1 2	Non-goal directed recall of specific events in apes after long delays
3	Amy Lewis ^{1,2,3} , Josep Call ^{1,3} and Dorthe Berntsen ²
4	¹ School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South
5	Street, St Andrews, Fife, KY16 9JP.
6	² Center on Autobiographical Memory Research, Bartholins Allé 9, 8000 Aarhus C,
7	Denmark.
8	³ Max Planck Institute of Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig,
9	Germany.
10	
11	Corresponding author: Amy Lewis – <u>amy_lewis@eva.mpg.de</u>
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

1	h	
	2	1

Abstract

28	We examined if apes spontaneously remember one-time, distinctive events across long delays
29	when probed by discriminant cues. Apes witnessed an experimenter hide a cache of food,
30	which they could then retrieve. Apes received one of two food types; one more distinctive
31	than the other. Two, ten or fifty weeks later the apes returned to the same enclosure and
32	found a piece of the previously hidden food on the ground. An experimenter who had not
33	hidden the food was present. Apes immediately searched the location where the food was
34	previously hidden (no food was here), showing recall of the event. One week later, apes
35	returned to the same enclosure, with the same food on the ground, but now the experimenter
36	that had hidden the food was present. Again, apes immediately searched the hiding location.
37	Apes that had not witnessed the hiding event did not search. There was no significant effect
38	of food type. Retention declined from exposure to the two-week delay, then leveled,
39	consistent with the forgetting curve in humans [1]. This is the first study to show apes can
40	recall a one-time, non-goal-directed event longer than two weeks ago, and that their recall
41	declines in accordance with standard retention function.
42	
43	Key words: great apes, spontaneous memory, episodic memory, cued recall, distinctiveness,
44	forgetting curve.
45	
46	
47	
.,	
48	
49	

50	Introduction
51	Ebbinghaus [1, 2] was the first to divide memory into three distinct types; voluntary,
52	involuntary and unconscious. Involuntary memory refers to the spontaneous recollection of
53	personal past events, often triggered by cues in the present environment (cued recall) [3]. One
54	of the most famous examples of an involuntary memory comes from the French author
55	Marcel Proust [4], who described the taste of a Madeleine cookie dipped in lime tea eliciting
56	his childhood memory of visiting his aunt on Sunday mornings. Involuntary memories are a
57	frequent occurrence in our day-to-day lives [3, 5, 6]. They are often triggered by features of
58	the present situation that match parts of the remembered event [7, 8]. Unlike voluntary
59	memories, they are not goal-directed and strategically retrieved, rather they reflect a bottom
60	up, stimulus-driven associative process, resulting in significantly faster retrieval times for
61	involuntary over voluntary memories [9, 10].
62	Numerous studies have shown that animals can recall past events [11-19]. However,
63	only recently has it been proposed that animals may also recall past events spontaneously,
64	that is, involuntarily [7, 20-22]. Because involuntary memories occur spontaneously, with
65	little effort, and are non-goal-directed, they do not rely on executive control processes or
66	recruit pre-frontal brain regions as much as voluntary memories [23, 24]. Consequently, they
67	are considered to be the more basic mode of remembering that proceeds the evolutionary
68	development of voluntary memory [7, 20]. As such, if animals are capable of recalling past
69	events strategically (voluntarily), then it follows that they should also be able to recall events
70	via the more basic, and evolutionary earlier, involuntary counterpart.
71	There is some evidence that animals can recall past events spontaneously. when
72	presented with relevant contextual cues [14, 16, 19, 25-28]. For instance, Martin-Ordas,

73 Berntsen and Call [25] tested great apes on their ability to remember two similar tool hiding

74	events. In the first study, apes were presented with a task that required a tool to obtain food.
75	After a 15-minute delay, the apes witnessed an experimenter hide two tools in two different
76	locations, only one was useful to solve the task. The apes experienced this four times. Three
77	years later, they were presented with the same task in the same room, and the same
78	experimenter, however, this time the tools were already hidden in the same locations as
79	before. Apes spontaneously searched the previous locations, and upon finding the appropriate
80	tool, successfully completed the task. A second experiment followed the same procedure,
81	except the apes received a slightly different task and tool, and were only presented with it
82	once. After a 2-week retention period, apes immediately and spontaneously searched the
83	location where the tool was hidden two weeks previously.
84	These studies show that apes can remember and distinguish between events in their
85	past when features present at the time of encoding are also present at retrieval, and
86	furthermore, that they remember almost instantaneously. This fast cued recall is consistent
87	with the way in which involuntary memories are recalled in humans [3, 9]. However, as the
88	apes needed a tool to complete the task, it is possible that retrieval was goal-directed, that is,
89	they strategically and voluntarily recalled the memory. Many of the studies that show cued
90	recall of a past event in animals incorporate goal-directed tasks [14, 19, 26, 27], and as such

91 direct evidence for involuntary recall of events in animals is limited.

However, a study by Kano and Hirata [16] showed apes ability to recall a past event using a non-goal-directed task. Apes viewed a short movie of a novel event in which an aggressive 'King Kong' character entered through one of two doors. An eye-tracker monitored the ape's gaze during this viewing. Twenty-four hours later, while the apes watched the same video again, they made anticipatory looks at the door in which the 'King Kong' character had entered the day before. Thus, apes recalled the event 24 hours later when cued with the preceding parts of the movie. Critically, the apes were given juice or fruit to eat

Submitted to Proceedings of the Royal Society B: For Review Only

99 during viewing of the movie, regardless of their gaze behavior, thus their recall of the event 100 was not goal-directed. As such, this paradigm is much more in keeping with the way in which 101 involuntary memories are retrieved, that is, via non-goal-directed cued recall, and provides 102 evidence of the occurrence of involuntary memories in animals.

103 Although such studies may provide evidence for involuntary recall of events in 104 animals, a number of questions are left unresolved. First, although it has been shown that 105 apes can recall past events that took place as long as three years ago [25], this long retention 106 was shown using repeated exposures during learning, meaning that the to-be-remembered 107 event was a repeated (non-specific) event. Involuntary memories are more often of single 108 occurring events rather than repeated ones [9, 29-31]. Furthermore, repeated events may be 109 intentionally encoded and recalled as semantic, rule-based knowledge, due to the expectation 110 that they will occur again [see 32]. That is, if one expects to be asked where a tool was last 111 seen, one may simply learn through repeated associations where the tool item is located, 112 rather than recalling the memory of the hiding event. As such, to specifically test for 113 involuntary recall of an event in animals, the test needs to focus on recall for single 114 exposures. In apes, such recall has only been shown for retention intervals of up to two weeks 115 [25].

Second, despite previous studies using distinctive events [16, 25, 28] it has yet to be specifically addressed whether a distinctive event is more likely to be recalled than a less distinctive event. It is known that involuntary memories are often about distinctive events [3, 10], and that distinctiveness can improve performance in various memory tasks in rats [33-35] and primates [36, 37], but it is unknown whether it improves long-term recall of a onetime event in non-human animals.

122	Lastly, it is unclear whether different types of cues are equally successful at cueing
123	recall of a past event. For instance, a study by Mendes and Call [28] incorporated social and
124	non-social cues in a foraging event. They found apes could successfully recall the foraging
125	locations, but acknowledged that they did not disentangle whether the memory for the
126	locations was cued by the social, non-social, or a combination of cues. Similarly, Martin-
127	Ordas, Berntsen and Call [25] incorporated the identity of the experimenter as a social cue,
128	but did not test whether it was this cue or other contextual cues (room, apparatus) or
129	combinations thereof that triggered recall of the event. There is some evidence that apes can
130	recall information about the identity of a person from a past event [38], however, this was
131	found using a forced recognition paradigm after a fairly short (24 hour) delay.
132	We investigated these aspects within one paradigm. We tested whether three species
133	of great ape could recall a distinctive, one-time hiding event after a minimum of a 2-week
134	retention period. During the hiding event, all food was retrieved by the subject, ensuring that
135	there was no expectation or goal of returning to the room to retrieve the food. Furthermore, at
136	retrieval, no task was presented to the apes in which the goal was to obtain food. As such, any
137	recall of the hiding event was likely to be spontaneous rather than a voluntary, goal-directed
138	response. Additionally, we manipulated three variables. First, we included three delay
139	periods; two weeks, ten weeks, and fifty weeks. This enabled us to look at recall over longer
140	time periods, and to assess whether forgetting occurred over time. We used a log-scale,
141	roughly covering a one-year time period, as this scale best reflects the rate of forgetting in
142	human long-term memory [39].
143	Second, we tested whether an event that was highly distinctive would be recalled

144 more than a less distinctive (albeit, still distinctive) event. This was achieved by manipulating

145 the type of food hidden during the hiding event. In the less distinctive condition, subjects

146 found a large cache of bread during the hiding event. The bread was familiar to the apes, but

147	was not a regular part of their diet. In the highly distinctive condition, subjects found a large
148	cache of cardamom flavored pellets. The apes had never tasted cardamom before,
149	furthermore, the pellets resembled standard flavored pellets given to the apes daily, and thus
150	were intended to be surprising. We chose to make the taste/odour distinctive, as opposed to
151	the visual appearance, to see whether apes can make use of non-visual distinctive cues, as
152	currently there is only evidence for a distinctiveness effect with visual information [36, 37].
153	Furthermore, odors are often highly successful as cues for retrieving memories in humans
154	[40, 41].

Thirdly, we tested whether the addition of a social cue would improve recall relative to when that cue was absent. Specifically, we manipulated whether the presence of the same experimenter that hid food during the hiding event would improve recall performance in comparison to the presence of a different experimenter.

In short, the aim of this study was to see whether apes could recall a one-time, nongoal directed event when presented with distinctive, diagnostic cues. Previous studies have shown evidence for involuntary recall of events after long time periods, but these have involved repeated exposures or goal-directed tasks [e.g. 1]. Furthermore, the influence of distinctiveness and overlapping of cues at encoding and retrieval has not been directly tested, neither has the forgetting rate of such memories over time. As such, we aimed to address these issues.

166

Methods

167 **Ethical approval**

The study was ethically approved by an internal committee at the Max Planck Institute for
Evolutionary Anthropology and Zoo Leipzig. Animal husbandry and research comply with

the "EAZA Minimum Standards for the Accommodation and Care of Animals in Zoos and
Aquaria", the "EEP Bonobo Husbandry Manual", the "WAZA Ethical Guidelines for the
Conduct of Research on Animals by Zoos and Aquariums" and the "Guidelines for the
Treatment of Animals in Behavioral Research and Teaching" of the Association for the Study
of Animal Behavior (ASAB). The dataset supporting this article has been uploaded as part of
the supplementary material.

176

177 Subjects

178 Nineteen chimpanzees (Pan troglodytes; age range 9–50 years), seven orangutans (Pongo

179 *abelii*; age range 7–36 years) and seven bonobos (*Pan paniscus*; age range 8–33 years)

180 participated in this study, resulting in a total of 33 apes. All were housed at the Wolfgang

181 Köhler Primate Research Center at Leipzig Zoo (Leipzig, Germany) and had previously

182 participated in cognitive studies. None of the apes were food or water deprived, and all

183 received a healthy and balanced diet during the testing period.

184

185 Apparatus

186 Apes were tested inside their sleeping quarters or observation rooms (here-after testing

187 room). Each testing room consisted of multiple enclosures, connected to each other by

188 hydraulic doors. For this study, two adjacent enclosures were used. Additionally, each testing

189 room contained an area only accessible to the experimenter (experimenter area). The ape

190 always entered the testing room via one enclosure (the right), and the food was always hidden

191 in the adjacent enclosure (the left; see ESM, Figure S1).

192 The hiding location varied between subjects due to constraints of the testing rooms,

but was always above the eye-line of an ape from ground level and in an area not normally

194 used for testing. For the majority of subjects, it was located on a ledge above a hydraulic

door, accessible to the experimenter only by ladder (see ESM, Figure S1), the other locationsdid not require a ladder.

197 Two types of food were hidden (exposure food); bread and cardamom flavoured 198 pellets. The flavoured pellets were very distinctive, as the apes had never tasted cardamom 199 before, additionally, they looked like regular pellets (eaten on a daily basis), thus when eaten 200 were unexpected and (most likely) surprising. The bread was less distinctive, due to being 201 used as an occasional treat, and was not surprising in taste. Still, it was by no means common 202 to the apes. We did not choose a completely familiar food in order to keep the hiding events 203 comparable in nature. Thus, in both cases, they would find unexpected food, but with the 204 added element of novelty and surprise, when the flavoured pellets were hidden.

205

206 Design

We used a mixed design with exposure food (bread; N=16, flavoured pellet; N=15) and delay (2 weeks; N=10, 10 weeks; N=11, 50 weeks; N=10) between subjects, and condition (experimental, control) and retrieval session (1,2) within subjects. Exposure food referred to the type of food that was hidden during the hiding event. The alternate food type was experienced during the control condition, but was never experienced during the hiding event (see procedure).

Apes completed both an experimental and a control condition, counterbalanced between subjects. There was a minimum of six-months between conditions (range; 182-635 days. In the experimental condition, apes witnessed a hiding event in which the exposure food was hidden. After their allocated delay, they received two retrieval sessions with the exposure food, one-week apart (range; 5-9 days). The control condition differed in that no hiding event occurred before the retrieval sessions, and the alternate food was present during the retrieval sessions. This control condition was used as a baseline for comparison with the

.

1.00

.11

220	experimental retrieval performance. As illustrated in Figure 1, two different orders were used.
221	In one (i) participants took part in the experimental condition before the control condition, in
222	other (ii) the order was reversed, with the control condition preceding the experimental
223	condition.
224	The first retrieval session was with an experimenter that was not present during the
225	hiding event, and the second retrieval was with the experimenter that hid the food during the
226	hiding event (see Figure 1). This enabled us to see if the apes were more successful at
227	recalling the event when social information (i.e., the experimenter identity) overlapped at
228	encoding and retrieval forming a social cue. For the first retrieval, the experimenter was
229	blinded to the condition and delay the subject was participating in (i.e. control or
230	experimental, 2, 10 or 50 weeks), so to avoid any unintentional cueing. It was not possible for
231	the experimenter in the second retrieval to be blinded in this way, as this experimenter was
232	aware of when and who had previously seen (or not seen) a hiding event.

233

235

220

.

0

234 **Procedure**

236 During the hiding event, the ape began in one enclosure (the right) and watched the 237 experimenter enter the other enclosure (the left) with a ladder and six food pellets or pieces of 238 bread in her hand (exposure food). The experimenter showed the food to the subject, climbed 239 the ladder and hid the food in the hiding location (see ESM, Figure S1 and apparatus). The 240 subject could see that the food had been placed there, but could not see the food itself. The 241 experimenter left the enclosure and entered the experimenter area. The connecting door 242 between the two enclosures was then opened so that the subject could access both enclosures. 243 Subjects were given a maximum of five minutes to find and eat the food. If the subject failed 244 to do so in this time, the session ended and the subject did not participate any further in the 245 study. Only the experimental condition included this hiding event.

246 After the allocated delay (2, 10 or 50 weeks), the subject received two retrieval 247 sessions, one-week apart. Retrieval sessions for the experimental and control conditions followed the same procedure. In Retrieval 1, an experimenter that did not hide the food 248 249 during the hiding event entered the left enclosure and placed a single piece of the exposure 250 food on the ground, directly below the hiding location. The subject was not present to witness 251 this. The experimenter then left the enclosure and stood in the experimenter area, before the 252 subject entered the right enclosure. After a ten-second delay, in which the experimenter was 253 facing the subject and the subject could see the experimenter, the door connecting the two 254 enclosures was opened and the experimenter left the testing room. After two minutes had 255 elapsed, the experimenter re-entered the testing room and stood in the experimenter area, so 256 that the subject could again see the experimenter. The experimenter did not look at the hiding 257 location during this time. After ten-seconds the experimenter left the testing room. After five 258 minutes the session finished. Retrieval 2 followed the same procedure, except now the 259 experimenter was the one who hid the food during the hiding event. No food was present in 260 the hiding location during the retrieval to avoid searching as a result of extraneous cues, such 261 as odour. The control condition differed from the experimental condition in two ways: 262 subjects did not witness the hiding event and the food that was on the enclosure floor was not 263 the exposure food in the experimental condition, but the alternate food. For example, if 264 subjects experienced flavoured pellets as the exposure food, they found bread on the floor. 265 Note that two different orders were used; one in which the control condition preceded the 266 experimental condition and one with the reverse order (Figure 1)

267

268 Coding and analysis

269	All sessions were videotaped and later coded as to whether the subject searched or not. A
270	search was defined as the subject climbing to the hiding location and looking/and or
271	searching the location with hands/feet/mouth. For instances of searching, the time taken from
272	picking up the food from the ground to reaching the hiding location was counted (here-after
273	latency). Twenty percent of the videos were coded by a second coder. Inter-rater reliability
274	for searching was calculated using Cohen's kappa, and Pearson's correlation assessed the
275	inter-rater agreement for latencies. Inter-rater reliability for searching was excellent (K=1,
276	<i>p</i> =<0.001) and for latencies was high (<i>r</i> =.88, N=9, <i>p</i> =<0.01).

Our main question was whether the apes could successfully recall the hiding event, as measured by searching. To test for this, we compared whether searching differed between the experimental and control condition. Furthermore, we tested whether this difference would be influenced by delay, exposure food, retrieval session and the order of condition. Since we expected the effect of these predictors to depend on condition (experimental or control), we also included the respective four, two-way interactions.

283 We fitted a Generalized Linear Mixed Model with a Poisson error distribution and log 284 link function [42, 43], with condition, delay, exposure food, retrieval session and order of 285 condition as fixed effects, species as a controlled fixed effect, and subject as a random effect 286 (N=33 individuals; total n=123). As a test of the combined effects of condition, delay, 287 exposure food, retrieval session, order of condition, and their interactions, we compared the 288 full model with a null model comprising only species and the random effects using a 289 likelihood ratio test [44, 45]. For full details of the statistical model see ESM, model 290 description.

For every instance of searching, we calculated the average search time (in seconds) from the ape picking up the food on the floor to searching the hiding location. We also

293 conducted a paired samples t-test to see whether search time changed between Retrieval 1 294 and Retrieval 2 in the experimental condition. This enabled us to see if the subjects that had 295 already searched in Retrieval 1 were slower in Retrieval 2, because of finding no food in the 296 first session. Additionally, we checked for any differences in search times between the two 297 exposure foods in the experimental condition. For subjects that searched in both Retrieval 1 298 and Retrieval 2, a mean search time was calculated. Search times were then compared 299 between groups using an independent t-test. As the Levene's test was significant, the Welch-300 Satterthwaite calculation was applied. Likewise, search times between the three delay groups 301 were compared (with mean search times calculated as above) using a one-way ANOVA. As 302 the Levene's test was significant, we ran the analysis on log-transformed data (which resulted 303 in Levene's test being non-significant).

```
304
```

305

Results

306 The full model compared to the null model was significant (likelihood ratio test: $\chi^2 = 20.404$, 307 df=9, p=0.017). More specifically, the interaction between condition and order of condition 308 was significant (χ^2 =6.239, df=1, P=0.013; Figure 2a). None of the other three interactions 309 were significant (see ESM, Table S1; Figure 2c-d). The interaction showed that subjects 310 searched significantly more in the experimental condition compared to the control condition 311 when the control condition was completed first (Figure 2a) Thus, subjects who had seen the 312 hiding event were searching significantly more than subjects that had yet to see the hiding 313 event (who never searched). Those subjects who searched in the control condition when 314 presented second, did so despite experiencing an additional retention period of six months 315 from the initial hiding event and delay period, and crucially, after finding no food in previous 316 experimental retrieval sessions. This included four apes that searched in all four retrieval 317 sessions, one of which received the 50-week delay period, and thus by the fourth retrieval

session was still searching, despite the fact that one year and five months had passed since
this subject had witnessed the hiding events and despite finding no food the previous three
times.

321 The lack of any other interaction showed that searching in both conditions did not 322 differ as a result of delay, retrieval session or exposure food (see Figure 2b-d). This finding 323 indicated that subjects recall did not significantly decline over the three test intervals, i.e., 324 from 2 to 10 to 50 weeks after exposure, although the performance did decline from initial 325 exposure to retrieval (see below), and that neither the social cue nor the distinctive pellet 326 improved recall performance. Additionally, recall performance between Retrieval 1 and 2 in 327 the experimental condition was nearly identical, with all but three subjects consistently not 328 searching in both sessions, or consistently failing to search in both sessions, further showing 329 that the social cue did not aid performance.

330 The average (median) search time in the experimental condition was 9 seconds 331 (N=31, Median = 9, Q1=6, Q3 = 35), and for the subjects that completed the control condition 332 second, the average search time was 12 seconds (N=11, Median = 12, Q1=5, Q3=26). This 333 means that subjects immediately searched the location. We found no change in search time 334 from Retrieval 1 (M=38.38, SE=18.23) to Retrieval 2 (M=21.38, SE=8.43) in the 335 experimental condition; t(12) = 1.20, p = 0.25, suggesting that even though the apes found no 336 food in the previous session they were just as quick to search the hiding location again. 337 Likewise, search times between the two exposure foods (flavoured pellet: M=49.06, 338 SE=25.83; bread: M=35.56, SE=19.41) in the experimental condition did not differ; 339 t(14.85)=0.42, p=0.68. Neither did search times between the delay groups of the experimental 340 condition; F(2,15) = 1.96, p=0.18). Thus, subjects search times in the experimental condition 341 were not influenced by retrieval session, exposure food or delay.

342	The fact that no significant decline was observed between the three delay intervals (2,
343	10, and 50 weeks) does not mean that performance showed no decline from the hiding event
344	to retrieval. Compared with the original 100% search rate at the time of exposure, a marked
345	decline was seen at the two week delay (where 58% searched), after which the decline
346	leveled. When we plotted the rate of searching as a function of days since the observation of
347	the hiding event (estimating the first delay to 5 minutes = .003 days) a standard forgetting
348	curve was observed (see Figure 3). Retention by time was best described by a logarithmic
349	function [y = $-4.853\ln(x) + 72.666$. R ² = 0.92463].
350	
351	Discussion
352 353	The purpose of this study was threefold. First, to investigate if apes could recall a one-time,
354	non-goal directed event. Second, to assess the importance of cue distinctiveness and cue
355	similarity between encoding and retrieval, on recall success. Third, to see whether recall
356	declined over time. Our results showed that apes could successfully recall a one-time, non-
357	goal-directed hiding event upon presentation of cues that matched the memory trace, and did
358	so almost immediately, consistent with involuntary recall of an event. The addition of
359	overlapping social information at encoding and retrieval did not improve recall relative to
360	when the information was absent. Likewise, the highly distinctive cue did not enhance recall
361	relative to the less distinctive cue. Retention showed a marked decline from learning to the
362	two week delay, then leveled, consistent with the classic forgetting curve observed in human
363	memory [1, 39].
364	The average search time from finding the food on the ground to reaching the hiding
365	location was less than twelve seconds. As the apes needed to climb to the hiding location, this
366	search time reflects a fast and instantaneous response, indicative of involuntary memory [9,
367	10, 46]. This fast response was consistent across the three delay periods, and retrieval

368 sessions, suggesting apes spontaneously recalled the event regardless of how long ago it 369 occurred, and when it was last recalled. Thus, if they recalled it during the first retrieval, they 370 were just as quick to recall it again in the second retrieval. Although fast response times are 371 consistent with involuntary recall, we acknowledge that due to not having a comparison 372 group completing the same action using voluntary recall, we cannot say for certain that the 373 fast response is due to involuntary as opposed to voluntary recall

374 However, other support for the involuntary nature of the memory retrieval comes 375 from the lack of a goal-directed task. Involuntary memories frequently spring to mind when 376 one is not doing anything [1], often as a result of features in the environment matching the 377 memory trace [3]. At retrieval, the apes were not presented with a task that needed be solved 378 by recalling the memory, unlike previous work [25]. Instead, they were simply presented 379 with relevant external cues that matched the hiding event, such as entering the same 380 enclosure, and finding the same exposure food. The apes enter this enclosure daily for testing, 381 and thus the absence of any obvious testing apparatus and task may have made the context 382 particularly distinctive. This combination of external cues led to a unique overlap between 383 the retrieval situation and the hiding event, and most likely cued the spontaneous recall of the 384 event.

385 Additionally, we found that subjects who completed the experimental condition first, 386 followed by the control condition, were more likely to search the hiding location during the 387 control trials than those who completed the control condition first (of which none searched). 388 That is, some subjects who witnessed the hiding event and searched in the two retrieval 389 sessions (after two, ten or fifty weeks), subsequently searched six months later when a 390 different type of food was on the ground. This is despite having not found food in the hiding 391 location the previous two sessions. Due to the long durations involved and the lack of 392 reinforcement for searching in every retrieval session, as well as providing a cue that did not

Submitted to Proceedings of the Royal Society B: For Review Only

393 directly match the food at the hiding event, we did not expect subjects to search. The finding 394 that apes did search, and thus overcame all these difficulties, is a remarkable testament to the 395 robustness of their memory for distinctive events.

396 The willingness to continue searching despite finding no food goes strongly against 397 any potential critique that the apes used associative learning to encode and recall the hiding 398 location. The apes experienced no food in the hiding location more often than they 399 experienced food (which occurred only once), thus any association with this location and 400 food would have been weakened. This was further supported by the lack of difference in 401 recall between retrieval sessions 1 and 2 of the experimental condition, that is, subjects that 402 searched in Retrieval 1 continued to search in Retrieval 2, despite finding no food, indeed, 403 only one subject who searched in Retrieval 1 of the experimental condition subsequently 404 failed to search in Retrieval 2. What is perhaps more surprising is that the apes who recalled 405 the event in the control condition did so even when the cues did not directly overlap. Here, 406 the food on the ground was not the same as the food that had been hidden during the event. 407 However, this finding is not completely at odds with involuntary memory. Although the 408 overlapping of features at encoding and retrieval is often found to trigger involuntary 409 memories, it is not the extent of the overlap that is important, rather it is the uniqueness of the 410 overlap [47]. Thus, the uniqueness of the location of the food (directly below the hiding 411 location) and the set up (or lack of set up) of the room may have been sufficient to cue recall 412 of the event.

This finding is consistent with the finding that the addition of a social cue made no difference to recall, as evidenced by no difference between Retrieval 1 and Retrieval 2 in which the experimenter identity differed. This is further reinforced by the fact that only two subjects who did not search in Retrieval 1 went on to search in Retrieval 2. As previously discussed, the uniqueness of the cues rather than the sheer number of overlapping cues could

explain this result. In this case, the experimenter's identity was not a unique or diagnostic
cue; both experimenters in this study have tested the apes on other tasks, and thus their
identity may be associated with other memories of past experiences. The more memory traces
a cue is associated with, the less likely that cue will trigger a specific episode, referred to as
cue overload [48]. As the identity of the experimenter was not specific to the hiding event, it
was not effective as a retrieval cue.

424 Alternately, it may be that the experimenter identity was confounded with the order of 425 retrieval sessions. As the experimenter that hid the food was always in Retrieval 2, which 426 occurred one week after Retrieval 1, it could be performance was enhanced by the matching 427 identity but hindered by the additional retention period, resulting in no difference in 428 performance overall. However, due to not finding a significant decline in recall from the two 429 week to the fifty-week delay, this is unlikely. Another possibility is that the apes simply did 430 not pay attention to the experimenter. The apes participate in many studies with many 431 experimenters, and more often than not, the experimenter's identity is not important to the 432 task. As such, the apes may have paid more attention to other aspects of the hiding event, 433 resulting in the identity of the experimenter being overshadowed [49]. This could potentially 434 explain why the addition of a social cue did not improve recall performance. As such, our 435 results suggest that using experimenter identity as a social cue may be of limited effect at 436 retrieval, especially in the presence of other more unique and diagnostic cues, something that 437 is consistent with other work [50, Beran; personal communication]. 438 With regards to the two exposure foods, we found no difference in memory recall. 439 This was unexpected, as we predicted the novelty of the flavoured pellet to enhance memory 440 recall. Although it is unclear why this was not the case, we propose two potential

441 explanations. Firstly, the hiding event was very distinctive regardless of which food type was

442 hidden, in that a human entering the enclosure and hiding a large cache of food in an unusual

http://mc.manuscriptcentral.com/prsb

443	location is a unique event to all the apes. Additionally, the bread was fairly distinctive in
444	itself; it was not a common food type and thus finding a large cache of it was a rather rare
445	occurrence. Consequently, the memorability of the event may not have been dependent upon
446	which food was hidden. Secondly, cardamom was a completely novel flavour for the apes,
447	and so it was possible that not all the apes liked it. During the hiding event, two of the apes
448	(Frodo and Luiza) did not eat the flavoured pellets, with Frodo returning the pellets to the
449	experimenter by pushing them through the enclosure meshing. As such, the reason why more
450	apes did not search in this condition could be that the apes simply did not like the food, and
451	thus were not motivated to search for it.
452	In conclusion, we show that apes can spontaneously recall a distinctive one-time, non-
453	goal-directed event after delays as long as fifty weeks, with their rate of recall across time
454	following a standard retention function. Furthermore, apes continue to recall this event after
455	failing to find food in that location repeatedly. These results are consistent with involuntary
456	memory in humans, and thus provide compelling evidence for the existence of involuntary
457	memory in apes.
458	
459	Competing interests
460	We have no competing interests.
461	
462	Author's contributions
463	Amy Lewis carried out the testing, the data and statistical analysis, participated in the design
464	of the study and drafted the manuscript; Josep Call contributed to testing, helped with the
465	data analysis, conceived of the study, participated in the design of the study, and helped draft
466	the manuscript. Dorthe Berntsen helped with the data analysis, conceived of the study,

467	participated in the design of the study, and helped draft the manuscript. All authors gave
468	final approval for publication.
469	
470	Acknowledgements
471	The authors wish to thank the staff and ape keepers at Leipzig Zoo. Special thanks are given
472	to Colleen Stevens and Roger Mundry for their help with the statistical analyses, and to
473	David C. Rubin for comments regarding retention functions.
474	
475	Data accessibility
476	Raw data uploaded as online supplemental material
477	
478	Funding
479	This research was funded by the Danish National Research Foundation (DNRF89).
480	
481	Figure captions
482	Figure 1. Example of the procedure sequence. i) Depicts the experimental condition first,
483	followed by the control condition. The subject is in the bread exposure food and 50-week
484	delay group. ii) Depicts the alternative order; with the control condition first, followed by the
485	experimental. The subject is in the bread exposure food and 50-week delay group.
486	
487	Figure 2. Proportion of searches by condition as a function of; a. order of condition, b. delay,
488	c. exposure food, and d. retrieval session. Numbers inside the bars represent number of data
489	points (a-c = N x 2 trials d = N). Con and Exp refer to the Control and Experimental
490	conditions, respectively.

- 491 Figure 3. Percentage of searching as a function of days since exposure to the hiding event
- 492 (estimating the first delay to 5 minutes = .003 days). Solid black line shows the forgetting
- 493 rate across the 2, 10 and 50 week delays. Dotted black line shows forgetting as a logarithmic
- 494 function.
- 495

References

- 496 [1] Ebbinghaus, H. 1885 Über das gedächtnis: untersuchungen zur experimentellen
- 497 *psychologie*, Books on Demand.
- 498 [2] Ebbinghaus, H. 1964 Memory: A contribution to experimental psychology. H.A. Ruger &
- 499 C.E. Bussenvis, Trans., New York: Dover.(Original work published 1885).
- [3] Berntsen, D. 1996 Involuntary autobiographical memories. *Applied Cognitive Psychology* 10, 435-454.
- 502 [4] Proust, M. 1981 *Remembrance of Things Past.* v.3 ed, Random House, New York.
- 503 [5] Rubin, D. C. & Berntsen, D. 2009 The frequency of voluntary and involuntary
- autobiographical memories across the life span. *Mem Cognit* **37**, 679-688.
- 505 (DOI:10.3758/37.5.679).
- 506 [6] Rasmussen, A. S. & Berntsen, D. 2011 The unpredictable past: spontaneous
- 507 autobiographical memories outnumber autobiographical memories retrieved strategically.
- 508 *Consciousness and cognition* **20**, 1842-1846. (DOI:10.1016/j.concog.2011.07.010).
- 509 [7] Rasmussen, A. S. & Berntsen, D. 2009 The Possible Functions of Involuntary
- 510 Autobiographical Memories. *Applied Cognitive Psychology* 23, 1137-1152.
- 511 (DOI:10.1002/acp.1615).
- 512 [8] Berntsen, D. 2009 Involuntary autobiographical memories: An introduction to the
- 513 unbidden past, Cambridge University Press.
- 514 [9] Schlagman, S. & Kvavilashvili, L. 2008 Involuntary autobiographical memories in and

outside the laboratory: How different are they from voluntary autobiographical memories?
 Memory & Cognition 36, 920-932. (DOI:10.3758/mc.36.5.920).

- 517 [10] Berntsen, D., Staugaard, S. R. & Sorensen, L. M. 2013 Why am I remembering this
- 518 now? Predicting the occurrence of involuntary (spontaneous) episodic memories. *J Exp*
- 519 *Psychol Gen* **142**, 426-444. (DOI:10.1037/a0029128).
- 520 [11] Clayton, N. S. & Dickinson, A. 1998 Episodic-like memory during cache recovery by 521 scrub jays. *Nature* **395**, 272-274. (DOI:10.1038/26216).
- 522 [12] Menzel, C. R. 1999 Unprompted recall and reporting of hidden objects by a chimpanzee
- 523 (Pan troglodytes) after extended delays. Journal of Comparative Psychology 113, 426-434.
- 524 [13] Martin-Ordas, G., Haun, D., Colmenares, F. & Call, J. 2010 Keeping track of time:
- 525 evidence for episodic-like memory in great apes. *Animal Cognition* **13**, 331-340.
- 526 (DOI:10.1007/s10071-009-0282-4).
- 527 [14] Crystal, J. D. & Smith, A. E. 2014 Binding of episodic memories in the rat. *Current*
- 528 *Biology* **24**, 2957-2961. (DOI:10.1016/j.cub.2014.10.074).
- 529 [15] Hoffman, M. L., Beran, M. J. & Washburn, D. A. 2009 Memory for "what", "where",
- and "when" information in rhesus monkeys (Macaca mulatta). Journal of Experimental
- 531 *Psychology: Animal Behavioral Processes* **35**, 143-152. (DOI:10.1037/a0013295).
- 532 [16] Kano, F. & Hirata, S. 2015 Great Apes Make Anticipatory Looks Based on Long-Term
- 533 Memory of Single Events. *Current Biology* **25**, 2513-2517.
- 534 (DOI:10.1016/j.cub.2015.08.004).

- 535 [17] Dere, E., Huston, J. P. & De Souza Silva, M. A. 2005 Integrated memory for objects,
- 536 places, and temporal order: evidence for episodic-like memory in mice. *Neurobiol Learn*
- 537 *Mem* **84**, 214-221. (DOI:10.1016/j.nlm.2005.07.002).
- 538 [18] Fugazza, C., Pogány, Á. & Miklósi, Á. 2016 Recall of Others' Actions after Incidental
- 539 Encoding Reveals Episodic-like Memory in Dogs. *Current Biology*.
- 540 (DOI:10.1016/j.cub.2016.09.057).
- 541 [19] Panoz-Brown, D., Corbin, H. E., Dalecki, S. J., Gentry, M., Brotheridge, S., Sluka, C.
- 542 M., Wu, J. E. & Crystal, J. D. 2016 Rats Remember Items in Context Using Episodic
- 543 Memory. *Current biology* : *CB* **26**, 2821-2826. (DOI:10.1016/j.cub.2016.08.023).
- 544 [20] Berntsen, D. 2010 The Unbidden Past: Involuntary Autobiographical Memories as a
- 545 Basic Mode of Remembering. *Current Directions in Psychological Science* **19**, 138-142.
- 546 (DOI:10.1177/0963721410370301).
- 547 [21] Clayton, N. S., Bussey, T. J., Emery, N. J. & Dickinson, A. 2003 Prometheus to Proust:
- the case for behavioural criteria for 'mental time travel'. *Trends in Cognitive Sciences* **7**, 436-437. (DOI:10.1016/j.tics.2003.08.003).
- 550 [22] Berntsen, D. & Jacobsen, A. S. 2008 Involuntary (spontaneous) mental time travel into
- the past and future. *Consciousness and cognition* **17**, 1093-1104.
- 552 (DOI:10.1016/j.concog.2008.03.001).
- 553 [23] Hall, S. A., Rubin, D. C., Miles, A., Davis, S. W., Wing, E. A., Cabeza, R. & Berntsen,
- 554 D. 2014 The neural basis of involuntary episodic memories. *Journal of cognitive*
- 555 *neuroscience* **26**, 2385-2399. (DOI:10.1162/jocn_a_00633).
- 556 [24] Hall, N. M., Gjedde, A. & Kupers, R. 2008 Neural mechanisms of voluntary and
- 557 involuntary recall: a PET study. *Behav Brain Res* 186, 261-272.
- 558 (DOI:10.1016/j.bbr.2007.08.026).
- 559 [25] Martin-Ordas, G., Berntsen, D. & Call, J. 2013 Memory for distant past events in
- 560 chimpanzees and orangutans. *Current Biology* **23**, 1438-1441.
- 561 (DOI:10.1016/j.cub.2013.06.017).
- 562 [26] Clayton, N. S., Yu, K. S. & Dickinson, A. 2001 Scrub Jays (Aphelocoma coerulescens)
- 563 Form Integrated Memories of the Multiple Features of Caching Episodes. *Journal of*
- 564 Experimental Psychology Animal Behavior Processes 27, 17-29. (DOI:10.1037/0097-
- 565 7403.27.1.17).
- 566 [27] Crystal, J. D., Alford, W. T., Zhou, W. & Hohmann, A. G. 2013 Source memory in the 567 rat. *Current biology* : *CB* **23**, 387-391. (DOI:10.1016/j.cub.2013.01.023).
- 568 [28] Mendes, N. & Call, J. 2014 Chimpanzees form long-term memories for food locations
- after limited exposure. *American Journal of Primatology* **76**, 485-495.
- 570 (DOI:10.1002/ajp.22248).
- 571 [29] Berntsen, D. & Hall, N. M. 2004 The episodic nature of involuntary autobiographical
- 572 memories. *Memory and Cognition* **32**, 789-803. (DOI:10.3758/bf03195869).
- 573 [30] Berntsen, D. 2001 Involuntary memories of emotional events: do memories of traumas
- and extremely happy events differ? *Applied Cognitive Psychology* 15, S135-S158.
- 575 (DOI:10.1002/acp.838).
- 576 [31] Rasmussen, A. S., Johannessen, K. B. & Berntsen, D. 2014 Ways of sampling voluntary
- and involuntary autobiographical memories in daily life. *Consciousness and cognition* **30**,
- 578 156-168. (DOI:10.1016/j.concog.2014.09.008).
- 579 [32] Zentall, T. R. 2006 Mental time travel in animals: a challenging question. Behav
- 580 *Processes* **72**, 173-183. (DOI:10.1016/j.beproc.2006.01.009).
- 581 [33] Reed, P. & Richards, A. 1996 The von Restorff Effect in Rats (*Rattus norvegicus*).
- 582 *Journal of Comparative Psychology* **110**, 193-198. (DOI:10.1037/0735-7036.110.2.193).

- 583 [34] Reed, P., Chih-Ta, T., Aggleton, J. P. & Rawlins, J. N. P. 1991 Primacy, Recency, and
- the von Restorff Effect in Rats' Nonspatial Recognition Memory. *Journal of Experimental*
- 585 Psychology: Animal Behavior Processes 17, 36-44.
- 586 [35] Izquierdo, L. A., Barros, D. M., Medina, J. H. & Izquierdo, I. 2003 Exposure to novelty
- 587 enhances retrieval of very remote memory in rats. *Neurobiology of Learning and Memory* 79,
- 588 51-56. (DOI:Doi 10.1016/S1074-7427(02)00006-0).
- 589 [36] Parker, A., Wilding, E. & Akerman, C. 1998 The Von Restorff effect in visual object
- 590 recognition memory in humans and monkeys. The role of frontal/perirhinal interaction.
- 591 *Journal of cognitive neuroscience* **10**, 691-703.
- 592 [37] Beran, M. J. 2011 Chimpanzees (Pan troglodytes) Show the Isolation Effect During
- 593 Serial List Recognition Memory Tests. *Animal Cognition* **14**, 637-645.
- 594 (DOI:10.1007/s10071-011-0398-1).
- 595 [38] Schwartz, B. L., Colon, M. R., Sanchez, I. C., Rodriguez, I. A. & Evans, S. 2002 Single-
- 596 Trial Learning of "What" and "Who" Information in a Gorilla (*Gorilla gorilla gorilla*):
- 597 Implications for Episodic Memory. *Animal Cognition* **5**, 85-90. (DOI:10.1007/s10071-002-598 0132-0).
- 599 [39] Rubin, D. C. & Wenzel, A. 1996 One Hundred Years of Forgetting: A Quantitative
- 600 Description of Retention. *Psychological Review* **103**, 734-760.
- 601 [40] Saive, A.-L., Ravel, N., Thévenet, M., Royet, J.-P. & Plailly, J. 2013 A novel
- 602 experimental approach to episodic memory in humans based on the privileged access of
- 603 odors to memories. Journal of Neuroscience Methods 213, 22-31.
- 604 (DOI:<u>http://dx.doi.org/10.1016/j.jneumeth.2012.11.010</u>).
- 605 [41] Aggleton, J. P. & Waskett, L. 1999 The ability of odours to serve as state-dependent
- 606 cues for real-world memories: Can Viking smells aid the recall of Viking experiences?
 607 *British Journal of Psychology* 90, 1-7. (DOI:10.1348/000712699161170).
- 608 [42] Baayen, R. H. 2008 Analyzing linguistic data: A practical introduction to statistics using
- 609 *R*, Cambridge, UK: Cambridge University Press.
- 610 [43] McCullagh, P. & Nelder, J. A. 1989 *Generalized Linear Models*. London, Chapman and 611 Hall.
- 612 [44] Dobson, A. J. 2002 An introduction to generalized linear models. (ed. B. Raton).
- 613 [45] Forstmeier, W. & Schielzeth, H. 2011 Cryptic multiple hypotheses testing in linear
- 614 models: Overestimated effect sizes and the winner's curse. *Behavioral Ecology and* 615 *Sociobiology* **66**, 47-55.
- 616 [46] Field, A. 2005 Discovering Statistics using SPSS., Sage Publications. London.
- [47] Nairne, J. S. 2002 The myth of the encoding-retrieval match. *Memory* **10**, 389-395.
- 618 (DOI:10.1080/09658210244000216).
- 619 [48] Watkins, O. C. & Watkins, M. J. 1975 Buildup of Proactive Inhibition as a Cue-
- 620 Overload Effect. *Journal of Experimental Psychology: Human Learning and Memory* 1, 1621 15.
- [49] Smith, S. M. 1994 Theoretical principles of context-dependent memory. *Theoretical aspects of memory*, 168-195.
- 624 [50] Lewis, A., Call, J. & Berntsen, D. 2017 Distinctiveness enhances long-term event
- 625 memory in non-human primates, irrespective of reinforcement. American Journal of
- 626 *Primatology*, 22665-n/a. (DOI:10.1002/ajp.22665).
- 627

Submitted to Proceedings of the Royal Society B: For Review Only Page 24 of 26

i)

