zhao, W.; Liu, H. 

systematic review of histone lysine-specific demethylase 1 and its inhibitors. Med Res Rev. 2015, 35, 

1032–1071. 

[61] Kaniskan H.Ü.; Konze K.D.; Jin J. Selective Inhibitors of Protein Methyltransferases. J Med 

Chem. 2015, 58, 1596–1629. 

[62] Marmorstein, R. Structure of histone deacetylases: review insights into substrate recognition and 

catalysis. Structure 2001, 9, 1127-1133. 

[63] Khan, N.; Jeffers, M.; Kumar, S.; Hackett, C.; Boldog, F.; Khramtsov, N.; Qian, X.; Mills, E.; 

Berghs, S.C.; Carey, N.; Finn, P.W.; Collins, L.S.; Tumber, A.; Ritchie, J.W.; Jensen, P.B.; 

Lichenstein, H.S.; Sehested, M. Determination of the class and isoform selectivity of small-molecule 

histone deacetylase inhibitors. Biochem J. 2008, 409, 581-589. 

[64] Micelli, C.; Rastelli, G. Histone deacetylases: structural determinants of inhibitor selectivity. 

Drug Discov Today 2015, 20, 718–735. 

[65] Yang, H.; Christianson, D.V. Histone deacetylase 6 structure and molecular basis of catalysis and 

inhibition. Nat Chem Biol. 2016, 12, 741–747. 

[66] Xie, A.; Liao, C.; Li, Z.; Ning, Z.; Hu, W.; Lu, X.; Shi, L.; Zhou, J. Quantitative structure-activity 

relationship study of histone deacetylase inhibitors. Curr Med Chem Anticancer Agents 2004, 4, 273-

299. 

[67] Dessalew, N. QSAR study on aminophenylbenzamides and acrylamides as histone deacetylase 

inhibitors: an insight into the structural basis of antiproliferative activity. Med Chem Res. 2007, 16, 

449-460. 

[68] Chen, H.-F., Kang, J.-H., Li, Q., Zeng, B.-S., Yao, X.-J., Fan, B.-T., Yuan, S.G.; Panay, A.; 

Doucet, J.P. 3D-QSAR study on apicidin inhibit histone deacetylase. Chin J Chem. 2003, 21, 1596-

1607. 



Rational drug design of antineoplastic agents 

23 
 

[69] Guo, Y.; Xiao, J.; Guo, Z.; Chu, F.; Cheng, Y.; Wu, S. Exploration of a binding mode of 

indole amide analogues as potent histone deacetylase inhibitors and 3D-QSAR analyses. Bioorg Med 

Chem. 2005, 13, 5424-5434. 

[70] Juvale, D.C.; Kulkarni, V.V.; Deokar, H.S.; Wagh, N.K.; Padhye, S.B.; Kulkarni, V.M. 3D-QSAR 

of histone deacetylase inhibitors: hydroxamate analogues. Org Biomol Chem. 2006, 4, 2858-2868. 

[71] Liu, B.; Lu, A.-J.; Liao, C.-Z.; Liu, H.-B.; Zhou, J.-J.; 3D-QSAR of sulfonamide hydroxamic 

acid HDAC inhibitors. Acta Phys Chim Sin. 2005, 21, 333-337. 

[72] Agarwal, N.; Bajpai, A.; Srivastava, V.; Gupta, S.P. A quantitative structure-activity relationship 

and molecular modeling study on a series of biaryl imidazole derivatives acting as H+/K+-ATPase 

inhibitors. Biochem Res Int. 2012, 2013(2013), Article ID 810691. 

[73] Ragno, R.; Simeoni, S.; Valente, S.; Massa, S.; Mai, A. 3-D QSAR studies on histone deacetylase 

inhibitors. A GOLPE/GRID approach on different series of compounds. J Chem Inf Model 2006, 46, 

1420-1430. 

[74] Chen, Y.; Li, H.; Tang, W.; Zhu, C.; Jiang, Y.; Zou, J.; Yu, Q.; You, Q. 3D-QSAR studies of 

HDACs inhibitors using pharmacophore-based alignment. Eur J Med Chem. 2009, 44, 2868-2876. 

[75] Mahipal, A.; Tanwar, O.P.; Karthikeyan, C.; Moorthy, N.S.H.N.; Trivedi, P. 3D QSAR of 

aminophenyl benzamide derivatives as histone deacetylase inhibitors. Med Chem. 2010, 6, 277-285. 

[76] Clark, J., Shevchuk, T., Kho, M.R., Smith, S.S.Methods for the design and analysis of 

oligodeoxynucleotide- based DNA (cytosine-5) methyltransferase inhibitors. Anal Biochem. 2003, 

321, 50-64. 

[77] Aboalhaija, N.H.; Zihlif, M.A.; Taha, M.O. Discovery of new selective cytotoxic agents against 

Bcl-2 expressing cancer cells using ligand-based modeling. Chem Biol Interact. 2016, 250, 12-26. 

[78] Almerico, A.M.; Tutone, M.; Lauria, A. 3D-QSAR pharmacophore modeling and in silico 

screening of new Bcl-xl inhibitors. Eur J Med Chem. 2010, 45(11), 4774-4782. 

[79] Khanfar, M.A.; Taha, M.O. Elaborate Ligand-Based Modeling Coupled with Multiple Linear 

Regression and k Nearest Neighbor QSAR Analyses Unveiled New Nanomolar mTOR Inhibitors. J 

Mol Graph Model. 2013, 53, 2587-2612. 



Rational drug design of antineoplastic agents 

24 
 

[80] Azam, S.S.; Abro, A.; Tanvir, F.; Parvaiz, N. Identification of unique binding site and molecular 

docking studies for structurally diverse Bcl-xL inhibitors. Med Chem Res. 2014, 23, 3765-3783. 

[81] Mukherjee, P.; Desai, P.; Zhou, Y.D.; Avery, M. Targeting the BH3 domain mediated protein-

protein interaction of Bcl-xL through virtual screening. J Chem Inf Model. 2010, 50(5), 906-923. 

[82] Zheng, C.H.; Zhou, Y.J.; Zhu, J.; Ji, H.T.; Chen, J.; Li, Y.W.; Sheng, C.Q.; Lu, J.G.; Jiang, J.H.; 

Tang, H.; Song, Y.L. Construction of a three-dimensional pharmacophore for Bcl-2 inhibitors by 

flexible docking and the multiple copy simultaneous search method. Bioorg Med Chem. 2007, 15(19), 

6407-6417. 

[83] Pinto, M.; Orzaez Mdel, M.; Delgado-Soler, L.; Perez, J.J.; Rubio-Martinez, J. Rational design of 

new class of BH3-mimetics as inhibitors of the Bcl-xL protein. J Chem Inf Model. 2011, 51(6), 1249-

1258. 

[84] Sivakumar, D.; Gorai, B.; Sivaraman, T. Screening efficient BH3-mimetics to hBcl-B by means 

of peptidodynmimetic method. Mol Biosyst. 2013, 9(4), 700-712.  

[85] Enyedy, I.J.; Ling, Y.; Nacro, K.; Tomita, Y.; Wu, X.; Cao, Y.; Guo, R.; Li, B.; Zhu, X.; Huang, 

Y.; Long, Y.Q.; Roller, P.P.; Yang, D.; Wang, S. Discovery of small-molecule inhibitors of Bcl-2 

through structure-based computer screening. J Med Chem. 2001, 44(25), 4313-4324. 

[86] Wang, J.L.; Liu, D.; Zhang, Z.J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, 

E.S.; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and 

induces apoptosis of tumor cells. Proc Natl Acad Sci U S A. 2000, 97(13), 7124-7129. 

[87] Levoin, N.; Vo, D.D.; Gautier, F.; Barillé-Nion, S.; Juin, P.; Tasseau, O.; Grée, R. A combination 

of in silico and SAR studies to identify binding hot spots of Bcl-xL inhibitors. Bioorg Med Chem. 

2015, 23(8), 1747-1757. 

[88] Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J 

Med Chem. 2005, 48(21), 6523-6543. 

[89] Hopkins, A.L. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 

2008, 4(11), 682-90. 



Rational drug design of antineoplastic agents 

25 
 

[90] Speck-Planche, A., Kleandrova, V.V.; Luan, F.; Cordeiro, M.N. Chemoinformatics in anti-cancer 

chemotherapy: multi-target QSAR model for the in silico discovery of anti-breast cancer agents. Eur J 

Pharm Sci. 2012, 47(1), 273-279.  

[91] Speck-Planche, A.; Kleandrova, V.V.; Luan, F.; Cordeiro, M.N. Rational drug design for anti-

cancer chemotherapy: multi-target QSAR models for the in silico discovery of anti-colorectal cancer 

agents. Bioorg Med Chem. 2012, 20(15), 4848-4855. 

[92] Venkatraman, V.; Pérez-Nueno, V.I.; Mavridis, L.; Ritchie, D.W. Comprehensive Comparison of 

Ligand-Based Virtual Screening Tools Against the DUD Data set Reveals Limitations of Current 3D 

Methods. J Chem Inf Model. 2010, 50, 2079–2093. 

[93] Koeppen, H., Kriegl, J., Lessel, U., Tautermann, C.S., Wellenzohn, B. Ligand-Based Virtual 

Screening. In Virtual Screening. Wiley-VCH Verlag GmbH & Co. KGaA, 2011, 61−85. 

[94] Schuster, D. 3D pharmacophores as tools for activity profiling. Drug Discov Today Technol. 

2010, 7, e203-270. 

[95] Spitzer, G.M.; Heiss, M.; Mangold, M.; Markt, P.; Kirchmair, J.; Wolber, G., Liedl, K.R. One 

concept, three implementations of 3D pharmacophore-based virtual screening: distinct coverage of 

chemical search space. J Chem Inf Model. 2010, 50, 1241-1247. 

[96] Sanders, M.P.A.; Barbosa, A.J.M.; Zarzycka, B.; Nicolaes, G.A.F.; Klomp, J.P.G.; de Vlieg, J.; 

Rio, A.D. Comparative analysis of pharmacophore screening tools. J Chem Inf Model 2012, 52, 

1607–1620. 

[97] Vadivelan, S.; Sinha, B.N.; Rambabu, G.; Boppana, K.; Jagarlapudi, S.A.R.P. Pharmacophore 

modeling and virtual screening studies to design some potential histone deacetylase inhibitors as new 

leads. J Mol Graph Model. 2008, 26, 935–946. 

[98] Kandakatla, N.; Ramakrishnan, G. Ligand based pharmacophore modeling and virtual screening 

studies to design novel HDAC2 inhibitors. Adv Bioinform. 2014, 2014 (2014), Article ID 812148. 

[99] Wang, J.; Chen, L.; Sinha, S.H.; Liang, Z.; Chai, H.; Muniyan, S.; Chou, Y.W.; Yang, C.; Li, 

K.K.; Lin, M.F.; Jiang, H.; Zheng, Y.G.; Luo, C. Pharmacophore-based virtual screening and 

biological evaluation of small molecule inhibitors for protein arginine methylation. J Med Chem. 

2012, 55, 7978–7987. 



Rational drug design of antineoplastic agents 

26 
 

[100] Drwal, M.N.; Griffith, R. Combination of ligand- and structure-based methods in virtual 

screening. Drug Discov Today Technol. 2013, 10, e395–401. 

[101] Drwal, M.N.; Agama, K.; Wakelin, L.P.; Pommier, Y.; Griffith, R. Exploring DNA 

topoisomerase I ligand space in search of novel anticancer agents. PLoS One 2011, 6 (9), e25150.   

[102] Svensson, F.; Karlén, A.; Sköld, C. Virtual screening data fusion using both structure- and 

ligand-based methods. J Chem Inf Model. 2012, 52, 225-232. 

[103] Swann, S.L.; Brown, S.P.; Muchmore, S.W.; Patel, H.; Merta, P.; Locklear, J. A unified, 

probabilistic framework for structure- and ligand-based virtual screening. J Med Chem. 2011, 54, 

1223-1232.  

[104] Planesas, J.M.; Claramunt, R.M.; Teixidó, J.; Borrell, J.I.; Pérez-Nueno, V.I. Improving 

VEGFR-2 docking-based screening by pharmacophore postfiltering and similarity search 

postprocessing. J Chem Inf Model. 2011, 51, 777-787.  

[105] Kroemer, R.T. Structure-based drug design: docking and scoring. Curr Protein Pept Sci. 2007, 

8, 312-328. 

[106] Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for 

structure-based drug discovery. Curr Comput Aided Drug Des. 2001, 7, 146-157. 

[107] Warren, G.L.; Andrews, C.W.; Capelli, A.M.; Clarke, B.; LaLonde, J.; Lambert, M.H.; Lindvall, 

M.; Nevins, N.; Semus, S.F.; Senger, S.; Tedesco, G.; Wall, I.D.; Woolven, J.M.; Peishoff, C.E.; Head, 

M.S. A Critical Assessment of Docking Programs and Scoring Functions. J Med Chem. 2006, 49, 

5912-5931. 

[108] Wang, R.; Lai, L.; Wang, S. Further development and validation of empirical scoring functions 

for structure-based binding affinity prediction. J Comp-Aid Mol Des. 2002, 16, 11-26. 

[109] Huang, N.; Kalyanaraman, C.; Bernacki, K.; Jacobson, M.P. Molecular mechanics methods for 

predicting protein-ligand binding. Phys Chem Chem Phys. 2006, 8, 5166-5177. 

[110] Ballester, P.J.; Mitchell, J.B.O. A machine learning approach to predicting protein-ligand 

binding affinity with applications to molecular docking. Bioinformatics 2010, 26:1169-1175. 

[111] Yuriev, E.; Ramsland, P.A. Latest developments in molecular docking: 2010–2011 in review. J 

Mol Recognit. 2013, 26, 215–239. 



Rational drug design of antineoplastic agents 

27 
 

[112] Ewing, T.J.; Makino, S.; Skillmam, G.; Kuntz, I.D. DOCK 4.0: Search strategies for automated 

molecular docking of flexibile molecule databases. J Comput Aided Mol Des. 2001, 15, 411-428. 

[113] Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. 

Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. 

J Comput Chem. 1998, 19, 1639-1662. 

[114] Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S., Olson, A.J. 

Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J Comput 

Chem. 2009, 30, 2785-2791. 

[115] Jones, G.; Willett, P.; Glen, R.C. Molecular recognition of receptor sites using a genetic 

algorithm with a description of desolvation. J Mol Biol. 1995, 245, 43–53. 

[116] Friesner, R.A.;  Banks, J.L.;  Murphy, R.B.;  Halgren, T.A.;  Klicic, J.J.;  Mainz, D.T.;  Repasky, 

M.P.;  Knoll, E.H.;  Shelley, M.;  Perry, J.K.;  Shaw, D.E.;  Francis, P.;  Shenkin, P.S.;  Glide: A new 

approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J 

Med Chem. 2004, 47, 1739-1749. 

[117] Spannhoff, A.; Heinke, R.; Bauer, I.; Trojer, P.; Metzger, E.; Gust, R.; Schüle, R.; Brosch, G.; 

Sippl, W.; Jung, M. Target-based approach to inhibitors of histone arginine methyltransferases. J Med 

Chem. 2007, 50, 2319-2325.  

[118] Spannhoff, A.; Machmur, R.; Heinke, R.; Trojer, P.; Bauer, I.; Brosch, G.; Schüle, R.; Hanefeld 

W.; Sippl, W.; Jung, M. A novel arginine methyltransferase inhibitor with cellular activity. Bioorg Med 

Chem Lett. 2007, 17, 4150-4153.  

[119] Vidler, L.R.; Filippakopoulos, P.; Fedorov, O.; Picaud, S.; Martin, S.; Tomsett, M.; Woodward, 

H.; Brown, N.; Knapp, S.; Hoelder, S. Discovery of novel small-molecule inhibitors of BRD4 using 

structure-based virtual screening. J Med Chem. 2013, 56, 8073–8088. 

[120] Zhao, H.; Gartenmann, L.; Dong, J.; Spiliotopoulos, D.; Caflisch, A. Discovery of BRD4 

bromodomain inhibitors by fragment-based high-throughput docking. Bioorg Med Chem Lett. 2014, 

24, 2493-2496. 

[121] Chen, S., Wang, Y., Zhou, W., Li, S., Peng, J., Shi, Z., Hu, J.; Liu, Y.C.; Ding, H.; Lin.; Y, Li, L.; 

Cheng, S.; Liu, J.; Lu, T.; Jiang, H.; Liu, B.; Zheng, M.; Luo, C. Identifying novel selective non-



Rational drug design of antineoplastic agents 

28 
 

nucleoside DNA methyltransferase 1 inhibitors through docking-based virtual screening. J Med Chem. 

2014, 57, 9028-9041. 

[122] Kuck, D., Singh, N., Lyko, F., Medina-Franco, J.L. Novel and selective DNA methyltransferase 

inhibitors: docking-based virtual screening and experimental evaluation. Bioorg Med Chem. 2010, 

18, 822–829. 

[123] Ashour, A.; El-Sharkawy, S.; Amer, M.; Abdel Bar, F.; Katakura, Y.; Miyamoto, T.; Toyota, N.; 

Bang, T.H.; Kondo, R.; Shimizu, K. Rational design and synthesis of topoisomerase I and II inhibitors 

based on oleanolic acid moiety for new anti-cancer drugs. Bioorg Med Chem. 2014, 22(1), 211-220. 

[124] Cai, H.; Huang, X.; Xu, S.; Shen, H.; Zhang, P.; Huang, Y.; Jiang, J.; Sun, Y.; Jiang, B.; Wu, X.; 

Yao, H.; Xu, J. Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors 

of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy. Eur J Med Chem. 2016, 108, 89-103. 

[125] Cardama, G.A.; Comin, M.J.; Hornos, L.; Gonzalez, N.; Defelipe, L.; Turjanski, A.G.; Alonso, 

D.F.; Gomez, D.E.; Menna, P.L . Preclinical development of novel Rac1-GEF signaling inhibitors 

using a rational design approach in highly aggressive breast cancer cell lines. Anticancer Agents Med 

Chem. 2014, 14(6), 840-851. 

[126] Dutta Gupta, S.; Revathi, B.; Mazaira, G.I.; Galigniana, M.D.; Subrahmanyam, C.V.; 

Gowrishankar, N.L.; Raghavendra, N.M. 2,4 dihidroxy benzaldehyde derived Schiff bases as small 

molecule Hsp90 inhibitors: rational identification of a new anticancer lead. Bioorg Chem. 2015, 59, 

97-105. 

[127] Gao, C.; Bourke, E.; Scobie, M.; Famme, M.A.; Koolmeister, T.; Helleday, T.; Eriksson, L.A.; 

Lowndes, N.F.; Brown, J.A. Rational design and validation of a Tip60 histone acetyltransferase 

inhibitor. Sci Rep. 2014, 4, Article No. 5372. 

[128] Khanfar, M.A.; AbuKhader, M.M.; Alqtaishat, S.; Taha, M.O. Pharmacophore modeling, 

homology modeling, and in silico screening reveal mammalian target of rapamycin inhibitory 

activities for sotalol, glyburide, metipranolol, sulfamethizole, glipizide, and pioglitazone. J Mol 

Graph Model. 2013, 42, 39-49. 



Rational drug design of antineoplastic agents 

29 
 

[129] Parker, J.P.; Nimir, H.; Griffith, D.M.; Duff, B.; Chubb, A.J.; Brennan, M.P.; Morgan, M.P.; 

Egan, D.A.; Marmion, C.J. A novel platinum complex of the histone deacetylase inhibitor belinostat: 

rational design, development and in vitro cytotoxicity. J Inorg Biochem. 2013, 124, 70-77. 

[130] Xue, W.; Song, B.A.; Zhao, H.J.; Qi, X.B.; Huang, Y.J.; Liu, X.H. Novel myricetin derivatives: 

Design, synthesis and anticancer activity. Eur J Med Chem. 2015, 97, 155-163. 

[131] Wang, Y.; Cheng, F.X.; Yuan, X.L.; Tang, W.J.; Shi, J.B.; Liao, C.Z.; Liu, X.H. 

Dihydropyrazole derivatives as telomerase inhibitors: Structure-based design, synthesis, SAR and 

anticancer evaluation in vitro and in vivo. Eur J Med Chem. 2016, 112, 231-251. 

[132] Staker, B.L.; Feese, M.D.; Cushman, M.; Pommier, Y.; Zembower, D.; Stewart, L.; Burgin, A.B. 

Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent 

complex. J Med Chem. 2005, 48(7), 2336-2345. 

[133] Berger, J.M.; Gamblin, S.J.; Harrison, S.C.; Wang, J.C. Structure and mechanism of DNA 

topoisomerase II. Nature 1996, 379(6562), 225-232. 

[134] Ellenbroek, S.I.; Collard, J.G. Rho GTPases: Functions and association with cancer. Clin Exp 

Metastasis 2007, 24(8), 657-672. 

[135] Fritz, G.; Just, I.; Kaina, B. Rho GTPases are over-expressed in human tumors. Int J Cancer 

1999, 81(5), 682-687. 

[136] Fritz, G.; Brachetti, C.; Bahlmann, F.; Schmidt, M.; Kaina, B. Rho GTPases in human breast 

tumors: Expression and mutation analyses and correlation with clinical parameters. Br J Cancer 2002, 

87(6), 635-644.  

[137] Kamai, T.; Yamanishi, T.; Shirataki, H.; Takagi, K.; Asami, H.; Ito, Y.; Yoshida, K. 

Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular 

cancer. Clin Cancer Res. 2004, 10, 4799-4805. 

[138] Ragno, R.; Mai, A.; Massa, S.; Cerbara, I.; Valente, S.; Bottoni, P.; Scatena, R.; Jesacher, F.; 

Loidl, P.; Brosch, G. 3-(4-Aroyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamides as a new class 

of synthetic histone deacetylase inhibitors. 3. Discovery of novel lead compounds through structure-

based drug design and docking studies. J Med Chem. 2004, 47, 1351-1359. 



Rational drug design of antineoplastic agents 

30 
 

[139] Subha, K.; Kumar, G.R. Assessment for the identification of better HDAC inhibitor class 

through binding energy calculations and descriptor analysis. Bioinformation 2008, 3, 218-222. 

[140] Wang, D.F.; Helquist, P.; Wiech, N.L.; Wiest, O. Toward selective histone deacetylase inhibitor 

design: homology modeling, docking studies, and molecular dynamics simulations of human class I 

histone deacetylases. J Med Chem. 2005, 48, 6936-6947. 

[141] Butler, K.V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.; Kozikowski, A.P. Rational design 

and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem 

Soc. 2010, 132, 10842–10846. 

[142] Ran, T.; Zhang, Z.; Liu, K.; Lu, Y.; Li, H.; Xu, J.; Lu, S.; Liu, H.; Lu, T.; Chen, Y. Insight into 

the key interactions of bromodomain inhibitors based on molecular docking, interaction 

fingerprinting, molecular dynamics and binding free energy calculation. Mol Biosyst. 2015, 11, 1295-

1304. 
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Figures 

Figure 1. Antineoplastic agents selected by using QSAR technique  

Figure 2. Analogues of oleanolic acid with enhanced activity against topoisomerase I and IIα 

inhibition 

Figure 3. ZINC69391 compound and its derived novel analog 1A-116 
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Table 1. Reported QSAR studies used in rational drug design of antineoplastic agents 

Drug target Methodology Software package References 

B-cell lymphoma 2 (Bcl-2) family 

of proteins 
3D-QSAR 

Virtual Screening 

DiscoveryStudio, version 2.2.5, Biovia Inc. 

(www.biovia.com) 

MATLAB, version 7.4.0.287- R2007a, 

MathWorks Inc. (www. mathworks.com) 

[77] 

B-cell lymphoma 2 extra-large 

(Bcl-2xl) family of proteins 

3D-QSAR 

Virtual Screening 

Molecular Docking 

PHASE, version 2.5, Schrödinger, LLC 

(www.schrodinger.com) 

Glide, version 4.5., Schrödinger LLC 

(www.schrodinger.com) 

[78] 

Mammalian target of rapamycin 

(mTOR) 

Pharmacophore 

modelling 

3D-QSAR 

CATALYST, Accelrys Software Inc. 

(www.accelrys.com) 

Discovery Studio, version 2.55, Biovia Inc. 

(www.biovia.com) 

[79] 

Cyclin-dependent kinase 1 

(CDK1) 

Pharmacophore 

modelling 

3D-QSAR 

Virtual Screening 

CATALYST, version 4.11,  Accelrys Software 

Inc. (www.accelrys.com) 

CERIUS2, version 4.10, Accelrys Software 

Inc. (www.accelrys.com) 

[29] 

13 breast cancer cell lines mt-QSAR 
LDA modules of StatSoft. STATISTICA, 

version 6.0 (www.statsoft.com) 
[90] 

10 colorectal cancer cell lines mt-QSAR 
LDA modules of StatSoft. STATISTICA, 

version 6.0 (www.statsoft.com) 
[91] 
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Table 2. Reported structure-based studies used in rational design of antineoplastic agents 

Drug target Methodology Software package References 

B-cell lymphoma extra- large 

(Bcl-xL) family of proteins 
Molecular Docking 

GOLD, version 5.1, CCDC 

(www.ccdc.cam.ac.uk) 

AutoDock Vina (vina.scripps.edu) 

[80] 

Topoisomerase I and II 

Molecular Docking 

Virtual Screening 

 

Molegro Virtual Docker (MVD) 

 (molegro-virtual-

docker.software.informer.com) 

GOLD, version 4.1 and 5.0, CCDC 

(www.ccdc.cam.ac.uk) 

[123] 

Cyclooxygenase-2 and 5-

lipoxygenase 
Molecular Docking AutoDock Vina, (vina.scripps.edu) [124] 

Rac1-GEF 
Molecular Docking 

Virtual Screening 

Autodock4 program 

eHITS, SimBioSys Inc. (www.simbiosys.ca) 
[125] 

Hsp90 Molecular Docking 
Surflex Geom X, Sybyl X-1.2 version  

(sybyl-x.software.informer.com) 
[126] 

Tip60 histone acetyltransferases 

Molecular Docking 

Molecular 

Dinamics 

Molecular Operating Environment (MOE), 

version 2010.10, Chemical computing group 

Inc. (www.chemcomp.com) 

YASARA, version 10.7.20 (www.yasara.org) 

[127] 

Mammalian target of rapamycin 

(mTOR) 

Pharmacophore 

modeling 

Molecular 

Docking/Virtual 

Screening 

CATALYST, Accelrys Software Inc. 

(www.accelrys.com) 

LigandFit docking engine 

[128] 

Histone deacetylase (HDAC) Molecular Docking 

Molecular Operating Environment (MOE), 

Chemical computing group Inc. 

(www.chemcomp.com) 

[129] 

Human telomerase reverse 

transcriptase (hTERT) and 

tetrahymena telomerase p65 

Molecular Docking 

Molecular 

Dynamics 

Glide, version 5.9, Schrödinger, LLC 

(www.schrodinger.com) 

Desmond, Schrödinger, LLC 

(www.schrodinger.com) 

[130] 

Human telomerase reverse 

transcriptase (hTERT) 

Molecular Docking 

Molecular 

Dynamics 

Glide, Schrödinger, LLC 

(www.schrodinger.com) 

Desmond, Schrödinger, LLC 

(www.schrodinger.com) 

[131] 
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