AUTOMATIC S-ACTS AND INVERSE SEMIGROUP
PRESENTATIONS

Erzsébet Rita Dombi
A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

2005

Full metadata for this item is available in
St Andrews Research Repository
at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/15123

This item is protected by original copyright


http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/15123

Automatic S-acts and inverse semigroup presentations

Erzsébet Rita Dombi

Ph.D. Thesis
University of St Andrews

September, 2004

Arad e



ProQuest Numlber: 10166195

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely eventthat the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest 10166195

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M| 48106 - 1346



ii

£303




To Zsolt




v




Contents

Declaration
Abstract
Acknowledgements
1 Introduction

2 Preliminaries

SR St B b e s Do 5 o i 50 ps olle 2 R b SHCR S w WIS ¥ X 5
2.2 Regular languages and finite state automata . . . . . . . . ... ...
2.3 Automatic groups and Semigroups . . . . . . . .. et e e e e e e

3 Automatic semigroup acts

B DeBnitions, ¢ o « w5 mww w s w5 5w n @ %R b e KD Rk @ K AR 8 % 8 B
3.2 Schiitzenberger automatic regular semigroups . . . . . . .. ... oL
3.3\ ESAIAPIER " . hoar o v w nosa v AR @ ¥R S e @ & SN B S R 8B R R
3.4 Basicproperties: v 3z v ussiamsssawss EREEAE RGN E G u s
3.5 Automatic versus Schiitzenberger antomatic. . . ... .. ... ... ...,
3.6 Invariance under the change of generators. .”. . . .. ... .. .. ... ...
3.7 Pellow traveller proparty Lv » « i v o vnm v svs ww s s s mes R
3.8 TFellow traveller property II. . . . . . . . . . . . . v i e
3.9 Fellow traveller property ITL . . . . ¢« o v o v v v v v v v v v oo v v v v o0
3,10 Fintte presentabilily: o . » « 2 v o x5 m oo vm s e g w e e s d e bR
3.11. Equality and word problemis . « « o ¢ v woe v v 5 % oo v w0 v 5w 8 s 0w v v s

3.12 Inverse free product of inverse semigroups. . . . e e Ee Tid

vii

ix

xi

11
14

19
19
25
29
34
47
49
59
64
74
77
78
84




vi CONTENTS
4 Semidirect product 95
A1 PreseBationg: s « o ¢ % 5 500 6 % 8 A e & ¢ 5 W v S 5 % A E 68 B AT e ¢ 8 A 95
4.2 Finite generation with respect toan action. . . . ... ... ... ... ... 99
43 PMimtegenersbion. « & s 44 B s i v Fm E v 3 W W F L aD WA B G ol ¥ 5 8 % s 106
4.4 Finite presentability with respect toan actionI. . ... .. ... .. .. .. 108
A5 reamnples T o b e e ke o e Bk WS N Ul S T S S S e 8 E A G 119
4.6 Tinite presentability with respect to an action IL. . . . . ... ... ... .. 129
" G 2 R W SR b i 1 N W -t 133
4.8 Matched and conjugate WORdS . . « o v v v v o o s o 0% o v e s 4 mim s 0w n 140
4.9  Finite presentability Lo « 50 o« o sl n w s % mim v 00 b @i xoy %o w ok 8 B 143
110 Pitiite presentability I v vov wnwr s vw wmm v v e @ 5 w5 3w 0 x @ 150
411 Sechiitzenberger automakicity . « s v v v av e v d R b v e e W 8 w W 161
5 HNN extensions 167
51 GrouD BININ EXTenBIonE  « o o » & 0w & 5 % % Ge sl 2 0 & 96 @ © % G 0k % 8 % A 168
5.2 Yamamura's HNN extension . . . . ... ... i PRI TT AR 170
5.3 Gilbert’s INN extension . . ¢ & 5 =0« # 5 % &% @ e 5 v @ w0 s 8 e @ @ e s al e 172
5.4 An alternative presentation for Gilbert’s HNN extension . . . . .. .. ... 175
5.5 Finite generation of Gilbert’s HNN extension . .. ... ........... 177
5.6 Finite presentability of Gilbert’s HNN-extension . ... ........... 179
57 A compelling consequente . , . . . . s v v e v s et e e e e e e 181
B8 TRBIDIES & a sivass = 5 towss & ooy sus & & 8 g5 & 4 0 e @ ¥ A ewEen © % i ) 183



Declaration

I, Erzsébet Rita Dombi, hereby certify that this thesis, which is approximately 66000
words in length, has been written by me, that it is the record of work carried out by me
and that it has not been submitted in any previous application for a higher degree,

Signature Name Erzsébet Rita Dombi Date 03/09/04

---------------------------------------------

I was admitted as a research student in September 2001 and as a candidate for the degree
of Ph.D.; the higher study for which this is a record was carried out in the University of
St Andrews between 2001 and 2004.

BIERERIIE. o wnms st Name Erzsébet Rita Dombi Date 03/09/04

I hereby certify that Erzsébet Rita Dombi has fulfilled the conditions of the Resolutions
and Regulations appropriate for the degree of Ph.D. in the University of St Andrews and
that the candidate_is qualified to submit this thesis in application for that degree.

EIEHAEIITS (. cuvecosovinimmmiimessvianvssmes =i mibs .Name Nik Ruskuc Date 03/09/04

In submitting this thesis to the University of St Andrews I understand that I am giving
permission for it to be made available for use in accordance with the regulations of the
University Library for the time being in force, subject to any copyright vested in the work
not being affected thereby. I also understand that the title and abstract will be published,
and that a copy of the work may be made and supplied to any bona fide library or research

worker,

2] 11T 2 o Name Erzsébet Rita Dombi Date 03/09/04

vil




viii DECLARATION




Abstract

To provide a general framework for the theory of automatic groups and semigroups, we
introduce the notion of an automatic semigroup act. This notion gives rise to a variety
of definitions for automaticity depending on the set chosen as a semigroup act. Namely,
we obtain the notions of automaticity, Schiitzenberger automaticity, R- and L-class auto-
maticity, etc. We discuss the basic properties of automatic semigroup acts. We show that
if S is a semigroup with local right identities, then automaticty of a semigroup act is inde-
pendent of the choice of both the generators of S and the generators of the semigroup act.
We also discuss the equality problem of automatic semigroup acts. To give a geometric
approach, we associate a directed labelled graph to each S-act and introduce the notion
of the fellow traveller property in the associated graph. We verify that if S is a regular
semigroup with finitely many idempotents, then Schiitzenberger automaticity is charac-
terized by the fellow traveller property of the Schiitzenberger graph. We also verify that
a Schiitzenberger automatic regular semigroup with finitely many idempotents is finitely
presented. We end Chapter 3 by proving that an inverse free product of Schiitzenberger
automatic inverse semigroups is Schiitzenberger automatic. ,

In Chapter 4, we first introduce the notion of finite generation and finite presentability
with respect to a semigroup action. With the help of these concepts we give a necessary
and sufficient condition for a semidirect product of a semilattice by a group to be finitely
generated and finitely presented as an inverse semigroup. We end Chapter 4 by giving a
necessary and sufficient condition for the semidirect product of a semilattice by a group
to be Schiitzenberger automatic.

Chapter 5 is devoted to the study of HNN extensions of inverse semigroups from finite
generation and finite presentability point of view. Namely, we give necessary and sufficient
conditions for finite presentability of Gilbert’s and Yamamura’s HNN extension of inverse
semigroups. The majority of the results contained in Chapter 5 are the result of a joint

work with N.D. Gilbert and N. Ruskuc. ]
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Chapter 1

Introduction

In order to obtain certain properties of (infinite) semigroups or groups quickly and effi-
ciently with the help of computers, encoding them with ﬁnitely many pieces of information
is important. One way of encoding a semigroup or a group is to find generators and rela-
tions between words on the generators that describe the semigroup or group in question.
This, is the subject of the theory of semigroup and group presentations.. Another way of
encoding is in terms of generators and finitely many finite state automata. This approach
led to the theory of automatic groups and semigroups. '

The theory of automatic groups was introduced in the early 1980s by Epstein et al
[9]. The main aim was to introduce a large class of groups having solvable word problem.
Automatic groups have many pleasant properties. They are finitely presented, their auto-
maticity does not depend on the choice of the finite generating set, and most importantly
they are characterized by a geometric property, called the fellow traveller property of their
Cayley graphs. '

That the (language theoretic) notion of an automatic group can be naturally extended
to semigroups was observed by Campbell et al [5] and the study of automatic semigroups
was initiated. Investigation began into whether properties of automatic groups carry
over in the case of automatic semigroups [5]. Automatic semigroups have solvable word
problem. On the other hand, it turned out that automatic semigroups behave more wildly
than automatic groups. Automatic semigroups are not necessarily finitely presented [5,
Example 4.4], automaticity of semigroups does depend on the choice of generators [5,
Example 4.5]. Moreover a geometric characterization of automatic semigroups with the
help of their Cayley graphs does not exists.

The response to the above results was twofold. On one hand alternative notions of
automaticity have been considered for semig‘lioups (34], {19]. On the other hand semigroup
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classes closely related to groups have been considered. For example, regarding automatic
completely simple semigroups, the group theoretic results generalize. That is, automatic
completely simple semigroups are finitely presented, automaticity does not depend on the
choice of generators and fellow traveller property of their Cayley graph characterizes them.
In [12] it is proved that automaticity of monoids does not depend on the choice of the
generating set.

The main purpose of Chapter 3 is to give a general framework for the theory of auto-
matic semigroups and groups and to extend the known results. In Section 1, we introduce
the notion of an automatic semigroup act or automatic S-act for short. Choosing the
S-act to be a set closely related to the semigroup S, we arrive at a wide variety of notions
of automaticity. If the S-act is the semigroup S, then we obtain the usual notion of au-
tomaticity. By choosing the S-act to be S/R or S/L, we introduce the notion of R-class
and L-class automaticity. With the assumption that S is a regular semigroup and the
S-act is an R-class of § we introduce the notion of Schiitzenberger automaticity. Com-
bining Schiitzenberger automaticity and R-class automaticity we introduce the notion of
a strongly Schiitzenberger automatic semigroup. In Section 3, we illustrate these notions
by giving examples.

In Sections 4 and 5, we discuss basic properties of automatic S-acts and compare the
notion of automaticity and Schiitzenberger automaticity of regular semigroups.

In Section 6, we show that if S is a semigroup with local right identities, then auto-
maticity of an S-act is independent of the choice of generators of S and also of the choice
of generators of the S-act. A consequence of this result is that automaticity of a regular
semigroup is independent of the choice of generators.

In Sections 7-9 we discuss a geometric approach. To each S-act we associate a directed
labelled graph and introduce the notion of the fellow traveller property in that graph. We
show that if an S-act is automatic then the fellow traveller property holds in the associ-
ated graph. In Section 8, we investigate the conditions under which the converse holds.
In particular, we verify that if S is a regular semigroup with finitely many idempotent
elements, then the fellow traveller property of a Schiitzenberger graph of an R-class R
does characterize Schiitzenberger automaticity of R. In Section 9, we give an example
of a semigroup S with infinitely many idempotents, .in which there is an R-class whose
Schiitzenberger graph possesses the fellow traveller property but is not Schiitzenberger
automatic.

As mentioned above, automatic semigroups and groups have solvable word problem.
In Section 10, we introduce the equality problem for S-acts, and show that the equality



problem is solvable in automatic S-acts.

Free products of automatic gréups and semigroups are automatic. In Section 11,
we verify that inverse free product of Schiitzenberger automatic inverse semigroups is
Schiitzenberger automatic. The proof of this result is based on the description of the
Schiitzenberger graphs of the inverse free product of two inverse semigroups given by Jones
et al [25]. The underlying tool of the results in [25] is Stephen’s procedure for constructing
Schiitzenberger graphs with respect to an inverse semigroup presentation [35].

An extensive study of semigroup presentations began in the last decade. One of the
main areas of research is the study of presentations of semigroup constructions [33], [1],
[7]. Naturally, the main purpose.is to give a necessary and sufficient condition for the
semigroup construction to be finitely presented. In the last two chapters we investigate
two inverse semigroup constructions: one of them is the semidirect product of a semilattice
by a group; the other is an HNN extension (both in the sense of Gilbert and in the sense
of Yamamura) of an inverse semigroup.

We begin Chapter 4 by introducing the concept of finite generation and finite pre-
sentability with respect to a semigroup action. With the help of these concepts we give a
necessary and sufficient condition for a semidirect product of a semilattice by a group to
be finitely generated and to be finitely presented as an inverse semigroup. We end Chapter
4 by giving a necessary and sufficient condition for a semidirect product of a semilattice
by a group to be Schiitzenberger automatic.

The construction of an HNN extension was first introduced when Higman, Neumann
and Neumann studied embeddability questions of groups. The construction was first
considered for semigroups by Howie [20]. In recent years, two alternative notions for HNN
extensions of inverse semigroups have been given. One of these is due to Yamamura [36],
the other one to Gilbert [14]. "We consider finite presentability of HNN extensions of
groups and inverse semigroups both in the sense of Gilbert and in the sense of Yamamura.
Considering Yamamura’s HNN extension we see that the group theoretic result generalizes.
The main result of Chapter 5 is to give a necessary and sufficient condition for Gilbert’s
HNN extension of an inverse semigroup to be finitely presented. Sections 3-8 of Chapter
5 contain results of a joint work with N.D.Gilbert and N.Ruskuc, and are accepted for
publication.
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Chapter 2

Preliminaries

We begin by reviewing three main mathematical subjects under consideration in this
thesis. These are: semigroup theory, the theory of finite state automata and regular
languages and the theory of automatic groups and semigroups. To give a detailed survey
on these subjects is beyond the scope of the thesis. Our aim is to introduce the basic
definitions and results that are going to be used in the third chapter. For further details
in semigroup theory we refer the reader to [22], in the theory of finite automata and regular
languages [28],[21] and in automatic groups and semigroup [9] and [5]. At the beginning
of each subsequent chapter we give a further brief introduction containing the necessary

definitions and results to make the chapter self-contained.

2.1 Semigroups

We summarize some basic definitions and results from semigroup theory we will refer to

in the thesis.
Basic definitions

A non-empty set S together with an associative binary operation, usually called mul-
tiplication is called a semigroup. Let T be a non-empty subset of a semigroup S. We say
that T is a subsemigroup of S, if T is closed with respect to the multiplication. If S is a
semigroup and X is a non-empty subset of S, then the intersection of all subsemigroups
of S containing X is the subsemigroup (X) generated by X. If (X) = S, then we say that
S is generated by X.

Let X be a non-empty set. Let X+ denote the set of all finite words (21 ...z,), where

z; € X for all 1 <4 < n. The integer 1 < 'n,Ei,s the length |w| of the word (z1...25). The
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set X can be equipped with the following associative operation, called concatenation:

(ml ....’L‘n)(flh e Ym) = ($1...:cny1...ym)-
The semigroup obtained is called the free semigroup on X. We recall [33, proposition 1.1].

Proposition 2.1.1. Let X be a non-empty set and S be a semigroup. Then every mapping
f: X — S estends uniquely to a homomorphism ¢ : Xt — S. If S is generated by X,
then ¢ is surjective.

Let S be a semigroup generated by X C S. Let ¢ : X+ — S denote the homomorphism
extending the identity map ¢ : X — S. For any two words u,v € X+, we write u = v, if u
and v are identical as words, and we write u = v, if © and v represent the same element
of S, that is, if up = ve.

Let S be a semigroup. We say that 1 € S is an identity element, if 1s = s1 = s holds
for all s € S. It is easy to see that a semigroup can have at most one identity element. If
a semigroup S contains an identity element, then we call S a monoid. If S does not have
an identity element, then a monoid can be formed from S in the following way. We choose
a symbol 1 ¢ S and define 1s = sl = s for all s € S and define 11 = 1. The monoid
obtained is denoted by S*.

Let S be a semigroup with at least two elements. We say that 0 € S is a zero element,
if 08 = s0 = 0 holds for all s € S. A semigroup S can have at most one zero element. If S
does not have a zero element, then a semigroup with . zero element can be obtained in the
following way. We choose a symbol 0 ¢ .S and define 0s = s0 = 0 for all s € S and define
00 = 0. The semigroup obtained is denoted by S°.

We say that e € S is an idempotent, if ee = e. The set of idempotents of S will be
denoted by E(S).

Let S be a semigroup and R be a relation on S. We say that R is left (right) compatible
with the multiplication, if whenever s, € S are such that s R £, then for all a € 5,
as R at, (sa R ta) holds. We say that R is compatible with the multiplication, if whenever
81,89,t1,t0 € S are such that sy R ) and sg R t3 hold, then sys2 R t1t2 holds. A left
(right) compatible equivalence relation is called a left (right) congruence, and a compatible
equivalence relation is called a congruence on S.

Before we give examples for a left and a right congruence on a semigroup S, we
introduce the following notions. Let A be a non-empty subset of a semigroup S§. We
say that A is a left (right) ideal in S, if for all s € S and a € A, sa € A, (as € A) holds.
If A is a left and a right ideal in S, then we say that A is an 4deal in S. If A is an ideal
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of § so that A C 9, then say that S is a proper ideal of S. We say that S is simple, if
it has no proper ideals. If @ € S, then the smallest left (right} ideal of S containing a is
Slo = {sa | s € §'} (a8 = {as | s € S§}), which we call the principal left (right) ideal
generated by a. The smallest ideal containing a is S*aS* = {sat | s,t € S}, which we call
the principal ideal generated by a.

Let S be a semigroup. We define the following equivalence relations on S. For all
s,t € 9, we define s £ ¢, if and only if s and t generate the same principal left ideal, that
is, if and only if S's = S1¢. Similarly, for all 5, € S, we define s R t, if and only if s and
t generate the same principal right ideal, that is, if and only if sS1 = ¢S1. Clearly, £ is
a right congruence and R is a left congruence on S. It can be easily seen that £ and R
commutes, and so D = LoR = Ro L is the smallest equivalence containing £ and R. We
denote by H the intersection of £ and R. If H is trivial, then we call S a combinatorial
or aperiodic semigroup. We introduce our final equivalence relation. For all s,t € S, we
define s J t, if and only if s and ¢ generate the same principal ideal, that is, if and only
if 91581 = S1tS1. We note that S is' a simple semigroup if and only if 7 = § x S. It
is immediate that H € R,£ C J, and sc D C J holds as well. We call the relations
L, R, H, D, and J Green’s relations. We denote the L-class [R, H, D, J-class| of an
element s € S by Ls [Rs, Hg, Dg, J5]. Since D = Lo R = R o L, the D-class of s € S, can
be visualized in a convenient way by the egg-box picture:

Ls
Ry | s

The box represents a D-class, namely Dy, the rows correspond to R-classes, the columns
to L-classes, and each cell represents an H-class.

Lemma 2.1.2. Let S be a semigroup and e € E(S). Then er = r for allr € R, and
le=1 foralll € L.

Proof. See [22, Proposition 2.3.3].

With the help of left and right translations, a bijection can be given between L£-, R-
and H-classes of a semigroup contained within a D-class.

Lemma 2.1.3 (Green’s lemma). Let S be a semigroup and s,t € S so that s L t.
Assume that s = at and t = bs. Then the mappings

Aot R = Ry z—bz and ARy — Ry y—ay
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are mutually inverse L-class preserving bijections.

Proof. See (22, Lemma 2.2.2).

A subgroup of a semigroup S is a subsemigroup, which is a group. With the help of
Green’s lemma the following propositions can be proved.

Proposition 2.1.4. The mazimal subgroups of a semigroup S coincide with the H-classes
of S which contain an idempotent. Each subgroup of S is contained in an H-class of S.

Proof. See [22, Corollary 2.2.6).

Proposition 2.1.5. Let S be a semigroup, and s,t € S such that s Dt. Then st € RsNL,
if and only if Lg N Ry contains an idempotent.

Proof. See [22, Proposition 2.3.7].
We illustrate Proposition 2.1.5 with the help of the egg-box picture:

Lt Ls
R, | st -8
R | & -e

Regular semigroups

Throughout the thesis we shall be interested in regular semigroups. We first generalize
the group theoretic notion of an inverse. Let S be a semigroup. We say that s € S is
regular, if there exists = € S so that s = szs. We say that z is an inverse of s, if s = sxs
and z = zsz hold. It can be easily seen, that if s € S is regular and s = szs, then
s' = asz is an inverse of s. Thus, we may deduce that s € S is regular if and only if s
has an inverse. An element can have more than one inverse. The set of all inverses of an
element will be denoted by V(s). We call S a reguldr semigroup, if every element of S is
regular. Note that if s’ € V(s), then ss',s's € E(S) and ss' R s £ s's. Thus in a regular
semigroup, every £- and R-class contains an idempotent. Also we have

Proposition 2.1.6. If s € S is regular, then every element of Dy is regular.
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Proof. See [22, Proposition 2.3.1].

Let s € S, where § is a regular semigroup. The locations of the idempotents in D,
determines the location of inverses of s. Namely, we have

Proposition 2.1.7. Let S be regular semigroup and s € S. Then
(1) For all 8 € V(s), we have s D §'.
(2) For all s € V(s), we have ss' € RsN Ly and §'s € Ly N Rgy.

(3) If e,f € E(S) and e R s L f, then there exists s' € V(s) such that ss' = ¢ and
sg's = f.

(4) No H-class contains more than one inverse of s.

Proof. See [22, Theorem 2.3.4].
We illustrate the results of the above proposition with the help of the egg-box picture:

L, Ly Ly L.
R,| a -aa’ R. | a e
R | wa -a’ Rf | -f -a’

The Green’s relations in a regular semigroup can be described in the following way:
Proposition 2.1.8. Let S be a regular semigroup and s,t € S. Then

(1) s L t, if and only if s's = t't for some ' € V(s), t € V(t).

(2) s R t, if and only if ss' = tt’ for some s' € V(s), t' € V(¢).

(3) s H t, if and only if s's = t't and ss’ = tt’ for some s’ € V(s), t' € V(t).

Proof. See [22, Proposition 2.4.1].

Let S be a regular semigroup and s,t € S. To determine an inverse of st in terms of
inverses of s and ¢, we need to introduce the notion of a sandwich set. '

Definition 2.1.9. Let S be a regular semigroup. The sandwich set of e, f € E(S) is the
non-empty set
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Proposition 2.1.10. Let S be a regular semigroup, s,t € S. Let s' € V(s), t' € V(t) and
h € S(s's,tt'). Then t'hs’ € V (st).

Proof. See [22, Theorem 2.5.4].
With the help of Proposition 2.1.5, the following proposition can be verified.

Proposition 2.1.11. Let S be a regular semigroup, e € E(S) and consider G = H,. Let
s,t € Re such that s H t. Then Gs = Gt hold.

We give a brief summary on certain regular semigroup classes that will appear in the
thesis.

We say that S is a completely regular semigroup, if every H-class in S is a group. A
completely regular simple semigroup is called a completely simple semigfoﬁp. It can be
verified, that if S is a completely simple semigroup, then eSe is a group for all e € E(S).
Completely simple semigroups play an important role in the description of the structure
of completely regular semigroups. Namely, if S is a completely regular semigroup, then
S/J isa semilati;ice, and each J-class is a completely simple subsemigroup of S. In other
words, each completely regular semigroup is a semilattice of completely simple semigroups.
The Rees-Sushkevich Theorem, which we now introduce, describes the structure of com-
pletely simple semigroups, and so a finer picture can be obtained from completely regular

semigroups.

Proposition 2.1.12 (Rees-Sushkevich). Let G be a group, A and I non-empty sets.
Let P = (py;) be a A x I matriz with entries in G. Let § = I x G x A, and define a
multiplication on S by

(i, g, ’\) (.71 h’1 /J') = (i)gijha /—L)-

Then S is a completely simple semigroup. Conversely, every completely simple semigroup
is isomorphic to a semigroup constructed in this way. '

Proof. See [22, Theorem 3.3.1].

The semigroup I x G x A with the given multiplication is denoted by M|[G, I, A; P] and
is called a Rees matrix semigroup over G.

In a regular semigroup an element can have more than one inverse. We say that S is an
inverse semigroup, if every element has exactly one inverse. The inverse of an element s is
denoted by s~1. It can be easily seen that if S is an inverse semigroup and s,t € S, then
(a)~! = ¢1g~1, (a~1)1 =4 hold.
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Proposition 2.1.13. Let S be a semigroup. Then the following are equivalent.
(1) S is an inverse semigroup.
(2) S is regqular and E(S) forms a semilattice.

(8) Every R- and L-class contains exactly one idempotent.

Proof. See [22, Theorem 5.5.1].

There is a natural partial order defined on inverse semigroups, which possesses pleasant
properties. Let S be an inverse semigroup and s,t € S. We say that s < ¢ if and only
if s = et for some e € E(S). It can be easily seen, that s < ¢ if and only if s~ < ¢71,
Furthermore, if 51 < #; and s < tg, then s1s9 < t1t3.

2.2 Regular languages and finite state automata

We will often refer to a finite non-empty set A as an alphabet. We may wish to adjoin an
element A to AT, called the empty-word, to form the free monoid A*. The length of the
empty-word will be defined to be 0. A subset of L C A* will be called a language over A.
If L and K are languages over A, then LN K, LUK,L\ K, LK ={w |u€ L, v € K},
L*={A\}ULULLULLLU...and LT = LULLULLLU... are also languages over A.
We often write L + K instead of L U K.

A deterministic finite state automaton is a quintuple A = (3, A, u,p,T'), where T is a
finite non-empty set called the set of states, A is an alphabet, p: ¥ x A — X is a function,
called the transition function, p € ¥ is called the initial state, T' C X is the set of terminal
or final states. We extend the transition function to a mapping p*: £ x A* — X as follows:

(0,A) = q; (g,0) = plg,a); (g,aw) = p*(p(g,a), w),

where ¢ € X, a € A, w € A*. We say that a word w = ay...a, over A is recognized
by the automaton A if p*(p,w) € T. The language L(A) recognized (or accepted) by the
automaton A is the set of all elements w € A* that are recognized by .A.

A deterministic finite state automaton A = (X, A, #,p,T') can be visualized as a di-
rected labelled graph, whose vertices are elements of ¥ and there is an arrow from state ¢
to state r with label a, if u(g,a) =7r. If w=a;y...a, € L(A), then we say that the path

a2

ay an—1 an
Py =i T gp=] = HT

is successful.
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A non-deterministic finite state autornaton is a quintuple A = (%, A, u,p,T'), where
¥ is a finite non-empty set called the set of states, A is a finite non-empty set called the
alphabet, p: ¥ x (AU {A}) — P(X), where P(X) denotes the set of all subsets of ¥ , is a
function, called the transition function, p € 3 is called the initial state and T' C X. The
elements of T" are called terminal or final states. To define the language accepted by this
automaton, we need the following notion. Let w be a word over AU {A}. The value of
w is the word obtained from w by deleting all occurrences of A in w. A path in A is a
sequence

ax a2 An—1 an
go— @1 —* ... — gn-1 — QGny

where g; € p(gi—1,ai-1), {1 <i < n) and we say that a; ...a, is the label of the path. We
say that w is accepted by A, if there exists a path from the initial state to a final state
whose label is w or a word with the same value as w. The language L(A) recognized (or
accepted) by the automaton A is the set of all elements w € A* that are recognized by A.
Similarly to deterministic finite state automata, non-deterministic finite state automata
can be visualized as directed labelled graphs.

Let A be an alphabet. A regular expression over A is a special type of word over
Au{®,(,),+,*}. Namely, 8, a, where a € A are regular expressions. If r,r1,re are
regular expressions, then so are (r; + 72),(r1 - r2) and (r)*. Every regular expression
is formed in this way. Each regular expression r defines a language L(r). Namely, we
define L(P) = @, L(A) = {)}, L(a) = {a}, where a € A. We define L(ry +r2) = L(r1) +
L(rg), L(ry-r2) = L(r1)L(re) and L(r*) = (L(r))*, where r, 1,73 are regular expressions.
A language defined by a regular expression is called a regular language. The first major
result in automata theory is due to Kleene, Rabin and Scott. For the proof, see for example
Theorem 4.1.2 and Theorem 5.2.1-in [28].

Theorem 2.2.1 (Kleene, Rabin, Scott). Let A be an alphabet and L be a language
over A. Then the following are equivalent:

(1) L is recognized by a deterministic finite state automaton.
(2) L is recognized by a non-deterministic finite state automaton.

(3) L is o reqular language.

The following lemma provides a necessary condition for a language to be regular.

Lemma 2.2.2 (Pumping lemma). Let L be an infinite regular language over the al-
phabet A. Then, there ezists a positive integer N such that every word w € L with length
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greater or equal to N can be factorized as w = zyz, where |zy| < N, |y| > 1 and zy®z € L
for alln > 0.

Proof. See [28, Theorem 2.6.1].
Next, we recall Proposition 2.2 in [5].

Proposition 2.2.3. Let X and Y be finite sets. Then the following hold:
(1) 9, X* and X* are regular languages.
(2) Any finite subset of X* is a regular language.

(8) If K C X* and L C Y™ are regular languages, then K UL, KNL, K - L,KL,K*
and K™ = {21...2n | Tn...21 € K} are regular languages.

(4) If K C X* is a regular language and ¢ : X+ — Y is a semigroup homomorphism,
then K is a regular language. ‘

(5) If L CY* is a regular language and ¢ : X+ — Y is a semigroup homomorphism,
then Lo~ is a regular language.

Before we finish this section, we introduce the following notion of automata theory.

Definition 2.2.4. Let A be an alphabet and L be a language over A. Let v € A*. The
left quotient of L by v is the language

K ={weA*|vwel}).

Similarly, the right quotient of L by v is the language
| N={weA* |wv e L}.
The following lemma will prove useful. |

Lemma 2.2.5. Let L be a regular language over the alphabet A and let v € A*. Then the
left (right) quotient of L by v is also a regular language.

Proof. See [28, Proposition 7.5.5].
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2.3 Automatic groups and semigroups

Let X be a finite set, and let § be a symbol not contained in X. Let X (2,$) = ((XUS$) x
(XU$))\{(8,9)}. Define dx : X* x X* — X(2,9)* by

{ (a1,01) ... (an,bn) if n = m,
(@g.i0ns 01 0o D)= (81:51) ... (@ny Bp) B, Bnpn) ... (8,0) i n<m,
(@1,01) . .- (@ b Y(@ms1,8) .« . (64,8) I n>m.
We recall {5, Proposition 2.2].
Proposition 2.3.1. Let X be a finite set.
(1) If K,L C X* are regular languages, then (K x L)dx is a reqular language.
(2) If U C (X* x X*)x is a regular language, then
{ue X*| (u,v)6x €U for some v € X*}
is also a regular language.

We will also make use of [5, Proposition 2.4] and of {5, Proposition 2.3] :

Proposition 2.3.2. If L is a regular language over X, then {(w,w) | w € L}dx i3 a
reqular language over X(2,%).

Proposition 2.3.3. Let L and K be regular languages over X(2,8). Then the language
W = {(u,w) € X* x X* | there exists v € X* such that (u,v)dx € L, (v,w)dx € K}éx

is regular.

Let S be a semigroup. Assume that the set X C S generates S and let ¢ : X+ —
denote the homomorphism extending the identity map ¢ : X — S. As introduced, for any
two words u,v € X+, we write u = v, if v and v are identical as words, and we write
u = v, if u and v represent the same element of S, that is, if up = vep. We say that the
word problem is solvable in S, if an algorithm can be given with the help of which it can
be decided whether two words over X represent the same element of S.

Definition 2.3.4. Let S be a semigroup generated by a finite set X. Let L be a regular
language over X. We say that (X,L) is an automatic structure for S, if the following
conditions hold:
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(1) Ly =5;
(2) L= = {(u,v) € L x L | u = v}dx is a regular language;
(2} Ly = {(u,v) € L X L | ux = v}dx is a regular language for all z € X.

If S has an automatic structure (X, L), then we say that S is an automatic semigroup.
We say that (X, L) is an automatic structure with uniqueness for S, if whenever u,v € L
are such that u = v, then v = v holds.

Considering groups as semigroups, we obtain the notion of an automatic group,

Definition 2.3.5. Let G be a group generated a finite set X as a semigroup. Let L be
a regular language over X. We say that (X,L) is an automatic structure for G, if the
following conditions hold:

(1) Ly = G;
(2) L= ={(u,v) € L x L | u=v}dx is a regular language;
(2) Ly = {(u,v) € L x L | uz = v}dx is a regular language for all z € X.

It G has an automatic structure (X, L), then we say that G is an automatic group. We
say that (X, L) is an automatic structure with uniqueness for G, if whenever u,v € L are
such that u» = v, then « = v holds.

We now recall [5, Corollary 5.5].

Proposition 2.3.6. If S is an automatic semigroup (group), then there exists an auto-
matic structure with uniqueness.

Automatic groups can be described with the help of a geometric property of their
Cayley graphs. First, we summarize some basic notions concerning the Cayley graph of a
group.

Let G be a group generated by a set X. We assume that X is closed under taking
inverses. The right Cayley graph T' = I'x(G) of G is a directed labelled graph, whose
vertices are elements of G, and there is an arrow from g to h with label z precisely when

= gz. Clearly, there is an arrow from g to A with label z precisely when there is an
arrow from h to g with label z=1. We define a directed path between two vertices g and h
of I" to be a sequence of edges:

I=00—201 —202...0n—1—2 gn=h
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and say that the length of the path is n. Clearly I is a connected graph, and there exists a
directed path between any two vertices of I'. Let g, h € G. We define the distance dr(g, k)
between g and h to be the length of the shortest path connecting g and h. Before we
define the fellow traveller property, we introduce the following notation. If u = x5 ... 2,
and t > 1, then we let
zy...2z¢ ft<m

u(t):{ mim:n iftgmt
Definition 2.3.7. Let G be a group generated by a finite set X. Let L be a regular
language over X and assume that Ly = G. We say that the Cayley graph I' = T'x(G)
possesses the fellow traveller property with respect to L, if there exists a constant k& € N,
such that whenever u,v € L are such that dp(u,v) < 1, then dr(u(t),v(t)) < k for all
Fe 1

The following result yields a powerful tool in proving results about automatic groups.

Proposition 2.3.8. Let G be a group. Then G is automatic if and only. if the fellow
traveller property holds in the Cayley graph of G with respect to some regular language L.

Proof. See [9, Theorem 2.3.5].
We recall the following nice properties of automatic groups.

Proposition 2.3.9. Let G be an automatic group and assume that (X, L) forms an au-
tomatic structure for G. Then the following hold:

(1) If Y also generates G as a semigroup, then there ezists a regular language K over
Y such that (Y, K) forms an automatic structure for G.

(2) The group G is finitely presented.

(8) The word problem is solvable in quadratic time.

Proof. See [9, Theorem 2.4.1, Theorem 2.3.12, Theorem 2.3.10].

Next, we discuss some of the basic properties of automatic semigroups. Let S be a
group generated by a set X. The (right) Cayley graph I'x(S) = I' of § is a directed
labelled graph, whose vertices are elements of S, and there is an arrow from s to ¢ with
label x precisely when s = tz. Certain subgraphs, called Schiitzenberger graphs of the
Cayley graph of S will play an important role in the thesis. Let R be an R-class of S.
The Schiitzenberger graph of R is the Cayley graph of S restricted to R. In other words,
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the vertices of the Schiitzenberger graph of R are elements of R, and there is an arrow
from s to#, (s,t € R) with label z, if s = tz.

The aim of giving a geometric characterization of automatic semigroups with the help
of the Cayley graph raises a few question. First of all the Cayley graph of a semigroup
is not necessarily connected. Even, if two vertices s and ¢ are in the same connected
component, then there does not necessarily exists a directed path between them. These
considerations lead to the decision to ignore the direction of the edges in the Cayley graph
of S. A path between two vertices s and t of I is a sequence of edges:

8§ = 80 -2 51 Lz 89 ...80-1 L

Sp =1

such that either (s;, i, 8i4+1) or (3i+1,mi, si) is an arrow in the Cayley graph of S, and say
that the length of the path is n. For any two vertices s and ¢t we define the distance dp(s,t)
between s and ¢ to be the length of the shortest path connecting s and ¢ and say that the
distance is infinite if s and ¢ belong to different components of T'.

Definition 2.3.10. Let S be a semigroup generated by a finite set X. Let I' be the
Cayley graph of S with respect to X. Let L be a regular language over X and assume
that Lo = S. We say that I" possesses the fellow traveller property with respect to L, if
there exists a constant k € N, such that whenever u,v € L are such that dp(u,v) < 1,
then dp(u(t),v(t)) < k for all t > 1.

Proposition 3.12 of [5] tells us:

Proposition 2.3.11. Let S be an automatic semigroup. Then the fellow traveller property
holds in the Cayley graph of S with respect to some regular language L.

The converse of Proposition 2.3.11 does not necessarily hold. The fellow traveller prop-
erty holds in any semigroup with a zero element. To be more precise, if S is a semigroup
with a zero element, then the distance between any two vertices in the Cayley graph of S
is less then or equal to two. Thus, to demonstrate that the converse of Proposition 2.3.11
does not hold, one needs to take a semigroup with zero that is not automatic. Such a
semigroup can be formed by adjoining a zero element to a group that is not automatic.

Automatic semigroups behave more wildly than automatic groups. An example is
given in [5, Example 4.4] for a semigroup that is automatic but not ﬁnitely presented.
Another example (5, Example 4.5] shows that a semigroup can be automatic with respect
to one generating set, but not automatic with respect to another one. On the other hand,
if we consider monoids, then automaticity is independent of the choice of the generators
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[12]. Also, if we consider semigroup classes that are somehow related to groups, such as
consider completely simple semigroups, then the group theoretic results generalize [4].

Proposition 2.3.12. Let S be an automatic semigroup generated by the set X. Then the

word problem is solvable in quadratic time.

Proof. See [5, Corollary 3.7].

Consider the alphabet X = {z1,22,...,2Zn-1,Zn} and choose an ordering z; < 23 <
voo < Ty < Tp. Let u,v € X, We define u < v if and only if u is shorter then v, or they
have the same length, and = comes before v in the lexicographical order. This ordering is
called the shortlez order on X,

Proposition 2.3.13. Let (X, L) be an automatic structure for a semigroup S. Let <
denote the shortlex order on X+. Then the language

. K ={u|if (u,v) € L= then u < v}

is reqular.

Proof. See [5, Proposition 5.4].

The following proposition will also prove useful.
Proposition 2.3.14. Let (X,L) be an automatic structure for a semigroup S and let
w € X, Then Ly, = {(u,v) | w,v € L,uw = v}éx is a regular language.

Proof. See [5, Pi‘oposition 3.2].

The notion of a padded product of regular languages is introduced in [10]:

Definition 2.3.15. Let X be an alphabet and let M, N be regular languages over (X* x
X*)ox. The padded product of M and N is the language

M ® N = {(uug,n1v2) | (v1,v1)8x € M, (ug,v2)dx € N}éx.
Theorem 3.3 of [10] gives a sufficient condition on the padded product of regular languages
to be regular.

Proposition 2.8.16. Let X be an alphabet and let M, N be regular languages over (X* x
X*)ox. If there exists a constant ¢ such that for any two words u,v € X* the following
property holds: :

(u,v)dx € M then [lu| — |v|| < e,

then the padded product M © N is a regular language.



Chapter 3

Automatic semigroup acts

3.1 Definitions

Finite state automata are easy to handle computationally. Therefore, some recent research
has aimed at encoding algebraic structures in terms of finite state automata. However,
there are different ways to define what it means for an algebraic structure to be automatic.
Epstein et al. developed a theory of automatic groups, Campbell et al. realized that the
notion of an automatic group can be naturally extended to semigroups and investigated
to'what extent the theory of automatic groups can be generalized to semigroups. It
turned out that automatic semigroups do not have as nice ‘properties as automatic groups,
which led researchers to modify the definition of an automatic semigroup, see for example
(19],[34].

We mention that Khoussainov and Nerode represent another viewpoint of defining an
algebraic structure automatic [26]. Automatic groups (semigroups) in the sense of Epstein
et al. (Campbell et al.), viewed as unary structures — where the unary operations are
multiplication by the generators on the right — are automatic in the sense of Khoussainov
and Nerode.

Our aim in this chapter is to give a general framework for the theory of automatic
semigroups introduced by Cambell et al. and to extend the known results. To achieve
this goal we are going to define automaticity of a very simple structure, called an S-
act. One of the reasons we are going to work with S-acts is that semigroups and groups
can be naturally considered as S-acts and S-acts proved to be a useful tool in studying
semigroups. On the other hand, certain sets — for example an R- or an L-class — can be
associated with a semigroup S, which can be viewed as a S-acts. This will allow us to
introduce other notions of automaticity, for example Schiitzenberger automaticity, R-class

automaticity. 19
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Throughout this chapter S will denote a semigroup, X a generating set for S. We
assume that X C S and denote by ¢ : X — S the homomorphism extending the identity
map¢: X — S.

Let S = (X) be a semigroup and A be a non-empty set. A right action (left action) of
S on Ais afunction f: AxS — A; (a,s) — a.s such that (a.s).t = a.(st) ((a.s).t = a.(ts))
holds for all s,t € S, and we say that A is a right S-act (left S-act). We say that A is an
S-act, if it is either a left or a right S-act. Although it might seem a little unorthodox to
write left actions on the right, we will do so. The main reason for this is that we stick to
the rule in this chapter that a product s183...8y,, (s; €S, 1 <% < n) is read from left to
right. If we would write left actions of S on A on the left, then considering (s1sg...8,).a
would make us read sys3...s, from right to left.

The subset Ag = {a1,a2,...,an,...} of A is said to generate the S-act A, if

U a;.S = A.
a;EAg
If Ag can be chosen to be a finite set, then we say that the S-act A is finitely generated. If
Ap can be chosen to be a one element set, then we say that the S-act A is cyclic. Clearly,
if Ag generates the S-act A, then it might happen that there exists s, € .S so that s # ¢
and a;.s = a;.t for some a;,a; € Ag. To generalize the notion and basic properties (for
example uniqueness of an automatic structure) of an automatic group or semigroup, we
would like to use only as many elements of S as are necessary to generate the S-act A.
The following straightforward lemma is a crucial observation that will lead to the defintion

of an automatic S-act.

Lemma 3.1.1. Let A be an S-act. Then Ay generates A if and only if there exist subsets
nT...,Tn,... of S such that

a;€Ao a;€Ap

If there exist regular languages Lj, Lg, ..., Ly, ... over X such that L;jp = T}, then we
say that A is reqularly generated by Ao and {Li,Ls,...,Ly,...}, and use the notation

A= | a;Ljp={a;lp|l€Ls}.
a;EAo

Following semigroup and group theoretical conventions, we will also write a;.u = a;.v and
ai.(u - z) = aj.v, (u,v) € L; X L; instead of a;.up = aj.vp and a;.(u - )¢ = a;.vp, since
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the context will always make it clear over which alphabet the regular languages are being
taken, and what the homomorphism from the set of all words over that alphabet to S is.

Before we give the definition of an automatic S-act A, we give examples for right and
left S-acts.

Example 3.1.2. Let S be a semigroup and ¢ a right congruence on S. Define f : S/{xS —
S/&; (s&,t) — (st)€. Since £ is a right congruence, f is a well defined function, and clearly.
defines a right action of S on the factor set S/&.

Example 3.1.3. Let S be a semigroup and £ a left congruence on S. Define f : S/£x S —
S/&; (s€,t) — (ts)€. Since £ is a left congruence, f is a well defined function, and clearly
defines a left action of S on the factor set S/€.

Example 3.1.4. Any semigroup S can be considered as a right S-act, where the action is
right multiplication, that is f : Sx .S — S, (s,t) — s-t. For convenience, when considering
a semigroup S as a right S-act, we write s - ¢ instead of s.t.

Example 3.1.5. Let S be a semigroup. Adjoin a zero element 0 to S and extend multi-
plication of S to S = S U {0} in the usual way; s0 = 0s =0 for all s € S and 0-0 = 0.
Let T" be a subset of S with the condition that if '

t-(s152) € T, wheret € T and 81,82 € S, thent-s; € T (3.1)

Let T° = T U {0}. Then one can naturally consider 7° as a right S%act by defining
FiT9 %89 TV as: ‘
t s)|—>{ t-s ﬁtsET,
’ 0 otherwise.
To verify that (t-s1)-s2 =t (s1- s2) indeed holds for all s1,s0 € S, we consider the
following two cases:

(i) Ift-s1 ¢ T, then t-s; = 0 and it follows that (£-s1)-s2 =0-s3 =0 for all s € S.
On the other hand, by condition (3.1), ¢ - (s182) ¢ T, hence t - (s152) = 0, proving
that ¢- (s1s2) = (¢ s1) - s2.

(ii) If t - 81 € T, then (t-s1) - s2 =1 (31 - 82) is immediate.

Our final example is a special case of the last example. This important subcase is the
basis of the definition of a Schiitzenberger automatic regular semigroup.
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Example 3.1.6. Let S be a semigroup and adjoin a zero element O to S as in Example
3.1.5. Let R be a R-class of S. We verify that R fulfills (3.1), hence a right action of $°
on RY can be defined as in Example 3.1.5. Let r € R, 81,82 € S, such that r- (s152) € R..
Then r R rsysg and by the definition of R, there exists ¢ € S such that r = rsyss - £, that
is 7 = rs1 - sot. On the other hand rs; = r - 51, verifying that r R rs;.

Next we introduce the notion of an automatic S-act A.

Definition 3.1.7. Let S be a semigroup generated by a finite set X. Let A be an S-act
and Ag = {a1,as,...,an} be a finite subset of A. Let Ly, Ly, ..., L, be regular languages
over X. We say that (X, L1,..., L) forms an automatic structure for A with respect to
the generating set Ag, if the following conditions hold:

(1) A is regularly generated by Ag and {Ly,..., Ly}, that is:

n
U aj.Ljp = A;
i=1

(2) Liasa)= = {(u,v) € L; x Lj | aj.u = a;.v}dx is a regular language for all (a;,a;) €
Ao X Ao;

(3) Ligap). = {(w,v) € Li X Lj | ai.(u-z) = a;.w}dx is a regular language for all .
(ai,a;) € Ag X Ag and z € X.

If an S-act A has an automatic structure (X, Ly, ..., L,) with respect to the generating set
Ap, then we say that A is automatic with respect to the generating set Ag. An automatic
structure (X, L1,. .., L,) with respect to the generating set A of an S-act A is said to be
with uniqueness, if for all a;,a; € Ao, a;.u = a;j.v, ((v,v) € L; x L;) implies a; = a; and
U=,

The following two lemmas will prove useful. Both of the lemmas and their proofs are
based on [5, Proposition 3.1.].

Lemma 3.1.8. Let (X, L1, Ls,...,L,) be an automatic structure for the S-act A with
respect to the generating set Ao = {a1,a2,...,an}. Letbe A and z € X. Then for each
i, (1 <i< n), the language {w € L; | a;.(w- z) = b} is regular.
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Proof. Since U?=1 a;j.Ljp = A, there exists ~ and hence we can fix — a language Ly
and u € Ly such that az.u = b. Choose a language L;. It might happen that {w €
L; | aj.(w - ) = b} = 0, in which case it is a regular language by definition. Assume that
{weLi|a(w-z)=>b e X} #0and let v € Xt. Then (v,u)dx € L(g q,), if and
only if v € L; and a;.(v - ) = ag.u. By Propositions 2.2.3 and 2.3.1, the language

K = {(w,u) | we L, as.(w- ) = b}6x = Lgya. N {(v,0) | v € X*+}ox
is regular. Making use of Proposition 2.3.1, we obtain that
{we X+ | (w,v)dx € K for some v € X} = {we Xt | (w,u)dx € K}
| R 7 P e
is a regular language. [J
Similarly we can prdve the following:

Lemma 3.1.9. Let (X, L1, Lg,...,Ly) be an automatic structure for the S-act A with
respect to the generating set Ag = {aj,a2,...,an} and let b € A. Then for each ¢, (1 <
i < n), the set {w € L; | a;.w = b} is regular.

Now we claim that the definition of an automatic S-act is indeed a generalization of
the notion of an automatic semigroup. As in Example 3.1.4, when considering a semigroup
S as a right S-act, we assume that the action is right multiplication and we write s - %
instead of s.t.

Proposition 3.1.10. A semigroup S generated by a finite set X is automatic if and only
if it is automatic as a right S-act with respect to the generating set X.

Proof. (=>) Assume that (X,L) forms an automatic structure for S, where X =
{z1,...,2zn}. Then Ly = S and the languages L= and L, (z € X) are regular. By
Lemma 2.2.5, for each j, (1 € j <n), the language

Li={we X" |zjwe L}

is regular. We assume that none of the languages L; (1 < j < n) are empty. We clearly
have that

n
U:I:j-chp-:L(p:S,
1
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and hence S is regularly generated by X and Li,...,L,. We claim that (X, Ly,...,Ly)
is an automatic structure for the right S-act S with respect to the generating set X. By
definition,
I{(:c;,a:_,-)= = {(u, ’U) € L; x Lj I Ti-U=2%j" ‘l)}lsx
= {(u,v)3x € X(2,8) | (&:,;)(u,0)ox € L},

and so it is a regular language by Lemma 2.2.5. Similarly,

Ko e)e = {(w,v) € Ly x Ly | zi-u-z = z; - v}ix
= {(v,v)0x € X(2,8) | (2, 2;)(u,v)0x € Ly}

is a regular language by Lemma 2.2.5.

(«) Conversely, assume that (X, L1, ..., L,) is an automatic structure for the right S-
act S with respect to the generating set X. Then (7, z;-Ljp = S and so K = | J;_; z;L;
is a regular language for which K¢ = S. We show that (X, K) is an automatic structure
for S. By definition,

K- = {(u,v) | u,v € K, u=v}dx
= {(u,v) I U= mik, V= :Djl, (k, l) € Li X Lj, :Ez'k = :I:jl}5X
= U (ziﬁmj)L(mi,Z’j)=’

1<i,j<n
which is a finite union of regular languages, and hence is regular. Similarly, for each z € X,
the language
Ky = {(u,v) |w,v€ K, u-z=v}dx
= {(u,v) |u= =ik, v E’:Djl, (k,1) € L; x Lj, zkx = x;1}0x
= U (a-'ia mj)L(mg,mj)a,

i<ij<n

is regular, since it is a finite union of regular languages. [

For monoids the following proposition holds.

Proposition 8.1.11. A monoid M is automatic if and only if it is automatic as a right
M -act with respect to the generating set {1}.

Proof. That {1} is a generating set for the M-act M is immediate, since 1 - M = M.
The lemma now follows from the definitions. O
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3.2 Schiitzenberger automatic regular semigroups

It was proved in [8], that free inverse semigroups are not automatic. On the other hand,
free inverse semigroups have solvable word problem [22], [27]. These facts motivate us
to introduce a new definition of automaticity for regular semigroups, namely that of a
Schiitzenberger antomatic regular semigroup. We formulate the new notion in the frame-
work of automatic S-acts, where the S-acts are R-classes of the semigroup. In the next
section, we show that free inverse semigroups are Schiitzenberger automatic.

Being Schiitzenberger automatic means that the regular semigroup satisfies a collection
of local properties. As indicated above these local properties are defined on the R-classes
of the regular semigroup. By introducing R-class automaticity in terms of left actions of
S, we connect the R-classes of S. Finally, combining the definition of Schiitzenberger au-
tomaticity and R-class automaticity, we introduce the notion of a strongly Schiitzenberger
automatic regular semigroup.

Throughout this chapter § will denote a semigroup, X a generating set for S. We
assume that X C S and denote by ¢ : X+ — S the homomorphism extending the identity
map ¢t: X — S.

Before we give the definition of a Schiitzenberger automatic regular semigroup, we turn
our attention to the right $%act R given in Example 3.1.6.

Proposition 3.2.1. Let S be a regular semigroup generated by a finite set X, and let R
be an R-class of S. Then the following are equivalent:

(S1) There ezists a regular language L over X° = X U {0} such that (X°,L) forms
an automatic structure for the right S°-act R° with respect to some one element
generating set {s}.

(52) There exists a regulor language K over X and an element s € R such that the
following conditions hold:

(i) s- Ko=R;
(i) K= = {(u,v) | u,v € K, 8-u=s-v}dx is a regular language;
(i) Ky = {(uw,v) | u,v € K, s-(u-z) = s-v}8x is a regular language for allz € X.
(S8) There exists a regular language N over X such that the following conditions hold:

(i) No = R;
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(ii) N= = {(u,v) | uv,v € N, u=v}dx is.a reqular language;
(iii) Np = {(u,v) | w,v € N, u-z =v}dx is a regular language for all z € X.

Proof. (S1) = (52) Assume that (X% L) is an automatic structure for the right S°-
act RO with respect to the generating set {s}. Then s: Ly = R°. By Lemma 3.1.9,
L' ={le L|s-l=0}is a regular language, hence K = L — L/ is also a regular language
and s- I{¢ = R. It is also obvious that

K. ={(uv) |uwve K, s-u=s-v}x

= L= — {(u,v) | u,v € L'}éx

= L= 1 (LI X L’)JX,
and so IK{_ is a regular language. To show that K is a regular language, note that

Ky=Ly,— (L' x L'Yox — {(v,v) € Lx L'| s (u-x) =s-v}dx.

Let L" ={u€ L | s (u-z)=0}. By Lemma 3.1.8, L” is a regular language. It follows
that {(u,v) € Lx L'} s+ (u-z) =s-v}dx = (L x L')0x is also a regular language, and
hence we may deduce that K, is a regular language.

(82) = (53) Assume that there exists a regular language K over X such that con-
ditions (#) — (4¢) of (S2) hold. Let w be a word over X representing s. Then we have
R =35 -K¢p = (wK)yp. Define N = wK. It is obvious that N is a regular language and
that Ny = R. Moreover

N= = {(u,v) | u,v € N, u=v}éx
= {(u,v) | u = wk1, v = wky, wky = wky}dx
= {(u,v) | v = wki, v=whky, s-k1 =5 ko}dx
= (w,w)dx K=,

hence is a regular language. Similarly we obtain that
Ny = {(u’v) I u,v € Na U= ’U}5X = (W,w')axKx

is a regular language for all z € X.

(S3) = (S1) Assume that there exists a regular language NV over X such that condi-
tions (i) — (#4) of (S3) hold. Adjoin a zero element O to S and extend multiplication in
the usual way. Define a right action of S® on R? as before:

G o r-s ifrs€e R,
t 0 otherwise.
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Let e be an idempotent element of R. Such an element of R exists, since S is a regular
semigroup. Consider the regular language L = N U {0}. Recall that e is a left identity in
its R-class. Then e+ Ly = e (N U {0})p = R°. Since Ny = R, we obtain that

| Lo ={(u,v) |u,v€ L, e-u=-e-v}dx
= {(u,v) | u,v € N, u=wv}éx U{(0,0)}
= N_U{(0,0)}.

Similarly, if 2z € X then
Ly ={(u,v) |v,vE€L, e-u-z=e-v}x = N, U{(0,0)},
and we have that
Lo ={(u,v) |u,v€ L, e-u-0=e-v}dx = (0,0)
which verifies that (X9, L) is indeed an automatic structure for the right S%act R® with

respect to the generating set {e}. O

We note that in the proof of Proposition 3.2.1 the assumption that S is a regular
semigroup was only used to deduce that the R-class R contains an idempotent element.
Hence, Proposition 3.2.1 can be rephrased for all such R-classes of an arbitrary semigroup
that contains an idempotent. On the other hand, if we assume that S is a semigroup
in which every R-class contains an idempotent, then we have that S has to be a regular
semigroup.

We introduce now the definition of a Schiitzenberger automatic regular semigroup S.

Definition 3.2.2. Let S be a regular semigroup generated by a finite set X, and L be a
regular language over X. Let R be an R-class of S. We say that (X, L) is a Schiitzenberger
automatic structure for R, if the following conditions are satisfied:

(i) Le=R;
() L= = {(w,v) | w,v € L, u =v}dx is a regular language;
(ili) Ly = {(u,v) | w,v € L, u-x =v}dx is a regular language for all z € X.

If an R-class R has a Schiitzenberger automatic structure (X, L), then we say that R is
Schiitzenberger automatic. A Schiitzenberger automatic structure (X, L) of an R-class R
is said to be with uniqueness, if u = v (u,v € L) implies u = v. Define a regular semigroup
S to be Schiitzenberger automatic, if all of its R-classes are Schiitzenberger automatic.
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Although Proposition 3.2.1 provides three different descriptions of a Schiitzenberger
automatic regular semigroup, we will usually work with (52) and (53). Clearly conditions
of (53) seem to be the easiest to check. On the other hand, the advantage of (52) is that
if k € K, then for every prefix k of k, s- k € Rs, a property that is not necessarily true
when considering description (53). That is if n € N and 7 is a prefix of n, then usually
¢ R.

The next proposition tells us, that the notion of a Schiitzenberger automatic regular
semigroup is in fact a generalization of the notion of an automatic group.

Proposition 3.2.3. Let G be a group. Then the following are equivalent:
(1) G is automatic. |
(2) The right G-act G is automatic.

(8) G is Schiitzenberger automatic.

Proof. (1) ¢ (2) See Proposition 3.1.10.
(1) & (3) Follows from the fact that if G is a group then R =G x G. O

Schiitzenberger automaticity of a regular semigroup S is a collection of local properties.
To link the R-classes of S we define R-class automaticity in terms of left S-actions on the
partially ordered set S/R.

First we need to define a left action of a semigroup S on S/R. Let

f:S/R xS — S/R; (R, s) — Rg.

Since R is a left congruence on S, f clearly defines a left S-act.
For our purposes, we will define R-class automaticity of a semigroup S when S is a

monoid.

Definition 3.2.4. Let S be a monoid generated by a finite X. Let L be a regular language
over X. We say that (X, L) is an R-class automatic structure for S/R, if (X,L) is an
automatic structure for the left S-act S/R with respect to the generating set R;. That is,

(1) Ri- Lo = S/R;
(2) L= = {(u,v) | u,v € L, Ry.u = Ry.v}dx is a regular language;

(8) Ly = {(u,v) | u,v € L, Ry.(u-z) = Ry.v}dx is a regular language for all z € X.
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Combining the notions of Schiitzenberger automaticity and R-class automaticity we
introduce the notion of a strongly Schiitzenberger automatic regular semigroup.

Definition 8.2.5. We say that a regular semigroup is strongly Schiitzenberger automatic,
if it is Schiitzenberger automatic, and R-class automatic.

3.3 Examples

In this section we give several examples for automatic S-acts. Throughout this section S
will denote a semigroup, X a finite generating set for S. For the sake of simplicity we "
assume that X C S and denote by ¢ : X — S the homomorphism extending the identity
map ¢ : X — S. :

Proposition 3.3.1. Let A be a finite S-act so that the action f : Ax S — A is surjective.
Then A is automatic.

Proof. Let A = {ai1,...,a,} and for each a; € A, fix an element ¢; € S and an
element b; € A such that a; = b;.t;. Since f is a surjective map, such elements exist.
Let T' = {¢1,...,tn}. For each t; € T fix a word w; over X for which-w;p = ¢; and let
L; = {w;}. Clearly A is regularly generated by Li,...,L, and {bj,...,bs}. On the other
hand the languages L, p;)- and L, b, (¢ € X) are finite, and hence they are regular,
proving that A is indeed automatic. [

Corollary 3.3.2. Let S be a monoid such that S/R is finite. Then S is R-class automatic.

Proof. The left action f:8/R xS — S/R is clearly surjective. Hence if §/R is finite,
then S/R is an automatic left S-action by Proposition 3.3.1, proving that S is indeed
R-class automatic. [

Corollary 3.3.3. Let R be a finite R-class of a regular semigroup S. Then R is Schiitzen-
berger automatic.

Proof. If R is a finite R-class of S, then the right S°-act RO is finite, moreover the
right action f : R% x S® — RO is surjective. Hence by Proposition 3.3.1, the right S%act
RO is automatic. Making use of Proposition 3.2.1 we obtain that R is Schiitzenberger
automatic. [

We have the following immediate consequence of Corollary 3.3.3:
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Corollary 3.3.4. Let S be a regular semigroup whose R-classes dre finite. Then S is
Schiitzenberger automatic. .

Combining Corollaries 3.3.2 and 3.3.3 we obtain:

Corollary 3.3.5. Let S be a finite reqular semigroup. Then S is strongly Schiitzenberger
automatic.

Next, we give two examples for infinite automatic S-acts.

Example 3.3.6. Let A be the double infinite chain with an identity adjoined on top:
i < ey < e e < s X

Let G = (g) be the infinite cyclic group. Let n,k € Z and define a right action of G on A
in the following way:

f:AxG— A4 (en,gk) - en.g* = entk; (l,gk) — 1.gF=1.

We claim that the right G-act A is automatic. (We note that the defined action can be
considered as a left action of G on A as well and it can be verified that the left G-act A
is automatic.)

Let X = {9,071}, Ao = {e0,1}, Lo = g7 U (g7 1)t U {gg~ '} and L; = {g}. By
definition e,, = eg.g™, n € Z, thus A is regularly generated by Ag and the regular languages
Lo, L. Clearly we have that the languages L, 1), L(eo,1)ar L(1,e0)=s Li(1,e0). (2 € X) are
empty, and hence they are regular. Moreover we have that

L1y = {(v,v) € L1 x L1 | Lu = 1v}6x = (9,9);
Lay, = {(w,v) € Ly x Ly | 1.(u-z) = Lu}dx = (9,9);
Lieg,e0)= = {(u,v) € Lo X Lo | eo.u = eg.v}dx
= (9,9)Tox U (g1, 97 ) ox U (997, 997 )0x;
Lieg,eq); = {(1,v) € Lo X Lo | €0.(u - g) = e - v}dx
= (9,9 éx($,9) U (67 97 Ng 97 ox (g7, 9)
U™ 9)8,97 ) U (9,997, 9)
L(e(),,go)y_1 = {(u,v) € Lo x Lo | eg.(u" g =ep-v}ox
= (971971 6x(8,971) U (9,9)(9,9)* 0x(9,9)
U(9,9)8,97 1)U (9,977, $).
These languages are regular, and hence we obtain that (X, Lo, L;) forms an automatic
structure with respect to the generating set Ay for A. O
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Example 3.3.7. Let B be the infinite antichain
cesy €1y €Dy €190

Adjoin an identity 1 on top and a zero 0 on bottom, that is for each e; € B, 0 < e; < 1
holds. Let A denote the lattice obtained. Let G = (g) be the infinite cyclic group. Let
n,k € Z and define a right action of G on A in the following way:

f A X G — A (en,gk) = Entk (1’gk) F Lg (0,_(]’?') — 0.

We claim that the right G-act A is automatic. (We note that the defined action can be
considered as a left action of G on A as well and it can be verified that the left G-act A
is automatic.) .

Let X = {g,g_l}, Ao = {ep,1,0}, Ly = gt u (g_l)"‘ U {gg“‘l}, In = Ly = {g}.
By definition, e, = eg.g", n € Z, thus A is regularly generated by Ag and the regular
languages Lo, L1, L. Let

(Cb, b) € {(1’ 0)» (Oa 1)) (301 1): (1)60)1 (601 0): (0! 80)}.

Clearly, the languages Lqp)..) Lap)er Liab)=r Lab), (T € X) are empty, and hence they

are regular, Moreover we have that
Lagy. = {(u,v) € Ly x Ly | Lu = 1w}dx = (9,9);
Ly, = {(w,v) € Ly x Ly | 1.(u - z) = Lu}dx = (g,9);
for all z € X. Similarly

Lo = {(u,v) € Ly x Ly | 0.u = 0.v}5x = (g9,9);
L), = {(u,v) € Ly x Ly | 0.(u - z) = 0.0}0x = (g,9);
for all z € X. Also we have that

Liege0)= = {(u,v) € Ly x Lo | ep.u = eg.v}dx
=(9,9)*ox U (g7, g7 ) 6x U (997", 997 )bx;
Lieg,e0), = {(u,v) € Ly x Ly | ep.(u-g) = ey v}éx
= (5,9 6x$,9) U (g7 )™ g ) ox (g7, $)
U(g™9)$,97 ) U (9,98
L(m‘m)g_1 = {(u,v) € Lo X Lo | ep.(u- g“l) =ep-v}dix
= (9797 ox(8,971) U(9,9)(9,9) " 6x(g,9)
U (998,97 1)U (9,97, 8$)
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These languages are regular, and hence we obtain that (X, Lo, L1, Lg) forms an automatic
structure with respect to the generating set Ag for A. O

Example 3.3.8. The bicyclic monoid is strongly Schiitzenberger automatic.

To verify this, consider the bicyclic monoid given by the monoid presentation B =
(p,q | pg=1). We let X = {p, ¢} and denote by ¢ : X+ — S the homomorphism extend-
ing the identity map ¢ : X — S. Each element s € B can be written as s = ¢'p?, (4,5 € N),
moreover g'p? R q™p™ if and only if ¢ = n. To show that B is R-class automatic, consider
the regular language K = ¢* U gp. Clearly R;.K¢ = B/R. On the other hand

K- = {(u,v) € K x K | Ry.u= Ry.0}6x = {(u,u) | u € K}bx,
K, = {(u,v) € K x K | Riu-p= Ri.v}6x = (g,9) 6x(q,$) U (gp, ap)éx,
Ky ={(u,v) € K x K | Ri.u-¢= R1.v}6x = (g,9)6x($,9) U (qp,¢)dx,

and so (X, K) indeed forms an automatic structure for the left B-act B/R.

To show that B is Schiitzenberger automatic, consider an arbitrary R-class R of B.
Assume that ¢'p/ € R. As we have noted above, any element of R is of the form ¢*p*, k €
N. Let L = ¢*p*. Clearly Ly = R and we have that

L. ={(uw,v) e Lx L |u=v}dx = {(u,u) | u € L}dx,
Lp = {(uv,v) € L x L | u-p=}6x = (g,9)'6x(p,p)*6x($,p),
Lq={(w,v) € Lx L | u-q=1v}dx = (q,9)"6x(p,p)*6x(p,$),

proving that (X, L) is a Schiitzenberger automatic structure for R. Since R was an arbi-
trary R-class of B, it follows that B is Schiitzenberger automatic. [J

Example 3.3.9. Polycyclic monoids are strongly Schiitzenberger automatic.
The polycyclic monoid on n generators (n > 2) is given by the presentation
Pn = (pl’* .. )p'napl_l»' .- >pf_z,1 I p‘ipi_l = 1)pipj_1 =0 for ¢ 7£ J)

Consider the generating set X = {0,1,p1,...,Pn,P] 1 ...,p71} for P,. Denote by ¢ :
Xt — P, the homomorphism extending the identity map ¢ : X — P,. To make notation
convenient, we let Y = {p1,...,pn} and Y1 = {p7 . ..,p7'}. Every non-zero element of
P, can be uniquely written as u~v, where u,v € Y+. Moreover v~v R z ™1y, (u,v,z,y €
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Y*) if and only if v and z are identitcal words ({27, Chapter 9.3]). To show that P,
is R-class automatic, we consider the regular language K = {0,1} U (Y~1)*. Clearly
Ry.K¢p = P,/R. On the other hand, we have that
K_ ={(u,v) e K x K | Rij.u= Rij.v}dx = {(v,u) | ue K}dix = Kj,
= {(u,v) € K x K | Ry.u- 0= Ry.v}éx = (0,0) U (1,0) U (Y1)t x {0})dx,

and hence they are regular languages. To show that Kp, and K, -1 are regular languages
for all 1 <7 < n, we make the following observations. By Lemma 2.2.5, the language

M;={ue YN | uv=plw}
is regular, and so by Proposition 2.2.3, the language
Ni= (v -I)H\ M

is also regular. By Proposition 2.3.2, the language A = {(u,u)|u € (Y ~1)*}dx is regular.
Using the above introduced notation, we obtain that

Kp, = {(u,v) € K x K | Ry.u-p; = Ry.w}dx = (N; x {0})éx U A(p; 1,8) U (0,0) U (1,1)
and
Kpi—l = {(u,v) € K x K | Ry.u-p7t = Ryw}dx = A($,p7 1) U (0,0) U (1,p;1)

are regular languages. Hence, we may deduce that P, is indeed R-class automatic.
Next, we show that P, is Schiitzenberger automatic. Clearly the R-class of 0 is
Schiitzenberger automatic., Consider an R-class R # Ry of P, and assume that v~!v € R,

=,

where u,v € Y+, As we mentioned before, every element of R is of the form u~*w, where

w € Y*, Consider the regular language L = u~'Y*. Clearly Ly = R, moreover
Lo={(v,w)e LxL|v=w}x ={(v,v) |ve L}bx = L,
Lo={(v,w)ELXL|v-0=w}dy =0

To prove that Ly, and L,p‘~1 are regular languages for all 1 < i < n, we make the following
observations. By Lemma 2.2.5, the language

sz{v€Y+|vE'ij}

is regular, and so by Proposition 2.2.3, the language
n
N= |J M
=1,i%i
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is also regular. By Proposition 2.3.2, the language B = {(v,v)|v € Y*}dx is regular.
Using the above introduced notation, we obtain that

Ly ={(v,w) € Lx L|v-p; =w}dx = (ut,u1)sxB($,p:)
LP.-_l ={(v,w) € Lx L |v-p;t=w}dx = (w1, u)dxB(p:,$) U (u"1N; x {0})dx,

proving that (X, L) is a Schiitzenberger automatic structure for R. It follows that B is
Schiitzenberger automatic. [J

Proposition 3.3.10. Let X be a non-empty finite set. Then the following hold:
(1) The free band and the free semilattice on X are sirongly Schiitzenberger automatic.
(2) The free completely simple semigroup on X is strongly Schiitzenberger automatic.

(8) The free inverse semigroup on X is Schiitzenberger automatic.

Proof. (1) It is known that if a band or a semilattice B is finitely generated then it is
finite. The assertion hence follows from Corollary 3.3.5.

(2) We first describe the free completely simple semigroup on X. Fix z € X and let
Y = {pay | 7,y € X \ {2}}. Let Z= X UY. Consider the free group FG(Z) and denote
its identity element by 1. For all € X let p,, = p,», = 1, and consider the X x X-matrix
P with (z,y) entry pyy,. Then the free completely simple semigroup on X is isomorphic
to the Rees matrix semigroup CSx = M(X, FG(Z),X;P). Since X is finite, CSx has
finitely many R-classes, and hence is R-class automatic by Corollary 3.3.4. In Section 9,
we will verify that a completely simple semigroup is Schiitzenberger automatic if and only
if all of its maximal subgroups are automatic. Clearly the maximal subgroups of C'Sx
are isomorphic to the free group FG(Z), which is known to be automatic, and hence the

assertion follows.

(3) It is known that the R-classes of the free inverse semigroup F'I.S(X) are finite, and
hence by Corollary 3.3.4, F'IS(X) is indeed Schiitzenberger automatic. [

3.4 Basic properties

One naturally expects automatic S-acts to bear certain properties: for example, having
automatic structures with uniqueness, invariance under the change of generators of S and
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of the S-act A, etc. In this section we discuss the concept of an automatic structure
with uniqueness and the invariance of R-classes being Schiitzenberger automatic within
a D-class. Finally, in preparation for the fifth section (discussion of automaticity being
invariant under the change of generators), we introduce three technical lemmas. Through-
out this section S will denote a semigroup, X a finite generating set for S. We assume
that X C S and denote by ¢ : Xt — S the homomorphism extending the identity map
t: X — 5. We begin this section with the following observation.

Lemma 3.4.1. Let A be an S-act reqularly generated by Ly, ..., Ly, C X' and Ag. Assume
that Lg; ;)= @i,a;j € Ao is a regular language. Then Lig, 4,). s also a regular language.

Proof. Let A = (£,X(2,9),p,p, F) be a finite state automaton accepting the lan-
guage Lig, q;).. Consider the automaton B = (%, X(2,9), i, p, F), where fi(q, (z,y)) =
1(g, (¥, x)). Since (u,v) € L(q; 0,)- if and only if (v,u) € L(q; q,)-, it is clear, that B is the

automaton accepting L(g;,q,)-- U
Automatic structure with uniqueness

We prove in two steps that if A is an automatic S-act, then there exjsts an automatic
structure with uniqueness. In the first step we show that if A is an automatic S-act,
then there exists an automatic structure (X, K3, ..., K;,) with respect to a generating set
B = {a1,...,am}, such that a;.K;p Na; Kjpo =0 forall 1 < 4,5 <m, i # j. That
is, aj.u = ajv, (u,v) € K; x K; implies a; = a;. In the second step — following the
semigroup and group theoretical approach to the problem, by ordering the alphabet X

and introducing shortlex order on Xt — we construct regular languages L1, ..., Ly, from
Ki,...,Kpy, such that (X, Li,..., Ly,) will form an automatic structure with uniqueness
for A.

Lemma 3.4.2. Let (X,L1,...,L,) be an automatic structure with respect to the genera-

ting set Ag = {a1,...,an} for the S-act A. Then there ezists a subset B = {by,...,bn} C
Ag and regular languages K, . .., Ky, such that the following hold:

(i) bi.KipNbj.Kjo=0 foralll<i,j<m, i+#j.

(i) (X, Ky,...,Kp) is an automatic structure for A with respect to the generating set
B
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Proof. For each i (1 <% <n—1), welet

n ’
Ei = U {u erL; I ('u,, 1})6){ € L(a,-,aj)= for some v € Lj}.
j=itl

Since Lig; q;)- is & regular language for each j (241 < j < n), the languages
{u € L; | (v,v)0x € Lg;,0;)- for some v € L;}

are regular by Proposition 2.3.1. Thus Ei is a regular language, since it is a finite union
of regular languages. Define for each i (1 <i<n—1)

Ki=L;—IL; andlet K,=L,.

Note that we only kept those elements u of L; for which there exists no generator a;, ¢ < j
of A and v € L; such that a;.u = a;.v. By Proposition 2.2.3, K1, Ks,..., K, are regular
languages. It might happen that K; = @, in which case a; is a surplus generator, since then,
for all u € L;, there exists v € L;, © < j, such that a;.u = aj.v. Let B = {a; € Ag | K; # 0}.

That a;.Kip Na;.Kjp = 0, where a;,a; € B, i # j, 1 < i,j7 < n follows from
the definition of the regular languages Ki,..., K. To give a more detailed reason: the
equation a;.u = a;.v, where (u,v) € K; x K; cannot hold, since if ¢ < j, then by the
definition of K;, v should have been removed from L;, and similarly if § < 7, then v should
have been removed from L;.

To prove that an automatic structure for A is obtained with respect to the generating

set B, we first verify that we did not subtract necessary elements from Lq,..., L,, that is
we show that
U aj.K P = A.
a;eB

Let b € A. Since (X, L1,...,Ly) is an automatic structure for A with respect to the
generating set Ag, there exists a; € Ag and u € .L; such that a;.up = b. If u € K;, then
we are finished. If u ¢ K;, then there exists a; € Ap and v € L; such that a;.u = aj.v and
i < j. Obviously we can suppose that j is the greatest such index, hence it follows by the
definition of K; that v € Kj, hence b = a;.vp € a;.Kjp.

It is immediate that for all (a;,a;) € B X B,

-K(a,-,a_,')= = {(u, ’U) e K; x Kj | a;.u = a,j.v}éx = L(u.;,aj)= N (K,; X Kj)&){,
hence is a regular language. Similarly we obtain that for all z € X,

-K(a;,a,j)s — {('u,, 'U) e K; x Kj ] m(u . 22) = aj.v}dx = L(ai’aj)m N (Ki X Kj)(s.x,
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is a regular language. [

We have the following immediate consequence of Lemma 3.4.2.

Corollary 3.4.3. If A is an automatic S-act, then there exists an automatic structure
(X, Ki,...,Kmn) with respect to some generating set B, with the help of which A can be
partitioned into m subsets Ay, ..., Am; that is to say that

m
JA4j=A4 and Ain4;=0 forall 1 <i,j<m, i#j.
=1

Proof. Let A be an automatic S-act. Making use of Lemma 3.4.2, we may assume
that (X, Ki,...,Ky,) is an automatic structure with respect to a generating set.B =
{b1,. .. ,bm}, such that b;. Kspnb;. Ko =0 forall 1 <i,j < m, i # j. Define A; = b;. K.
It is immediate that 4; N A; = 0 for all 1 < 4,57 < m, i # j. Furthermore, since
Ujz1 8. K = A, we also have that [ JiL; 4; = A. O

Before we turn to the second step, we recall the definition of the shortlex ordering.
Let X be an alphabet, and choose an ordering z; < 23 < ... < 2, on X. The shortlex
ordering < on X * is defined as follows:

v < w <> v is shorter then w, or they have the same length
and v comes before w in the lexicographical order.

Proposition 3.4.4. If A is an automatic S-act, then A has an automatic structure with
UNLGUEness.

Proof. Let (X, K1,...,Ky,) be an automatic structure with respect to the generating
set Ag = {a1,...,a,} for the S-act A. By Lemma 3.4.2, we may assume that a;.Kjp N
a;. Kjp =190 forall 1 <i,j <n, i# j. Hence, if a;.u = aj.v, u € K;,v € Kj, then a; = a;
and u,v € K;. To construct an automatic structure (X, Ly,...,L,) with uniqueness, we
need to reduce the number of elements of each regular language K;, (1 <4 < n) in such

a way that for each a € (a;.K;p) we have exactly one w € L; C K; such that a;.wep = a.
Define

Li={we€ K; | if (w,v) € K(g;,4;)- then w < v in the shortlex order}.

By Proposition 2.3.13, L; is a regular language. Furthermore, we clearly have that

U aj.Lj(p = A.
g=1
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If a;u = a;v, (u,v) € L; x Lj, then as before a; = aj, u,v € L;, and hence by the
definition of L;, u = v. It follows that

I _J0 if 4 # 7,

(@ia5)= {(u,u) | u e L;}ox ifi=j.
Thus Lq, q;) is a regular language for all (a;, aj) € Ag x Ag by Proposition 2.3.2. More-
over,
L(ai:aj)x = K(ai.aj)x N (Li x Lj)éx,

and hence is a regular language. We may deduce that (X, Ly,...,L,) is indeed an auto-
matic structure with uniqueness with respect to the generating set Ag for the S-act A. O

An immediate consequence of Proposition 3.4.4:

Corollary 3.4.5. If S is an R-class automatic semigroup, then there exists an R-class
automatic structure for S/R with uniqueness.

Also we have:

Corollary 8.4.6. If R is a Schiitzenberger automatic R-class of a regular semigroup S,
then there exists a Schitzenberger automatic structure for R with uniqueness.

Proof. Let R be a Schiitzenberger automatic R-class of a regular semigroup S. Then
by Proposition 3.2.1, the right S%act RC is automatic with respect to some generating
set {s}, hence there exists an automatic structure (X, L) with uniqueness for the right
S%-act R with respect to {s}. Following the construction of the regular languages K
and N in Proposition 3.2.1, we have that K = L — L/, where L' = {l{ € L | s-1 = 0}
and N = w(L — L'), where w is a word over X representing s = es. Since (X, L) is an
automatic structure with uniqueness, and N= = (w, w)dx K—, we obtain that

(u,v) € Nz & (u,v) € (w,w)dx (L=N(K x K)ix) ©u=v,

hence (X, N) is a Schiitzenberger automatic structure with uniqueness for R. [J

Schiitzenberger automatic R-classes in a D-class.

We will focus on Schiitzenberger automatic R-classes of a regular semigroup 5. To be
more precise, we show that the property of being Schiitzenberger automatic is invariant
within a D-class of a regular semigroup S. Recall that if s € S, then R, denotes the

R-class of s.
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Proposition 3.4.7. Let S be a reqular semigroup and R be a Schiitzenberger automatic
R-class of S. Let s € R, v € S such that s D r. Then R, is Schiitzenberger automatic.

Proof. Suppose that (X, L) is a Schiitzenberger automatic structure for R. Then
Ly = R and the languages L—, L, (z € X) are regular. On the other hand, since s D r,
there exists t € S such that s R ¢ £ r. In particular, we have that r = k - ¢ for some
k € 8 and it follows by Green’s lemma, that we can give an £L-class preserving bijection

E:Ry— Ry z— k- -z

Let w be a word over X representing k, and let K = wL. Clearly K is a regular language.
We show that (X, K) is a Schiitzenberger automatic structure for R,:. Since £ is a bijection
and Ly = R;, we obviously have that K¢ = (wl)p = k - Lo = R,.. Also,

if wli=wlp then I3 =1I

holds, since if wl; = k-l1p = k- lap = wliy, that is if ({1p)€ = (l2p)€, then Il = laep, since
£ is injective. Similarly,

if whr=wl, (x€X) then hLz=Is.
Thus we obtain that}

K_ ={(u,v) | w,v € K, u=v}dx

= {(u,v) [ u=wly, v=wly, (1,2 € L), wlj =wl}dx = (w,w)dx L=
is a regular language. Similarly, we obtain that

Ky = {(4,9) | m,ve K, u -2 =v}dx

= {(u,v) | u =wh, v=wly, (l1,lz € L), whz =wl}dx = (w,w)dx L,
is a regular language for all z € X. 0O
Technical lemmas

We are going to give two lemmas that will prove useful later on. First, we generalize
Proposition 3.2 of [5].

Lemma 3.4.8. Let (X, L1,...,Ly) be an automatic structure with respect to the genera-
ting set Ag for the S-act A. Let w € X+ and a;, a1 € Ag. Then the language

Lg; 01) = {(u,v) € L; x Lg| a.uw = ag.v}éx

is regular.

bt 13 MU+ Serr et et 1 S bt o bl S
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Proof. Let w =z ...2; and fix a;,ar € Ag. Let L = U;-‘=1 L;. Consider the set

n
K= U Liai,a5)a, -
i=1

Since (X, L1,...,Ly) is an automatic structure with respect to the generating set Ag for
A, K is a regular language. We note that

(u,vl)éx ek, (u, 'Ul) € L; xL and a.i.('u, . $1) = Qj. V1,

where a; € Ao, v1 € Lj.
Since K is a regular language, the language
Ny ={v1 € L | (u,v1)dx € K1 for some u € L;}
is regular by Proposition 2.3.1. Moreover the set Ny determiﬁes the following index set
I ={j|1<j<n thereexists v € L; N Ni}.

We next define the languages Kj, Ny and the index set I3. Then we give a recursive
definition for Ky, Nj, I} (1 <1< t). Let

n
K2 = U (U L(am,aj)zz)‘
mel; j=1
Since K3 is a finite union of regular languages it is a regular language. We note that
(v1,v2)6x € Ko <= (v1,v2) € N1 X L and a,.(v1 z2) = a;.vp
where m € I, v1 € L, N Ny and a; € Ag, v € Lj.

<= there exists u € L; such that a;.(uz122) = a;.vg, Where

a; € Ao, v € Lj.
Since K3 is a regular language, the set
Ny = {vg € L | (v1,v2)0x € Ky for some v; € Ny}

forms a regular language by Proposition 2.3.1. We consider the following index set deter-
mined by Ny:
Iy={j|1<j<n thereexists v € L; N Na}.
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Giving the promised recursive definition for Kj, Nj, I;, (2 < j < t), we let
n
¢ K; = U (U L(am,aj)m,)'

mel_y j=1

Clearly Kj is a regular language. We note that
('Ul__l,'vz)(sx € K < ('u;__l,vl) € Nj_1 XL and am.(m_l -:12() = a;.Y]
where m € Ij_1, vj—1 € Ly N Nj—y and a; € Ao, v € Lj.
<= there exists u € L; such that a;.(uz122...21) = a;.v;,

where a; € Ao, v € L.
We have that the language
Ny={uwelL| (’Ug_1,'vz_) € K; for some vj_1 € Nj—1}
is regular. The index set determined by N; is
I={j|1<j<n thereexists v € L; N N;}.

Finally we consider the set

Ky = U L(am»“k)wt'

meli—1
Clearly K; is a regular language, since it is a finite union of regular languages. We note
that ‘ .
(vi—1,v)0x € K; <> (v4-1,v) € Nj—1 X Ly and ap.(Ve—1 - T¢) = ag.v
where m € I;_1 and v¢._1 € Lp,.
< there exists u € L; such that a;.uz12s ...z = ag.v
and v € L. ’

Now the languages ‘
K2y = {(u,v2) € Ly x Ny | there exists v; € N1 such that |
(u,v1) € Ky, and (v1,v9) € Ky, }ox
Koizozs = {(u,v3) € Ly x N3 | there exists vg € N such that
(u,v2) € Kypyuy and (v2,v3) € Ky }ox

Kai .z, = {(u,v) € L X Ly | there exists v;—1 € Ny—1 such that
(u>vt—1) € lex2...mg_1 and ('Ut—la'v) € Kz¢}6X
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ave regular by Proposition 2.3.3. Clearly, if (u,v) € Kg,..z,, then (u,v) € Ly, ap),- Let
(u,v) € Lia;,a1)0 Since U;'l=1 a;.Ljp = A, we can construct the following sequence

;. UT] = Qj; V1, v E le
aj, V1T = ajp.v2, V2 € Ly,
G,y V1Tt == QkY, v € Ly

where (u,v;)0x € Kzy..0y (1 << t—1), and so (u,v) € Ky,. . Hence we may deduce
that Kz ..z, = L(a;,01)n » @04 50 Ly, q,),, 15 indeed a regular language. [J

Finally we introduce the following lemma:

Lemma 3.4.9. Let (X, L1,...,Ly) be an automatic structure with unigueness for the S-
act A, where the generating set is Ao ={a1,...,an}. Assume that a, = a;.u, u € L;, n #
i. Let a; € Ao, j #n and z € X. Then the languages

(a) L'(a‘,,aj)= = {(v,w) | v € uLn, w € Lj, a;j.v =-aj.w}6X;

(b) Lzaj,ai)= = {(w,v) | w € Lj, v € uly, aj.w = a;.v}dx;

(C) Ll(ai,aj]m
(d) Ll(aj,a;)x = {(w,v) | w € Lj, v € uly, aj.(w-z) = a;.v}bx

= {(v,w) | v € uLy, w € Lj, 0;.(v-z) = a;w}dx;

are regular.

Proof. (a) Let (X, L1,...,Ly) be an automatic structure with uniqueness for the S-act
A, where the generating set is Ag = {ai,...,a,}. Assume that a, = a;.u, v € L;, n #1.
Then,

'(ai,aj)= = {(v,w) | v € ulyp, w € L;, a;.v = a;.w}dx
= {(ud,w) | ¥ & Loy MG L;, ajud = ajw}dyx

= {(ud,w) | ¥ € Lp, w € Lj, an.¥ = ajw}dx.

Hence if (v,w)dx € L'(amj)=, then v = ud for some & € L, and (5,w)dx € Litowas)
Since (X, L1,...,Ly,) is an automatic structure with uniqueness it follows that a, = a;

and 9 = w. Since by assumption a; # a,, we may deduce that L'( i ), hence it is a
regular language.

(b) The proof is similar to that of part (a).




3.4. BASIC PROPERTIES 43
(c) First we note that
lanas)s = {(v,w) | v € ulp, w € Lj, a;.(v-z) = ajw}dx
= {(ud,w) | € Ly, w € Lj, a;.(ud - z) = a;.w}dx

= {(ud,w) | D € Ly, w € Lj, an.(0:2) = ajw}ix.

Hence

(v,w) € L'( <= v=ud, D€L, and (D,w)dx € Ligna))a"

a“ha’j)m
Let
A = (Ela X, /*‘]'.)pﬂ:Tl)

be a finite state automaton accepting the regular language uL,. We assume that |77} = 1.
Let

Ag = (22: X(21 $), #2540, T2)

be a finite state automaton accepting the regular language L., a;), - With the help of A4

and Ay we want to construct a finite state automaton A accepting L’( . Assume that

“c',aj):v
the length of the word u is m (a;.u = ap).

We make some remarks. If we input the word (zi...Z¢,%1...%,)0x into A, then we
require A to check:

(P1) whether 1 ...z, is an element of wL, or not;
(P2) whether (Tm41...%4,Y1-..Ys,)0x is an element of L, q;), or not.

The first requirement can be checked with the help of A; and the second one with the
help of Ay. Note also that A need to be set to work after reading through the first m
(the length of u) letters of the input word. That is we have to construct an automaton in
such a way that it )

e recognizes that we have read the first m lletters;

e stacks in the first instance y1...ym € X(2,8), so that after reading through the
first m letters (@1 ...%Tm, %1 ... Ym)0x, We can set to work Az by inputting the letter
(Tm+1,y1). At this stage, the stack has to change to y2...¥m+1 if Yms1 # § and
to ¥s ... Yym otherwise. Hence the stack always contains words of length less then or

equal to m.
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e empty its stack by the end of the procedure. In other words we want our automaton
to read all of (@1 ... %o, ¥1 ... Y, )0x with the help of A3, To be more precise,
we need to take into consideration that we may have the following situation occur:
The word (21 ...2¢,Y1-..Yt;)0x is already read by the automaton A, but there is
still a word yy ...ys, of length less then or equal to m stacked, so that the word
(8, y1) ... (8,ys,) is still waiting to be“processed by Ag”. To be able to do that,
we need to lengthen the word (z1...%4,y1...%s,)0x by attaching the letter ($,$)
at most m times, to make sure that the empty word is stacked at the end of the

procedure.

Depending on how many times the letter ($,8) needs to be attached to the word
(mli o 'mt]’yl S 'yt2)6X
so that property (P2) could be checked, we let

Ko = {(v,w)8x € L, o] —m > jwl}.

aj)e [

Illustrating this case:

e

A/

_-\_-_______
>

e

’

That is Ko contains words (v, w)dx € L(ai’aj)
checked without attaching the letter ($,$).

, for which properties (P1) and (P2) can be

For1<j<m-—1welet
K; = {(v,0)3x € Lig 0, | ol =m+35 = ]},

Illustrating this case:
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> e

T

L/
2

g

17
&
&
=

N

T
3
[k

’E

*--)____9._5---___%3

f

That is K; contains words (v,w)dx € Ll(a.;,a,-)x for which properties (P1) and (P2) can be
checked by attaching j times the letter ($,$).

We let
Ko = {(0,0)0x € Ligq,, | Io] = m < ful}.

v

— : EREY T RERRRRE $
: : |
1 1 1
W 1 1

- A N | 1

— ! 7l$ ....... $
1 ' 1
1 w 1
1 -’ U
c % 3.

- M ——p

That is K, contains words (v,w)dx € L'(a;aj)x for which properties (P1) and (P2)
can be checked by attaching at least m times the letter (§,$).

It is immediate that if (v, w)dx € Ll(a.,: ny then (v,w) € K for some 1 < j < m, since
the length of v = u? € ul, has to be greater then m, Thus,

m
U &= L0 (3.2)
Jj=1
We first verify that the languages N; = K;($,8)7, (0 < j < m) are regular. For N; we let
L= {0, Xy i}
Ij={we X" | |lw| <m}
J;=1{0,1,...,5}.
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Attach a failure state 'S to X; and denote £j = XU FS. We will explain why this step
was needed when we discuss how the transition function v; of the below defined automaton
works. Consider the automaton B; = (Q;, X(2,8) U (8,8),v;,7;, F;) where

Q; = (2 x Yo X Lj xTj x J;) UFS,
5 = (0, 90,0, A, 0);
Fy =T1 x Ty x {m} x {A} x {3},

where A denotes the empty word. Before we define the transition function v;, we introduce
the following notations: for w =y ...y € Z; we let
—w‘- — yz 20 yt if w # A
w ifw=A
and define w $ = w.
Let (p,q,,w, k) € Q;, where w =y; ...y and let (z,y) € X(2,8). Recall that A; is a
finite state automaton with exactly one final state. Let
{ mp,z) fz#$ -

p ifz= $7 = Ty
FS otherwise

PL =

and let

q ifl<m
an = N2(q, (.’B,‘yl)) if w # /\) l=m
ua(g,(x,8)) fw=A z2#8, Il=m

The transition function »; in given in the following tableau:

Vj((p9qal,w1 k),(m,y))

(P1,q1,l+ 1wy, k) | ify#8, I<m, k=0 (R1)
(plaQI,l+1’w’k) ify=8,l<m, k=0 (R2)
(p1$(I1)l1wy1 k) if z # $orw #FA\l=m, k=0 . (R3)
(p1,91,0, @,k + 1) frx=8 y=8, l=m, k<j, w#A (R4)
Fs Fo£$, y£8 k>0 (R5)
FS ife=8 y=8% k<i, w=2A (R6)
Fs if (p, g, L, w, k) = F'S (R7)

We now explain in more detail how the transition function works:

With rules (R1) and (R2), we

e count how many letters of the input word we have read so far up to m;

e fill up the stack with a word of length less then or equal to m; '

e begin to check with the help of Ay, whether property (P1) holds for the input
word.
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With rule (R3), we

e continue checking whether property (P1) holds for the input word;

o begin checking with the help of A, whether property (P2) holds for the input
word.

With rule (R4), we '

e continue checking whether property (P2) holds for the input word by emptying -
the stack;

e begin counting the number of ($,$) letters of the input word.

With rule (R5), we assure that
e words are not accepted in which a letter ($, $) is followed by a letter (z,), = #

$ ory#8$.

With rule (R6), we assure that
e the stack empties exactly when we read through j times the letter ($,$) con-
secutively.

With rules (R1)-(R3), with the definition of p; and with the help of the

assumption that A; is an automaton with one final state we assure that

o if (v, w)dx is accepted by Bj, then v € uLy,, that is v does not contain a letter
$ followed by a letter = # §.

With rule (R1)-(R4), we assure that
e the input word satisfies property (P2).

We may now deduce that a word w is accepted by B; if and only if w € Nj, hence
for each 1 < j < m the language NN; is regular. By Proposition 2.2.3, NJ*¥ = (8,8 K g
is also a regular language. Making use of Lemma 2.2.5, we may deduce that KJ®, and
hence Kj is a regular language for each 1 < j < m. By (3.2) we have that Ll(a,-, sl is a
finite union of regular languages, and hence is a regular language.

(d) The proof is similar to that of part (c). Basically we need to redefine A to be the
automaton accepting the regular language Ly, a,),- D

3.5 Automatic versus Schiitzenberger automatic.

Considering a regular semigroup S, the property of being Schiitzenberger automatic is a
collection of local properties — namely it is required that all R-classes are Schiitzenberger
automatic ~ meanwhile being automatic is a global property. In this section we discuss how
the two notions compare. Proposition 3.2.3 tells us that a group is automatic if and only if
it is Schiitzenberger automatic. We verify that under certain conditions automatic regular
semigroups are Schiitzenberger automatic. Moreover, we give an example that shows
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that even strongly Schiitzenberger automatic regular semigroups might not be automatic.
Throughout this section S will denote a semigroup, X a finite generating set for S. We
assume that X C S and denote by ¢ : X+ — S the homomorphism extending the identity
map¢: X — 5.

Proposition 3.5.1. Let S be an automatic regular semigroup with automatic structure
(X,L). Assume that for every R-class R of S, there exists a regular language K C L such
that ¢ = R. Then S is Schitzenberger automatic.

Proof. Let (X, L) be an automatic structure for S with uniqueness, s € S, and consider
the R-class of 5, R;. By assumption, there exists a regular language K C L such that
K¢ = R,. We see that (X, K) is a Schiitzenberger automatic structure for R;, since

K. ={(u,v) |v,ve K, u=v}dx =L_-N(K x K)ix

and
Ko ={{u,v) |u,ve K, u-z=v}dx = LN (K x K)éx

are regular languages which completes the proof. [J

Corollary 3.5.2. Let S be an automatic regular semigroup with finitely many R-classes.
Then S is Schutzenberger automatic.

Proof. Let (X, L) be an automatic structure for S. Let §/R = {R1,Ra,..., Ry} and
choose idempotents ey, eg, . .., e, so that e; € R;. Let R be an R-class of S with idempotent
e. We show that the assumption of Proposition 3.5.1 is satisfied, that is we construct a
regular language K C L such that K¢ = R. Consider the automaton A = (X, X, u,p, F),

where

n .
=|JR,U{pl; F={R} u:(Ri,z) = Roe; ondp: (p,7) = Re.
i=1
Since R is a left congruence, u is well defined. Note that if a word w = 2122... %y, is
accepted by this automaton, that is if )
1 2 Tn
NG e S
p le R(:tzml) e R(a:n_.l...:cl) R(:rnn:l) =R
is a successful path, then w' € R. Let M be the language accepted by this automaton
and let M’ = M*®. By Proposition 2.2.3, K = M’ N L is a regular language, moreover we
have that I{¢ = R. The assertion follows by Proposition 3.5.1. [
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The following counterexample shows that the reverse statement does not hold even if S is

strongly Schiitzenberger automatic.

Example 3.5.3. Let S = [Y2;G1,Goe,¢], be a Clifford semigroup where the building
blocks are Y3, the two element chain, Gq = {a,b | ) the free group of rank 2, G =
{e,d, | ¢ = d* = 1) the free product of two cyclic groups of order two, and ¢: G — Gy is
the homomorphism defined by ayp = ¢,bp = d. Then S is Schiitzenberger automatic, but
it is not automatic.

Indeed, since S has two R-classes, G; and Gy we obtain by Corollary 3.3.2, that S is
R-class automatic. Moreover, the groups G; and Gg are known to be automatic groups,
hence by Proposition 3.2.3 they are Schiitzenberger automatic and we may deduce that S
is strongly Schiitzenberger automatic. However, it is shown in [4] that S is not automatic.

3.6 Invariance under the change of generators.

The following problem is essential to consider when talking about automatic S-acts:

Main Problem: Let (X, Lq,Ls,...,L,) be an automatic structure with respect to the
generating set Ag for the S-act A. Assume that the finite set Y also generates S and that
the finite set B also generates the S-act A. Do there exist regular languages K1,...,Kn
over Y such that (Y, Ki,..., Ky,) forms an automatic structure with respect to the gen-
erating set B for the S-act A?

‘We can split the above problem into two subproblems:

Changing the generators of S. Let (X, L1, Lo, ..., Ly,) be an automatic structure
with respect to the generating set Ap for the S-act A. Assume that the finite set ¥ also
generates S§. Do there exist regular languages Ki,..., K, over Y such that (Y, Kj,..., K,,)
forms an automatic structure with respect to the same generating set Ag for the S-act A7

Changing the generators of A. Let (X, L1, La,..., Ly) be an automatic structure
with respect to the generating set Ag for the S-act A. Assume that the finite set B also
generates the S-act A. Do there exist regular languages Kj,..., K, over X such that

(X, K1,...,Ky) forms an automatic structure with respect to the generating set B for
the S-act A? '
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Giving a positive answer to both of the subproblems certainly gives a positive answer
to our main problem. We can first change the generating set of S and then the generating
set of the S-act A.

It is known that automaticity of semigroups depends on the choice of the finite gen-
erating set. Hence with Proposition 3.1.10 in mind, we expect that in general we cannot
change the set of generators either of S or of A without losing the property of being au-
tomatic. We will verify in this section that if S is a semigroup with local right identities,
then an affirmative answer can be given to both of the subproblems, and hence to our
main problem.

As in the previous sections S will denote a semigroup, X a finite generating set for S.
We assume that X C S and denote by ¢ : X+ — S the homomorphism extending the
identity map ¢ : X — S. Also, S® = SU{0} denotes the semigroup obtained by adjoining
a zero element 0 to S, and X° = X U {0}.

We say that a semigroup S has local right identities, if for all s € S there exists e € E(5)
such that se = s. We note here that regular semigroups have local right identities.

Changing the generators of the semigroup

Proposition 3.6.1. Let S = (X) be a semigroup with local right identities and assume
that (X,L1,Ls,...,Ly,) is an automatic structure with respect to the generating set Ag
for the S-act A. Assume that the finite set Y also generates S. Then there exist reqular
languages K3, ..., K, overY such that (Y, Ka,...,K,) forms an automatic structure with
respect to the same generating set Ag for the S-act A.

The proof of Proposition 3.6.1 follows from Lemmas 3..6.2, 3.6.4 and 3.6.5.

Lemma 3.6.2. Let S = (X) be a semigroup with local right identities and assume
that (X, L1,Lg,...,Ly) forms an automatic structure with respect to the generating set
Ap = {a1,...,an} for the S-act A. Assume that the finite set Y also generates S. Then
there exists a finite set Y D Y and regular languages Ki,...,K, over Y’ such that
Y' K,...,Ky) forms an automatic structure with respect to the same generating set
Ag for the S-act A.

Proof. Let X = {z1,...,2x} and ¥ = {y1,...,ym}. Let % : Y+ — 3 be the homo-
morphism extending the identity map on Y. Fix words vy,vs,...,v; over Y such that
zip=vh, (1<i<k). Let Y =Y U{e1,...,em}, wherey;9-e; = y;9 forall 1 < j < m.
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Clearly, since Y’/ O Y, we have that Y’ also generates S and that there exists a surjective
homomorphism ¢ : (Y/)* — S such that ¢|y = 1. Making use of the fact that e; is a right
identity for y;), we have that for each word v; there exists f; € {ei,...,en} such that
(i(fi)t)s = wis, t € N. Hence, by attaching the appropriate local right identities to the
words v1,. .., Vg, We obtain words wy,...,w over Y’ of equal length such that

Tip = WiS = VS = vi7). (3.3)

Consider the map
g: X — (Y’)+3 T — Wy,

and extend it to a semigroup homomorphism ¢ : X+ — (Y’)*. In particular we have that
the diagram

b s (70 &
o A
S
is commutative, since
@ip = tith = s = wis = (zE)s, (3.4)

hence ¢ = €. Let

By Proposition 2.2.3-, K; is a regular language for all (1 < ¢ < n). We verify that
(Yla Kl) 1(2’ s )Kn)

is an automatic structure with respect to the generating set Ag for the S-act A.

Since (X, L1,Ls,...,L,) is an automatic structure for the S-act A, we have that
Uj=1 aj-Ljp = A. To show that (J;_; a;.Kjs = A, let a € A. Then there exists a; € Ao
and u € L;, such that a;.ue = a. On the other hand up = (u€)s by (3.4) and also by
definition u¢ € K;. Thus we obtain that a;.(uf)s = a and we deduce that

n
U a;j.Kijc = A.
j=1

Let (a;,a;) € Ao x Ag. We show that the languages Ko, q;)- and K(q, 05),, ¥ € Y’ are
regular. Let 6 : X(2,8)* — Y'(2,$)* be the semigroup homomorphism induced by the
map

(m,y) = (x’y)(f X 5)6)", (a:,y) e X X X
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Since for each 1 <4,j < k the length of 2;§ = w; and 2;£ = w; is the same, we have that
for all (u/,') € Xt x X+

('u'la U,)6X9 = (ulg’,vlg)ay, = (ulful)(& X 6)6)/'
and we may deduce that

Ka;,05)- = {(u,v) € K; x K} | aj.u = a;.v}dy
= {(W¢,V'€) | (W,V) € L; X Lj, a; /€ = a;.v'€}oy
= {(«,?') € L; x Lj| a;.v' = a;.v"}(€ x &)y
= {(«,?) € Li x L; | a;.u = a;v'}x0 = Lo, 0,)0,

hence is a regular language by Proposition 2.2.3. Let y € Y’ and w € X such that
wé = y. Then,

Ka;,05), = {(#,v) € K; X Kj | ai.(u - y) = aj.v}dy:
= {(W&VE) | (W) € Li x Ly, a;.(W'€-y) = a;v'€}oy
= {(v'¢,Y'€) | (v,v') € L; X Lj, a;.(v' - w)é = a;.v'€}dyr
={(w,v") € Li x Lj | a;.(u' - w) = aj.v"}(€ x &)y~
= {(«/,v') € Li x Lj | a;.(v' - w) = a;.0'}6x0 = L(g, 0;),,9,

hence is regular by Lemma 3.4.8 and Proposition 2.2.3. [J

Definition 3.6.3. Let (X, Ly,...L,) be an automatic structure for the S-act A. Let
L= U?=1 L;. We say that a letter x € X is dispensable in L, if whenever a word w € L
contains the letter =, the word w obtained from w by deleting all occurrences of z in w
represents the same element of S as w.

We note that in Lemma. 3.6.2, all supplementary letters added to Y are dispensable i’n
K = Jj—, K;. To be more accurate: let w € K. Then w = (z;, ... ;) = wi, ... w;, for
some (x;, ...x;) € L;. Recall that w;, is obtained from v;, by attaching an appropriate
local right identity (supplementary letter) to it, and also by (3.3) v;;¢ = wj;s. That is
deleting a supplementary letter from w means substituting certain w;,’s by v;;, which does
not have any affect on the element represented by w. '

Before we finish proving Proposition 3.6.1 we invoke the following technical lemma
which follows from the proofs of [12, Lemma 3.1} and {9, Theorem 2.4.1.].
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Lemma 3.6.4. Let S be a semigroup generated by X = {z1,...,%Zm,e}. Assume that
Y = {#1,...,zm} also generates S and let e = ;, ... x;,. Definep: Xt — Y as follows:
For each word w, let wip be the word obtained from w by substituting all kth occurrences
of e by the word x;, ...x;, and delete all other occurrences. Then the following hold:

(1) If L is a regular language over X, then Ly is a regular language over Y.

(2) If J is a regular language over X (2,9), then
()" = {(wp,v9) | (u,v)0x € T}y

is a regular language over Y (2, $).

Lemma 3.6.5. Let (X, Kq,...,K,) be an automatic structure for the S-act A with respect
to the generating set Ag = {a1,...,an}, 'whe?."e X =A{z1,...,&m,e}. Let K = Ji_; K;.
Assume that ¢ is dispensable in K and that Y = {1,...,Zm} also generates S. Then
there exist regular languages L1, ..., Ly over Y such that (Y,L1,...,L,) is an automatic

structure for the S-act A.

Proof. Assume that e = y1...9%, i € Y (1 < i < k). Let : YT — S be the
homomorphism extending the identity map on ¢ : ¥ — §. Define the map ¢: X+ — Y+
in the following way. For each word w € X+, replace all kth occurrences of ¢ by y1...y%
and delete all other occurrences of e in w. Let L; = Kjs, (1 < < n). By Lemma 3.6.4(1),
L; is a regular language for each 1 < i < n. Let a;, aj € Ag. To show that (X, Li,...,Ln)
forms an automatic structure with respect to the generating set Ag for A, we need to
verify that the languages L4, .0,)=s L(asa;), (y € Y) are regular, First we note that since
e is dispensable in K we have by definition for all v/ € K that (v/<)¥ = u/¢, hence by
letting u = u'c we obtain

a; ' = a;. v o = a;.(W'S)) = aurh = a;.u.
Now we may deduce using Lemma 3.6.4 (2) that
Lgyap- = {(,v") € Li x Lj | a;.u’ = a;0'}y
= {(«/,v") | («/,") = (us,vs) for some (u,v) € K; x Kj,
a;.u = a;.v}0y
= {(us,v5) € Ls X Lj | (u,v)0x € K(g;,0;)= }Y
= (K(%aj)=l)r
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is a regular language. Let y € Y and w € Xt such that y3 = wep. Then

Liaia5), = {(@,0") € Li x Lj | ai.(w' - y) = a0}y
= {(,v") | (,v") = (us,vs) for some (u,v) € K; x Kj,
a;.(u - w) = aj.v}dy
= {(us, %) € Li x L | (u,v)0x € K(a,0;)0 1Y
= Wagmia )

is a regular language by Lemma 3.4.8 and Lemma 3.6.4(2). O

Proof of Proposition 3.6.1. Assume that (X, L1, Ls,..., Ly) is an automatic structure
with respect to the generating set Ag for the S-act A. Assume that the finite set Y also
generates S. Then, according to the proof of Lemma 3.6.2, there exists a finite set Y/ D Y
and regular languages Ni,..., N, over Y’ such that (Y’,Ny,...,N,) forms an automatic
structure for A with generating set Ag. Moreover, all letters added to Y are dispensable
in N = U;=1 Nj;. Making use of Lemma 3.6.5 we can remove the supplementary letters
added to Y one by one and obtain regular languages Kj, ..., K, such that (Y, K3,..., Ky)
forms an automatic structure with respect to the generating set Ag for the S-act A. O

Corollary 3.6.6. Let S = (X) be a regular semigrouf) and R be an R-class of S. As-
sume that (X, L) is a Schitzenberger automatic structure for R and that the finite set Y
also generates S. Then there exists a regular language K over Y such that (Y, K) is a
Schiitzenberger automatic structure for R.

Proof. Assume that (X, L) is a Schiitzenberger automatic structure for the R-class R
of the regular semigroup S. Then by Proposition 3.2.1 there exists a regular language L;
over X° = X U {0} such that (X°, L;) forms an automatic structure for the right S%-act
R® with respect to a one element generating set {s}. Since Y generates S, we clearly
have that Y U {0} generates S°. Applying Proposition 3.6.1, we deduce that there exists
a regular language Ly over Y© such that (Y°, Ly) forms an automatic structure for R?
with generating set {s}. Pulling back the argument for the R-class R with the help of
Proposition 3.2.1 we conclude that there exists a regular language K over Y such that
(Y, K) forms a Schiitzenberger automatic structure for R. [

Changing the generators of the act.
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Proposition 8.6.7. Let S be a semigroup with local right identities. Let (X,Ly,...,Ly) be
an automatic structure with respect to the generating set Ag for the S-act A. Assume that
the finite set B also generates A. Then there exist regular languages K1, Ko, ..., Ky, over
X, such that (X, K1,...,Kp) forms an automatic structure with respect to the generating
set B for the S-act A. -

The proof of the proposition is based on Lemmas 3.6.8, 3.6.9.

Lemma 3.6.8. Let S be a semigroup with local right identities and (X, L1,...,Ly) be an
automatic structure with respect to the generating set Ay for the S-act A. Let any1 € A
and B = AgU {an41}. Then there exist reqular languages K1, ..., Kny1 over X such that

(X,Ki,...,Kny1) forms an automatic structure with respect to the generating set B for
the S-act A.
Proof. By Proposition 3.4.4 we can assume that (X, Lq,..., Ly) is an automatic struc-

ture with uniqueness for the S-act A. Let a1 € A. Then there exists a unique generator
a; € Ag and a unique word u € L; such that a;.up = ap41. Let e be a local right identity
of S such that up-e = up. Let w be a word over X representing e and Ly,41 = {w}. Note
that (uw)p = ugp, and so
A1 = @ up = a;. (4 - W) = (a3 UP) * WP = Gnq1. WP,
That is
Q41 W = Gl (3.5)

holds. We clearly have that U;':ll aj.Lip = A. To show that (X, L1,...,Ln+1) indeed
forms an automatic structure with respect to the generating set B we need to verify that
for all 1 < j < n the languages L(a;,a,11)=» L(ag,ans1)e 804 L(ayyg,a;), 8T regular.

Since (X, L1,...,Ly,) is an automatic structure with uniqueness and since apy1.w =
an+1 by (3.5), we have that

aj.V = Gni1.W & GV =0any1 & 0j =a; and v = u.

Thus L(g;,an41)=
are regular.
Next we consider the language Lg; a,41). (1 <5 <n). Let Lj = {v € L; | aj.(v-2) =

=0 forall 1 <j<n, i#jand L, q,,,)- = (4, w)dx, and hence they

ant1}. By Lemma 3.1.8, L} is a regular language, and so
Lo ans1)e = {(¥;w) € Lj X Lpya | aj.(v - z) = any1.w}dx
= {{(v,w) € Lj X Lpy1 | aj.(v )} = ans1}0x
= (L} X Ln41)dx = (L x {w})dx
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is a regular language by Proposition 2.3.1.
Finally consider the language Lq,,, , a;),+ Let ¢ = @nt1.(w-z) and LY = {v € L; | aj.v =
¢}. By Lemma 3.1.9, L;! is a regular language, and hence

Lians1,a5)e = {(w,0) € Ly X Lj | appr.(w - z) = a;.0}0x
= {(w,v) € Lpy1 X Lj | c = a;v}bx
= (Lp41 % Lj)ox = ({w} x LY)dx

is a regular language by Proposition 2.3.1, proving that (X, Li, Lo, ..., Ly41) is indeed an
automatic structure with respect to the generating set B for the S-act A. OJ

Lemma 3.6.9. Let S be a semigroup with local right identities and let (X, L1,...,Ly) be
an automatic structure with respect to the generating set Ao = {a1...,an} for the S-act
A. Assume that B = {a1,...,a,—1} also generates the S-act A. Then there exist regular
languages Ki,...,Kpn—1 over X such that (X, Ki,...,Kn-1) is an automatic structure
with respect to the generating set B for the S-act A.

Proof. Let (X, L;,...,Ly) be an automatic structure with uniqueness with respect to
the generating set Ag = {aj...,a,} for the S-act A. Assume that B = {a1,...,an-1}

also generates the S-act A. Then there exists a unique generator a; € B and u € L; such

that a;.up = a,. Define
Ki=L; forall (1<j<n-1,i#£3j) and K;=LiUubL,,

By Proposition 2.2.3, K; is a regular language, and we clearly have that
n-1
U ai-Kio = A.
oot

To prove that (X, Ki,...,Kp—1) forms an automatic structure with respect to the gen-
erating set B, we need to verify that the languages K (a1,85)= 2 K(as,a7)e 304 K(a),0:)00 z €
X, (1 £j7<n-1), are regular, since for all j #4¢, (1 <j<n-1)L; = K;.

Case 1. If a; # a;, then ‘

I{(a‘.,aj)= = {(v,w) € K; x K; | asv = aj.w}dx
= L(ai,aj),__ U {(v,w) € ul, X Lj | ;v = aj.w}éx,

is a regular language by Lemma 3.4.9 and by the fact that (X, Lq,...,L,) is an automatic
structure for A.
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Case 2. If a; = a;, then

Kaa)- = {(v,w) € K; x K; | a0 = a;.w}dx
= L(g;,0;5)= U {(v,w) € uln x L; | aj.v = a;w}dx
U {(w,v) € L; X uLy, | aj.w = a;.v}éx U (u, 'LL)(SXI}(%?%)=
= L(a;,05)= Y (% #)0x Liay,an)=

is a regular language by Lemma 3.4.9 and by the fact that (X, Ly,..., L,) is an automatic
structure for A.

Case 3. If a; # a;, then

Ko 05)s = {(v,w) € K; x K | a;.(v-2) = ajw}dx
= L(ai,aj)w U {(v,w) € ul, % Lj I a,«,;.(’U . a:) = a,-.w}&x

and

K(a;,a0). = {(w,v) € K; X K; | aj.(w-z) = a;v}dx

= L(aj,0:)s Y {(w,v) € Lj X uLp| aj.(w - ) = a;.v}0x

are regular languages by Lemma 3.4.9 and by the fact that (X, Ly, ..., L) is an automatic
structure for A.

Case 4. If aj = a;, then

K(a,00. = {(v,w) € K X K; | ai.(v - z) = aj.w}ix
s L(ﬂ»i,ai)rc U {(v,w) € ulp x L; | a;.(v-z) = a;. w}bx
U {(w,v) € L; X uLy | a;.(w - ) = a;.v}dx U (1, u)dx L(a,,an)a>

is a regular language by Lemma 3.4.9, Proposition 2.2.3 and the fact that (X, L1,...,Ln)
is an automatic structure for A. (1

Proof of Proposifion 3.6.7. Assume that (X,L1,...,Ly) is an automatic structure
with respect to the generating set A9 = {a1...,a,} for the S-act A. Assume that
B = {by,...,bn} also generates A. Then, by Lemma 3.6.8, there exist regular languages
Ni,...,Npym over X, such that (X,Ni,...,Npim) forms an automatic structure with
respect to the generating set C' = Ag U B for the S-act A. Since B also generates the
S-act A, by applying Lemma 3.6.9 we can subtract the generators of Ag from C one by
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one, so that we obtain regular languages Kj,..., K, over X, such that (X, Ki,...,Ky)
forms an automatic structure with respect to the generating set B for the S-act A. O

Proposition 3.6.7 has the following consequences, which provide a generalization of [9,
Theorem 1.1] and of [4, Proposition 1.4].

Corollary 3.6.10. Let S be a semigroup with local right identities. Assume that (X,L) is
an automatic structure for S and that the finite set Y also generates S. Then there exists
a regular language K over Y such that (Y, K) forms an automatic structure for S.

Proof. Let (X, L) be an automatic structure for the semigroup S, where S has local
right identities. Assume that X = {zj,...,z,}. Then by Proposition 3.1.10, S is an
automatic right S-act with generating set X. In particular we have that there exist regular
languages Ly, ..., L, over X such that (X, L;,..., L,) forms an automatic structure with
respect to the generating set X for the right S-act S.

Assume that Y = {y1,...,ym} also generates the semigroup S. Then as shown in
Proposition 3.1.10, Y generates S as an S-act as well, hence by Proposition 3.6.7, there
exist regular languages Kj, ..., Ky, such that (Y, Ki,...,K,,) is an automatic structure
with respect to the generating set Y for the S-act .S. Making use of Proposition 3.1.10
repeatedly, we obtain that there exists a regular language K over Y such that (Y, K) forms
an automatic structure for the semigroup S. [

Corollary 3.6.11. Let S be a regular semigroup. Assume that (X,L) is an automatic
structure for S and that the finite set Y also generates S. Then there exists a regular
language K over Y such that (Y, K) forms an automatic structure for S.

Proof. Since every regular semigroup has local right identities, our corollary immedi-
ately follows from Corollary 3.6.10. O

We will make use of the following useful fact later on.

Proposition 3.6.12. Let S be a regular semigroup generated by a finite set X and R be an
R-class of S. Let s,t € R. Assume that (X°, L) forms an automatic structure with respect
to the generating set {s} for the right SC-act RO. Then there exists a regular language K
over X9, such that (X°, K) forms an automatic structure with respect to the generating
set {t} for RO. ’
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Proof. Since (X, L) forms an automatic structure with respect to the generating set
{s} for R, we have that s Ly = R? and that the languages

L. ={(u,v) |u,ve L, s-u=s-v}dx

Ly = {(u,v) | w,v € L, s-uz=s-v}x (z€XO)

are regular. Since s R t, we also have that s = it's, t' € V(t). Let w be a word over X
such that wy = t's and let K = wL. Note that s = t-we. Clearly K is a regular language
over X0 and t- K¢ =t - (wL)p = s+ Ly = R°. We verify that (X°, K) is an automatic
structure with respect to the generating set {¢} for R°. Note that (ki, k2) € K- if and only
if ky = wly and ko = wly for some ly,ls € L, and ¢t - wl; =t wly. Since t-w = s, it follows
that ¢-wl; = t-wly if and only if s-1; = s-Ig if and only if (11, l3) e Hence, we have that
K_ = (w,w)dx L= and so it is regular. Similarly we have that K, = (w,w)dx Lq, z € X0
proving that (X, K) is an automatic structure with respect to the generating set {t} for
R0

To summarize the main result of this section, we have:
Theorem 3.6.13. Let § = (X) be a semigroup with local right identities and assume that

(X, Ly, La,...,Ly) forms an automatic structure with respect to the generating set Ao for
the S-act A. Assume that the finite set Y also generates S and that the finite set B also

generates the S-act A. Then there exist regular languages K, ..., Ky over Y such that
(Y, K1,...,Kn) forms an automatic structure with respect to the generating set B for the
S-act A.

3.7 Fellow traveller property I.

In this section we first associate a directed labelled graph I'x (A4, S) to each S-act A and
introduce the notion of distance in T'x(4,S). With these tools, we give the definition of
the fellow traveller property and claim that the introduced notion is a generalization of the
fellow traveller property given for semigroupé and groups. Finally we prove in this section
that if A is an automatic S-act, then 'y (A, S) possesses the fellow traveller property.

As before, S will denote a semigroup, X a finite generating set for S. We assume that
X C S and we denote by ¢ : Xt — S the homomorphism extending the identity map
¢: X — 5. We denote by S° the semigroup obtained by adjoining a zero element 0 to S,
and we let X° = X U {0}. If S is a group, then we will assume that X is closed under
taking inverses.
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The associated graph

Intuitively we can think of an S-act A as a directed labelled graph I'x (4, S), in which
the vertices are elements of A, the labels are elements of X and there is an arrow from
a to b with label z precisely when a.z = b. We write the arrows of I"x (A, .S) as ordered
triples (a, z,b) indicating that a.z = b. We let V(T'x(A4, S)) denote the set of vertices and
A('x (A, S)) denote the set of arrows of I'x (4, 5). Clearly I"'x(A,S) is not necessarily a
connected graph. '

We define a path between two vertices a and b of A = T'x(A,S) to be a sequence of
edges:

s 1 z2 :
a = Qq ay ag ...0n-1

Tn

Gn=b

such that either (a;,z;,ait1) € A(A) or (ai+1,2i,a:) € A(A);, (0 <4 < n—1) and say
that the length of the path is n. For a,b € V(A), we define the distance da(a,b) between
a and b to be the length of the shortest path connecting a and b and say that the distance
is infinite if a and b belong to different components of A.

We give a list of S-acts A, when-I'x(A4,S) or a graph related to I'x(4,5) is a well-
known graph.

Example 3.7.1. If A is the right S-act S (see Example 3.1.4), then A = I'x(4,S) is
the right Cayley graph T' = T'x(S) of S. Bearing in mind the definition of distance in
the Cayley graph of a semigroup introduced in the Preliminaries, we have for all a,b € S
that da(a,b) = dp(a,b). If S is a group then A is a connected graph and (g,z, k) € A(A)
if and only if (h,271,g) € A(A). In other words, any two vertices are connected via a
directed path. To make it clear whether we consider S as a semigroup or a right S-act we
write Cayley graph I'x (S) of S and the graph I'x (S, S) respectively.

Example 3.7.2. If A is the right S%act R?, where R is an R-class of S (see Example
3.1.6), then T'x(R?, S%) restricted to R is the Schiitzenberger graph ST'x(R) of R.

Fellow traveller property

Recall the following notation. If u = z1...2, and ¢ > 1, then

_ | Zroeomy  if <y

u(t)'— { Ti...Ty ift>m.
Definition 3.7.3. Let A be an S-act regularly generated by Li,...,L, and the set Ao' ==
{a1,...,a,}. The graph A = T'x(A,S) is said to have the fellow traveller property with
respect to L;, L; and a;,a;, if there exists a constant k € N such that whenever (u,v) €



3.7. FELLOW TRAVELLER PROPERTY I 61

L; x L; with da(a;.u,a;v) < 1, then da(a;.u(t),a;.v(t)) < k for all ¢ > 1. We say that
I'x (A, S) possesses the fellow traveller property with respect to Ly, ..., Ly and Ag, if it
possesses the fellow traveller property with respect to any two regular languages L;, L;
and corresponding generators a;, a;.

We have seen that if S is a semigroup then I'x (S, ) is the Cayley graph of S. Now we
show that the fellow traveller property for S-acts is a generalization of the fellow traveller
property given for semigroups and groups.

Proposition 3.7.4. Let S be a semigroup generated by a finite set X = {z1,...,z,}.
Then the Cayley graph of S possesses the fellow traveller property with respect to some
regular language L if and only if T'x(S,S) possesses the fellow traveller- property with
respect to some regular languages L1, ..., L, and X.

Proof. (=) Assume that the Cayley graph I' = I'x(S) of S has the fellow traveller
property with respect to a language L. Then Ly = S and there exists a constant £ € N
such whenever dr(u,v) < 1 with u,v € L then dp(u(t),v(t)) < kfor all ¢t > 1. Asin
Proposition 3.1.10, the languages L; = {u € X+ | z;u € L} (1 <1 < n) and X regularly
generates the S-act S. Let A = I'x(S, §). Choose languages L;, L; and let (u,v) € L; x L;
such that da(z; - u,z; - v) < 1. Bearing in mind that da(a,d) = dr(a,bd) for all a,b € S,
(see Example 3.7.1) we have that dr(zsu,z;v) < 1, and hence dp((ziu)(t), (z;v)(t) < k
holds for all ¢ > 1. In particular we have that da(z; - (u(t)),z; - (v(t))) < k for all £ > 1,
proving that the fellow traveller property holds in A with respect to L;, L; and z;,z;.
Since L;, L; were arbitrarily chosen, we may deduce that I'x(S,S) possesses the fellow
traveller property.

(<) Assume that A = I'x(S,9) possesses the fellow traveller property with respect to
some regular languages L1, ..., L, and X. Then | J;_; ;Ljp = S and for any two chosen
languages L;, L; and corresponding generators z;,z;, there exists a constant & € N such
that whenever da (z; - u,z;-v) < 1 with (u,v) € L; X L; then da (z; - (u(t)),z; - (v(t))) < k
for all £ > 1. As in Proposition 3.1.10, we let L = ;_; @;L;. Then Ly = 5. We
claim that the Cayley graph I' = I'x(S) has the fellow traveller property with respect
to L. Let N € N be a constant such that for any two generators zj and z,, that are
connected via a path in A the distance da(z;,z;) < N. Let M = max(k,N). Assume
that dp(u,v) < 1, (u,v € L). Then v = z; -4 and v = z; + ¥, where z;,z; € X and
(@,?) € Ly x L;. It follows that da(z; @, z;-9) < 1 holds and we obtain that for all £ > 1,
da(zi- (@(t)), z; - (9(t))) < k < M holds. Since da(a,b) = dr(e,b) for all a,b € S, we have
that for all ¢ > 1, dp(=; - (a(t)),z; - (9(t))) < k < M. To finish the proof we need to verify
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that dp(=;, z;) < M or equivalently that z; and z; are connected in I' = A. But the latter

fact follows by our assumptions, since z;- (i-z) = x; - holds for some z € X U{\A}, where
A denotes the empty word. That is, we have the following path in A

2 @ ~ T ~ o -~ B
i >T; U Ti U+ T = Tj  V—;

We may deduce that the Cayley graph of S possesses the fellow traveller property with
respect to L. O

Next we verify that if A is an automatic S-act, then I'y (A, S} possesses fellow traveller
property. We follow the group and semigroup theoretical proofs.

Proposition 8.7.5. Let S be a semigroup generated by a finite set X. Let A be an
automatic S-act. Then there exist reqular languages L1, . .., Ly, over X, such thatTx (A, S)
has the fellow traveller property with respect to Ly,..., L, and Ap.

Proof. Let (X, L,...,Ly) be an automatic structure for A with respect to the gener-
ating set Ao = {a1,...,a,}. For each regular language L, q;),, & € X U {=} consider a

finite state automaton A, accepting it and choose a constant N € N, such that IV is

@5 )=
greater then the number of th)a,tes of any of the automata defined. Let A =T'x(4,S).

Choose regular languages L;, [; and assume that da(ae;.u,ae;.v) < 1 holds, where
(u,v) € L; x Lj. Without loss of generality we can assume that a;.(u - y) = aj.v for
some y € X U {\}, where A denotes the empty word. Then (u,v)dx is accepted by the
automaton A, q.),, Where z = y if y € X and z is the symbol = if ¥y = A. Start
reading the word (u,v)dx in A(g,a;), and assume that after reading the first ¢ letters
(w(t),w(t))dx, we are at state g. Let (%&,9)dx be the shortest word over X (2,$) such that
reading (4, 7)dx from state g, we arrive at a final state of A(aiaz),+ Clearly, the length
of (%,9)dx is less then N, since the number of states of the considered automaton is less
then N. Furthermore, since (u(t),v(t))dx(@,9)dx is accepted by A(s,q;),s We have the
following diagram in A:
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That is,
da(aiu(t),a;.0(t)) < @] + |[9] + |z| < 2N + 1,

which proves that the fellow traveller property holds in A with respect to L;, L; and a;, a;.
Since L;, L; were arbitrarily chosen, we may deduce that A possesses the fellow traveller
property with respect to Ly,...,L, and Ag. O

Corollary 3.7.6. Let S be an automatic semigroup. Then the Cayley graph of S possesses
the fellow traveller property.

Proof. Immediately follows from Proposition 3.1.10 and Propositions 3.7.4 and 3.7.5.
O

Corollary 3.7.7. Let S be a monoid and assume that A = S/R is an automatic left
S-act. Then I'x(A,S) has the fellow traveller property.

We will also make use of the following corollary.

Corollary 3.7.8. Let S be a semigroup generated by a finite set X and let A be an S-act.
Assume that (X, L1,...,Ly) forms an automatic structure with respect to the generating
set Ag = {a1,...,an} for A. Letl € N. Then there exists a constant k € N, such that
whenever a;.uw = a;.v holds for some w € X*t, |w| <, where (u,v) € Li-x Lj, then
da(a;.u(t),a;.v(t)) < k holds in A =T x(A,S). ‘

Proof. Let L = {w € X | |w| <1}. Since for all a;,a; € Ag and w € L the lariguages
Lia; a)0 = {(4,0) | ai.uw = a;.w}dx are regular by Lemma 3.4.8, finite state automata
A(a;,a). can be defined accepting these languages. We can choose a constant N € N
that is greater than the number of states in any of the automata defined. The proof now
continues along the same lines as the proof of Proposition 3.7.5. [l

In preparation for the next section, we make the following observation. Let S be
a regular semigroup generated by a finite set X and let R be an R-class of 5. Then,
for any regular language L over X and s € R, for which s- Ly = RO holds, the graph
A = T'x(R°, S%) associated to the right S°%act R® possesses the fellow traveller property
with respect to L and {s}. Indeed, since we have for all s, € R? that da(s - u,s-v) < 2.
This fact ruins our hopes to connect Schiitzenberger automaticity of R and the fellow
traveller property of A, and urges us to introduce the following definition.




G4 CHAPTER 3. AUTOMATIC SEMIGROUP ACTS

Definition 3.7.9. Let S be a semigroup and R be an R-class of S. Let L be a regular
language over X and s € R such that s- Ly = R. The Schiitzenberger graph I' = SI'x ()
is said to have the fellow traveller property with respect to L and {s}, if there exists a
constant & € N such that in the Schiitzenberger graph of R whenever u,v € L with
dr(s-u,s v) <1, then dp(s - u(t),s - v(t)) <k holds for all ¢ > 1.

Similarly to Proposition 3.7.5 and Corollary 3.7.8 the following proposition and corol-
lary can be proved:

Proposition 3.7.10. Let S be a regular semigroup generated by a finite set X and let
R be a Schiitzenberger automatic R—-class of S. Let s € R. Then there exists a regular
language L over X, such that ST'x(R) has the fellow traveller property with respect to L
and {s}. :

Corollary 3.7.11. Let S be a regular semigroup generated by a finite set X and R be an
R-class of S. Let s € R and K be a regular language over X satisfying condition (S2)
of Proposition 3.2.1. Letl € N. Then there exists a constant k € N, such that whenever
s-uw = s-v for somew € Xt |w| <1, where u,v € L, then dr(s-u(t),s-v(t)) < k holds
in the Schiitzenberger graph T' = I'x(R).

3.8 Fellow traveller property II.

We have seen in the previous section that if A is an automatic S-act, then the fellow
traveller property holds in I'x (A, S). The question naturally arises whether the converse

holds or not:

Problem: Let A be an S-act. Is it true that if I'x (A4, S) possesses the fellow traveller
property then A is automatic?

We know that groups can be characterized by the fellow traveller property, while semi-
groups usually cannot. Hence, with Propositions 3.1.10 and 3.7.4 in mind an affirmative
answer can be given if A is the right S-act S, where S is a group, but if A is the right
S-act S, where S is a semigroup then the answer is expected to be negative. As a reaction
to the result that fellow traveller property does not characterize automatic semigroups,

investigations continued in two directions:

(a) On one hand, semigroup classes closely related to groups came into the focus of
research; i.e. it was shown in [4] that completely simple semigroups can be charac-
terized by the fellow traveller property.
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(b) On the other hand, modification of the concept of automaticity has been considered
in [34]. With the introduction of the notion of prefix-automatic monoids and the
notion of monoids of finite geometric type the following results are verified:

(i) Prefix-automaticity is still a valid generalization of the group theoretical notion
of automaticity.

(ii) Prefix-automatic monoids of finite geometric type are characterized by the fel-
low traveller property.

These considerations suggest that if we want to obtain a positive answer to our proposed
problem, then we need to have structural information and a finiteness condition on the
S-act A.

The main purpose of this section is to prove

Theorem 3.8.1. Let S be a regular semigroup with finitely many idempotents. Assume
that each R-class possesses the fellow traveller property. Then S is Schiitzenberger auto-
matic.

The key to prove Theorem 3.8.1 is based on the following proposition.

Proposition 3.8.2. Let S be a regular semigroup with finitely many idempotents. Let R
be an arbitrary R-class of S and let e € E(S) N R. Then R is Schiitzenberger automatic
if and only if He is automatic.

Proposition 3.8.2 is proved in three steps. The first step is to find a generating set for
H, in terms of generators of S. The second step is to prove that if the Schiitzenberger
graph of R possesses the fellow traveller property then the Cayley graph of H, possesses
the fellow traveller property. The final step is to prove that that if H, is automatic, then
R is Schiitzenberger automatic.

First step. Let S be a regular semigroup generated by a set X, and let G be a
maximal subgroup of S. In particular, G is an H-class of S, and the identity element e of
(G is an idempotent in S. Recall that e is a left identity in its R-class. Our aim is to find
a generating set for G. In doing so, we will translate the results from {32] into our setting.

The following concept plays a central role. Consider the R-class R of e and choose
representatives ¢ = rg, 71, 79,... of the H-classes contained in R. For each chosen
representative choose an inverse 7 = e, 74, 75, ... (v} € V(r;)). Clearly er; = 7; and
r; D 'rg. Illustrating what we have done:
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.r’l .:,-é

For a word w over X and a representative 7y, if 7; - wp R e, then we let 7, denote the
representative of the H-class of r; - wep.

Re ‘To=¢€ ‘T TWP

We verify

Proposition 3.8.3. If X generates S, then
Y = {riz(riz)’e | iz R €}
generates G as a semigroup.

Proof. First we show that Y C G. Let r;z(ri;)'e € Y. Then, iz H riz R e, and hence
R,y N Ly;z contains an idempotent, namely (Piz)7riz. It follows by Proposition 2.1.5,
that 72(7iz)’ € Lry,y N Rrz © Re. On the other hand, 7:%(Tiz) H Tix(riz) R e, and
hence R, N Ly 4(r;,) contains an idempotent, namely Tiz(Tiz)'. Applying Proposition 2.1.5
one more time, we obtain that r;z(ri;)'e € L. N R, = G. lllustrating the argument:

R, | ro=e¢e| riz(ri) s T
Tz (Tiz) Tig

(Tiz)’ (Tiz) "Pix

By Proposition 2.1.5 we also have that for y1,y2 € Y, %1 - y2 € G holds. Let g € G, and
assume that g = z;...xz,, where z; € X (1 <1i < n). We verify that g can be written in
terms of generators in Y. Clearly g = eg = ez; ...z, and hence 7oz,..2, = 10 = e. We
make the following further observations.

(1) Since e R ez ...y, we have for all 1 < i < n that

eR exi...z;. (3.6)
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Moreover, since R is a left congruence, it follows that
hRhxy...x; forall hed@G, 1<i<n. ' (3.7)

(2) Forall1 <i<n,
T0my..2:Ti+1 R €. (3.8)

For, by definition and by (3.6), e R roz1...2; H T0s,..2; and hence it follows by
Proposition 2.1.11 that Grozy...2; = G7og,...w;- S0, there exists h € G such that '

Ry v == hvomy i B = 0kt = TO&k i

Multiplying each side on the right by z;,.1, and making use of (3.7),we obtain that
T0z..2;Zi+1 ¢ € indeed holds.

(3) Since rog;..2;Tit1 H T0er..zip1 £ ((T021..2141) T021..2i41 ), a0d since every idempotent
is a right identity in its £-class, we have that

/
T0zy..2; Titl = T02y...2: Tit1{(T021 ..0341 ) TOD1..2p41)- (3.9)
We are now ready to rewrite g in terms of generators of Y:

g =er1Ty...Ty = TOTIT2...Tn
/
= (Po®170s, 702, )22+ + + Tn by (3.9),

= 'f'0$1"“6x1 (702, :1:27'631,;27'0“;1:,;2) . T by (3.9),

! s . /
- 7"0131"'03;1 7"0:1:1-'1727'03;13;27'0:1:@2 e Sl (T'Oml...zn_lfEn(TO:z:l...:cn) 7'0:1;1...:1:”)-

Using the fact that e is a left identity in its R-class and that rog,.o; Reforalll1<i<n
by (3.6), we obtain that

g= (7'0217'6.'.;1 e)('rO:nl 3727'63;11;26) cee ("'0:1;1....7:,1_13771.(7"0:1:1...a:n)le)-

To make notation convenient, we write [r;, z] instead of r;z(r;z)'e € Y. Proposition
3.8.3 asserts that Y = {[r;,z] | m;z R e} generates G. By the proof of Proposition 3.8.3,
we have that for g € G,

G = BILY «.o - T 105 21 [Poy B8] - o » [Fl01025 0 s T0)
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We observe here that the length of a word over X that represents an element of G does
not change when we rewrite it in terms of generators of Y.

Second step. We keep the notation of the first step. We prove that if R = R,
is a Schiitzenberger automatic R-class, and E(S) is finite, then G, our chosen maximal
subgroup, is automatic. We need the following lemma and its corollary.

Lemma 3.8.4. Let S be a regular semigroup generated by o finite set X and assume that
E(S) is finite. Let R be an R-class of S. There exists a constant ¢ € N such that whenever
s,t € R are such that s = ta for some z € X, then t - w = s for some word w € Xt with
length less then or equal to c. '

Proof. Since E(S) is finite, there exists a constant ¢; € N such that each idempotent
e € E(S) can be represented by a word of length less then or equal to ¢;. For each z € X,
choose 2’ € V(z). Since X is finite, there exists a contant ¢z € N such that each chosen
element =’ € V(z) can be represented by a word of length less then or equal to 3. Let
¢ = 2¢; + co. Assume that s R ¢ and that sz = ¢. Then, by Proposition 2.1.8, ss’ = tt
for some s’ € V(s) and ¢/ € V(t). Let h € S(s's,zz’). Then, by Proposition 2.1.10,
t" = a'hs' € V(zs) = V(t), and so we obtain that

s=tt's=tt"tt's = tt"s =t - 2'hs's.

By definition h € E(S) and so we obtain that z’'hs’s can be represented by a word of
length less then or equal to c. O

An immediate corollary of Lemma 3.8.4:

Corollary 3.8.5. Let S be a regular semigroup generated by a finite set X and assume
that E(S) is finite. Let R be an R-class of S and denote by I' the Schiitzenberger graph
of R. Let k € N. Then there exists a constant ¢ € N such that whenever s,t € R are such
that dr(s,t) < k, then s-w =t for some word w € Xt with length less then or equal to c.

Proof. By definition, if dr(s,t) < k, then there exists an undirected path

T Zp-1

0 81 89...8p-1

s = $Sp Sh =1

such that n < k. We want to verify that there exists a directed path with some bounded
length from s to t. T'wo cases can occur:

(i) If s;z; = si41, then our arrow point in the “right” direction.
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(ii) If s;41@; = sy, then by Lemma 3.8.4, there exists a constant ¢; and a word w € X g
whose length is less then or equal to ¢; such that s; - w = s;;1. Hence arrows that
point in the “wrong” direction can be substituted by a sequence of at most ¢; arrows
pointing in the “right” direction.

We may now deduce that there is a directed path from s to ¢ in the Schiitzenberger graph
of R, whose length is less then or equal to ¢ = ke¢;. O

Proposition 3.8.6. Let S be a reqular semigroup generated by a finite set X and let G be
a mazimal subgroup of S with identity element e. Assume that E(S) is finite and that the
Schiitzenberger graph of R, possesses the fellow traveller property. Then G is an automatic
group. In particular, if R, is Schiitzenberger automatic, then G is automatic.

Proof. For the sake of convenience, we assume that e € X. We let ¢ : Xt — §
denote the homomorphism extending the identity map ¢; : X — S. Since R, possesses the
fellow traveller property, there exists a regular language I over X such that e - Ly = R,.
By.our assumptions E(S) is finite, and so R, contains finitely many H-classes. Choose
representatives e = 79, 71,...,, of the H-classes contained in R, and also choose inverses
of the representatives e = 7(,71,...,7, (i € V(r;)). According to Proposition 3.8.3 and
using the notation introduced after Proposition 3.8.3, the finite set ¥ = {[r,z] | = €
X, mz R e} generates G as a semigroup. Let ¢ : ¥+ — G be the homomorphism
extending the map ¢ : Y — G; [r;, 2] — rare.

Next, we construct a regular language over Y that is mapped onto G. For this, let

L={eweeL | (ew)p € G}.
It is immediate that E(p = @G. Consider the map
s:L— YT mza... Tn — [ro,21][P0wy, T2] - - - [P02y...2m—1s Tm)-

Let K = Lc. Since Etp = G, we have that K1 = G. We first show that K is a regular lan-
guage over Y. Let A; = (X1, X,v,p,T) be a finite state automaton accepting the regular
language eL. Let € ¢ Y and Z = Y U {e¢}. Consider the automaton A = (%,Y,p,q, F),
where _

Y =EixY)U{gt UFS, ¢g=e) F=TxY¥,

and the transition function p is defined as follows:

/—L(q$ ['f'j, y]) = (ll(p, y)? [Tj1y])>




70 CHAPTER 3. AUTOMATIC SEMIGROUP ACTS

for (p, [ri,z]) € 1 x Y we define

FS otherwise

u((B, [riy 2)), [, 9]) = { (@, y),frs,y)) if rig =15,

and

w(F'S, [Tj’y]) = FS.

By the definition of K, it is straightforward, that every word w € K is accepted by .A.
On the other hand, by the definition of x4, we have that every word accepted by A is an
element of K. We may now deduce that K is a regular langnage for which K = G

We next prove that G is automatic by showing that the fellow traveller property holds
in the Cayley graph A of G. The Schiitzenberger graph of R will be denoted by I". We will
work with distances both in the Cayley graph A of G and in the Schiitzenberger graph T’
of R. The notation will always make it clear in which graph the distance is understood.

First, we introduce the following upper bounds:

e Since Y is finite, there exists ¢; € N, such that for every generator [r;,z] € Y there
exists a word w over X of length less then or equal to ¢; such that [r, zi) = wep.

o Since the set of representatives of the H-classes contained in R, is finite, there exists
ey € N, such that 7ie, (v} € V(r;), 1 <i < n) can be represented by a word over X
of length less then or equal to ¢y. In particular e = 7o can be represented by a word
with length less or equal to ¢s.

Let u,v € K for which da(u,v) < 1 holds. We verify that there exists a constant ¢ € N
such that da(u(t),v(t)) < ¢ holds for all ¢ > 1.

We may assume that - [r;,z] = v for some [r;,z] € Y. Consider e, ed € L for which
(eti)s = uw and (ed)s = v. Let w be a word over X such that we = [r;,z]ip. We may
assume that |w| < ¢;. Then e 4w = e ¥, and hence dr(e - @,e - ) < ¢;. Making use of
Corollary 3.7.11, we have that there exists & € N such that dp(e - @(t),e - 9(t)) < k for all
t>1.

Let ¢ > 1. We verify that in the Schiitzenberger graph of R, the distance between the
vertices e - 4(t)p and u(t)y is less then c3. Assume that

u = [rg, ::51][’1'{3,,,x ; :1:2] o [7'01:1...3:1_1 ) :ZIL].
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Then ett = z1...x; and

’U(t) - [7’0,311][7'0a:1,$2] e [Toml...mg_lamt]

= 7‘0:817"6ml (e ' T0zy )3:27‘(’]::;1:r25 YA (6 : TUwL---mt—l)ztrzla:l...a:ge
— (r0m17'{)x17'0m1)$2r6m1z2 5 EAE ""0a:1...w:_15”t""6x1...a;,:@ (since 7; R e)
= 10(Z1 ... Bt)0g,..2,® (by (3.9))

=€ ﬁ’(t) g T('):rl...a:_;,e'
It follows that dp(u(t), e @(t)) < cp. Similarly, dr(v(t),e - 9(t)) < cz and so we have that

dr(u(t), v(®)) < dr(u(t),e - @(t)) + dr(e - @(t), e - 5(¢)) + dr(e - 5(8), v(t))
<cy+k+co.

Tllustrating this, we have

By Corollary 3.8.5, there exists a constant cg € N and a word w € X+ such that [w] < ¢3
and

u(tyh - (W) = u(t)y - (eWhp = v(t)p.

It follows that (ew)y € G. Clearly (ew)y can be represented by a word over X with length
less then or equal to 1+ e3. According to the remark after Proposition 3.8.3, rewriting a
word over X that represents an element of G does not change the length of the word and
so we have that (e¢@)y can be represented by a word over ¥ with length less then or equal
to 1+ c3. We may now deduce that there exists a word @ € YT, such that @] < 1+ e,
and u(t)@ = v(t) and so da (u(t),v(t)) <1l+cgforallt>1. O

Third step. We prove

Proposition 3.8.7. Let S be a regular semigroup finitely generated by X C S and as-
sume that E(S) is finite. Let e € E(S) and assume that H, is automatic. Then R, is
Schiitzenberger automatic.
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Proof. Assume that H, is generated by a finite set Y C H,. Let 9 : Y+ — H, denote
the homomorphism extending the identity map ¢y : Y — H,. Let K C Y+ be a regular
language such that (Y, K) form an automatic structure for H, with uniqueness. Since E(S)
is finite, D, contains finitely many £-classes. We choose representatives 7o = e,71,...,75
in each H-class contained in R,. For each representative r;, we choose an inverse r; € V (r;).
Since S is generated by X, it is also generated by the finite set

Z =X 1Y 0¥ b

Let ¢ : Zt — S denote the homomorphism extending the identity map ¢ : Z — S. Let

n
L= U K Ti.
" i=1
By Green’s Lemma, Ly = R.. Moreover, since (Y, K) is an automatic structure with
uniqueness, for each s € R, there exists exactly one w € L such that wy = s, and so
L= = {{(u,u)lu € L}dz is a regular language. To show that (Z, L) is a Schiitzenberger
automatic structure for R., we have to show that for each z € Z, L, is a regular language.
We first fix notation. Let

I= {(7').7) | 1< Z,j Sn) Tiz H TJ'}'

j
by Proposition 2.1.5, that r;2r; € Ry, N R,;. Since rjr;- € Lr,-zr; N R, we have r.izr;-e €

R,,‘.,,,.;_ﬂLe = H, by Proposition 2.1.5. Thus, for each (4,5) € I we can fixaword w; ; € Y+
such that w; j9 = (rizrje)p. For each (4,7) € I, we let

Observe that if (4,5) € I, then 'rizr;-e € H.. Indeed, since rir; € Ly, N RT;_, we have

Li,j = L N (Y "y X Y*T‘j)ﬁz.

We first verify that
Ly= | J &y (3.10)
(i,7)el
then we show that L;; is a regular language for each (i,7) € I. It is immediate that
L;; C L, for each (7, 7) € I. To prove the reverse inclusion, we show the following stronger
statement:
(@r;,or;)0z € L, <= iz H rj and (&,9)dy € K, ;- (3.11)

First, assume that (@r;, 9r;)dz € L,. Then @r;z = ¥r; and it follows that r;z 'H r;. On

the other hand, multiplying each side on the right by r/e, we obtain that dr;zrje = drjrje.

Since 774 R e H ¥, we have r;7;e = ¥ and so Girzrje = . It follows that (i, 9)dz € Ku, ;-
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For the converse, assume that (&,¥)dz € Ku,; and that r;z H r;. Then @w;; = 9,
and so ﬂr,-zr;-e = © holds in S. Multiplying each side on the right by r;, we obtain that
Gir;zrier; = orj. Since e R r;, we have er; = r;. By assumption r;z H r; £ rir;, and so
7'1:27";-7'_1' = 7;z. We may now deduce that zlrim';.erj = diriz = Ur;, and so (dr;, 9r;)dz € L.

Fix (,j) € I. We construct a finite state automaton accepting L;;. To simplify
notation, we let w denote w; ;. Since (Y, K) is an automatic structure for H,, we have
by Proposition 2.3.14, that K, is a regular language. Let A; = (21,Y, u1,p1,F1) be a
finite state automaton accepting I,,. Consider the finite state automaton Ai,j.= (%, YU

{ri,v;}, 1, 0, F), where
D=2 x{0,r:} x{0,m}) U{FS}Y;, F=F x{r} x{r;}; p=(p1,0,0).
The transition function y is defined in the following way.
(#1(g; (y1,92)),8,0) ifyr,yz €Y,

(#1(a, ($,92)),m,0) 1 =17y, 2 €Y,
H((Q,V), W)’(ylayQ)) = (ll'l(q’ (yh $))’mirj) if hl € Y> Y2 =74,

(qa 7';‘,7';‘) if Y1 = 'ri)y Yo =Ty,
FS otherwise.
(11(g, (8,92)),m4,0) ify1 =8, ypeY,
1((q,r4,0), (y1,92)) = (a,75,75) if y1 = $, ya =1,
FS if y1 #£ §.
Similarly,
(NI(Q: (yh $))1 Q): Tj) if Y1 € Y) Y2 = $a
:u‘((qx marj): (yl,y2)) = (q’ T'i’_rj) if Y=mry, Y2 = $1
S if yo # 8,
and define

p((arisrs), (v1,92)) = FS.

Letu=aj...ar and v = by ... by, be words over Z and assume that (u, v)dz is accepted
by A; ;. Without loss of generality we may assume that k& < m. Since (u,v)dz is accepted
by A; ;, we have that the path
)

(a1,01)  (a2,b2) (awbr)  (8.0x41) (8,6m
p== g = L g = L g,

is successful, and so ¢, € F. It follows that a; = r; and b, = 7; and that the word.

(a1 ...ap-1,b1...bp-1)0y € K. Keeping in mind (3.11), we indeed obtain that (u,v)dz €
Li,j. i
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Assume that (u,v)éz € L; j. Then u =ay...a5-17; and v = by ... bp-17;. Moreover,
by (3.11), the word (ay...a3—1,b1...bpm—1)0y € K, and so it is accepted by A;. From
the construction of A; ;, it follows htat (u,v)dz is indeed accepted by A; ;.

We may now deduce for each (¢,7) € I, the language L;; is regular and so L, is a
regular language, since by (3.10), it is a finite union of regular languages. We have thus
proved that (Z, L) is a Schiitzenberger automatic structure for R.. O

. Combining Proposition 3.8.6 and 3.8.7, we obtain:

Corollary 3.8.8. Let S be a regular semigroup with finitely many idempotents. Let e €
E(S). Then H, is automatic if and only if R, is Schiitzenberger automatic.

Corollary 3.8.9. Let S be a regular semigroup with finitely many idempotents. Let R be
an R-class of S and assume that the fellow traveller property holds in the Schiitzenberger
graph of R with respect to some regular language. Then R is Schiitzenberger automatic.

Proof. Let e € R. If the fellow traveller property holds in R, then H, is automatic by
Proposition 3.8.6. If H, is automatic, then R, is Schiitzenberger automatic by Proposition
38.7. 0O

3.9 Fellow traveller property III.

In the previous section, we verified that if S is a regular semigroup with finitely many
idempotents, then the fellow traveller property of SI'g implies that R is Schiitzenberger
automatic. In this section, we give an example which shows that Corollary 3.8.9 does not
hold without the finiteness condition.

Let X = {zo,21,%2,...} be an infinite set, and consider the symmetric inverse monoid
Ix. Let T = {ag;z; : © — z;} UY. Clearly T is an inverse subsemigroup of Ix, moreover

oz, R ogpom & 2i=2n and Qg L Agp 2, > Tj = T-

We may deduce that T is an aperiodic 0-bisimple inverse subsemigroup in Ix. In particular,
T\ {0} is a D-class of Ix containing infinitely many idempotents. Further on we denote
Qizg,zp DY .

Next, we construct a finitely generated inverse subsemigroup S of Ix containing 7.
For this, consider the following three elements of Ix: )

SRR T; if 7 is odd
Tito if 4 is even, s o 2
Bz . yixi {21 if =0,
undefined otherwise :
undefined otherwise
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5 Ti1 if 2 = 2n + 1, where n is not & prime,
! undefined otherwise

Let S be the inverse subsemigroup of Iy generated by Y = T'U {#*1, 4+1, 511,

Lemma 3.9.1. S is finitely generated by o, f*1,v* and 6+1.

Proof. We show, that any element of T' can be written in terms of a, f%1, 41, §%1, By
the definition of «, §,y we have that

Qgg,a0, — X foi and Olzo,monsy = O ,yn+1. (312)

On the other hand 0y = Qa,gq * Qogy = Xpgs * Qag,y holds. It follows now by (3.12) that

5i1

S is generated by a, BF!, 4! and as a semigroup. [

Tor notational convenience, we introduce the alphabet

Z= {a') b7 b_l,C, c_la d) d_l}s

where @ corresponds to «, bE! corresponds to %!, ¢*! corresponds to y*! and d*! cor-

responds to 6*!. Consider now the Schiitzenberger graph R of « in the D-class T of
S

b b b
N o R R
% @ﬂ:o.fb‘u Qo2 Qgg,z9 d Qo3 Qgg,my Czo,zs QXzomg +++ 7
c [+ C it C i

(Note that we omitted the inverse arrows). Let L = a U b* U ¢*. Our aim is to show that
SI'p possesses the fellow traveller property with respect to L and {a}, and that R is not
Schiitzenberger automatic. ‘

Lemma 3.9.2. The Schiitzenberger graph ST'r possesses the fellow traveller property with
respect to L and {a}.

Proof. All distances considered in the proof will be distances in the Schiitzenberger
graph I' = ST'x(R). Therefore we write d(s,?) instead of dr(s,t). Clearly L is a regular
language, and a - Ly = R. We verify that for all w,v € L with d(a - u,a-v) < 1, we have
that d{a - u(t),a - v(t)) < 4. The following cases have to be dealt with:

(1) fa-u=ca-v, thenecitheru=v=a or u=v=0" or u=v=c", n€N. Thus,
d(a - u(t),a - v(t)) < 4 clearly follows.
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(2) The case, when o+ u-a = « - v is similar to the previous case.

(8) fa-u-b=a-v, theneitheru=candv=boru=b"and v =", ne N. In

hoth cases, we clearly have that d{o - u(t), o - v(t)) < 4.

(4) fo-uw-c=ca-v, theneither u=aandv=c,oru=c"andv=c"*, neN. In
both cases, we clearly have that d(a - u(t), o - v(t)) < 4.

(5) f - u+d =", then u = c"*! and v = b", where n is not a prime. To verify that
d(c -+ u(t), o - v(t)) <4 holds for all £ > 1, we consider the following cases:

(a) If t is even and ¢ # 2, then
- (crd)=0-c" d= 0, &= Gn ey = b,

and hence d(a - u(t),a-v(t)) =2 < 4.

(b) If t = 2, then
a-c?-d=a-b,

and hence d(a - u(t),a-v(t)) =1 < 4.
(c) If ¢ is odd and t is not a prime, then

t N S B L o B
gt (evd) =@ d = Og g 0 = Qg S0 1,

and hence d(a - u(t),a-v(t)) =2 < 4.
{d) If t is an odd prime, then using the fact that ¢ + 1 is even and making use of
(a), we obtain that

a-c-2d=a- - (c-d)=a b,

and it follows that
ot (P-dbH=a b

That is, d{a - u(t),a-v(t)) =4. O

Lemma 3.9.3. The R-class R of « is not Schiitzenberger automatic with respect to L and

(a8
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Proof. One can easily see, that Ly = L= = {(u,u) | v € L}dz, that

Fo = {lusv) v € 5 evn vl onlby = la, 510 (0, 57°18,5),
and that

Le={(wv) |uy,ve L, a u-c=a-v}dz = (a,c) U (c,c)"($,c).

Hence, these languages are regular. Clearly, we have that (u,v) € Ly, if and only if
u = ¢"*! and v = b*, where n is not a prime. That is to say, that

Lg={(*1,b") | n € N, n is not prime}dy.

Using the pumping lemma one can easily verify that Lg is not regular. [

3.10 Finite presentability

Automatic groups are finitely presented. As far as automatic semigroups are concerned
an example is given in [5, Example 4.4] for an automatic semigroup that is not finitely
presented. On the other hand, as soon as we get closer to groups, for example consider
completely simple semigroups, we see that the group theoretical result generalizes [4], that
is being automatic does imply finite presentability.

Proposition 3.10.1. Let S be a Schiitzenberger automatic regular semigroup having
finitely many idempotents. Then S is finitely presented.

Proof. By Proposition 3.8.6, the méximal subgroups of S are automatic, and hence
they are finitely presented. According to [32, Theorem 4.1], a regular semigroup S with
finitely many idempotent elements is finitely presented if and only if all maximal subgroups
of S are finitely presented, and so we obtain the desired result. [ -

The following proposition provides a generalization of [4, Corollary 1.2].

Proposition 3.10.2. Let S be an automatic regular semigroup with finitely many idem-
potents. Then S is finitely presented.

Proof. It follows by 3.5.2 that S is Schiitzenberger automatic. Making use of Propo-
sition 3.8.2, we have that the maximal subgroups of S are automatic, and hence they are
finitely presented. Making use of [32, Theorem 4.1] once again, we obtain our desired
result. [J

We end this section by proving:
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Proposition 3.10.3. For a finitely generated completely simple semigroup S, the following
are equivalent:

(1) S is Schiitzenberger automatic;
(2) All mazimal subgroups of S are automatic;

(8) S is automatic.

Proof. (1) = (2) Finitely generated completely simple semigroups have finitely many
L- and R-classes. Hence, by Proposition 3.8.6 if a completely simple semigroup S is
Schiitzenberger automatic, then all of its maximal subgroups are automatic. '

(2) © (3) See [4, Theorem 1.1].

(3) = (1) If S is automatic, then it is finitely generated, and hence it has finitely many
L~ and R-classes. Making use of Corollary 3.5.2, we thus have that S is Schiitzenberger
automatic. [J

3.11 Equality and word problems

Let S be a semigroup generated by a finite set X. The word problem is said to be solvable
for S, if there exists an algorithm which decides whether or not given any two words
u,v € XT represent the same element in S or not. Automatic groups and semigroups have
solvable word problem in quadratic time. In this section we will introduce the concept of
the equality problem for S-acts, and show that the equality problem is solvable for the
right S-act S if and only if the word problem is solvable for the semigroup S. Moreover
we consider the following two problems:

Problem 1. Is it true that automatic S-acts have solvable equality problem?

Problem 2. Is it true that (strongly) Schiitzenberger antomatic regular semigroups have
solvable word problem?

Concerning Problem 1, we see that the semigroup theoretical approach to the word prob-
lem of automatic semigroups will carry over, that is, with slight modification of the proofs,
we will obtain an affirmative answer to Problem 1. As far as Problem 2 is concerned we will
give a partial answer. Throughout this section S will denote a semigroup, X a finite gen-
erating set for S. We assume that X C S and denote by ¢ : X* — S the homomorphism
extending the identity map ¢ : X — S.
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Equality problem for S-acts. Let A be an S-act, generated by a finite set A9 C A.
If there exists an algorithm that decides whether or not for any (a;,a;) € Ag X Ag and for
any two given words u,v € X+, a;.u = a;.v holds, then we say that the equality problem
is solvable for the S-act A.

Proposition 3.11.1. Let S be a semigroup generated by a finite set X. Then the word
problem is solvable for S if and only if the equality problem is solvable for the right S-act
S.

Proof. Recall that if S is generated by X, then the right S-act S is generated by X
(see Proposition 3.1.10). Assume that the word problem is solvable for S. Let z;,2; €
X, u,v € Xt and ¢/ = zu, v = z;v. By our assumptions, there exists an algorithm
which decides whether or not z; - u =« = v/ = z; - v, proving that the equality problem
is solvable for the right S-act S.

For the converse, assume that the equality problem is solvable for the right S-act S.
Let u,v € X, and assume that u = z;u’ and that v = z;v/. By our assumptions, there
exists an algorithm that decides whéther or not w = z; - v/ = z; - v’ = v holds in S or not,
proving that the word problem is indeed solvable for S. [

In giving a solution to Problem 1, we follow the semigroup theoretical approach.

Proposition 3.11.2. Let A be an automatic S-act. Let (X,L1,...,Ly,) be an automatic
structure with respect to the generating set Ao for A. Then, there exists a constant N
such that for any a; € Ag and u € L; the following hold for the elements a = a;.u or
a=a;.(u-z) of A, wherez € X:

(i) There exists a; € Ap and v € L; such that |v| < |u| + N and a = a;.v.

(ii) If there exists a; € Ag and v € Lj, such that |v| > |u|+ N and a = a;.v. Then there
exists infinitely many w € L; such that a = aj.w.

Proof. (i) For all (aj,ar) € Ao x Ag consider finite state automata A(a; o) A(az,a1)es
(z € X) accepting the regular languages Ly, a,)=s L(as,a1). TesPectively. Let IV be greater
than the number of states in any of the automata defined.

Let a; € Ap and u € L;. If a = a.u, then (%) is straightforward. Assume that a =
a;.(u-z), where z € X. Since (X, Ly,...,Ly) is an automatic structure with respect to the
generating set Ag, there exists a; € Ag and v € L; such that a = a;.v. If |v| < ju|+N, then
we are finished. Assume that |v| > |u| + N. Clearly (u,v)dx is accepted by A = Aaas)er
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Reading through all of u, we visit a state say ¢ in A at least twice. Removing the subword
of v between successive visits to g, we get a shorter word v;, moreover (u,v;)dx is still
accepted by A(g, q;),- Repeating this procedure as many times as necessary, we obtain a
word w, which satisfies that |w| < |u| + N and a = a;.w.

(i) Assume that there exists a; € Ag and v € L;, such that [v| > |u|+ N and a = a;.v.
In particular we have that (u,v)dx is accepted by one of the automata defined; say by A.
After reading through all of u, we visit a state say ¢ in A more then once. Inserting the
subword in between two successive visits to ¢ in v in the appropriate place, we will get a
longer word v; so that (u,v;)dx is still accepted by A. Repeating this process as many
times as we want, we get the desired result. [J

In the following proposition, we let S* denote the semigroup obtained by adjoining an
identity element to S.

Proposition 3.11.3. Let A be an automatic S-act. Then A is also an automatic S*-act.

Proof. Let (X, Lj,...,Ly,) be an automatic structure with respect to the generating
set Ag for A. Let Y = X U {1} and extend the action of S on A to an action of S on
A by defining a.1 = a for all a € A. Define K; = L; U {1}. Clearly each K; is a regular
language over Y, and |Jj_; a;.Kjp = A holds. To show that (¥, Kj,...,K,) is indeed
an automatic structure with respect to the generating set Ag for A, we claim that the
languages K(g; a;)=s K(as,05),0 ¥ € Y- are regular. If a; # a;, then

I{(ai,a,-)= = {(u, 'U) € K; x .Kj | aju = a,j.v}éx
= L(a;,a,-)z U{(u,1) | u € L;, aj.u=a;}bx
U {(1,?)) | v E Lj, a; = aj.v}é'x,
and hence is regular by Lemma 3.1.9 and Proposition 2.3.1. If a; = a;, then
K 09)= = {(w,v) € K; X K; | a;.u = a;.0}0x
= L(a‘-.a,-)= U {('u,, 1) | u € L;, aju= ai}dx
u{(1,v) | v € L;, a; = a;.v}éx U {(1,1)},
hence is regular. It is straightforward that for all (a;,a;) € Ao X Ao we have K4 0;), =
K(g;,0)=- Let y € X. Then
K(a;,05), = {(4,v) € K; x Kj | ai.(u" z) = ajv}dx
= L(ai,aj)y U {(u, 1) ! u € Ly, a,—.(u . :ZI) = aj}ax
u{(1,v) |v €L a-z=a;v}dx,
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and hence is regular by Lemmas 3.1.8, 3.1.9 and Propositions 2.2.3 and 2.3.1. O

Proposition 3.11.4. Let (X, Li,...,L,) be an automatic structure with respect to the
generating set Ay for the S-act A. Letu € X +, a; € Ag, and consider a = a;.u. Then we

can find a generator a; € Ag and v € L; such that a = a;.v in time proportional to |ul?.

Proof. By Proposition 3.11.3 we can consider A as an automatic S'-act. Let Y = X U
{1} and consider the automatic structure (Y,Ky,...,K,) with respect to the generating
set Ap for A as defined in the proof of Proposition 3.11.3. For each (a;,a;) € Ao x Ao
and z € X, let A, 5., denote a finite state automaton recognizing the regular language
K05 Letu=21...2m where z; € X, (1 <7< m), and let @ = a;.u. We will run the
following procedure:

Step 1. Consider the finite state automata A(g; a1),, 1+ - » A(as,an)e, i this order. We follow
a path in the automaton A(“i,“j):cl’ in which the first component of the labels of the
edges are 1$$.... We begin this procedure with the first automaton, that is when
F=

(a) If a final state can. be reached in A(g, a/),, , then the second component of the
labels of the edges give a word a; € Lj, so that a;.1z; = a;.1. Continue with

step 2.

(b) If a final state cannot be reached, then we consider A(g, 4;,,)., 20d repeat (a)
with this automaton.

We note that since (J;_; a;.Kjp = A, we will find a generator ax, and a1 € Ly,, 50
that a;.1z1 = ag,.0q.

Step 2. Consider the finite state automata A(ﬂkl S MR ’A(akl an)e, 10 this order. We follow
a path in 'A(ak1 \aj)e;» 10 Which the first component of the labels of the edges are
a1$$.... We begin this procedure with the first automaton, that is when j§ = 1.

(a) If a final state can be reached in ‘A(akl a3)ep1 then the second component of the
labels of the edges give a word as € Lj, so that ap,.c129 = a;.cp. Continue
the procedure with step 3.

(b) If a final state cannot be reached, then we consider A, and repeat (a)
( kq >

Q41 )mp
with this automaton.

Since U;":l a; Ko = A, there exists a generator a, and a word ag € Ly,, so that

ai.lmlmg = Oy QT2 = Ay 00
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Step m. Consider the finite state automata A, in this order.

3 &1 )mm (Bt "A(a‘km__l xa'n)-'tm
We follow a path in A(akm_paj)zm’ in which the first component of the labels of the
edges are a;,-133.... We begin this procedure with the first automaton, that is

when 7 = 1.

(a) If a final state can be reached in Ag, 4.,
the labels of the edges give a word a,, € Lj, so that ag,, ,.0m—1Zm = 6;.0m,.

, then the second component of

(b) If a final state cannot be reached, then we consider A, and repeat

1’aj+1)z2
(a) with this automaton.

As before, we note that since U;-‘=1 a;. Kjp = A, we will eventually find a generator
ap € Ag and a € Ly, so that '

a;. 121T2. .. Tm = Q) . QUT2 . .. Bip = .1 gy Ol 1 Ty, = QL

In the worst case, the time. being taken to find «; is n - |oy|, since then we need to
input a;_19%%. .. in n automata. By Proposition 3.11.2 there exists a constant N such that
|e;] < |ei—1] 4+ N. So the time being taken to find « is O(Zl;il n(|1] +3N)) = O(ju|?). O

Proposition 8.11.5. Let A be en automatic S-act, then the equality problem is solvable
for A in quadratic time.

Proof. Let (X,L1,...,Ln) be an automatic structure with respect to the generating
set Ag for the S-act A. Let u,v € X and let a;,a; € Ag. Let a = a;.u and b = a;.0.
Then, according to Proposition 3.11.4 we can find generators ay,a; € Ag and words % €
Ly,% € Lj in quadratic time, so that a;.u = ap.@ and a;.v = @;.0. With the help of
the automaton A, ). accepting the regular language L(q, q,)- We will obtain an answer

whether a;.u = a;.v in A. [J

An immediate consequence of Proposition 3.11.5 is:

Corollary 3.11.6. Let S = (X) be an R-class automatic monoid, and u,v € X*. Then
we can decide in quadratic time whether up R vp in S. .

Also we have:
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Corollary 8.11.7. Let S =(X) be a }‘egular semigroup and R be a Schiitzenberger auto-
matic R-class of S. Let u,v € X*. Then we can decide whether up,vp € R. Moreover if
up, v € R, then we can decide whether up = vep.

Proof. Using the notation of Proposition 3.2.1, let (X, N) be a Schiitzenberger auto-
matic structure for R, let L = N U {0} and e € E(R). According to Proposition 3.2.1,
(X% L) is an automatic structure with respect to the generating set {e} for the right
SO act RY. Let v € X*t. In the right S%act R® we have that ew = u if u € R, and
ew = 0 if u ¢ R. By Proposition 3.11.5, we can decide in quadratic time whether or not
eu=e-0=0.

Now let u,v € X*. Decide first whether or not e.u = e.0 and e.v = e.0. If e.u # e.0
and e-v # e.0, then u = e-u and v = e - v are elements of R. By Proposition 3.11.5 again
we can decide whether ornot u=e-u=ec¢-v=wv. 0

Corollary 3.11.8. Let S be a strongly Schiitzenberger automatic regular semigroup with
finitely many R-classes. Then the word problem is solvable for S in quadratic time.

Proof. Let S/R = {Ry,...,R,} and let (X, N;) be a Schiitzenberger automatic' struc-
ture for B; (1 <4 < n). Let u,v € X*. Since 9 is also R-class automatic we can decide
by Corollary 3.11.6 in quadratic time whether or not the elements represented by v and
v are R-related. Since S has finitely many R-classes, we can find their R-class in finitely
many steps and then decide by Corollary 3.11.7 in quadratic time whether or not they
represent the same element in S.

To be more precise we decide with the following procedure whether or not « = v holds
in S. As in Corollary 3.11.7, let (X°, L;), where L; = N; U {0} be an automatic structure
with respect to a one element generating set {e;}, where e; € E(R;) for the right S%act
R?. Let u,v € X*. Since we have finitely many R-classes and hence S%-acts we can find
in finitely many steps the idempotents e;,e; so that e;.u # €;.0, e;.v # ¢;.0. In other
words, we can find in finitely many steps the Schiitzenberger automatic structure assigned
to the R-class of the element represented by u and the R-class of the element represented
by v. If the R-classes of the elements represented by u and v happens to be the same,
then as seen in Corollary 3.11.7 we can also decide whether or not « and v represent the

same element in quadratic time. [J

Whether the word problem is solvable for strongly Schiitzenberger automatic regular
semigroups with infinitely many R-classes seems to be a more difficult question. We can
obviously decide whether or not the elements represented by the two given words belong
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to the same R-class. If they happen to be in the same R-class, then a technique needs to
be developed with the help of which one can find in finitely many steps the Schiitzenberger
automatic structure of the R-class of these elements, so that it can be decided whether
or not the two given words represent the same element. We end this section with the
following

Open question. Isit true that strongly Schiitzenberger automatic regular semigroups
have solvable word problem?

3.12 Inverse free product of inverse semigroups.

It is verified in (3] that the group free product of automatic groups is automatic, and in
[5] it is shown that the free product of automatic semigroups is automatic. In this section
we seek answer to the following problem:

Problem: Is the inverse free product of Schiitzenberger automatic inverse semigroups
Schiitzenberger automatic?

The results in [25] concerning the description of Schiitzenberger graphs of the inverse
free product of two inverse semigroups will serve as a basis of the answer of the above
problem. First we summarize some necessary notions and results needed for this section.

Throughout the section 51 and S denote two disjoint inverse semigroups. The inverse
free product S = Sy *1y S is an inverse semigroup satisfying the following properties:

(i) There exists embeddings a; : S; — S, az: Sz — S

(if) If there exists an inverse semigroups 7' and homomorphisms g1 : §1 — T, f3: 53 —
T, then there exists a unique homomorphism § : S — 7' such that the following
diagram is commutative:

Assume that S; = Inv(X|P) and S2 = Inv(Y|Q) where X NY = (. Then S} #1py Sz =
Inv(XUY|PUQ).

The first general result concerning the structure of the inverse free product of two
inverse semigroups was obtained by Jones in [24]. This structure theorem provides a set of
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canonical forms for the elements of the inverse free product, with the help of which Green’s
relations are described. A graph theoretical approach to describe the structure of the
inverse free product of two inverse semigroups is introduced in [25]. This approach employs
a technique introduced by Stephen [35] for obtaining Schiitzenberger graphs relative to
an inverse semigroup presentation. As our answer to our proposed problem relies on the
latter approach, we summarize the necessary notions and results of [25] regarding the
Schiitzenberger graphs of S7 *my Sa. d

Let X be a finite set and let X~ = {27! | z € X} denote the set of formal inverses
of elements of X. Let I’ be a directed labelled graph, where the labels of the edges are
elements of X U X}, We say that " is a word graph over X U X! if it satisfies the
following two conditions:

(i) The graph I is strongly connected, that is to say that for any two distinct vertices
v1, v of I, there exists a directed path from v; to va.

(ii) If v; = vy is an edge of T, then vy L vy is an edge of ' as well.

Let X and Y be disjoint finite sets, and let " be a word graph over Z = XUX~1uY U
Y1, The edges of I' can be coloured with two colours in such a way that the edges of I"
labelled with elements of X U X! get one of the colours, and the edges of T" labelled with
elements of YUY 1 get the other one. A subgraph of I is said to be monochromatic, if all
of its edges have the same colour. We say that a path in I' is monochromatic, if all of its
edges have the same colour. A lobe is a maximal monochromatic subgraph of I'. A vertex
of T' is called an intersection verter if it belongs to more then one lobe. A switchpoint
of a path pin I is a vertex that is common to successive edges of-different colour. The
switchpoint sequence of a path p in I is the sequence of switchpoints p traverses, in order.

A path p in I is called simple if there are no repeated vertices in p other then perhaps
its first and last vertex, in which case p is called a simple cycle. A word graph I' over Z
is called cactoid, if the following two conditions hold:

(i) T has finitely many lobes;
(if) every simple cycle of I is monochromatic.

The following important properties of cactoid graphs over Z is proved in Lemma 2.1. and
Corollary 2.2 of [25].

Proposition 3.12.1. Let T be a cactoid graph over Z, and let v1,v9 be two distinct vertices
of I'. Then the following hold:
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(i) Any two simple paths from vy to vy traverse the same switchpoint sequence.
(i) Distinct lobes of I possess at most one common vertez.

Let T’ be a cactoid graph. Fix a vertex v in I', and let v; be a vertex distinct from v.
The switchpoint sequence of v, is the switchpoint sequence of a (in fact any) simple path
from v to v1. Denoting by I the length of the switchpoint sequence of an arbitrary vertex
v1 of I', a norm with respect to v is then defined for v in the following way:

lell= 0 if v =,
U= 141 otherwise

The following results are proved in [25, Lemma 2.3.] and [25, Corollary]:

Proposition 3.12.2. Let I' be a cactoid graph over Z and let v be a vertex of I'. Then
the following hold:

(i) Each lobe A of " possess a unique vertex called the root Ay of least norm with respect
to v.

(ii) For each lobe A of T, Ap is either an intersection vertez of I' or is the vertez v.
(iti) For each wertez u # Ap of the lobe A, ||u|| = || sl + 1.

(iv) The chosen vertex v is the oot of two distinct lobes if and only if it is an intersection
vertez in I' and it is the root of a unique lobe otherwise. FEwvery other intersection
vertex of T is the root of a unique lobe of T'.

One of the main results of [25] is Theorem 4.1.:

Theorem 3.12.3. Let S be an inverse semigroup generated by a set X and Sp be an
inverse semigroup generated by Y, where X N'Y = 0. Then the Schiitzenberger graphs of
S1 *1y S2 are precisely the cactoid graphs over X UX1UY UY ! each of whose lobes is
isomorphic to a Schiitzenberger graph of S1 or of Sa.

We are ready to give an answer to our proposed problem.

Proposition 3.12.4. Let S1 and Sy be Schiitzenberger automatic inverse semigroups.
Then the inverse free product S = Sy *1qy So 8 also a Schiitzenberger automatic inverse
semigroup.
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Step 1: notation. In the first step, we set up the notation. Assume that 5 is
generated by the finite set X, where X is closed under taking inverses. For the sake of
simplicity we assume that X C S7. Let ¢; : Xt — S} denote the semigroup homomor-
phism extending the identity map ¢1 : X — Si. Assume that Sy is generated by the finite
set Y C Sy, where Y is closed under taking inverses and X NY = . Let ¢p : Y+ — S
denote the homomorphism extending the identity map t9: Y — Sg. Let Z =X UY and
let ¢ : ZT — S denote the homomorphism extending the identity map ¢ : Z — S. Let
s € S and consider the Schiitzenberger graph I' = SI'4(Z) of Rs. By Theorem 3.12.3, '
is a cactoid graph over Z, and so it has finitely many lobes each of which is isomorphic
to a Schiitzenberger graph of S or of Sa. Let Ax denote the set of lobes, whose edges
are labelled by elements of X and let Ay denote the set of lobes, whose edges are labelled
by the elements of Y. Let A,y ..,Ap_1 denote the intersection vertices of I and let Ap be
the vertex corresponding to ss™!. For the sake of convenience, we assume that Ag is not
an intersection vertex in I'. (Note that since we have n — 1 intersection vertices, I' has n
lobes.) For each 1 < ¢ < n— 1 we fix a simple path p; in I from Ag to A;. Denote by w;
the word over Z that labels the path p;. Let W = {ws,...,wp—1}. Clearly W is a regular
language over Z.

According to Proposition 3.12.2, each intersection vertex A; is the unique root of one
of the lobes of I'. We let A; denote the lobe whose root is A;.

A A, A,

For all A; € Ax we choose an R-class R; of S, such that A; is isomorphic to the
Schiitzenberger graph of R;. The set of R-classes chosen in S; will be denoted by R;.
Similarly, for all A; € Ay we choose an R-class R; of Ss, such that A; is isomorphic to the
Schiitzenberger graph of R;. The set of R-classes chosen in Sq will be denoted by Rg. To
simplify notation, we will actually think of A; as the Schiitzenberger graph of the chosen
R-class R;. In particular, we will think of the vertices of A; as elements of R;. Define

Wx ={w; e W | A; € Ax},
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and let Wy = W \ Wx. In other words, w; € Wy if and only if Ag - w; = ); is a root of a
lobe in Ax, and w; € Wy if and only if A - w; = A; is a root of a lobe in Ay.

By assumptions, S; and Sy are Schiitzenberger automatic inverse semigroups. In
particular, for each R-class R; C R;, we may assume by Propositions 3.6.12, 3.2.1 and
Proposition 3.4.4 that there exists a regular language K; over X such that the following
hold:

(la) For each ¢t € V(A;) there exists exactly one u € K; with X; - wp; = ¢ and so
(Ki)= = {(w,w) € K; x K; | A -u = A\ -w}pdx = {(u,u) | u € K;}dx is a regular
language.

(1b) (I;)e = {(u,w) € K; X K; | A+ (u-z) = A; - w}dx is a regular language for each
z € X.

We let Kx denote the set of regular languages obtained. Similarly, for each R-class
R; C Ry we may assume that there exists a regular language K; over Y such that the
follo_wing hold:

(2a) For each ¢ € R; there exists exactly one u € K; with A; - upz =t and so (Kj;)= =
{(u,w) € K x Kj | Aj -u=\; - w}dy = {(u,u) | u € K;}dy is a regular language.

(2b) (Kj)y = {(w,w) € K x K | Aj - (v-y) = Aj - w}dy is a regular language for each
yev,

We let Ky denote the set of regular languages obtained. We let X = Kx UKy =
{ Ko Ryyon s =13 ‘

Step 2: the regular language. In the second step, we are going to construct a
regular language K with the help of the regular languages in K, so that Ag and K satisfy
that Ao - Ky = R,.

Let A; be an arbitrary lobe of I' with vertex set V' (4A;) and root A;. Let V; denote the
intersection vertices of I'" belonging to A;. Clearly V; is a finite set. Let A; denote the
subgraph of A;, whose vertex set is V(A;) = (V(A;) \ Vi) U {\;}. Tllustrating this:
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Clearly
I'=AgU...UA,_; and A;NA;=0, forall0<i,j<n—1i#5  (3.13)
For each v € V;, consider the language
Kip ={u € K; | M- a=wu}. (3.14)

By Lemma 3.1.9, we have that K, is a regular language over X or over Y, depending on
whether A; is an element of Ax or of Ay. In fact, since K; satisfies (1a) or (2a), for each
v € V;, K;, has exactly one element. Let

K= | ) X (3.15)
veEV;

The language K; y; is regular, since it is a finite union of regular languages. Define
I?i =K; — Ki,% and Iy = I?i U {6},

where € denotes the empty word. Clearly K; and L; are regular languages. Taking into
consideration that for all 1 < i < n — 1, w; is path between )\g and )\;, the importance of
the languages defined can be illustrated in the following way in IT":

A, X

(u1, u2,us € K;)
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That is to say that
Mo - (wiLy)p = V(A;). (3.16)

Moreover since K; is a language satisfying (1a) or (2a), we also have that for all v € V(4A;)
there exists exactly one w € L; so that Ag - (w;w)e = v holds. To have a complete picture,
we note that

Ao (w,-Ki,v,.)w = V, (3.17)

Let
K=LoUwIi1U...Uwy 1L, 1,

where w; denotes the labels of the path we fixed from Ay to A; and L; is the regular
language over X or over Y so that Ao - (wiLi)p = V(A;). It follows by (3.16) and (3.13)
that Ao - K¢ = Rs.

Third step: the Schiitzenberger automatic structure. We verify that /\0 and
K satisfy the last two conditions of (52) of Proposition 3.2.1.

Clearly, by the definition of K and by the note after (3.16) we have that for all ¢t € R,,
there exists exactly one w € K so that Ag - wyp =t proving that

Ko ={(u,w) | do-u= X -w}bz = {(u,u) | v € K}dz.

Hence K_ is a regular language by Proposition 2.3.2.
Next we claim that for all z € X, the language

K,={(u,w) e K XK |- (u-z)= X w}iz

is regular. It is straightforward that if (uz,w) € K, then Ag-(u-z) and Ag-w belong to the
same lobe say to A;, where A; € Ax. Moreover, since the ”last arrow” is an element of
X and since by definition a lobe is a maximal monochromatic subgraph, Ag - u and Ag - w
have to be vertices of A;. Depending on what kind of vertices (intersection vertex or not)
the elements g -2 and Ag - w represent in the Schiitzenberger graph Ry, the following four
cases can occur:

(1) Our first case is when (u, w)dz is a word for which Ag-u and Ag-w are not intersection
vertices of I'. First we introduce the following notation. Let

(Li)s = (K)o \ {(v,w) | v,w € Ksy;, Xi-u-z =X w}dz.

Since (K;). is a regular language and since the latter set is finite, (L,)m is a regular
language.
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We 'verify that words (u,w)dz € K, that satisfy that Ag-u, Ag-w are not intersection
vertices in a lobe A; € Ax are exactly the words contained in the regular language

N1= U (wi,w-,;)(sz([/i)a;.

u EWx

If (u,w) € Ny, then v = w;% and w = w;W, where w; € Wx and (%, @)dz € (L;)s.
It follows that @, w ¢ K y;, in other words A;@ and A;W are not intersection vertices
of I". Moreover we have that A; - (& - z) = A; - @ holds. It follows, that A¢ - (v z) =
Ao (w4 x) = Ag - w; - W= Ag - w, proving that (u,w)dz € K.

For the converse, assume that (u, w)dz € K, and that Ag-u, Ag-w are not intersection
vertices in a lobe A; € Ayx. Then, as noted before Ag - u and Ag - w are vertices of
the same lobe A; € Ay. It follows that v = w;#%, and w = w; W, where 4, W € K; In
particular, we have that

Ai(l-z)=(Ao w;) G-z = A wW =X\ w.

In other words, (4, w) € (L;)s.

Since (L;), is regular we have that (w;, w;)dz(L;), is regular and Nj is a finite union
of regular languages, proving that NNy is regular.

Our second case is when (u, w)dz € K is a word such that A\g-u is not an intersection
vertex of I' and \g - w is an intersection vertices of T'. Again, we first introduce the
notation we are going to use. For each A; € Ax and for all intersection vertices
A € Vi, welet w;x, € K, y, C K so that A;-w;r = Ax. Such an element exists, since
I’; and A; are isomorphic and since A; - K1 = R;. We let

I{(i,n:,k) = {ﬂ € K¢| AiT-x= )\k} \ I{i,Vi-
By Lemma 3.1.8 and Proposition 2.2.3, K(i k) is a regular language. Let

My = {(wi, wp) € Wx x Wy | Ao - wy € Vi}.

We will verify that words (u,w)dz € K, that satisfy that Ag-u is not an intersection
vertex of A; € Ax and )g - w is an intersection vertex of A; are exactly the words
contained in the language

No= | (wi,w)oz ® (Kgap % {8} 10z,
(wi,wp)EM:y l
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where ® denotes the padded product.

If (u,w) € Ny, then w = wy, and v = w;t, where & € K(; 5 1y, Ao Wi, Ao wg € V;. In
particular we have that ); - ¢ is not an intersection vertex and that A\; - @& -x = A\ =
Ao * wg. Hence (Ag - w;) - @ - ¢ = Ag - wy holds, which verifies that (u,w)dz € K.

For the converse assume that (u,w)dz € K, such that Ag - u is not an intersection
vertex of A; € Ax and Ag-w is an intersection vertex. Since \g - w is an intersection
vertex, we have that w = wg, where A\ € V;. Moreover, since Ag + u is not an
intersection vertex in A;, we have that v = w; - %, where % € K;. Also, since
(u,w)dz € K,, we have that

)\k=/\0-'wk=)\g-w

verifying that @ € K{;  r). Hence we may deduce that

(u,w)dz € (wi,wi)dz © (I{('i,.;n,k) x {$}*)dz C Na.'

Finally we verify that Ny is a regular language over Z. By Proposition 2.2.3, the
language (I{(;z k) % €{$}*)0z is regular. Since M = (w;,wy)dz is finite, it satisfies
the condition of Proposition 2.3.16 and hence we have that for all (w;,wy) € M; the
language (w;, wx)dz © (K(iz k) X {$}*)dz is regular. We may now deduce that N3 is
regular, since it is a finite union of regular languages.

(3) This case can be considered as the dual of the previous case. We consider words

(u,w)dz € K, where Ao - u is an intersection vertex of I' and Ag - w is not an
intersection vertices of I'. We introduce the following notations.

For each A; C Ax and for all intersection vertices A\, € V;, let w; € Ky, C K; so
that A; - w; = Ag. Such an element exists, since I'; and A; are isomorphic and since
Ai - Kip1 = R;. Let

Kk = {@€ K| i -u= X -z} \ Ky,
By Lemma 3.1.9 and Proposition 2.2.3, K( ;1) is a regular language. Let

My = {(wg, w;) € Wy x Wx | Ao -wi € V;}.




3.12.

INVERSE FREE PRODUCT OF INVERSE SEMIGROUPS. 93

We will verify that words (u,w)dz € K, that satisfy that A - % is an intersection
vertex of some A; € Ax and Ag - w is not an intersection vertex of A; are exactly
the words contained in the language '

Na=  |J  (wr,w)dz © ({8} x K)oz,
(wp,wi)EM2 .

where ® denotes the padded product.
If (u,w) € N3, then u = wy, and w = w;W, where @ € Ky 1y; Ao - Wi, Ao - Wi € Vi

In particular we have that ); - @ is not an intersection vertex and that Ag - wp -z =
Ak = A;w. Hence (Mg wyg) = = A\g-w;- @ holds, which verifies that (v, w)dz € K.

For the converse assume that (u,w)dz € K, such that \g-w is an intersection vertex
of A; C Ax and Ag - w is not an intersection vertex. Since Ag - v is an intersection
vertex, we have that © = wy, where Ay € V;. Moreover, since Ag - w is not an
intersection vertex in A;, we have that w = w; - W, where W € f{}. Also, since
(u,w)dz € K, we have that

verifying that w € K(; ;). Hence we may deduce that

(u, w)dz € (wg,w;)dz © ({8} x K(m,,-‘k))éz C Ns.

Finally we.verify that N3 is a regular language over Z. By Proposition 2.2.3, the
languages (K(g ;) % {$}*)dz, where Ao - wy € V; are regular. Since M = (wi, w;)oz
is finite it satisfies the condition of Proposition 2.3.16 and hence we have that for
all (wg,w;) € My the language (wg, w;)dz © (K(g k) X €{$}*)0z is regular. We may
now deduce that N3 is regular, since it is a finite union of regular languages.

Our final case is when (u,w)dz € K, is such that the vertices Ap - u, Ao+ w are
intersection vertices of some A; € Ax. In this case (u,w)dz € K, if and only if the
word (u,w)dz is an element of the following language

Ny = {(wy, wr) | wj,wy € W, X0 -wj -z = Ao - wi}dz.

Since W is finite, IV, is finite, and hence is a regular language.
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Now we may deduce that
Ky =N,y UNyU N3 U Ny,

is a finite union of regular languages and hence is regular. That K, is a regular language
for all y € Y can be proved in a similar way. Since R; was an arbitrary R-class of
S, we may deduce that every R-class of S is Schiitzenberger automatic, and hence S is
Schiitzenberger automatic. [ '



Chapter 4

Semidirect product

Semilattices and groups are some of the handiest examples of inverse semigroups. In
fact, every inverse semigroup can be described using semilattices and groups as building
blocks with a semidirect product construction. Namely, every inverse semigroup is an
idempotent separating homomorphic image of a subsemigroup of a semidirect product of
a semilattice by a group. In addition, a dual approach tells us that every inverse semigroup
is a subsemigroup in an idempotent separating homomorphic image of a semidirect product
of a semilattice by a group. In this chapter we give necessary and sufficient conditions
for the construction of a semidirect product of a semilattice by a group to be finitely
generated, to be ﬁhitely presented and to be Schiitzenberger automatic.

4.1 Presentations.
Semigroup presentations.

We first summarize the basic definitions and properties concerning semigroup presen-
tations.

Let X be a non-empty set. A semigroup presentation is an ordered pair (X|P), where
P is a binary relation on the free semigroup X*. Let 7 denote the congruence generated
by P on the free semigroup X +. The semigroup S = X /7 is said to be presented by the
generators X and relations P and we denote this by

S = (X|P).

If X can be chosen to be a finite set, then we say that S is finitely generated, and if both X
and P can be chosen to be finite sets, then we say that S is finitely presented. Let w1, ws
be words over X. We write w) = wy, if 'w)gg.nd woy are identical as words and we write
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wy = we, if wy and wq represent the same element of S. If wy = ws, then we also say that
S satisfies the relation wy = wy. We say that ws is obtained from w; by an application
of a relation of P, if w; = auf and wy = avf, where o, € X* andu=vorv=wuis
a relation of P. We say that w; = wy is a consequence of relations in P, if there exists a
sequence of words

W1 = QQ,. .. ,Qp = Wy,

where ;.1 is obtained from «; by applying a relation of P.
We recall [33, Proposition 2.3.]:

Proposition 4.1.1. Let S be a semigroup generated by a set X and P be a binary relation
on X*. Then S = (X|P) if and only if the following two conditions hold:

(i) S satisfies all relations in P;

(i) If wy,ws € Xt are such that wy = wy holds in S, then wy = wy is a consequence of

relations in P.

Let S be defined by the finite presentation (X|P). One can obtain an alternative
semigroup presentation for S by applying the following elementary Tietze transformations:
(T1) adding a new generating symbol y and a new relation ¥y = w, where
we Xt
(T2) if P possesses a relation of the form y = w, where w is a word over X
that does not contain the symbol y, then deleting the generating symbol
y and the relation y = w and replacing all occurrences of y by w in the
remaining relations;
(T3) adding a new relation w; = wp to P, in the case where wy = ws is a
consequence of relations in P;
(T4) deleting a relation w; = wy from P, in the case where wy; = wp is a
consequence of relations in P — {w; = ws}.

Proposition 2.5. of [33] tells us:
Proposition 4.1.2. Two (finite) semigroup presentations define the same semigroup if

and only if one can be obtained from the other by applying (a finite sequence of ) elementary
Tietze transformations.

Inverse semigroup presentations.

In the rest of the thesis, we work frequently with inverse semigroup presentations.
Therefore we recall the basic definitions and properties concerning presentations of inverse
semigroups.
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We consider inverse semigroups as algebras of type (2,1), where the binary operation is
multiplication and the unary operation assigns to each element its unique (von Neumann)
inverse.

The class of inverse semigroups forms a variety and hence free inverse semigroups
exist. This fact enables us to define inverse semigroup presentations. First, we recall the
description of the free inverse semigroup on a non-empty set X as a factor semigroup of
the free semigroup with involution on X. .

Let X be a non-empty set and X~ = {27! | z € X}. Consider the free semigroup
F = (X U X~ 1" and define a unary operation on F in the following way: For each
ye€ XUX let

e z7! ify=zeX
Y T1lz ify=zlex?!

and define .
(yl...yn)"1 = y,’;l - .yl'l.

With the unary operation defined, (F, -, ~1) is the free semigroup with involution on X,
which we shall denote by FSI(X). Define the following binary relation on F\SI(X):

R = {(wu u,u) | u € FSI(X)} U {(wu " vo 00 tuu™?) | u,v € FSI(X)}.

The congruence generated by R is called the Wagner congruence which we denote by p.
The factor-semigroup

FI(X) = FSI(X)/p

is the free inverse semigroup on X. We will refer to the elements of R as standard inverse
semigroup relations.

An inverse semigroup presentation is an ordered pair (X|P), where P is a binary
relation on F'SI(X). Let 7 denote the congruence generated by P UR. The semigroup
S = FSI(X)/7 is said to be presented as an inverse semigroup by the generators X and
relations P and we denote this by

S = Inv{X|P).

If X can be chosen to be a finite set, then we say that S is finitely generated as an inverse
semigroup, and if both X and P can be chosen to be finite, then we say that S is finitely
presented as an inverse semigroup. We note that if S is generated as an inverse semigroup
by X, then S is generated by XU X! as a semigroup. In particular S is finitely generated
as a semigroup if and only if it is finitely generated as an inverse semigroup. Moreover, if S
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is given by the inverse semigroup presentation Inv(X|P), then it is given by the following
semigroup presentation:
(XUXLPUR).

Proposition 4.1.3. Let S be an inverse semigroup defined by the semigroup presentation
(X|P). Then S is defined by the inverse semigroup presentation Inv{X|P).

Let S = Inv(X|P) and let w;,ws be words over X U X1, We write w; = wo, if w;
and wy are identical as words and we write w; = ws, if w; and wg represent the same
element of S. If w; = ws, then we also say that S satisfies the relation wy, = wy. We say
that ws is obtained from wy by an application of a relation of P or of a standard inverse
semigroup relation, if wy; = ouf and wy = avB, where o, € (X UX1)* and u = v or
v = 1 is a relation of P or a standard inverse semigroup relation. We say that wy = wy is
a consequence of relations in P and of standard inverse semigroup relations, if there exists
a sequence of words

W1 = QQy ...y Oy = Wa,

where a4 is obtained from o; by applying a relation of P or a standard inverse semigroup
relation.
The following proposition is a modification of [33, Proposition 2.3.]:

Proposition 4.1.4. Let S be an inverse semigroup generated by a set X. Let P be a
relation on FSI(X) and let R denote the set of standard inverse semigroup relations on
FSI(X). Then S = Inv(X|P) if and only if the following two conditions hold:

(i) S satisfies all relations in PUR;

(i) If wy,wa € (X UX 1) are such that wy = wy holds in S, then w1 = wy is a
consequence of relations in P UR.

Proof. (=) If S = Inv(X|P), then S = FSI(X)/r by definition, where 7 is the
congruence generated by P U R and hence (z) and (iz) hold.

(<=) Let F denote the free semigroup with involution on X and let ¢ : F' — § be
the unary homomorphism extending the identity map ¢ : X — X. Let 7 denote the
congruence generated by P U®R. We show that S = Inv(X|P) by verifying that kerp = 7.
Since S satisfies all relations in PUR by (), we clearly have that 7 C kery. Suppose now
that (w;,ws) € kere. Then w; and wo represent the same element of S, and hence by (44)
kerp C 7. O

Let S = Inv(X|P). One can obtain an alternative inverse semigroup presentation for
S by applying the following elementary Tietze transformations:
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(T1) adding a new generating symbol y and a new relation y = w, where
we (XuX1)t

(T2) if P possesses a relation of the form y = w, where w is a word over
X U X1 that does not contain the symbols y or y~1, then deleting the
generating symbol y and the relation y = w and replacing all occurrences

., of y by wand y~! by w™! in the remaining relations;

(T3) adding a new relation wy = ws to P, in the case where wy = ws is a con-
sequence of relations in P and of standard inverse semigroup relations;

(T4) deleting a relation w; = wy from P, in the case where w; = ws is
a consequence of relations in P — {w; = wg} and of standard inverse
semigroup relations.

Similarly to Proposition 4.1.2; we have:

Proposition 4.1.5. Two (finite) inverse semigroup presentations define the same inverse
semigroup if and only if one can be obtained from the other by applying (a finite sequence
of ) elementary Tietze transformations.

4.2 Finite generation with respect to an action.

In the first section -of the third chapter, we introduced the notion of an S-act and among
others defined finite generation for S-acts. We also showed that every semigroup S can be
considered as an S-act, but in doing so we forget the structure which S posseéses and only
keep the underlying set. Bearing in mind that an S-act A can have an algebraic structure
underlying it, we give a more sophisticated version of the definition of finite generation
and introduce the concept of finite presentability with respect to an action in Section 4.

Let (Y, A) be a semilattice and denote by < the natural partial order on it. Recall that
z <y if and only if z = z Ay. We say that y € Y is a mazimal element of Y if z € Y,
y < x always implies that z = y. We say that Y satisfies the mazimum condition if it has
finitely many maximal elements, and for all z € ¥ there exists a maximal element y € Y
such that z < y. The following lemma is immediate from the definitions.

Lemma 4.2.1. Let (Y, A) be a semilattice and let ¢ be an automorphism of (Y,A). Then
z <y if and only if zp < yp. In particular we have that y is a mazimal element of Y if
and only if yp is a mazimal element of Y as well.

Next we recall the notion of a left action of a semigroup S on a semigroup 7. Let
(T, %) and (8, -) be semigroups. We say that S acts on T' by endomorphisms on the left, if
there exists a map f: 7T x S — T (¢, 8) — °¢ satisfying the conditions

(Al) (sl-sg)t et 81(S2t);
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(A2) s(tl * tg) = stl * 5t2

for all ¢,21,t9 € T and s,s1,52 € S. If S is a monoid, then we also require the following
condition to hold:

(A3) t=tforallteT.

We say that S acts on T' by automorphisms on the left, if besides conditions (A1), (A2)
(and (A3), if S is a monoid), the following conditions are satisfied:

(Ad4) for all t € T and s € S there exists ¢ € T such that ¢ = ¢;

(A5) for all t1,t9 € T and s € S, *t; = %t implies that ¢; = ta.

The reason we deviated from our notation introduced in the third chapter, and write _

St instead of t.s, is that we would like to keep the traditional notation used in semidirect
products, which will be given soon. We also mention that a right action of S on T by
endomorphisms (automorphisms) can be defined similarly.

Definition 4.2.2. Let (S,-) and (T, *) be semigroups. Assume that S acts on 7" on the
left by endomorphisms (automorphisms). We say that 7" is generated by Tp C T with
respect to the action of S, if T = (5Ty U Tp), where 5Ty = {°t | s € S, ¢t € Tp}. We say
that T is finitely generated with respect to the action of S if Ty can be chosen to be a finite
subset of T'.

Lemma 4.2.3. Let T be a finitely generated semigroup and assume that the semigroup S
acts on T on the left by endomorphisms. Then T is finitely generated with respect to the
action of S as well.

Proof. Clearly, if T' is generated by a finite set Y, then T is finitely generated by Y
with respect to the action of S as well. O

Finitely generated semilattices are finite. We give three examples for infinite semilat-
tices that are finitely generated with respect to a group action defined on them. These
examples will be referred to throughout the fourth chapter to illustrate the results con-
cerning finite generation and finite presentability of a semidirect product of a semilattice
by a group. Our first two examples have already been introduced in the third chapter,
these are Example 3.3.6 and Example 3.3.7.
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Proposition 4.2.4. Let Yo, be the double infinite chain with an identity adjoined on top:
a<e1<e<e <... <1
Let G = (g) be the infinite cyclic group. Let n,k € Z and consider the following map:
14 Yoo. X G — Yoo (en,gk) — gken = ks (1,g’°) s I

With this action, G acts on Y on the left by automorphisms, and Y is generated by
Yo = {eo, 1} with respect to this action of G.

Proof: We first show that conditions (Al)-(AS) hold.

(Al) Let y € Yoo and g1 = g™, 92 = g™, n,m € Z. If y = 1, then clearly 91921 = 1 =
911 = 91(921). If y = ey, for some k € Z, then

N2y = 9" ey = eptnim = T epim =9 (T ep) = 91 (%y),
proving that {Al) does indeed hold.

(A2) Let y1 = en,y2 = ey, and let A = g*, where n,m,k € Z. Without loss of generality
we can assume that n < m, and hence n +k <m + k. Then

& k
h(yl Ay2) =1 (en A em) =%e, = Entk

= €n+tk N €mik
& k
=9en N em = "y A" .

The case when %, and/or ¥ equals 1 can be verified similarly.
(A3) Clearly 'y = 9%y =y for all y € Y.

(A4) Let e, € Yo and g™ € G. By definition, 9" e, = €, and also 9" 1 = 1, verifying
that (A4) holds.

(A5) Let y1 = en, Y2 = em and let A = gF € G such that *y; = "y,. That is

g* g*
Entk =" €n =7 Em = €mtk

holds and hence we obtain that e, = en, proving that (A5) is satisfied.

We may now deduce that G acts on Yo, on the left by antomorphisms. By (A4), for all
n € Z, e, = 9eg, and so the semilattice Yo, is finitely generated with respect to the action
of G by 1 and ep. O
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Proposition 4.2.5. Let A be the infinite antichain

vey €1, €0y €150

Adjoin an identity 1 on top and a zero 0 on bottom, that is for each e; € A, 0 < ¢e; < 1
holds. Let Ao, denote the (semi)lattice obtained. Let G = (g) be the infinite cyclic group.
Let n, k € Z and consider the following map:

iAo XG> Ax; (emgk) L gken = €n+k; (1,91:,) = gk]— =1 (Osgk) B gko =0.

With this action, G acts on A on the left by automorphisms, and A is generated by
Yo = {eo, 1} with respect to this action of G.

Proof. We show that conditions (A1)-(A5) hold.

(A1) Clearly if y € A equals to 1 or to 0, then for all 1,90 € G, 9192y = 91(%y). Let
y=er 91=g6", g2=9". Then

oy = 00"y, = 0" " ey = ek = T ebim =" (" er) = 9 (%),
proving that (Al) indeed holds.

(A2) Let y1,y2 € Ag and h = gF. If either y; = 0 or y = 0 (or both), then clearly
"(yl Aya) = hyy A byo. Similarly, if y; = 1 and yo € Ay arbitrary, then h(yl A
y2) = My = 1 APy = "y; APys. The only case remaining to consider is when
Y1 = €n, Y2 = e, for some n,m € Z. If n # m, then we have

Py Ay2) = (en Aem) =90 = Ten ATem =y APy,
If n = m, then
My Aya) = Pleqhen)=" ey = Ve A9en = "y1 Ay
verifying that (A2) holds.
(A3) By definition, it is clear, that for all y € As, 1y = Py =y,

(Ad) Let y = e, € A and g™ € G. By definition, 9"en—m = €n. Also 971 = 1 and
9"0 = 0, verifying that (A4) holds.

(A5) Let 1,92 € Aoo and let h = g* such that *y; = Py;. Then the following three cases
can occur:
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(8) Ifhyy =Pys =1, thenyy =ga = 1.

(b) If hy; = hyy = 0, then 33 =y2 = 0.

(¢) If by = Pys = ey, then Wl (hy) = h—l(hyg) = P e, from which it follows
that y1 =y = h~le

Hence (Ab5) is satisfied.
We may deduce that G acts on A, on the left by automorphisms. Since by (A4) for all

n €7, e, =9ep, and since e, A e, = 0 where n,m € Z (n # m), we also obtain that the
semilattice Ao is finitely generated with respect to the action of G' by 1 and eo. [

Before presenting our last example, we make a few basic observation about the free
semilattice generated by a set A. To be more precise, in our case A is going to be an
infinite set. Let F' be the free semilattice generated by A ={..., e_1, eo, e1,...}. Since
F is the free semilattice, for every element f € F, there exists a unique subset {f1,..., fm}
of A, such that :

F=ifihes Bifn (4.1)

and the following conditions hold:
(F1) fi # f; for alld # 45,1 <1i,j < m.
(F2) If f =l A...Alp, where l; #1; (i # j,1 < 4,5 < n) thenm =n and { sy Bnp =
FE A 3
In the next proposition, if we write
F =i AT (4.2)
then we assume that conditions (F1) and (F2) hold.

Proposition 4.2.6. Let F' be the free semilattice generated by infinitely many elements
A={..., e_1, eo, €1,...}. Adjoin an identity 1 on top that is for each e; € Ag, e <1
holds. Denote by Fo the (semi)lattice obtained. Let G = (g) be the infinite cyclic group.
Let n,k € Z and consider the following map:

@ Fo X G — Fro; (emgk) k=¥ gken = €ntk; (1’gk) =2 gkl =1,
where e, € A. Ife € F so thate = fi A fo A ... A fm, then we define
(e, gk) — e = gkfl A gkfz NN gkfm.

With this action, G acts on Y by automorphisms. Furthermore Yo is generated by
Yo = {eo, 1} with respect to this action.
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Proof. That f is a well-defined map follows, since (F1) and (F2) hold. We note that
for g" € G, we have by definition that '

n, k k k n o,k n , .k n .k
AN AT TR) =2 (FFIANT T f)A...AT (@ f)
— I G K REM

We are now ready to show that conditions (A1)-(A5) hold.

(A1) Clearly if y equals to 1, then for all g1, g2 € G, 992y = 91(9y). Let y = fiA... A fn,
where fi,..., fa € A and let g1 = g™, g2 = ¢*. Then on one hand

m--k m+k

0192y =" (A AL =T FA AR =TT AL AT

On the other hand

m-k m-k

91 (92y) = (AN AT =T AN ) =TT AL AT,

proving that (Al) indeed holds.

(A2) Let y3,y2 € Foo and h = gF. If y; = 1 and yp € F is arbitrary, then *(y1 A ya) =
hajo = 11 A Pyg = Pyy AP g5, The only remaining case to consider is when y1,y € F.
Assume that y1 = fi A... A frp, and that y2 =1 A ... Aly, where f;,1; € A. Then,

on one hand
h _g® L g* " g%
(yl/\yg) = (f]/\.../\fm/\ll/\.../\ln) =R Koo NI Ly BBl Wi e AT Uy
On the other hand
My Ay = 5L A A F) AT A ALY =T A AT AT AL AT,
Thus (A2) holds.
(A3) By definition, it is clear that for all ¥ € Fis, 1y = goy =1.

(Ad) Lete= fiN...Afp € Fand g" € G. Let I =9 ™e. By (A1) and (A3) we have that
9" = 9" (97 "e) = le = e. Also, if e = 1 then 9" 1 = 1, verifying that (A4) holds.

(A5) Let y1,y2 € Foo and let h = g* such that "y, = "y;. Then either y; = yo = 1 or
yi=y2=0,0ry;1 =fin...A fpand yo = Ui A... Alp. In the latter case we have
that

g gk g* o
n = (flA---Af'n,)= (ll/\.../\lm)z Y9.
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That is, 9“f1 A... A9 f, =91 A...A9'T,,. Having in mind that (F1) and (F'2) hold,
we have that

Bl = {gkf].’" '7gkfn} = {gkzl'l"‘ ,gklm} == B21

where n = m. In particular, we have that for each gkfi € Bj there exists exactly one
element gklj € By such that g* Ti= gklj and vica versa. It follows that

{fl"' . ’fn} T {llv"',lm},
and hence y1 = ¥9, verifying that (A5) is satisfied.

We may now deduce that G acts on Iy, on the left by automorphisms. By definition for
alln € Z, ep = 9"ey. Moreover every element of F is a product of finitely many elements
of A, therefore we may deduce that F, is finitely generated with respect to the action of
G by 1 and eg. O

Let (Y,A) be a semilattice and (G,-) be a group. Assume that G acts on Y on the
left by automorphisms. The semidirect product S =Y x G of Y by G is the set ¥ x G
equipped with the following multiplication

(e’g)(f>h) e (e Agf’g 5 h’)'

With this construction an inverse semigroup is obtained. We recall some basic properties
of the semidirect product S =Y x G.

Proposition 4.2.7. Let (Y, A) be a semilattice and (G, -} be a group. Assume that G acts
on'Y on the left by automorphisms and consider the semidirect product S =Y x G. Then
we have that

(i) ()t = (e g7Y);

(ii) (e,9) < (f,h) if and only ife < f in Y and g = h;
(iii) (e, g) € E(S) if and only if g = 1;
(i) (e,9) R (f,h) if and only ife = f.

(v) (e,9) L (f,h) if a:n,dl only z‘fg"le = h—lf.
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4.3 Finite generation.

In this section, we give a necessary and sufficient condition for a semidirect product of a
semilattice by a group to be finitely generated. Throughout this section, if we say that
the group G acts on a semilattice Y, then it will be understood that G acts on Y on the
left by automorphisms.

Proposition 4.3.1. Let (Y,A) be a semilattice, and (G,-) be a group acting on Y. The
semidirect product S =Y x G is finitely generated if and only if the following conditions
hold:

(i) G is finitely generated;
(it) Y satisfies the mazimum condition;

(iit) Y is finitely generated with respect to the action of G.

Proof. (=) Assume that S = Y x G is finitely generated by the elements A =
{(e1,h1),...,(€n,n)}, where A C S. By Proposition 4.2.7, we obtain that A~! =
{( e, AT ), oo (% €n, B3 1)} Let |

X = {hy,ha,...,hn} and Yoz{el,...,en}u{gﬁle | (e,9) € A}.

Let {(e,g) € S. Write
(e,9) = (f1,91)(f2,92) - - - (f&s 9%)

where (f;,9;) € AU A1 for all 1 € j < k. Then, on one hand

g=091. Gk
where g; € XUX —1 verifying that G is generated by the finite set X. On the other hand,
e = fl A §1f2 Nt /\gll“gk—lfk,

where fi,...,fr € Yo. It follows that for each e € Y there exist fi,...,fx € Yo, and
t1,...,tp—1 € G such that
e=fiABfa AL Nb-1fy (4.3)

proving that Y = (€Y;). We also obtain from (4.3), that e < f;. That is to say that every
element of Y is less than or equal to an element of ¥p with respect to the natural partial
order. In particular, we have that the maximal elements of ¥ are the maximal elements
of Yy, and so we deduce that Y satisfies the maximum condition.




4.3, FINITE GENERATION. . 107

(«<=) For the converse, let G be a group acting on a semilattice Y, where G and YV
satisfy conditions (7) — (44¢). More precisely, assume that the finite set X generates'G as
a group, and suppose that (9Y() = Y. For the sake of simplicity we assume that X C G
and Yo C Y. Let ¥, denote the set of maximal elements of Y and let Yo = ¥, U Y. By
assumption, Yy, is a finite set, and so Yp is a finite set as well. Moreover, we still have
that (°Yp) = Y. We claim that the set

A={(e,1): e€Yp}U{(e,h): e€¥p, he X}

generates S as an inverse semigroup.

Let (e, g) € Yox G. We verify that (e, g) can be written in terms of elements of AUA™L,
Let é € Y, be such that e < € and suppose that ¢ = ¢g1g2...9x where g1,99,...,9% €
X UX™!. By Lemma 4.2.1, there exist fi,f2,...,foe—1 € Yy such that 91f; = & and
9if; = fj—1 for all 2 < j < k — 1. It follows that 919if; =éforall 1 < j < k—1, and we
obtain .,

(e, 1)(&91)(f1,92) - - - (fr—1,98) = (EAEATS 1 AL A (192061 1), g)
=(eNENE...NE g) = (eAE,g)
NS

k
= (e,9),
verifying that any element of Yy x G can be written in terms of elements of A U A1,
Let e € Y be arbitrary. Since (°Yp) = Y, there exist ¢1,...,tx € G, and fi,..., fr € Yo
such that

eztlfll\.../\tkfk.

Since Y satisfies the maximum condition, there exists € € Y, such that e < &, and so
e =& Ae holds. Let g € G and write g = t1tg...tpu where u € G. Then

(E, Q) = (é) tl)(fl: t1_1t2) sos (fk—l) t;iltk)(fk) t},_gl)(év 'lL)

By the above argument each component of the product can be written in terms of elements
of AU A™1, and thus S is finitely generated as an inverse semigroup by A. O

We have the following useful corollary of the above proof.

Corollary 4.3.2. Let G be a group generated as a group by a finite set X and let 1
denote the identity element of G. LetY be a semilattice satisfying the mazimum condition
and let Yy, denote the set of mazimal elements of Y. Assume that G acts on Y on the
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left and that the finite set Yy containing Y., generates Y with respect to the action of
G. Then the semidirect product S = Y x G 1is generated as an inverse semigroup by
A= (Yo x {1}) U (Yim x X).

We end this section by giving three examples for finitely generated semidirect products.

Example 4.3.3. Let Y be the double infinite chain with an identity element adjoined
on top and let G be the infinite cyclic group. Define the action of G on Y, as it was in
Proposition 4.2.4. Clearly G is finitely generated and Y, satisfies the maximum condition.
According to Proposition 4.2.4, Y, is finitely generated with respect to the action of G.
Hence, by Proposition 4.3.1, the semidirect product S = Y, % G is finitely generated.

Example 4.8.4. Consider the semilattice Ao, introduced in Proposition 4.2.5 and let G
be the infinite cyclic group. Define the action of G on Ay as it was in Proposition 4.2.5.
Clearly G is finitely generated and A, satisfies the maximum condition. According to
Proposition 4.2.5, A is finitely generated with respect.to the action of G. Hence, by
Proposition 4.3.1, the semidirect product S = A, X G is finitely generated.

Example 4.3.5. Consider the semilattice Fy, introduced in Proposition 4.2.6 and let G
be the infinite cyclic group. Define the action of G on Fy, as it was in Proposition 4.2.6.
Clearly G is finitely generated and F, satisfies the maximum condition. We have also
shown in Proposition 4.2.6 that Fy, is finitely generated with respect to the action of G.
Hence, by Proposition 4.3.1, the semidirect product S = Fy, % G is finitely generated.

4.4 Finite presentability with respect to an action I.

The main purpose of this section is to introduce the concept of finite presentability of a
semigroup with respect to a semigroup action. We investigate basic properties regarding
this new notion. Among other things, we prove that a finitely presented semigroup on
which a finitely generated semigroup acts on the left by endomorphisms is also finitely
presented with respect to the action of the finitely generated semigroup. We set the
concept intreduced in this section into an inverse semigroup theoretic context in Section
6.

Throughout this section, if we say that a semigroup S acts on a semigroup 7', then
it will be understood that S acts on T on the left by endomorphisms. Moreover, if
S = (X|P), then we assume for the sake of convenience that X C S. We let A denote the
empty word.
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Let X and Y be non-empty sets and let Z = X*. Consider the set
2y ={*y|a€Z, yeY}

In other words, the elements of Y consist of symbols of the form ®1-®ny, where y €
Y, z; € X U{A}. Consider the map:

P20 6D AERR AT ()

(ﬂya a) 5 aﬂy: (y) )‘) =Y, (yl e yn>a) E¥ ayl R ay’l‘u (4'4)

where 8 € Z\ {\},a € Z and y1,...,yn € Y. Clearly, f satisfies (A1) and (A2) and so
Z acts on (?Y)*t. As before, we write the image of (y;...yn,a) under f as *(y1...Yn).
. That is,

« «

RO v U ) = e T e

In particular we obtain Y C 2Y, since for all y € Y, *y = y. Throughout this section,
we consider (4Y)* as a semigroup on which the semigroup Z acts, where the action is
determined by the map f, defined in (4.4).

Definition 4.4.1. Let (X|P) be a semigroup presentation, Z = X* and ¥ be a non-
empty set. A semigroup presentation with respect to the action of (X|P) is an ordered
pair (Y'|Q), where Q is a binary relation on (?Y)*. Let

Qu={""p="%| (p=q)€Q, (u=v)€P, o,f € Z}
U{®%w =Py |we (?Y)t, u=v) e P, a,f € Z}
U{*r=%|(p=q €Q, a€Z}.

‘We note that @ C Q4. The semigroup defined by the semigroup presentation (Z Y|Qa) is
said to be presented with respect to the action of (X|P) by the generators Y and relations
Q@ and we denote this by

T = Actx1p)(Y]Q).

If Y and @ can be chosen to be finite sets, then we say that 7" is finitely presented with
respect to the action of (X |P). If we fix a presentation (X|P) for a semigroup S, then we
write

T = Acts(Y|Q)

instead of T' = Act(x|py(Y|Q), and say that T' is presented with respect to an action of S
by Y and Q. ;
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Let T' = Act(xp)(Y|Q), Z = X* and let w1, wp € (2Y)F. We say that wy is obtained
from wy by an application of a relation of Qa, if wi = auf and wy = owB, where
o, B € (PY)* and u = v is a relation of Q4. We say that w; = wy is a consequence of
relations in @ 4, if there exists a sequence of words

Wl = Qg vy QO = W9
such that o4 is obtained from a; by applying a relation of Q4.
According to Proposition 4.1.1, we obtain:

Proposition 4.4.2. Let (X|P) be a semigroup presentation and Y be a non-empty set.
Let Z = X* and Q be a binary relation on (?Y)*. Then T = Actxp)(Y]Q) if and only
if the following two conditions hold: :

(i) T satisfies all relations in Q4;

(i3) If wy,wp € (2Y)* are such that wy = wa holds in T, then w; = wa is a consequence
of relations in Q4.

Every semigroup can be defined in terms of a semigroup presentation. The question
naturally arises whether a semigroup 7' on which a semigroup S acts can be defined in
terms of a presentation with respect to the action of S. We give an answer to this problem

in the next proposition.

Proposition 4.4.3. Let S and T be semigroups and assume that S acts on T. Then T
can be defined in terms of a presentation with respect to the action of S.

Proof. Fix a presentation (X|P) for S. Let Z = X* and let T be given by the
presentation (Y|R). Since S acts on T, there exists a function

f:TxS=>T; (t,s)— %
satisfying the following two conditions:
(Al) (slsz)t — S1 (szt); and (AQ) s(t1t2) = %1%

for all £,¢;,t € T and s,s1,52 € S. Forally € Y and a € Z, we fix a word vay over Y,

so that

a, _
Y = Va,y




4.4. FINITE PRESENTABILITY WITH RESPECT TO AN ACTION I. 111

holds. We note that because of conditions (A1) and (A2) and since f is well-defined, the -
following hold: On one hand, if o, 8 € Z are such that &« = S holds in 5, then forally € Y

Va,y = Y8y (4.5)

holds in 7'. More generally, if w = 1 ...y, is a word over Y, then

Voyyy + » - Yoyyn = VB -+ - VB,yn (4.6)

On the other hand, for all y € Y and § = aff, where o, 8 € Z, if vgy = y1...Yn, then

Vi = Vo o Vi 4.7
holds in T". Let
Q=RU{®y=way|aeZ, ye¥}

Consider the semigroup presentation (?Y]Q4), where

Qr={"p="% | (p=q)€Q,(u=v) € Po,B € Z}
U {*hy = 2Py | w € (2Y)*, (u =v) € P,o, B € Z}
U{P=%|(p=q) €Q,aeZ}.

We verify that T = Acts(Y|Q), by showing that the semigroup presentation (?Y|Q4)
can be obtained from the semigroup presentation (Y|R) by applying elementary Tietze
transformations.

It is immediate that applying Tietze transformations of type (7°1), the semigroup
presentation (?Y|Q) is obtained from (Y|R). We verify that (?Y|Qa) can be obtained
from (?Y|Q) by applying Tietze transformation of type (T'3). In other words, we show
that every relation in Q4 \ @ is a consequence of relations in Q.

First, consider-a relation in R:

71 I TG 71 < OO,
Let ot,f € Z and (u =wv) € P. Let
01 = auf and 9o = aufd.

It is immediate that the relation §; = &3 holds in . Bearing in mind that f is a well-defined
map and that (A2) holds, we obtain that

Usz,a1 » » - USa,an = Ubz,by « + « Via,bim (4-8)
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holds in T'. In particular, we have that

a1

il

N(ay...an) ="ay... %a,
= Usy,ay + -+ U8y,an
= Véz,a; + -+ Vis,an
= ”62,b1 e ’U,;szm
= L

=8l . B

It can be similarly proved that for all @ € Z,
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applying relations in @
by (4.5)
by (4.8)
applying relations in @Q

%y s ) =" (b1 < b

is a consequence of relations in Q.

Next, let w € (ZY)"' and let 61,02 ‘'€ Z as defined before. Assume that w =

Qg ... %y, where oy € Z and %y =

yi, if o; is the empty word. Let p; = b1

and v; = dga;, (1 <4 < n). Since §; = &2 holds in G, we also have that p; = v; holds
for all 1 < ¢ < n. Making use of (4.5), we obtain that vy, ., = v,y holds in T for all

1 < i < n. Hence, we have that

61, — d101 d1an

w Y.,

=My .. Py

Yn

="y .. unyn
62&1!/1 cen 62a"yn
= 024,

applying relations in Q
by (4.5)
applying relations in @

Finally, consider a relation of the form 7y = v, in Q. Let 6, and &3 be the words over
X as defined before. Let u = 1y and v = dy7y. Since §; = &9 holds in S, we have that

p = v also holds in S. Assume that vy =y1...yn. Then,

Py =y

— 'l)y’y

= Usa,y1 » -+ Vo2, un
My,

=%(y ... .y.) =0y,

=%y ..

applying a relation in Q
by (4.5)

by (4.7)

applying relations in Q
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It can be similariy proved that for all o € Z,

“("y) =vyy
is a consequence of relations in Q. (O

TFrom the proof of Proposition 4.4.3 we obtain the following useful corollary:

Corollary 4.4.4. Let S = (X|P), Z = X* and T = (Y|R). Assume that S acts on T.
For eacha € Z andy €Y, let vay be a word over Y representing “y. Let

Q=Ru{ay=-ua,y|a'€Z, yeY}
and

Qu={"%=""%|(p=9)eQ, u=v)eP, 0,f€ 2}
U {*w = Py | w e (?Y)t, (u=v) € P, o, € Z}

U{r=%|(p=9€Q, ez}
Then the following hold:

(1) Every relation in Q4 \ @ is a consequence of relations in Q.

(2) T = Acts(Y|Q) = (?Y|Qa) = (?Y|Q).

Proposition 4.4.5. Let T be a finitely presented semigroup and assume that a finitely
generated semigroup S acts on T. Then T is also finitely presented with respect to the
action of S.

Proof. Fix a semigroup presentation (X|P) for S, where X is a finite set and let
Z = X*. Let T be defined by the semigroup presentation (Y'|R), where Y is a finite set
and R is a finite set of relations on Y+, For all y € Y and o € Z we fix a word vq4 over
Y so that

o
Y = Vo,y-

Let
Q=RU{®y=vqy |laeZ yeY},
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and consider the semigroup presentation (Z Y|Qa4), where
Qu={"Pp="" | (p=q)€Q, (u=v)€EP, a,f€ 7}
U {*hy =Py | w e (?Y), (u=v) € P, o,f € Z}
U{®*p=%|(p=q) €Q,aeZ}.

Making use of Corollary 4.4.4, we have that T' = (?Y|Q4) = (?Y|Q). Let

Q=RU{Py=wy|zeX, yeY).

Since R is a finite set of relations and since X and Y are finite sets, Q is a finite set of

relations. Let

Ga={"p=""|(p=9) €@, (u=v)€P, a,f € 2}
U {*% =y | w e (?Y)*, (u=v) € P, a,f€ Z}

U{*p=%|(p=9) €@, acZ}

We claim that T is finitely presented with respect to the action of S, by verifying that
Gl Ylé 4) can be obtained from (?Y|Q) by applying elementary Tietze transformations.
Clearly Q4 € Q4. By Corollary 4.4.4, the elements of Q4 \ @ and hence of é A\ Q are
consequences of relations in @, and so we obtain

T = (*Y|QU Qa).

Finally, we claim by induction on the length of words a € Z, that all relations of the form
®y = Vq,y, Where |a| > 2 are consequences of relations in Q o
We recall that by (4.7), forally € Y and § = of8, where o, f € Z, if vgy = 91...Yn,
then )
Y5y = Vayy «+ - Ya,yn- (4.9)
Let a = z1z2. Then 2y = vy, 4 is a relation in Q, and so ®1%2y = 104,y is a relation in

Q A. Assume that vy, = y1...yn. Then we obtain

F1Pgy = Moy applying a relation in é A
= e e
= Ugy 91+ » » V21,9 applying relations in Q
=W by (4.9).

Next, assume that for all words e over X with length less then m, where 2 < m, the
relation ®*y = v, is a consequence of relations in Q4 and let & € Z such that |a| = m.
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Then « = B for some ¢ € X and § € Z, where |3| = m — 1. Since ¥y = v, 4 is a relation
in é we have that P2y = ﬂvz,y is an element of @ A- Assume that vy = y1...Yn. Then,

we obtain
ay =Py =By, applying a relation in Q4
=Pl i)
=Py .. Py,
S W v« Vg by the inductive hypothesis
Sy by (4.9).

Hence, applying Tietze transformations of type (7'4), we obtain
T = (?Y|Qa) = Acts(Y|Q),
proving that T is indeed finitely presented with respect to the action of S. [J

We introduce a sharper version of Corollary 4.4.4.

Corollary 4.4.6. Let S = (X|P), Z = X* and T = (Y|R). Assume that S acts on T'.
Foreachoa € Z andy €Y, let vay be a word over Y representing “y. Let

@=RU{%y=way |a€Z\X, ye¥}

and
Q=RU{"y=wvy |z€X, yeY}

Let

Qa={"="P1|(p=q)€Q, (u=v)€P, a,f€Z}
U{*Py =y | we PY)t, (u=v)€P, o,8€ Z}
U{%=%|{p=q) €Q, acZ}.

Then the following hold: ~
(1) Buvery relation in Q@ \ Q is a consequence of relations in Q4.
(2) Every relation in Q4 \ Q is a ‘consequence of relations in Q.
(8) T = Acts(Y|Q) = Acts(Y|Q).

Finally, we prove:
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Proposition 4.4.7. Let S = (X|P), where X is a finite set and let Z = X*. Let T be a
semigroup on which S ‘acts. Assume that the finite sets Y1 and Yy generate the semigroup
T with respect to the action of S and that T = Acts(Y1|Q), where Q is a finite set of
relations on (2Y1)*. Then there ezists a finite set of relations Q on (2Y3)" such that
T = Acts(%3|Q).

Proof. Since Y5 generates T with respect to the action of S, for each y € Y] there exists
a word vy, over 2Y, such that y and v, represent the same element of T'. In particular, for
all « € Z, we have that ®y and “v, represent the same element of 7. The map

y vy, Sy Yoy
can be extended to a homomorphism
n: (BY)t — (PYa)t.

We note that for each w € (?Y;)*, w and wn represent the same element of T. Consider
the word w = ®1y; ...%y,, where a; € Z and y; € Y for all 1 < i <n. Let « € Z and let
0; = awy, where 1 < i < n. Then

Cw)n = "y ooya)n
= Jl'uyl 5 ..‘s"'uyrl
=P vga ™)
= *(wn),

and so for all w € (?Y1)* and a € Z,

(“w)n = *(wn) (4.10)

holds. Similarly, since Y7 generates T' with respect to the action of S, for each y € Y5
there exists a word @y € (¢Y;)* such that y and ¥, represent the same element of T'. In
particular, for all @ € Z, we have that *y and “@, represent the same element of 7. The
map

Y= Ty, Ty ai);,

can be extended to a homomorphism

R Rl
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and for each w € (Z Y9)t, w and wé represent the same element of 7. Furthermore, for
allw € (?Ye)t and e € Z,

(“w)é = “(wé). (4.11)
Since T' = Actg({Y1|Q), we have that T = (?Y7|Q4), where

Qua={"%="%|(p=q)€Q, (u=v)€P, o,fc Z}
U {*w =%y |w e V), (u=v) € P, o,8 € Z}
U{*r=%|(p=9) €Q, aeZ}.
Let
Q={m=qn|(p=9 cQtu{y=yln|ye Y}
and let

Qa={""=""%| (p=g)€Q,(u=v) € Pa,f € Z}
U {*%y = 8y | w € (?Yo)*,(u =v) € P,a,B € Z}
U{®p=%|(p=4q) € Q,acZ}.
Our aim is to show that T = Actg(Ys | Q). By the definition of the homomorphisms 7
and & and by (4.10), we have that T" satisfies all relations in 0 and of Q4 as well.

Before we proceed and show that every relation wy = ws, (w1, ws € (Z Y5)™) that holds
in 7' is a consequence of relations in @ A, we verify that forallye Yo and a € Z

“y=(y)n
holds in 7", Keeping (4.10) and (4.11) in mind, we obtain for all ¥ € Y2 and o € Z, that
("v)én = (("9)&)n = (*“(w€))n = *(vén) (4.12)

holds. Let 4 € Y5 and a € Z. Since y = y&n is a relation in Q, we have that %y = *(y&n)
is a relation in @A. Having (4.12) in mind we have that *(yén) = (“y){n and hence we
obtain that

y = (y)en (13)

holds in T'.

Let wy,wp € (¢Y2)" such that w; and wy represent the same element of 7. We show
that w; = wy is a consequence of relations in Qv 4. Since wy = wsg, we have that wi& = weé
holds in 7', and hence there exists a finite sequence of words over Yy

Wi = UL, U2, . . Usn = W2E
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such that u;4 is obtained from u;, (1 < ¢ < m— 1) by applying a relation in Q4. Consider

now the following sequence of words over ZYy:

w1dn = w1, ua”n, . . ., Um” = welkn.

If w;4; is obtained from u;, (1 < 2 < m — 1) by applying a relation in @, then u; 17

is obtained from u;n by applying a relation in @ Assume that w;4; is obtained from

u;, {1 < i < m— 1) by applying a relation in Q4 \ Q. Then the following three cases can

occur:

(a)

(b)

()

u;41 is obtained from u; by applying a relation of the form
auﬂp i cwﬁq, |
where o, € Z, (p=q) € Q and (u = v) € P. Then u;+17 is obtained from w;n by
substituting the subword (““%p)n of w;n by (*“P4)n. Keeping in mind (4.10), we have
that
(o) = ““Apm)

and that
(“*Pq)n = “*H(qn),

and so we may deduce that u; 417 is obtained from u;n by applying a relation in é 4
;41 is obtained from wu; by applying a relation of the form

m;.ﬁw Ly cz'uﬂ,w :

where o, 8 € Z, w € (Y;)" and (u = v) € P. Then u;y17 is obtained from w;n by
substituting the subword (**4w)n of u;n by (**Aw)n. By (4.10),

(““Pw)n = ““Hun)

and
(*wyn = “Hwn),
and hence we may deduce that ;17 is obtained from u;n by applying a relation in
Qa.
;41 is obtained from wu; by applying a relation of the form

[23 o

pb=q
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where o € Z, (p = q) € Q. Then u;417 is obtained from wu;n by substituting the
“subword (*p)n of uin by (*¢)n. Since

(“p)n="(pn) and (“¢)n="(qn),
we have that w;4.17 is obtained from w;n by applying a relation in Q A

To finish our proof, we need to verify that wy = wién and weén = ws is a consequence
of relations in QA. Assume that wy = My ...%y,, where oy € Z and y; € Y for all
1 <4 < n. Keeping in mind (4.13) and that £ and n are homomorphisms we obtain

Wy = Ny en

= (My1)én...(“"yn)én
= (M.« Sy )En
= wién.

Qn

Similarly wg = weén holds, and so wy = ws is a consequence of relations in @ 4. O

4.5 Examples I.

The aim of this section is to illustrate through a sequence of examples the concept of
finite presentability with respect to a semigroup action. By Proposition 4.4.5, we know
that if a semigroup T is finitely presented and a finitely generated semigroup S acts on
it, then T is also finitely presented with respect to the action of S. To demonstrate
that T' does not necessarily have to be finitely presented as a semigroup in order to be
finitely presented with respect to a semigroup action, we will consider infinite semilattices.
The reason we choose infinite semilattices is twofold. On one hand infinite semilattices
are not finitely generated and hence they are not finitely presented. On the other hand
these examples serve as a preparation for considering semidirect products. We give an
example of an infinite semilattice that is finitely presented as a semigroup with respect to
a semigroup action and we give two examples of semilattices that are not finitely presented

as a semigroup with respect to a semigroup action.

Proposition 4.5.1. Let Y, be the double infinite chain with an identity element adjoined
on top, and let G be the infinite cyclic group. Define the action of G on Yo as in Propo-
sition 4.2.4. Then Y is finitely presented as a semigroup with respect to the action of
G.
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Proof. Consider the semilattice Yoo!
L.<e1<eg<e<...< 1.

Since Yo is infinite, it is not finitely generated .and hence it is not finitely presented. To

" be more precise, if we let
R={e;Aej=¢cjNes=¢€;, egAl=1Ae;=¢;, 1A1=1]4i<j, 4,5 €Z},

then we have that Y, is defined by the semigroup presentation (Yool R). Let G = (g) be
the infinite cyclic group. To make notation clear, we let X = {g, g~1,1} and let Z = X*.
Let

P={gg'=g"9g=1,1g=9, lg7 =g, 11=1}.
Clearly G is defined by the semigroup presentation
G = (X|P).

Define the action of G on Ys as in Proposition 4.2.4. According to Proposition 4.2.4,
Yso is finitely generated by {eo, 1} with respect to the action of G. It follows that Yoo is
generated by the finite set Yo = {eo,e1, 1} with respect to this action of G as well. Let

Q={epNer=e1Nep=eg, egNeg=¢€p, LAep=e A1l =eg,

geozel, 180=60 ,11:1’ 9131}
and

QA:{auﬂ =°‘”ﬂq|(p:q)GQ,(u:v)eP,a,ﬁeZ}
U {hw = Py | w € (*¥)*, (u =v) € P,o, B € Z}

U{*=%| (p=¢q) € Q,a€ Z}.

Let Y = (?Y3|Qa). We claim that Yoo = Actg(Y0|Q), by giving two homomorphism
n:Ye — Y and £ : Y — Y that are inverse to each other.

We first show that the map e, — 9'eg, 1 — 1 induces a homomorphism 7 : Yoo — Y
by showing that relations in R are mapped onto relations that hold in Y. First consider
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a relation of the form e, A e, = e,, where n < m. Then

o q”
epnnAepn="e N ep

=9"eg A1 A9 eg applying a relation in Q4
=95 A 9"+1e0 AT"eg applying a relation in Q4
=9"eq A -"n“eo A AT g ATy applying a relation in Qa
=9"¢g A 9n+leg Rvoih® (eo A e1) applying a relation in Q4
=9"¢g A -"'"+1eo A A gmuleo applying a relation in Q4

and so (en A em)n = e,n holds. It can be similarly proved that all relations of the form
em A ey = en, where n < m are mapped onto relations that hold in Y.

It is immediate by the definition of n that 1 A 1 = 1 is mapped onto the relation
1A1=1. |

Before we proceed, we first claim that 91 =1 holds in Y for all k > 0 by induction.
Clearly

91 =91 applying a relation in Q4

=1 applying a relation in Q.

Assume that 9°1 = 1 holds in Y for all k < m. Then 1 = 9""'1 holds. On the other hand
gt (91) = 971 is a relation in Q 4, and so we may deduce that 9”1 =1 holds in Y.

We also note that 9711 = 97191, 97'91 = 11, 97'11 = 971 are relations in Qy4, and
S0

R e |

holds in Y. Furthermore, for all k < 0, 9°1 = 1 holds.
Consider a relation of the form e, A 1 = e,. Then

enn A1y = Teg Al
=9"eu A1 " . applying relations in Q4

=9 ¢ _applying a relations in Q4
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and hence (e, A 1)n = enn. It can be similarly proved that all relations of the form
1 A e, = e, are mapped onto relations that hold in Y.

Before we define a homomorphism from Y to Y, we introduce the following notation.
Let a € Z, and assume that the group reduced word obtained from « is g". Then we let
llo]| = .

We verify that the map “ep — ¢)|q)|, “€1 — €|jq||+1, 1+ 1 induces a homomorphism
£€:Y — Yo, by showing that relations in Q4 are mapped onto relations that hold in Y.

First, we consider relations in Q. We have the following seven cases:

(i) eof Aerl = eg Aer = eo = eof = (eo A ey)€. Similarly, (eo A e1)€ = eo€ holds.
T L )

(i) (LAL)E=1E

(iv) (9en)é = er = eré.

(v) (‘eo)é = eo = eof.

(vi) (P1)¢=1= (1)

(vii) (‘1) =1=(1)¢.

Thus, we may deduce that relations of @ are mapped onto relations that hold in Y.

Let @, € Z and (u = v) € P. Let §; = auf and d = avf. Since (u = v) € P, we
have that ||u|| = [|v||, and it follows that ||d1|| = ||d2||. Consider the relation eg Ae; = eg
in Q. Then

(C1e0)€ A (Prer)E = ejsy)| A g1 = €larl] = €jieaf) = (Pe0)é = (*(eo Aer))é
holds. Similarly, we have that
(“e0)é A (*e1)€ = ejja|| A €jjajl+1 = €)jof] = (*e0)€ = (*(e0 A €1))¢
holds. It can be proved similarly, that for any relation (p = ¢q) € Q,
Cip) = (Rq)¢  and  (*p)e=("g)¢

hold. Finally, let
w=%y Al A% Yy,

where a; € Z and y; € Yp. Let

i = 6oy and v; = Sq0u;,
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where 1 < ¢ < n. Clearly, ||pi|| = ||| for all 1 < ¢ < n. It is straightforward that
(1w)¢ = (2w)é holds, if y; = 1 for all 1 < ¢ < n. Assume that there exists y; # 1. Then,
applying the appropriate relations in )4, we may assume that in w each y; = ep. Let
pi € Z be such that ||p]| < ||pg]] for all 1 < 5 < m. Then, applying the appropriate
relations in @4, we obtain that

8 (cuyl AL anyn) s Miy_i
and that

P (alyl AL .Cfn.yn) s Viyi'

Taking into account that

(9§ = el = e = P9e)é

holds, we obtain that (®1w)¢ = (®2w)¢ holds in Y.
That 7 and & are inverse o each other follows from the following facts. On one hand
we have

(ea)né = (T e}t =en and It = 1.
On the other hand

@

el
(%e0)én = (o) =7 €0 = “eo,

llex][++1
(*e1)én = (eay+1 )1 =9 eo = *(%0) = “e;

and
Mg = 1.

Proposition 4.5.2. Let Ay, be the semilaitice obtained by adjoining an identity and a
zero element to an infinite antichain. Let G be the infinite cyclic group. Define the action
of G on A as in Proposition 4.2.5. Then Ay is not finitely presented as a semigroup
with respect to the action of G.

Proof. Let A be the infinite antichain

vy €1y €0y €1y
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Adjoin an identity 1 on top and a zero 0 on bottom. Then, for each ¢; € A, 0 < ¢; < 1
holds. Let Ao, denote the (semi)lattice obtained. Since A is an infinite semilattice, it is
not finitely generated and hence it is not finitely presented. To be more precise, if we let
R={ei/\ej =ejNeg=0,eiAl=1Ae;=¢;, A0=0A¢; =0,
e;ANei=¢€;, 1AN1=1,0A0=0|4,5 € Z,i # 5},
then we have that A, is defined by the semigroup presentation (A |R). Let G = (g) be
the infinite cyclic group. To make notation clear, we let X = {g,97,1} and let Z = X*.
Let
Pty =g lg=l, dgy, Wt =g U=1).

Clearly G is defined by the semigroup presentation
G ={X|P).

Define the action of G on A as in Proposition 4.2.5. As we verified in Proposition 4.2.5,
Aco is finitely generated by Yy = {eg, 1} with respect to the action of G.

Assume that Ay is finitely presented with respect to the action of G. Then, according
to Proposition 4.4.7, there exists a finite set of relations @ on (ZYO)+ such that Ae =
Acta(Yp|@Q). In other words, if we let

QA == {auﬂp=a'uﬁq | (P=Q) € Q,('LL:‘U) & P,Ot,ﬂe Z}
U {*y = *Py | w € (*Yp)*, (u =v) € P,o, B € Z}
U{*r=%|(p=9q €Qacz}

then Ao = (¢Y5|Q4).
We make some observations. Every relation in @ is of the following form:

g Ao A%y =Plby AL APmb,,

where a;,b; € Yp and @;,8; € Z for all 1 <i < n, 1 <5 < m. Without loss of generality
we may assume that the following finite set of relations:

é={eo/\eo=80, egAN1=1Ae=¢€y, 1AN1L=1, 91=11=.1}
is contained in Q. To make notation convenient, we let

Qa={"p="F|(p=q)€Q,(u=v) € P,a,f € Z}
U {%Py = Py | w € (*Yo)*, (u =) € P,o, B € Z}

U{"‘p=°‘q|(p=q)€@,a€Z}.
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As in the proof of the previous proposition, it can be verified that for all k € Z, the relation
£ 1=1
is a consequence of relations in Q4. Since for all k£ € Z, the relations
gkeo A gkeo = gkeo and gkeo AL =91 gkeo = gkeo
are relations in Q 4, we may assume that for all relations
Mg A Aa, =Py AL AP,

in @\ Q the following hold:

(a) ai=bj=e forall1 <i<n, 1<j<m

(b) there is no subword of p and of ¢ of the form %q A ©ep;

(c) @y, B; are group reduced words forall 1 <i<n, 1 <j<m.

We also note that n = 1 if and only if m = 1, in which case the relation in @ \ Q reads

%o = %y, and hence is redundant. Because of this fact, we assume that for all relations

Mg A . AN%q, =Pp AL ABmp,,
inQ\Q@,
n,m > 2

also holds. Let
I ={a € Z | “ep occurs in one of the relations in Q}.

By our assumptions, for every o € I, we have o = g* for some k € Z. Let i,j € Z such
that ¢°,¢g? € I, and if g* € I, then j < k <14. Let d =i — 3.
Clearly, the relation

1

i+1 i j—1 i1
9 eg NI 60=gJ eo N9 e

holds in A,. We claim that the above relation is not a consequence of the relations in
Q 4. For this, assume that there exists a finite sequence of words

i+1 U S el i+l
T e AT Teg = ug, Uty .., un =9 e A7 e,

such that uy4q is obtained from ug, (0 <t < n — 1) by applying a relation in Q 4.

Let us take a closer look how the word u; can be obtained:.




126 CHAPTER 4. SEMIDIRECT PRODUCT

(i) It is straightforward to see that we cannot apply any of the relations in @ to the
word 1, since Q’Heo and ¥’ ‘leo do not occur in any of the relations in ¢, and so to
obtain a different word from ug, we need to apply a relation in Q4 \ Q.

(if) It is also obvious that by applying a relation in Q 4, the order of the elements 9y
and ¥ ey in the word p cannot be changed.

(iii) If a relation in Q4 \ @4 can be applied, then it is either of the form
*p="q,

where (p=¢q) € Q\ Q,anda€ Z \ {A}, where A denotes the empty word, or of the
form
auﬁp = owﬂq’

where (p = q) € @\ @, and o, 8 € Z. Considering both cases, it follows that there
exists a relation p = ¢ in Q '\ é, such that p = gleg A gkeo, and a word g™ € Z, such
that

t-41 j—1 m+1 m-+k
I e AT e =9" e A" ep.

It follows that l —k=m+Il—-m—-k=1i+1—j+1=d+ 2, which contradicts our
choice of the number d. We may now deduce that relations in Q4 \ Q4 cannot be
applied to the word wug.

To summarize the above argument, we have that only relations in @A X é can be applied
to the word ug to obtain a different word u;, but applying relations in @ N @, the order
of the elements 9" 'eg and 9"ey in the word p cannot be changed. Inductively, it can be
seen that for all 1 < & < n — 1, U1 is obtained from g, (1 < ¢ <n- 1) by applying a
relation in @ A\ Q, but doing so the order of the elements 9"*eg and 9 eg in the word w,
cannot be changed. We may now deduce that the relation

g£+1 i+1

T g
€0 = Ug,Uy,.. -, Un =9 e A9 e,

eg A9
is not a consequence of relation in Q4, and so Ay is not finitely presented with respect
to the action of G. OO |

Proposition 4.5.8. Let Fy, be the semilattice obtained by adjoining an identity element
to the free semilattice generated by infinitely many elements. Let G be the infinite cyclic
group. Define the action of G on F as in Proposition 4.2.6. Then Fy is not finitely
presented as a semigroup with respect to the action of G.
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Proof. Let F' be the free semilattice generated by infinitely many elements A =
{-.., e-1, eg, e1,...}. Adjoin an identity 1 on top. Then, for each e; € A, ¢; < 1
holds. Denote by F the (semi)lattice obtained. Clearly Fi, is not finitely presented,
since it is not finitely generated. To be more precise, if we let

R={eAej=e;Ae;, egALl=1Ae;=e; egheg=e, 1AL=1]|4,j€Z},

then we have that Fi is defined by the semigroup presentation (A4,1|R). Let G = (g) be

the infinite cyclic group. To make notation clear, we let X = {g,¢7%,1} and let Z = X*.

Let , :
P={gg " =g g=1, lg=9, g t=g"", =1}

Clearly G is defined by the semigroup presentation
G = (X|P).

Define the action of G on Fy, as in Proposition 4.2.6. As we verified in Proposition 4.2.6,
F, is finitely generated by Yy = {ep, 1} with respect to the action of G.

Assume that Fi, is finitely presented with respect to the action of G. Then, according
to Proposition 4.4.7, there exists a finite set of relations @ on (¢Yp)™ such that F., =
Acta(Yp|Q). In other words, if we let

Qu={"p=""|(p=q) € Q,(u=v) € P,o,f € %}
U{*w = Py | w e (*¥0)*,(u =v) € P,a, B € Z}
U{*p=%|(p=9 €Q,aeZ},
then Fo, = (?Y5|Q4).

As in the previous proposition, we now make some observations. Every relation in Q-
is of the following form:

Ngi A NG, =Pib AL APrby,,

where a;,b; € Yp and o, 8; € Z for all 1 <i <n, 1 <j < m. Without loss of generality

we may assume that the following finite set of relations:
Q={epAeg=ep, gAl=1Ae=¢ey, 1A1l=1, 91=11=1}
is contained in Q. To make notation convenient, we let
Qua={"=""%|(p=9)€Q,(u=v) e Pa,f € 7}
U {*w = 2Py | w € (?Yo)T, (u=v) € P, B € Z}
U{*p=%|(p=q)€Qac 2}
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As in the previous propositions, it can be verified that
*1=1
is a consequence of relations in Q4. Since for all k € Z, the relations
gkeo A gkeo = gkeo and gkeo A1 =917 gkeo = gkeo
are contained in @ 4, we may assume that for all relations
p=%a1A...A%a;, =P A.. AP, =¢q

in Q\ @ the following hold:

(a) aj=bj=epforall1 <i<n, 1<j<m;

(b) there is no subword of p and of g of the form %g A “g;

(¢} a4,pB; are group reduced words for all 1 <i<n, 1 <j<m.

We also note that n = 1 if and only if m = 1, in which case the relation in @\ Q reads
%q = “%p, and hence is redundant. Because of this fact, we assume that for all relations

alal/\.../\a“an=ﬂlb1/\.../\ﬁmbm

in Q\é,

n,m > 2
also holds. Let
I ={a € Z | %ep occurs in one of the relations in Q}.

By our assumptions, for every a € I, we have o = g* for some k € Z. Let i,§ € Z such
that ¢*,¢’ € I, and if g* € I, then j < k <i. Let d =i — j.
Clearly, the relation
gi+leo A gj—leo — gj_leo A gi+leo
holds in F,. We claim that the above relation is not a consequence of the relations in
Q4. For this, assume that there exists a finite sequence of words

gi+leo A gj’—leo SO ULy ey U = gj—leo A gi+leo,
such that ibt+1 is obtained from u;, (0 <t <n — 1) by applying a relation in Q4.

Let us take a closer look how the word u; can be obtained:
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(i) It is straightforward, that we cannot apply any of the relations in @ to the word up,
since 9'+1e0 and 9”—1eo do not occur in any of the relations in ), and so to obtain a
different word from ug, we need to apply a relation in Q4 \ Q.

(ii) It is also obvious, that by applying a relation in é 4, the order of the elements gi'Heo
and 9 'eg in the word p cannot be changed. '

(iii) If a relation in Q4 \Cj 4 can be applied, then it is either of the form

*p="“q,
where (p =gq) € @\ Q,and e € Z \ {A}, where A denotes the empty word, or of the
form :

aufl, _ avf

¥ g,

where (p=¢q) € Q\ @, and o, 8 € Z. Considering both cases, it follows that there
exists a relation p = ¢ in Q \ Q, such that p = Teq A gkeo, and a word g™ € Z, such

that

if 1 -l m4-k

1 i
9 eg AT eg=9 gAY eg.

It follows that | —k=m+Il—-m—-k=174+1— 7+ 1=d+ 2, which contradicts our
choice of the number d. We may now deduce that relations in Q4 \ é A cannot be
applied to the word wp.

To summarize the above argument, we have that only relations in Qu \ Q can be applied
‘to the word 1 to obtain a different word w1, but applying relations in Q A\ Q, the order
of the elements -"Hleg and ¢ _leo in the word p cannot-be changed. Inductively, it can be
seen that for all 1 < ¢ < n— 1, w1 is obtained from u, (1 <t < n — 1) by applying a
relation in Q A\ @, but doing so the order of the elements 9i+leg and gj_leo in the word u;

cannot be changed. We may now deduce that the relation

i+1 J-1 gl i+l
9 Teg A9 eo='u.0,u1,...,'un=9 eo N9 e,

is not a consequence of relation in Q4, and so Fi, is not finitely presented with respect to
the action of G. [J

4.6 Finite presentability with respect to an action II.

In Section 4, we introduced the concept of a semigroup presentation with respect to an
action of a semigroup and discussed basic properties. In this section we introduce the
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concept of an inverse semigroup presentation with respect to an action pf a semigroup.
The new notion serves as a key point in giving a necessary and sufficient condition for
finite presentability of a semidirect product of a semilattice by a group.

As in the previous sections, if we say that a semigroup S acts on a semigroup T,
then it will be understood that S acts on 7" on the left by endomorphisms. Moreover, if
S = (X|P), then we assume for the sake of convenience that X C S. We let A denote the
empty word.

As in Section 4, we use the following notations. Let X and Y be non-empty sets, and
let Z = X*. Consider the set

2y ={®y|a€c Z, yecY}

In other words, the elements of Y consist of symbols of the form #1--%ny, where y € Y,
%; € X U {\}, where X denotes the empty word. Let (?Y)~! denote the set of formal
inverses of elements of ZY. Let

B2yt

Consider the following map:
f:BY%x Z =Bt
Py,0) = Py, (Py) ™ @)= (Py)™, @A) =y )~y (4.14)
where § € Z\ {A\},a € Z and y € Y.. For any word y; ...y, over B, we define

«@

(g1 Yns @) = %y1...“Yn.

Clearly, f satisfies (A1) and (A2) and so Z acts on B™ on the left by endomorphisms. As
before, we write the image of (@, y1...¥,) under f as *(y1...yn). That is,

“W1---Yn) ="Y1-.. “Yn.

In particular, we have that Y UY ! C B. Throughout this section, we consider B* as a
semigroup on which the semigroup Z acts on the left by endomorphisms, where the action
is determined by the map f defined in (4.14).

Definition 4.6.1. Let (X|P) be a semigroup presentation, ¥ be a non-empty set and
Z = X*. Let B=2Y U (2Y)~!, where (?Y)~! is the set of formal inverses of elements
of elements Y. An inverse semigroup presentation with respect to the action of (X|P) is
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an ordered pair (Y|Q), where @ is a binary relation on B*. Let R denote the standard
inverse semigroup relations on F'SI(?Y), and let

QR={M‘ﬁp=avq|(p::g)éQU?R,(u:v)EP,a,ﬁEZ}
U {*w = >y | w € B*,(u=v) € P,a,B € Z}

U{*r=%|(p=¢) e QUR,a € Z}.

We note that QUR C Qg. Let Q4 = Qr \ R. The semigroup defined by the inverse
semigroup presentation Inv(z Y|Qa4) is said to be presented as an inverse semigroup with
respect to the action of (X|P) by the generators ¥ and relations Q and we denote this by

= IIIVAC(J(X“)) (YlQ)

If Y and @ can be chosen to be finite sets, then we say that 7" is finitely presented as an
inverse semigroup with respect to the action of (X|P). If we fix a presentation (X|P) for

a semigroup S, then we write
T = InvActg (YIQ)

instead of T' = InvAct x| p)(Y|Q), and say that T" is presented as an inverse semigroup
with respect to an action of S by Y and Q.

Let T' = InvAct(xp){Y|Q) and Z = X*. Let B = 2y U (2Y)1, where (2Y)~! is the
set of formal inverses of elements 2Y. Let wy,wy € Bt. We say that wo is obtained from
w1 by an application of a relation of Qr if wi = cuf and wy = avP, where o, 8 € B*
and v = v is a relation in Qp. We say that wy = wq is a consequence of relations in Qg,
if there exists a sequence of words

W] = QPy vy O = Wo
such that ;4 is obtained-from «; by applying a relation of Qz.
According to Proposition 4.1.4, we have:

Proposition 4.6.2. Let (X|P) be a semigroup presentation and Y be a non-empty set.
Let Z = X*, B = 2Y U (YY)~} and Q be a binary relation on B¥. Then T =
InvAct xp)(Y|Q) if and only if the following two conditions hold:

(i) T satisfies all relations in QR;

(ii) If wy,ws € Bt are such that wy = wy holds in T', then wy = wa is a consequence of
relations in QR.
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Next, we set Propositions 4.4.3, 4.4.5 and 4.4.7 into an inverse semigroup theoretic con-
text. Propositions 4.6.3, 4.6.4 and 4.6.5 can be verified similaxly to Propositions 4.4.3, 4.4.5
and 4.4.7. To be more accurate, one needs to consider inverse semigroup presentations, Ti-
etze transformations regarding inverse semigroups and inverse semigroup homomorphisms
instead of semigroup presentations, Tietze transformations of semigroups and semigroup
homomorphisms.

Proposition 4.6.3. Let S be a semigroup and T' be an inverse semigroup. Assume that
S acts on T'. Then T can be defined in terms of an inverse semigroup presentation with
respect to the action of S.

Proposition 4.6.4. Let T' be a finitely presented inverse semigroup and assume that S
is a finitely generated semigroup that acts on T'. Then T is also finitely presented as an
inverse semigroup with respect to the action of S.

Proposition 4.6.5. Let S = (X|P) and let T' be an inverse semigroup on which S acts.
Assume that the finite sets Y1 and Ya generate T' with respect to the action of S and that
T can be defined by a finite inverse semigroup presentation with respect to the action of
S in terms of Y1. Then T can be defined by a finite inverse semigroup presentation with
respect to the action of S in terms of Yo as well.

Finally, we prove the following useful proposition.

Proposition 4.6.6. Let S be a semigroup defined by the semigroup presentation (X|P),
and let T be an inverse semigroup. Assume that T = Actg(Y|Q). Then we have T =
InvActs(Y|Q). In particular, we have that if T is finitely presented as a semigroup with
respect to an action of S, then it is also finitely presented as an inverse semigroup with
respect to the same action of S.

Proof. Let Z = X*. If T' = Actg(Y'|Q), then T is defined by the semigroup presentation
(2Y|Q4), where

Qua={"H=""%|(p=9)€Q,(u=1v) € Po,f € Z}
U {*%y = Py | w e (?Y)*, (u=v) € P,o, B € Z}
U{Pp=%|(p=q)€Q,acZ}.
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Making use of Proposition 4.1.3, we have that T' = Inv (¢ Y|Qa4). Let R denote the standard
inverse semigroup relations on FSI(?Y). To verify that 7' = InvActs(Y|Q), we need to
show that

Ra={"p="|(p=q)eR,(u=v)€P, a,feZ}
U{*r=%|(p=q eR, acZ}.

is a consequence of relations in Q4. Since T is an inverse semigroup, the relations in R
are consequences of relations in @4, and hence the relations in 34 are also consequences
of relations in Q4. O

4.7 . Examples II.

Examples introduced in Section 5 involved inverse semigroups. To deepen the notion of an
inverse semigroup presentation with respect to a sémigroup action, we continue working
on these examples. We inirestigate whether the semilattices Yoo, Ao and Fiy, are finitely
presented as inverse semigroups with respect to the group actions defined on them.

Proposition 4.7.1. Let Yy, be the double infinite chain with an identity element adjoined
on top, and let G be the infinite cyclic group. Define the action of G on Yoo as in Propo-
sition 4.2.4. Then Y, is finitely presented as an inverse semigroup with respect to the
action of G.

Proof. According to Proposition 4.5.1, Y., is finitely presented as a semigroup with
respect to the action of G. Making use of Proposition 4.6.6, we may deduce that Y, is
finitely presented as an inverse semigroup with respect to the action of G as well. O

Proposition 4.7.2. Let F., be the semilattice obtained by adjoining an identity element
to the free semilattice generated by infinitely many elements. Let G be the infinite cyclic
group. Define the action of G on F, as in Proposition 4.2.6. Then Fy, is finitely presented
as an inverse s'emz‘group with respect to the action of G.

Proof. Let F' be the free semilattice generated by infinitely many elements A =
{-..., e-1, e, e1,...}. Adjoin an identity 1 on top. Then, for each e; € Ao, &; < 1
holds. Denote by F the semilattice obtained. Clearly Fi is not finitely presented as an ‘
inverse semigroup, since it is not finitely generated. To be more precise, if we let

R={e;Nei=e;, esANl=¢;, 1AN1=1|i€Z},
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then we have that F, is defined by the inverse semigroup presentation Inv(A, 1|R). Let
G = {g) be the infinite cyclic group. To make notation clear, we let X = {g,¢7!,1} and
let Z = X*. Let

P={gg'=g""g=1, 1g=g, g7 =g, 11 =1}
Clearly G is defined by the semigroup presentation
G = (X|P).

Define the action of G on Fy as in Proposition 4.2.6. As we verified in Proposition
4.2.6, F,, is finitély generated by Yp = {eg,1} with respect to the action of G. Let
B = %Yy U (%Yp)~ L, and let )

Q={eoNes=ep, egAl=¢p, 1A1=1,91=1, 'eg=¢p, '1=1}.
Let
Qr={"=""%|(p=q) €QUR, (u=v)€P, a,f€Z}
U {**Pw =Py | w e BT, (u=v) € P, o,f € Z}
U{*r=%|(p=¢q) €QUR, ac Z},
where R denotes the standard inverse semigroup relations on F\SI(?Yp). Consider Y =
InvActe(Y5|Q). We claim that Foo = InvActe(Yp|@Q), by giving two inverse semigroup
homomorphism 7 : Foo — Y and £ : Y — F, that are inverse to each other.
We first show that the map e, — 9"eg, 1+ 1 induces an inverse semigroup homomor-

phism 7 : Fw — Y by showing that relations in R are mapped onto relations that hold in

Y. As in Proposition 4.5.3, we have that for all k € Z, the relation
k

*1=1

is a consequence of relations in Qg.

The following three cases have to be considered.
(i) eimAein= gieo A 9ieg =9y = ein = (e Aei)n.
(ii) e Alnp = Teg A1 =9eg AI1 =9 = egn = (eg A 1)7.

(iii) InAIp=1A1=1=1n= (1 A1)



4.7. EXAMPLES II. 135

‘We may hence deduce that every relation in R.is mapped onto a relation that holds in Y.
Before we define a homomorphism from Y to Fi, we introduce the following notation.
Let a € Z, and assume that the group reduced word obtained from « is g". Then we let
[led| = n.
We verify that the map

ale[)/\-uaneOHGHOQHA'“/\e“a"ll’ e )

induces a homomorphism ¢ : Y — F,, by showing that relations in Qg are mapped onto
relations that hold in Fi. It is immediate by the definition of £ that relations of @ are
mapped onto relations that hold in Fg,.

Let o, 8 € Z and (u = v) € P. Let §; = auf and 2 = avf. Since (u = v) € P, we
have that ||u|| = ||v||, and it follows that ||81|| = ||da||. Consider the relation ep A eg = eg
in Q). Then,

(" (e0 A €0))€ = el A oy = €lenl) = elisal) = (Pe0)é

holds. Moreover, we have that

(“(e0 A €0))€ = €jja)| A €fjal| = €jja) = (“e0)é

holds. It can be proved similarly, that for any relations (p = ¢) € QUR,

C1p)¢ = (2q)¢ and (“p)t = (*q)¢

holds.
That 7 and £ are inverse to each other follows from the following observations. On one
hand

enné = (9en)€ = en and In€ = 1.
On the other hand

(24

cx lial
(Ye0)én = =7 eo = “eo and 1én =1

O

Proposition 4.7.3. Let Ay be the semilattice obtained by adjoining an tdentity and o
zero element to an infinite antichain. Let G be the infinite cyclic group. Define the action
of G on Ay as in Proposition 4.2.5. Then As is mot finitely presented as an inverse

semigroup with respect to the action of G.
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Proof. Let A be the infinite antichain
Vi BTy Bl e v

Adjoin an identity 1 on top and a zero O on bottom, that is for each e; € 4, 0 <e; < 1
holds. Let Ay denote the semilattice obtained. Clearly Ao is not finitely presented as
an inverse semigroup. To be more precise, if we let
R={eiNej=0,e;A1l=¢; ¢,A0=0,
eiNe;=¢€;, IN1=10A0=0|4,j€Z,i#j}
then we have that Ao is defined by the inverse semigroup presentation Inv{A|R}). Let

G = {g) be the infinite cyclic group. To make notation clear, we let X = {g,¢7%, 1} and
let Z = X*. Let

P={ggl=g9=1,19=g, 1g7' =g7%, 11=1}.
Clearly G is defined by the semigroup presentation
G = (X|P).

Define the action of G on A, as in Proposition 4.2.5. As we verified in Proposition 4.2.5,
Ago is finitely generated as a semigroup and hence as an inverse semigroup by Yy = {eg, 1}
with respect to the action of G.

Let B =2Y,U (?Y)~! and let R denote the standard inverse semigroup relations on
FSI(?Y,). Assume that Ay is finitely presented as an inverse semigroup with respect to
the action of G. Then, according to Proposition 4.6.5, there exists a finite set of relations
Q on BY such that As, = InvActg(Yp|@Q). In other words, if we let

Qr={""% =% | (p=q) € QUR,(u=v) € Pa,f € Z}
U{*%w =Py | w € BY,(u=v) € P,a,B € Z}
U{*r=%|(p=9 €QUR, e Z}.

and Q4 = Qr \ R, then Ao = Inv(?Yp|Q4). Without loss of generality we may assume
that the following set of relations

Q={eoNeg=ep, oAl=¢p, 1A1l=1, 91 =11=1}
is a subset of Q. For further use, we introduce the following notations. We let

Qa={""%="%|(p=q)€Q,(u=v) € P,a,f € Z}
u{*p=2%|(p=0q) €Q,aeZ}
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and

Ra={""p="|(p=q) €R,(u=1) € P,o,f € Z}
U{%=%|(p=q) eRaec Z}.
It is immediate that for all @ € Z,"%eg A ®eg = %ep is a relation in @ 4, and hence by
applying relations in R we obtain that for all a € Z,

eo = (“en) 2.

«

In particular, every relation in R is a consequence of relations in
P={" A% ="a, “aAPb=PbA% |a,be Yy, o,f € Z}.
We let
Pa={"H=""%|(p=q)€P,(u=v) € Po,f € Z}
U{*r=%|(p=9) €P,aeZ}

In a similar way as claimed in Proposition 4.5.3, we have that for any k € Z

k

F1=1

is a consequence of relations in Q. Having these observations in mind, we assume that
for all relations

P=aiA...ANan=biA...ANbpy=¢q
in Q\ @, the following conditions hold:
(i) aj,biGZYo foralll1<j<mn, 1<i<m;
(i) a; = “ep for all 1 < j < m, where a is a group reduced word over Z;
(iii) b; = “ep for all 1 <4 < m, where « is a group reduced word over .Z ;
(iv) there is no subword of p and of g of the form “eg A “ep.

With these conditions, we also have that n = 1 if and only if m = 1, in which case our.

relation p = g reads ®eg = “ep, and hence is redundant. We thus assume, that for all
relations in @\ Q:
pP=EaiA...Nap=01A...ANby, =q,

n,m > 2 also holds.
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We recall that for all @ € Z, if @ = ¢* in G, then we let ||a|| = k. We need the
following notion, to verify that A is not finitely presented as an inverse semigroup with
respect to the action of G. Consider a word

w=Sy1 AL Ay,

over 7Y, and assume a;, 045, (1 < 4,5 < n) are such that ||os|| < ||ek|| < ||ey]| for all
1 < k < n. Define

d(w) = [l — |leul],
and say that d(w) is the distance in w. Let

I ={a€ Z | % occurs in one of the relations in Q}.

By our assumptions, for every a € I, we have a = ¢* for some k € Z. Let 4,5 € Z such
that ¢f,¢7 € I, and if g* € I, then j < k <i. Let d = — j. It is straightforward that the
relation i

gi+2

_ gt j—1 i—2 s
p=9 e A9 e eo AN Teg=gq

holds in Aeo, and that )

d(p) # d(g)-
To show that A = InvActe(Yp | Q) does not hold, we need to verify that the above
relation is not a consequence of relations in (Qgr \ ®4) UP4. Assume that there exists a
finite sequence of words

P=EUQ, ULy ...y Um = 4,

so that w;4q is obtained from u; applying a relation in (Qr\ R4) U Pa.
Let us take a closer look how the word u; can be obtained from uy.

a) It is immediate that we cannot apply any of the relation in @, since 9™ eq and ¥ e
y
do not occur in any of the relations in Q.

(b) Applying a relation in N \ @, the following words can be obtained:

. 1 j=-1 g N
(i) u3 = %ep A%eg AY ™ eg, where a = g**! in G;
wa i+1 R i [
(i) vy =9 eo APey APey, where B =g’ ! in G
i—1 S g
(iii) uy = %eg A®1 A9 ey, where a = ¢g¢*! in G;
g+l

(iv) ug = 9" eg APeg AP1, where § = g/~! in G;

We note that with the application of relations in Q A\é , the distance in the obtained
word w1 equals to the distance in up.
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(c) When applying a relation in P4, we may have the following situations occur:

(i) uy =Pey A Yeg, where o = g*t! and = ¢/7! in G;
as j—1 3 .
(i) uy =%eg A%eg A% ey, where o = g+l in G}

(iii) g = -"iHeo APBey APey, where 8= ¢! in G.
We note that in all three cases, d(u1) = d(up).

(d) With the application of a relation in Qg \ (QU QaUP4AUR A), the we obtain a word
of the form

uy = gaeo A ‘Beo,

where a = gtt1, 8 =g~! in G. That relations in the set

Qa={"=""| (p=9) €Q\Q (v=v) € Pa,f € 2}
U{%P=af1|(P=Q)EQ\§,OAEZ\{A}}-

cannot be applied to ug follows from the following remarks. Assume that a relation
of @ 4 can be applied to ug. Then there exists a word g™ € Z and a relation relation
‘p=qin Q\ @, such that p = 9% A 9¢p and

i1 g=1 m-l m+k
97 e AN eg=9 e AT ep.

It follows that l —k=m+{—m—k =1+ 1—j+ 1 =d+ 2, which contradicts our
choice of the number d. We may now deduce that relations in @ 4 cannot be applied
to the word ug. To highlight the key point of the fourth case, we note that applying
a relation in Qg \ (Q U Q4 UR4 UP,) results a word u; so that d(u;) = d(uo).

Thus we may deduce, that u; is a word so that d(ui) = d(ug). We can make the same
observation, if we take a closer look how the word ug can be obtained from u;. With an
inductive argument we thus arrive to the conclusion, that

d(p) = d(UQ) = d(ul) LRSS d(um) = d('r)

leading to a contradiction. We may hence deduce that Ay is not finitely presented as an
inverse semigroup with respect to the action of G. O
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4.8 Matched and conjugate words

We introduce the concepts of matched and conjugate words inspired by the proof of Propo-
sition 4.3.1. The new notions and related notations will be frequently used in the next two
sections. As in the previous sections, if we say that a semigroup S acts on a semigroup T,
then it will be understood that S acts on 7" on the left by endomorphisms.

Matched words

We first fix the notation for this section. Let Y be a semilattice and G be a group acting
onY. Assume that the semidirect product S = Y x G is generated as an inverse semigroup
by the finite set A. For simplicity we suppose that A C S, and we let B = AU A™'. Let

X={ge G| (eg) € AforsomeecY}

and let
Yo={e€Y | (eg) € B for some g€ X UX'}.

By Proposition 4.3.1 we may assume that Y;, C Yp, where Y,,, denotes the set of maximal
elements of Y. Let Z = X U {1} and define the following map:

n: Ym. X (ZU Z~1)+ = B+; (fl,glg2 . ~gk) = (fl)gl)(f%gZ) s (fk)gk)a

where % fi11 = fj, (1 < j+1<k). By Lemma4.2.1, f; € Y;, for all 1 < j < k. Moreover,

Fo= 9 = (92 y) = ... =9 (82(,. (%1f)...)) = IOkl (4.15)

holds, and thus the word n(fi,g192...gx) represents the element (f1,g192...g%) in S. We
say that the word n(e, gy ... gx) is matched to the word n(f,hy ... hy), if e =919 f. We
introduce two lemmas regarding matched words.

Lemma 4.8.1. The word n(e, g1 ...gx) is matched to the word n(f,hi ... hn) if and only
ifn(e,g1...g)0(f h1...hm) =nle,g1...95h1 ... hnp).

Proof. (=>) Assume that n(e,gi ...gx) is matched to the word n(f, k1 ...hn). Then

we know that
e = ILGk f, (4.16)

On one hand, we have that

n(e,g1-..ge)n(f, b ... hm) = (e,01) .. (er, g)(F 1) - .- (s Pom),




4.8. MATCHED AND CONJUGATE WORDS 141

where %e;q; =€, (1<i<k-1, ep=e)andMfi1=f;, 1<j<m-1, fi=/f). On
the other hand, we have that

n(e,gi...gkh1...hm) = (€,01) ... (er, 9x) (U1, 1) « - . (lmy ),

where %ei 1 =€, (1<i<k—1, eg =e), %l =ep and Pl =1, (1 <j<m~1).
Making use of (4.15) we obtain that

@i AUl
Bearing in mind (4.16), we thus obtain that
| G1Gh]y = G1Ohf,

holds. It follows that I; = f; for all 1 < j < k verifying that

i o G P i) = BB s P <P

(«) Assume that

n(e,g1...gx)0(f, hy .. .Ihm) =nle,g1...9xh1 ... ).

Hence, if

n(e,g1...9x) ={(e,91) - (ex, 9x)
n(f, hl s .h.m) = (f, hl) e (fm, h,n)
ni{e,g1...gkh1 ... hm) = (e,91) ... €k 96 ) (U1, 1) - .« (biny Bom),

thenl;j=f;, 1<j<m,fi=f)and
@ = IOkl — G1-Gk )
proving that the word n(e, g1 ... gx) is indeed matched to the word n(f, k1 ... hy). O
The following lemma can be proved using similar techniques.

Lemma 4.8.2. Assume that n(e, g1 ...gx) is matched to n(f,hy1...hm). Then

n(e,g1...9x)(f,9) =nle, g1 ...gr9)

holds for all g€ ZU Z~1.
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The following lemma is immediate from the definitions. Before asserting the lemma,
we recall that by Lemma 4.2.1, if [ € Y,,, then for any word g;...gx over Z U Z71,
919k € Yy,.

Lemma 4.8.3. Consider the words u = n(e,g1...gx) and v = n(&,g; ' ...g7"), where
e =91-9%¢&, Then the following hold:

(i) v is matched to v;
(ii) v is matched to u;
(i%) wvu = v and vuv = v hold in S.
(iv) If w = n(f, g,:l ...gi‘l) such that e.rwu = u and wuw = w hold in S, then w =v.

1

We note that considering w and v as elements of S, v = w1, Therefore, if u =

n{e, g1 ... gr), then we let u~! denote the word n(é, g,:l s gl”l), where e = 919%¢,
Conjugate words of idempotents

We keep the notation introduced so far. Before we introduce the notion of conjugate

words, we prove the following lemma.
Lemma 4.8.4. Let f € Y and assume that

f o= 91-0k]

wherel € Yy and g1,...,g9r € ZUZ™L. Lete € Yy, such that f < e. Letu=mn(e,g1...9k).
Then the word
u(l,Du™?

represents the element (f,1) in S.

Proof. Indeed, we have

u- (l, 1) = (e’gl o -gk) * (l’ 1) '-(é,g;"l o qu)
— (6 A9k A glmgké, 1)
=(eAfAel)
= (£,1).
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Keeping the notation of Lemma 4.8.4, we say that
w-(l,1) - u?

is a conjugate word of the idempotent (91-9%,1). Clearly, any idempotent (99 1) in
S can have several conjugate words representing it, depending on how many maximal
idempotents there are above it with respect to the natural partial order. .

Notation. The set of all conjugate words of (91--9%], 1) will be denoted by

c(glm.‘]kl).

Clearly, if Y satisfies the maximum condition, then ¢(9i9]) is a finite set for all I € Yp
andw=gy...9¢ € (ZUZ 1)+,

4.9 Finite presentability I.

The main result of this chapter is

Theorem 4.9.1. Let (Y,A) be a semilattice, and G be a group acting on Y on the left
by automorphisms. The semidirect product S =Y x G 1s finitely presented as an inverse.
semigroup if and only if the following conditions hold:

(i) G is finitely presented as a gmup;'
(i) Y satisfies the mazimum condition;

(ii3) Y is finitely presented as an inverse semigroup with respect to the action of G.

We prove direct implication in this section. As in the previous sections, if we say that
a group G acts on a semilattice Y, then it will be understood that G acts on Y on the left
by automorphisms. We first fix notation for this and the following section.

Notation

Let Y be a semilattice and G be a group actingon Y. Let S=Y x G and let A be a
finite inverse semigroup generating set for 5. We assume that A C S. We let

X={geG|(e,g) € AforsomeecYY}
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and let
Yo={e€Y | (e;g) € AUA™! for some g € X U X~}

Because of Proposition 4.3.1 we assume that Y, the finite set of maximal elements of Y,
is contained in Y. We let Z = XU X~1U{1}. Since we are going to work with words over
three different alphabets, namely over AU A™!, X U X~ and over B = ?Y, U (¢Yy) 7L,
we agree that words over AU A~! and X U X! will be written in the usual way, i.e. we
write the letters consecutively. From the context it will be clear over which alphabet the
word being considered is taken. For the sake of legibility words over B will be written in
the following way:

a1 N...A\ag.

As in Section 6, we consider the semigroup Bt as a semigroup on which Z acts, where the
action is defined by the rule (4.14) introduced in Section 6. As introduced in the previous
section, we define

n: Y, x(ZUz7Yt - Bt (fi,0192...9%) = (F1,90) (2, 92) - - - (frer 9%,

where % f;01 = f;, (1 <j+1<k).
We also adopt the following notation. For a word w = (e1,41) - - - (ex, gr) € (AUA™Y)F,
we let
w=e  A%eg A... A1,  and W=g1...0k.

Note that the element of S represented by w is (@, @). It is immediate that if w = uw,
then

~

w=uA".

We recall that F'SI(A) denotes the free semigroup with involution on the set A. We first
prove

Lemma 4.9.2. Let (Y,A) be a semilattice and G be a group acting on Y. Assume that
the semidirect product S =Y x G is generated by A. Then for any w € FSI(A),

———

ww ! =w
holds in Y.

Proof. We prove the lemma by induction on the length of w. If |w| = 1, then w =
(e,9) € AUA™! and so (e,g)! = (9_1
let « = ww™!. Then

e,9~!) by Proposition 4.2.7. To simplify notation,

ﬂze/\g(gmle)ze/\e=e
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verifying that % = @, when |w| = 1. Assume that

wwl = @
holds in Y for all w € FSI(A), whose length is less then m, (m > 1). Let w € FSI(A) so
that the length of w is m. Then w = (e, g)w;, where w, is a word of length m — 1 and
(e,g) € AU A~1. To simplify notation, let u = ww™! and v = wyw*. Then

T=eAITAD(E e)
=eAIT A9? (Q—Ie) by the induction hypothesis
=eAwiAe since gbg~! =1
=eA%uw standard inverse semigroup relation

=
proving that % = w. [J
The necessary condition
We prove

Proposition 4.9.3. Let (Y,A) be a semilattice, and G be a group acting on Y. If the
semidirect product S = Y X G is finitely presented as an inverse semigroup then the
following conditions hold:

(i) G is finitely presented as a group;
(ii) Y satisfies the mazimum condition;
(iit) Y is finitely presented as an inverse semigroup with respect to the action.

Proof. Assume that the semidirect product S = Y x G is given by the presentation
S = Inv(A|P), where A C S is a finite set and P is a finite set of relations. As introduced,
we let
X={9eG|(eg)c A forsomeecY}

and let
Yo={e€Y | (e,9) € AUA™! for some g € G}.

By Proposition 4.3.1 we may assume that Y,, C Yy. That condition (%¢) holds, follows
by Proposition 4.3.1, and thus it remains to show that & is finitely presented as a group
and that Y is finitely presented with respect to the action as an inverse semigroup. Let

P={t=p|(r=p)eP}.
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We show that
G = Grp(X|P).

We already know by Proposition 4.3.1 that G is generated by X. It is straightforward that
the relations of P hold in G. We verify that any relation that holds in G is a consequence
of the relations in P. For this, assume that the relation

9192 .+ -gm = haha .. hy,

(9i,hj € X UX1) holds in G. Let f € Y. Then

n(f, 9192 .- gm) = 0(f, haha ... hi),

holds in S. Thus, there exists a finite sequence of words

n(f;glg2'”gm) Emela-'-,qtEn(fahlh2-~hk)

where g;.41 is obtained from g; by applying a relation in P or a standard inverse semigroup
relation. In particular we have that:

(i) If gj+1 is obtained from g; by applying a relation in P, then §;4; is obtained from
G; by applying a relation in P.

(ii) If gj41 is obtained from g; by applying a standard inverse semigroup relation, then
dj+1 is obtained from §; by applying a sequence of standard group relations.

It follows that there exists a finite sequence of words

g192-..9m = Qp,Q1,...,Q] = hlhz...hk,
such that ;4 is obtained from a; by applying a relation in P or a standard group relation, r
verifying that G = Grp(X|P).
Welet Z=(XUX~1u{1})* and q

}_’=13U{:v:1:_1=:1:"1:1:=1, lz=gz, lz 1=z, 11=1]|z € X}.

Clearly G = (XU X 1uU {1} | P).

Next, we claim that Y is finitely presented as an inverse semigroup with respect to
the action of G. We already know that Y satisfies the maximum condition and that Y is
finitely generated as a semigroup by Y, with respect to the action. We recall that (4Yp)~*
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denotes the set of formal inverses of elements of Y. We let B = 2Yy U (Z Yo)"l. We
denote by R the set of standard inverse semigroup relations on FSI(4Yp). Let

Q={f=p|(r=p)eP}U{e=FfAe|efet, e[}

We show that
Y = InvActa(Yo|Q)
by proving that ¥ = Inv(?Y5|Q4), where Q4 = Qr \ R and
 Qr=QU{™H="% | (p=q) € QUR, (u=v) € P,a,f € Z}
U {*Ay = %Py | w e BY,(u=v) € P,a, B € Z}
U{*r=%|(p=0 €QUR e Z}.

It is clear that every relation of @ and hence of Qg holds in Y. Furthermore, for all @ € Z,

" the relation e A *e = %e is an element of @ g, and so it follows that

(%e)™* =“e. (4.17)

Making use of this observation, we may assume that any relation that holds in Y is of the
form:
Flpi N BegA v Ny = ﬁlfl AN ﬂzfg Dooniv il ‘kak, (4.18)

where e;, f; € Yo and o4, 8; € Z. Assume now that the above relation holds in Y, Let &;
be a maximal element of Y, such that e; < é;. Since Y satisfies the maximum condition,
such an element exists. In particular, the relation

Mg A%ey = al(él A 61) = %gy,

is an element of @Qr. Moreover, ®1&; € Y, C Yy by Lemma 4.2.1. Let eg = ¢1€;. Then we
obtain LR
Hey) A®eg AL .. A¥eym = eg A %ler A Peg AL .. A Yepy.

With a similar argument, we also obtain that
Pt AP AL NP o= o APV L AP AL NP, i

holds for some fg € ¥, C Yy. We verify that (4.18) is a consequence of relations in Qp by
verifying that

e A%es A®ey AL .. A% = fo APLEL AP A L ABEF (4.19)
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is a consequence of the relations in Qr in three steps.
Step 1. Consider the element (eg A *le; A *2ep A ... A “™ep,, 1) of S. Let

aj—laj+1 1<j<m-1

Y= %+l i=0
a7t j=m.
Define words w1 0,...,wW1,m over AU A~ in the following way:
g 4 n(e_,,-,'yj) if e; € Y
Y= (e5,1)n(éj,7;) otherwise,

where é; € Y.y, is such that e; < &;. Clearly, the word
w1 = W1,0W1,1 ... Wim

represents (eg A ®le; A “2eg A ... A *mep,,1). On the other hand, by the definition of the

words wy g, ..., w1,m We obtain that
fi ejN...Nej ife; €Ym
L3 = ej A€ A...N€é; otherwise,

and hence e; = Wy ; is a consequence of the relations in Qg. It follows that
eg A Meg A®2eg A ... A YMey, =W (4.20)

is also a consequence of the relations in Qg.

Step 2. We consider the element (fo A Bify AB2fy A ... APEfi,1) of S and repeat the first

step. We let |
BBy 1<j<k-1
9 =19 Biw j=0

gt j=k
Define words wy,,...,wa over AU A™! in the following way:
Al n(f;,05) if f; € Y
25 = (f;, )n(f;,6;) otherwise,

where f; € Y;p is such that f; < f;. The word

Wy = Wo,0W2,1 ... Wak

represents (fo APify AP2fy A ... APxfi,1). On the other hand, by the definition of the
words wsg, . . ., Wy, We obtain that

Do = fj/\';'/\fj 5 if fj € Ym
2.3 finfin...N\f; otherwise,
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and hence f; = i ; is a consequence of the relations in Qg. It follows that

Wy = fo AP fL APRfa AL APRy

is also a consequence of the relations in Qp.

Step 3. Since by (4.20)
eo AN ¥er APeg A ... AN Mey = 1

and by (4.21)
= foNPLfL AP fa AL AP,

hold, to show that

eo A%ey A%eg AL A%e, = fo APLR AP A L.

is a consequence of relations in @g, it is enough to verify that
wy = w2

is a consequence of relations in Qgr. Since

eo A¥er A%eg A... A% = fo AP AP A ...

(4.21)

AP

A ﬂkfk

holds in Y, the relation w; = ws holds in S, and hence there exists a finite sequence of

words
w1 =4q0,q1y---,% = W2

such that g;jyi is obtained from g; by applying a relation in P or a standard inverse

semigroup relation. We consider the following three cases:

(1) If gj41 is obtained from g; by applying a relation in P, then we may write ¢; =
t18te, Qi1 = tlztg, where (s = z) € P. It follows that (§=2) € P and (3 = 2) € P,

In particular tls = £;2 holds in G and we obtain that
[jj = 51 AN £1§ A {;952
= 7?1 A EIZ A {;9{2
=1 Az A 87

= §j41

verifying that G;41 is obtained from g; by applying relations in Qg.
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(2) If gj41 is obtained from g; by applying a relation of the form ww™1

w = w, then we
may write g; = tyww lwiy, gj41 = tiwte. Let u = ww™?, and v = wwlw. Clearly

¥ = © holds in G and we have that

G =t AMTATTG AU

= £ A B A GG A 57152 since ¥ = w by Lemma 4.9.2
= Ah G ABG AT, since ;0 = in @

=# A D A B, by applying a relation in Qg
=51/\£16A“7’t~2 since @ =7 in G

= g1

proving that §; = ¢j4+1 is a consequence of relations in Q.
(3) If gj41 is obtained from g; by applying a relation of the form wywy lwgw; 1=

WoWy lwlwl_ ! then we may write
s =1 -1 '—lt . =1 -1 _It
q; = W Wy " WaWy 12, gj41 = L1WaWy WIWq "T2.
Let u = wlwl‘l, V= w2w2_1. Then

~

qj = ‘t.l A b A biug A t1u'u£2

___51/\5117/\515/\51{2 . sincet=uw=1inG

=i AbgAbgAhE, standard inverse semigroup relation
=t~1/\£‘t'7/\mﬁ/\tmfg since v =%u=1in G

= 41

proving that §; = §;41 is a consequence of relations in Qg.

It follows.that a finite sequence of words can be given w; = wug,u1,...,% = Wz such
that ;41 is obtained from wu; by applying a relation of Qr and we may deduce that
Y = InvActg (Yp|@). O

4.10 Finite presentability II.

We keep the notation introduced at the beginning of Section 9. In addition, we recall that

for any element 91%e € Y
c(gll'-gke)
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denotes the set of conjugate words of the idempotent (91%e, 1) € E(S). The main purpose
of this section is to prove '

Proposition 4.10.1. Let (Y,A) be a semilatiice, and G be a group acting on'Y. Assume
that the following conditions hold:

(i) G is finitely presented as a group;
(i) Y satisfies the mazimum condition;
(i) Y 1is finitely presented as an inverse semigroup with respect to the action.

Then the semidirect product S =Y x G s finitely presented as an inverse semigroup.

Since the proof of Proposition 4.10.1 is rather long, we first summarize the main steps
of the proof.

1. We give an inverse semigroup generating set A for S = Y % G and define a set of
relations R on (AU A~1)* that hold in S.

2. In Proposition 4.10.2, we give a normal form for the elements of S. Proposition
4.10.2 is proved with the help of two technical lemmas: Lemma 4.10.3 and Lemma
4.10.4.

3. Making use of Proposition 4.10.2, we prove that any relation w; = ws that holds in
S is a consequence of relations in R.

Proof. Let G be a group acting on a semilattice Y and assume that G and Y satisfy
conditions (z) — (¢4%). More precisely, let G = Grp{X|P}, where X is a finite set and P is a
finite set of relations. Let Y be a semilattice satisfying the maximum condition and let Y,
denote the set of maximal elements of Y. Assume that ¥ = InvActg(Yp|Q), where Yp is
a finite subset of Y and @ is a finite set of relations. By Proposition 4.6.5 we may assume
that Y, C Yp. Consider the semidirect product S = Y x G. Making use of Corollary 4.3.2,
S is finitely generated as an inverse semigroup by

A= (Yo x{1}D U (Y x X).
By Proposition 4.2.7, we have
Al = (Yo x {1 U(¥;m x X71).

Define the following relations on (AU A~1)*:
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(R1) {(e,1)(f,9) = (f,1)(e,g), wheree,f € Yp;

(R2) (e,9) = (e,1)(e,g), where e € Yin;

(R3) (e,9) = (e,9)(f,1), where f € Yo, If.< e € ¥im;

(R4) (e,9)(£,1) = (£,1)(e, 9)(f, 1), where f € Yo,e,f € Ym,*f < f;
(R5) (e,1)(f,9) = (e,1)(f,9)(&,1), wheree,é,f €Y, 9e=¢;

(RG) (e,9)(f, k) = (e,1)(f,9)(f,h), wheree,f,f € Ym, o = f;
R7) (e,9)(f, 1) = (e, 9)(f,1)(E,h), where e, f € Yo, I&=ce.

We denote by R the relations obtained.

For each relation g;...9m = hy...hi in P and e € Y, consider the following relation

n(e, g1 .. .gm) =n(e,hy...hy)

and denote the set of relations obtained by Rg. Since Y;, and P are finite sets, we have
that Rg is a finite set of relations. For each (e, g) € ¥y, x X consider the relations

(e, 9)(f,97) = (e, 1) and  (f,g7")(e9) = (1),

where f is the maximal element of Y for which 9f = e. Denote the set of relations obtained
by Ras.

For each relation
Mot A Ae, =P AL APRS,

in @ we define the following set of relations
{e11...cum =ca1...c0 | c15 € c(¥e)), ca5 € c(Pif;)}.

Since Y satisfies the maximum condition, each of the sets c(%e;) and ¢(% f;) is finite and
hence
{c11...cim =co1...con | c1j € c(%ej), co; € c(Pify)}.

is a finite set. Denote the set of all relations obtained in this way by Ry.
For each e, f € Yp such that e < f consider the relation

(e,1) = (f,1)(e; 1)

and denote the set of all relations of this form by Rp.
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Let

R=RURgURyURyUR]J.

Our aim is to show that S = Inv(A|R). Clearly R is a finite set of relations and all
relations in R hold in §. According to Proposition 4.1.4 we need to verify that any
relation w; = wy that holds in S is a consequence of relations in R and of standard
inverse semigroup relations. In order to prove this, we need the following proposition.

Proposition 4.10.2. Let w = (e1,01) ... (ex—1,9x—1)(ex, 1) € (AU AT such that |w| >
2. Then the relation

w = (e,1)ea...Cpo—1v

where ¢; € c(9'9e;11), v=n(f,91...95-1) for some f € Yy, and cp_1 = v(ek, 1)v72, is

a consequence of relations in R.
We need the following two technical lemmas:

Lemma 4.10.3. Let w = n(e,g192...9x)(f,1), where f € Yy. Then there éxists | € Yo,
such that the relation

w = (e,)n(l, 0192 .. 9k)

is a consequence of the relations in R. Moreover, if we let v = n(l,q192...9k), then
u(f,D)u™t € c(91929 f). '

Proof. Let f € Y, so that f < f. Let Iy = 9% f. Let ly,lo,...,l~1 € Y, such that
l; =941 holds. Such elements exist by Lemma 4.2.1. Since f < f, we also obtain that

gk f < 1y, (4.22)

Assume that i

n(e,g1...9%) = (e,01) ... (ex—1,9r-1)(ek, 9)-
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Applying the appropriate relations in R we obtain

w = (e,qg1)-.- (ex—1, gr—1)({ek, gx)(f, 1))

= (e,01) - - - (ex—1, 9r—1) (&, 1) (ex, 9 )(f, 1)) by (R4)
= (e,01) ... (l—1, 1)(€r—-1,9%-1) (I, 1) (e, gx ) (f, 1) by (R4)
= (l1,1)(e,01)(l2,1) .. . (l—1, 1)(€k~1, Gr—1) (U, 1) (ek, 9)(f, 1) by (R4)
= (e, 1)(l1, 91)(e2,1) - - (-1, 1) (le—1, gh—1) (e 1) (b 1) (£, 1)) by (R1)
= (81 1) (lla gl)(e2a 1) ] ((ek-—l) 1)(lk—-lvgk-—1)(ek) 1))(lk: gk) by (R3)
= (6, 1)(11,91)(627 1) v (ek—la 1)(lk—1a gk—l)(lkagk) by (R5)
= (e,1)(l1,91) - - - (b1, 9e—1) (Uics 9k by (R5)

= (e,1)(n(l1,91.- . gx))-
It is immediate from (4.22) that if u = n(l1,g192 . . . gk), then u(f, u~! € (91929 f). O
Lemma 4.10.4. Let w = (f,1)n(e, 9192 ..9gk), where f € Yy,. Then

w = (e,1)n(f,g9192-..9k)

is a consequence of the relations in R.
Proof. Let f; = f and let fa,..., fi € Y, such that 9%f;.; = f; holds. Assume that

n(e,g192---9x) = (e,91)(e2,92) - - - (€x—1, gr—1)(ek;, Gk)-

Then
w = (f,1)(e, g1)(e2, 92) - - - (er—1, 9k—1)(ex; 9k)
= (e, 1)((f,91)(e2,92)) - - - k-1, Gr—1) (k> 9k) by (R1)

= (e, 1)(f, 91)(e2,1)(f2,92) - . - (ek—1, Gr—1){€k; 9k) . by (R7)

= (e, 1)(f, g1)(e2,1)(f2,92) - - - ((ex-1, 15(fk-1,gk-1)(ek, 1)) (fx, 9x) by (R7)
= (e 1)(f,91)(e2,1)(f2,92) - .- ((er—1, D (fr—1, 9r-1))(fk» 9k) by (R5)

= (e, 1)(f, 91)(f2,92) - - - (fo—1, 9—1) (> 9kc) by (R5)
= (e, 1)n(f,91...9%),
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verifying the lemma. [

Proof of Proposition 4.10.2. We proceed by induction on the length of w.
If jw| = 2, then w = (f,g)(e,1), where (f,g) € AU A~l. We assume that (f,g) €
Yin % (X U X™1)., The case when (f,g) € AU A~ is such that g = 1 can be verified
similarly. Let € € Y,, such that 9%¢ < é and let 9% = 1. By Lemma 4.2.1, | € Y,,.

Moreover,

w = (f,g)(e, 1)

= (£,1D((f,9)(e, 1)) by (R2)

= (£, 1)((1)(F,9))(e, 1) by (R4)

= (£, 1)(f,1)(& 9)(e, 1) by (R1)

= (£, 1)(& 9)(e, 1) by Ry

= (£,1)(&,9) ({1, g7 )(&, g)(e, 1)) standard inverse sg. relation
= (f,1)(& g)e, ), g7)(&, 9) standard inverse sg. relation

Clearly, (&,¢)(e,1)(1,g~") € c(%), verifying that the proposition holds for all words of the
form (f, g)(e, 1).

Assume that the proposition is true for all words over AUA™! that satisfy the condition
stated in the proposition and whose length is less then m, where m > 2. We consider the
following two cases: ‘

Case 1. w= (e1,91) ... (ex—1,1)(ex, 1);
Case 2. w= (e1,91) ... (éx—1,9k—1)(ex, 1), where gx_1 # 1.

Case 1. The inductive hypothesis can be applied to the subword

(ehgl) v (ek—-la 1),

and hence we obtain that

w = (er,1)ea ... cp_ou(ex, 1),
where ¢; € c(9%ej41), u = n(f,91...gk—2) for some f € Yip and cp—o = ulep—1,)u2,
By Lemma 4.8.3, we know that u~! is matched to u, and so applying a relation of type

(R3) we obtain that v=1(f,1) = ™. In particular, we have
ck—2(f, 1) = cr—a.’ (4.23)
On the other hand, by Lemma 4.10.3, there exists I € Y;,, so that

n(f,91...9x-2)(ex, 1) = (f, )n(l, g1 ... gr—2) (4.24)
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holds, and if we let v denote the word n(l,g; ... gr—2), then
cr—1 = v(eg, vt € c(919k-2¢y,). (4.25)
Summarizing the above facts, we obtain that

w = (e1,1)ea ... cr—ou(er, 1)

= (e1,1)ea ... cp—ouler, 1)(ex, 1)

= (e1,1)ca ... cp—2(f, Dv(er,1) by (4.24)
= (e1,1)ca...cr—ov(ex, 1) by (4.23)
= (e1,1)ca . .. cx_ovv  v(eg, 1) standard inverse sg. relation
= (e1,1)es ... cp—ov(ek, l)v“lv standard inverse sg. relation

= (e1,1)ea ... Cr—aCL—1V
verifying that the proposition indeed holds in the first case.

Case 2. If w = (e1,91) - - . (ék—1,9k—1)(€k, 1) where gx_; # 1, then ex_; € Yiy, since all
generators of the form (e, g), g # 1 have first component in ¥;,,. Applying (R2) we obtain
that

w = (e1,01) - - - (€k—1, gk—1) (ks 1)
= (e1,01) - - - (ex—1, 1)(er—1, gr—1)(ek, 1)-

The inductive hypothesis can be applied to the subword

(el)gl) 5RO (ek—ll 1))
and so we obtain
w = (e, 1)ca . .. cp—gu(er—1, 9k-1) (ks 1),
where ¢; € c(9%ejq1), v = n(f,91. .. gp—2) for some f € ¥y, and cpo = ulex-1, u~L.
To unravel the information, we have that
u(ek—-l) l)u—l = (gl.“gkhzek—li 1)7

and so

(f A 91---gk—-2ek_1’ 1) — (91-'-gk-2ek_1, 1) (4.26)

holds. Taking into account that ex_; € Y;,, we thus obtain from (4.26) that f =
91-9k-2¢; ;. In particular, we have that v = n(f,g1...gk—2) is matched to (ex—1, k1),
and so by Lemma 4.8.1 we obtain

u(er—1,9k—1) = 0(f, 01 .. Gr—295—1)- (4.27)
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By Lemma 4.8.3, we know that »~! is matched to u, and so applying a relation of type
(R3), it follows that u~1(f,1) = »~!. In particular, we have that

ck—2(f,1) = cp-a. (4.28)

To summarize the above observations,

w = (e1,1)ez ... cg_ouler—1,9x—1)(ex, 1)

= (e1,1)ea ... c—an(f, 91 . . . gr—29k—1)(€k, 1).

‘We need one more observation to finish the argument. Making use of Lemma 4.10.3, we
have that there exists [ € Y;, so that

Il(f, gi... gk—-ng—l)(ek) 1) = (f) l)n(l:gl R gk—?.(]k—l) (429)
holds and if we let v =n(l, g1 ... gx_29k—1), then
cr—1 = v(ep, Dot € (91 0r=1¢;), (4.30)

Summarizing the above facts:

w = (e1,1)ea ... ce—an(f, 91 . .. gr—20k—1)(ex, 1)
= (e1,1)ea .- . ck—2n(f, 91 - . Ge—2gr—1)(ex, 1) (e, 1)
= (e1,1)ey . .. cp—a(f, L)viex, 1) by (4.29)
= (e1,1)ea ... cp—_sv(ek, 1) by (4.28)
= (e1,1)ea. .. ck__zvv_lv(ek, 1) . standard inverse sg. relation
= (e1,1)en ... cp—2ov(ek, 1)0_1"0 : standard inverse sg. relation
= (e1,1)en ... cp_gCk—1v

proving Proposition 4.10.2. [

We are now ready to prove that S = Inv(A|R). Recall that G = Grp(X|P) and
Y = InvActg(Yo|Q).

Proof of Proposition 4.10.1. Assume that the relation wj = ws holds in §. By applying a
relation of type (R3), we may assume that

wy = (el,gl)...(em,l) and that Wy = (fl,h].)...(fk,l).
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By Proposition 4.10.2, we have that

wu = (el, 1)02 v 1Y, ' (4.31)

where ¢; € c(9%ejt1), u = n(e, g1 ... gm-1) for some e € Y;, and cpy—1 = ulem, 1)u
We write
(w1)y = (e1,1)cz...em—1

and recall the notation introduced in Section 9:
wy=e AMes A ANTIm-le and D1 =g1...9m—1.
Similarly we have that
wy = (f1,1)d2 . .. dx—1v,

where d;j € ¢(® f;11), v = n(f,hy ... hx_1) for some f € Yy, and dp—3 = v(fr, 1)o7t
We write
(wo)y = (f1,1)dz ... i1,

Wa=fiNPMfon.. . APMPe1f and @o=hy... hy_s.

We prove in four steps that w; = ws is a consequence of relations in R and of standard
inverse semigroup relations.

Step 1. Since wy = wy in S, we have that @; = Ws holds in G, and hence there exists
a finite sequence of words
@1 =0, 00,...,08 = Wy

such that a1 is obtained from o; by applying a relation in P or a standard group relation.
It follows that there exists a finite sequence of words

ne, g1 ... 9m—1) = P1,...,fe=nle,hy .. hy_q)

such that B4 is obtained from §; by applying a relation in Rg U Rjps. In particular we
have a finite sequence of words

(w1)y(n(e, 91 - gm-1)) = (W1)y B, .., (W1)yfe = (wi)y(nfe, b1 ... he—1)).  (4.32)

Step 2. Since w; = wy in S, we have that w; = Wy holds in Y, and hence there exists a
finite sequence of words ‘
W = Y1:¥25- Vg = Wy
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such that ;41 is obtained from ; by applying a relation in Qg. It follows that there
exists a finite sequence
(wl)y = 01, dg, . tey 6q = (’wg)y

such that ;41 is obtained from d; by applying a relation in Ry U Rj, U Rg U Ry or a
standard inverse senﬁgrqup relation. In particular, we have a finite sequence of words

(w1)y (n(e, b1 . " hi-1)) = d1(nle, by ... hg-1)),. ..
ooy 0g(nle by oo hg—q)) = (wa)y (nle, by .. hg—1)).

Bearing in mind (4.32), we thus obtain that L

(wl)y(n(e,gl mass gm)) = (?.Ug)y(n(e, h]_ RE4TS hk-—l)) (433)

is a consequence of relations in R, and of standard inverse semigroup relations. In the
following two steps, we verify that

(we)y(n(e, b ... ~hg-1)) = (we)y(n(f, by ... ~g_1))

is a consequence of relations in R, and thus verifying that w; = wsq is a consequence of
relations in R.

Step 3. By (4.31), we have that

——

w = (w)y Ae

and so we obtain

Wy = W1 A e.
On the other hand we know that @w; = ws,, and hence

wo = Wy A e. (4.34)

Step 4. We give a finite sequence of words
(wa)y (n(e, by ... hg1)) = 00y. .., 00 = (wo)y{(n(f, hi ... hg—1))
where 01 is obtained from o, using relations in R. Recall that
(wo)y = (f1,1)dz ... dg—1,

where dy_; = v(f,1)v! and v = n(f, k... hx—1). Applying (R3), we obtain that’
v~1(f,1) = v~ ! and hence we get that

(we)y = (w2)y(f,1).
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It follows that

(we)y(n(e, hy ... 1)) = (w)y (f, 1)(“(3, hy...hg_1))
= (w2)y (e, 1)(n(f, h1 ... h—1)) by Lemma 4.10.4.

Bearing in mind that we = @y A e by (4.34), there exists a finite sequence of words

('U)Q)Y(e, 1) = Cl) v )Cl — (w2)Y)

such that ;41 is obtained from (; using relations in Ry U Ry, U Rg U Ry. It follows that

('ll)z)y(e, 1)” = Clv) veey (!'v = ('le)y'U,

verifying that w; = ws is indeed a consequence of relations in R and of inverse semigroup
relations. O

We end this section by returning to our examples.

Example 4.10.5. Let Y, be the double infinite chain with an identity element a.djoined
on top and let G be the infinite cyclic group. Define the action of G on Yo, as it was in
Proposition 4.2.4. Clearly G is finitely presented and Yo, satisfies the maximum condition.
According to Proposition 4.7.1, Y, is finitely presented as an inverse semigroup with
respect to the action of G. Hence, by Theorem 4.9.1, the semidirect product $ =Y X G
is finitely presented as an inverse semigroup.

Example 4.10.6. Consider the semilattice Fy, introduced in Proposition 4.2.6 and let
G be the infinite cyclic group. Define the action of G on Fi, as it was in Proposition
4.2.6. Clearly G is finitely presented and Fi,, satisfies the maximum condition. We have
also shown in Proposition 4.7.2 that Fy, is finitely presented as an inverse semigroup with
respect to the action of G. Hence, by Theorem 4.9.1, the semidirect product § = F, X G

is finitely presented as an inverse semigroup.

Example 4.10.7. Consider the semilattice Ay introduced in Proposition 4.2.5 and let
G be the infinite cyclic group. Define the action of G on Ay, as it was in Proposition
4.2.5. We verified in Proposition 4.7.3, that Ay is not finitely presented as an inverse
semigroup with respect to the action of G. Hence, by Theorem 4.9.1, the semidirect
product S = Ay X G is not finitely presented.
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4.11 Schiitzenberger automaticity

In this section, we give a necessary and sufficient condition for a semidirect product of a
semilattice by a group to be Schiitzenberger automatic.

As in the previous sections, if we say that a group G acts on a semilattice Y, then
it will be understood that G acts on Y on the left by automorphisms. We recall the
notation introduced in Section 9: Let A be a semigroup generating set for the semidirect
product S = Y X G of a semilattice by a group and assume that A C S. For a word
w=(e1,91) ... (ém,gm) € AT, we let

W=g1...9m.

Proposition 4.11.1. Let Y be a semilattice and G be a group acting on Y. Then the
semadirect product S = Y X G is Schiitzenberger automatic if and only if the following

conditions hold:

(SAl} G is automatic;

(SA2) Y satisfies the mazimum condition and is generated by a

‘ finite set Yy with respect to the action of G;

(SA3) There exists an automatic structure (X, K) for G such that
for alle €Y and f € Yy the language

K! = {we K| e <“f}
s regular.

Proof, (=) If S =Y x G is Schiitzenberger automatic, then S is finitely generated.
It follows by Proposition 4.3.1, that G is generated by a finite set X, that ¥ satisfies the
maximum condition and is generated by a finite set Yy with respect to the action of G,
and hence (SA2) holds. Let Yy, denote the set of maximal elements of Y. For the sake of
convenience we assume that X is closed under taking inverses, that 1 € X C G and that
Y C Yo CY. In particular we may assume that S is generated by the finite sét

A= (Yo x {1}) U (Ym x X).

Since X is closed under taking inverses, for each element (e, k) € A, (e,h)™! € A holds
by Lemma 4.2.1 and Proposition 4.2.7. Thus A is a semigroup generating set for 5. Let
¢ : AT — § denote the homomorphism extending the identity map ¢; : A — S and let
% : Xt — @G denote the homomorphism extending the identity map ¢35 : X — G. Let
e € Y and consider s = (e,1) € S. Let R denote the R-class R of s. By Proposition 4.2.7,

we have that
R ={(e,9)lg € G}. (4.35)
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Making use of Proposition 3.2.1, and of Corollaries 3.4.6 and 3.6.6 in Chapter 1, we
have that there exists a regular language L over A such that the following conditions hold:

(cl) s- Ly =R;
(¢2) L= = {(u,u)|u € L}54 and hence is a regular language;
(e8) Lo = {(u,v)|u,v € L, s-u-a=s-v}da is a regular language for all a € A.

We claim that G is automatic by verifying that the fellow traveller property holds in
the Cayley graph A of G. Consider the map

L= Xtiwe @,

and let K = L. It follows by (4.35) and (c1), that K1 = G.

The language K is regular, since if A = (X, A, u,p, F) is a finite state automaton
accepting L, then the automaton obtained from A by changing the labels (e,h) € A to h
accepts K. Let wy and wy € K such that 3

dA(’wl,'wg) S 1:

Then w; - © = wq for some z € X. Consider the elements uy,us of L for which %y = wy
and Uy = wy. Clearly, for all ¢ > 1

w1 (8) = w (2) and uz(t) = wa(t). (4.36)

Let f € Y, such that e < “if = #1f, Since Y satisfies the maximum condition, such an
element of Y, exists by Lemma 4.2.1. Then s-u; - (f,z) = s - ug, and hence

dr(s U, S8 'u,g) S 1.

Since R is Schiitzenberger automatic, the fellow traveller property holds in the Schiitzen-
berger graph I' of R by Proposition 3.7.10. Hence, there exists a constant k£ € N such that
whenever u,v € L with dp(s-u,s-v) < 1, then dr(s-u(t),s-v(t)) <k holds for all £ > 1.
It follows that for all £ > 1,

dr(s - ui(t), s - ua(t)) < k.

' Because of the observations made in Example 3.7.2 of Chapter 1, there exists a word «
over A, whose length is less then or equal to k& and

s uy(t)  a=s-u(t).



4.11. SCHUTZENBERGER AUTOMATICITY 163

Bearing in mind (4.36) and that s = (e, 1), we obtain that w; ()& = wa(t), and hence

da(wi(t), wa(t)) <k,

proving that the fellow traveller property holds in the Cayley graph of G.
Let wy,wy € K. Before we show that (SA3) holds, we verify that

w = Wy if and only if w = wy. (4.37)

Clearly, if w; = wg, then w; = ws. Assume that w; = wg and let u;,us € L such that
11 = wy and Gy = we. In particular we have that s - u; = (e, w;) and s ug = (e, ws) and
hence we may deduce that (u;,ug) € L=. It follows by condition (c2) that u; = ug and so
wy = wy, verifying (4.37). In particular we have obtained that

w; =wp  if and only if U = us. (4.38)

To show that (SA3) holds, let f € Yp and consider the generator (f,1) € A. Our aim is
to show that
K ={weKle<”f}

is a regular language. Note that

(u,v)04 € Lis1y <= s-u-(f,l)=s5-v
= (e,8)(f,1) = (e,)
< (@,9) € K-, @€ KI.

Thus 4 = ¥ by (4.37) and hence bearing in mind (4.38) we may deduce that
(u,v) € Lisyy ifandonly if w=vandae K., (4.39)
By Proposition 2.3.1, we have that the language
LI ={uelL]| (u,v)a€ Lys1y for some v € A*}
is regular. It follows that the language
LI ={teK|ue L}
is regular as well. We finish our proof by showing that

L =K.
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Let w € E£ . Then w = 4 for some u € L£ , and hence e < %f holds, verifying that w € Kef :
Now let w € K. Then e < *f. Let u € L such that @ = w. Then'by (4.39), (u,u) € L5y
and sou € L{ , proving that w € L

(«<=) For the converse, assume that G is a group acting on a semilattice ¥, where
G and Y satisfy conditions (SA1) — (SA3). More precisely, assume that (X, K) is an
automatic structure with uniqueness for G, where X is closed under taking inverses. To
simplify notation, we assume that 1 C X C G. Let % : XT — G denote the homomorphism
eextending the identity map ¢; : X — G. Suppose that Y is generated by the finite set
Yy with respect to the action of G. We assume that the set of maximal elements Y, is
contained in Y and that for all e € Y and f € Yp, the language K = {we Kle<¥f}is
regular. Let S =Y x G. By Corollary 4.3.2, the finite set

A= (Yo % {1}) U (¥ x X)

generates S as a semigroup. Let ¢ : AT — S be the homomorphism extending the identity
map tg: A — 5.

Let R be an arbitrary R-class of S and assume that (e,1) € R. To simplify notation,
denote (e,1) by s. Choose & € Y, such that e < & Since Y satisfies the maximum
condition, such a maximal element of Y exists. Define

£: K — At we n(é,w)

where n is the function defined in Section 8.

Let L = K¢, We show that L is a regular language, by constructing a finite state
automaton accepting it. Let A; = (£1,X, 1, p,T) be a finite state automaton accepting
K. Such an automaton exists, since K is a regular language. To simplify notation,
let B = (Y, X X) and consider the automaton A = (%, B,v, (p, (,1)),T x B), where
Y= (X x B)U{FS} and

v (o). () e { EHIER) BTN

By the definition of the function n, and since A; is an automaton accepting K, we have
that A is a finite state automaton accepting L.

By the definition of the function n and since K is an automatic structure with unique-
ness, we have that

n(é,w ) =n(é,we) if and only if w; = we. (4.40)

Since K1 = G and since R = {(e, g)|g € G} by Proposition 4.2.7, s - L = R holds.
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Let u,v € L and wy,ws € K such that w1€ = v and wgé = v. Then

(u,v)04 E L= <= s -u=35-v
<= (e, 1)n(é,un) = (e, 1)n(€, w)
<= (e, w1) = (e, wa)
<= (w1, we)dx € K=.

It follows by (4.40) that (u,v)d4 € L= if and only if u = v, verifying that
L- = {(u,u) | u€ L}da.

Let (f,z) € A and consider the language K= {u € K|e < ¥f}. By our assumptions,
Klisa regular language. Let 4,v € L and wi,wq € K such that w1 = v and weé = v,
Then -

(u,v)d4 € L(f,x) = s-u-(fiz)=s5-v
<= (e, 1)n(é,wr)(f,z) = (e, 1)n{€, wa)
= (e,w1)(f, ) = (e, w2)
= (w1, ws)dx € Kz, wy € K7

It follows that
Lt = Ka8x' (€ x )54 N (KL x K)(€ x €)8a.
Since K, K, and K are regular languages we have that Kmé)"(l (Ex&)da and (Kéf x K)(& %

£)04 are regular languages as well. Thus we may deduce that L) is a regular language.

O
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Chapter 5

HNN extensions

In the 1950s, G. Higman, B. Neumann and H. Neumann investigated embeddability ques-
tions of groups. Among others, they considered the following problem. Let G be a group
and U,V be subgroups of G that are isomorphic via ¢ : U — V. They asked whether
it is possible to embed G into a group H, so that H possesses an element ¢ for which
t~lut = uyp holds for all w € U. They showed that this is always possible; the construction
they gave for H. is called an HNN extension of G.

The above problem was first introduced for semigroups by Howie [20] in the following
settings. Let S be a semigroup, e € E(S). Let U,V C eSe be subsemigroups of S that are
isomorphic via ¢ : U — V. Does there exists a semigroup H and ¢,¢' € H, where t' € V(¢)
so that S embeds in H, t'ut = up and ' = ¢t = e. Howie proved that if U and V are
unitary subsemigroups of eSe, then this is possible.

HNN extension of inverse semigroups was considered in recent years. There are two
alternative definitions for an HNN extension of an inverse semigroup. One is introduced
by Yamamura [36], the other by Gilbert [14]. In this chapter, we first discuss group
HNN extensions from finite generation and finite presentability point of view. Regarding
finite generation, a sufficient condition will be straightforward. Moreover, we shall see
that Britton’s lemma is the key in giving a necessary and sufficient condition for finite
presentability of an HNN extension of a group. Considering Yamamura's HNN extension,
we verify that the group theoretic results generalize. The role of Britton’s lemma is played
by the strong HNN property in this context. Gilbert’s HNN extension is more delicate
and the J-preorder is the key notion in understanding finite generation and presentability.
Regarding finite presentability, a variation of the strong HNN property will help us in
giving a necessary and sufficient condition. Results of sections 3-8 are the result of a joint
work [11] with N.Gilbert and N.Ruskuc. W}asgive more detailed proofs for these results.
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5.1 Group HNN extensions

The construction of an HNN extension of a group arose while Higman, Neumann and Neu-
mann studied embeddability problems related to groups. The construction is employed in
solving algorithmic problems, e.g. undecidability of Markov properties of finitely presented
groups.

Definition 5.1.1. Let G = Grp{X|P). Let U and V be subgroups of G that are isomor-
phic via ¢ : U — V. Let t ¢ X. The group presented by

H = Grp(X,t |P, t™ ut = up (u € U))
is called the HNN extension of G associated with ¢ : U — V. The element ¢ is called the
stable letter of H. :

In what follows, we assume that G = Grp(X|P), that U and V are subgroups in G
that are isomorphic via ¢ : U — V. To simplify notation, instead of

H = Grp(X,t |P, t lut = up (u € U)),
we write
H = Grp(G,t [t"Ut = V).

The following theorem is due to Higman, Neumann and Neumann.

Theorem 5.1.2. The group G embeds in H = Grp(G,t [t~ 1Ut = V).

Proof. See [2, Chapter IV].00

Clearly, if G is finitely generated, then the HNN extension H is also finitely gener-
ated. However, the converse is not necessarily true. To demonstrate this fact, we give an
example. Let Cs = (z) be the cyclic group of order two and let

G=...xCyxCoaxCqyx....

Clearly G is not finitely generated. In particular we have that G is generated by the
elements of the form

T (R i B s W,
where z appears exactly at the ith position. Denote the set of these elements by X. Let
P = {x® = lg,xy = yx|x,y € X}. Then G = Grp(X|P). Let U = V = G. We consider
the following automorphism of G: ' .

(CER RS 2 FH S, THE L TR | SO (G R
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Consider the HNN extension of G associated with ¢ : G — G
H = Grp{X,t |P, t7 ut = up, u € G).

Observe that for every ¢ € 7Z, we have x; = (t~1)'xott. It follows that H is generated by
the finite set {xp,1} as a group.

Next, we are going to discuss when H is finitely presented. For this, we need the
following notion.

Definition 5.1.3. Consider the HNN extension H = Grp(G,t |[t~1Ut = V). A pinch is a
word over GU {t,t71} of the form ¢~lut, where u € U or of the form tvt~!, where v € V.,
Lemma 5.1.4 (Britton). Consider H = Grp(G,t [t"'Ut = V). Let

' w = gt g1t ...t gy,

where g; € G (0 < j < n) and ¢; € {1,~-1} (1 < i < n). If w represents the identity
element of H, then it contains a pinch.

Proof. See [2, Chapter IV].O
Proposition 5.1.5. Let G be defined by the finite group presentation (X|P). Let U and
V' be subgroups in G that are isomorphic via @ : U — V., Then the HNN extension
H = Grp(X,t |P, t~lut = up (u € U))
is finitely presented if and only if U is finitely generated.
Proof. Assume that the HNN extension
H = Grp(X,t |P, t7 ut = up (u € U))
is finitely presented. Then there exists a finite subset Y C U such that H is isomorphic to
Ho = Grp(G,t | t tut = up, (u€Y)).

Let Up denote the subgroup of U generated by Y. In particular, we have that Hy is the
HNN extension of G associated with ¢ : Uy — Up. By assurﬁption U is not finitely
generated, and so there exists u € U\ Up. Then ¢ 1ut(up)™! = 1 holds in H and hence in
Hy. Making use of Britton’s lemma it follows that +~!ut(up)~! contains a pinch and so
u € Uy, leading to a contradiction.

For the converse, assume that U is finitely generated by Y. Then, it is immediate that

H = Grp(X,t |P, ™'yt = yp (y € Y)).
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5.2 Yamamura’s HNIN extension

Yamamura generalized the notion of an HNN extension to inverse semigroups in such
a way that the construction possesses similar properties as in the case of groups. In-
[36], it is shown that several important inverse semigroups, e.g. free inverse semigroups
and the bicyclic monoid arise as Yamamura HNN extensions of certain semilattices. The
Yamamura HNN extension is as powerful as in the case of groups for discussing algorithmic
problems. Among others, undecidability of Markov properties of finitely presented inverse
semigroups is proved in [36].

Definition 5.2.1. Let S = Inv(X|P) be an inverse semigroup. Let e, f € E(S). Let U
and V' be inverse subsemigroups of S such that e € U C eSe and f € V C fSf. Assume
that U and V are isomorphic via ¢ : U — V. The inverse semigroup S* defined by the

presentation
S*=Inv(X,t |P, tt71=e, t 7t =f, t 7 lut = up (v € U))

is called the Yamamura HNN exztension of S associated with ¢ : U — V. The element ¢ is
called the stable letter of S*.

In what follows, we assume that S = Inv(X|P), that e, f € E(S) and that e € U C eSe
and f € V C fSf are isomorphic subsemigroupsin S via ¢ : U — V. To simplify notation,
instead of

S*=Tnv(X,t |P, tt71=e, t7t=f, t " Iut =up (ucU))

we write
S* =Inv(S,t |tt ™} =e,t Yt = f,t Ut = V).

The following theorem is proved by Yamamura in [36].

Theorem 5.2.2. The inverse semigroup S embeds in the Yamamura HNN extension S* =
Inv{S,t [t =g, t M=, W=V

If S is finitely generated, then the HNN extension S* is also finitely generated. As in
the case of groups, the converse is not true. The same example as the one introduced in
the previous section demonstrates this fact.

The main purpose of this section is to discuss finite presentability of the Yamamura
HNN extension. For this, we need the following theorem proved by Yamamura [36, The-
orem 12].
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Theorem 5.2.3. Let S be an inverse semigroup and consider the Yamamura HNN ezten-
sion S* =Tnv(S,t it =, =, Wi =V). Then t\StOS =t Ut =",

The above theorem can be considered as a weaker version of Britton’s lemma and is
called the strong HNN property by Yamamura. Whether Britton’s lemma can be geheral—
ized for Yamamura’s construction is still unknown. Yamamura’s conjecture is that a fully
analogous result does not hold. We see that concerning finite presentability of Yamamura’s
HNN extension, the group theoretic result generalizes.

Proposition 5.2.4. Let S be defined by the finite inverse semigroup presentation (X |P).
Lete,f € E(S) and lete € U CeSe and f € V C fSf be inverse subsemigroups that are
isomorphic via ¢ : U — V. Then the Yamamura HNN extension

S*=Inv(X,t |P, tt 7 1=e, t ™l =7, t 7 ut = up (uc U))

is finitely presented if and only if U is finitely generated.
Proof. Assume that the Yamamura HNN extension

S*=Inv(X,t |P, tt 1 =e, t 7t =7, t 7 ut =up (ucl))
is finitely presented. Then there exists a finite subset Y C U such that S* is isomorphic
to

St =Inv{X,t |P, tt 1 =e, t7H=f, t 7 ut = up (ucY)).
Without loss of generality we may assume that e € Y. Let Uy be the inverse subsemigroup
of U generated by Y. Since e is the identity element of Uy, we have that for all u.€ Up, the
relation t~'ut = wup is a consequence of relations of the form t~1yt = y¢, where y € Y.

It follows that S is the Yamamura HNN extension of S associated with ¢ : Uy — Uo(,c;.
Making use of Theorem 5.2.3, we obtain that

tistN S = t_ont = Upp = Upep. (5.1)
By assumption U is not finitely generated, and so there exists u € U \ Up. ~Clearly
t~lut = uyp holds in §*, and so in S3. By (5.1), there exists ug € Up such that ¢~ 1ut = ugep,
and hence up = wugp. Since ¢ is an isomorphism it is injective, and so we obtain the
contradiction that u = ug. Thus U is indeed finitely generated.

For the converse, assume that U is generated by a finite set Y. Since e is the iden-
tity element of U, we obtain that the Yamamura HNN extension is defined by the finite
presentation

S*=Inv(X,t |P, tt7 1 =e, t 7t = f, t lut = up (u € Y)).
a
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5.3 Gilbert’s HNN extension

Making use of the relationship between inductive groupoids and inverse semigroups, Gil-
bert introduced an alternative notion for an HNN extension of an inverse semigroup in
(14]. The relationship between the two notions of HNN extensions is discussed, moreover
maximal subgroups and the maximal group homomorphic image of the construction is
described [14]. In [13], Gilbert shows that free inverse semigroups, and the bicyclic monoid
arise as Gilbert’s HNN extension of certain semilattices. To be more accurate, the latter
case is set in a more general context. Namely, it is explained how Bruck-Reilly extensions
of monoids arise as Gilbert’s HNN extensions. The purpose of this section is to introduce
Gilbert’s notion of an HNN extension of an inverse semigroup, and to prove some useful
results.

First, we recall some definitions and results regarding inverse semigroups. We have
already mentioned, that the natural partial order < has an important role in inverse

semigroup theory.

Definition 5.3.1. Let S be an inverse semigroup and s,t € S. We define
s<t & s=et |

for some e € E(S).

It is easy to see, that

s<t<4=s=ft forsome f e E(S)
gt

Definition 5.8.2. Let S be an inverse semigroup and U be a subset of S. We say that U
is an order ideal of S, if whenever s < u, where u € U, then s € U holds.

There is another relation which will bé important in our considerations, namely the

<7 preorder.
Definition 5.3.3. Let S be an inverse semigroup and s,t € S. We define
s§<gt <= s€StS.

Note that s <7 t and ¢ <7 s if and only if s J t. Moreover, if s < ¢, then s <7 t. With
the help of the natural partial order and the D-relation the <7 preorder can be described
in the following way (27, Proposition 8]:
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Lemma 5.3.4. Let S be an inverse semigroup and s,t € S. Then s <7 t if and only if
there exists u € S such that sDu < t.

Definition 5.3.5. Let S be an inverse semigroup. A set F' C E(S) is said to J-dominate
S, if for every s € S there exists f € F' such that s <7 f.

Notation. Let U be an inverse subsemigroup of S. Then for any F C E(U) we let
Up={u€U|3e,f € F such that uu™ <e, uv"'u < f};
this is easily seen to be an inverse subsemigroup of S.

Definition 5.3.6. Let S = Inv(X|P). Let U and V be inverse subsemigroups-of S that
are order ideals. Assume that U and V are isomorphic via ¢ : U — V. The inverse
semigroup S*y,, defined by the presentation

Sty =Iv(X U{te | e € BU)} |P, tet;' = ef, t;'t; = (ef)e,
-1 uty—1, = up (u € U))

is called the Gilbert HNN extension of S associated with ¢ : U — V. The elements ¢, are
called the stable letters of Sxy,.

To make reference easier to certain relations, we fix the following notations for this
section. Let § = Inv(X|P). We let U and V denote inverse subsemigroups of S that
are order ideals. We assume that U and V are isomorphic via ¢ : U — V. For a subset
LC EU) we let

Ty, = {tet;' =ef, t7'tp = (ef)p | e, f € L}

and for brevity we denote Tg7) by T. For a subset L C E(U) and a subset K of U we let
Wik = {t; atf ap|lacK, e, fel, aal <e, a_lasf}
and for brevity we denote Wg(y,y by W. The following proposition will prove useful.

Proposition 5.3.7. (a) Ife € E(S) and f € E(U), then ety = tep. In particular, if
e < f, then ety = t.. :

(b) Let e,f € BU) and v € U with uu™ < e and ulu < f. Then the relatzon
to utf = up- holds in Sxy,,, and so

Sxprp = Inv(X U {t|e € E(U)}|P,T,W).

(c) Fiz a subset F C E(U) and suppose that Up is generated by a subset Y C Up. Then
for all u € Up withuu™' < e and u™'u < f, e, f € F, the relation t;lutf = U s a
consequence of the relations in PUTr U Wpy.

i
b4
H
i
¥
i
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Proof. (a) Let e € E(S) and f € E(U). We verify that ety = t.y is a consequence of
the defining relations of S%y,, and of standard inverse semigroup relations. Indeed,

ety =etpty'ty

= efty by applying a relation in 7'

=y ft;‘fl't f by applying a relation in T'
=tes(ef)e by applying a relation in T’

= tes(ef )cpte_flte £ by applying standard inv. sg. relations
= (ef ey since tef(ef)t,ate'f1 =ef

=, fte“flt.3 £ by applying a relation in T’

= to5.

1

(b) Since uu~! < e, we have that euu™! = uu~!. Since u™'u < f, we have that u~luf =

w~tu. Thus, with the previous part of the proposition in mind, we obtain that

1

te_lutf = te_luu— uu_'lutf = t;i_lutumnu = ugp. .

It follows that all relations in W hold in S*y. On the other hand
{t2 uty-1, =up |ue U} CW,
and so we obtain that
Sxy, =Inv(X U {t. | e € E(U)}| P, T,W).

(c) We proceed by induction on the number of elements of Y required to express u € U
as a product. The base case is dealt with by the relations with y € Y. Let v = ujug, with
uy,ug € Up and assume that ulul—l <i= t,;ti_l, ul_lul < g= tgtg‘l and uguz‘l < h=
tht;l‘l, u{lug < g= tjtg'l for some i, 4,g,h € F. Then uy = iu;g and ug = hugj hold as a
consequence of P, and hence : :
t;lutf = te_luluetf

= t;'l('iulg) . (h'lL2j)tf

= 17 (7 Yuntg) (5 - £0) (8 uaty)t] g

=714 (mp) ¢t (u2p) t5'ts

= (ed)y (u1p) (gh)p (uap) (if)p = (e(iuag)(huai)f)e

= (euruaf)p = up.
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Definition 5.3.8. Let S be an inverse semigroup. A product s182... s, of elements of S
is called a trace product if s lg; = 8i418;, +11 foralll<éi<n-1.

Lemma 5.3.9. Let S be an inverse semigroup and let s1,82 € S. Then there exists
t1,to € S such that the product of s182 equals to the trace product t1tg and t1 < s1,t0 < 89
holds.

Proof. Consider the idempotent e = 31—1513232_1 and let £; = s1e and tg = esy. Clearly
81 < t1 and sy < ty. Moreover an easy calculation shows that tl_ltl = tgt;l and that
t1ty = s1es9 = 5189. [J

By an easy induction the following lemma. can be verified.

Lemma 5.8.10. Let S be an inverse semigroup. Then a product of elements s183... 8y
of S equals to a trace product tity... .ty with t; < 8; for all 1 < 7 < n. Moreover, if

§=11...t, s a trace product, then ss™' = t1t7" and s71s = t;1t,.

In the HNN extension S*y,,, we shall consider products that are words on the alphabet
SU{te|le € E(U)}: for such words, we can form trace products that preserve the structure
of the word. Combining Lemma 5.3.10 with Proposition 5.3.7(a) we obtain the following:

Lemma 5.3.11. An element h = s1t‘}‘152t?§-~-sntj£;sn+1 € Sy, where ¢ = X1 for
1<i<nands; €8 forl <i<n+1 is equal to a trace product Tt rote? - - T Tnay
where ; < fi forl<i<mnandr; < s, eSS forl<i<n+1

Definition 5.8.12. Let S be an inverse semigroup. Let U and V be inverse subsemigroups
of S that are order ideals. Assume that U and V' are isomorphic via ¢ : U — V. Consider
the Gilbert HNN extension S#y,. A pinch is a word over S U {t.,t;!] e € E(U)} of the
form t;j_lutu_lu, where u € U or of the form t;j_l (up)ty-1q.

The following proposition will prove useful when proving Proposition 5.5.1.

Proposition 5.3.13. [18, 29] Let h = s1t¢lsatil - - - st sn41 be a trace product in Sy,
with n > 0. If h is an idempotent then it contains a pinch.

5.4 An alternative presentation for Gilbert’s HNIN exten-
sion

In preparation for discussing finite presentability of Gilbert’s HNN extension, we give an
alternative presentation for the HNN extension Sxy,,. Throughout this section, we use
the notation introduced in the previous section.
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Proposition 5.4.1. Let S = Inv(X|P) be an inverse semigroup and let U,V be inverse
subsemigroups of S that are order ideals. Assume that U and V are isomorphic via ¢ :
U—YV. Let ' be any J-dominant subset of U. Then

Sxyp =Inv(X U {t.: e € F}|P, Tr, Wrug).

Proof. Let Xp = X U {t.: e € F'} and Hp = Inv(Xp|P, Tr, Wry,). By Proposition
5.3.7, Sxy, = Inv(X U {t.: e € E(U)}P, T, W). We show that Sy, and Hp are
isomorphic inverse semigroups by giving two inverse semigroup homomorphisms 7 : Hp —
S#y,, and £ : Sxy, — Hp that are inverse to each other.

Since Tp C T and Wey, C W, we clearly have that the identity map on Xr induces

an inverse semigroup homomorphism 7 : Hp — Sxy,,.
For each e € E(U), choose and fix u, € U and € € F such that

e = ueusl, uglu, <&
ue =€=ce (e € F).

—1 and the identity map on X together induce

We show that the mapping t. — uetz(uep)
an inverse semigroup homomorphism £ : Sxy, — Hp. That is we show that £ maps
relations in S*y,, to relations that hold in Hp.

Let e1,ep € E(U). Clearly uz ue,uz; ue, < ug,'ue, <€ and ug, e Y Y 5 M, Ly =

€9, and we have
te, €ty 5 = Ue, b, (Ue, )~ ("ez‘P)

T ue1 €1 (uel ugz)(p €2 u

=g ue_lluezu;zl = ejez = (e1e2)€

1

using the relation tz, (uz e, )pts, = uz te, from Wry, and it follows that (te,t;;')é =
(e1€2)€ indeed holds in Hp. Similarly,

i Eten€ = (Uey )5 UL ey b, (tiey ) ™
= (ue, ) (ue—11 Uey )P (Uey (P)_l
= (ue, Uz, Uey Uy, ) = (e1€2)0 = ((e1€2)9)E.

and it follows that (£7'te, )€ = ((e1e2)@)€. These considerations show that all the relations
in T, once rewritten in terms of Xp, follow from Ty and Wry, in Hp.

Now consider a relation 7 'ute, = up from W, where uu=! < e; and u™'u < ea, u €
U, e1,ez € E(U). Consider te,€ = ug,tz, (e, ) ™ and te,€ = Ue,ta, (Ue,0) . Note that

-1 | o PR I U, | -
Uey) = Uy, UCQU  Uey = Ug, YU Uy = Ug, Uy < €1

(ug utte,) (u;z1 U
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and similarly (u;;lu“luel)(ualuuez) < @, hence u;lluue2 € Up. In particular, we have

that t;{llue‘lluueztg2 = (ug;'ute, )y is a relation in Wry, and we obtain

tor Eubter€ = (uey p)t5, g, utteyta, (Uerp) ™
= (Ue, ) (u;lluum)‘P(uvzz‘P)—l
= (uelue"lluu%ue_;)(p‘ )
= (e1ue)p = up = (up)§.
It clearly follows that (7 ute,)¢ = (up)¢ indeed holds in Hp. This completes the check
that £ is a homomorphism.
Let us now check that 7 and £ are inverse to each other. Indeed, for z € X we clearly

have zné = x and zén = z. Likewise, for e € F' we have t.nf = t.. Now consider any
e € BE(U); we have

tefn = (Uetz(uew) ") = uets(uep) ™! = Uglg e = et = 1g,
using the relations t;  uets = ucp and et, = t., which hold in S#*y,p. This completes the

proof that n and £ are mutually inverse. O

5.5 Finite generation of Gilbert’s HNN extension

In this section, a necessary and sufficient condition will be given for the Gilbert HNN
extension of inverse semigroups to be finitely generated. '
As, in the previous section, we use the following notation. We let S denote an inverse
semigroup. We let U and V denote inverse subsemigroups of S that are order ideals. We
assume that U and V' are isomorphic via ¢ : U — V. For a subset L C E(U) we let

Ty, = {tet;* =ef, t;'t; = (ef)p | e, f € L}
and for brevity we denote Ty by T'. For a subset L C E(U) and a subset K of U we let
Wi ={t:'at; =ap|a€ K, e,f€L, aa™ <e, ata < f}
and for brevity we denote Wgyy v by W.

Proposition 5.5.1. Let S be a finitely generated inverse semigroup. Let U and V' be
inverse subsemigroups of S that are order ideals. Assume that U and V' are isomorphic
via @ : U — V. Then the Gilbert HNN extension S*y,e is finitely generated if and only if
U is finitely J —dominated.
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Proof. Suppose that S is finitely generated by X and that S+y,, is finitely generated.
Then there exists a finite subset F' C E(U), such that Sy, is generated by XU{ts|f € F},
and hence by SU {tf|f € F}. Let e € E(U) \ F. Then, in the Gilbert HNN extension
S#y,,, the stable letter ¢, is equal to some word

w= .9115}11 sztj?z e snt;';snﬂ

on the generating set S U {t¢|f € F'}, where ¢; = +£1,(1 < ¢ < n). By Lemma 5.3.11, £,
may also be represented by a trace product

/
W = ritgirotel - - Tt ol

where for each i,(1 <i < n), e < fiand r; < s; for each ¢, (1 <4 < n+1). By application
of W-relations we may assume that w’ contains no pinch. It is possible that w’ is the
trace product te, in which case e < f for some f € F, in particﬁla.r e <7 f. Assume now
that ' is not identical to te. Note that by Lemma 5.3.10 w't;! is a trace product and
by Proposition 5.3.13 the trace product w't;! contains a pinch. This must be the final
segment tg'r:rn+1t;1, where 741 = up for some u € U and e = u~'u. Hence eDuu~! and
wu~! < f, € F: that is, e <7 fn. Therefore, U is finitely J—dominated by the set F.

Conversely, suppose that U is finitely J-dominated by F. Given e € E(U) suppose
that e <7 f with eDh and h < f. Take u € U with uu™! = e and v~ 'u = h. Then

R e by applying standard inv. sg. relations
= 17 tuu™? by applying relations in T'
=7 uu uu? by applying standard inv. sg. relations

= t; luhu™?

1

=t utptlu” by applying relations in 7'
e h

: by applying relations in T,

= utptglu"
and so te = u.th(ugo)”1 holds. In particular we have that the following hold in Sxy,,:

te = utp(up) ™! = uthtglth(wp)_l

= uhth(wp)“1 by applying relations in T°
= uht(up)™! by Proposition 5.3.7
= uty(up) ™.

Thus we may deduce that t. is expressible as a word on the generators X U {t;|f € F'},
and Sy, is finitely generated. : (]
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5.6 Finite presenfability of Gilbert’s HNIN extension

The main purpose of this section is to give a necessary and sufficient condition for Sxy,,

to be finitely presented.

Proposition 5.6.1. Let S be a finitely presented inverse semigroup and let U,V be inverse
subsemigroups of S, that are order ideals. Assume that U and V are isomorphic via
@ : U — V. Then the Gilbert HNN extension Sxy,, is finitely presented if and only if U
is finitely J-dominated by a subset F' C E(U) such that the inverse subsemigroup Up is
finitely generated. ' /

Proof, Assume that the inverse semigroup S is defined by the finite inverse semigroup
presentation (X|P). Assume that U is J-dominated by a finite subset F' C E(U), and
that Up is generated by a finite set ¥ of words on X. As before, let Xp = X U{t.|e € F}.
Then by Proposition 5.4.1,

Sky,p = Inv(Xp|P, Tp, WF,UF)-

On the other hand, since Wry C Wgy,, and since all relations in Wgy, are consequences
of relations in RU Ty U Wgy by Proposition 5.3.7 (c), we have that

Inv{XF|P, Tr, Wpue) = Inv(Xp|P, Tr, Wry).

Since F' and Y are finite it is clear that the latter presentation is finite, hence Sy, is
indeed finitely presented.

For the converse, suppose that Sy, is a finitely presented inverse semigroup. In
particular, S#y,, is finitely generated and so by Proposition 5.5.1, there exists a finite
J—dominant subset F C E(U) of U. Then, by Proposition 5.4.1,

S*U,zp = II’lV(XplP, TF, WF’UF.),

where P and T are finite sets of relations, but Wgy, is possibly infinite. Since S*y,, is
finitely presented by assumption, there exists a finite subset Wo € Wr y,., such that

Sy, = Inv(Xp|P, Tp, Wo).
Consider the finite set

Y ={u€U|3e,f € F such that (¢ ut; = up) € Wo} UF,
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and let Up be the inverse subsemigroup of U generated by Y. Our aim is to show that
Urp is finitely generated by showing that Uy = Up. By definition of Uy, we clearly have
Up C Up. For the reverse inclusion we need the following variation of the strong HNN
embeddability.

Lemma 5.6.2. Lete,f € F and Ug; = {u € Upluu™! <ee, ulu < f}. Then, in Sxy,,,
we have
37886, 0.8 = 471U, str = U, 5.

Proof. Relations in Wry, imply immediately that ¢;1U, sty = U, sp and that
t; U, sty C 1St N S.

To prove the reverse inclusion we employ a technique used by Yamamura [36]. Let Upp =
Vo and S’ be a copy of S with ¢ : S — S an isomorphism, let Uj = Upt. Since U is
an inverse subsemigroup of S, the amalgam K = § %y, S’ can be considered. By a
theorem of Hall [16] (see also [30]), S and S’ are canonically embedded in K, that is we
have embeddings ¢1: S — K, t9: S’ — K. Moreover by the strong amalgamation property
of inverse semigroups [16] we have that S¢; N S'ip = Uj = Vp. Let ¢ = Ll_lbbz. Then it is
clear that 9: Sty — St is an isomorphism; furthermore for all © € Uy, {utq ) = (utlg =
(up)e1. It follows by identifying Su; with .S, that ¥|y, = ¢|v,. Let K be obtained from
I by adjoining an identity to it, and form the Yamamura HNN extension -

K* =Inv(K tlet™ 1 =1 =71, t 7 1st = s9p, (s € 9))

associating the subsemigroups (S¢1)! and (S'es)?.

Next we show that the mapping ¢, + et and the identity map on S together induce an
inverse semigroup homomorphism v : S¥y,, — K*, that is we verify that v maps relations
in Sxy, to relations that hold in K*. Let e, f € F and u € U, s such that uu™! < e and
v lu < f:

(ter)(t7'0) = (et)(Ft) ' =ett™' f = ef = (ef ),
(1 v)(tgv) = (et) 7 (ft) = t7left = (ef)d = (ef)p = ((ef) ),
() (wv) (tpv) = (et) u(ft) =t teuft = tut = uh = up = (up)v.

Therefore relations in PUT U W are indeed mapped onto relations that hold in K %
Let us now consider an arbitrary s € t;15t; NS, and write s = ¢ 1zt for some z € S.
Then in K* we have
s=sv=t"ltezft et leSftNS.
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By the above mentioned strong amalgamation property, we have that
(et)1S(ft)NS =t"teSftNS = (eSHY NS C SPNS C 8iunSuy =U =V,

Therefore there exists ug € Up such that the relation t~lezft = ugp holds in K*. Let g,h €
F be such that ugug® < g and uglug < h, so that the relation ugp = (gt)tug(ht) =t~ ugt
holds in K*. Now from t~lezft = t lugt and tt~! = ¢t~ = 1 it follows that ezf = uy.
This, in turn, implies that ugug 1 < e and Uy Lug < f; in other words ug € Ue,s. Also,
notice that ezf = ug is a relation between elements of S, and hence it also holds in Sxy -
So, returning to Sky,,, we have

s=ttzty = t;lezfty = t;  ugty € t; U, sty,

completing the proof. O

We are now in the position to prove the remaining inclusion Urp C Up. Let u € Up.
Then there exist e, f € F such that vu™! < e and u=lu < f. It follows that t; lut F=up
holds in S*y,. Applying Lemma 5.6.2, we have that there exists ug € Up such that
up = ugw, and so we obtain that v = ug € Up, proving that Ur = U is indeed finitely
generated. win

We conclude this section by formulating: Proposition 5.6.1 in the special case when
E(U) satisfies the maximum condition. Recall that we say that E(U) satisfies the maxi-
mum condition if U has finitely many maximal idempotents F' = {f1, fa,..., fm} and for
every idempotent e € E(U) there exists f; € F such that e < f;. Note that in this case F
is also a finite J—dominant subset and Up = U holds, and so we may conclude:

Corollary 5.6.3. Let S be a finitely presented inverse semigroup and let U,V be inverse
subsemigroups of S that are order ideals. Assume that U and V are isomorphic via ¢ :
U — V. Assume that E(U) satisfies the mazimum condition. Then the HNN extension
S*y, 18 finitely presented if and only if U is finitely generated.

5.7 A compelling consequence

Proposition 5.6.1 and its proof have the following intriguing consequence. Assume that
S,U,V and ¢ are as in Proposition 5.6.1 and suppose that Sy, is finitely presented.
Taking any finite J-dominant set ' C E(U), we have

S*U,SD = InV(XFIR, TF’ WO)’
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where W) is a finite subset of Wr .. But then the converse part of the proof of Proposition
5.6.1 shows how this presentation yields a finite generating set for Up. In other words if
U is finitely generated for some finite J-dominant subset F' then Ug is finitely generated
for every finite J-dominant subset G. In fact, we can prove this in full generality removing
the requirements that S be finitely presented, that U be an order ideal, and any mention
of V.

Proposition 5.7.1. Let S be an inverse semigroup and assume that the inverse sub-
semigroup U is finitely J-dominated. Then Urp is finitely generated for some finite J -
dominant set F' if and only if Ug is finitely generated for every finite J-dominant set
G.

The proof is divided into the following two lemmas.

Lemma 5.7.2. Let Up be finitely generated and g be an arbitrary idempotent of U. Then
Uruig) s finitely generated.

Proof. Assume that Up is generated by the finite set A. Let e € F' be such that
g <7 e. Then there exist k,I € U, such that g = kel = kellek™ = kll~tell k1,
hence there exists v € U such that g = vev™1. From this we have that gv = ve = gve. We
claim that Upy(g) is generated by AU {gve}. Let s € Upy(g). The following four cases
are to be considered.

(i) The case when s € Up is straightforward.

(ii) Assume that ss™!,s71s < g. Then s = gsg = v(ev! -s-ve)vL. Since evlsve € Up,
there exist a1,...,ar € AU A1 such that ev~lsve = a;...a;. From this we have
that s=wve-aj...ap-ev ' =gve-a;...ar" (gve)‘l.

(iii) Assume that ss™! < g and s™1s < f for some f € F. Then s = gsf = v(ev™! - sf).
Since ev~!sf € U, there exist a1,...,a € AU AL such that ev™1sf = a3 ... ax.
From this we have that s =ve-a;...a, =gve-aj...az. '

(iv) The case when s™!s < g and ss™! < f for some f € F' can be proved similarly as
(331).
O

Lemma 5.7.3. Assume that Up is finitely generated and that for some g € F, G = F\{g}
is also J~-dominant in U. Then Ug is finitely generated.
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Proof. Let Up be generated by the finite subset A which we may assume, without
loss of generality, is closed under taking inverses. There exists e € F'\ {g} for- which
g <7 e, and hence g = vev~! for some v € U. Let A’ denote the set of elements of 4
for which aa™! < g and for which there is no other j € F\ {g} such that aa™! < j; also
let A” = (A’)~!. Notice that if @ € A’ then a = ga, while if a € A", then a = ag. Let
B = A\ (AU A"). We show that Ug is generated by

B =BU{ave: a;€ A\ A}U{evla;: a; € A\ A"} U {ev lazve: a; € A}

Let s € Ug C Up. Then s = ajag ... ay for some ay,...,a; € A. If a; € A’, then substitute
a; by ga;; if a; € A”, then substitute a; by a;g; and if ¢; € A’ N A”, then substitute a; by
ga;g. Consider now all subwords w of the form a;_1a;9¢;1+19...gam—-19mam+1. These
subwords can be written in terms of B, since

1 1

W = A;—1 - AVe - eV azve - BU—lai+1 virr €U T Om—1ve . efu"lam R

It follows that s can be written in terms of B, hence Ug is generated by B. C

5.8 Examples

Here we provide four examples of HNN extension of inverse semigroups.

Example 1. Let B be the bicyclic monoid, considered as the set N x N with binary
operation (m,n)(p,q) = (m — n + max(n,p),q — p + max(n,p)). Now B is presented
as an inverse monoid by B = Inv{ala = a?a™1), where a = (0,1). Let U = B and
V = {{(m,n)|m,n > 0} with ¢ : U — V the shift map (p,q) — (p+ 1, + 1), so that
ap = a~'a?. Tt is clear that U = B is J—dominated by the identity element 1 = (0,0), and
that Ugyy = Bis finitely generated. Hence the HNN extension Bx*p , is finitely presented.
It is easy to check that

Inv{a,tla = a®a L, &t = aa " ,t 7t = ala,t 7 lat = ala?)
gives a presentation.

Example 2. With B as before, suppose now that U = E(B) = {(m, m)|m € N} with
¢ : (mym) > (m+1,m+1). It is clear that U is finitely J—dominated by the identity
element 1 =(0,0) of U, but Uy;y = U is not finitely generated. Hence we may conclude,

that the HNN extension B#y,, is finitely generated but not finitely presented.
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Example 3. In this example we construct a finitely presented HNN extension Sy,
with U not finitely generated. Let S = Inv{a,elaa™! = 1,ae = 0,e? = e) considered as a
semigroup with 0. It can be easily seen that

{a"%a?,a""ea|i,7 € N} U {0}
is a set of normal forms for S. Consider the inverse subsemigroup
U = {a"ted’}i,j € N} U {0}

of § , together with the identity isomorphism ¢: U — U. We observe that U is isomorphic
to the infinite aperiodic Brandt semigroup, and hence U is J—dominated by any of its
idempotents. Let F' = {a~%ea’}. Then Up = {a"‘ed’,0} is finite, so certainly finitely
generated, and it follows that the HNN extension S#y,, is finitely presented. However, the
associated inverse subsemigroup U is not finitely generated.

Example 4. Our final example shows that the maximum condition on E(U) is essential
in Corollary 5.6.3. We give an example of a finitely presented HNN extension of a finitely
presented inverse semigroup S, where the associated subsemigroups contain finitely many
maximal idempotents, but do not satisfy the maximum condition and are not finitely gen-
erated. Consider the semidirect product S = Y, X G, introduced in Example 4.10.5. We
verified that S is finitely presented as an inverse semigroup. In particular, it is generated
by the set {(eo, 1), (1,9),(1,¢~1)} and if we correspond a to (1,g), b to (1,¢7') and ¢ to
(eo, 1), then we have that

S = Inv{a,b,clab = ba = 1,¢® = ¢, che'= be, cac = ca).

Then it can be easily seen that
(i) {a*: i e N}U {bi: i € N}U {ab} U {z'cy’: z,y € {a,b} i,j € N} is a set of normal
forms for S,

(ii) E(T) is an infinite chain with an identity element adjoined on top:

. < b%ea? < bea < ¢ < ach < a’cb? <... <1,

(iii) the H-class H; of 1 is isomorphic to the infinite cyclic group,

(iv) K = T\ H; is a bisimple aperiodic inverse subsemigroup of S, which is not finitely
generated. 3

It follows from (ii) and (iv) that, for any e € E(S) \ {1}, the subsemigroup

Ue={ueU: wutulu<e}
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is finitely generated. To be more accurate, if e = (e,, 1), then U, is generated by the finite
set {(en, 1), (en,9), (g~1en,g_1)}.

Take two copies S) and S of S and let T be their O-direct union. It is straightfor-
ward that T is finitely presented. Let f € E(S®) and let U be the 0-direct union of K
with Uy. Then U has one maximal idempotent f, and is not finitely generated since the
subsemigroup K contains an infinite ascending chain of idempotents. Moreover since K
is bisimple, for any e € E(K), the idempotents e and f are J-maximal in U and

Ute,y ={un€U: wuulu < e or wuTluTlu < £}

is isomorphic to the O-direct union of U, and Uy, and hence is finitely generated. It follows
by Proposition 5.6.1, that the HNN extension H = Sy, where ¢: U — U is the identity
isomorphism, is finitely presented.
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