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The cellular integrity of the blood is maintained by the cellular 

output of the haematopoietic stem cell population which produces the 

specialized precursors and differentiated cells which constitute the blood. 

The investigation of haematopoietic stem cell behaviour and regulation 

has been hampered by both the difficulty in their identification and the 

development of relevant assay systems. The purpose of this investigation 

was to study the behaviour and regulation of the haematopoietic stem 

cell population in normal and leukaemic haematopoiesis using an in vitro 

assay of a primitive haematopoietic precursor.

The use of a combination of haematopoietic colony-stimulating 

factors [interleukin 3 (IL3)/multl-CSF and macrophage colony-stimulating 

factor (M-CSF/CSF-1)] in semi-solid agar culture of murine

haematopoietic tissue, stimulated the proliferation of a haematopoietic 

colony-forming cell, defined as the "HPP-CFC|L3+csf-i" population, 

which was characterized by a high proliferative potential, a multipotency 

and behavioural and regulatory properties consistent with its being a 

primitive haematopoietic precursor and possibly a component of the 

haematopoietic stem cell population.

The proportion of the ./n vitro HPP-CFC|[_3+csf-i population in 

S-phase in normal murine marrow, was determined to be relatively low at 

approximately 10%, increasing to approximately 40% in sublethaliy 

X-irradiated, regenerating murine marrow and the respective presence of 

the haematopoietic stem cell proliferation inhibitor and stimulator was 

demonstrable by the induction of appropriate kinetic changes in the 

in vitro HPP-CFC||_3+csf-i population.

in leukaemic haematopoiesis, leukaemic proliferation often occurs 

at the expense of apparently suppressed normal haematopoiesis. in vitro 

HPP-CFC|L3+csf-i assay of the haematopoietic stem cell proliferation 

regulators in a number of murine, myeloid leukaemic cell lines, failed to
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demonstrate either increased levels of the haematopoietic stem cell 

proliferation inhibitor, or evidence of a direct-acting, leukaemia- 

associated proliferation inhibitor, however, evidence of a leukaemia- 

associated impairment of inhibitor and stimuiator production was 

observed and this may be a possible mechanism by which the leukaemic 

population develops a proliferative advantage over normal 

haematopoietic tissue. The identification of a possible mechanism of 

leukaemic progression and suppression of normal haematopoiesis may 

subsequently allow the development of potentially more effective disease 

treatment and management regimes. -

The endogenous haemoregulatory tetrapeptide: Acetyl-N-Ser- 

Asp-Lys-Pro [AcSDKP, Mr=487 amu] is reported to prevent the Go-Gi 

transition of haematopoietic stem cells into S-phase. The mechanism of 

action of AcSDKP and a number of related peptides, was investigated in 

relation to the stem cell proliferation stimulator and inhibitor. AcSDKP 

demonstrated no direct haemoregulatory role against the in vitro 

HPP-CFCh_3+csf-i population, which is consistent with reports that 

AcSDKP is not active against cells already in late Ci, or S-phase, rather 

it appeared to act indirectly by impairing the capacity of the 

haematopoietic stem cell proliferation stimulatorXo increase the 

proportion of the in vitro HPP-CFC||_3+csf-i population in S-phase. An 

apparent impairment of stimulator action may explain the reported 

AcSDKP-associated ’block' of haematopoietic stem cell recruitment. A 

putative endogenous AcSDKP precursor and synthetic and degradative 

enzyme systems have been reported and the possible

physiopathological role of AcSDKP in a number of myeloproliferative 

disorders has been implicated. The potential application of AcSDKP as a 

'haemoprotective' agent administered prior to the use of S-phase- 

speciflc chemotherapy may be of clinical significance.
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The in vitro HPP-CFC|L3+csf-i assay of a primitive haematopoietic 

precursor cell population, which may be a component of the 

haematopoietic stem cell population, should play a significant role in the 

investigation of haematopoietic stem cell behaviour and regulation in 

both normal and aberrant haematopoiesis. With the characterization of 

the mechanism(s) of action of the haematopoietic stem cell proliferation 

inhibitor and stimulator and the haemoregulatory tetrapeptide AcSDKP, 

the manipulation of the haematopoietic system to clinical advantage can 

be envisaged, while the identification of the aberrant regulatory 

mechanism(s) in haematopoietic dysfunction may allow, the development 

of more effective disease treatment and management regimes.
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Chapter 1:

Introduction.



1.1 Introduction.

All the cells of the body are descended from a small population of 

specialized precursors known as "stem ce//5". Stem cells are capable 

of multiplying rapidly, under the control of subtle regulatory cues, to 

give rise to a large number of terminally differentiated, non­

proliferating progeny. This cellular amplification occurs through a 

population of ’transit’ progenitor ceiis which, with maturation, 

develop a reduced probability for proliferation and an increased 

probability for differentiation. In this way ceil multiplication is kept in 

check, matching cell production to the requirements of the body - 

sufficient new cells are produced to replace those dead or dying, so 

maintaining tissue integrity, or to produce new tissue as required. 

While providing a continuously varying output to meet the cellular 

requirements of the body, stem cells must, of necessity, be capable 

of maintaining their own numbers, through a stem cell-specific ’self­

renewal’ mechanism. The processes which regulate stem ceil 

proliferation and cellular differentiation are of considerable interest 

and an understanding of such processes will undoubtedly make it 

possible to investigate tissues where cell production is proceeding in 

an inappropriate manner in, for example, cancerous growth.

''Haematopoiesis*' is the process by which the body generates 

new blood cells. The cellular integrity of the blood is maintained by 

the haematopoietic stem ceii popuiation, which produces the 

specialized precursor and differentiated cells which constitute the 

blood [Figure /]. investigation of haematopoietic stem cell regulation 

and behaviour is of considerable interest, however, difficulty in both 

their identification and the development of relevant assay systems 

has hampered such investigations.



Figure 1: Organization of the haematopoietic system.
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1,2 Evidence for a haematopoietic stem cell.

Mice subjected to 8.2 Gray (Gy) whole body X-irradiation die after 

approximately 14 days due to haematopoietic failure. if the spleens of 

such mice were exteriorized and shielded prior to irradiation this

haematopoietic death couid be prevented [Jacobson ef a/,1949]. Left 

in situior 1-48 hours before removal a shielded spleen would still 

improve haematopoietic recovery [Jacobson ef a/,1951].

Transplanted unirradiated, syngeneic spleen cells also enhanced the 

survival of lethally irradiated mice and similar results were obtained 

for syngeneic bone marrow, Initially a haematopoietic humoral factor 

was considered responsible, however, a cell within the donor tissue 

was determined to be the agent responsible for the haematopoietic 

recovery [Ford ef a/,1956]

To maintain adequate haematopoietic output, mice utilize all bone 

cavities In active haematopolesis. If haematopoieticaliy stressed, 

mice resort to extramedullary haematopoiesis, that is haematopolesis 

outside the bone cavities, and the murine spleen becomes a focus of 

haematopolesis. if lethally X-irradiated mice are given sufficient 

haematopoietic cells in a transplant, they survive and an enlarged 

haematopoieticaliy active spleen is usually evident. However, if fewer 

haematopoietic cells are given in a transplant, a point is reached 

where insufficient cells for haematopoietic recovery are present and 

the mice die due to haematopoietic failure. Examination of the 

spleens from such mice at autopsy, revealed discrete 'patches', or 

'islands', of light-coloured tissue within the otherwise degenerating 

spleen. These 'islands', or 'nodules', were found to contain 

recognisable haematopoietic cells and precursors and were foci of 

haematopoietic regeneration. The number of spleen 'nodules' was 

found to be proportional to the number of haematopoietic cells given
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in the transplant [Till & McCulloch,1961]. Unique chromosome 

markers identified the spleen nodules as derived from donor tissue 

and the use of combinations of chromosomal markers demonstrated 

that individual nodules were derived from a single cell and so were 

cfonafln nature [Becker ef a/,1963; Wu ef a/,1967; Chen & 

Schooley,1968]. To give rise to visible, macroscopic nodules, the 

single colony-forming cell responsible was demonstrating a high 

proliferative potential and histological analysis of individual colonies 

demonstrated that while some colonies consisted of cells of a single 

lineage, others consisted of ceils of two, or three different lineages, 

evidence that the single colony-forming ceil also had a multipotential 

nature [Lewis & Trobaugh,1964; Fowler ef a/,1967; Lewis ef a/,1968]. 

Excised single spleen colonies, if re-transplanted to lethally X- 

irradiated mice were demonstrated to produce more than one nodule 

in the recipient spleen, also giving evidence of a self-renewal 

capacity within the spleen colony-forming cell population 

[Siminovitch ef a/,1963]. To summarize, a haematopoietic colony­

forming cell population of high proliferative potential, with a 

multipotential nature and self-renewal capacity was demonstrable in 

murine haematopoietic tissue. The significance of this spleen coiony- 

forming unit (CFU-S) was realised since such characteristics would 

be expected of a putative haematopoietic stem cell population 

[Figure 2]. The CFU-S assay was thus adopted as a method with 

which to quantitatively and qualitatively investigate the behaviour and 

regulation of the haematopoietic stem cell population.

1.3 The murine spleen colony-forming unit (CFU-S) assay.

[Till & McCulioch,1961] Recipient mice are subjected to 8.2 Gy 

whole body X-irradiation, a dose which ablates host haematopolesis



High proliferative potential

STEM CELLS Multipotency

Self-renewal capacity

Figure 2: Characteristics of the haematopoietic stem cell population.
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and will prove lethal after approximately 14 days. A single cell 

suspension of donor syngeneic bone marrow, spleen or 

haematopoietic foetal liver, is produced, its ceilularity adjusted and is

injected intravenously into one of the two lateral tail veins of 

prewarmed recipient mice.

Recipient mice will die after approximately 14 days due to 

haematopoietic failure since the inoculum contains a sub-survival 

haematopoietic dose. Spleen colonies are assayed by killing the mice 

after 8-12 days. The time of assay is again critical since, while the 

number of colonies on a spleen may be the same at day 8 or day 12, 

some spleen colonies are transient [Magli ef a/,1982]. Some colonies 

arise to be counted at day 8, disperse and are absent at day 12. 

Similarly, other colonies do not arise until after day 8 to be counted at 

day 12. Other spleen colonies appear fixed and are present at both 

day 8 and day 12. This has important implications in relation to an 

age-related hierarchy within the CFU-S population and will be 

discussed. At assay colonies are counted on both sides of the 

spleen, and a near maximal 15 colonies per spleen is apparent with 

larger numbers increasing counting errors due to colony overlap.

Only a fraction of the haematopoietic colony-forming ceils in an 

inoculum will seed into the spleens of lethally X-irradiated mice to 

subsequently give rise to macroscopic colonies (CFU-S). This 

fraction of colony-forming cells is determined by a secondary 

transplantation technique [Siminovitch ef a/,1963]. Lethally X- 

irradiated mice receive an inoculum containing a known dilution of 

colony-forming cells and from the number of colonies which 

subsequently form on the spleen a "seeding factor", -or "f-number" can 

be calculated [Siminovitch ef a/,1963]. The determination of a 

seeding factor allows an assessment of the absolute numbers of 

colony-forming cells in an inoculum.
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Siminovitch et al [1963] calculated a seeding factor of 17%, while 

Playfair and Cole [1965] calculated a seeding factor of 8% (that is,

17% and 8% respectively, of potential colony-forming cells injected, 

seed into the spleen to give rise to CFU-S). A difference in 

experimental protocol relating to the post-irradlatlon collapse of the 

spleen was responsible for the observed discrepancy. Siminovitch et 

a! [1963] allowed 2-3 hours to elapse between inoculation of the 

lethally X-lrradiated mice and removal of the seeded spleen for 

retransplantation, while Playfair and Cole [1965] allowed a 24 hour 

period to elapse. Lord [1971] found that a 2-3 hour period was 

sufficient for maximal colony-forming ceil accumulation in the spleen, 

however spleens removed at this time had yet to undergo post­

irradiation collapse. With this collapse, which is complete after 24 

hours, spleen ceilularity reduces and a proportion of the colony­

forming cells initially seeding into the spleen are expelled 

[Lord,1971]. Assay of the colony-forming cell content of a collapsed 

spleen [Playfair & Cole,1965] is thus a more representative model 

with which to investigate seeding.

The complications associated with the post-irradiation collapse of 

the spleen and the determination of a seeding factor, are reduced if 

mice are inoculated 24-48 hours after X-irradiation. After 2-3 hours, 

colony-forming cells maximally seed into the already collapsed 

spleen and it is removed for secondary transplantation. In such a 

case, a seeding factor of approximately 8% is observed.

1,4 Haematopoietic stem cell self-renewaL

The murine haematopoietic transplantation (CFU-S) assay 

demonstrates a ceil population which fuifilis many of the criteria for a 

putative haematopoietic stem cell population. The capacity of CFU-S
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to self-renew under different conditions has revealed evidence of an 

age-related hierarchical organization within the CFU-S population.

The self-renewal capacity of CFU-S does not differ significantly 

between very young and very old mice [Lajtha & Schofield,197T] 

implying a stem ceil ’immortality’. However, serial transplantation of 

bone marrow from healthy to lethally irradiated mice and 

subsequently into other lethally irradiated mice, demonstrates a rapid 

and progressive decline in the regenerative capacity of the bone 

marrow transplant [Siminovitch ef a/,1964]. Even if long periods 

separated successive transplants and CFU-S numbers were 

standardized, the decline in the regenerative capacity remained 

[Lajtha & Schofield,1971; Pozzi ef a/,1973]. Investigation of serially 

transplanted CFU-S self-renewal showed a reduction with each 

transplant. Sublethal chronic [Wu & Lajtha,1975] or repeated acute 

[Hendry & Lajtha,1972] X-irradiation showed a similar reduction in 

CFU-S seif-renewal.

To explain the contradictory evidence of stem cell ’immortality’ 

and ’mortality’ the ’niche hypothesis was developed 

[Schofield,1978]. A specialized microenvironmental niche was 

envisaged within the haematopoietic system. If a stem ceil inhabits a 

niche, it exhibits it’s immortality - it has a high self-renewal capacity. 

Outside the niche, It becomes subject to ’maturation’ cues - it 

develops a reduced self-renewal capacity and an increased 

probability for differentiation. This hypothesis may also explain the 

asymmetry of fate of stem cell progeny. At division, one daughter cell 

remains in the niche microenvironment, the other is expelled and 

becomes subject to differentiation cues [Figure 3].

It is proposed that X-irradlation damages the haematopoietic 

system by subjecting the niche-inhabiting stem cells to lethal 

damage. Transplanted haematopoietic tissue and specifically the



Daughter cell 
progeny:

Niche-inhabiting 
stem cell.

Stem cell 1) Retained within niche microenvironment
Hivicinn and displaying ’’immortal" character.

2) Expelled from niche microenvironment 
and subject to differentiation cues.

Figure 3: The "niche" hypothesis. A possible explanation of the assymetrv of fate of stem cell progeny.
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stem cells therin, can seed into the now 'empty' niches and adopt an 

immortal character. However, the majority of donor stem cells 

seeding Into the niches are likely to be the more numerous, more 

mature haematopoietic stem cells of lower self-renewal capacity - 

essentially of a lower 'quality' than the original niche-inhabiting stem 

cell. While at the first transplantation sufficient haematopoietic output 

is sustained to allow haematopoietic recovery, with successive 

transplantation, the niche-filling stem cells are of a progressively 

poorer 'quality', with a still lower self-renewal capacity. By the third 

successive transplant insufficient self-renewal and proliferative 

potential exists to supply differentiated haematopoietic precursors 

and haematopoietic failure ensues.

Similarly, both sublethal chronic and repeated acute X- 

irradlations directly insult the niche-inhabiting stem cell population. 

'High quality' stem cells are subsequently replaced by successively 

'lower quality' stem cells giving the observed and sustained reduction 

in both CFU-S numbers and CFU-S self-renewal.

This evidence suggests an age-related hierarchical organization 

within the haematopoietic stem cell system. A component of the stem 

cell population is a primitive precursor with a high self-renewal 

capacity and proliferative potential. It possesses a high probability of 

self-renewal and a low probability of differentiation - essentially a 

'high quality' stem cell. With maturation, a haematopoietic precursor 

with a lower self-renewal and proliferative potential develops. It 

possesses a lower probability of self-renewal and a higher probability 

of differentiation - essentially a 'lower quality' stem cell [Figure 4].

Use of chemical agents reinforces this age-related heterogeneity 

of the haematopoietic stem cell population. Isopropylmethane 

sulphate (IMS) [Schofield & Lajtha,1973] reduces CFU-S numbers 

dramatically, however, haematopoietic recovery is rapid and
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Figure 4: Putative age-related hierarchical organization within the haematopoietic stem cell population.
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complete. IMS appears to act against CFU-S of a specific age within 

the CFU-S maturation scheme. ’High quality’, primitive and more 

mature 'low quality’ stem ceils are spared. Myleran [Morley & 

Blake,1974] also reduces CFU-S numbers, however, haematopoietic 

recovery is never complete, implying damage at the level of the more 

primitive ’high quality' stem cell population. Haematopoietic 

transpiantation, repiacing the damaged, primitive, 'high quality' stem 

cells, corrects the haematopoietic failure [Morley ef a/,1975].

While the niche hypothesis is essentially a theoretical model, 

considerable evidence for the existence of a specific stem cell 

microenironment, or ’niche', exists [Dexter ef a/,1973; Dexter & 

Lajtha,1974; Allen & Dexter,1976]. Use of genetic haematopoietic 

disorders In mice has reinforced this evidence. Briefly, the W/W" 

defect is an apparent stem cell maturation defect. ’Low quality' stem 

cells with a low probability of self-renewal and a high probability of 

differentiation are produced. In SI/Sd mice a microenvironmental 

defect exists possibly at the level of the haematopoietic stem cell 

niche. Neither defective systems will sustain haematopoiesis in 

culture, however, a combination of W/\W stromal tissue and Sl/SId 

haematopoietic tissue will sustain haematopoiesis in culture - 

implying a healthy stem cell population and a healthy stromal 

microenvironment are required [Dexter & Moore,1977].

Haematopoietic stem cells are not uniformly or randomly 

distributed throughout the marrow. Axial cores of actively 

haematopoietic murine femoral marrow demonstrate a considerable 

degree of microarchitectural organization exists. This may reinforce 

the evidence of a specialized microenvironmental stem cell niche. 

Samples of endosteal marrow have a 2-3 fold higher CFU-S content 

than samples of axial marrow [Lord ef a/,1975]. Conversely, samples 

of endosteal marrow have markedly fewer of the more mature
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haematopoietic progenitors than samples of axial marrow [Frassoni 

ef a/,1982]. This may imply a migration of haematopoietic progenitors

with maturation from the endosteal to the axial marrow. The 

significance of this microarchitecture may become more apparent 

during the discussion of the relative distribution of the stem cell 

proliferation regulator-producing cells.

Endosteal marrow is a particularly rich source of CFU-S 

[Gong ef a/,1978] and the use of a bone-seeking radionuclide: 

radium (226Ra)[Svoboda,1975], a source of alpha radiation, 

demonstrates a marked reduction in CFU-S numbers with cells near 

the endosteal surface of the bone subject to intense radiation. 

Observations of haematopoietic recovery after X-irradiation also 

demonstrate the significance of this region with haematopoietic 

repopulation occuring from this endosteal tissue [Maloney & 

Pratt,1969; Lambersten & Weiss,1984] and while the majority of CFU- 

S can be removed in femoral marrow, even if the marrow cavity is 

vigorously washed a further CFU-S population can be released if the 

bone itself is ground and washed, implying a very Intimate contact 

between a component of the CFU-S population and bone. This 

endosteal region may well contain certain components of the specific 

microenvironmental stem cell niche.

1,5 Evidence of a spleen colony-forming unit (CFU-S)
age-related hierachy,

Magli ef al [1982] described the transient nature of some spleen 

colonies in the murine CFU-S assay. While colony numbers may not 

differ between spleens assayed at day 7-8 and day 10-12, some 

colonies appear and are counted at day 7-8, to disperse by day 10-12, 

while others do not appear until after day 7-8 to be counted at day 10-
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12. Other colonies appear fixed and are present both at day 7-8 and 

day 10-12. Analysis of day 8 CFU-S and day 12 CFU-S demonstrates a 

difference in character. Day 8 CFU-S have a relatively low' ' self­

renewal capacity which would be consistent with their being a 

component of the more mature haematopoietic stem cell population, 

while day 12 CFU-S have a relatively high self-renewal capacity, 

consistent with their being a more primitive component of the 

haematopoietic stem ceil population [Magli ef a/,1982]. This evidence 

of an age-related CFU-S and so stem cell heterogeny, is reinforced 

by a number of drug studies.

5-fluorouracil (5FU) [Hodgson & Bradley,1979; Hodgson ef 

a/,1982], cyclophosphamide (CY)[Moiineux ef a/,1986], hydroxyurea 

(HU)[Rosendaal ef a/,1979] and bromodeoxyurldlne (BrdU) [Hodgson 

& Bradiey,1984], preferentially kill more mature haematopoietic 

precursors. CFU-S assay of treated marrow showed a reduction in 

day 8 CFU-S numbers with little, or no change in day 12 CFU-S. This 

again implies the day 8 CFU-S is a more mature haematopoietic 

precursor than the day 12 CFU-S. This CFU-S age-related hierarchy 

becomes of greater significance when considering their respective 

sensitivities to the haematopoietic stem cell proliferation regulators.

1,6 Evidence of a ’pre-CFU-S* haematopoietic precursor.

The murine CFU-S assay [Till & McCuiloch,1961], has been taken 

as the primary assay of a primitive haematopoietic precursor, 

however, there is evidence that it may not be an assay of the 

fundamental haematopoietic stem cell, with evidence of a more 

primitive ’pre-CFU-S’ population. It is suggested that the pre-CFU-S 

population is responsible for both haematopoietic recovery after X- 

irradiation, it having a radioprotective ability (RPA) and for the
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production of CFU-S. As discussed previously, the drugs 5FU, CY, HU 

and BrdU selectively kill the more mature haematopoietic precursors. 

If used in transplant, it becomes clear that the number of CFU-S in 

the treated tissue is not necessarily an accurate predictor of the 

capacity of that transplant to rescue the haematopoieticaliy deficient 

recipients, rather recovery seems to be due to a ’pre-CFU-S’ 

population.

Primitive haematopoietic precursors can be purified from 

haematopoietic tissue using a number of different techniques. 

Pioemacher and Brons [1988a; 1988b] used fluorescence activated 

cell sorting (FACS) of wheat germ agglutinin (WGA) - fluoroscein 

isothiocyanate (FITC) binding cells to purify day 12 CFU-S and ’pre- 

CFU-S’ 50-200 fold. 50-80 of these enriched cells per animal (in 

contrast to in excess of 10d complete bone marrow cells) were 

capable of rescuing 50% of a group of lethally irradiated mice. The 

ability of the haematopoietic transplant to rescue it’s recipients 

seemed closely related to it’s day 12 CFU-S and ’pre-CFU-S’ content 

rather than its more mature day 8 CFU-S content.

Bertoncello efal [1985], Mulder and Visser [1987] and 

Pioemacher and Brons [1988c; 1988d] used counter flow centrifugal 

elutriation (CCE) and the fluorescent supravital mitochondrial 

membrane stain, rhodamine-123 (Rh-123). CCE and FACS of Rh-123 

treated marrow produces a Rh-123 dim fraction containing day 12 

CFU-S with a high RPA/’pre-CFU-S’ content and a Rh-123 bright 

fraction with a high day 12 CFU-S content but few RPA/’pre-CFU-S’. 

This suggests a possible maturation scheme of a Rh-123 dim, 

RPA/’pre-CFU-S’ population to a Rh-123 dim, day 12 CFU-S 

population to a Rh-123 bright, day 12 CFU-S population and 

subsequently to a Rh-123 bright, day 8 CFU-S population.
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Bertoncello ef a/ [1989b] used antibody labeiled magnetic 

microspheres to concentrate and resolve primitive haematopoietic 

precursors while Spangrude ef a/[1988], used fluorescence-labelled 

antibodies against ceil surface antigens and FACS. Spangrude ef al 

[1988] isooated a f faction oo containnng 55% oo the tootal day 11

CFU-S and the RPA/’pre-CFU-S’ population from complete marrow. 

(The fraction containing the remaining day 12 CFU-S had little or no 

RPA/’pre-CFU-S’ content. This again implies a maturation of 

RPA/’pre-CFU-S’, through a similar staining ’transition’ day 12 CFU-S 

fraction to a differently staining day 12 CFU-S population). 30-40 of 

these cells per animal were capable of rescuing 50% of a group of 

lethally X-irradiated mice.

Jones ef a/[1990] have applied CCE, separating cells on the 

basis of their sedimentation velocities, to samples of haematopoietic 

tissue. Sedimentation velocity varies according to cell size and 

density. A clear demarcation is reported between the RPA/’pre-CFU- 

S’ and CFU-S populations. This technique also suggests there may 

be a more primitive cell than the RPA/’pre-CFU-S’, responsible for 

long-term haematopoietic repopulation. Pioemacher and Brons 

[1988b; 1989a] observed similar evidence.

it is proposed that for successful haematopoietic regeneration, 

two vital classes of haematopoietic precursors are required In 

transplanted tissue. Firstly, the cells capable of the initial short-term, 

sustained proliferation, producing the committed haematopoietic 

progenitors, namely the CFU-S subpopulations and secondly, the 

cells capable of long-term sustained haematopoiesis. It is clear that a 

complex hierarchy exists within the haematopoietic stem ceil 

population and investigation into the behaviour and regulation of the 

various components of this very primitive compartment is limited by 

the assay techniques presently available. However, Sutherland el al
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[1989] and Ploemacher efS [1989b] report the development of 

assays of such primitive haematopoietic precursors responsible for 

the initiation of iong-term haematopoiesis, which should allow their

subsequent investigation.

1.7 Determination of the proportion of haematopoietic
stem ceils in S-phase,

The murine in vivo CFU-S haematopoietic transplantation assay 

[Till & McCulloch,1961] has allowed qualitative and quantitative 

investigation of the haematopoietic stem ceil compartment. One such 

factor investigated is the degree of haematopoietic stem cell 

proliferation. Celiuiar proliferation is intimately linked with DNA 

synthesis at S-phase in the cell cycle and this can be exploited by the 

use of S-phase specific cytotoxic agents. Proliferating cells take up 

the agent at S-phase and are killed. If such cells had colony-forming 

potential, this is not realised during any subsequent assay and by a 

comparison of colony numbers in the absence and presence of the 

cytotoxic agent, a measure of the proportion of colony-forming cells 

in S-phase and so proliferating, can be made. This is the basis of the 

’S-phase suicide assay.

Two S-phase specific agents widely used are tritiated thymidine 

(3H-TdR) and 1 -B-D-arabinofuranosyl cytosine (also known as: 

cytosine B-D-arabinoslde, cytosine arabinoside or cytarabine)(ARA- 

C). Tritiated thymidine fH-TdR) competes with native thymidine for 

incorporation into newly synthesizing DNA at S-phase. On 

incorporation, intense localized radiation induces lethal DNA lesions 

and the result is cell death [Becker ef a/,1965]. 1-B-D- 

arabinofuranosyl cytosine (ARA-C) is a nucleoside analogue, 

competing with native deoxycytidine for incorporation into newly
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synthesizing DNA at S-phase. Deoxy-c^dine kinase converts ARA-C 

to ARA-C triphosphate (ARA-CTP) [Wist ef a/,1976] and incorporated 

by the complex DNA-synthesizing enzymes into the elongating DNA 

molecule, it prevents subsequent nucleoside polymerization probably 

by stereochemically hindering its access to the 3’-OH group of the 

DNA macromoiecule. As such it acts as a ’chain-terminator’ and Its 

incorporation Is a lethal event for the cell [Millard & Okell,1975].

The kinetic behaviour of the haematopoietic stem cell population 

during chemotherapeutic and radiotherapeutic regimes and during 

haematopoietic transpiantation and embryonic development is of 

great interest. With respect to chemotherapeutic and

radiotherapeutic regimes, widely used in the treatment of 

malignancy, the survival and behaviour of the haematopoietic system 

is an important consideration and a major limiting factor in regulating 

the levels of use of such therapeutic agents.

1,8 The proportion of haematopoietic stem cells in
S-phase,

The CFU-S assay and S-phase suicide techniques have allowed 

the investigation of the behaviour of the haematopoietic stem cell 

population under different conditions, in normal unstressed 

haematopoietic tissue, the proportion of haematopoietic stem cells in 

S-phase is relatively low at approximately 10% [Becker ef a/,1965] 

[Figure 5]. The majority of stem cells in normal unstressed 

haematopoietic tissue, appear to be in a reversible, non-proliferative, 

’Gd-state’ within the cell cycle. This G^^-state may be of particular 

significance, perhaps allowing a genetic ’house-keeping’ mechanism 

to act and maintain the ’high quality' genetic integrity of the 

haematopoietic stem cell population. A rapidly proliferating cell
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system would be forced to express any genetic damage, the defects

possibly passed on to all subsequent progeny perhaps to effect 

aspects of their proliferation, differentiation or maturation.

The relatively large proportion of stem cells in a ’resting’ GoState 

also ensures the haematopoietic tissue has a very great ’functional 

reserve’. As haematopoietic output requires, the proportion of stem 

cells in S-phase can increase to meet the demand. During subiethai 

whole body X-irradiation, this mobilization of the Go-state, ’resting’ 

stem cells can be demonstrated. 1.5 Gy, 3.0 Gy and 4.5 Gy whole 

body X-^adiation doses reduce CFU-S numbers to approximately 

20%, 4% and less than 1% of normal levels respectively [Hendry & 

Lajtha,1972]. After such treatment the proportion of CFU-S In S-phase 

increases from approximately 10% to 40-50% [Guzman & Lajtha,1970] 

{Figure 5J. Haematopoietic stem ceil proliferation is increased In an 

attempt to both maintain the integrity of the damaged haematopoietic 

system and restore CFU-S numbers to pretreatment levels, through 

self-renewai. Once the haematopoietic system has been 

reconstituted, the proportion of the haematopoietic stem cell 

population in S-phase reduces to pretreatment levels.

A similar effect is observed if the haematopoietic system is 

stressed through the use of a haemoiytic agent - phenyl hydrazine 

[Rencricca ef a/,1970]. The anaemia induced by phenylhydrazine, is 

compensated by an increased haematopoietic output, met inturn by 

an increase in the proportion of haematopoietic stem cells in S- 

phase. An increase from approximately 10% to 30-50% in S-phase is 

reported [Rencricca ef a/,1970].

Similarly, during embryonic development a constant increase in 

haematopoietic output is required with growth. Haematopoiesis 

initiated in the murine (and human) yolk sac, develops in the foetal

liver, to eventually become established in the marrow ■ cavities



Figure 5: The proportion of haematopoietic stem cells
(CFU-S) in S-phase.
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[Metcalf & Moore,1971]. The proportion of stem celis in S-phase In 

the foetal liver is relatively high at 30-40% [Thomas ef a/,1981] to 

meet the increasing demand for haematopoietic output.

The mechanism(s) by which the proportion of haematopoietic

stem ceils In S-phase Is modified to meet haematopoietic demand, is

of particular interest.

1,9 Evidence for the local of haematopoietic stem
cell proliferation.

The proportion of haematopoietic stem celis in S-phase, and so 

proliferating, is able to change to match haematopoietic output to 

demand. In unstressed haematopoietic tissue the proportion of stem 

celis in S-phase is relatively low at approximately 10%, while in 

haematopoietically stressed tissue, for example after cytotoxic drug 

treatment, irradiation or during foetal development, the proportion of 

stem cells in S-phase is increased at 30-40%. The mechanism(s) by 

which the proportion of haematopoietic stem cells in S-phase is 

modified has been elucidated through the use of part-body X- 

irradlation.

During whole body X-irradiation, haematopoietic survival is 

enhanced if either the spleen is exteriorized and shielded [Jacobson 

ef a/,1949], or if a hind iimb is shielded [Croizat ef a/,1970; Gidaii & 

Lajtha,1972]. Initially the shielded tissue acts as a stem cell 

’reservoir’, exporting stem ceils to the irradiated, haematopoietically 

deficient haematopoietic tissue [Hanks,1964]. Approximately 30% of 

the total hind iimb stem ceils, as measured by the CFU-S assay, may 

be exported within 6-12 hours of the initial Irradiation insult. The 

depletion of stem ceils in the shielded tissue, leads to an increase in 

the proportion of stem cells in S-phase, sufficient to restore stem cell
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numbers to pre-export levels, through self-renewal, after which the 

proportion of stem cells in S-phase reduces. This is in marked 

contrast to the stem ceils seeding into the haematopoietically-

deficient, irradiated tissues. Here the proportion of stem ceils in S- 

phase is high to develop the extensive haematopoietic regeneration 

required. Thus, within one animal, two distinct populations of 

proliferating stem cells can be demonstrated. Despite the major 

whole-body haematopoietic stress, the proportion of stem cells in S- 

phase in the shielded tissue remains low. This essentially rules out 

the existence of a body-wide stem cell proliferation regulation 

mechanism, with the haematopoietic stem ceil population essentially 

responding to local microenvironmental cues. In shielded tissue, 

once the Initial export depletion is corrected, the local

haematopoietic microenvironment is essentially normal, and the 

proportion of stem celis in S-phase is correspondingly low. 

Conversely, in the irradiated tissue, the local haematopoietic 

microenvironment is depleted and the proportion of stem cells in S- 

phase is correspondingly high, reflecting the local need for 

haematopoietic regeneration.

Similar evidence of a locally active proliferation regulation 

mechanism, is observed with the use of the haemoiytic agent 

phenylhydrazine [Rencricca ef a/,1970; Wright & Lord,1977]. 

Phenylhydrazine induces a marked haemoiytic anaemia and In 

response, the proportion of stem cells in S-phase the bone marrow is 

markedly increased. Stem cells are exported to the spleen from the 

bone marrow, however, In marked contrast, the proportion of stem 

cells in S-phase In the spleen Is low, despite the body-wide 

haematopoietic stress. Again, within one animal, two distinct 

populations of proliferating stem celis can be demonstrated, implying 

the involvement of a localized haematopoietic stem cell proliferation
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regulation mechanism, the stem cells responding to local

micoenvironmental cues rather than body-wide regulatory signals.

1,10 The mechanism, of haematopoietic stem cell
proliferation regulation.

The putative, locaiiy active regulatory mechanism (s) reponsible 

for modifying haematopoietic stem ceil proliferation, were 

Investigated using crude ceii-free extracts of haematopoietic tissues 

[Lord ef a/,1976; Lord ef a/,1977; Wright & Lord,1977; Wright & 

Lord,1978].

Normal bone marrow extract (NBME), derived from a tissue in 

which the proportion of stem ceils In S-phase is low [Becker ef 

a/,1965], has the capacity to reduce the proportion of stem cells in S- 

phase from haematopoietically stressed or regenerating bone 

marrow, or foetal liver. This is evidence of a proliferation inhibitor 

[Lord ef a/,1976; Cork ef a/,1981] [Figure £|.

Conversely, haematopoietically stressed or regenerating bone 

marrow extract (RBME), (or foetal liver extract), derived from a tissue 

in which the proportion of stem ceils in S-phase is increased [Croizat 

ef a/,1970; Gidaii & Lajtha,1972; Rencricca ef a/,1970; Wright & 

Lord,1977; Thomas ef a/,1981], has the capacity to increase the 

proportion of stem cells in S-phase from normal unstressed bone 

marrow. This is evidence of a proliferation stimulator [Frindel ef 

a/,1976a; Lord ef a/,1977; Frindei ef a/,1978; Thomas ef a/,1981; 

Dawood ef a/,1990] [Figure 7].

The reduced proportion of stem cells in S-phase in normal bone

marrow is thus maintained by the presence of an endogenous 

proliferation inhibitor, while the increased proportion of stem celis in

S-phase in haematopoietically stressed or regenerating bone



Figure 6: Evidence for a stem cell proliferation inhibitor.

NBME------- 1

Regenerating or foetal 
haematopoietic tissue 

Approximately 30-40% 
haematopoietic stem cells 

(CFU-S) in S-phase.

Normal bone marrow 
extract. Derived from 
a tissue in which the 

proportion of stem cells 
(CFU-S) in S-phase is low 

(approximately 10%).

Proportion of stem cells 
(CFU-S) in S-phase 

reduced.
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marrow, or foetal liver, is maintained by the presence of an 

endogenous proliferation stimulator.

Significantly, the slowly proliferating stem celis of normal, 

unstressed haematopoietic tissues, remain slowly cycling, even if the 

endogenous inhibitor is washed away. Similarly, rapidly cycling stem 

celis from haematopoietically stressed, regenerating or foetal 

tissues, remain rapidly cycling, even if the endogenous stimulator is 

washed away [Lord ef a/,1979]. Haematopoietic stem cells thus 

remain either slowly, or rapidly cycling, unless acted upon by the 

opposing proliferation regulator. Removal of the existing regulatory 

activity is not sufficient to change the proliferative status of 

haematopoietic stem ceils.

As previously discussed, the local nature of stem ceil proliferation 

regulation is demonstrated by either part body X-irradiation, or the 

use of the haemoiytic agent phenylhydrazine. The existence of two 

distinct populations of cycling stem ceils within the one animal can 

be explained in part by examination of the respective local levels of 

proliferation inhibitor and stimulator. Unshielded, X-irradiated tissue 

contains rapidly cycling haematopoietic stem cells and this is 

consistent with the local presence of stimulator, in shielded tissue, 

containing slowly cycling haematopoietic stem cells, inhibitor is 

present. Similarly, in phenyl hydrazine-treated marrow, a source of 

rapidly proliferating stem celis, stimulator is demonstrable, while in 

phenyihydrazine-treated spleen, containing slowly cycling stem ceils, 

inhibitor is demonstrable [Lord ef a/,1979; Wright & Lord,1977; Wright 

& Lord,1978].

Use of Amicon Diafio Ultrafiltration, a technique separating 

factors by molecular weight, has isolated the /n/^j/^j/fejr activity to a 

50,000-100,000 dalton fraction of normal bone marrow extract, termed 

NBMBIV [Figure SJ. Sf//n^//aO0/'activlty has been similarly isolated to
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a 30,000-50,000 dalton fraction of regenerating bone marrow extract

(and also of haematopoietically stressed marrow and foetal liver 

extracts), termed RBMB-iii [Figure fl] [Lord ef a/,1977]. (1 dalton = 1 

atomic mass unit (amu) = 10'24g)

No significant /n/r/b/for activity is detected in the 50,000-100,000 

dalton fraction of RBME, or stf/nu/afor activity detected in the 30,000­

50,000 dalton fraction of NBME, implying that the two endogenous 

factors are not present simultaneously but act antagonistically to 

modify the proportion of stem celis in S-phase and tailor stem ceil 

proliferation and so haematopoietic output, to haematopoietic 

demand. Sf/mu/afer and inhibitor are not detected in non­

haematopoietic tissues, demonstrating their role is confined to the 

regulation of haematopoietic tissues [Riches ef a/,1981 a; 1981b].

1.11 Cellular sources of the haematopoietic stem cell
proliferation regulators.

In producing cell-free extracts of normal (NBME) and 

regenerating, haematopoietically stressed or foetal liver tissue 

(RBME), the haematopoietic cells are effectively washed and the 

proliferation regulators removed. As previously stated, this does not 

affect inherent stem cell proliferation [Lord ef a/,1979] - slowly cycling 

ceils remain slowly cycling and rapidly cycling cells remain rapidly 

cycling. If the washed cells are incubated after washing, resynthesis 

of the appropriate regulatory factor occurs. Over a 5 hour period, 

incubated at 37°C, washed, normal bone marrow will resynthesize 

inhibitor, [Wright & Lord,1978] and over a 3 hour period, incubated at 

37°C, washed, regenerating or haematopoietically stressed bone 

marrow, or foetal liver will resynthesize stimulator [Wright & 

Lord,1978]. Resynthesis of the proliferation regulators can be



Figure 8: Stem cell proliferation inhibitor and stimulator

Inhibitor:
Isolated to a 50,000-100,000 dalton 

Amicon ultrafiltration fraction 
of normal bone marrow 
conditioned medium. NBME-IV

Stimulator:

isolated to a 30,000-50,000 dalton 
Amicon ultrafiltration fraction 
of regenerating bone marrow

(or foetal haematopoietic tissue) 
conditioned medium.

RBME-III
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blocked by the action of cyclohexamlde, an inhibitor of protein

synthesis, demonstrating the production of the proliferation

regulators requires active protein synthesis [Wright ef a/,1980b;

1982].

Cellular fractionation studies of haematopoietic tissue 

demonstrate that the cells responsible for the production of the 

proliferation regulators are a non-stem cell population. Fractionation 

of normal murine bone marrow, demonstrates a cell population of 

1.052-1.062 g/ml density which are adherent, phagocytic, relatively 

radio-resistant, Thy 1.2', Fco, phosphodiesterase positive, is 

responsible for inhibitor production [Wright & Lord,1979; Wright ef 

a/,1980b] [Figure flj. Similar fractionation of regenerating murine 

marrow, demonstrates a cell population of 1.064-1.072 g/ml density 

which are adherent, phagocytic, relatively radio-resistant, Thy 1.2' , 

Fc+, is responsible for sf/mu/ator production [Wright & Lord,1979; 

Wright ef a/,1982] [Figure 9].

Microscopic examination of cells at these densities shows a wide 

variety of cell types present, and while two distinct cell densities exist 

for the inhibitor- and of/mwZafer-producing cell populations, it may be 

that a single cell-type is capable of producing either factor with it’s 

density varying accordingly. It is clear however, that the factor- 

producing cells are not stem cells. Virtually no stem cells are found at 

either density and similarly, no factor-producing cells are apparent at 

the density where stem cells are concentrated [Wright & Lord,1979; 

Wright ef a/,1980b; Wright ef a/,1982].

It is likely that the proliferation regulators are produced by cells of 

the monocyte-macrophage lineage within the haematopoietic tissue. 

Macrophages make up a large component of the haematopoietic 

stroma and are already demonstrated to play a major role in the 

regulation of granulopoiesis, erythropolesis, megakaropolesio and



Figure 9: Summary of inhibitor- and stimulator-producing cell populations.

Both inhibitor- and stimulator-producing cell populations are characterized as

Adherent
Phagocytic
Relatively radioresistant 
Thy 1.2 -ve 
Fc +ve
Phosphodiesterase +ve 
F4/80 +ve

Probably cells of the monocyte-macrophage lineage.

Inhibitor-producing cells 1.052 - 1.062 g/mi density. 
Stimulator-producing cells 1.064 - 1.072 g/ml density.
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lymphopoiesis. A monoclonal antibody F4/80, which is specific for 

murine macrophages has been used in association with a density-cut 

procedure and fluorescence activated cell sorting to select for F4/80 

positive and negative populations from murine marrow. An F4/80 

positive fraction contained both inhibitor- and sfZznuZator-producing 

cells and cells displayed the histochemical characteristics of 

macrophages. These purified macrophage populations can be 

cultured over an extended period and still synthesize inhibitor and 

stimulator [Simmons & Lord,1985; Wright & Lorimore,1987; Pojda et 

aZ,1988].

1,12 identification and characterization of the
haematopoietic stem ceil proiiferation inhibitor.

Since cells of the monocyte-macrophage lineage are probably 

responsible for the production of the stem cell proliferation 

regulators, a number of macrophage cell lines were screened for the 

production of either inhibitor or stimulator.

Crude conditioned medium from a murine macrophage cell line 

J774.2 was demonstrated to possess a 50,000-100,000 dalton activity 

which was capable of reversibly inhibiting stem cell proliferation 

[Graham et aZ,1990]. The activity was termed 'stem cell inhibitor 

(SCI). A 50,000 fold purification of the activity from crude J774.2 

conditioned medium was performed and a protein doublet of 8000 

daltons isolated [Graham et aZ,1990]. N-terminai analysis resolved 

amino acid sequences corresponding to a previously described 

superfamily of cytokines, the macrophage inflammatory proteins 

(MIPs) [Wolpe & Cerami,1989]. One component of the isolated 

protein doublet, a 69 amino acid polypeptide, was found to 

correspond to the previously described cytokine, macrophage



23

inflammatory protein - 1 aipha (MIP-1 alpha), and the second 

component of the protein doublet, was found to correspond to the 

previously described cytokine, macrophage inflammatory protein - 1 

beta (MIP-1 B). Antibodies directed against MIP-1 alpha were able to 

remove inhibitory activity from the purified stem cell inhibitor (SCI), 

the crude J774.2 conditioned medium and significantly from normal 

bone marrow extract (NBME), Indicating that the stem cell inhibitor, 

as purified SCI, crude J774.2 conditioned medium or NBME, and MIP 

1 alpha are antigenically and functionally identical. The complete 

genomic sequence of the murine haematopoietic stem cell 

inhlbitor/macrophage inflammatory protein 1 alpha has subsequently 

been determined [Grove ef a/,1990].

Use of the polymerase chain reaction and subsequent generation 

of an expression vector in COS cells has allowed the production of 

recombinant MIP-1 alpha and MIP-1 B. rMIP-1 alpha has native SCI 

activity while rMIP-1 B, although possessing a 67% amino acid 

homology with rMIP-1 alpha, shows no SCI activity, demonstrating a 

considerable degree of MIP-1 alpha specificity. Molecular probes 

have isolated the SCI/MIP-1 alpha gene to murine chromosome 11. 

This Is significant since the genes for interleukins 3-5 and 

granulocyte-macrophage and granulocyte colony-stimulating factors 

as well as the macrophage colony-stimulating factor-receptor lie 

within close genomic proximity. In humans molecular probes have 

isolated the SCI/MIP-1 alpha gene to chromosome 17 [Irving ef 

a/,1990].

Similar studies are likely to isolate and characterize the

haematopoietic stem cell proliferation stimulator.
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1.13 Demonstration of the ha ematopoietic stem ce II
proliferation regulators in in vitro long-term bone marrow

culture.

The modification of haematopoietic stem coll proliferation by the

proliferation regulators can be simulated using in vitro long-term 

bone marrow culture systems. The maintainance of long-term bone 

marrow culture is dependent on the formation of a healthy, adherent, 

'stromal' layer containing a variety of cell types including fibroblast 

and epithelial-like cells, fat cells and phagocytic, mononuclear 

macrophages. This adherent stromai layer provides a unique 

haematopoietic microenvironment, which allows the seeding and 

proliferation of haematopoietic stem cells and the production of 

haematopoietic progenitor cells [Dexter ef a/,1977a; 1977b; Spooner 

& mexter,1984; mhrshkird,1990]. To maintain long-term marrow 

cultures in vitro, a periodic removai of oid medium and replacement 

with fresh medium is required. Cells released into the medium by the 

actively haematopoietic layer, are removed with the old medium to be 

replaced by fresh, cell-free medium. This cellular depletion leads to a 

cyclical increase in the proportion of the haematopoietic stem cell 

population in S-phase, however, within a few days of the depletion, 

the celluiarity of the medium has increased sufficiently for 

haematopoietic output to return to normal levels, with a subsequent 

reduction in the proportion of stem cells proliferating [Dexter et 

a/,1977a; 1977b; Toksoz,1980; Cashman ef a/,1985].

The increased stem ceii proliferation in response to the cellular 

depletion of the culture, is induced by the endogenous production of 

sf/nH/Zaaorby the stromal layer. As cellular ^population occurs after 

5-7 days, ievels of endogenous stimuiator fall and levels of
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endogenous inhibitor Increase, with a resultant reduction in the 

proportion of stem cells in S-phase. It thus appears that this artificial 

in vitro model of haematopoiesis demonstrates the same subtle stem 

cell proliferation regulation mechanism as is observed in vivo.

The degree of stem celi proliferation in long-term bone marrow 

cultures can be artificially manipulated by the exogenous addition of 

either inhibitor or stimuiator. A number of chemotherapeutic drugs 

are S-phase specific, cytotoxic agents and, in use, damage cycling, 

normal tissues as well as the target cancerous tissues.

Haematopoietic tissue is especially sensitive to such agents and the 

potential for the use of the proliferation inhibitor to reduce the 

proportion of haematopoietic stem cells In S-phase, and so sensitive 

to the specific action of the cytotoxic agent, is significant. Such 

potential can be demonstrated using the in vitro, long-term bone 

marrow culture system. Treatment of long-term bone marrow cultures 

with cytosine arabinoside (ARA-C), an S-phase specific cytotoxic 

agent, leads to a long term depression of haematopoietic output. In 

contrast, cultures pretreated with exogenous proliferation inhibitor, 

prior to treatment with ARA-C, perform at least as well as control 

cultures (no ARA-C) [Lord ef a/,1987].

These in vitro results mimic results observed in vivo [Lord & 

Wright,1980]. Exogenous inhibitor was observed to ’protect’ 

haematopoietic stem cells in wvofrom the S-phase specific cytotoxic 

effects of tritiated thymidine (3H-TdR), hydroxyurea and ARA-C.

The use of long-term bone marrow culture systems reveals a 

subtle permissive stromal microenvironment is vital in the 

maintainance and regulation of haematopoiesis. Such a specialized 

microenvironment and evidence of very local haematopoietic stem 

cell-stromal cell interactions [Lambertsen,1984; Zipori,1989] is
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somewhat reminiscent of the stem cell ’niche’ proposed by Schofield

[1978].

1.14 Regulation of the production of the haematopoietic
stem cell proliferation inhibitor and stimulator.

The mechanism of action of the proliferation regulators has been 

investigated. The proportion of stem cells in S-phase in normal 

unstressed haematopoietic tissue is relatively low and maintained by 

endogenous /n/w/Mo/' activity. In the absence of inhibitor, when cells 

are washed, the proportion of stem cells in S-phase remains low and 

washed, incubated cells resynthesize inhibitor. In regenerating, 

haematopoietically stressed or foetal haematopoietic tissues, the 

proportion of stem cells in S-phase is increased, maintained by 

endogenous of/mu/af^rr production. In the absence of stimuiator, 

when the ceils are washed, the proportion of stem cells in S-phase 

remains increased and washed reincubated cells resynthesize 

stimuiator. Thus, change in the proportion of stem cells in S-phase is 

not simply brought about by a removal of the existing regulatory 

factor. Changes in the proportion of stem cells in S-phase can only 

be induced by the presence of the opposing factor.

Distinct stimuiator and inhibitor producing cells can be Identified 

in all haematopoietic tissues. Both ceil subpopuiations are present 

regardless of the proliferative state of the haematopoietic tissue, with 

the potential to produce one or other factor, or both, however, only 

one proliferation regulator predominates at any one time. This, 

together with evidence that stimuiator and inhibitor are relatively 

stable activities (with no loss of potency after a week at 37°C) 

[Toksoz ef a/,1980] and do not directly Interact, the one not 

inactivating the other [Lord & Wright,1982| implies a distinct
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regulatory mechanism must exist to coordinate inhibitor and 

stimuiator production and breakdown, to ensure the appropriate 

degree of haematopoietic stem ceii proliferation occurs.

Changes in inhibitor and stimuiator production, and so

changes in the degree of haematopoietic stem cell proliferation, are 

brought about by the action of the one factor on the celi producing 

the other. Isolated inhibitor-producing cells will resynthesize inhibitor 

if washed. However, in the presence of exogenous stimulator, no 

/nb/b/forsynthesis is observed [Figure 10}. Similarly, isolated 

stimuiator-produclng cells will synthesize stimulator if washed. 

However, In the presence of exogenous inhibitor, no stimulator 

synthesis is observed [Lord & Wright,1982; Riches & Cork,1987] 

[Figure 1t}.

This elegant interaction of factor with opposing factor-producing 

cell populations, however, does not allow for the proliferative 

flexibility demonstrated by the haematopoietic system. Regulation by 

this mechanism alone would see haematopoietic tissue effectively 

’locked’ into producing one factor at the expense of the opposing 

factor. Questions arise: When damaged, how does haematopoietic 

tissue and specifically the factor-producing cell population therin, 

’know’ to preferentially produce stimuiator and how is the 

subsequent change from /nb/b/for production brought about ? Also, 

once regenerated, how does the haematopoietic tissue and 

specifically the factor-producing cell population therin, ’know’ to 

cease sf/m^j^^for production and initiate /nb/b/for production and how 

is this change brought about ? In effect how is haematopoietic stem 

cell proliferation coordinated ? The answer appears to lie in a second 

regulatory mechanism intimately related to the haematopoietic stem 

cell population itself.
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1,15 Evidence for a haemaPopoietic stem ceii ifeedback
factor* coordinating stimulator and /nft/Mtor production,

A crude model for the existence of a putative stem cell 'feedback 

factor’ can be proposed: In normal unstressed haematopoietic tissue, 

stem ceil numbers are ’sufficient’ and Interact with the factor- 

producing ceil populations to initiate //?w?Mor production and/or 

suppress sf/nizZpfhr production. Conversely, in haomatopoiatlcplly 

stressed tissue, where stem cell numbers are insufficient, or 

depleted, the Interaction with the factor-producing ceils initiates 

sf/mu/ator production and/or suppresses iohilbi1^^r production. With 

increased stem celi proliferation and self-renewal, stem ceil numbers 

increase, become ’sufficient’ and interaction with the factor- 

producing cells once again initiates /nft/ft/for production and/or 

supresses stimulator production. In this way, a secondary regulatory 

mechanism can be envisaged to directly initiate, or suppress, 

production of one of the factors and so coordinate the proliferative 

state of the haematopoietic tissue.

Experimental evidence exists for such a secondary regulatory 

mechanism [Lord,1986]. A ’stem cell feedback facto? has been 

identified and extracted from stem celi conditioned medium as a 

30,000-50,000 daiton moiety. If added to pherylhydrpzire-troated, and 

so rapidly cycling, bone marrow, stem ceii feedback factor has the 

capacity to reduce the proportion of stem cells in S-phase although 

not itself being a proliferation inhibitor. A reduction in stimulator 

ievels and increase in inhibitor levels is observed. Whether the stem 

ceil feedback factor is actively preventing sf/ww/afor production and 

subsequently allowing /nft/d/tor production, or else is activating 

/nfr/ZMor production, which wiii inturn prevent sf/mu/ator production 

by the sf/mu/afor-producing celis, can be determined. Removai of the
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inhibitor-producing cell subpopulation from the phenyhydrazine- 

treated marrow, prior to the addition of stem cell feedback factor, 

demonstrates that stimuiator production is inhibited rather than 

inhibitor production initiated. The action of the stem cell feedback 

factor thus appears to actively suppress stimulator production by 

stimulator-producing cells thereby allowing inhibitor production 

[Figure 12[.

Stimulator production in regenerating haematopoietic tissue can 

be explained in terms of the putative stem cell feedback factor. In 

sublethaliy X-irradiated haematopoietic tissue, stem cell numbers are 

depleted. With stem cell depletion, levels of stem cell feedback factor 

will fall. The inhibition of stimulator production by the stimulator- 

producing celis is removed allowing the production of stimulator.

With the increase in endogenous stimulator, the proportion of stem 

cells in S-phase increases and stem cell numbers will be restored 

through self-renewal. With the restoration of stem ceil numbers to 

pre-irradiation levels, levels of stem cell feedback factor rise to 

actively suppress stimulator production by the stimulator-producing 

cells, allowing production of the proliferation inhibitor, with a 

subsequent reduction in the proportion of stem cells in S-phase. For 

such a feedback factor to operate, the levels of the factor must be 

proportional to the size of the stem cell population. In this manner, 

one can envisage an elegant feedback loop coordinating the 

production of proliferation regulators, and so the proportion of 

haematopoietic stem ceils in S-phase, to the required haematopoietic 

output.

However, high stem cell numbers, with a supposed high 

concentration of putative stem cell feedback factor, are not always 

consistent with slowly proliferating haematopoietic tissue. Similarly, 

low numbers of stem cells, with a low concentration of putative stem
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cell feedback factor, are not always associated with rapidly 

proliferating haematopoietic tissue. Consider eheryihydrpziro- 

treated bone marrow. Stem ceil numbers are not significantly 

reduced and a high putative stem cell feedback factor concentration 

should exist inducing iow stem cell proliferation. However, this is not 

the case. Where stem ceii numbers are high so too is the degree of 

stem ceil proliferation. It is also difficult to explain the increased stem 

cell proliferation observed in foetal haematopoietic tissues where 

again stem ceii numbers are relatively high. Stem celi numbers must 

not be the sole determining factor in this feedback mechanism. Lord 

and Wright [1982], suggest the localized ratio of stem celi numbers to 

factor-producing cells may be a more significant determinant.

1.16 The distribution of and inhibitor-
produclnq cells In the bone marrow.

As previously discussed, stem ceils are not uniformly, or 

randomly, distributed throughout normal bone marrow [Lord & 

Handry,1972; Lord ef a/,1975], rather a considerable degree of 

haematopoietic micrharchitoctura exists. Similarly, the distribution of 

inhibitor- and sf/oiz/pfhr-prhducirg ceils is not uniform, or random 

[Lord & Wright,1984]. Varying the size of axial cores of murine 

femoral marrow as axial, central and marginal regions, demonstrates 

that a well defined micro-organization of various ceii populations 

exists.

/nS7/b/fhr-erhducirg ceils are most abundant in the axial core of 

the femoral marrow, the numbers of such celis reducing as one 

approaches the endosteal surface of the bone. Conversely, 

sf/znu/Ph/*-producing cells are most abundant at the endosteal 

surface of the bone, in the marginal region of the marrow. The
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presence of increased numbers of sf/mu/afor-producing cells in this 

subendostea! region probably accounts for the high degree of stem 

celi proliferation observed in this region. Axial stem ceii proliferation 

is relatively low in comparison, consistent with the presence of

increased numbers of /nb/bbor-producing cells.

The slowly cycling stem cells derived from the axial marrow are of 

a ’higher quality' than those found in the subendosteai marrow. Such 

’high quality' stem cells possess a high self-renewal capacity and are 

better able to establish haematopoietic regeneration in

haematopoietically-deficient mice, in comparison to the subendosteai 

stem ceils. This implies that the stem ceil population is a 

heterogenous population, as previously discussed, and that axial 

stem ceils are more primitive haematopoietic precursors than those 

in the subendosteai marrow. It has been proposed that an age- 

related migration of stem ceils from the primitive, axial stem ceils to a 

more mature, subendosteai stem ceil population may occur. With this 

putative migration, the presence of decreasing numbers of inhibitor- 

producing ceils and increasing numbers of sf/mzzZafor-producing cells 

wiil alter the subtle microenvironmental cues to which the ceils are 

exposed.

1.17 The stem cell specifieity of stimulator and inhibitor

and variation in the sensitivity to the proliferation

regulators with stem ceii maturation.

The relative sensitivities of a number a haematopoietic 

precursors to the proliferation Znb/bbor and stimuiator have been 

investigated [Tejero ef a/,1984]. A comparison of day 9 CFU-S, mixed 

colony-forming cells (CFC-mix) (an in vitro cell population shown to 

possess characteristics which imply a close relationship to the in vivo
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CFU-S population) [Metcalf et a/,1978; Johnson,1980] and more 

mature, committed haematopoietic progenitors: granulocyte- 

macrophage colony-forming cells (GM-CFC) and erythroid burst­

forming units (BFU-E), has demonstrated that stimulator and inhibitor 

are only effective against the more primitive haematopoietic 

precursors, the day 9 CFU-S and in vitro CFC-mix. GM-CFC and BFU- 

E, show no stimulator or inhibitor sensitivity, implying that stimulator 

and inhibitor are stem cell-specific in nature, regulating the 

proliferation of the more primitive components of the haematopoietic 

system. The more mature GM-CFC and BFU-E haematopoietic 

progenitor cell populations possess their own specific regulation 

mechanism, related to end-cell feedback [Lord et al,1974a; 1974b]. 

Significantly, the haematopoietic stem ceil population proves 

insensitive to these more mature haematopoietic progenitor cell 

proliferation cues.

Within the heterogenous stem cell population there is a variation 

in the sensitivity to inhibitor and stimulator [Tejero ef a/,1984; Wright 

et a/,1985; Lorimore et a/1990] and this contributes to the evidence 

of an age-related organization of the stem cell population. Day 12 

CFU-S are believed to be a more primitive stem ceil population than 

day 7 CFU-S, and possess an increased sensitivity to the 

haematopoietic stem cell proliferation inhibitor and reduced 

sensitivity to the proliferation stimulator. As the day 12 CFU-S mature 

to day 7 CFU-S and subsequently to the in vitro CFC-mix, there is a 

progressive reduction in inhibitor sensitivity and a progressive 

increase in stimulator sensitivity [Tejero et a/,1984; Wright ef a/,1985; 

Lorimore et a/,1990] [Figure 73]. In effect, the more primitive 

haematopoietic stem celis prove a more difficult population to induce 

into S-phase than do the more mature CFU-S and in vitro CFC-mix.



Figure 13: The variation in stem cell sensitivity to
inhibitor and stimulator with maturation.

1) More primitive components of the haematopoietic 
stem cell population (day 12 CFU-S) display 

INCREASED inhibitor 
and

REDUCED stimulator 
sensitivity.

2) More mature components nt t he haematopoietic 
stem cell population (day 7 CFU-S and CFC-mix) display 

REDUCED inhibitor
and .

INCREASED stimulator
sensitivity.

3) Mature, commuted haematopoietic progenitor 
populations (GM-CFC and BFU-E) display 

NO sensitivity to either inhibitor or stimulator.

THEREFORE:

1) With stem cell maturation, sensitivity to inhibitor 
REDUCES and sensitivity to stimulator INCREASES.

2) Inhibitor and Stimulator are stem cell specific
proliferation regulators.

t
Relative

sensitivity

A diagramatic 
representation 
of the variation 
in inhibitor and 

stimulator 
sensitivity with 

maturation.
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In the light of this variation in proliferation regulator sensitivity

with maturation, as the stem cells undergo the putative migration 

from the axial marrow to the subendosteal marrow, is it the subtle 

changes in the proliferation regulator levels which are actually 

responsible for the induction of 'ageing* ? In effect, is the 

haematopoietic microenvironment 'maturing' the stem cells as they 

undergo their migration, developing a stem cell of limited self­

renewal and increased capacity for differentiation, with the reduction 

in endogenous inhibitor levels and an increase in stimuiator levels ? 

Alternatively, is it the natural maturation of the haematopoietic stem 

cell population with it's reduction in inhibttor sensitivity and increase 

in sfimyiafor sensitivity, which attracts it towards the stimuiator-rich, 

subendosteal microenvironment ? At present this is unclear.

1,10 The non-species specificity of the stem cel||-^^<^<^iii^i<t
proliferation regulators.

While the proliferation stimuiator and inhibitor are stem cell- 

specific in nature, there is evidence that they are non-species 

specific. 50,000-100-000 dalton extracts of normal human [Wright et 

ai,1900a], rat [Riches ef ai,1901 a; Cork ef ai,1901], guinea pig [Riches 

ef ai,1901b] and pig [Riches ef ai,1901b] bone marrow, have the 

capacity to reduce the proportion of stem cells in S-phase in 

regenerating murine marrow. Similarly, a 30,000-50,000 dalton extract 

of human foetal liver [Riches ef a/,1901 b; Cork ef ai,1902; Cork ef 

ai,1906] has the capacity to increase the proportion of stem cells in 

S-phase in normal murine marrow. Significantly, extracts of human 

foetal thymus, a non-haematopoietic tissue, show no proliferation 

regulator activity implying the production of stimuiator and inhibitor 

is restricted to haematopoietic tissues [Riches ef ai,1901 a; 1901b].
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Such evidence of species cross-reactivity, suggests a highly

conserved haematopoietic stem ceil regulatory system exists. The 

fact that human haematopoietic stem ceil proliferation regulators can 

be assayed in a murine system is of significance since there is no 

equivalent to the murine CFU-S assay with which to directly assay the 

human haematopoietic stem cell. Using the murine system, the 

relative levels of the endogenous proliferation regulators in human 

haematopoietic tissues can be assessed and the kinetic state of 

human haematopoietic stem cells infered.

1.19 Other haemoregulatory activities.

While discussion thus far has been restricted to the normal bone 

marrow-derived 50,000-100,000 dalton, stem cell proliferation 

inhibitor, and regenerating or maemetopoletlcally stressed bone 

marrow-, or foetal liver-derived 30,000-50,000 dalton, stem cell 

proliferation stimulator, it is acknowledged that a number of other 

positive and negative haemoregulatory activities have been 

identified. However, the effects of the majority of these factors is 

largely at the level of the haematopoietic progenitor ceil population 

rather than at the level of the haematopoietic stem cell population. 

The target cells of most of the characterized heamoraguletory 

activities, appear to be the bipotentiai granulocyte-macrophage, early 

erythroid or megakaryocyte progenitors (Reviewed by Axelrad [1990] 

and Graham & Pragnell [1990]). However, a haematopoietic stem cell 

proliferation inhibitor, distinct from the 50,000-100,000 dalton normal 

bone marrow extract (NBME-iV), has been identified.
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1.20 A low molecular weight haemarequiatory peptide.

Isolated from foetal calf bone marrow [Frindel & Guigon,1977] 

and from foetal calf liver [Gulgon ef a/,1984] as a crude dialysable 

extract and as a seml-purified factor, it has the capacity to prevent 

haematopoietic stem cell ’recruitment' into S-phase from the 

quiescent Go-state, following sublethai X-irradiation, or cytotoxic drug 

treatment [Gulgon & Frindel,1978]. It does not act to reduce the 

increased proportion of stem cells in S-phase in regenerating or 

haematopoieticaliy stressed bone marrow, or foetal liver, as does 

NBME-iV. Used in vivo, the foetal calf bone marrow extract has been 

demonstrated to 'protect’ mice from potentially lethal doses of the S- 

phase-specific agent cytosine arabinoside (ARA-C), by preventing 

the recruitment of quiescent stem cells into a cytotoxic drug-sensitive 

S-phase [Gulgon ef a/,1980; Gulgon ef a/,1981; Gulgon ef a/,1982; 

Wdzieczak-Bakala ef a/,1983; Gulgon ef a/,1989]. Use of foetal calf 

bone marrow, or foetal calf liver dialysate as a crude source of the 

proliferation inhibitor, implied the factor was of low molecular weight. 

Subsequent purification isolated a tetrapeptide of 487 daltons, with 

no carbohydrate and of amino acid sequence: Acetyl-N-Ser-Asp-Lys- 

Pro-OH (AcSDKP) [Lenfant ef a/,1989a] [Figure 14[, The purified and 

synthesized molecule has native, crude extract activity and 

administered at 1OOng per mouse (4ug per Kg body weight), shows 

no toxicity, but is sufficient to 'protect' mice from cytotoxic drug- 

induced haematopoietic damage. The tetrapeptide, isolated from 

foetal calf tissue is active in both murine and human haematopoietic 

tissues [Gulgon ef a/,1990], demonstrating a non-species specificity.

The small molecular weight tetrapeptide is possibly an active 

fragment of a higher molecular weight molecule, degraded in the
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complex purification procedure. Lenfant ef ai [1909a] using foetal calf 

liver as a crude source of the factor and a more gentle extraction and 

purification technique in an attempt to preserve any putative high 

molecular weight moiety, failed to find any evidence of such a 

molecule. This may imply the AcSDKP is active physiologically as a 

low molecular weight moiety.

The SDKP amino acid sequence has been identified in a number 

of existing characterized molecules [Lenfant ef ai,1909a; Pradelles et 

ai,1990]. The significance of the sequence in rat liver phenylalanine 

hydroxylase is unclear, however, the sequence is also found in 

tumour necrosis factor-aipha (TNF-alpha), a putative

haemoregulatory activity [Old,1905; Broxmeyer ef ai,1906; Munker ef 

ai,1907; Peetrie ef ai,1900; Slordal ef ai,1909], and thymosin &4. 

Thymosin 0-4 possesses a N-terminal 'AcSDKP-’ sequence and 

proteolytic cleavage would yield an AcSDKP moiety. An endogenous 

enzyme endoproteinase Asp-Nhas subsequently been isolated and 

is demonstrated to perform such a proteolytic cleavage of thymosin 

0-4 [Grillon ef ai,1990] [Figure 151- This may have significance since 

the thymus is reported to play a role in haematopoietic stem cell 

proliferation regulation [Frindel ef a/,1976b; Lepault ef ai,1979;

Lepault ef ai,1901; Fache ef a/,1902; Lepault ef ai,1900].

As a proliferation inhibitor, AcSDKP may act in antagonism to 

interleukin 3 (IL3)imulti-CSF, which has the capacity to stimulate the 

proliferation of multipotential haematopoietic precursors. However, 

AcSDKP does not inhibit IL3-dependent cell line proliferation, nor 

does it inhibit IL3-induced granulocyte-macrophage, or mast cell 

colony formation. No evidence of AcSDKP competition for IL3 

receptors is observed [Lenfant ef ai,1909c]. Reported mast cell 

colony suppression by semipurified extracts of AcSDKP was



Figure: 14: The low molecular weight haematopoietic
stem cell proliferation inhibitor - AcSDKP.

Acetyl - N - Ser - Asp - Lys - Pro - OH

AcSDKP

mw = 487 amu

Figure 15: Thvmosin B-4.

AcSDKP- DMAEIEKFDKSKLKKTETTQEKNPLPSKETIEQEKQAGES
A

”Endoproteinase Asp-N"

The possible mechanism of AcSDKP production from thymosin 6-4
by the proteolytic enzyme "Endoprotalnese Asp-N".
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considered due to a co-purifying activity distinct from the AcSDKP 

moiety [Lenfant et ai,1909b].

The effects of AcSDKP on haematopoietic stem cell and stroma 

interactions have also been investigated. MS-1-T, a murine bone 

marrow stromal cell line [Itoh ef ai,1909], shows a slight reduction in 

proliferation in the presence of AcSDKP, however, more significant is 

a marked increase in stem cell adhesion to the stromal layer in the 

presence of AcSDKP [Lenfant ef ai,1909c]. The physiological 

significance of this AcSDKP-mediated increase In stem cell adhesion 

to stromal tissue is unclear at present.

Other cell-cell interactions are modified by the presence of 

AcSDKP. In vitro, human Jurkat lymphoma T-cells and sheep 

erythrocytes form 'rosettes’ [Thierry ef ai,1990]. In the presence of 

AcSDKP, rosette formation is inhibited, a titratable effect allowing it's 

use as a bloassay of AcSDKP activity. Sheep erythrocytes possess a 

T11TS membrane glycoprotein which interacts with the human CD2 T- 

cell membrane glycoprotein to produce the rosette. A region of the 

CD2 glycoprotein which modulates rosette formation contains the 

amino acid sequence -Ser-Asp-Lys- (-SDK-). It is thought that 

addition of exogenous AcSDKP competes with the CD2 -SDK- 

sequence for membrane recognition sites, so preventing rosette 

formation in a dose-dependent manner. Peptide analogues of 

AcSDKP, with modifications to determine the minimal active 

sequence of the molecule, and changed amino acids, to determine 

the role of chemical side chains, have been produced and both 

acetylated and de-acetylated peptides have been assayed for activity 

in the rosette formation-inhibition assay. The analogue Ser-Asp-Lys 

(SDK) was found to be the most potent rosette formation-inhibitor, 

able to inhibit rosette formation at *10*i4M in comparison to the native 

AcSDKP molecule, inhibiting at 10'4m. Many of the analogues
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produced showed no rosette formation-inhibition even at 103M,

demonstrating that a very specific molecular interaction may be 

occuring. The specific requirements for an inhibiting moiecule in the 

rosette formation assay appear to be (1) the presence of three polar 

amino acid side chains and (2) the presence of a se/yA moiety within 

the peptide sequence [Thierry ef a/,1990].

The physiological role of AcSDKP In inhibiting such a T-cell 

interaction at the level of haematopoietic stem ceil regulation is 

unclear. It has been proposed that T-cells may mediate the inhibitory 

effects of the AcSDKP molecule in vivo, however, nude, athymic 

mice, with no T-cell population, still demonstrate an AcSDKP- 

associated 'protection' from the cytotoxic effects of cytosine 

arabinoside [Monpezat & Frindel,1989]. This implies that the action of 

AcSDKP Is T-cell independent.

The cellular specificity of AcSDKP has been investigated on a 

number of cell-lines in vitro. With specific ceil lines, it Is possible to 

synchronize cells within the cell cycle. Primary cultures of 

hepatocytes exist mostly in a unless appropriately stimulated

with epidermal growth factor, insulin and pyruvate. Similarly, 

fibroblast 3T3 cells can be arrested by serum-deprivation. 

Reintroduction of serum, stimulates growth. Factor-dependent cell 

lines (FDC) can be arrested by withdrawal of their appropriate factors 

and stimulated by their reintroduction. In all cases, either hepatocyte, 

3T3 or FDC cells, none of the stimulatory influences were overcome 

by AcSDKP inhibition. Also, addition of AcSDKP to rapidly cycling cell 

populations, failed to reduce proliferation, although a similar addition 

of transforming growth factor-beta (TGF-B), or interferon (IFN) does 

[Lauret ef a/,1989a].

A degree of proliferation inhibition of hepatocytes in vivo by 

AcSDKP has been reported. Hepatocytes triggered into cycle by
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deg^a^e enzyme activity, or partial hepetectomy, show a 50-70% 

proliferation inhibition by AcSDKP [Lombard ef a/,1990]. Since the 

pure primary hepatocyte culture showed no such proliferation 

inhibition, an explanation of this in vivo observation may be the 

presence of non-parenchymal liver cells in the heterogenous liver ceil 

population. These cells may repond to the AcSDKP and mediate 

subsequent hepatocyte proliferation, a mechanism already 

demonstrated to exist with the production of liver-active proliferation 

regulators.

The degree of AcSDKP 'protection' of the haematopoietic stem 

cell population in vivo with the use of S-phase specific cytotoxic 

agents, is extremely sensitive to the relative times of drug and 

AcSDKP administration. This allows a determination of the precise 

point in the cell cycle at which AcSDKP exerts its proliferation 'block' 

after a cytotoxic drug 'recruitment trigger' [Monpezat & Frindei,1989]. 

AcSDKP is only active at the Go-G1 transition and cells progressing 

into early Go and subsequently into S-phase prove insensitive to the 

inhibition of AcSDKP. This would explain the observed failure of 

AcSDKP to inhibit an already cycling cell population. If AcSDKP is 

administered before the influence of the cytotoxic drug initiates stem 

cell proliferation, the majority of stem cells undergo the. AcSDKP- 

associated 'recruitment block' and are spared. However, if AcSDKP is 

administered after the cytotoxic drug-associated ’proliferation trigger’ 

Is effective, with most of the stem cells mobilized into Go, then it is 

too late for the action of the AcSDKP-assocleted 'recruitment block’ 

to act. Even if the proportion of stem cells in S-phase appears 

relatively low at drug administration, the majority of stem cells will 

subsequently progress to S-phase and cytotoxic drug-induced death 

with the associated haematopoietic damage [Monpezat & 

Frindel,1989].
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AcSDKP is not an Immunogenic moiety, however, an amino acid 

extension of the tetrapeptide Is immunogenic and an antiserum

produced cross-reacts with AcSDKP [Lauret ef ai,1909b]. Although 

the antiserum is of low affinity for AcSDKP, it's use in vivo Is reported 

to increase the proportion of stem ceils In S-phase dramatically 

[Frindel & Monpezat,1909]. This demonstrates the AcSDKP moiety is 

produced in vivo and is active physiologically as an endogenous 

stem cell proliferation inhibitor. If the Inhibition is removed by the 

presence of a neutralizing antibody, inhibited stem cells are allowed 

to enter S-phase and proliferate. Use of the neutralizing antiserum 

has also been demonstrated to remove the AcSDKP-associated, 

’protection' of stem cells against the action of S-phase specific 

cytotoxic drugs. The effects of both the addition of exogenous 

AcSDKP and it’s removal by the use of a neutralizing antiserum have 

thus been demonstrated and strongly imply a physiological role for 

the tetrapeptide.

With the development of the AcSDKP antiserum, enzyme 

immunoassay of AcSDKP has been developed [Pradelles ef ai,1990] 

and is reported to detect levels of AcSDKP down to 15 femto Molar 

(15x10‘14M). Using immunoassay the presence of AcSDKP in normal 

mononuclear blood cells [Pradelles ef a/,1990] and a similar molecule 

in human placental extract [Lopez ef a/,1991], have been 

demonstrated. The quantitative and qualitative immunoassay of 

AcSDKP should now allow the biosynthesis of the molecule to be 

investigated, the producer-cells to be identified and levels of 

endogenous AcSDKP in various haematological disorders to be 

determined. Interestingly, use of enzyme immunoassay implies a 

number of AcSDKP-like molecules may exist, perhaps suggesting 

evidence for a novel family of very low molecular weight, potent, 

haemoregulatory activities.
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De novo synthesis of AcSDKP has been followed in vivo in mice

and in vitro in long-term murine bone marrow cultures [Wdzieczak- 

Bakala ef a/,1990] using tritiated proline (pH]-proline). pH]-proiine 

competes with native proline for Incorporation into newly synthesized 

AcSDKP. Newly synthesized AcSDK-[3H]P was detectable, secreted 

by bone marrow stroma and pH]-proiine pulse labelling gives some 

evidence that AcSDKP may be derived from a larger precursor and 

undergoes enzymatic maturation to form biologically active AcSDKP 

[Wdzieczak-Bakala ef a/,1990].

Cyclical changes are reported in the proliferative state of the 

haematopoietic stem cell population In long-term bone marrow 

cultures with refeeding [Wdzieczak-Bakala ef a/,1990]. This is 

considered due to the removal of endogenous AcSDKP with the old, 

spent medium and replacement with fresh AcSDKP-deficient medium. 

The removal of endogenous AcSDKP removes the inhibition of stem 

ceil proliferation, allowing the proportion of stem cells in S-phase to 

increase. Proliferation levels remain relatively high until the levels of 

endogenous AcSDKP are restored by resynthesis and stem cell 

proliferation inhibition restablished. (This compares with the 

previously discussed observations of Dexter ef a/[1977], Toksoz 

[1980] and Cashman ef a/[1985], who also demonstrated such 

cyclical proliferation changes in long-term bone marrow cultures at 

refeeding. They concluded such cyclical changes were due to cellular 

depletion and subsequent variations in endogenous levels of NBME- 

IV and RBME-Ill. How the two distinct proliferation regulation systems 

relate and possibly interact will be of considerable interest.)
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1,21 The haematopoietic colonv-stimulatinq factors.

The in vivo CFU-S assay [Till & McCulloch,1961] has greatly 

improved the understanding of haematopoietic stem cell regulation 

and behaviour, however, the assay has considerable drawbacks 

amongst which is the large numbers of mice required to obtain 

statistically significant results. The development of an in vitro, 

clonogenic assay of a similarly primitive, high proliferative potential, 

self-renewing, multipotential haematopoietic precursor, would be a 

considerable development. A number of in vitro clonogenic assays 

already exist which utilize semi-solid agar, or methylcelluiose culture 

techniques, to support the growth of haematopoietic colony-forming 

cells. A consequence of the development of such in vitro assays was 

the recognition that haematopoietic progenitor cells are unable to 

survive, or proliferate, unless specifically stimulated. A group of 

specific regulatory glycoproteins, stimulating haematopoietic 

progenitor cell proliferation and certain aspects of mature cell 

function, have been isolated as haematopoietic coiony-stimuiating 

factors (CSFs). The best characterized haematopoietic colony- 

stimulating factors are those regulating the proliferation and 

maturation of the granulocyte-macrophage progenitors, although 

similar regulatory factors exist for progenitors of the erythroid, 

eosinophil, megakaryocyte, mast and lymphoid lineages within the 

haematopoietic system.

A number of granulocyte-macrophage colony-stimulating factors

have been identified In both human and murine heematopolesls and 

these will be briefly discussed:

Murine granuiocyte coiony-stimuiating factor (G-CSF) is 

synthesized by a wide variety of tissues and is a 25,000 dalton 

glycoprotein [Nicola ef a/,1983]. Active at 10*i2M, it stimulates the
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proliferation of iineage-commltted granulocyte progenitors within 

haematopoietic tissue and has a considerable capacity to induce 

terminal differentiation [Metcalf & Nicola,1983]. The molecule has 

considerable tertiary structure maintained by intra-molecuiar 

disulphide bonds, without which biological activity is lost. One copy 

of the G-CSF gene is present in the murine genome, isolated to 

chromosome 11. Murine G-CSF displays a 70% amino acid sequence 

homology with its human equivalent, a glycoprotein of 20,000 

daltons, the gene of which has been isolated to human chromosome 

17. G-CSF displays cross-species activity. [Nagata ef a/,1986; Nomura 

ef a/,1986; Tsuchiya ef a/,1986; Nagata,1989].

Murine macrophage colony-stimulating factor (M-CSF/CSF-1) is 

synthesized by fibroblasts and is found in embryonic yolk sac and 

pregnant mouse uterus extract (PMUE) [Stanley & Heard,1977; 

Johnson & Burgess,1978]. Purified to homogeneity from mouse L-celi 

conditioned medium as a 70,000 dalton, dimeric glycoprotein 

[Burgess ef a/,1977; Waheed & Shadduck,1982; Burgess ef a/,1985], it 

is active at 1O'13-io33m, stimulating predominantly committed cells of 

the monocyte-macrophage lineage to proliferate and differentiate. 
The intact 70,000 dalton dimer is heavily glycosylated (*The purpose 

of this carbohydrate moiety, present to a varying degree in all native 

colony-stimulating factors, but not necessary for biological activity 

(non-glycosylated, recombinant factors still demonstrate activity), is 

to confer solubility, stability and resistance to proteolytic degradation 

to the CSFs. As such, the CSFs are extremely resilient, resisting 

denaturation and enzymatic degradation.) and consists of two 

identical subunits, of approximately 14,000 daltons, linked by inter- 

molecuiar disulphide bonds. Mercaptoethanol disruption of the 

disulphide bonds yields two haematopoieticaliy inactive subunits.

One copy of the gene for murine M-CSF/CSF-1 is present and has
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been isolated to chromosome 3 [Gisselbrecht ef a/,1909] and murine 

M-CSF/CSF-1 displays an 00% amino acid sequence homology with 

it’s human equivalent, a dimeric glycoprotein of 70,000-90,000 

daltons, which consists of two identical 21,000 dalton subunits. The 

gene for human M-CSF/CSF-1 has been isolated to chromosome 5 

[Pettenati ef a/,1907; Ladner ef a/,1900] and M-CSF/CSF-1 displays a 

cross-species activity.

Murine granulocyte-macrophage colony-stimulating factor (GM- 

CSF), synthesized by a wide variety of tissues, was purified to 

homogeneity from mouse lung conditioned medium, as a 25,000 

dalton glycoprotein [Burgess ef a/,1977]. Active at 10' 12M, it 

stimulates primarily the proliferation and differentiation of both 

bipotental granulocyte-macrophage progenitors and lineage- 

committed granuiocyte and macrophage progenitors from 

haematopoietic tissue. The molecule has considerable tertiary 

structure maintained by intra-molecular disulphide bonds. 

Mercaptoethanol-treated GM-CSF has no biological activity [Gough et 

a/,1905]. Murine GM-CSF has a single gene localized to chromosome 

11 [Gough ef ai,1904] and displays a 50% amino acid sequence 

homology with it’s human equivalent, a glycoprotein of 10,000-24,000 

daltons. The gene for human GM-CSF has been localized to 

chromosome 5. GM-CSF is a species specific factor [Yang ef a/,1900; 

Miyatake ef a/,1905].

Murine interleukin 3 (\L3)/mu/tipotentiai coiony-stimuiating factor 

(multi-CSF), is synthesized by antigenimitogen stimulated T-cells and 

is produced constitutively by the myelomonocytic leukaemic cell line 

WEHI-3B [Warner ef a/,1969; Metcalf ef a/,1969; Lee ef ai,1902; Baziil 

ef ai,1903; Ciark-Lewis ef a/,1905; McNiece ef a/,1905]. Purified to 

homogeneity [ihle ef a/,1902], IL3/Multi-CSF is a glycoprotein of 

23,000 daltons, acUve at -O'^-O'1 iM. -t stimulates -he proHferatton
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and maturation of multlpotentiel haematopoietic precursors, 

bipotential and lineage-committed granulocyte/macrophage 

progenitors and committed erythroid, eosinophil, mast cell and 

megakaryocte progenitors from haematopoietic tissue [Ihle ef 

a/,1983; Hapel ef a/,1985]. A single copy of the IL3/multi-CSF gene 

exists in the murine genome, localized to chromosome 11. IL3/multi- 

CSF has a 30% amino sequence homology with it's human 

equivalent, a glycoprotein of 15,000-25,000 daltons, the gene of which 

is isolated to chromosome 5 [Yang ef a/,1988; Yang ef a/,1989]. 

IL3/multi-CSF is species specific.

These granulocyte-macrophage colony-stimulating factors are 

complemented in haematopoietic regulation by a rapidly expanding 

family of haematopoieticaliy active factors. A number of these factors 

will be briefly discussed:

Erythropoietin (Epo) [Stephenson ef a/,1971; Miyake ef a/,1977; 

Jacobs ef a/,1985] is a glycoprotein which stimulates the proliferation 

and differentiation of relatively mature, llnaega-committad erythroid 

progenitor cells. Earlier erythroid progenitors are stimulated if a 

’ burst promoting activity (BPA) is added prior to Epo. Both GM-CSF 

and IL3/multi-CSF possess such BPA activity. The single gene for 

murine Epo has been isolated to chromosome 7 and the mature gene 

product has considerable tertiary structure, maintained by intra­

molecular disulphide bonds, without which, biological activity is lost.

Interleukin f (iLI) exists as I L1 alpha and beta. It is primarily 

active in the mediation of the inflammatory response, however, it also 

demonstrates haematopoietic activity [Bagby,1989; Henney,1989]. 

IL1, initially identified as ’hemopoietirrh [Jubinsky & Stanley,1985; 

Mochizuki ef a/,1987] has no colony-stimulating activity. It's major 

function appears to be an induction of expression of other genes, 

including those for interleukin 6 (IL6) [Walther ef a/,1988], the colony-
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stimulating factors [Sieff ef a/,1987; Segal ef a/,1987; Lee etai, 1987; 

Kaushansky ef a/,1988; Fibbe ef a/,1988] and their receptors. It is 

proposed that IL1 mediates it's effects by modifying the accumulation 

of mRNA of the appropriate gene. Subsequent translation of this 

reservoir of mRNA, rapidly yields a considerable amount of protein. 

While mRNA is normally very short lived, IL1 appears to increase it’s 

stability, prolonging the life of the proteln-template and aiiowing a 

considerable flexibility In both the amount and rate of protein output, 

as required. IL1 has also been Implicated as a regulator of some 

leukaemic populations [Sakai ef a/,1987; Griffin ef a/,1987]. Murine 

IL1-alpha and IL1 -B are both non-species specific and demonstrate a 

62% and 30% amino acid homology respectively, with their human 

equivalents.

Interleukin 4 (IL4) is ^^-(^^1/stimulating factor-T (BSF-1) and 

stimulates the proliferation and maturation of B-lymphocytes. It 

induces immunoglobulin synthesis, B-lympocyte surface receptor 

production and the production of cytotoxic T-lymphocytes. It also 

stimulates the proliferation and differentiation of mast cells, although 

IL4 receptors are detected on a wide variety of cell types [Yokota ef 

a/,1986; Mosmann ef a/,1986]. The gene for human IL4 has been 

isolated to chromosome 5 [LeBeau ef a/,1989; van Leeuwen ef 

a/,1989] and IL4 is species specific [Mosmann ef a/,1987].

Interleukin 5 (IL5) Is B-ceii growth factor-UF (BCGF-HI). It is a 

dimeric, non-species-specific factor stimulating B-lymphocyte 

proliferation and maturation. It also stimulates the proliferation and 

maturation of lineage-committed eosinophil progenitors from 

haematopoietic tissue [Yokota ef a/,1987; Clutterbuck & 

Sanderson,1988]. Some colonies stimulated by IL5 are mixed 

basophil/eosinophil colonies [Yokota ef a/,1987] which suggests a 

bipotentiai progenitor may exist for these lineages. IL5 also promotes
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the action of mature eosinophils [Yamaguchi ef a/,1900]. The gene for

ILS has been isolated to murine chromosome 11 and human 

chromosome 5 [LeBeau ef ai,1909, van Leeuwen ef a/,1909].

Interleukin 6 (IL6) or interferon beta-2 (IFN-B2) stimulates B- 

lymphocyte differentiation and stimulates the production of cytotoxic 

T-lymphocytes [Wong & Clark,1900]. The gene for human IL6 has 

been isolated to chromosome 7, and the gene product, mature IL6, is 

produced by a number of cell types including fibroblasts, especially 

in the presence of IL1 [Walther ef a/,1900]. This has both 

immunological and haematopoietic significance. Murine IL6 has the 

capacity to stimulate the limited proliferation of bipotentiai 

granulocyte-macrophage progenitors and is of considerable interest 

since it is also proposed to be active at the level of the primitive 

haematopoietic stem cell and enhances the capacity of IL3 to 

stimulate the proliferation of multipotential precursors [ikebuchi et 

ai,1907; Ogawa & Clark,1900].
(*A number of excellent reviews of haematopoietic growth factors 

exist: [Metcalf,1904; 1905; 1906; Sieff,1907; Morstyn & Burgess,1900; 

Nicola,1909; Platzer,1909; Golde,1990; Metcalf,1990; Whetton,1990].)

With the exception of M-CSFiCSF-1 and ILS, which are dimers, the 

other factors discussed, are single subunit glycoproteins. Despite 

their similar molecular weights, general molecular nature and 

overlapping biological specificities, each factor is encoded by a 

single unique gene, binds to a unique receptor with no cross­

reactivity and shows no extensive amino acid sequence homology 

with any other factor. M-CSF/CSF-1, G-CSF, IL1 and IL5 are 

remarkably well conserved between species and are abie to cross- 

react. GM-CSF, IL3imulti-CSF and IL4, however, differ significantly 

between species and do not cross react. In the mouse the GM-CSF, 

IL3imulti-CSF, G-CSF and IL5 and the M-CSFiCSF-r receptor
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(identified as the c-fms oncogene product [Sherr ef a/,1985]) genes 

have been mapped to chromosome 11 (*The gene for the purified 

haematopoietic stem cell proliferation inhibitor, MiP-1 alpha has 

significantly also been mapped to murine chromosome 11 [Graham 

ef a/,1990]). in humans the GM-CSF, IL3/multi-CSF, M-CSF/CSF-1, IL5 

and M-CSF/CSF-1 receptor [Groffen ef a/,1983] genes have all been 

mapped to chromosome 5. This is significant since part of murine 

chromosome 11 is homologous to the long arm of human 

chromosome 5. Another part of murine chromosome 11 is 

homologous to human chromosome 17, where the gene for G-CSF 

has been isolated (human MIP-1 alpha has also been mapped to 

chromosome 17 [Irving ef a/,1990]). This probably reflects a distant 

evolutionary relationship.

1,22 A novel multiporeatial qrc^vwt^ faato^r eaooVea bvthe

SMocus is a iiqand of a receptor encoded bv the M-locus.

The haematological significance of the ’Steel' (Si) locus of murine 

chromosome 10 and the ’dominant white spotting' (W locus of 

murine chromosome 5, has long been realised. Mice bearing 

mutations in either loci present with considerable haematological 

dysfunction characterized by severe anaemia and mast cell 

deficiency. In the case of SAmutants, haematopoietic dysfunction is 

the result of a defective haematopoietic microenvironment while W- 

mutants possess inherently defective haematopoietic stem cells 

[Dexter & Moore,1977]. While 5/and Ware distinct genetic loci they 

possess a related haematological function and recent studies have 

identified and characterized the products of both loci.

The product of the 'Steel' (Si) locus of murine chromosome 10 

has been identified as a 31,000 dalton glycoprotein mo'iety [Copeland
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ef a/,1990; Huang ef a/,1990; Williams ef a/,1990; Witte,1990; Zsebo ef 

a/,1990a; 1990b]. Administered to SAmutant mice it restores normal 

haematopoiesis, reversing both the severe anaemia and the mast cell 

deficiency [Zsebo ef a/,1990b]. The glycoprotein, isolated from rat 

buffalo liver cell line conditioned medium [Zsebo ef a/,1990] and a 

murine bone marrow stromal cell line supernatant [Williams ef 

a/,1990], strongly synergizes with Interleukins 1,3,6 [Zsebo ef 

e/,1990a; 1990b] and 7 [Martin ef a/,1990], erythropoietin [Nocka ef 

a/,1990], GM-CSF and G-CSF [Bernstein ef a/,1991; Bertoncello ef 

a/,1991; Broxmeyer ef a/,1991], increasing both the number and size 

of colonies In semi-solid agar culture. The glycoprotein appears to 

act in part, by potentiating the growth factor responsiveness of the 

relatively mature, lineage-committed haematopoietic progenitors, 

although the factor is itself a relatively potent colony-stimulating 

activity. The glycoprotein also appears to be a relatively potent 

stimulatory activity for haematopoietic colony-forming cells surviving 

5-fluorouracii treatment, which are considered relatively primitive 

haematopoietic precursors and possibly components of the 

haematopoietic stem cell population [Zsebo ef e/,1990e]. The 

glycoprotein has subsequently been termed 'stem cell factor* (SCF) 

[Zsebo ef a/,1990a] and ’ mast cell growth factor* (MGF) [Williams ef 

a/,1990]. Interestingly the activity of SCF/MGF is reported to be 

compromised by the presence of transforming growth factor-beta 

(TGF-B) [McNiece ef a/,1991], a previously characterized 

haematopoietic inhibitor [Axelrad,1990; Graham & Pragnell,1990].

The genomic sequences of murine, rat and human SCF/MGF have 

been determined [Copeland ef a/,1990; Martin ef a/,1990; Zsebo ef 

a/,1990b; Williams ef a/,1990; Huang ef a/,1990] and recombinantly 

expressed. Recombinant expression In E.CoA, producing a non- 

glycosylated factor, demonstrates the glycosylation of SCF/MGF is
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not essential for activity. Native SCF/MGF is heavily glycosylated and

this may assist solubility and protect from enzymatic degradation. 

There is also some evidence that native SCF/MGF exists as a dimeric 

molecule [Zsebo et ai,1990a]. •

The product of the ’dominant white spotting’ (W) locus of murine 

chromosome 5 is a transmembrane tyrosine kinase receptor. The 

145,000 datton activity [Flanagan & -.€^6^1990; Wiillams ef^^O; 

Huang ef a/,1990] is the product of the c-k/f proto-oncogene [Chabot 

ef a/,1900; Geissler ef ai,1900] and mutations of the W-locus usually 

produce a kinase-deficient Inactive moiety.

Significantly SCF/MGF has been identified as a ligand for the c- 

kif-derived tyrosine kinase receptor [Witte,1990; Flanagan & 

Leder,1990; Zsebo ef a/,1990a; 1990b; Williams ef a/,1990; Huang ef 

ai,1990] and SCF/MGF has thus also been termed ’c-kk ligand’ (KL), 

although other c-k/f ligands may exist.

The importance of SCF/MGFiKL and c-k/f proto-oncogene 

receptor interaction in haemoregulation is becoming clear. The 

action of SCF/MGFiKL both alone, and in conjunction with other 

growth factors, may prove to be of clinical significance, perhaps 

stimulating haematopoietic recovery after bone marrow 

transplantation or assisting in the management of hypoproliferative 

haematopoietic disorders.

1,23 T^o development of an in vitro haematopoietic stem
ceil assay.

Interleukin 3 (IL3)imulti-CSF has the capacity to stimulate the 

proliferation and differentiation of coiony-forming ceiis of different 

lineages from haematopoietic tissue. It also has the capacity to 

stimulate the proliferation of muitipotential haematopoietic
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precursors which demonstrate self-raoawel and have allowed a 

limited in vitro investigation of haematopoietic stem cell behaviour 

[Metcalf ef a/,1978; Humphries ef a/,1979a; Humphries ef e/,1979b; 

Jvhnsvn,1980; Nekeheta & Ogeva,1982; Koike ef e/,1986e].

Recent developments in in v/fro techniques have however, 

isolated a coiony-forming cell population from haematopoietic tissue 

which is characterized by a high proliferative potential, a self-renewal 

capacity and a multipotency. This high proiiferative potential coiony- 

forming cell (HPP-CFC) population, demonstrates many behavioural 

and regulatory similarities to the in vivo CFU-S population, previously 

taken as the haematopoietic stem cell assay. The potential of the 

HPP-CFC assay as an in vitro assay of the haematopoietic stem cell 

population wili be discussed.

1,24 The in viiro high prollierative potential colony­
forming ceil (HPP-CFC) essee.

The novei aspect of the in vitro HPP-CFC assay is it's use of 

combinations of cvlony-stlmuletlog factors. Bradley and Hodgson 

[1979] first reported the stimulation of colony-forming cells with a 

high proliferative potential, from murine bone marrow, using a 

combination of crude factors derived from pregnant mouse uterus 

extract (PMUE) and human spleen conditioned medium (HUSPCM). 

PMUE alone, stimulated the proliferation of lineage-committed 

haematopoietic progenitor cells with limited proliferative potential. 

HUSPCM alone demonstrated no colony-stimulating activity. Only on 

combination of the two extracts were the HPP-CFC demonstrated. 

This illustrates haematopoietic growth factor ’synergisrri - on 

combination, factors produce a more than additive effect. Bradley 

and Hodgson [1979] demonstrated that the HPP-CFC population
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isolated by the combination of PMUE and HUSPCM was a distinct, 

previously undetected population of colony-forming cells, through 

the use of 5-fluorouracil (5FU). The PMUE-stimulated colonies proved 

especially sensitive to 5FU, implying a relatively rapidly cycling, 

colony-forming cell population was being demonstrated. This would 

be consistent with these cells being lineage-committed 

haematopoietic progenitor cells. The PMUE and HUSPCM-stimulated 

HPP-CFC population, however, proved relatively insensitive to 5FU, 

implying that the HPP-CFC population was relatively slowly cycling, 

consistent with its being a more primitive haematopoietic precursor 

population.

Characterization of PMUE has demonstrated it to be a crude 

source of M-CSF/CSF-1 [Das ef a/,1980], however, identification of 

the synergizing factor in HUSPCM has proved more problematic. 

Other factors found to synergize with M-CSF/CSF-1 have been 

obtained from rat and mouse spieen and from human placenta 

[Kriegler ef a/,1982] and other factors have come to light [Kriegler ef 

a/,1984; Stanley ef a/,1986; McNiece ef e/,1987a; Song ef a/,1985; 

Quesenberry ef a/,1987; McNiece ef a/,1989a; Kriegler ef a/,1990]. 

Subsequent analysis of these synergizing factors has demonstrated 

at least three distinct types of activity exist, each stimulating a 

discrete HPP-CFC subpopulation.

Interleukin 1 (hemopoietin-1), has been demonstrated to 

synergise with M-CSF/CSF-1 to stimulate an HPP-CFC population and 

whiie not completely replacing the synergism obtained from a 

number of crude conditioned media, it does not itself possess 

colony-stimulating activity, which is consistent with the findings of 

Hodgson and Bradley [1979] and their use of HUSPCM. Other 

sources of an interleukin 1 -like synergistic factor, termed 'synergistic 

factor-T (SF-1), have been identified as spleen and placental



53

extracts, medium conditioned by bladder carcinoma ceii line 5637

and medium conditioned by murine EMT-6 cells [Bradley & 

Hodgson,1979; Kriegler ef ai,1902; kriegler ef ai,1904, Bartelmez & 

Stanley,1905; Stanley ef a/,1906; McNiece ef a/,1907a].

Interleukin 3 (IL3)/multi-CSF, produced constitutively by the 

murine myelomonocytic leukaemic ceil line WEHI-3B [Warner ef 

ai,1969], has been purified and characterized [ihle ef ai,1902, Ihle ef 

ai,1903] and demonstrated to synergise with M-CSFiCSF-1 to 

stimulate HPP-CFC proliferation [Bartelmez ef a/,1905]. Interleukin 3- 

like factors constitute the second group of synergizing factors.

A third distinct class of non-IL1-like and non-IL3-like synergizing 

factors has been demonstrated and are yet to be isolated and 

characterized. Present In TC-1 murine bone marrow stromal cell line 

conditioned medium [Song ef ai,1905; Quesenberry ef a/,1907], 

synergism with M-CSFiCSF-1 demonstrates a third discrete HPP-CFC 

population.

A developmental hierarchy appears to exist within the 

heterogenous HPP-CFC population with the HPP-CFC stimulated by 

SF-1/IL1-like activity and M-CSFiCSF-1, termed HPP-CFO1, 

considered the more primitive haematopoietic HPP-CFC. These HPP- 

CFC-1 are proposed to mature to IL3/multi-CSF and M-CSF/CSF-1 

sensitive HPP-CFC, termed HPP-CFO2, which are inturn considered 

to mature to the TC-1 and M-CSFiCSF-r sensitive HPP-CFC, termed 

HPP-CFC3 [Bradley ef a/,1905; McNiece ef ai,1906; 1907b].

The development of highly purified and recombinant 

haematopoietic colony-stimulating factors has allowed the role of 

individual growth factors in synergizing interactions to be 

investigated. A number of haematopoietic colony-stimulating factors 

have been demonstrated to synergize:

G-CSF and M-CSFiCSF-1 [McNiece ef ai,1900a],
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GM-CSF and M-CSF/CSF-1 [McNiece ef a/,1988b; Falk & 

Vogei,1988; Eckmann ef a/,1988; Pragnell ef a/,1988; Bot ef a/,1990; 

Lorimore ef a/,1990],

G-CSF and GM-CSF [McNiece ef e/,1988a; Bot ef a/,1990],

G-CSF and IL3/multi-CSF [McNiece ef aA^Sa],

GM-CSF and IL3/multi-CSF [McNiece ef e/;1988a; 1989b],

IL3/multi-CSF and M-CSF/CSF-1 [Chen & Clark,1986; Koike ef 

e/,1986V; McNiece ef e/,1987V; Williams ef a/,1987; Bartelmez ef 

a/,1989; Morris ef a/,1990],

IL6 and G-, M-, GM-, or IL3/muiti-CSFs, or IL4 [Rennick ef a/,1989]

IL1 and G-CSF [Moore & Warren,1987]

IL1 and IL3/multi-CSF, or IL1 and iL3/multi-CSF and M-CSF/CSF-1 

[Bartelmez ef a/,1989].

The relationship between these HPP-CFC subpvpuletlvos is as

yet unclear, however, a number of techniques may allow a

hierarchical structure within the heterogenous HPP-CFC population 

to be investigated.

1.25 Evidence of a.n age-related in vitro HPP-CFC

hierarchy.

As previously discussed Bradley and Hodgson [1979], 

lnvestlgetad the kinetic state of the HPP-CFC isolated by a 

combination of PMUE and HUSPCM using 5FU. Similar studies have 

been performed and raeeel evidence of an ega-releted hierarchy 

within the HPP-CFC population and an HPP-CFC maturation scheme 

has subsequently been developed.

HPP-CFC-1 isolated by the synergism of IL1-like activity and M- 

CSF/CSF-1 are relatively resistant to 5FU treatment. A depletion of 

50% 2 days after 5FU treatment Is reported [Bradiey ef a/,1985]. in
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comparison HPP-CFC-2, Isolated by a synergism of IL3-like activity 

and M-CSF/CSF-1, prove more sensitive to 5FU treatment. A 

depletion of 99% 2 days after 5FU treatment is reported [Bradley et 

a/,1985]. This evidence implies that the proportion of HPP-CFC-1 in S- 

phase is lower than the proportion of HPP-CFC-2. Also, recovery after 

5FU treatment by HPP-CFC-1 is rapid and complete, while HPP-CFC-2 

take longer to recover [Bradley ef e/,1985]. From this the conclusion 

that HPP-CFC-1 is a more primitive haematopoietic precursor 

population, slowly proliferating and more able to self-renew than the 

HPP-CFC-2, has been drawn. Replating experiments have shown that 

HPP-CFC-1 produce HPP-CFC-2 [McNiece ef a/,1987b], implying a 

maturation of the one to the other, and a subsequent maturation of 

HPP-CFC-2 to HPP-CFC-3 is also suggested. HPP-CFC-3, prove even 

more sensitive to 5FU treatment than HPP-CFC-2, impiying they are a 

more rapidly cycling population stiil. (*This maturation scheme would 

correlate particularly well with observations that primitive 

haematopoietic precursors have an age-related, transient sensitivity 

to IL3 [Koike ef a/,1986a]). A subsequent maturation of the more 

mature HPP-CFC-3 to the lineage-committed haematopoietic 

progenitor cell population could then be envisaged. Such an age 

related hierarchy is somewhat reminiscent of that previously 

discussed within the CFU-S population.

Direct and significant correlations between the in vivo CFU-S and 

in vitro HPP-CFC populations have been made. HPP-CFC-2 when 

injected into tethally X-irradiated mice give rise to day 13 CFU-S 

[McNiece ef a/,1987b], a CFU-S population considered a relatively 

primitive component of the- haematopoietic stem cell compartment. 

This Implies that the HPP-CFC-2, and the HPP-CFC-1 from which they 

are derived, must also be relatively primitive components of the 

haematopoietic stem cell compartment, likely to possess marrow,
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platelet and erythroid repopulating capacity. There Is evidence,

however, that the HPP-CFC-1 and HPP-CFC-2, do not contain the 

ceils responsible for long-term haematopoietic recovery, the ’pre- 

CFU-S’, discussed previously [Bertoncello ef a/,1909a]. In vitro 

attempts to isolate such a cell population are being developed 

[Iscove & Yan,1990; Pioemacher ef a/,1909b] and investigations have 

isolated what may be a ’ pre-HPPCFCOT precursor, which forms 

colonies in in vivo diffusion chambers, termed ’CFU-D'. CFU-D are 

reported to generate in vitro HPP-CFC-1, HPP-CFC-2 and in vivo day 

12 CFU-S, and possess a very high proliferative potential [Niskanen 

ef a/,1990] [Figure 16\.

A number of techniques have been developed which enrich HPP- 

CFC from haematopoietic tissues, many of which are developments 

of the previously discussed techniques, used to enrich CFU-S 

populations. The Qa-m7 antigen is present on 90% of relatively 

primitive, day 13 CFU-S and HPP-CFC express relatively high levels of 

this antigen, allowing their enrichment using flow cytometric 

techniques. Specifically, use of 5FU marrow, to deplete the marrow of 

more mature haematopoietic progenitor cell populations [Bertoncello 

ef ai,1907], allows a 20% enrichment of HPP-CFC-1 and HPP-CFC-2. 

HPP-CFC-1 and HPP-CFC-2 also bind wheat germ agglutinin (WGA+) 

and can be enriched using Rh-123. Use of Rh-123 has demonstrated 

that highly quiescent stem cells are Rh-123 dull [Visser & de 

Vries,1900; Ploemacher & Brons,1900c; 1900d], amongst these day 

16 CFU-S, pre-CFU-S, and long term haematopoietic repopulating 

cells. More rapidly proliferating, more mature stem cells, for example 

day 8 CFU-S, are Rh-123 bright. HPP-CFC-1 have been resolved as a 

Rh-123 dull subpopulation, while HPP-CFC-2 are resolved as a Rh- 

123 bright subpopulation [Bertoncello ef a/,1909a], which reinforces 

evidence of an age-related HPP-CFC hierarchy. Use of the Sca-1+,



Figure 16: Possible maturation scheme within
the high proliferative potential colony-forming

cell (HPP-CFC) population.
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Thy-1l°, lineage-negative ceil ’fingerprint’ by Sprangrude ef a/[1988], 

also appears to select HPP-CFC, specifically the more primitive HPP- 

CFC-1 subpopuiation. Thus techniques developed primarily to enrich 

the in vivo CFU-S populations and resolve subpopulations therin, are 

also proving to select the in vitro HPP-CFC and to resolve the HPP- 

CFC-1 and HPP-CFC-2 subpopulations therin. This is further evidence 

of a very ciose correlation between the in vivo CFU-S and the in vitro 

HPP-CFC populations.

A significant development of the in vitro HPP-CFC assay has been 

the isolation of a coiony-forming cell of high proliferative potential 

from human haematopoietic tissue [McNiece ef a/,1989]. While the in 

v/ve CFU-S assay [Till & McCulloch,1961] has allowed a quantitative 

and qualitative analysis of haematopoietic stem cell behaviour and 

regulation, it is strictly a murine assay. An equivalent assay of a 

primitive human haematopoietic precursor does not at present exist, 

although as previously discussed the human stem cell proliferation 

regulators can be assayed in the murine system. The potential of an 

in vitro assay of a primitive human haematopoietic precursor is thus 

significant. The human HPP-CFC reported [McNiece ef e/,1989b] is 

considered equivalent to the murine HPP-CFC-2 subpopulation and 

should allow a direct investigation of human haematopoietic stem cell 

behaviour in normal, regenerating, haematopoieticaliy stressed and 

foetal haematopoietic tissues and also potentially the behaviour of 

stem cells in haematopoietic disorders.

1.26 Refinement of the In vitro HPP-CFC technique 1 - Tl^e
"CFU-A" assay.

While demonstrating many functional similarities to the in vivo 

CFU-S popuiation, recent reports aiso demonstrate that the in vitro
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HPP-CFC population aiso shares many significant behavourai and 

regulatory similarities to the in vivo CFU-S population. As previously 

discussed, the synergism between certain colony-stimulating factors 

stimulates the proliferation of a number of different HPP-CFC 

subpopulations. GM-CSF and M-CSF/CSF-1 have been demonstrated 

to synergize [McNiece ef ai,1900b; Faik & Vogei,1900; Eckmann ef 

a/,1900; Pragnell ef a/,1900; Bot ef a/,1990; ef ai,1990] and

this synergy and the high proliferative potential coiony-forming cell 

stimulated by this combination of colony-stimulating factors, form the 

basis of the "CFU-A- assay [Eckmann ef ai,1900; Pragnell ef ai,1900; 

Lorimore ef a/,1990].

Eckmann ef ai[1900], Pragnell ef a/[1900], and Lorimore ef a/ 

[1990] have demonstrated that CFU-A stimulated by a combination of 

GM-CSF and M-CSFiCSF-1 from murine haematopoietic tissue are 

muitipotentiai precursors, giving rise to cells of the granulocytic, 

macrophagic, erythroid and megakaryocyte lineages and to 

immature, undifferentiated blast ceils. CFU-A are also reported to 

give rise to day 12 CFU-S, considered a relatively primitive 

component of the haematopoietic stem cell population, when 

injected into lethaily irradiated recipient mice. This agrees with the 

report of McNiece ef ai [1907b], who demonstrated the production of 

day 13 CFU-S on the transplantation of putative HPP-CFC-1 to lethaily 

X-irradiated mice. As well as a considerable proliferative potential, 

CFU-A also exhibit a self-renewai capacity, demonstrated by repiating 

experiments.

Perhaps of greatest significance has been the demonstration that

the CFU-A popuiation shows kinetic properties that mimic those of 

the in vivo CFU-S popuiation in both normal and haematopoieticaliy 

stressed tissues. CFU-A aiso show a sensitivity to the previously 

CFU-S-characterized stem cell proliferation inhibitor and stimulator.
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In normal, unstressed bone marrow, the proportion of

haematopoietic stem cells in S-phase, as measured by the in vivo 

CFU-S assay is relatively low at approximately 10%. The proportion of 

i(n vitro CFU-A in S-phase from such tissue is also relatively low at 

approximately 10%. This contrasts with the relatively high proportion 

of more mature, haematopoietic progenitor cells in S-phase at 30­

40%. in regenerating or haematopoieticaliy stressed haematopoietic 

tissue, the proportion of in vivo CFU-S in S-phase increases to 30­

40% and a similar Increase in the proportion of CFU-A in S-phase is 

observed.

The changes in the relative proportion of haematopoietic stem 

cells in S-phase are brought about by stem cell specific proliferation 

regulators - inhibitor and stimuiator. Significantly, the in vitro CFU-A 

population shows a sensitivity to these stem cell-specific proliferation 

regulators with stimuiator increasing the proportion of CFU-A in S- 

phase and inhibitor reducing the proportion of CFU-A in S-phase. 

(Use of the in vitro CFU-A assay assisted in the identification and 

characterization of the stem cell proliferation inhibitor as MiP-1 alpha 

[Graham ef ai,1990].)

As previously discussed, a variation in stem cell sensitivity to the 

proliferation regulators occurs with maturation. The more primitive 

haematopoietic stem cells (day 12 CFU-S) prove more sensitive to 

the proliferation inhibitorXhan to the proliferation stimulator, while 

more mature haematopoietic stem cells (day 8 CFU-S), prove more 

sensitive to the proliferation stimulator Xhan the proiiferation inhibitor. 

Lorimore ef ai[1990] have shown that both inhibitor and stimuiator 

are tltratabie activities using the in vitro CFU-A assay and that the in 

vitro CFU-A popuiation shows a greater inhibitor Xhan stimuiator 

sensitivity. This is somewhat anaiogous to the day 12 CFU-S, an 

exampie of a relatively primitive haematopoietic precursor, and
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further evidence that the in vitro CFU-A population is indeed a 

reiatively primitive haematopoietic precursor within the 

haematopoietic stem celi compartment.

Lorimore et ai [1990] have also explored the spatiai distribution of 

the CFU-A population within femoral marrow. The non-random, non­

uniform distribution of CFU-S within femoral marrow has been 

discussed. Axial cores of active murine haematopoietic tissue from 

femora, demonstrate the majority of slowly cycling, ’high quality’, 

relatively primitive stem cells lie axially, while the majority of more 

rapidly cycling, ’lower quality’, more mature stem ceils lie in the 

subendosteal marrow. Analysis of the CFU-A distribution 

demonstrates that the majority of CFU-A lie in a region deep to the 

subendosteal region, implying their being at least one step removed, 

and so more primitive than, the more rapidly cycling, more mature, 

subendosteal stem cell population. Radiation sensitivity and density 

separation characteristics of the in vitro CFU-A are also comparable 

to the in vivo CFU-S population [Lorimore ef a/,1990].

in conclusion, there is considerable evidence that the in vitro 

CFU-A HPP-CFC subpopuiation is a reiatively primitive 

haematopoietic precursor and that the in vitro CFU-A assay is indeed 

an assay of a component of the haematopoietic stem cell population. 

As such it should greatly assist investigation of the regulation and 

behaviour of the haematopoietic stem celi population.

1.27 Refinement o1f the in vitro,HPP-CFC technique 2 - The
"HPP-CFC,L3+csf..," assay.

A high proliferative potential colony-forming cell population can 

be isolated in vitro from murine haematopoietic tissue by a

synergistic interaction between interleukin 3 (IL3)/multl-CSF and M-
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CSF/CSF-1 [Chen & Clark,1906; Koike ef ai,1906b; McNiece et al, 

1907b; Williams ef a/,1907; Bartelmez ef a/,1909; Morris ef a/,1990] 

termed “HPP-CFCjc+csf-A a maJ"or objective of this research project 

will be the characterization of baiiaviour and

regulation. Using a combination of WEHI-3B myelomonocytic 

ieukaemic cell line conditioned medium, as a crude source of murine 

interleukin 3 (iLaj/multi-CSF [Warner ef ai,1969; Metcalf ef a/,1969; 

Ihie ef a/,1902; Lee ef a/,1902; Baziii ef a/,1903; Ciark-Lewis ef a/,1905; 

McNiece ef a/,1905] and L929 fibroblast cell line conditioned medium, 

as a crude source of murine M-C5F/C5F-1 [Stanley & Heard,1977; 

Burgess ef a/,1977; Waheed & 5hadduck,T902; Burgess ef a/,1905] 

the number, cellular composition and proportion of HPP-CFC1L3+tof.i 

in S-phase in normal and regenerating, or haematopoietically- 

stressed, murine haematopoietic tissue, will be investigated and 

comparison made with the behaviour of the in vivo CFU-S [Till & 

McCulloch,1961] and in v/fre CFU-A (PPP-CFCGM.tot+cot-1) [McNiece 

ef a/,1900b; Falk &Vogel,1900; Eckmann ef ai,1900; Pragnell ef 

a/,1900; Bot ef a/,1990; Lorimore ef ai,1990]. Correlation between in 

v/vo CFU-S, in vitro CFU-A and in vitro PPP-CFC1L3+CoF.i behaviour 

would be evidence for the primitive nature of the PPP-CFC^cs^ 

population.

PPP-CFC1L3+CsF1 sensitivity to the stem cell-specific proliferation 

regulators inhibitor and sfimu/atorwUl be investigated and if 

demonstrable would further reinforce the evidence for the HPP- 

CF^L3+c3sif-i being a primitive haematopoietic precursor population, 

possibly a component of the heterogenous haematopoietic stem cell 

compartment. The relative sensitivity of PPP-CFC^cs^i to both 

inhibitor and sf/mu/ator may allow the position of the popuiation 

within the heterogenous, age-reiated haematopoietic stem cell 

hierarchy to be determined.
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If Similar behavioural and regulatory characteristics are 

determined for the CFU-S, CFU-A and HPP-CFC|L3+csf_1 populations, 

the potential of the in vitro HPP-CFC^^+GsF.i assay as a technique with 

which to investigate haematopoietic stem cell behaviour and 

regulation In aberrant haematopoiesis will be developed. Specifically, 

the assay will be used to investigate stem ceil behaviour and 

regulation in the neoplastic proliferative disorder of the 

haematopoietic system - myeioid ieukaemia. A number of X- 

irradiation induced, murine, serially passaged, myeloid leukaemias 

have been established in this laboratory [Hepburn ef ai,1987] and will 

be used as models with which to investigate such aberrant 

haematopoiesis.

1.28 Leukaemia and leukaemia associated inhibition of
normal haematopoiesis.

’Leukaemia', a term applied to a group of malignant 

haematopoietic proliferative disorders, is characterized by the 

abnormal production of white blood cell precursors. Leukaemias 

differ In both cell lineage (neoplastic proliferation is usually restricted 

to one celi lineage), and degree of cellular differentiation (with poorly 

differentiated cells usually indicative of a rapidly progressing, 

aggressive, ’acutd leukaemia, while more differentiated ceils usually 

indicate a slowly progressing, less aggressive, "chronid leukaemia). 

The abnormal white blood cells produced enter, and circulate in the 

bloodstream to extensively infiltrate the haematopoietic system, liver, 

spleen and many other tissues. Often disease progression is 

associated with hepatic and splenic enlargement (hepato- and 

splenomegally) as the organs become diffusely Infiltrated by 

ieukaemic cells. One particularly significant aspect of most
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leukaemias is a leukaemia-associated suppression of normal 

heemetopoiesis. A consequence of this suppression of normal 

haemetopoiesis is that death may result from anaemia, haemorrhage 

or infection due to a lack of functional erythrocytes, platelets and 

granulocyte-macrophages. This leukaemia-associated suppression 

of normal haemetopoiesis is of particular interest and may explain the 

'proliferative advantage’ developed by the Ieukaemic cells. The 

selective inhibition of normal haematopoiesis by putative leukaemia- 

associated inhibitory activities can be envisaged. In such a system, 

the ieukaemic cells would be insensitive to such inhibition and be 

able to proliferate at the expense of normal haematopoietic tissue. 

Evidence for such leukeemla-essocleted inhibitory activities has been 

reported.

Olofsson and Olsson [1980a; 1980b; 1980c], Olofsson ef a/ [1984] 

and Olofsson and Sailefors [1987], report the isolation of a 500,000­

600,000 dalton, heat stable glycoprotein, produced by acute and 

chronic myeloid ieukaemic ceils and the HL60 promyelocytic 

Ieukaemic cell line. The factor, "Leukaemia Associated Inhibitor'

(LAI), is reported to inhibit normal bipotential granulocyte- 

macrophage progenitor cell proliferation, while Ieukaemic cells prove 

insensitive to the inhibition.

Broxmeyer ef£/[l978], Bognaki ef e/[1981], Broxmeyer et at 

[1981; 1982; 1983], Jacobs [1983], Sala ef e/[1986] and Broxmeyer ef 

e/[1989], report the isolation of a 550,000 dalton moiety, , active at 

10*17~10" 19% and suppressing normal granulocyte-macrophage 

progenitor cell proliferation. Produced by Ieukaemic cells, which 

themselves prove insensitive to it’s inhibitory activity, "Leukaemia- 

associated inhibitory Activity' (LiA), has subsequentiy been reported 

to be acidic isoferriti‘n. Whether LAi or LiA possess inhibitory activity 

at the level of haematopoietic stem cell proliferation is unclear.
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1,29 Aims and objectives.

In this study, medium conditioned by the radiation-induced, 

serially passaged, murine, myeloid leukaemias will be investigated 

using the in vitro HPP-CFC1L3+csm assay. The respective levels of 

endogenous inhibitor and stimulator will be determined and 

abnormalities investigated. Any abnormalities may represent a 

manipulation of endogenous proliferation regulator production 

and/or action by the developing leukaemia allowing it a proliferative 

advantage over, and at the expense of, normal haematopoiesis.

A possible explanation of the development of the Ieukaemic 

proliferative advantage over normal haematopoiesis may be a change 

in the sensitivity of the ieukaemic cells to inhibitor. A leukaemogenic 

change at the level of the stem cell population may, amongst other 

properties, remove or reduce stem cell sensitivity to inhibitor. As a 

result, despite the relatively high endogenous levels of inhibitor in the 

normal haematopoietic tissue, Ieukaemic stem ceil proliferation will 

occur. Existing haematopoietic feedback mechanisms may detect the 

excessive, inappropriate white blood cell production and lead to an 

increase in inhibitor levels. However, despite increased inhibitor 

levels, the ini7iM/tor-insensitive Ieukaemic proliferation will continue at 

the expense of the normal, inhibttor-sens'Xive haematopoietic tissue.

Another possibility may involve the production of leukaemia- 

associated inhibitory activity, similar to LAI and LIA. This factor may 

possess inherent inhibitory activity to directly suppress 

haematopoietic stem cell proliferation, or it may act indirectly to 

block the production and/or action of the endogenous proliferation 

regulators. With ieukaemic progression the composition of the blood 

becomes abnormal. Such abnormalities are normally corrected by an 

intricate haematopoietic feedback mechanism, adjusting
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haematopoietic output to restore the composition of the blood. Part 

of this restorative mechanism is an increase In haematopoietic stem 

celi proliferation induced by stimulator. In effect, with Ieukaemic 

progression the haematopoietic system is ’stressed’ but apparently 

fails to respond and the quality of the peripheral blood deteriorates. 

The putative leukaemia-associated activity may act to block the 

production and/or action of stimuiator. The suppression of normal 

haematopoiesis may be a result of a failure of haematopoietic 

stimulation. Interestingly, if stimulator is produced but inactivated, it 

may act to prevent iniiid/for production, so that during subsequent 

HPP-CFCIL3+F5F-1 assay of the ieukaemic ceil conditioned medium 

neither factor is detectable.

Another possibility may be the production of a leukaemia- 

associated factor which is a stimulatory activity to which only the 

Ieukaemic cells are sensitive. Again Ieukaemic proliferation at the 

expense of normal haematopoiosis would be observed. Whether 

such a factor would be detectable using the in vitro PPP-CFC1L3+Cot_ i 

assay using normal haematopoietic tissue remains to be seen.

A basic understanding of the mechanism by which Ieukaemic 

cells develop a proliferative advantage over normal haematopoietic 

tissue, would be a considerable step towards the development of 

more effective disease therapy and management. Depending on the 

mechanism of action of the Ieukaemic proliferation, it may prove 

possible to overcome the leukaemia-associated deterioration of the 

blood ’quality’, by the exogenous addition of stimuiator. if normal 

haematopoietic output could at least be maintained then the life 

threatening aspects of the leukaemia-associated anaemia, 

haemorrhage and infection may become less problematic and allow 

some degree of disease management, although not achieving a 

’cure’. The potential loss of proliferative advantage by the Ieukaemic
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system may in itself hamper disease progression and assist survival.

This always assumes that exogenous stimuiator does not promote 

leukaemia proliferation.

if a difference in normal and Ieukaemic sensitivity to inhibitor 

could be demonstrated, then this could be exploited. 

Chemotherapeutic and radlotherape-uhc regimes are most effective 

against proiiferating celi populations. If Ieukaemic proliferation were 

determined to be insensitive to inhibitor, exogenous inhibftor applied 

prior to therapy would reduce the proportion of normal 

haematopoietic stem ceils in S-phase, while leaving a cycling 

Ieukaemic population as specific targets for such agents. This 

ertiiicial manipulation of the haematopoietic system to a therapeutic 

advantage has great potential, but will rely on the development of an 

understanding of Ieukaemic proliferation regulation.

In addition to the investigation of leukaemia, a further objective of 

this research project will be an Investigation of the low molecular 

weight stem cell proliferation inhibitor, the tetrapeptide AcSDKP. 

Using the in vitro HPP-CFCagacsF-i assay, the mechanism of action of 

AcSDKP (kindly supplied by Dr. Maryse Lenfant, ICSN, CNRS, Gif-sur- 

Yvette, France) will be investigated to determine whether the peptide 

possesses inherent inhibitory activity or acts indirectly by interacting 

with the production and/or action of inhibitor and/or stimulator. 

Various peptide analogues of AcSDKP (kindly supplied by Dr.

Lenfant) will also be investigated to determine the minimal active 

amino acid sequence of the parent molecule and to determine 

whether more potent heemoreguletory moieties exist.



Chapter 2

Materials
and

Methods
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2.1 Mice and Pousinq,

Experiments and procedures were performed on CBA/H strain 

mice bred inhouse at the University of St.Andrews Animal Facility, in 

accordance with the Pome Office Animai (Scientific Procedures) Act 

1906. Mice were exposed to a 12 hour iight/dark cycie and kept at an 

ambient temperature of 21-23°C. Animal house feed SDS RMI(C) % 

pellets (Special Diet Services, Essex) and chlorinated water (20mg 

sodium dichioroisocyanurate/l) (Presept Disinfectant Tablets, 

Surgikos Ltd.) were allowed ad libitum.

2.2 Experimental Tissue.

Haematopoietic tissue was obtained from the marrow cavities of

murine femora. 9-12 week old CBA/H strain mice were killed by ether 

inhalation overdose and intact femora dissected and removed to a 

sterile plastic petridish. Tissue was transfered to a sterile laminar flow 

cabinet and desiccation avoided by covering tissue with sterile 

medium. Muscle tissue was scraped from the femora using a scalpel 

blade and the ball jcont removed. A 1ml syringe charged with sterile 

medium and fitted with a 23 gauge (G) needle was inserted through 

the articular cartilage of the femur using a gentle ’drilling’ action. 

Minimal trabecular bone allows a discharge of medium from the 

syringe to drive haematopoietic tissue from the marrow cavity as a 

’plug’ into sterile medium. Repeated flushing of the marrow cavity 

ensured maximal haematopoietic tissue was removed.

Microscopic analysis confirms that a single cell suspension was 

produced by a gentle repeated drawing of the marrow ’plug’ through 

a 1ml syringe fitted with a 23G then a 25G needle. Excessive, or 

overvigorous, syringing should be avoided since this leads to ceil
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membrane damage, cell-cell adhesion and ’clumping’. Celiularity was 

determined using an electronic particle counter (Coulter Counter 

Model ZM, Coulter Electronics.) and dilutions performed in 

appropriate medium.

2,3 Determination of the Celiularity of Single Cell
Suspensions,

The celiularity of single cell suspensions was determined using 

an electronic particle counter (Coulter Counter Model ZM, Coulter 

Electronics). Cells are suspended in an isotonic, electrically 

conductive medium (isoton ii, Coulter Electronics). The medium 

passes through a small aperture (1OOpM diameter) and an electrical 

current is recorded. Cells in the medium produce a temporary 

impedance to the electrical current proportional to the cellular 

volume. Electronic circuitry reads the impedance as a ’pulse’ and as 

a given volume of cell suspension (0.5mi) is drawn through the 

orifice, the number of pulses generated corresponds to the number 

of cells in that volume and the size distribution of the cells 

corresponds to the size distribution of the electrical pulses. With high 

counts a correction for ’coincidence counting’, where more than one 

celi passes through the orifice at any one time, is made. Cell 

’clumping’ is a major source of potential error and as cells tend to 

settle with time, gentle inversion of the counting vial ensures a 

homogeneity of cell suspension.

Coulter Counter settings were optimized by prior calibration with 

the cell type of interest. Settings were adjusted until criteria for an 

accurate cell count were met. A calibration curve was produced 

[Figure 77] and settings chosen on the ’plateau region’ to exclude



Figure 1i: Coulter Counter Titration Curves For:
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cell debris and platelets while giving an accurate cell count, which 

can be verified by use of a hemocytometer.

The following settings proved appropriate for the accurate 

determination of the cellularlties of single cell suspensions of bone 

marrow and spleen and thymus tissue :

Current,! = 130 (1.3mA), Full Scale^S = 10mA, Lower 

Threshold,TL = 30, Attenuafion,A = 1 and Preset Gain,PG = 2.

Routinely six counts were made and the average of three similar 

values taken. A background count. In the absence of cells, was taken 

and subtracted from this average count. From dilutions made, the 

cellularity of the original suspension was determined.

40pl, or 1OOfil of single cell suspension were added to 20mls of 

Isoton II (Coulter Electronics). Prior to counting, 3 drops of a red 

blood cell-lysfng solution (Zaponin, Coulter Electronics) (25ml acetic 

acid/l) was added to allow a nucleated cell count and the Coulter vial 

gently inverted. 0.5ml, Zaponized, single cell suspension was Coulter 

counted and with the use of a x1OOO, or x400 dilution factor 

respectively, the cellularity of the source single cell suspension can 

be determined.

2,4 Cellular Staining and Cytology.

Cytology was performed on cytocentrlfuged (Cytospin 2, 

Shandon) preparations. Single cell suspensions of tissue were 

produced, cellularity determined and adjusted to 2-5x1 O5cen/mL 0.5ml 

of single cell suspension was added to a Cytospin funnel and spun 

(x000 rpm, 10 mins.). Cells deposited on the slide were air dried and 

Jenner-Giemsa stained

Fix in methanol (ISmins.)

Jenners stain (BDH) (^mins.)
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6.8pH buffer rinse 

Giemsa stain (BDH) (1Omins.)

6.8pH buffer rinse

Slides were allowed to air dry and preparations can be mounted

using a mounting medium (DePeX, BDH) and coverslip.

Alternatively, more rapid staining was achieved using the Diff-

Qulk staining system (Merz + Dade AG, Switzerland). Slides were 

prepared and air dried. Staining was performed by dipping slides 

repeatedly for 35 seconds In each of a fixative solution (Fast green in 

methanol), stain solution I (Eosin G) and stain solution ii (Thiazine 

dye). Continuous immersion of slides gives unsatisfactory results. 

Excess solution was allowed to drain after each dip and between 

each solution. Slides were rinsed in pH 6.8 buffer and allowed to air 

dry. Preparations can be mounted using a mounting medium (DePeX, 

BDH) and coverslip.

2,5 ProProtion of Medium Co nditioneo Bd WEHI 3B
Mveiomonocvtic Leukaemic Cell Line and L929 Fibroblast

Cell Line,

WEHi 3B myBloooncytic leukaemic cell line is a non-adherent cell 

line, growing as a single cell suspension. WEHI 3B cell line-

conditioned medium is a crude source of interleukin 3 (IL3)imulti-CSF 

[Warner ef ai,1969; Metcalf ef a/,1969; ihle ef 0,1982; Lee ef ai,1982; 

Bazill ef ai,1983; Clark-Lewis ef a/,1985; McNiece ef ai,1985]. L929 

fibroblast cell line is an adherent cell line growing as a monolayer. 

L929 conditioned medium is a crude source of macrophage colony- 

stimulating factor (M-CSF/CSF-1) [Stanley & Heard,1977; Burgess ef 

a/,1977; Waheed & Shadduck,1982; Burgess ef ai,L985]. Both WEHi 

3B and L929 cell lines were maintained in culture at 37°C In
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Dulbeccos medium supplemented with 50 i.U./ml benzyl penicillin, 50 

pg/ml streptomycin sulphate, 2 mM L-glutamine and 10% (v/v) foetal

calf serum.

Medium was considered ’conditioned’ after a 3 day incubation 

with either WEHi single cell suspension, or confluent L929 

monolayer. Half the incubation medium was removed and replaced 

with fresh medium and incubation continued for three days before a 

second harvest. A maximum of 3 harvests of conditioned medium 

from one L929 monolayer were taken before passaging and 

restablishment of a fresh monolayer. In effect each harvest of WEHI 

conditioned medium acts as a passage.

Conditioned medium removed was centrifuged (x1OOO rpm, 15 

mins.) to remove cells and initially bulk frozen (-20°C). Once a 

sufficient volume of conditioned medium was produced, the whole 

was thawed, MilliPore filtered (0.22 pM), aliquoted and frozen (-20°C). 

The ’potency’ of each batch of conditioned medium was assessed by 

performing a titration of the colony-stimulating activity in both the in 

vttro GM-CFC (2.9) and HPP-CFC (2.10) assays. Individual aliquots 

were not refrozen once thawed.

Cell lines were stored cryopreserved in liquid nitrogen (-196°C) 

until required. 1ml aliquots of 5-10x1Ca cell/ml in supplemented 

Dulbeccos medium, 10-20% (v/v) foetal calf serum and 5-10% (v/v) 

DMSO (Dimethyl Sulphoxide, AnalaR, BDH), were placed in cryotubes 

(Cel-Cult, Sterilin), chilled on ice then transfered to the gas-phase 

compartment of an N2 freezer. After 12 hours cryotubes can be 

transfered to the liquld-phase compartment of the N2 freezer.

When required cells were rapidly thawed from the N2 freezer at 

37°C, washed and suspended in supplemented Dulbeccos medium 

with 10% (v/v) foetal calf serum In 25 cm2 tissue culture flask (Cel-
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Cult, Sterilin) and incubated at 37°C to restablish the cell line before 

passaging.

Passaging of the non-adherent WEPI cell line was continuous as 

conditioned medium was harvested. L929 cell line grows as a 

monolayer and requires trypsin digestion to produce a single cell 

suspension prior to passaging. Medium was completely removed and 

the monolayer washed with 0.05% trypsin (Sigma) in phoshate 

buffered saline and 0.5M EDTA (Ethylenodiamino tetraacetic Acid, 

Sigma). A wet film of trypsin was left over the monolayer and 

incubated at 37°C for 5 minutes. Addition of medium was sufficient to 

disrupt the monolayer and produce a single cell suspension.

Collularltios prior to passage were determined using a Coulter 

Counter Model ZM at settings:

WEPI 3B: Current,! = 700 (0.7mA), Full Scale, FS = 1mA, Lower 

Threshold, Tc = 30, Attenuation = 16, Preset Gain = 2.

L929: Current,! = 700 (0.7mA), Full Scale, FS = 1mA, Lower 

Threshold, Tc = 20, Attenuation = 32, Preset Gain = 2.

Medium conditioned by AF1-19T cell line was aiso produced. 

AF1-19T normal rat kidney cell line, transformed with the malignant 

histiocytosis sarcoma virus (MHSV) is a crude source of GM-CSF 

[Pragnell ef a/,1900; Kriegler ef ai,1990]. AF1-19T is an adherent cell 

line growing in culture as a monolayer. It was maintained in culture 

and passaged similarly to L929 cell line. AF1-19T cell line conditioned 

medium was prepared similarly to the L929 cell line conditioned 

medium, aliquoted and stored at -20°C.
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2,6 Recombinant haematopoietic colony-stimulating
factors.

In specific experiments more rigorously defined conditions were 

applied through the use of recombinantly derived haematopoietic 

colony-stimulating factors:

Murine interieukin 3 (IL3)/multi-CSF was kindly supplied by 

Genetics Institute, Massachusetts, £.S.A, as a crude conditioned 

medium from recombinantly engineered CHO cells.

Human macrophage coiony-stimulating factor (M-CSF/CSF-1) 

was kindly supplied by Genetics Institute, as a crude conditioned
I

medium from recombinantly engineered CHO cells.

Murine granuiocyte-macrophage coiony-stimuiating factor (GM- 

CSF) was kindly supplied by both Genetics Institute, as a crude 

conditioned medium from recombinantly engineered COS cells and 

Immunex, Washington, U.S.A., as a lyophilized protein sample.

Human interleukin 1 (IL1) was kindly supplied by both Genetics 

Institute, as a crude conditioned medium from recombinantly 

engineered COS cells (IL1 alpha) and Immunex, as lyophilized 

protein samples (IL1 alpha and beta).

2,7 Determination of the activity of recombinant
haematopoietic colony-stimulating factors.

The relative activities of recombinant murine interleukin 3 

(IL3)/multi-CSF, human M-CSF/CSF-1 and murine GM-CSF were 

determined using two distinct assay systems:

1) The in eitro granuIenyte-ryacrLehage aglony1torming cnl! assaa

[Figure 18[ (2.9) and,



Figure 18: GM-CFC titration of recombinant
colony-stimulating factors.
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2) The in eitro vntioted thymidine (3H~TCP- uptake assaa [Figure 

19[i The ir vitco tritiated thymidine (3H-TdR) uptake assay was used 

to measure ceilular proliferation of murine femoral bone marrow in 

the presence of a range of dilutions of haematopoietic colony- 

stimulating factors. 3H-TdR competes with native thymidine for 

incorporation into newly synthesizing DNA at S-phase and 

proiiferating cells are thus radioactiveiy labelled. (The specific activity 

of the CH-TdR used (105 GBq/mmol) is not sufficient for its 

incorporation to result in S-phase death of the ceil.)

A single celi suspension of normal, murine, femoral marrow was 

produced in RPMI medium (Gibco) supplemented with 50 I.U./ml 

benzyl penicillin, 50 pgiml streptomycin sulphate, 2 mM L-glutamine 

and 10% (v/v) foetal calf serum (Gibco), cellularity determined and 

adjusted to 7x105 cellsiml. 100 pi, 7x105 cells/mi was aliquoted into an 

appropriate number of flat-bottomed wells of a 96 well microtitre 

plate (Nunc).

A range of haematopoietic coiony-stimulating factor dilutions 

were prepared and 100 pi added to appropriate cell-containing wells. 

The final dilution of colony-stimulating factor in the 200 pi total 

volume was determined and cells incubated for 4 days In a 37°C, 5% 

COg in air, fully humidified atmosphere. At t=4 days, 25 pi of 300 

KBq/mi CH-TdR (Amersham) was added to each well and incubation 

continued for 0 hours.

At t=0 hours, cells were harvested using a Titertek cell harvester 

(Skatron, Norway) onto glass-flbre filter paper sheets (Titertek). After 

thorough oven-drying, individual filter discs were placed in 

scintillation vials and 2mls of scintillant ^p^hase ’Safe’, FSA 

Laboratories, Loughborough) added. 3H-TdR uptake by proliferating 

cells was determined using a liquid scintillation counter (LKB1214 

Rackbeta). Each vial was counted for a five minute period and a



Figure 19: Tritiated thymidine uptake assay
as a measure of cellular proliferation.
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'counts per minute' (CPM) value determined. The CPM figure reflects 

3H-TdR incorporation which inturn reflects cellular proliferation. 

Cellular proliferation was subsequently related to the dilution of 

colony-stimulating factor and a dose-response curve established.

2,8 Murine thymocyte proliferation assay of
interieukin 1 activity,

[Figure 20 Thymic tissue was removed from 2-3 week old GBA/H 

mice. A single ceii suspension of thymocytes was produced in RPMI 

medium (Gibco) supplemented with 501U./mi benzyl penicillin, 50 

ag/mi streptomycin sulphate, 2 mM L-glutamine and 10% (v/v) foetal 

calf serum (Gibco), celiuierlty determined and adjusted to 102 cell/ml.

a) Titration oo co^^<^^l^^\^^lim A.

Ooncanaveiin A (Con A) will Itself stimulate thymocyte

proliferation. A suboptimei concentration of Con A was required to 

allow subsequent interleukin 1 titration.

10071107 thymocytes/ml were added to an appropriate number 

of flat-bottomed wells of a 96 well microtitre plate (Nunc) and 50 pi of 

variously diluted Con A added. The final concentration of Con A in 

the 150 pi total volume was determined and ceils incubated for 3 days 

in a 37°C, 5%COg in air, fully humidified atmosphere. At t=3 days, 25 

pi of 300 KBq/mi 3H-TdR (Amersham) was added to each well and 

incubation continued for 16 hours. At t=16 hours, ceiis were 

harvested and 3H-TdR incorporation determined by scintillation 

counting. 3H~TdR incorporation, related to cellular proliferation was 

subsequently related to Con A concentration and a dose-response 

curve established [Figure 21],



Figure 20: The murine thymocyte assay of interleukin 1.
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thymidine incorporation, is related to interleukin 1 levels.



Figure 21 : Concanavalin A titration.
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b) Tiiration oo inteiTeukin 1.

tOOpI, 10C thymocytes/ml were added to an appropriate 

number of flat-bottomed wells of a 96 well microtitre plate (Nunc) and 

50 pi of Con A sufficient to produce a final concentration of 1.5 pg/ml 

in a 200 pi total volume was added. 50 pi of variously diluted 

Interleukin 1 (alpha or beta) was added to appropriate wells and the 

final dilution of interleukin 1 in the 200 pi total volume determined. 

Cells were Incubated for 3 days in a 37°C, 5%C02 in air, fully 

humidified atmosphere. At t=3 days, 25 pi of 300 KBq/mi ^-TdR 

(Amersham) was added to each well and Incubation continued for 16 

hours. Att= 16 hours cells were harvested and CH-TdR incorporation 

determined by scintillation counting. Cp-TdR incorporation, related to 

cellular proliferation was subsequently related to the dilution of 

interleukin 1 and a doso-respoHSo curve established [Figure 22].

2-9 Ir Vitro GryHulochto-Mycroehyyo ColoHg-Formmy Cell
(GM-CFC)Aooyg^

A single cell suspension of haematopoietic tissue was produced

in Dulbeccos medium (Gibco) supplemented with 50 l.U./ml benzyl 

penicillin (Glaxo), 50 pgiml steptomycin sulphate (Evans), 2 mM L- 

glutamine (Flow Laboratories) and 20% horse serum (Gibco). 

Cellularity was determined and adjusted to 5x103 cell/ml. 1ml, 5x103 

cell/ml and 1ml, melted 3% (w/v) agar (Difco BactoAgar) were added 

to 0mls of warmed (37°C), supplemented Dulbeccos medium. 1ml 

aliquots of the lOmls, 5x104 cell/ml in 0.3% agar produced, were 

plated in 30mm plastic, non-tissue culture grade, triple vent, 

petridishos (Sterilin), over a volume of haematopoietic colony- 

stimulating activity. Routinely medium conditioned by WEHI3B 

myelomoHOcgtic leukaemic cell line was used (a crude source of



Figure 22: Interleukin .1 titration.
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interieukin 3 (IL3)/multi-CSF). After titration, lOOpI WEHI 3B

conditioned medium/1 mi single ceil suspension in 0.3% agar plated,

was found to have an optimal colony stimulating activity (10% v/v final

concentration).

A titration of medium conditioned by L929 fibroblast cell line, a

crude source of macrophage coiony-stimuiating factor (M-CSF/CSF- 

1), medium conditioned by AF1-19T ceil line, a crude source of GM- 

CSF and of recombinant coiony-stimuiating factors was performed 

using this technique.

The agar was allowed to set and cultures were incubated in a 

37°C, 5%CO2 in air, fully humidified atmosphere for 7 days. Colonies 

were assayed on day 7 using a binocular dissecting microscope, set 

up to give dark field illumination and colonies in excess of 50 ceiis 

counted. Collections of less than 50 ceiis were considered ’clusters' 

and were not counted [Figure 23[.

2.10 /n vitro High Proliferative Potential Colony-Forming
Ceii (HPP-CFC) Assay.

This assay utilizes a combination of haematopoietic colony- 

stimulating factors and employs a biiayer agar culture technique. A 

’feeder’ layer containing the colony-stimulating factors underlies a 

cellular layer. Coiony-stimuiating factors diffuse from the underlying 

’feeder’ layer to influence the proliferation and differentiation of ceiis 

within the cellular layer.

Underlaver : A combination of haematopoietic coiony-stimuiating 

factors was added to a volume of 37°C Dulbeccos medium 

supplemented with 50 1U./ml benzyl penicillin, 50 pg/ml steptomycin 

sulphate, 2 mM L-glutamine and 20% horse serum, sufficient to 

produce a total of 9mis and 1ml, 5% (w/v) melted agar (Difco



Figure 23: The granulocyte-macrophage
cciony-forming cell (GM-CFC) assay.

1 ml melted 3% agar
1ml 5x10 5 cellsiml

8mls warmed Dulbeccos medium 
supplemented with benzyl penicillin, 
streptomycin sulphate, L-glutamine

and 20% horse serum.

1ml aliquots of 5x104cell/ml in 
0.3% agar, plated in 30mm petridishes

over a volume of colony-stimulating
activity.

Colony-stimulating
activity.

Incubated for 7 days at 37°C
in a 5%C02 .fully humidified

atmosphere.
Colonies assayed at day 7 

using dark field illumination. 
A "colony" is defined as 
greater than 50 cells.

7 days

▼
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BactoAgar) was added. 1ml/2ml aliquots of the 10ml medium In 0.5%

agar containing the combination of colony-stimulating factors were 

plated in 30mm/50mm plastic, non-tissue culture grade, triple vent, 

petridiohes. The agar was allowed to set and these ’feeder’ layers 

were stored in a 37°C, S^tCOg in air, fully humidified atmosphere until 

required.

Routinely medium conditioned by WEHI 3B mye1omonocgtic 

leukaemic cell line (a crude source of ' Interleukin 3 (IL3)imulti-CSF) 

and medium conditioned by L929 fibroblast ceil line (a crude source 

of M-CSF/CSF-1) were used in combination. Titration of conditioned 

media both singly and in combination demonstrated 10% (v/v) of 

each in combination produced optimal HPP-CFC proliferation. Thus, 

1mi each of WEHI 3B and L929 conditioned media were added to 

7mls of supplemented Dulbeccos medium and 1 ml, 5% (w/v) agar 

added. In specific instances different combinations of conditioned 

media were used and in other cases, recombinant colony-stimulating 

factors were investigated.

Cellular laver : A single ceil suspension of haematopoietic tissue 

was produced in Dulbeccos medium supplemented with 50 l.U./ml 

benzyl penicillin, 50 pgiml oteptomgcin sulphate, 2 mM L-glutamine 

and 20% horse serum. Experimental evaluation demonstrates that the 

cellularity of tissue plated to produce sufficient HPP-CFC-derlved 

colonies at assay, varies according to the source of the tissue.

Normal haematopoietic tissue was diluted to 2.0-2.5x105 cell/mi, while 

haematopoietic tissue from mice subjected to whole body X- 

irradiation (2.13) was diluted to 5.0x104 cell/ml.

1ml, 2.0-2.5x105 normal bone marrow cells/mi, or 5.0x105 whole 

body X-irradlated bone marrow cellsiml and 1ml, 3% (w/v) melted 

agar were added to 0mls, 37°C, supplemented Dulbeccos medium. 

1ml/2ml aliquots of the 10ml, 2.0-2.5x10'' normal bone marrow
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ceils/ml, or 5.0x103 whole body X-lrredleted bone marrow ceils/mi In 

0.3% agar, were plated in 30mm/50mm petridishes over the 

previously prepared 0.5% agar 'feeder' layers containing the colony- 

stimulating iectors. The agar was allowed to set and cultures 

Incubated in a 37°C, 5% COg in air, fully humidified atmosphere for 14 

days, a period of incubation which, during evaluation, proved optimal 

for HPP-CFC proliferation.

Colonies were assayed unstained using a binocular dissecting 

microscope set up to give dark field illumination. Alternatively, 12-24 

hours prior to assay, O.5mil1.OmI of an autoclaved solution of 1mg 

INT/ml 0.9% (w/v) NaCI was added to each 30mm/50mm culture dish 

and incubation continued. (INT = 2(4-iodophenyl)-3-(4-nitrophenyi)- 

5-phenyitetrazolium chloride, BDH/Sigma) [Bol ef a/,1977]. As viable 

ceiis proliferate in vitro, in response to coiony-stimuiating factors, 

they convert the colourless tetrazolium sait to a water insoluble red 

formazan which precipitates inside ceiis. The contrast of colonies 

was increased sufficiently to allow macroscopic assay.

Colonies in excess of 2 mm diameter were established during 

evaluation as the population of colony-forming cells of interest a 

criterion applied by Pragneii ef a/[1988], Eckmann ef and

Faik and Vogel [1988]. Colony size was determined using a 1mm grid 

on a clear acetate sheet underlay [Figure 24\.

2,11 Fixation and Staining of GM-CFC and HPP-CFC-

Derived Colonies.

Colonies can be fixed after assay using an overlay of a 10% (v/v) 

formalin solution and can be stored at +4°C, in a humidified 

atmosphere. Alternatively, the colony-containing agar disc can be 

removed from the petridish and mounted on a glass slide:



Eigure 24: The high proliferative potential colony-forming
cell (HPP-CFC) assay.

Underlayer.

1ml melted 5% agar
1ml WEHI conditioned medium
1ml L929 conditioned medium

7mls warmed Dulbeccos medium 
supplemented with benzyl penicillin, 
streptomycin sulphate, L-glutamine

and 20% horse serum.

Cellular layer.

1 ml melted 3% agar.
1ml 2x105normal 

i 5x10® X-irradiated 
cellsiml

8mls warmed Dulbeccos medium 
supplemented with benzyl penicillin, 
streptomycin sulphate, L-glutamine

and 20% horse serum.

Jb Culture layer Ki
'XXXXXXXXXXXXXXXXXXXXXXXXXXX

sssssssssssssssss sssssssss
/•xxxxxxxxxxxxxxxxxxxxxxxxxxx

1ml/2ml, 2x105normal i 5x1 O4 X-irradiated 
cellsZml in 0.3% agar are plated in 30mmi 
50mm plastic petridishes over the 0.5%
agar feeder layer containing 10% (viv) 

each of WEHI and L929 conditioned media.

Assayed after 14 days incubation.

HPR-CFC-derived colony defined as 
a colony in excess of 2mm diameter.
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Cultures were cooled (+4°C) to solidify the 0.3% coiony-

contalning agar. Potridioheo were then carefully submerged in a 

+4°C, isotonic solution (Isoton II, Coulter Electronics). If already 

fixed with 10% formalin, +4°C water may be used. A 25G needle was 

run around the edge of the agar disc and the 0.3% agar culture layer 

floated free from the petridish. In the case of the PPP-CFC assay, the 

0.3% agar culture disc can aiso be floated free from the 0.5% agar 

’feeder’ layer.

The freo-floatiHg 0.3% agar disc was captured on a methanol- 

cleaned 2“x3" glass slide and carefully removed from the solution. An 

filtereaper disc (Whatman 541,5.5cm) was placed over the agar disc 

to remove excess fluid and the whole allowed to air dry. Once dry the 

filter paper disc was easily removed.

If already stained with INT, PPP-CFC-derived colonies were 

apparent in the othe-rwise unstained agar disc. Unstained GM-CFC 

and PPP-CFC-derived agar discs can be Jenner-Giemsa stained (2.4). 

After staining, colonies macroocopically stain dark blue in a blue­

staining agar disc. Resolution for microscopic iHhootigytioH proved 

relatively poor due to the residual thickness and background staining 

of the agar. Slides can be mounted using DePeX (BDP) mounting 

medium and a glass coversiip.

2,12 Use of Metlhvloellulose as a Semi-Solid Support

Medium for GM-CFC and HPP-CFC Culture,

In specific cases where colony repiating experiments, cytological 

investigation, or collularitg determination of colonies was of interest, 

the 0.3% agar support medium was replaced with 0.9% 

methylceilulose (Methocei MC4000, Fluka). Mothyiceiiuiooe allows 

colonies of interest to be ’plucked’ from the culture environment
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using a 1mi syringe and 23G needle, in replating experiments, sterile

conditions were maintained. Single ceii suspensions were produced 

from single colonies in appropriate medium and repiated for 

subsequent GM-CFC or HPP-CFC assay. For cytological investigation 

cytocentrifuge preparations were produced (2.4) and colony 

celiularities were determined using a Coulter Counter.

Aliquots of 2% (w/v) methyiceiiuiose in Dulbeccos medium 

supplemented with 50 l.U./mi benzyl penicillin, 50 pg/ml streptomycin 

sulphate and 2 mM L-giutamine were stored at -20°C. For use, 

aliquots were thawed at room temperature.

Smis, 2% methyiceiiuiose in supplemented Dulbeccos medium 

was added to 5mis, 10.0x1 O’* subiethaily X-irradiated, regenerating 

bone marrow (RBM) ceii/mi, or 5.0x1 O’* normal bone marrow (NBM) 

ceii/mi, single ceil suspension in supplemented Dulbeccos medium 

with 40% (v/v) horse serum. 1ml aliquots of the 1OmIs, 5.0x1 O’* RBM 

ceii/mi, or 2.5x1 O’* NBM ceii/mi, in supplemented Dulbeccos medium 

with 20% (v/v) horse serum produced, were plated in 30mm non­

tissue culture grade, triple vent, plastic petridishes, over an optimal 

volume of coiony-stimuiating activity for subsequent GM-CFC assay, 

or over a 0.5% agar 'feeder' layer containing a combination of coiony- 

stimuiating factors, for subsequent HPP-CFC assay. Colonies were 

assayed after 7/14 days incubation in a 37°C, 5%C02 in air, fully 

humidified atmosphere and visualised using a binocular dissecting 

microscope set up to give dark field illumination.

2,13 Determination of the Proportion of Colony-Forming
Ceiis In S-phase,

The degree of cellular proliferation was determined through the 

use of an S-phase "suicide" assay. Ceiis were incubated with a
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nucleoside analogue which competes with the native nucleoside for 

incorporation into newly synthesizing DNA at S-phase. When the 

complex DNA-synthesizing enzyme system incorporates the 

nucleoside analogue into the elongating strand of DNA, the molecule 

acts as a "chain-terminator" preventing the subsequent 

polymerization of further nucleosides probably through 

stereochemical hinderaHco, so preventing further DNA synthesis. A 

failure of DNA synthesis at S-phase is a lethal event and the cell will 

die. if the cell is a colony-forming ceil, during subsequent colony­

forming cell assays, the colony-forming potential is not realised. By a 

comparison of the number of colonies formed from ceils treated with, 

or without, the S-phase specific cytotoxic agent, a measure of the 

proportion of colony-forming cells in S-phase was obtained. The S- 

phase specific cytotoxic agent used was Cytosine B-D- 

ArabiHofuranoslde (Cytosine Arabinoside, ARA-CXSigma), a 

deoxycytidine analogue [Cork ef yi,190T; Thomas ef yi,1901; Riches 

ef yi,1901; Wright ef a/,1902; 1905; Cork ef y/,1906]■

A single cell suspension was produced in appropriate medium, 

cellularity determined and adjusted to 5x106 cell/ml. Two 1mi samples 

of 5x106 ceil/mi were produced in plastic, conical, centrifuge tubes. 

ARA-C, stored iyophilized at +4°C was solubilized in appropriate 

medium immediately prior to use as 250 pgimi. To one 1ml sample of 

5x106 cell/ml, lOOpi of the 250 pg ARA-C/ml was added, producing a 

final concentration of 25 pg ARA-C/ml (^O'M). (100pi, 250 pg ARA- 

C/mi was added per 1ml of cell suspension) To the other 1ml sample 

of 5x106 cell/ml, lOOpI of medium alone was added as a control. 

Samples were incubated for 1 hour at 37°C with frequent vortex 

mixing. After 1 hour, cells were washed: 7mls fresh medium was 

added to each sample and the ceil suspension centrifuged (x1OOO 

rpm, 15 mins i). Supernatant was removed to waste, the ceil pellet
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resuspended in 8mis of fresh medium and recentrifuged (x1OOO rpm, 

15 mins.). Supernatant was removed to waste and the ceii pellet 

resuspended in 1mi of fresh medium as a single ceii suspension. 

Washing confines the action of the S-phase specific cytotoxic agent 

to the 1 hour Incubation and not subsequent culture. Ceiiularity was 

determined using a Couiter Counter and adjusted as appropriate for 

subsequent GM-CFC (2.9) or HPP-CFC (2.10) assay [Figure 25\,

2,14 The Pi^r^c^i^^^ti^in of Medium Conditioned By Normal
Bone Marrow,

Normal bone marrow conditioned medium was used as a crude 

source of stem ceii proliferation inhibitor. Normal bone marrow was 

obtained as femorai marrow from CBA/H mice and suspended as a 

single ceii suspension in Dulbeccos medium supplemented with 50 

i.U./ml benzyl penicillin, 50 pg/ml streptomycin sulphate, 2 mM L- 

glutamine and 20% (v/v) horse serum, in specific cases, the 20% 

horse serum was ommitted to allow the production of a serum-free 

conditioned medium. Ceiiuierity was determined using a Couiter 

Counter and adjusted as required, usually within a 15-20x10® ceii/mi 

range. The single ceii suspension was incubated at 37°C, with 

frequent vortex mixing for a 4-6 hour period [Lord ef a/,1976; 1977; 

1979; Wright & Lord,1979; Wright ef e/,1980a; 1980b; Lord & 

Wright,1982;1984; Tejero ef a/,1984; Simmons & Lord,1985; Lord ef 

e/,19S7; Wright & Lorimore,1987; Pojda ef a/,1988]. After incubation, 

the single ceii suspension was centrifuged (x1OOO rpm, 15 mins.). The 

supernatant was retained, twice recentrifuged (x2000 rpm, 15 mins. 

and X3000 rpm, 15 mins.), aliquoted and frozen (-20°C). individual 

aliquots were not refrozen once thawed and prior to use were
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centrifuged (x3000 rpm, 15 mins.), MHliPore filtered (0.22 pM) and

diiuted as required [Figure 26[.

2,15 The Producltion of Medium Conditioned By
RoyoHorytlHq/Cgc1iHg bone marrow,

Regoneratlng/ogciing bone marrow conditioned medium was 

used as a crude source of stem ceii proliferation stimulator. In mice, 

0.2 Gray (Gy) whole body X-lrradiation is sufficient to iethally damage 

the haematopoietic system and death occurs after 14 days due to 

haematopoietic failure. Use of 4.5 Gy whole body X-irradiation, 

subiothallg damages the haematopoietic system and haematopoietic 

regeneration occurs. Regenerating femorai bone marrow was 

harvested from mice 7 days after 4.5 Gy whole body X-irradiation, as 

a source of cycling bone marrow and medium conditioned by the 

regenerating marrow as a crude source of the stem ceii proliferation 

ofi/Hu/ytor [Wright & Lord,1977; Lord ef aZ,1977; Tejero ef y/,1904; 

Wright ef yi,1905].

Mice were irradiated in a perspex cassette placed a fixed distance 

from an X-ray source. X-rays were produced from a Siemens 

Stabilipan at 250KVp and 14mA and filtered through a 0.5mm copper 

(Cu) filter. A dose rate was established using a Farmer Dosimeter 

(Nuclear Entorpriooo, Reading) with an ionization chamber placed 

inside a wax mouse ’ghost’ and Irradiated identically to the mice. A 

dose rate of 0.01 Gy/min was established and a given dose obtained 

by varying the length of exposure.

Regenerating/cycling femoral bone marrow was obtained and 

suspended in Dulbeccos medium supplemented with 50 i.U./mi 

benzyl peHiciiiln, 50 pgimi streptomycin sulphate, 2 mM L-glutamine 

and 20% (v/v) horse serum. In specific cases the 20% horse serum
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was ommitted to aliow the production of a serum-free conditioned 

medium. Ceiiuiar-ity was determined using a Coulter Counter and 

adjusted as required usuaiiy within a 15-20x106 cell/ml range. The 

single celi suspension was incubated at 37°C with frequent vortex 

mixing for a 1-3 hour period. After Incubation, the single cell 

suspension was centrifuged (xfOOO rpm, 15 mins.). The supernatant 

was retained, twice recentrifuged (x2000 rpm, 15 mins. and x3000 

rpm, 15 mins.), aliquoted and frozen (-20°C). individual aliquots were 

not refrozen once thawed and prior to use were centrifuged (x3000 

rpm, 15 mins.), MiliiPore filtered (0.22pM) and diluted as required 

[Figure 27\.

2,16 Assay of Medium Conditjgned by Normal Bone
Marrow,

Normal bone marrow conditioned medium is a crude source of

stem ceii proliferation inhibitor. The activity was demonstrated 

against haematopoietic tissue in which the proportion of stem ceils in 

S-phase was increased. CBA/H mice were subjected to a 2Gy, 

sublethai whole body X-^adiation dose (X-ray unit: Siemens 

Stabilipan at 250KVp, 14mA and 0.5mm Cu filter. Dose rate =

0.81 Gy/min.). Regenerating femorai marrow was harvested 3 days 

after irradiation [Lord ef a/,1977; Wright ef a/,1985].

A single ceil suspension of regenerating/cycling femorai marrow 

was produced in Dulbeccos medium supplemented with 50 i.U./mi 

benzyl penicillin, 50 pg/mi steptomycin sulphate, 2 mM L-giutamine 

and 20% (v/v) horse serum. In specific cases the 20% horse serum 

was ommitted for incubation under serum-free conditions. Ceiis were 

washed once in appropriate medium to remove any endogenous 

regulatory activities, resuspended as a single ceii suspension and
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celluiarity determined. Ceiiuierlty was adjusted to 5x106

cycling/regenerating marrow ceiis/mi.

Aliquots of normal bone marrow conditioned medium (2.14), 

stored at -20°C, were thawed, centrifuged (x3000 rpm, 15 mins.) and 

MiliiPore filtered (0.22pM). The concentration of the proliferation 

inhibitor is related to the number of celis from which it is derived and 

dilution in appropriate medium produces a conditioned medium of 

the required 'potency*.

1ml, 5x106 cycling/regenerating marrow ceiis/mi was incubated 

with 1ml of appropriately diiuted normal bone marrow conditioned 

medium, or medium as a control, in paired, plastic, conical centrifuge 

tubes, for 4 hours at 37°C with frequent vortex mixing. "

The proportion of ceiis in S-phase was investigated by a further 1 

hour incubation in the absence or presence of ARA-C (2.13), and 

ceils were washed, plated and subsequently cultured in the in vitro 

HPP-CFC assay (2.10) [Figure 21

2.17 Assay of medium conditioned by
reqenereting/cycilng bone marrow.

Regenerating/cycling bone marrow conditioned medium is a 

crude source of stem cell proliferation stimuiator. The activity was

demonstrated against haematopoietic tissue in which the proportion 

of stem ceils in S-phase was reduced. Such haematopoietic tissue 

was obtained as normal femoral bone marrow [Wright et a/,1977; 

Wright & Lord,1979; 1982; Wright efe/,1982; Lord & Wright,1984; 

Tejero ef a/,1984; Wright ef a/,1985; Wright & Lorimore,1987j.

A single cell suspension of normal CBA/H femoral marrow was 

produced in Dulbeccos medium supplemented with 50 i.U./mi benzyl 

penicillin, 50 pg/mi steptomycin sulphate, 2 mM L-giutamine and 20%



Figure 28: Assay of medium conditioned by normal bone marrow.
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(v/v) horse serum. In specific cases the 20% horse serum was 

ommitted for incubation under oorum-treo conditions. Ceils were

washed once in appropriate medium to remove any endogenous 

regulatory activities, resuspended as a single ceii suspension and 

celluiyritg determined. Ceiiulyrity was adjusted to 5x106 normal

marrow ceiis/mi.

Aliquots of regeneratiHgicgc1iHg bone marrow conditioned 

medium (2.15), stored at -20°C, were thawed, centrifuged (x3000 rpm, 

15 mins.) and MiliiPore filtered (0.22 pM). The concentration of the 

proliferation stimuiator was related to the number of cells from which 

it was derived and dilution in appropriate medium produces a 

conditioned medium of the required ’potency’.

1mi, 5x106 normal marrow ceiis/mi was incubated with 1mi of 

appropriately diiuted regenerating/cycling bone marrow conditioned 

medium, or medium as a control, in paired, plastic, conical centrifuge 

tubes, for 2 hours at 37°C with frequent vortex mixing.

The proportion of cells in S-phase was investigated by a further 1 

hour incubation in the absence or presence of ARA-C (2.13), and 

cells were washed, plated and subsequently cultured in the in vitro 

HPP-CFC assay (2.10) [Figure 29\.

2.10 Derivation of primary, murine, myeloid

Primary myeloid leukaemias were induced in CBA/H, male mice 

subjected to 3Gy whole body X-irradiation (X-ray unit: Siemens 

Stabilipan at 250KVp 14mA and 0.5mm Cu filter. Dose rate =

0.01 Gy/min.) No spontaneous leukaemias were observed In 

unirradiated controls [Meldrum & Mo1o,1902; Mole ef yi,1903; 

Hepburn ef yi,1907]. When mice showed ruffled fur, weight loss, 

stiffness of movement, lethargy and pale feet, they were killed by
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ether inhalation overdose. At autopsy, leukaemias were characterized

by histological examination of biood, femorai bone marrow, spieen, 

sternum and iiver. Spleen and femorai marrow ceiis were injected 

intraperltoneally, or intravenously, into syngeneic mice to establish 

serial in vivo passage of the leukaemia [Hepburn ef a/,1987]. Two 

distinct morphologies subsequently developed depending on the 

number of leukaemic cells injected at passage. Leukaemias 

passaged at a low ceii dose, maintain a near-primary morphology and 

character [Hepburn ef a/,1987]. Leukaemias passaged at a high ceii 

dose, show a marked increase in aggressiveness, probably due to 

selection pressure on more rapidly growing leukaemic cells within 

the leukaemic population as a whole [Hepburn ef a/,1987].

Spieen and marrow cells from primary myeloid leukaemias and 

subsequent passages can be cryopreserved in liquid nitrogen (in 

supplemented medium, 10-20% (v/v) foetal calf serum and 5-10%

(v/v) CMSO) and rederived as required by rapid thawing, washing and 

either intravenous, or intraperitoneai injection into syngeneic 

recipients [Hepburn ef a/,1987].

2.19 In vivo passage of murine, myeloid leukaemias.

Syngeneic mice injected intraperitonealiy, or intravenously, with 

either a high, or low, cell dose of leukaemic cells, were checked daily. 

When mice show ruffled fur, weight loss, stiffness of movement, 

lethargy and pale feet, they were killed by ether inhalation overdose. 

At autopsy a large pale spleen was evident and was taken as 

indicative of leukaemic progression. Conformation of the disease 

was established by the production of a spieen 'touch-preparation'. 

The spleen was cut in two and the cut surface gently touched onto a 

glass slide. Cells deposited were air dried and either fixed and
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Jenner-Giemsa, or Diff-Quik stained (2.4). Microscopic analysis

showed the opionomegai1y was the result of marked leukaemic

infiltration.

A crude leukaemic spleen cell suspension was produced in 

Fischers medium supplemented with 50 i.U./ml benzyi peniciiiln, 50 

jg/ml streptomycin sulphate and 2 mM L-glutamine using a 1 mi 

syringe with no needle attatched. Allowed to stand for a short time, 

large pieces of debris and extracellular matrix settle out of the 

suspension. A single ceii suspension of leukaemic spleen was 

produced through subsequent removal of cellular supernatant from 

the crude ceii suspension and use of 23G and 25G needles. 

Coiiuiaritg was determined using a Couiter Counter, adjusted as 

required and injected either iHtraperitonoaliy, or intravenously, at 

either a high, or low, cell dose. Cytocentrifugo preparations (2.4) of 

the leukaemic spieen cell suspension confirm the nature of the cells 

injected.

2.20 Production of medium conditioned by. leukaemic
bone marrow.

Syngeneic mice injected intryperitoHealiy? or iHtraveHouoly5 with 

either a high, or low, cell dose of leukaemic cells, were checked daily. 

When mice show ruffled fur, weight loss, stitfHooo of movement, 

lethargy and pale feet, they were killed by ether inhalation overdose. 

At autopsy a large pale spleen was evident and was taken as 

indicative of leukaemic progression. Leukaemic bone marrow was 

obtained as femoral marrow and suspended as a single ceil 

suspension in Dulbeccos medium supplemented with 50 i.U./mi 

benzyl penicillin, 50 jig/mi otroptomgciH sulphate, 2 mM L-glutamine 

and 20% (v/v) horse serum, in specific cases the 20% horse serum
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was ommitted to allow production of a serum-free conditioned 

medium. Cellularity was determined using a Coulter Counter and 

adjusted as required to within a 15-20x106 celi/ml range. The single 

ceii suspension was Incubated at 37°C with frequent vortex mixing for 

1-3 hours. After incubation the single ceii suspension was centrifuged 

(x1OOO rpm, 15 mins.). The supernatant was retained and 

recentrifuged (x2000 rpm, 15 mins. and x3000 rpm, 15 mins.), 

aiiquoted and frozen (-20°C). Individual aliquots were not refrozen 

once thawed and prior to use were centrifuged (x3000 rpm, 15 mins.), 

MiliiPore filtered (0.22 pM) and diiuted as required. Cytocentrifuge 

preparations of the ieukaemic bone marrow confirms the nature of 

the ceiis incubated [Figure 30[.

2.21 Assay of medium conditioned bv leukaemic bone
marrow.

The nature of haematopoietic stem cell proliferation regulation in 

myeloid leukaemic bone marrow was unknown. Medium conditioned 

by ieukaemic bone marrow was assayed against both

regenerating/cyciing bone marrow (2.16) to Investigate the 

presence/absence of proliferation inhibitor, and normal bone marrow 

(2.17), to investigate the presence/absence of proliferation stimulator 

[Figure 3T\.

2.22 lnvyetiggtinq t he effeets oo ieekaemic boon mLarow
conditioned medium on inft/Mfor and/or sf/m/afor action.

Normal bone marrow (NBM) conditioned medium, a crude source 

of inhibitor i2.14) and medium conditioned by regenerating marrow 

(RBM) from mice 7 days after a 4.5 Gy whole body X-irradietion dose,



bo
ne

 
by

 le
uk

ae
m

ic
 b

on
e

m
ar

ro
w

. 
m

ar
ro

w
.





91

as a crude source of stimulator (215), were produced. Conditioned

medium was thawed, centrifuged (x3000 rpm, 15 mins.), MilliPore

filtered (0.22 ^M) and diiuted so as to be derived from 15x106

NBM/R.BM celis/mi.

Appropriate ieukaemic marrow conditioned medium (2.20) was 

thawed, centrifuged (x3000 rpm, 15 mins.), MilliPore filtered (0.22 |JM) 

and diluted so as to be derived from 15x106 ceiis/mi.

inhlbftorvias assayed against regenerating bone marrow (RBM) 

from mice 3 days after a 2 Gy whole body X-irradiation dose (2.16). 

RBM ceiis were washed once in supplemented Duibecco's medium 

and resuspended as 5x106 RBM cells/ml in either Ieukaemic 

conditioned medium or normal medium [Figure 33J.

Stimuiatorvias assayed against normal bone marrow (NBM) 

(2.17). NBM celis were washed once In supplemented Duibecco's 

medium and resuspended as 5x10® NBM ceils/ml in either Ieukaemic 

conditioned medium or normal medium [Figure 32T.

1 mi, 5x106 NBM/RBM ceiis/mi in either Ieukaemic conditioned 

medium or normal medium, was aiiquoted into each of two paired 

centrifuge tubes and assay of inhibitor and stimulator performed by 

the addition of 1 mi of the appropriate normal, or regenerating, bone 

marrow conditioned medium (2.16 & 2.17). The proportion of cells in 

S-phase was determined during the last hour of incubation In the 

absence or presence of ARA-C (2.13). Ceiis were washed and 

cultured in the HPP-CFC assay (2.10).
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2.23 Investigation of the effects of leukaemic bone
marrow conditioned medium on inhibitor mnd/or

stimulator production.

Normal bone marrow (NBM) was obtained from CBA/H mice and 

regenerating bone marrow (RBM) from mice 7 days after a 4.5 Gy 

whole body X-^adiation dose. A single ceii suspension of NBM/RBM 

was produced in Duibecco's medium supplemented with 50 i.U./ml 

benzyl penicillin, 50 pg/mi streptomycin sulphate, 2 mM L-giutamine 

and 20% (v/v) horse serum.

Appropriate ieukaemic bone marrow conditioned medium (2.20), 

stored at -20°C, was thawed, cenrifuged (x3000 rpm, 15 mins.), 

MilliPore filtered (0.22 pM) and appropriately diluted In supplemented 

Duibecco's medium so as to be derived from 15x106 cell/ml.

NBM/RBM celis were washed once In supplemented Duibecco's 

medium and resuspended as a single cell suspension In either 

Ieukaemic conditioned medium, or medium. Celluiarity was 

determined and adjusted to within 15-20x106 NBM/RBM ceii/mi and 

NBM and RBM ceiis were subsequently Incubated for 7 and 5 hours 

respectively, to allow inhibitor and stimulator resynthesis [Figures 34 

&35\.

At t=7, or 5 hours, the single ceil suspension was centrifuged 

(xOOO rpm, 15 mins.), supernatant retained and repeatedly 

centrifuged (x2000 rpm, 15 mins. and 3000 rpm, 15 mins.). Medium 

conditioned by NBM/RBM cells in the absence and presence of 

Ieukaemic conditioned medium was aliquoted and frozen (-20°C).



Incubated 7 hours
Inhibitor resynthesized.

Washed normal 
bone marrow

Incubated 7 hours

+ leukaemic bone marrow 
conditioned medium.

Inhibitor resynthesized ?

Washed normal 
bone marrow

Figure 34: Investigating the effects of leukaemic bone marrow
conditioned medium on inhibitor production.



Incubated 5 hours
Stimulator resynthesized.

Washed regenerating 
bone marrow

Incubated 5 hours

+ leukaemic bone marrow 
conditioned medium.

Stimulator resynthesized ?

Washed regenerating 
bone marrow

Figure 35: Investigating the effects of leukaemic bone marrow
conditioned medium on stimulator production.
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2.24 The low molecular weight, hyomoroyu1ytorg
totraeoptido AcSDKP and trieoptido yHyloguoo,

Tetrypeptide AcSDKP and a number of tripeptido analogues were 

synthesized [Thierry ef a/,1990] and kindly supplied by Pr^Maryse

Lenient and DroJosaine Thierry (Institut de Chimie des Substances 

Naturalles, CNRS, Gif-sur-Yvette, France). Peptides were supplied as 

lyophiiized HPLC fractions and stored at -20°C.
Samples were dissolved it a volume of -serum-free Dulbecco’s 

medium sufficient to produce 100 ng peptideimi (Approximately 10'S 

Molar, M), aiiquoted and frozen (-20SC). (*Serum is reported to 

enzymatically degrade the peptides (AcSDKP is reported to have a 

half-life of approximately 20 hours in 10% (v/v) heat inactivated foetal 

calf serum) and serum albumin is reported to adversely bind the 

peptides [M.Lonfant, personal communication]). Dissolving the 

peptides in the absence of serum protein, peptide manipulation was 

kept to a minimum and performed in plastic containers. Dissolved 

peptides were stored frozen (-20°+) in polypropylene crgotuboo 

(Nunc.). Individual 100 ng/mi peptide aliquots were not refrozen once 

thawed and were stored at +4°C until required.

2.25 lHhootigytioH of the direct effecte of the low
molecular weight eoetidoo oh GM-CFC and HPP-CFC

proliferation.

Direct stimulatory and/or inhibitory action of the low molecular 

weight peptides on both GM-CFC and HPP-CFC was investigated. 

Normal bone marrow (NBM) was obtained from the femora of 0-12 

week old CBA/H mice and regenerating bote marrow (RBM) from 

mice 3 days after a 2 Gy whole body X-irradiation dose. A single cell
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suspension of NBM/RBM was produced in Duibecco's medium 

supplemented with 50 l.U./mi benzyl penicillin, 50 pg/mi streptomycin 

sulphate and 2 mM L-giutamine, ceils washed once, to remove 

endogenous regulatory activities, and resuspended in serum-free, 

supplemented Duibecco’s medium. Cellularity was determined and 

adjusted to 5x106 Nbm/RBM celis/mi.

100 ng/mi aliquots of appropriate peptide, stored at -20°C, were 

thawed and stored at +4°C. 1 mi, 5x106 NBM/RBM ceils/ml was 

added to each of two paired centrifuge tubes and incubated for 3 

hours at 37°C with the addition of sufficient peptide to produce a final 

concentration of 1 ng/mi (approx. 10*M), or medium as control, at 

t=0,1 and 2 hours.

The proportion of celis in S-phase was determined by the 

addition of ARA-C, or medium, during the final hour of incubation 

(2.13). Cells were subsequently washed and cultured in the GM-CFC 

(2.9) and HPP-CFC (2.10) assays [Figure 36].

2,26 Mof the effects of low molecular weight
peptides on inhibitor and/or se/mt/efor action.

Normal bone marrow conditioned medium, a crude source of 

inhibitor(2.11) and medium conditioned by marrow from mice 7 days 

after a 4.5 Gy whole body X-irradiation dose, a crude source of 

stimuiator (12.15), were produced under serum-free conditions in 

Duibecco's medium supplemented with 50 l.U./mi benzyl penicillin, 50 

pg/mi streptomycin sulphate and 2 mM L-giutamine.

inhibitor and stimulaterwere assayed as detailed (2.16 & 2.17) 

with the addition of a duplicate pair of centrifuge tubes to which 

appropriate peptide, to a final concentration of 1 ng/mi (approx. 10* 

9M) was added att=0 and at each subsequent hour of incubation.
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The final hour of Incubation was performed in the absence or

eroooHco of ARA-C to determine the proportion of cells It S-phase

(2.13). Cells were washed and subsequently cultured In the HPP-CFC

assay (2.10) [Figure 37\.

2,27 lnveHhiootion oft Qe ine irtct offeots of the low 

molecular weight peptides on inhibitor mndlor stimulator
production.

Normal bone marrow (NBM) was obtained from 0-12 week old 

CBA/H mice and regenerating bone marrow (RBM) from mice 7 days 

after a 4.5 Gy whole body X-Irradlatlon dose. A single cell suspension 

of NBM/RBM was produced In serum-free Dulbecco’s medium 

supplemented with 50 l.U./ml benzyl penicillin, 50 pg/ml streptomycin 

sulphate and 2 mM L-glutamlne. Cells were washed and 

resuspended, cellularity determined and adjusted to 15-20x106 

NBM/RBM cells/mi.

100 ng/ml aliquots of appropriate peptide, stored at -20°C, were 

thawed and stored at +4°C. NBM/RBM ceiis were incubated for 7/5 

hours at 37°C, with either the addition of sufficient peptide to produce 

a final concentration of 1 ng/mi (approx. 10'9M), or an equivalent 

volume of medium, at t=0 and at every subsequent hour of 

Incubation.

After Incubation, the NBM/RBM single ceii suspension was 

centrifuged (x1OOO rpm, 15 mits.), supernatant retained, repeatedly 

ceHtritugoC (x2000 rpm, 15 mits. and x3000 rpm, 15 mits.) and frozen 

(-20°C). Medium conditioned by the NBM/RBM suspension it the 

absence and presence of peptide was suboeqettlg assayed for 

stimulator and inhibitor (2.16 & 2.17) [Figures 38 & 3$].
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Incubated 7 hours
--------------------------- ► Inhibitor resynthesized.

Washed normal 
bone marrow

Incubated 7 hours
--------------------------- ► Inhibitor resynthesized ?

+ PEPTIDE
Washed normal 

bone marrow
Figure 38: Investigating the effects of the haemoregulatory

peptides on inhibitor production.
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Chapter 3

Results.



Section 1

The characterization of the 
in vitro HPP-CFCil3+csf-i 

assay.



96

3,1 CnaryctorizytiQH of the eQtOHcg of medium 

CQHCitiQHoC by ceil IIhos ihC rocQmblHyHtIg-CorihoC
nyomytQeQiotic cQlQHg-otimuIytlHq factors,

3,1.1 , Characterization of the colonv-st^mulatinq 30^7^7 of medium

conditioned bv WEHI SB. L929 and AF1-19T cell lltes.

Procedure:

The colony-stimulating potential of medium conditioned by WEHI 

SB myoIomQtQcytic Ieukaemic cell lite, L929 fibroblast cell line and 

AF1-19T malignant histiocytosis sarcoma virus-transformed rat 

kldtey cell line was assessed by titration using the in vitro 

granulocyte-macrophage colony-forming cell (GM-CFC) assay (2.9).

0,50,100,150 and 200jul volumes of each conditioned medium 

were assayed with 1 ml, 5x104 normal bone marrow cells/mi In 0.3% 

agar, producing a final conditioned medium concentration of 0, 5,10, 

15 and 20% reopectlholg. At assay, "colonies" were defined as a 

collection of in excess of 50 coils. Collections of loss than 50 cells 

were defined as l,<tluotoro" and were not counted. The number of 

colonies stimulated was related to the concentration of conditioned 

medium and dose-response curves established. .

Results:

It the absence of conditioned medium, no cellular proliferation 

was observed. Increasing the concentration of the conditioned 

medium. Initially produced a proportional Increase in colony 

numbers, reaching a maximum, plateau value beyond which no 

significant lHcroaso It colony numbers was observed.

The optimal ho1umo/cQHcentratlon of conditioned medium was 

determined as the minimum which proved capable of stimulating 

near maximal colony numbers, A100 411/10% (v/v)
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volume/concentration of conditioned medium appeared to fulfill this

criterion [Figures 40a & 40b].

3.1.1.1 WEHI 313 melomonoccVic leukaemic cell Ilne conditioned

medium.

Medium conditioned by WEHI 3B myelomonocytic leukaemic cell 

line is a crude source of interleukin 3 (IL3)/multi-CSF [Ihle et 

a/,1982](1.21) and stimulates the proliferation of colony-forming cells 

of a variety of haematopoietic lineages In the GM-CFC assay. At 

assay this was observed In the variety of both colony sizes and 

colony morphologies. Colony sizes varied considerably between 

'colonies' clearly In excess of 50 cells, to 'clusters' of 10-15 cells, 

while colony morphologies varied between compact 'tight' colonies, 

less compact 'loose' colonies and colonies of both a 'tight' and 

’loose' morphology ( | mixed' colonies). At assay, no distinction was 

made as to colony morphology, colony size (In excess of 50 cells) 

was the only criterion applied [Piate 1, Slide C].

3 batches of WEHI 3B cell line conditioned medium were used. 

Each batch was similarly titrated and no significant variation in 

colony-stimulating potential between Individual batches was 

observed [Figure 40].

3.1.1.2 cell Ilne conditioned medium.

Medium conditioned by the L929 fibroblast cell line is a crude 

source of macrophage colony-stimulating factor (M-CSF/CSF-1) 

[Burgess ef a/,1977](1.21). Primarily It stimulates the proliferation of

lineage-committed macrophage progenitors within murine 

haematopoietic tissue. At assay colonies varied In cellularlty between
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those clearly in excess of 50 cells to 'clusters’ of 10-15 cells, while 

colony morphology showed little variation. L929 cell line conditioned 

medium-stimulated colonies were characterized by a relatively 

compact nature [Plate 1, Slide B & Piate 2, Siide 4].

2 batches of L929 cell line conditioned medium were used. Both 

batches were similarly titrated and no significant variation in colony- 

stimulating potential was observed [Figure 40b].

3.1.1.3 AFl1'11TceH I Ine conditioned medium.

Medium conditioned by AF1-19T malignant histiocytosis sarcoma 

virus-transformed rat kidney cell line, Is a crude source of 

granulocyte-macrophage colony-stimulating factor (GM-CSF) 

[Kriegler ef a/,1990]. Primarily it stimulates the proliferation of 

lineage-committed granulocyte and macrophage progenitors and 

also bipotentlal granulocyte-macrophage progenitors within the 

murine haematopoietic tissue. This is consistent with the variety of 

colony morphologies observed at assay. The ’potency’ of AF1-19T 

cell line conditioned medium proved consistently low, this may be a 

direct consequence of the specles-speclficity of GM-CSF. AF1-19T is 

a rat-derived cell line, while the haematopoietic tissue under assay Is 

murine. A100 yt/10% (v/v) volume/concentration of AF1-19T cell line 

conditioned medium was used. 1 batch of AF1-19T conditioned 

medium was used during the project [Figure 40c].

\



Figure 40a: GM-CFC titration of
WEHI 3B cell line conditioned medium.
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3.1.2 areeraCierlzei|OL^eties^OtentyOerstombrnen1it<dsrlvei
haematopoietic colonv-stimuletlne factors.

Procedure:

The haematopoietic activity of the recombinantly-derived colony- 

stimulating factors was unknown and was investigated by use of both 

the in vitro GM-OFC assay (2.9) and the tritiated thymidine uptake 

assay (2.7).

Recombinant murine interleukin 3 (rmulL3)/multl-OSF and 

recombinant human macrophage colony-stimulating factor (rhuM- 

CSF/CSF-1) were kindly supplied by Genetics institute as medium 

conditioned by engineered CHO cells. Recombinant murine

granulocyte-macrophage colony-stimulating factor (rmuGM-OSF)
f

was kindly supplied by both Genetics Institute, as medium 

conditioned by engineered COS cells and Immunex, as a lyophiiized 

protein sample.

The material was serially diluted prior to in vitro GM-CFC and 

tritiated thymidine uptake assay. For comparison, a 10% dilution of 

WEHI or L929 cell line conditioned medium was used as a crude 

source of Interleukin 3 (^ymulti-CSF or M-OSF/OSF-1 respectively.

In the GM-OFO assay 100 pi volumes of appropriately diluted 

factor were incubated with 1 ml, 5x106 normal bone marrow cells/ml 

In 0.3% agar. The final factor concentration was thus xO.1 that added. 

5 dishes were produced per factor dilution. In the tritiated thymidine 

uptake assay, 100 pl volumes of appropriately diluted factor were 

Incubated with 100pi, 7x105 normal bone marrow cells/mi. The final 

factor concentration was thus xO.5 that added. 4-12 microtitre wells 

were produced per factor dilution.

For each recombinant factor, GM-OFO and tritiated thymidine 

uptake data were related to factor dilution, and dose-response curves
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established. The optimal voIume/cQnceHtratlQH of recQmblHyntIg-

Cerlhod factor was CotorminoC as that which stimulated near maximal

colony numbers/cellular proliferation.

Results:

3.1.2.1 Recamt^^na^Hiv~-(er^ve<( murine interleukin 3 emulL3V/mul1ii

CSF.

With reference to both GM-CFC and trltiatod thymidine uptake 

titration data of rmuiL3 (Genetics Institute), at optimal dilution of 

1:500 (of Gonotics Institute rmuiL3 sample) was determined [Figure

41a].

3.1.2.2 Recoonb^^atniyh-(enver( human macrophage colQnv-

stlmulatito factor trhuM-C5FVC5F-1■

With reference to both GM-CFC and tritiatied thymidine uptake 

titration data of rhuM-CSF (Genetics institute), at optimal 

concentration of 30 unlto7ml was determined [Figure 41b],

3.1.2.3 R^r^t^o^fc^ir^^i^tl^-c^^ri^^^r( murint gsrnuloQthe-mnatophhge

colony-stimulating factor frmuGM-CSF).

Extensive in vitro GM-CFC titration of rmuGM-CSF (Immunex) had 

been previously pertQrmeC In this laboratory and at optimal 

concentration of 40 unitsVmi determined.

(*- rhuM-CSF (Genetics instutu^e) and rmuGM-CSF (Immunex) 

were supplied as samples of specified units of activity. The ^^10^ 

of ’units’ it each case was supplied, although subsequent titration of



N
um

be
r o

f G
M

-C
FC

 co
lo

ni
es

 
C

ou
nt

s p
er

 m
in

ut
e (

C
PM

)
I 1

05
 m

ar
ro

w
 ce

lls
.

10000:

8000:

6000:
■

4ooo:

2000-

Figure 41a: Tritiated thymidine 
uptake titration of rmulL3.

Data as average of 12 microtitre 
wells/rmull_3 diln.(±SEM),

0

40:

35:

30:

25:

20:

15

10

5

0

Concentration $ 

used.

. * .

CD o o o o o o o ’ ocz LL o o o o o o o o ocd UJ T— in o in o in o m o
co *r~" T- r: CM CM CO CO

T— T“ T- *1— T- T- T-
O

Figure 41a: GM-CFC 
titration of rmulL3.

* f

Data as average of 5 dishes 
/rmulL3 diln.(±SEM).

Concentration
used. f f x x x

-i------- 1------- 1------- 1------- 1------- 1------- 1-------r
-nr— o CD o o o o o o

CZ J- o O o o o o o O
_cd LL! CM in o in o in o m
CQ £ 1— t— t: CM CM CO CO

1— T-O'"O

CO £Z _J 
.2 Z5
o Erzzb ..

CO

.2 3 
a e

o



N
um

be
r o

f G
M

-C
FC

 co
lo

ni
es

 
C

ou
nt

s p
er

 m
in

ut
e (

C
PM

).
I 1

05
 m

ar
ro

w
 ce

lls
.

8000:

7000:

6000:

5000:

4000:

3000:

2000:

1000:

0
C00

CO

*

T“
G)
CMO—I
oc>o

Figure 41b: Tritiated thymidine
uptake titration of rhuM-CSF.

Data as average of 4 microtitre
wells/rhuM-CSF diln.(±SEM).

o
4—>cd

Concentration i 
used. w

i--- i—t--- 1—i—i--- 1—T~”i--- i--- 1--- i--- i--- r
o o o o o LD o o o O COO IO
o uo o uo o o co <C MJ t— t—
o h- LO CM T-

c(DOc
o
O

oI
33o

M—
o

CO

40:

35:

30:

25:

20:

15:

Figure 41 b: GM-CFC Data aS aVerage. . , . of 5 dishes
titration of rhuM-CSF. / rhuM-CSF

concentration

10;

5:
Concentration

used.

cjd
CO

“t j | | | j : i i j | | | | |

CD O C OC O LO O O OLOOUOOmCJOOOLQoNm 'MCOCMCMt-t-
O—1 -r-
VO
o

EIS E
CD

c -£- O
O °

CO

c35

0



101

tho factors allowed the ’potency’ of tho factors to be determined. 

’Units’ were retained as reference values to assist in factor dilutions.)

3.1.3 ,Chotr^aterization oo the aat^lht¥ oo recoonfoiriHtni^y-3erivvrl human

interleukin 1 frnuIL1).

I L1 activity is determined by measuring the tritiated thymidine

incorporation by thymocytes cultured for 3 days in the presence of an 

appropriate concentration of concanavailn A and serially diluted IL1. 

IL1 activity is defined in units with 1 unlt/mi concentration being that

which stimulates 50% maximal thymocyte proliferation.

3.1.3.1 ,711^^00 oo A (Con Al^Saa,

Procedure:

A100 ul volume of Con A at a concentration sufficient to produce 

a final concentration of 0-15 pg/ml, was added to 100 pl, 107 

thymocytes/ml, to determine the concentration of Con A which would 

not itself stimulate thymocyte proliferation, but which would best 

potentiate the interleukin 1-assoclated thymocyte proliferation.

Result:

A 1.5 pg/ml concentration of Con A was determined as a 

concentration which would best potettiate the IL1-aso0Ciyted 

thymocyte proliferation [Figure 41c].
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3,1,3.2 TTir£^tic^r^.Qfr€^c^c^r^t^ir^g^r^tIiy^-c^€^rry^€^ci human i nterleukin 1

(rhulL1U2.8bL

Procedure:

A 50 pi volume of appropriately diluted interleukin 1 (rhuILI-alpha 

(Genetics Institute and Immunex) and IL1-beta (Immunex)), sufficient

to produce a final concentration of 0-100 units/mi was added to 100 

pi, 107 thymocytes/m! and 50 pi Con A at a concentration sufficient to 

produce a final concentration of 1.5 pg/mi, and the whole incubated 

for 3 days.

Results:

An optimal interleukin 1 (rhuILI-alpha (Genetics Institute and 

Immunex) and IL1-beta (immunex)) concentration of 5 units/mi was 

determined as active in the thymocyte proliferation assay [Figure

4101.

3.1.3.3 GM-CFC activitt oo recoml^Inntnlyvcierivvr:l hh^r^g^n » nterle^kin 1

frhulLf).

Procedure:

100 pi volumes of appropriately diluted rhylM-alpha (Genetics 

Institute and immunex) and ^011.1^^ (Immunex), sufficient to

produce a final concentration of 0,5,10 and 20 units/mi were 

incubated with 1 mi, 5x104 normal bone marrow ceils/ml in 0.3% agar, 

and incubated for 7 days (2.9).

Result:

Interleukin 1, as either rhuILI-alpha (Genetics Institute or 

Immunex) or rhulL1-betc (Immunex), failed to demonstrate colony- 

stimulating activity over the 0-20 unit/mi concentration range 

assayed.
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3.1.4 Evidence of interleukin 1 activity in the WEHi 3B, L929 or AF1-

19T cell line conditioned media.

3.1.4.1 Investigation of the capacity of WEHI 3B, L929 and AF1-19T

cell line conditioned media to stimulate thymocyte proliferation.

Procedure:

100 ul of appropriately diluted WEHI 3B, L929 or AF1-19T cell line 

conditioned medium, sufficient to produce a final concentration of 0, 

5,10,15 and 20% (v/v) was incubated with 100 pl, 107 thymocytes/ml, 

to determine the capacity of each conditioned medium to stimulate 

thymocyte proliferation.

Results:

WEHI 3B, L929 and AF1-19T cell line conditioned media, do not 

stimulate thymocyte proliferation over the 0-20% (v/v) concentation 

range assayed [Figure 41e].

3.1.4.2 Investigation of the interleukin 1 activity of WEHI 3B, L929 and

AF1-19T cell line conditioned media.

Procedure:

50 ul appropriately diluted WEHI 3B, L929 or AF1-19T cell line 

conditioned media, sufficient to produce a final concentration of 0,5, 

10,15 and 20% (v/v) was incubated with 100pl, 107 thymocytes/ml 

and 50pl Con A, at a sufficient concentration to produce a final 

concentration of 1.5pg/ml. Con A-potentiated, thymocyte 

proliferation would be indicative of interleukin 1 activity in the 

conditioned media.
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Results:

No evidence of Con A-potentlated thymocyte proliferation was

observed implying that over a 0-20% (v/v) concentration, the 

conditioned media demonstrate no interleukin 1 activity [Figure 41f[,

3.2 Characterization of haematopoietic colony-stimulating
factor synergism.

Specific colony-stimulating factors are able to interact when 

combined, to stimulate the proliferation of a colony-forming ceii 

population characterized by a high proliferative potential. This high 

proliferative potential colony-forming cell (HPP-CFC) population is 

only observed in the presence of combinations of colony-stimulating 

factors and is distinct from the colony-forming ceii population 

stimulated in the presence of a single colony-stimulating factor. This 

ability of specific colony-stimulating factors to "synergize" was 

investigated using both crude conditioned medium and 

recombinantiy-derived factors.

Procedure:

’Optimal’ dilutions of crude and recombinant colony-stimulating 

factors (3.1), were combined in the in vitro HPP-CFC assay (2.10). 

Any synergism between colony-stimulating factors was investigated, 

in the case of colony-stimulating factor synergism, large, 

macroscopic colonies were evident at assay.

The iii-defined nature of medium conditioned by WEHI 3B, L929 

and AF1-19T cell lines is such ruat, while they may prove to be crude 

sources of interleukin 3 (IL3)/muiti-CSF, M-CSF/CSF-1 and GM-CSF 

respectively, other factors may be present, and responsible for 

establishing synergistic interactions. Use of the rigorously defined, 

recombinantiy-derived factors was hoped to demonstrate the factors
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responsible for the stimulation of the HPP-CFC population were

indeed interleukin 3 (IL3)/muiti-CSF, M-CSF/CSF-1 and GM-CSF. 

Results:

3.2.1 Synergism between interleukin 3 (ILSVmuiti-CSF and

macrophage coionv-stlmuiatlna factor (M-CSF/CSF-11.

Interleukin 3 (lL3)/mu!ti-CSF, as both medium conditioned by the 

WEHi 3B ceii line and rmulL3, and M-CSF/CSF-1, as both medium 

conditioned by the L929 ceii line and rhuM-CSF were observed to 

synergize. Medium conditioned by the WEHI 3B ceii line and rhuM- 

CSF, and rmulL3 and medium conditioned by the L929 cell line, were 

also observed to synergize [Plate 1, Slide D & Plate 2, Slide 0|.

3.2.2 Svnergism between granuiocvte-macrophaae coionv-

stimuiating factor (GM-CSF) and macrophage coionv-stimuiating

factor (M-CSF/CSF-1).

GM-CSF as both medium conditioned by the AF1-19T cell line and 

rmuGM-CSF, and M-CSF/CSF-1 as both medium conditioned . by the 

L929 ceii line and rhuM-CSF were observed to synergize.

Significantly, despite the relatively low colony-stimulating activity of 

the medium conditioned by the AF1-19T ceil line (3.1.1), it proved 

sufficient to synergize with both crude and recombinantiy-derived 

sources of M-CSF/CSF-1. rmuGM-CSF and medium conditioned by 

the L929 ceii line were also observed to synergize [Plate 2, Slides B & 

q.
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3.2.3 Synengsm heeween i nterieukin 3 alL3)/multi-CSF and

granulocyte-macrophage coionv-stimuiating factor fGM-CSFL

interleukin 3 (IL3)/multi-CSF as both medium conditioned by the 

WEHI 3B ceii line and as rmulL3, and GM-CSF as both medium 

conditioned by the AF1-19T ceii line and rmuGM-CSF were observed 

to synergize. Both medium conditioned by the WEHI 3B cell line and 

rmuGM-CSF, and rmulL3 and medium conditioned by the AF1-19T 

ceii line were also observed to synergize.

3.2.4 Colon v-stimulating lacKo syneegism with ^0^00^0 1 (ILH-

interleukin 1 as either Genetics Institute rhuiLI-alpha, or Immunex 

rUuiL1-clpUc or -beta, did not demonstrate a synergistic interaction

with interleukin 3 (IL3)/muiti-CSF, as either WEHI 38 ceii line 

conditioned medium or rmulL3, M-CSF/CSF-1, as either L929 ceii line 

conditioned medium or rhuM-CSF, or GM-CSF, as either AF1-19T ceii 

line conditioned medium or rmuGM-CSF. The pattern of colony

growth observed In the presence of interleukin 3 (iL3)/mulrl-CSFJ M- 

CSF/CSF-1 or GM-CSF (as either crude conditioned media or

recombinan^y-derived factors) was unchanged in the presence of 

interleukin 1.

3s3 .6!Ucrctrer^ce^na^J^UeJn_^Vitro

HPP-CpC|73+0^s^F_t_assay.

Before setting the strict criteria by which the HPP-CFC, mcSF_f

derived colonies were assayed, it proved necessary to optimize the in

vitro culture conditions. Many aspects of the HPP-CFC,f+CS7i assay
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were adaptations of the GM-CFC assay and thus may not have been 

optimal in the HPP-CFCIL3+cSy^ ssayy.

3.3.1 . The o|rtimal cell dose for

HPP:FCFK)U3:C2e4_yooaY.

Procedure:

The number of normal murine bone marrow cells plated in the 

0.3% agar culture layer of the bilayer HPP-CFC,^+^-1 assay, was 

titrated over a range Sxio3-ix105 normal boto marrow ceiis/mi.

Result:

Prior to tho specific CotlHltiOH of HPP-CFCJL3+C2r_1-<(e^ived 

colonies, a celluiarity of 2.0-2.5x104 normal bote marrow cellsiml was 

found to give ’countable’ numbers of HPP-CFC colonies. A lower 

ceiluiarltg gave proportionately lower HPP-CFC1L3_fffi numbers, 

while higher cellularities lead to colony ’overcrowding’ and made 

subsequent colony-counting difficult. HPP-CFClLa+csm were aiso 

demonstrable it normal, tot-haematopoietic, murlto spleen, 

although to achiovo colony numbers comparable to those of 2.0- 

2.5x104 normal boto marrow cells (approximately 25 HPP-CFC 

colonies), 10® spieen ceils were required. HPPPKf+fsw m also 

demonstrable it haematopoietic, murine foetal liver, with 5.0-10.01004 

foetal llvor ceiis producing colony numbers comparable to 2.0- 

2.5x103 normal bone marrow ceils.
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3.3.2 The cancentratton of calony-sttmuiattnq factors to induce

optimal HPPP-FCltC, pr proliferation.

Procedure:

The concentration of colony-stimulating factors inducing optima!

HPP-CFCIL3+csm proliferation was investigated. As previously 

demonstrated, the characteristic HPP-CFC populations are only 

observed in the presence of combinations of colony-stimulating

factors.

Results:

Titration of medium conditioned by the WEHI 3B cell line, as a

crude source of interleukin 3 (IL3)/multi-CSF, against a fixed 

concentration of medium conditioned by the L929 cell line (10% v/v), 

as a crude source of M-CSF/CSF-1, demonstrated that a GM-CFC- 

derived 'optimal' concentration of colony-stimulating factor, was not 

a prerequisite for synergism. HPP-CFC|L3+Ctf.| were demonstrable at 

markedly sub-optlmai WEHI 3B ceii line conditioned medium 

concentrations (as determined by the GM-CFC assay). Increasing the 

concentration of the WEHI 3B cell line conditioned medium, did not 

significantly increase the absolute number of HPP-CFC^L3+Gso.1, 

although the degree of cellular proliferation per HPP-CFC^+qsF.1- 

derived colony was increased, producing a stronger iNT-staining 

colony at assay. This finding correlates with the observation that 

medium conditioned by the AF1-19T ceii line demonstrated little 

colony-stimulating activity in the GM-CFC assay, although proving 

capable of synergism to stimulate the proliferation of the 

HPP-CFCgm.C3piC^m "GFU-A" population.
A concentration of 10% (v/v) each of WEHI 3B ceii line 

conditioned medium and L929 ceii line conditioned medium (as 

crude sources of interleukin 3 (ILSymuiti-CSF and M-CSF/CSF~1
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respectively) was determined as that which would promote HPP- 

CFC!L3+csf-i Proliferation.

3.3.3 The optimal time of assay of

HPP:CFClL3+CSM.

Procedure:

The time of assay of the HPP-CFCIL3+csf1 population was 

determined by performing a time study. Cultures of 2.5x104 normal 

bone marrow cells/ml in 0.3% agar were incubated over a ’feeder’ 

layer containing 10% (v/v) of WEHI 3B cell line (as a crude source of 

interleukin 3 (IL3)/multi-CSF), or L929 cell line (as a crude source of 

M-CSF/CSF-1), or a 10% (v/v) combination of each conditioned 

medium. Cultures were assayed after 8,10,12 and 14 days.

Results:

While a different pattern of colony growth was determined at as 

early as day 8 when comparing WEHI 3B, L929 and combined 

conditioned media stimuli, day 14 was chosen as a time which was 

considered to allow the full proliferative potential of the HPP- 

CFC|L3+csf-i to develop and so increase the contrast between the 

HPP-CFC|L3+csfand non-HPP-CFCIL3+GSF_1-derived colonies [Plate 3].

3.3.4 The development of a criterion to define the

HPP-CFC,L3+CSF1 population.

Procedure:

A criterion was required by which colonies derived from HPP- 

CFC, l3+csf-i cou|d be defined. The unique aspect of the HPP-CFC- 

derived colonies Is their relatively large size in comparison to non- 

HPP-CFC-derived colonies. Non-HPP-CFC-derived colonies, as
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stimulated by the presence of single colony-stimulating factors in the

HPP-CFC assay system, were rarely observed to exceed a 2mm 

diameter, while HPP-CFC-derived colonies, as stimulated by the

presence of a synergistic combination of colony-stimulating factors, 

were found to exceed a 2 mm diameter.

Result:

A size criterion: "colonies In excess of a2mm diameteF was thus

adopted as the definition of an HPP-CFC^c^derlved colony [Plate

4 & Plates 5A & 5BJ.

3.3.5 The cell^aa composition ao the HPP-CFCh , , aSF1-derived 

colonies.

Procedure:

In specific experiments the semi-solid 0.3% agar in the bilayer 

HPP-CFC assay was replaced by 0.9% methyiceiluiose (2.12). The 

use of merhyiceiluiose allowed an investigation of the cellular 

composition of the HPP-CFC^^^deeived colonies to be made. 

Individual colonies were ’plucked' from the methyiceiluiose after 14 

days incubation in the presence of 10% (v/v) each of WEHI 3B and 

L929 cell line conditioned media (as crude sources of interleukin 3 

(IL3)/muiti-CSF and M-CSF/CSF-1 respectively) and cytospin 

preparations produced.

Results:

Jenner-Giemsa staining of ceils derived from individual HPP- 

CFC^csi-^derived colonies revealed the majority of colonies were 

composed largely of macrophages. This would be consistent with the 

presence of the M-CSF/CSF-1 (as medium conditioned by the L929 

ceil line). The macrophages observed were characterized by a 

heavily vacuolated cytoplasm [Plate 64]. In some cases, in
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association with the mature macrophages, populations of immature

ceils were observed [Plate 6B[. in other cases, a morphoioglcaiiy 

distinct population of cells, characterized by a less vacuolated 

cytoplasm containing granules and with pale staining nuclei, were 

observed [Plate 6C].

3.3,6 The ceHularitv d 14 day HPP-CFCIL3; CCM-derived fcoonies.

Procedure:
I

The HPP-CFC|i+CSpi-derived colonies ranged in size from 

approximately 2-5mm in diameter. The use of 0.9% methyiceUuiose

allowed the ceiiularity of individual colonies to be determined. 

Individual HPP-CCCdgid-derived colonies were 'plucked' fom HPP- 

CFC assay at day 14 and ceii counts performed of. single cell 

suspensions of each colony using a Coulter Counter.

Result:

An average ceiiularity of 6.0(±04))x’104 celis/14 day HPP- 

CF:F^L3^HctP1 “derived colony was determined (n=6).

For comparison, a number of non-HPP-CFC-derived colonies, 

stimulated by either WEHI 3B (as a crude source of interleukin 3 

(IL3)/muitl-CSF) or L929 (as a crude source of M-CSF/CSF-1) cell line 

conditioned media, were investigated. Individai colonies were 

'plucked' from HPP-CFC assay at day 14, pooled and a ceil counts 

made of the resultant single ceii suspension using a Coulter Counter. 

An average ceiiuiariry of 1.4x10- ceiis/14 day WEHi 3B ceii line 

conditioned medium-stimulated colony and 0.6x10- ceiis/14 day L929 

cell line conditioned medium-stimulated colony, was determined.
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3.4 Reaui1telir^BF,L3+CSF frequency
in normal and sublerUclIvX-irrcdicred CBA/H mice.

3.4.1 Femur cellularities in normal and sublethaliy X-irradiated CBA/H

mice.

Procedure:

Femoral bone marrow was obtained from CBA/H mice as detailed 

(2.2). The majority of femoral marrow was expelled from the femoral 

cavity as a ’plug’ by the initial flush of medium, however repeated 

flushing of the femoral cavity with medium ensured maximal marrow 

recovery. Average femur ceUuiarities were determined by suspending 

the marrow of a known number of femora in a known volume of 

medium. A Coulter Count was performed on the resultant 

appropriately diluted, single ceii suspension (2.3).

Result:

An average femoral ceiiularity of 14(±1)x106 ceils (±SEM)(n=54) 

was determined for normal, 9-12 week old, male CBA/H mice.

In specific experiments, CBA/H mice were subjected to subiethai, 

whole body X-irradiation, which induced haematopoietic damage and 

produced a ’regenerating’ bone marrow. In CBA/H mice 3 and 7 days 

after subieth^ whole body X-irradiation doses of 2 and 4.5 Gy 

respectively (2.15 & 2.16), a 57% reduction in femoral marrow 

cellulcrlty was determined. In both cases, an average femur ceiiularity 

of 6(±ixx106 ceils was observed (±SEM)(n = 30 and n = 7 

respectively).
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3.4.2. HPP-CFC1L3+ggp_1 frequency in normal and sublethaliy, whole 

bodv X-irradiated CBA/H femoral marrow.

3.4.2.1 HPP-CFC^, CCF1 frequency in normal CBA/H femoral marrow.

HPP-CFC,F+CLai ssaay of normal CBA/H femoral marrow 

(assayed at 2.0-2.5x104 ceiis/mi) gave an average HCP-CFCmccsp-i 

frequency of l00(±1//!05 marrow cells (±SEM)(n=340). In an 

average normal CBA/H femur of approximately 14x/06 marrow ceils, 

an HPP-C^F^CLl34CSF.1 frequency of 100/10® marrow cells, gives a total 

approximate femoral marrow complement of /4x/03 HPP-CFC1Ls+cSF_r 

Approximately 1 in every 1000 marrow ceils will thus be a potential 

HPP-CF-Cfccm [Figure^

3.4.2.2 HPP-CFC|L4+cspi frequency in regenerating femoral marrow.

HPP-CFCjficsf-i assay of femoral marrow from mice 3 days after 

a subiethai, whole body X-irradiation dose of 2 Gy (assayed at 5x104 

regenerating bone marrow ceiis/mi) gave an average HPP- 

CFCN|33CSF_1 frequency of 29(±1)H05 regenerating marrow cells 

(±SEM)(n = 210). In an average femur from a mouse 3 days after a 2 

Gy whole body X-irradiation dose, of approximately 6x106 marrow 

cells, an HPP-CFC n^pi of 29/105 marrow cells gives an 

approximate 2 Gy X-irradiated femoral marrow compliment of 2x103 

HCP-CFC,l33CSpi. Approximately 1 in every 3000 regenerating marrow 

ceils will be a potential HCP-CFC^cs^-

Assayed 3 days after a whole body X-irradiation dose of 2 Gy, the 

total number of HPCC-Cf+c^m is reduced by 85% in

comparison to a normal non-irradiated femur. Hendry and Lajtha
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[1977] reported an 80% reduction in "CFU-S" numbers in murine

femora after a 1.5 Gy X-irradiation dose [Figure 42].



Figure 42: Summary of femur ceilularities and HPP-CFCil.3+csf-i frequencies in 
normal and X-irradiated CBA/H mice.

Normal 'X-irradiated

Average femur cellularity (x106) (±SEM)

Average HPP-CFCil3+csf-i frequency (±SEM)

Approximate number of HPP-CFC|L3+csF-i/temur

14(±1) (n=54)

100(+1)/105 cells (n=340)

14x103

6(±1) (n=30)

29(+1 )/105 cells (n=210)

2x103

Marrow from mice 3 days after a whole body X-irradiation dose of 2 Gy.
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Plate 1 : This photograph illustrates the pattern of colony 

growth obtained from murine bone marrow after 14 days in 

semi-solid agar under different colony-srimulcring factor 

regimes. Colonies observed are derived from 2.5x104 normal 

bone marrow cells per 30mm diameter, 0.3% agar disc and 

have been stoined with INT. Each agar disc is approximately 

30mm In diameter.

Slide A: In the absence of haematopoietic colony- 

stimulating activity. No cellular proliferation is observed.

Slide B: In the presence of 10% (v/v) medium conditioned 

by the L929 fibroblast cell line, a crude source of macrophage 

colony-stimulating factor (M-CSF/CSF-1).

Slide C: In the presence of 10% (v/v) medium conditioned 

by the WEHI 3B myelomonocytic leukaemic cell line, a crude 

source of interleukin 3 (IL3)/multi-CSF.

Slide D: In the presence of a combination of media 

conditioned by the L929 fibroblast cell line and the WEHI 3B 

myelomonocytic leukaemic cell line. The combination of 

colony-stimulating factors "synergize" to stimulate the 

proliferation of a colony-forming cell population characterized 

by c high proliferative potential. This distinct high proliferative 

potential colony-forming cell (HPP-CFC) population is not 

observed when each factor is used singly.
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Plate 2 : This photograph illustrates the pattern of colony 

growth from 2.5x104 murine bone marrow cells after 14 days, in 

the presence of medium conditioned by the L929 fibroblast cell 

line, as a crude source of M-CSF/CSF-1 fSlide A] (colonies are 

stained with INT and each agar disc is approximately 30mm in 

diameter) and in the presence of a combination of L929 

fibroblast cell line conditioned medium (M-CSF/CSF-1) and:

(1) AF1-19T malignant histiocytosis sarcoma virus- 

transformed cell line conditioned medium, a crude source of 

granulocyte-macrophage colony-stimulating factor (GM-CSF) 

[MdS_B].

(2) Recombinantiy-derived murine granulocyte- 

macrophage colony-stimulating factor (rmuGM-CSF) [Slide C].

(3) WEHI 3B myelomonocytic leukaemic cell line 

conditioned medium, a crude source of interleukin 3 (IL3)/multi- 

CSF [Slide DI.

GM-CSF, as either medium conditioned by the AF1-19T 

cell line or as rmuGM-CSF, and interleukin 3 (IL3)/multi-CSF, 

as medium conditioned by the WEHI 3B cell line, are 

demonstrated to synergise with M-CSF/CSF-1 to stimulate the 

proliferation of a distinct colony-forming cell population with 

high proliferative potential. These high proliferative potential 

colony-forming cell (HPP-CFCGM-csF+csF-i and HPP- 

CFCiL3+csF-i ) - derived colonies, appear to differ 

morphologically and numerically, although the exact 

relationship between HPP-CFC subpopulations is, as yet, 

unclear.
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Plate 3 : This photograph illustrates the pattern of colony 

growth by 5x104 normal bone marrow cells, over a period of 14 

days in the presence of medium conditioned by the L929 cell 

line (as a crude source of M-CSF/CSF-1), the WEHI 3B cell line 

(as a crude source of interleukin 3 (IL3)/multi-CSF) or a 

combination of the two conditioned media.

(Colonies were assayed on days 8, 10, 12 and 14 and 

stained with INT. Each agar disc is approximately 50mm in 

diameter.)



Day 14
*

* ♦

5*.

Day 12
*

« I

• • 
* *

Day 10

«•

Day 8

L929 cell line 
conditioned 

medium

WEHI 3B + L929 
conditioned media.

WEHI 3B cell line 
conditioned 

medium.

10mm
ii



Plate 4: This photograph illustrates the pattern of colony 

growth observed at day 14 after the culture of 5x104 normal 

bone marrow cells with medium conditioned by the L929 

fibroblast cell line (as a crude source of M-CSF/CSF-1 ), the 

WEHI 3B cell line (as a crude source of interleukin 3 (IL3)/ 

multi-CSF) or a combination of the two conditioned media.

The results of both INT and Jenner-Giemsa staining 

techniques are illustrated (each agar disc is approximately 

50mm in diameter).



Jenner-Giemsa
Stained INT Stained

L929 cell line 
conditioned 

medium

WEHI 3B cell line 
conditioned 

medium.

WEHI 3B + L929 
conditioned media

10mm



Plates 5A and 5B : These photographs illustrate, at a 

higher magnification, the contrast in the diameters of an 

HPP-CFC - derived colony, stimulated in the presence of a 

combination of L929 and WEHI 3B conditioned media 

(HPP-CFC|L3+csf_i), which fulfills the 2mm diameter criterion 

(Actual diameters of approximately: Plate 5A - 5mm, Plate 5B - 

4mm) and a non-HPP-CFC - derived colony (Actual diameters 

of approximately: Plate 5A - 0.5mm, Plate 5B - 0.8mm).

(Plate SB has a 1mm grid background against which reference 

can be made. Colonies were stained with INT.)

Plate 5A

•y

I-------- 1

1 mm



Plate 5B

1mm



Plates 6A, 6B and 6C : This series of

photomicrographs illustrate the variety of cell types observed 

when the cellular composition of individual HPP-CFC|L3+csf-i - 

derived colonies was investigated. The photomicrographs are 

of cytocentrifudge preparations of individual 14 day 

HPP-CFC||_3+csf-i - derived colonies cultured in 0.9% 

methylcelluiose and cells are Jenner-Giemsa stained.

PI atG 6A : This photomicrograph illustrates the heavily 

vacuolated nature of the macrophage population which was 

found to be the most abundant cell type within individual 

HPP-CFC|L3+csf-i - derived colonies. This is consistent with the 

presence of M-CSF/CSF-1, as medium conditioned by the 

L929 fibroblast cell line.

Plate 6B: This photomicrograph illustrates the occasional 

finding of a relatively immature myeloid cell population,

showing some degree of differentiation, together with the

mature macrophages within individual HPP-CFCil3+csf-i - 

derived colonies.

Plate 6C : This photomicrograph illustrates the occasional 

finding of a discrete, morphologically distinct cell population, 

characterized by a pale-staining nucleus and abundant 

cytoplasmic granules, together with the mature macrophages 

within individual HPP-CFCil3+csf-i - derived colonies.



10pM

Plate 6A

Plate 6C

Plate 6B
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3,5 Determination of the proportion of 

HPP-CFC,+csf 1 *n S-phase in normal and sublethaliy 
X-irradiated, regenerating. CBA/H femoral marrow.

Procedure:

The proportion of HPP-CFCIL3+csm in S-phase was determined by 

use of the S-phase ’suicide’ technique. Cells in S-phase, if incubated 

with the S-phase-specific cytotoxic agent cytosine arabinoside (ARA- 

C)(2.13) are killed. Thus, HAP-CFC,^^ in S-phase during ARA-C 

incubation are killed and their coiony-forming potential is not realised 

in the subsequent HPP-CFCl33+CSp1 assay. The proportion of HPP- 

CFCIL3+csm in S-phase is determined by the difference in the number 

of HPP-CFCILJ3+a3F_1-derived colonies obtained in the absence of ARA- 

C and the number obtained in the presence of ARA-C.

Results:

3.5.1 Determination of the proportion of

HPP-CCCiLa, Qgp! in S-thase in normal femoral marrow.

The proportion of HPPPFCc+^fm S-phase in normal femoral 

marrow was determined as 9(± 1)% (±SEM)(n=255) [Figure 43[.

in vitro GM-CFC assay of normal bone marrow demonstrates that

the proportion of the more mature haematopoietic progenitor cells in 

S-phase is 31(±1)% (±SEM)(n=35) [Figure 43].

3.5.2 Determination of the proportion of 

HPP-CFC,L3 , Cgp-, in S-phase in regenerating femoral marrow.

The proportion of HPP-CFCa3+<pFa in S-phase in regenerating 

femoral marrow from mice 3 days after a whole body M-irradiation
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dose of 2 Gy was determined as 40(±1)% (±SEM)(n = 177) [Figure

43J.

3.6 HPP-CFCIL3+esF ■! t<3 the stem cell-specific
proliferation inhibitor and stimulator.

Procedure:

Haematopoietic stem celt-specific proliferation regulators have 

been identified (1.10). A stem ceil proliferation inhibitor is present in 

normal bone marrow and maintains the reduced proportion of stem 

ceils in S-phase. A stem ceil proliferation stimuiator is present in 

subiethaiiy X-irradiated, regenerating bone marrow and maintains the 

increased proportion of stem cells in S-phase. The stem cell 

proliferation inhibitor has the capacity to reduce the proportion of 

stem cells in S-phase in regenerating bone marrow and similarly, the 

stem cell proliferation stimuiator has the capacity to increase the 

proportion of stem cells in S-phase in normal bone marrow. The 

sensitivity of the HPP-CFCIL3+CSo poputation to these stem cell- 

specific proliferation regulators was investigated.

Results:

3.6.1 HPP-CFC[L3+gyp sensitivity to the stem cell-specific proliferation 

inhibitor.

in regenerating marrow from mice 3 days after a whole body X- 

irradlation dose of 2 Gy, the proportion of HPP-CFCIL3+csm in S- 

phase was determined as 40(±1)% (3.5). if incubated with medium 

conditioned by normal bone marrow (2.14 & 2.16), in which the 

proportion of stem ceils in S-phase is low and which is a crude 

source of stem ceil proliferation inhibitor, the proportion of HPP-



Figure 43: The proportion of HPP-CFC in S-phase 
in normal and X-irradiated, regenerating bone marrow.

The proportion of 
HPP-CFC in S-phase 

in normal bone 
marrow:

9(±1)%
(n=255)(±SEM)

The proportion of
GM-CFC in S-phase in
normal bone marrow:

31 (±1)%
(n=35)(±SEM)

The proportion of
HPP-CFC in S-phase

in X-irradiated, 
regenerating bone

marrow:

40(±1 )%
(n=177)(±SEM)
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CFC^-gsf- in S-phase was reduced from 40(±1)% (3.5) to 25(±1)%> 

(±SEM)(n=127) [Figure 44]. (Medium was conditioned by normal 

bone marrow for 4 hours at 37°C (2.14) and prior to use was diluted 

so as to be derived from 15x106 normal bone marrow ceiis/mi).

3.6.2 HPP-CFCIL36ccr-, sensitiviy/' to the stem cell-specific proiiferation 

stimulator.

in normal bone marrow the proportion of HPP-CFCIL3+csf1 in S- 

phase was determined as 9(±1)% (3.5). if incubated with medium 

conditioned by regenerating bone marrow from mice 7 days after a 

subiethai whole body X-irradiation dose of 4.5 Gy (2.15 & 2.17), in 

which the proportion of stem ceils in S-phase is increased and which 

is a crude source of stimuiator, the proportion of HPP-CFC,66+CgF_,- in 

S-phase was increased from 9(± 1)% (3.5) to 24(± 1)%

(±SEM)(n = 107) [Figure 45[. (Medium was conditioned by 

regenerating bone marrow for 1 hour at 37°C (2.15) and prior to use 

was diluted so as to be derived from 15x10® regenerating marrow 

ceiis/mi.)

No evidence of normal bone marrow conditioned medium-derived 

inhibitor, or regenerating bone marrow-derived sf/zno/afor toxicity 

was detected in the in vitro HPP-CCC^csf-i assay.

3,7 A Aetermination of oh e sensHtivity of oh e

HPP-CFC|L3+csf-1 population to the stem cell 
proliferation inhibitor and stimulator.

Tejero ef a/[1984] demonstrated an 'age' related differential 

sensitivity to the haematopoietic stem ceil proliferation regulators. 

More primitive components of the haematopoietic stem ceil
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compartment (day 10-12 CFU-S) proved significantly more sensitive 

to the stem cell proliferation fnhlbftorthan stimulator, while more 

mature components of the haematopoietic stem cell compartment 

(day 7-8 CFU-S and CFC-mix) proved significantly more sensitive to 

the stem cell proliferation stimuiatorihan inhibitor (U7) [Figure 13[.

The sensitivity of the in vitro HPPP-FCIL3+(pM pupulation to the 

stem cell proliferation regulators was thus investigated to allow a 

determination of the position of the population within the 

haematopoietic stem cell compartment.

3.7.1 HPP-CFC[L3, ccr ° sensitivity to the stem cell proliferation 

inhibitor.

Procedure:

Samples of medium conditioned for 4 hours at 37°C by 15-20x106 

normal bone marrow cells/ml were prepared (2.14). Prior to use, 

samples were thawed, centrifuged (x3000 rpm, 15 mins.), MilliPore 

filtered (0.22 pM) and diluted with medium so as to be derived from 1, 

2, 4,6, 8 or 10x106 cells/mL

Regenerating femoral marrow from mice 3 days after a sublethal 

whole body X-irradiatlon dose of 2 Cy, in which the proportion of 

stem ceils in S-phase is increased, was washed and incubated with 

either medium alone, or medium conditioned by 1, 2, 4,6,8 or 10x10® 

normal bone marrow cells/ml (2.16).

Results:

In the presence of medium alone, the proportion of HPP- 

CFC,Lj°(c:p_° in S-phase was determined as 51(±3)% (±SEM) (n=6). 

In the presence of an Increasing concentration of normal bone 

marrow conditioned medium, a progressive reduction in the 

proportion of HPP-CFC°°+°°m In S-phase was observed to a
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minimum, plateau value of approximately 24% [Figure 46]. (Previous 

data (3.6.1) were obtained by incubating regenerating bone marrow

with medium conditioned by 15x10® normal bone marrow cetls/mi and

is included here: 25(±1)% (±SEM) (n = 127) HIPP-CFC^cs^ in S-

phase.)

3.7.2 HPP-CFC|L31CSF, sensitivitv to the stem cell proliferation

stimuiator.

Procedure:

Samples of medium conditioned for 1 hour at 37°C by 15-20x106 

regenerating marrow cells/ml, from mice 7 days after a 4.5 Gy whole 

body X-irradiation dose, were prepared (2.15). Prior to use, samples 

were thawed, centrifuged (x3000 rpm, 15 mins.), MilliPore filtered 

(0.22 juM) and diluted with medium so as to be diluted from 2, 4,6,8 

and 10x10® cells/ml.

Normal bone marrow, in which the proportion of stem cells in S-

phase is relatively low, was washed and incubated with either 

medium alone, or medium conditioned by 2, 4,6, 8 and 10x1<®

regenerating marrow cells/ml (2.17).

Results:

In the presence of medium alone, the proportion of HPP- 

CFClLaacsF-i in S-phase was determined as 9(±2)% (±SEM) (n = 4). in 

the presence of an increasing concentration of regenerating bone 

marrow conditioned medium, a progressive increase in the 

proportion of HPP-CFC,33+csf_1 in S-phase was observed, to a 

maximum, plateau value of approximately 28% [Figure 47\. (Previous 

data (3.6.2) were obtained by incubating normal bone marrow with 

medium conditioned by 15x106 regenerating bone marrow cells/ml



Figure 46: A determination of the sensitivity of the 
in vitro HPP-CFC|L3+csf-i population to 

stem cell proliferation inhibitor.

Concentration of
normal bone marrow
conditioned medium.
(x106 cells/ml)

Proportion of 
HPP-CFC|L3+CSF-1 
in S-phase (%).0) 
(±SEM) (n=6)

— 51 (±3)

1 49(±8) NS(P>O.1)
2 39(±3) S (P<0.05)
4 37(±3) S (P<0.025)
6 30(±4) S (P<0.005)
8 26(±5) S (P<0.01)
10 24(±6) S (P<0.025)

15 25(±1) (n=127)

0) HPP-CFC|i_3+cSF-l derived from regenerating bone marrow. 

(NS-Not significant. S-Significant)

Concentration of normal bone marrow conditioned medium 
(x106 cells/ml)



Figure 47: A determination of the sensitivity of the 
in vitro HPP-CFCh_3+csf-i population to 

stem cell proliferation stimulator.

Concentration of 
regenerating bone marrow 
conditioned medium.
(x106 cells/ml)

Proportion of 
HPP-CFCil3+csf-i 
in S-phase (%).0) 
(±SEM) (n=4)

— 9(±2)

2 17 (±2) S (P<0.005)
4 17(+3) S (P<0.005)
6 24(±3) S (P<0.0005)
8 28(±5) S (P<0.005)
10 26(±2) S (P<0.005)

15 24(±1) (n=107)

(1) HPP-GFC|L3+csfr_i derived from normal bone marrow. (S-Significant)

Concentration of regenerating marrow conditioned medium 

(x106 cells/ml)
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and is included here: 24(±1)% (±SEM) (n = 107) HPP-CFC, in

S-phase.)
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3,8 HPP-CFCIL3+CSFl investigation
inhibitor! stimulator status of medium conditioned by

murine, X-IrradIation-Induced, serially passaged, myeloid
leukaemic marrow.

A number of X-irradiation-induced myeloid leukaemias have been 

produced In CBA/C male mice In this laboratory [Cepburn af a/,1987] 

(2.18). Primary leukaemias were characterized and subsequently 

passaged through syngeneic mice. Passage of the primary 

leukaemias was at both a high and a low cell dose and two distinct 

leukaemic morphologies subsequently developed. Primary leukaemic 

cells, passaged at a relatively high ceil dose (CD), produced a 

leukaemia characterized by a more aggressive nature than the 

primary leukaemia itself, while primary leukaemic cells passaged at a 

relatively low cell dose (LD), produced a leukaemia characterized by 

a near-primary morpholgy [Cepburn ef a/,1987].

Three serially passaged, X-irradiation induced, murine, myeloid 

leukaemias were investigated - classified as SA2, SA7 and SA8 (SA- 

St .Andrews). Specifically, the high cell dose-passaged SA7 myeloid 

leukaemia (SA7CD), the high and low cell dose-passaged SA8 

myeloid leukaemia (SA8 CD and SA8 LD) and low and high passage 

numbers of the SA2 myeloid leukaemia (SA2LP and SA2CP) were 

investigated.

Femoral marrow was taken from overtly leukaemic mice and 

leukaemic marrow conditioned medium produced (2.20). Medium 

conditioned by the leukaemic marrows was subsequently 

investigated using the HPP-CFCIL3+CfF.,l assay to establish the levels 

of the stem cell proliferation regulators in such aberrant 

haematopoiesis. Evidence for a direct-acting leukaemia-associated 

haematopoietic proliferation Inhibitor was also sought (2.16 & 2.17).
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3.8.1 HPP-CFC^, CGr_1 investigation of the inhibitor/stimulator status 

of medium conditioned bv high and iow passage numbers of the SA2

mveloid ieukaemic marrow.

Procedure:

4 batches each of medium conditioned by iow and high passage 

numbers of the SA2 myeloid ieukaemic marrow were produced

(SA2LP & SA2HP)(2«20) and assayed against normal and

regenerating bone marrow (2.16 & 2.17).

Results:

3.8.1.1 The sf/mu/afor status of medium conditioned bv SA2LP and

SA2HP leukaemic marrow.

The proportion of HPP-CFCiL3+GSr.1 in S-phase in washed normal 

bone marrow was determined as 14(±1)% (±SEM) (n=8). In washed 

normal bone marrow, incubated with medium conditioned by iow 

passage number SA2 myeloid ieukaemic marrow (SA2LP), the 

proportion of HPPCFC,f+Csis hi S-phsse was not significantly 

changed (P>0.4) at 15(±1)% (n = 8). In washed normal bone marrow, 

incubated with medium conditioned by high passage number SA2 

myeloid leukaemic marrow (SA2HP), the proportion of HPP- 

CFC^f+csf-i in S-phase was not significantly changed (P>0.4) at 

15(±1)% (n = 8) [Figure 41

No evidence for the presence of stem ceil proliferation stimulator 

was observed at the concentration of conditioned medium assayed, 

in either the SA2LP or SA2HP ieukaemic marrow conditioned media

[Figure 48].
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3.8.1.2 The inhibitor status of medium conditioned bv SA2LP and

SA2HP ieukaemic marrow.

The proportion of HPP-CFCIL3+csF-i ",n S-phase in washed

regenerating bone marrow from mice 3 days after a 2 Gy whole body 

X-irradiation dose was determined as 36(±1)% (±SEM) (n=8). In 

washed regenerating bone marrow incubated with medium 

conditioned by iow passage number SA2 (SA2LP), the proportion of 

HPP-CFC|L3+Csf.i in S-phase was not significantly changed (P > 0.4) at 

36(±5)% (n = 8). In washed regenerating bone marrow incubated with 

medium conditioned by high passage number SA2 (SA2HP), the 

proportion of HPP-CFC[Lll.Csf-l in S-phase was not significantly 

changed (P>0.4) at 36(±1)% (n=8) [Figure 48].

No evidence for the presence of stem cell proliferation inhibitor 

was observed at the concentration of conditioned medium assayed, 

in either the SA2LP or SA2HP ieukaemic marrow conditioned media. 

These results also indicate that, at the concentrations of conditioned 

medium assayed, there was no evidence of a direct-acting leukaemia- 

associated haematopoietic proliferation inhibitor. Rapidly cycling 

HPP-CFCIL3lGSF_lj remain rapidly cycling when incubated with the 

leukaemic marrow conditioned medium. No evidence of SA2LP or 

SA2HP leukaemic marrow conditioned media toxicity was observed.



Figure 48: HPP-CFCil3+csf-i investigation of the
inhibitor/stimulator content of medium conditioned by high and

low passage number SA2 myeloid leukaemic marrow.

Proportion of HPP-CFCils+csf-i 
in S-phase {%) (±SEM) (n=8)

Normal
bone
marrow
(NBM

Regenerating
bone
marrow(1)
(RBM)

Control 14(±1) 36(±1)

+SA2LP conditioned 
medium.(SA2LPcm) 15(±1)<2) 36(±2)(3)’

+SA2HP conditioned 
medium.(SA2HPcm) 15(±1)(2) 36(±1 )(3)

0 ) Regenerating marrow from mice 3 days after a 2 Gy whole body X-irradiation dose.
(2) No significant increase (P>0.4).
(3) No significant reduction (P>0.4).

+S
A2

H
Pc

m
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3.8.2 HPP-CFCisg 1 ccr i investigation of the inhibitor/stimulator status

of medium conditioned bv high cell dose-passaged SA7 mveloid

leukaemic marrow.

Procedure:

5 batches of medium conditioned by high ceil dose-passaged

SA7 ieukaemic marrow (SA7HD) were produced (2.20) and assayed 

against normal and regenerating bone marrow (2.16 & 2.17).

Resuits:

3.8.2.1 Thh sS/J/ee/afonsSatus po meeium connitioond bv SA7HD

ieukaemic marrow.

in washed normal bone marrow, the proportion of HPP- 

CFC1L3+cslM in S-phase was determined as 12(±1)% (±SEM) (n = 11). 

In washed normal bone marrow, Incubated with medium conditioned 

by SA7HD myeloid ieukaemic marrow, the proportion of HPP- 

CFCn^+csfi in S-phase was not significantly changed (P>0.4) at 

13(±1)% (n=11) [Figure43[,

No evidence for the presence of stem celi proliferation stimulator 

was observed at the concentration of conditioned medium assayed.

3.8.2.2 Tho innibborrtetius oo mee^^m connitlonnd Iw SSATiD

leukaemic marrow.

The proportion of HPP-CFC,c+Cfri In S-phase in washed 

regenerating bone marrow from mice 3 days after a 2 Gy whole body 

X-irradlation dose, was determined as 37(±2)% (±SEM) (n=11). in 

washed, regenerating bone marrow, incubated with SA7HD 

ieukaemic marrow conditioned medium, the proportion of HPP-
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CFC^cs^i in S-phase was not significantly changed (P > 0.1) at 

35(±2)% (n=11) [Figure 4S[.

No evidence for the presence of stem cell proliferation inhibitor 

was observed at the concentration of SA7HD Ieukaemic marrow 

conditioned medium assayed. These results also indicate that, at the

concentrations of conditioned medium assayed, there was no 

evidence of a direct-acting leukaemia-associated proliferation 

Inhibitor. Rapidly cycling WPP-Cfcifv reman rapidly cycling in 

the presence of SA7HD leukaemic marrow conditioned medium. No 

evidence of SA7HD leukaemic marrow conditioned medium toxicity 

was observed.

3.8.3 HPP-CFC1L3 [ ccr i Investigation of the inhibitor! stimuiatorstatus

of medium conditioned bv high cell dose-passaged SA8 mveloid

leukaemic marrow.

Procedure:

4 batches of medium conditioned by high cell dose-passaged 

SA8 (SA8 HD) myeloid leukaemic marrow were produced (2.20) and 

assayed against both normal and regenerating bone marrow (2.16 &

2.17).

Results:

3.8.3.1 The ssfmuiatorssatus of medium conditioned bvSASHD

leukaemic marrow.

The proportion of HPP-CFCILf+cSFs m S-phsse in washed normal 

bone marrow was determined as 13(±1)% (±SEM) (n = 12). In

washed normal bone marrow incubated with medium conditioned by 

SA8HD myeloid leukaemic marrow, the proportion of HPP-



Figure 49: HPP-CFCil3+csf-i investigation of the
inhibitor/stimulator content of medium conditioned by high cell

dose-passaged SA7 myeloid leukaemic marrow.

Proportion of HPP-CFC|L3+csf-i 
in S-phase (%) (±SEM) (n=11)

Normal
bone
marrow
(NBM)

Regenerating
bone
marrowd)
(RBM)

Control 12(±1) 37(±2)

+SA7HD conditioned 
medium.(SA7HDcm) 13(±1)<2) 35(±2)3)

(1) Regenerating marrow from mice 3 days after a 2 Gy whole body X-irradiation dose.
(2) No significant increase (P>0.4).
(3) No significant reduction (P>0.1).
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CFCjLLccsPi «n S-phase was not significantly changed (P>0.1) at

14(±1)% (n=12) [Figure 5C[.

No evidence for the presence of stem ceii proiiferation stimulator 

was observed at the concentration of SA8 HD ieukaemic marrow

conditioned medium assayed.

3.8.3 .2 The inhibittH status oo medium conditioned bv SA8HD

ieukaemic marrow.

The proportion of HPP-CFC,L3lGSF.l in S-phase in washed 

regenerating bone marrow from mice 3 days after a 2 Gy whole body 

X-irradiation dose, was determined as 36(±2)% (±SEM) (n=12). In

washed regenerating bone marrow incubated with medium 

conditioned by SA8 HD ieukaemic marrow, the proportion of HPP- 

CFC,L3l(33F.l in S-phase was not significantly changed (P>0.1) at 

35(±1)% (n = 12) [Figure Sty.

No evidence for the presence of stem ceii proiiferation inhibitor 

was observed at the concentration of SA8 HD ieukaemic marrow 

conditioned medium assayed, nor was there any evidence for a 

direct-acting leukaemia-associated proiiferation inhibitor. Rapidly 

cycling HPP-CFC1L[, CSM, remained rapidly cycling in the presence of 

SA8 HD ieukaemic marrow conditioned medium. No evidence of 

SA8 HD ieukaemic marrow conditioned medium toxicity was 

observed.



Figure 50: HPP-CFCil3+csf-i investigation of the
inhibitor/stimulator content of medium conditioned by high cell

dose-passaged SA8 myeloid leukaemic marrow.

Proportion of H PP-CFCo+csf-i 
in S-phase (%) (±SEM) (n=12)

Normal
bone
marrow
(NBM)

Regenerating
bone
marrowd)
(RBM)

Control 13(±1) 36(±2)

+SA8HD conditioned 
medium.(SA8HDcm) 14(±1)(2) 35(±1)P)

(1 ) Regenerating marrow from mice 3 days after a 2 Gy whole body X-irradiation dose. 
(2) No significant increase (P>0.1).
(2) No significant reduction (P>0.1).
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3.8.4 HPP-CFF,^, ccr 4 investigation of the inhibitor!  stimulator status

of medium conditioned bv low cell dose passaged SA8 mveloid

leukaemic marrow.

Procedure:

8 batches of medium conditioned by low ceii dose-passaged SA8 

(SA8 LD) myeioid leukaemic marrow were produced (2.20) and 

assayed against both normal and regenerating bone marrow (2.16 & 

2.17).

Results:

3.8.4.1 The stimulator satis co medium connitionnd CvSASLD

leukaemic marrow.

The proportion of HPP-CFCIl3+(^R1 in S-phase in washed normal 

bone marrow was determined as 13(±1)% (±SEM) (n=29). in 

washed normal bone marrow incubated with medium conditioned by 

SA8 LD myeloid leukaemic marrow, the proportion of HPP-CFCIL3+csf 

in S-phase was not significantly changed (P > 0.1) at 12(± 1)% (n=29) 

[Figure 51],

No evidence for the presence of stem ceii proiiferation stimulator 

was observed at the concentration of SA8 LD ieukaemic marrow

conditioned medium assayed.

3.8.4.2 TTh /nnz/jy/tostitats oo meeium connitionne^^bv SS8LD

ieukaemic marrow.

The proportion of HPP-CFC1Ll+l$ll in S-phase in regenerating 

bone marrow from mice 3 days after a 2 Gy whole body X-^adiation

dose, was determined as 35(±1)% (±SEM) (n=29). In washed
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regenerating bone marrow incubated with medium conditioned by 

SA8 LD leukaemic marrow, the proportion of HPP-CFC1L3+GSfM in S- 

phase was not significantly changed (P > 01) at 34( ± 1)% (n=29) 

[Figure 51],

No evidence for the presence of stem ceii proiiferation inhibitor 

was observed at the concentration of SA8 LD ieukaemic marrow 

conditioned medium assayed, nor was there any evidence for a 

direct-acting ieukaemia-associated proiiferation inhibitor. Rapidiy 

cycling HPP-CFC11J3+csf_1 remained rapidiy cycling when incubated 

with SA8LD ieukaemic marrow conditioned medium. No evidence of 

SA8 LD ieukaemic marrow conditioned medium toxicity was 

observed.

3.8.5 An investigation of the 'concentration' and duration of

conditioning of ieukaemic marrow conditioned medium.

The absence of evidence for stem ceii proiiferation stimulator or 

inhibitor, or of a direct-acting ieukaemia-associated proiiferation 

inhibitor in the SA2LP, SA2HP, SA7HD, SA8HD and SA8LD ieukaemic 

marrow conditioned media, was further investigated by increasing 

the concentration of ieukaemic marrow conditioned medium assayed 

and by increasing the period of time over which the medium was 

conditioned by the ieukaemic marrow.



Figure 51 : HPP-CFCils+csf-i investigation of the
inhibitor/stimulator content of medium conditioned by low cell

dose-passaged SA8 myeloid leukaemic marrow.

Proportion of HPP-CFCil3+csf-i 
in S-phase (%) (±SEM) (n=29)

Normal
bone
marrow
(NBM)

Regenerating
bone
marrowd)
(RBM)

Control 13(±1) 35(±1)

+SA8LD conditioned 
medium.(SA8LDcm) 12(±1)2) 35(±1)3)

0) Regenerating marrow from mice 3 days after a 2 Gy whole body X-irradiation dose.
(2) No significant increase (P>0.1 ). .
(3) No significant reduction (P>0.1), •
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3.8.5.1 An investigation of the ’concentration’ of leukaemic marrow

conditioned medium.

Procedure:

Experiments were performed In which medium conditioned by 

25x106 SA8 HD leukaemic marrow cells/mi was assayed against both 

normal and regenerating bone marrow (2.16 & 2.17).

Result:

No evidence of stem ceil proiiferation stimulator or inhibitor, or of 

a direct-acting ieukaemia-associated proiiferation inhibitor was

observed [Data not shown],

3.8.5.2 An investigation of the duration of conditioning of ieukaemic

marrow conditioned medium.

Procedure:

Experiments were also performed in which medium conditioned 

for 5 hours by SA8 HD Ieukaemic marrow was assayed against both 

normal and regenerating bone marrow (2.16 & 2.17).

Result:

No evidence of stem ceii proiiferation stimulator or inhibitor, or of

a direct-acting Ieukaemia-associated proiiferation Inhibitor was 

observed [Data not shown],
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3-9 Time study of the progression of the SA8LP myeloid
leukaemia.

The apparent absence of stem cell proliferation inhibitor and 

stimulator in medium conditioned by overtly ieukaemic marrow from 

SA2LP, SA2HP, SA7HD, SA8HD and SA8LD myeloid leukaemias was

further investigated by specific reference to the SA8 low ceii dose- 

passaged (SA8LD) myeioid leukaemia.

Over a reproducible period of approximately 21 days, 9-10 week 

old, male, CBA/H mice injected intravenously with 105 SA8LD myeioid 

leukaemic ceils, developed myeioid leukaemia (2.19). To determine 

whether the marked haematopoietic dysfunction associated with the 

development of SA8LD myeioid leukaemia was a direct consequence 

of abnormal stem ceii proiiferation regulation during disease 

progression, a time study of the SA8LD myeioid ieukaemic 

progression was performed. Variations in the levels of

haematopoietic stem ceii proiiferation inhibitor and stimuiator with 

disease progression were investigated and evidence sought for a 

direct-acting ieukaemia-associated proiiferation inhibitor.

Procedure:

4 groups of 6-7,9-10 week old, male, CBA/H mice per group were 

injected intravenously with 105 SA8LD myeioid ieukaemic ceils, 

individual groups of mice were assayed at day 0 (day of injection), 

day 15, day 18 and day 21 (by which time mice were overtly 

ieukaemic). Assay involved a determination of the total body weight 

of each mouse, a determination of the weight of the spleen of each 

mouse and a determination of the femoral marrow ceiiuiarity of each 

mouse. Medium was subsequently conditioned by the combined 

femoral bone marrow of each group (2.20) and inhibitor and 

stimuiator assay performed on the conditioned medium (2.16 & 2.17).
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Results:

3.9.1 The variation in total body weight, femoral cellularitv and spleen

weight with SA8LD myeloid leukaemic progression.

3.9.1.1 The variation of total body weight with SA8LD ieukaemic

progression.

The total body weight of 9-10 week old male CBA/H mice on the 

day of injection (day 0) was determined as 28(±2)g (± SD) (n = 6). By 

day 15, the total body weight was determined as 30(±2)g (n = 6) and 

by day 18, the total body weight was determined as 30(±2)g (n=7). 

By day 21 and overt leukaemia, total body weight was determined as 

32(±2)g (n = 7).

No significant variation in total body weight was observed with 

SA8LD ieukaemic progression [Figures 52 & 52a].

3.9.1.2 The variation in femoral ceiiuiaritv with SA8LD ieukaemic

progression.

Femoral ceiiuiarity of 9-10 week old CBA/H mice on the day of 

injection (day 0) was determined as 14(±2)x106 ceils (±SD) (n = 6).

By day 15 femoral ceiiuiarity was determined as 15(±1)x106 cells 

(n=6) and by day 18, femoral ceiiuiarity was 13(±1)x106 ceils (n=7). 

By day 21 and overt leukaemia, femoral ceiiuiarity was determined as 

15(± 1)x106 ceils (n=7) [Figures 52&52b].

No significant variation in femoral ceiiuiarity was observed with 

SA8LD myeioid ieukaemic progression, although the cellular 

composition of the femoral marrow was significantly changed. in 

normal (day 0) femoral marrow, a predominance of relatively mature
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haematopoietic progenitors was observed (metamyelocytes, 

erythroblasts, lymphocytes and band ceils [Hepburn ef a/,1987]). in 

overtiy ieukaemic SA8LD ieukaemic femoral marrow (day 21), there 

was a predominance of immature blast ceils (increased numbers of

myelocytes, promyelocytes and generalized blast cells [Hepburn et

a/,1987]).

3.9.1.3 The variation in spieen weight with SA8LD ieukaemic

progression.

Spieen weight of 9-10 week old, male, CBA/H mice on the day of

injection (day 0) was determined as 67(±7)mg (±SD) (n = 6). By day 

15 spieen weight was 67(±7)mg (n=6) and by day 18 spieen weight 

was 76(±8)mg (n=7). By day 21 and overt leukaemia, spieen weight 

was 138(±55)mg (n = 7) [Figures 52 & 52c].

A significant increase in spleen weight was observed with disease 

progression. The increase in spleen weight was associated with a 

marked spienomegaiiy, which is the result of a marked Infiltration by 

ieukaemic ceils. The spieen, originally red-brown, becomes pale with 

infiltrated ieukaemic ceils with disease progression. In normal spieen, 

the lymphocyte is the predominant ceii type, in overtiy ieukaemic 

mice the spieen becomes heavily intiltrated with non-lymphocytic, 

leukaemic blast ceils (myelocytes, promyelocytes and generalized 

blast ceils [Hepburn ef a/,1987]).



Figure 52: A time study of total body weight, femoral cellularity and spleen weight 
with SA8 low cell dose-passaged, myeloid leukaemic progression.

Progession of
SA8LD myeloid 
leukaemia.

Total body 
weight (g)
(+SD)

Femur 
cellularity 
(x106 cells) 
(±SD)

Spleen 
weight (mg) 
(±SD)

Control, Day 0 (n=6) 28(±2) 14(±2) 67(±7)

Day 15 (n=6) 30(+2) 15(±1) 67(±7)

Day 18 (n=7) 30(±2) 13(±1) 76(±8)

Day 21, (n=7)
(overt leukaemia)

32(±2) 15(±1) 138(±55)
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Figure 52a: Variation in body weight 
with SA8LD leukaemic progression.
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Figure 52b: Variation in femoral ceiiuiarity
with SA8LD ieukaemic progression.
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Figure 52c: Variation in spleen weight 
with SA8LD leukaemic progression.

9

-T~---------- ---- 1----- ------ ---- —1-------------
0 15 18

Progression of SA8LD (Days)
21



133

3.9,2 Assay of the stem eel I proliferation inhibitor and stimulator

content of medium conditioned bv femoral marrow after 0,15,18 and

21 days progression of SA8 LP mveioid leukaemia.

3.9.2.1 Abass of of e stem meU prolioeratton stimulatoroovObre of

medium conditioned bv femoral marrow after 0,15.18 and 21 days

progression of SA8LD mveioid leukaemia.

The proportion of HPP-CFC,L3+(c^i=.i in S-phase in washed normal 

bone marrow was determined as 11 (±1)% (±SEM) (n = 8). in washed 

normal bone marrow incubated with medium conditioned by 'day 0' 

SA8 LD femoral marrow the proportion of HPP-CFC^ggp 1 in S-phase 

was not significantly changed (P>0.1) at 12(±1)% (n=2). In washed 

normal bone marrow incubated with medium conditioned by 'day 15’ 

SA8LD femoral marrow the proportion of HPP-CFCll1+CSo. 1 in S-phase 

was not significantly changed (P>0.1) at 12(±1)% (n=2). in washed 

normal bone marrow incubated with medium conditioned by ’day 18’ 

SA8LD femoral marrow the proportion of HPP-CFC1L3+Cyf_| in S-phase 

was not significantly changed (P>0.1) at 11 (±=2)% (n=2). in washed 

normal bone marrow incubated with medium conditioned by ’day 21 ’, 

overtly leukaemic SA8 LD femoral marrow, the proportion of HPP- 

CFCl3icsf-i in S-phase was not significantly changed (P>0.1) at 

11(±1)% (n = 2) [Figures 53&53a].

No evidence for the presence of stem ceii proiiferation stimuiator 

was observed during the progression of the SA8 LD myeloid 

leukaemia.
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3.9.2.2 Assay of the stem cell proliferation inhibitor content of

medium conditioned bv femoral marrow after 0,15.18 and 21 days

progression of SA8 LD mveloid leukaemia.

The proportion of HPP-CFC!(Jl+3Sll in S-phase in washed

regenerating marrow from mice 3 days after a 2 Gy whole body X- 

irradiation dose was determined as 35(±1)% (±SEM) (n = 8). In 

washed regenerating bone marrow incubated with medium 

conditioned by 'day 0' SA8 LD femoral marrow the proportion of HPP- 

CFCIL3+GSF_i in S-phase was significantly reduced (P< 0.025) at 

18(±3)% (n = 2). in washed regenerating bone marrow incubated with 

medium conditioned by ’day 15' SA8 LD femoral marrow the 

proportion of HPP-CFCIL3+GSFm in S-phase was significantly reduced 

(P<0.05) at 24(±4)% (n=2). In washed regenerating bone marrow 

incubated with medium conditioned by 'day 18' SA8 LD femoral 

marrow the proportion of HPP-CFC,ll+<3f.i in S-phase was 

significantly reduced (P<0.05) at 25(±4)% (n = 2). In washed 

regenerating bone marrow incubated with medium conditioned by 

’day 21' SA8 LD femoral marrow the proportion of HPP-CFCiL3+C3F.1 in 

S-phase was not significantly changed (P > 0.1) at 34(±2)% (n=2) 

[Figures 53 & 53b].

Evidence was observed for the presence of the stem cell 

proliferation inhibitor in ’day 0' SA8LD marrow conditioned medium. 

This was not an unexpected finding since ‘day 0’ SA8 LD femoral 

marrow was essentially 'normal bone marrow' and 'normal bone 

marrow conditioned medium' has been demonstrated to be a crude 

source of the stem ceii proiiferation inhibitor {3.6). With SA8LD 

myeioid ieukaemic progression, the levels of proliferation inhibitor 

were observed to reduce. By 'day 21’, overtiy ieukaemic SA8 LD



Figure 53: A time study of the variation of inhibitor and 
stimuiator in medium conditioned by marrow 0,15, 18 and 21 

days after injection of SA8LD myeloid leukaemic cells.

Proportion of HPP-CFCil3+csf-i 
in S-phase (%)(±SEM)(n=2)

Normal
bone
marrow
(NBM)

Regenerating
bone
marrow(t)
(RBM)

Control (n=8) 11(±1) 35(±1 )

+’Day O' 3A8LDcm 12(±1)(2> 18(±2)(3)

+'Day )5' SASLDcm 12(±1)<2) 24(±3)W

+'Day 18' SASLDcm 11(±2)<2) 25(+3)W

4'Day 2)' SASLDcm 11(±1)(2) 34(±1(<s)

("1 Regenerating bone marrow from mice3 days after a 2 Gy whole body X-irradiation dose.
(2) No significant increase (P>0.1).
(3) Significant reduction (P<0.025).
(4) Significant reduction (P<0.05).
(5) No significant reduction (P>0.1).



Figure 53a: The variation in stimulator 
with SA8LD leukaemic progression.
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femoral marrow conditioned medium demonstrated no stem ceii

proliferation inhibitor.

A progressive reduction in the detectable levels of inhibitor with 

disease progression, may explain the absence of inhibitor m the

overtly leukaemic SA2 LP, SA2HP, SA7HD, SA8 HD and SA8 LD marrow 

conditioned medium (3.8). No evidence of a direct-acting Ieukaemia- 

associated proliferation inhibitor was observed during SA8 LD 

myeioid leukaemic progression and no evidence of SA8 LD marrow 

conditioned medium toxicity was observed.

3.10 An investigation of the effects of medium cor^<^ii^ii^i^<^<j

by SA8HD leukaemic marrow on stimulator and inhibitor
action.

The absence of demonstrable stem cell proliferation regulators in 

medium conditioned by overtly ieukaemic SA2LP, SA2HP, SA7HD, 

SA8 HD and SA8 LD, may be due to an inactivation of the stem cell 

proliferation stimulator and /n/r/Mor. The stem cell proliferation 

regulators may be produced, but their action may be blocked by the 

developing leukaemia. The action of medium conditioned by SA8 HD 

ieukaemic marrow, at the level of both stimulator and inhibitor action 

was investigated.

Procedure:

Medium, conditioned by regenerating bone marrow from mice 7

days after a subiethal whole body X-irradiation dose of 4.5 Gy, as a

crude source of stimuiator {2A5) and medium conditioned by normal 

bone marrow, a crude source of inhibitor (2.14), were assayed for

stimulator and /nd/d/for activity (2.16 & 2.17) in the absence and
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presence of medium conditioned for 3 hours by SA8 HD leukaemic

marrow and diluted so as to be derived from 15x1(6 cells/mi (2.22). 

Results:

3.10.1 The effects of medium conditioned bv SA8 HD ieukaemic

marrow on sf/mu/ator action.

The proportion of HPP-CFC!L3+csm in S-phase in washed normal 

marrow was determined as 10(±1)% (±SEM) (n = 6). In washed 

normal bone marrow incubated with medium conditioned by 

regenerating bone marrow from mice 7 days after a 4.5 Gy whole 

body X-irradiation dose, as a crude source of stimulator (2.15), the 

proportion of HPP-CFC^+gg^ in S-phase was significantly increased 

(P< 0.0005) at 25(±2)% (n = 6). in washed normal bone marrow 

incubated with medium conditioned by regenerating bone marrow in 

the presence of medium conditioned by SA8 HD leukaemic marrow 

cells, the proportion of HPP-CFC^cs^ in S-phase was significantly 

increased (P < 0.0005) at 23(±3)% (n=4) [Figure 54 & 54a].

The presence of medium conditioned by SA8 HD leukaemic 

marrow conditioned medium did not appear to impair the ability of 

stimulator to increase the proportion of HPP-CFC^csf in S-phase.

3.10.2 The effects of medium conditioned bv SA8 HD ieukaemic

marrow on inhibitor action.

The proportion of HPP-CFC^csm in S-phase in washed 

regenerating bone marrow from mice 3 days after a 2 Gy whole body 

X-irradiatlon dose, was determined as 31(±1)% (±SEM) (n = 2). in 

washed regenerating marrow, incubated with medium conditioned by 

normal bone marrow, as a crude source of inhibitor (2.14), the
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proportion of HPP-CFCIU4.GSfM in S-phase was significantly reduced 

(P<0.05) at 24(±3)% (n=2). in washed regenerating bone marrow

incubated with medium conditioned by normal bone marrow in the 

presence of SA8 HD leukaemic marrow, the proportion of HPP- 

CF^Cl34CSpi in S-phase was significantly reduced (P<0.05) at 

26( ± 1)% (n=2) [Figure S4 & 54b].

The presence of the SA8 HD leukaemic marrow conditioned 

medium, did not appear to impair the ability of the inhibitor to reduce 

the proportion of HPP-CFCIL3+Cgp4 in S-phase.

3.11 An investigation of the effects of. medium conditioned
by SA8HD leukaemic marrow on stimulator and inhibitor

production.

The absence of detectable stem cell proliferation inhibitor and 

stimuiator in medium conditioned by SA2LP, SA2HP, SA7HD, SA8HD 

and SA8 LD leukaemic marrow, was further investigated to determine 

whether the leukaemic marrow conditioned medium was capable of 

inhibiting the production of the stem ceil proliferation regulators. A 

mechanism similar to that previously discussed (1.14), where 

inhibitor is capable of preventing stimulator production and similarly 

stimulator is capable of preventing inhibitor production, may exist.

3.11.1 The effects of medium cancdttoned by SA8HD leukaemic

marrow on sf/mu/ator production bv regenerating bone marrow.

Procedure:

Regenerating femoral marrow was produced from mice 7 days 

after a 4.5 Gy whole body X-irradiation dose. Ceils were washed once 

and resuspended in either fresh medium or medium conditioned for 3



Figure 54: An investigation of the effects of medium conditioned 
by SA8HD leukaemic marrow on stimulator and /nfr/TMor action.

Proportion of HPP-CFCiL3+csF-i 
in S-phase (%) (±SEM)

Normal
bone
marrow
(NBM)(n=6)

Regenerating
bone
marrow(i)
(RBM)(n=2)

Control 10(±1) 31(±1)

+RBMcm(2) (Stimulator) 25(±2)5) —

+RBMcm+SA8HDcm(3) 23(±1)<5) —

+NBMomW (Inhibitor) — 24(±2)6)

+NBMcm+SA8HDcm — 26(±1)6)

0) Regenerating marrow from mice 3 days after a 2 Gy whole body X-irradiation dose.

(2) Regenerating tx>ne marrow conditioned medium from mice 7 days after a 4.5 Gy whole 

body X-irradiation dose.
(3) Medium conditioned by SA8HD leukaemic marrow.

W Medium conditioned by normal bone marrow.

(5) Significant increase (P<0.0005).

(G) Significant reduction (P<0.05).



Figure 54a: The effect of SA8HD leukaemic
marrow conditioned medium on
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Figure 54b: The effect of SA8HD leukaemic 
marrow conditioned medium on
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hours by 15x106 SA8 HD leukaemic marrow cells/ml. The regenerating 

marrow was subsequently incubated for 4 hours in the presence of 

fresh or SA8 HD leukaemic marrow conditioned medium, to allow 

stimulator synthesis. 3 batches of regenerating bone marrow

conditioned medium and regenerating bone marrow conditioned 

medium conditioned in the presence of SA8 HD ieukaemic marrow 

conditioned medium, were produced and assayed for stimulator 

content (2.17).

Results:

In washed normal bone marrow the proportion of HPP- 

CFC!L66csf-i in S-phase was determined as 15(±1)% (±SEM) (n = 11). 

In washed normal bone marrow, incubated in the presence of 

regenerating bone marrow conditioned medium, the proportion of 

HPP-CFCIL3+6pp6 in S-phase was significantly increased (P< 0.0005) 

at 24(±1)% (n = 11). In washed normal bone marrow incubated with 

regenerating bone marrow conditioned medium, conditioned in the 

presence of SA8 HD leukaemic marrow conditioned medium, the 

proportion of HPP-CFC^in S-phase was not significantly 

changed (P>0.1) at 14(±2)% (n = 11) [Figure 55&55a].

The presence of SA8 HD leukaemic marrow conditioned medium 

appears to impair the production of the stem cell proliferation 

stimuiator by regenerating bone marrow.

3.11.2 The effects of medium conditioned by SASHP. I eukaemlc

marrow on the production of inhibitor by normal bone marrow.

Procedure:

Normal bone marrow cells were washed and resuspended in 

either fresh medium or in medium conditioned for 3 hours by 15x106

SA8 HD ieukaemic marrow cells/ml. The normal bone marrow was
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subsequently incubated for 6 hours In the presence of fresh medium, 

or medium conditioned by SA8 HD leukaemic marrow, to allow

//7h/Mor synthesis. 3 batches of normal bone marrow conditioned

medium and normal bone marrow conditioned medium conditioned 

in the presence of SA8 HD leukaemic marrow conditioned medium,

were produced and assayed for inhibitor (2A6).

Results:

In washed regenerating bone marrow, from mice 3 days after a 2 

Gy whole body X-irradiation dose, the proportion of HPP-CFCIL3+gSM 

in S-phase was determined as 37(±1)% (±SEM) (n=12). In washed 

regenerating bone marrow Incubated In the presence of normal bone 

marrow conditioned medium, the proportion of HPP-CFCIL3lCSM in S- 

phase was significantly reduced (P< 0.0005) at 26(±1)% (n = 12). In 

washed regenerating bone marrow incubated with normal bone 

marrow conditioned medium, conditioned in the presence of SA8 HD 

ieukaemic marrow conditioned medium, the proportion of HPP- 

CFC1L33cSf-i in S-phase was not significantly changed (P>0.1) at 

38(±1)% (n = 12) [Figure 55 & 55b}.

The presence of SA8 HD leukaemic marrow conditioned medium 

appears to impair the production of the stem cell proliferation 

inhibitor by normal bone marrow.

This finding may explain the absence of detectable levels of stem 

ceil proliferation regulators in the SA2LP, SA2HP, SA7HD, SA8 HD and 

SA8 LD leukaemic marrow conditioned medium. An inhibition of stem 

cell proliferation regulator production may explain the apparent 

inability of the normal haematopoietic tissue to respond to the 

deterioration in the quality of the peripheral blood which Is 

associated with leukaemic progression, and may also explain the 

leukamia-associated suppression of normal haematopoiesis, allowing 

the leukaemic cells to develop a proliferative advantage.



Figure 55: An investigation of the effects of medium conditioned 
by SA8HD leukaemic marrow on stimulator and inhibitor

production.

Proportion of HPP-CFC|L3+csf-i 
in S-phase (%) (±SEM)

Normal
bone
marrow
(NBM)(n=11)

Regenerating
bone
marrow(i)
(RBM)(n=12)

Control 15(±1 ) 37{±1 )

+RBMcm(2) (Stimulator) 24(±1)(7) —

+[RBMcm+SA8HDcm<3) ]W 14(±1)(8) —

+NBMcm3) (Inhibitor) — 26(±1)9)

+[NBMcm+SA8HDcm]6) — 38(±1(<1°)

0) Regenerating marrow from mice 3 days after a 2 Gy whole body X-irradiation dose.

(2) Regenerating bone marrow conditioned medium from mice 7 days after a 4.5 Gy whole 

body X-irradiation dose.
(3) Medium conditioned by SA8HD leukaemic marrow.

(4) Regenerating bone marrow conditioned medium, conditioned in the presence of 

SA8HD leukaemic marrow conditioned medium

(5) Medium conditioned by normal bone marrow.

(®) Normal bone marrow conditioned medium conditioned in the presence of SA8HD 

leukaemic marrow conditioned medium.

(7) Significant increase (P<0.0005).

(G No significant increase (P>0.1).

(9) Significant reduction (P<0.0005).

(10) No significant reduction (P>0.1).



Figure 55a: The effect of SA8HD leukaemic 
marrow conditioned medium on
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Section 4

An investigation of 
the possible mechanism 

of action of the low molecular 
weight, haemoregulatory 

peptide Acetyl-N-Ser-Asp-Lys-Pro 
(AcSDKP).
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3,12 An Snvessiqatgon of the pos^s^it^lee mechanism of action
of the low molecular weight, haemoregulatory peptide
Acetyl-N-Ser-Asp-Lys-Pro (AcSDKP) using the minimal

active amino acid sequence Ser-Asp-Lys (SDK),

The low molecular weight haemoregulatory tetrapeptide Acetyl-N-

Ser-Asp-Lys-Pro (AcSDKP, Mr=487amu)(1.20) is reported to reduce 

the haemotoxicity of S-phase-specIfic cytotoxic agents by preventing 

the 'recruitment' of haematopoietic stem cells into S-phase. The 

mechanism of action of the tetrapeptide AcSDKP was Investigated 

using the in vitro HPP-CFCrL^gpr assay and the minimal active 

amino acid sequence Ser-Asp-Lys (SDK, Mr=348amu). (AcSDKP was 

not initially available to this laboratory).

Procedure:

Preliminary experiments were performed to determine the

Inherent Inhibitory, or stimulatory characteristics of the

haemoregulatory peptide.

3.12.1 .. An ii nnvcS^gatgon ot the direcC effecCs ot trr.ii^€^r^ti<i^€? £sg^ni^s;s

the in vitro GM-CFC population.

The proportion of GM-CFC in S-phase in normal washed bone

marrow was determined as 34(±2)% (±SEM) (n = 16) (2.25). In 

normal washed bone marrow incubated for 3 hours In the presence 

of SDK, the proportion of GM-CFC In S-phase was not significantly 

changed (P>0.1) at 31(±8)% (n = 16). (SDK was added at t=0,1 and 

2 hours to a final concentration of 1 ng/ml, 2.87x1 O_9M) [Figure 56].

At 1 ng/ml, 2.87x1. O'9M, the tripeptide SDK does not demonstrate 

inherent inhibitory or stimulatory activity against the haematopoietic



Figure 56: An investigation of the direct inhibitory or stimulatory 
effects of tripeptide Ser-Asp-Lys (SDK) on the proportion of 

GM-CFC in S-phase.

Proportion of GM-CFC in 
S-pnase.(%)(±SEM)(n=16)

Normal bone marrow (NBM) 34(±2)

NBM + SDK 
(1 ng/ml, 2.87x10-9M)

31 (+2)0) .

C) No significant change (P>0.1).
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progenitor GM-CFC population. No evidence of SDK toxicity was 

observed.

3.12.2 An investigation of the direct effects of tripeptlde SDK against

the in vitro HPP-CFCtL3, population.

3.12.2.1 An investigation oif the direct stimulatory effects of triipeptide

SDK against the in vitro HPP-CFC|Ll , ccr_t population.

The proportion of HPP-CFC^+Qgpt in S-phase in normal bone 

marrow was determined as 12(±1)% (±SEM) (n = 19). In normal 

bone marrow incubated for 3 hours in the presence of SDK (2.25), the 

proportion of HPP-CFC^+lsll in S-phase was not significantly 

changed (P>0.1) at 12(±1)% (n=19). (SDK was added att=0,1 and 

2 hours to a final concentration of 1 ng/mi, 2.87x1 O'LM) [Figure 57\.

At 1 ng/ml, 2.87x1 fO-M', the tripeptlde SDK does not demonstrate 

inherent stimulatory activity against the HPP-CFCILl+GSsl population. 

No evidence of SDK toxicity was observed.

3.12.2.2 An Investigation of the direct inhlbitorv effects of tripeptlde

SDK against the in vitro 

HPP-CFCl^cp population.

The proportion of HPP-CFClc+cscl in S-phase in washed 

regenerating marrow from mice 3 days after a 2 Gy whole body X- 

irradiation dose, was determined as 33(±1)% (±SEM) (n = 6). In 

washed regenerating marrow incubated for 3 hours in the presence 

of SDK, the proportion of HPP-CFC,c+Csli in S-phase was not 

significantly changed (P>0.1) at 32(±2)% (n = 6). (SDK was added at
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t=0,1 and 2 hours to a final concentration of 1 ng/ml, 2.87x1 O‘9M) 

[Figure 57].

At 1 ng/ml, 2.87x1 O'9M, the tripeptide SDK does not demonstrate 

inherent inhibitory activity for the haematopoietic precursor HPP-

CFC^+csp- population. No evidence of SDK toxicity was observed.

3.13 An investigation of the effects of tripeptide SDK on
stem cell proliferation inhibitor and stimulator action.

3.13.1 Investigating the effects of SDK on sf/mu/afror action.

The proportion of HPP-CFC^+Qgp^ in S-phase in washed normal 

bone marrow was determined as 14(±1)% (±SEM) (n = 11). In 

washed normal bone marrow incubated with medium conditioned by 

regenerating bone marrow from mice 7 days after a 4.5 Gy whole 

body X-lrradiation dose, the proportion of HPP-CFC,L3+CSf-_1 in S- 

phase was significantly increased (P < 0.0005) at 28( ± 1)% (n = 11). In 

washed normal bone marrow, incubated with medium conditioned by 

regenerating bone marrow and in the presence of SDK (2.26), the 

proportion of HPP-CFC^+gp^ In S-phase was not significantly 

changed (P>0.1) at 13(±1)% (n = 11). (SDK was added att = 0 and at 

each subsequent hour of incubation, to a final concentration of 1 

ng/ml, 2.87x1 O"9M) [Figure 58 & 58a]

The presence of SDK at 1 ng/ml, 2.87x10"9M, appears to impair 

the capacity of stimuiator, derived from regenerating bone marrow 

conditioned medium, to increase the proportion of HPP-CFC^ggp.9 

in S-phase. No evidence of SDK toxicity was observed.



Figure 57: An investigation of the direct inhibitory or stimulatory
effects of tripeptide Ser-Asp-Lys (SDK) on the proportion of

HPP-CFCii_3+csf-i in S-phase.

Proportion of HPP-CFCil3+csf-i 
in S-phase (%)(±SEM)

Normal
bone
marrow
(NBM)
(n=19)

Regenerating
bone
marrowO)
(RBM)
(n=6)

Control 12(±1) 33(+1) .

+ SDK
(1 ng/ml, 2.87x10-9M)

12(±1)(2) 32(±2)(2)

(1) Regenerating bone marrow from mice 3 days after a 2 Gy whole body X-irradiation 
dose.
(2) No significant change (P>0.1).
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3.13.2 Investigating the effects of SDK on /n/y/dfor action.

The proportion of HPP-CFCILLt<cs-t in S-phase in washed
regenerating bone marrow from mice 3 days after a 2 Gy whole body 

X-irradiation dose was determined as 37(±3)% (± SEM) (n = 7). In 

washed regenerating marrow Incubated with medium conditioned by 

normal bone marrow, as a crude source of inhibitor, the proportion of 

WP-FCC^cf in S-phase was significantly reduced (P< 0.005) at 

23(±2)% (n = 7). In washed regenerating bone marrow incubated with 

medium conditioned by normal bone marrow and in the presence of 

SDK (2.26), the proportion of HPP-CCCm+cssc in S-phase was not 

significantly changed (P>0.1) at 36(±3)% (n = 7). (SDK was added at 

t=0 and at each subsequent hour of incubation, to a final 

concentration of 1 ng/ml, 2.87x1 O'LM) [Figure 58 & 58b]

The presence of SDK at 1 ng/ml, 2.87x1 O'-M, appears to impair 

the capacity of inhibitor, derived from normal bone marrow 

conditioned medium, to reduce the proportion of HPP-CFC|Ll+Clsl in 

S-phase. No evidence of SDK toxicity was observed.

3.14 An investiicati^on of the effect of SDK on stem cell

proliferation inhibitor and stimulator production.

3.14.1 The effect of SDK on stimulator production bv regenerating

bone marrow.

Procedure:

Regenerating femoral marrow was produced from mice 7 days 

after a whole body X-irradiation dose of 4.5 Gy. Washed regenerating 

marrow was resuspended in serum-free medium and split into 2 

samples. To one a volume of SDK was added sufficient to produce a



Figure 58: An investigation of the effects of tripeptide 
Ser-Asp-Lys (SDK)on stimulator and inhibitor action,

Proportion of HPP-CFCil3±csf-i 
in S-phase (%) (±SEM)

Normal
bone
marrow
(NBM)
(n=11)

Regenerating
bone
marrow(i)
(RBM)
(n=7)

Control 14(±1) 37{±3)

+RBMcm2) (Stimulator) 28(±1)<5) -——

+RBMcm+DKK3) 13(±1)6) —

+NBMcm4) (Inhibitor) — 23(±1)W

±NBMcm±DDK@) — 36(±1 )(8)

(1 ) Regenerating marrow from mice 3 days after a 2 Gy whole body X-irradiation dose.

(2) Regenerating bone marrow conditioned medium from mice 7 days after a 4.5 Gy whole

body X-irradiation dose.
(2) SDK p resent at 1 ncyml, 2 .87x10'9M

(4) Medium conditioned by normal bone marrow.

(®) Significant increase (P<9.9995).

(®) No significant increase (P>9.1).

(7) Significant reduction (P<9.995).

(8) No significant reduction (P>9.1).



Figure 58a: The effects of tripeptide
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final concentration of 1 ng/mi, 2.87x1 O'-LM, to the other an equivalent 

volume of serum-free medium was added. The regenerating marrow 

was subsequently incubated for 5 hours to allow sf/mtZ/?forsynthesis 

(2.27). (SDK was added at t=0 and at each hour of subsequent 

incubation to a final concentration of 1 ng/ml, 2.87x10'LM). 2 batches 

of regenerating bone marrow conditioned medium and regenerating 

bone marrow conditioned medium conditioned in the presence of 

SDK, were produced and assayed to determine their stimulator 

content (2.17).

Results:

In washed normal bone marrow the proportion of HPP- 

CFF^L3Lctt-r in S-phase was determined as 16(±1)% (±SEM) (n = 5).

In washed normal bone marrow incubated with medium conditioned 

by regenerating bone marrow, a crude source of stimulator, the 

proportion of HPP-CFCIl3+Cls_l in S-phase was significantly increased 

(P< 0.005) at 28(±2)% (n=5). In washed normal bone marrow, 

Incubated with medium conditioned by regenerating bone marrow 

conditioned in the presence of SDK, the proportion of HPP- 

CFC1L3LCtt.r in S-phase was significantly increased (P<0.05) at 

22( ± 4)% (n = 5) [Figure 59 & 59a].

While the presence of SDK at 1 ng/ml, 2.87x1 O'LM, does appear to 

impair the capacity of regenerating bone marrow to synthesize 

stimulator, these results should be considered in view of the findings 

of (3.13.1) where SDK was reported to impair the action of stimulator. 

The apparent impairment of stimulator synthesis by SDK may actually 

be due to the presence of residual SDK in the regenerating bone 

marrow conditioned medium during the stimulator assay. If stimulator 

synthesis was unaffected by the presence of SDK, during subsequent 

stimulator assay any residual SDK may act to impair stimulator 

action, giving the impression of an absence of stimulator. Before any



145

conclusion as to the effects of DKP on s.fiznu/af<or production by 

regenerating bone marrow can be drawn, removal of residual DKP

from the regenerating bone marrow conditioned medium prior to 

stimulator assay would be necessary. The low molecular weight of

DKP should enable it to be readily removed from the regenerating

bone marrow conditioned medium by dialysis or Amlcon

ultrafiltration.

3.14.2 The effect of SDK on ZnftZb/forpeoduction bv normal bone

marrow.

Procedure:

Normal bone marrow was washed, resuspended in serum-free

medium and split into 2 samples. To one, a volume of DKP sufficient 

to produce a final concentration of 1 ng/ml, 2.87x19® was added, to 

the other, an equal volume of serum-free medium was added. The 

normal bone marrow was subsequently incubated for 7 hours to 

allow inhibitor synthesis, with the addition of DKP at each hour of 

incubation, to a final concentration of 1 ng/ml, 2.87x1 0®, or an 

equivalent volume of serum free medium (2.27). 1 batch of normal 

bone marrow conditioned medium, and normal bone marrow 

conditioned medium conditioned in the presence of DPP, was 

produced.

Results:

In normal regenerating bone marrow, from mice 3 days after a 2 

Gy whole body X-irradiation dose, the proportion of HPP-CFC|L3 CSF1 

in D-phase was determined as 49(±1) (±SEM) (n = 2). In washed

regenerating bone marrow Incubated with normal bone marrow 

conditioned medium, as a crude source of inhibitor, the proportion of 

HPP-CFCIL3lcsf-i in D-phase was significantly reduced (P < 0.95) at
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26(±6)% (n=2). In washed regenerating bone marrow incubated with 

medium conditioned by normal bone marrow in the presence of SDK, 

the proportion of HPP-CFCIL3+csm in S-phase was significantly 

reduced (P < 0.05) at 26(±4)% (n=2) [Figure 59 & 59b].

The presence of SDK at 1 ng/ml, 2.87x109M, does not appear to 

impair the synthesis of inhibitor by normal bone marrow. Concern 

over the presence of residual SDK in the normal bone marrow 

conditioned medium and SDK effects in the subsequent inhibitor 

assay, could be answered by dialysis or Amlcon ultrafiltration of the 

normal bone marrow conditioned medium to remove the low 

molecular weight SDK prior to inhibitor assay (3.13.2).

3.15 A comparative analysis of the tripeptide Ser-Asp-Lys
(SDK) with tetrapeptide Acetyl-Ser-Asp-Lys-Pro

(AcSDKP), and tripeptides Asp-Lvs-Pro (DKP) and
Aia-Asp-Lvs (ADK).

In the first instance our laboratory was only given access to the 

minimal active amino acid sequence of the AcSDKP moiety, the 

tripeptide Ser-Asp-Lys (SDK). Latterly, access was given to the 

tetrapeptide AcSDKP and a number of tripeptide analogues (ADK and 

DKP). A limited number of experiments were performed to compare 

the relative activities of SDK and AcSDKP, ADK and DKP.

3.15.1 investigation of the d ire<a effects of AcSDDP

against the haematopoietic progenitor in vitro GM-CFC popuiation.

The proportion of GM-CFC in S-phase in normal washed bone 

marrow was determined as 28(±1)% (±SEM) (n=2). In normal bone 

marrow incubated for 3 hours in the presence of AcSDKP, the



Figure 59: An investigation of the effects of tripeptide
Ser-Asp-Lys (SDK) on stimulator and /nft/h/tor production.

Proportion of HPP-CFCl3+csf-i 

in S-phase (%) (±SEM)

Normal
bone
marrow
(NBM)
(N=5)

Regenerating
bone
marrow(1)
(RBM)
(n=2)

Control 16(+1) 40(+1)

4RBMcm2) (Stimulator) 28(±^1)6) —

+[RBMcm+SDKl<3) 22(±4)7) —

+NBMcm4) (Inhibitor) — 26(+1)(8)

+[NBMcm+SDK((5> — 26(±4)(8)

(1 ) Regenerating marrow from mice 3 days after a 2 Gy whole body X-irradiation dose.

(2) Regenerating bone marrow conditioned medium from mice 7 days after a 4.5 Gy whole 

body X-irradiation dose.

(3) Regenerating bone marrow conditioned medium, conditioned in the presence of SDK 

at 1 ng/ml, 2.87x10‘Lm

(4) Medium conditioned by normal bone marrow.

(5) Normal bone marrow conditioned medium conditioned in the presence of SDK at

1 ng/ml, 2.87x10'-M.

(®) Significant increase (P<0.005).

m Significant Increase (P<0.05).

(®) Significant reduction (P<0.05).
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Figure 59a: The effects of tripeptide

Figure 59b: The effects of tripeptide



147

proportion of GM-CFC in S-phase was not significantly changed 

(P>0.4) at 28(±4)% (n=2). (AcSDKP was added at t=0,1 and 2 

hours to a final concentration of 1 ng/mi, 2.05x10'9M) {Figure 60\.

At 1 ng/mi, 2.05x1 O‘9M, AcSDKP does not demonstrate either 

inherent inhibitory or stimuiatory activity against the haematopoietic 

progenitor GM-CFC population. No evidence of AcSDKP toxicity was 

observed.

3.15.2 Investigation of the direct stimulatory effects of tetrapepti<de

AcSDKP and tripeptide ADK against the haematopoietic precursor

HPP-CFC|L99cSp1, population.

The proportion of HPP-CFClL3+Cs^1 in S-phase in washed normal

bone marrow was determined as 12(±1)% (±SEM) (n = 15). in 

normal bone marrow incubated for 3 hours in the presence of 

AcSDKP, or ADK, the proportion of HPP-CFCIL99CSF9 in S-phase was 

not significantly changed at 13(±1)% (P>0.1) (n = 15) and 11 (±1)% 

(P>0.1) (n=13), repectively. (AcSDKP and ADK were added at t=0,1 

and 2 hours to a final concentration of 1 ng/mi or 2.05x1 O‘LM and 

3.01x10"9M respectively.) {Figure 61].

At 1 ng/ml neither the tetrapeptide AcSDKP, or the tripeptide ADK 

demonstrated inherent stimuiatory activity for the haematopoietic 

precursor HPP-CFC|L3+csM population. No evidence of AcSDKP or 

ADK toxicity was observed.

3,16 Investigation of the effects of AcSDKP, ADK and DKP
on sf/maf action.

The proportion of HPP-CFC1L9+Cgip1 in S-phase in washed normal 

bone marrow was determined as 8(±1)% (±SEM) (n = 7). In washed



Figure 60: An investigation of the direct inhibitory or stimulatory
effects of tetrapeptide Acetyl-N-Ser-Asp-Lys-Pro (AcSDKP) on 

the proportion of GM-CFC in S-phase.

Proportion of GM-CFC 
in S-phase (%){±SEM)(n=2)

Normal bone marrow (NBM) 28(±1)

NBM + AcSDKP 28(±4)0)
(1 ng/ml, 2.05x10‘9M)

0) No significant change (P>0.4)

NBM NBM+AcSDKP



Figure 61 : An investigation of the direct stimulatory effects of
tetrapeptide Acetyl-N-Ser-Asp-Lys-Pro (AcSDKP) and
tripeptide Ala-Asp-Lys (ADK) on the proportion of HPP-

CFCIL3+CSF-1 in S-phase.

Proportion of HPP-CFCh_3+csf-i 
in S-phase (%)(±SEM)

Normal bone marrow (NBM) 
(n=15)

12(±1)

NBM + AcSDKP 
(1 ng/ml, 2.05x10‘9M)
(n=15)

13(±1)1)

NBM + ADK 
(1 ng/ml, 3.01x10’9M)
(n=13)

11(±1)0)

(") No significant change (P>0.1).
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normal bone marrow incubated with medium conditioned by 

regenerating bone marrow from mice 7 days after a 4.5 Gy whole 

body X-irradiation dose, as a crude source of stimulator, the 

proportion of HPP-CFCIL3+CSM in S-phase was significantly increased 

(P< 0.0005) at 28(±2)% (n=7). In washed normal bone marrow 

incubated with medium conditioned by regenerating bone marrow 

and In the presence of AcSDKP, the proportion of HPP-CFCIL3 ’n

S-phase was not signlficanty changed (P>0.1) at 10(±2)% (n = 7). In 

washed normal bone marrow incubated with medium conditioned by 

regenerating bone marrow and in the presence of DKP, the 

proportion of HPP-CFCIL3+c^R1 in S-phase was not significantly 

changed (P>0.05) at 16(±1)% (n=3).in washed normal bone marrow 

incubated with medium conditioned by regenerating bone marrow 

and in the presence of ADK, the proportion of HPP-CFCjig+cgp! in S- 

phase was significantly increased (P< 0.025) at 22(±8)% (n=4). 

(AcSDKP,DKP and ADK were added att=0 and at each hour of 

subsequent assay, to a final concentration of 1 ng/ml, 2.05x10"3m, 

2.79x10'3m and 3.01x10‘9M respectively.) [Figure 52].

The presence of both AcSDKP and DKP at 1 ng/ml appeared to 

impair the capacity of stimulator, derived from regenerating bone 

marrow conditioned medium, to increase the proportion of HPP- 

CFC^icsp-i in S-phase. The presence of ADK at 1 ng/ml, however, 

gives a less clear result and may imply that the tripeptlde ADK is a 

less efficient stimuiator-blocklng moiety than SDK, AcSDKP or DKP. 

No evidence of AcSDKP, DKP or ADK toxicity was observed.



Figure 62: An investigation of the effects of tetrapeptide 
AcSDKP and tripeptides DKP and ADK on stimulator action

Proportion of HPP-CFCh_3+csf-i 
in S-phase (%)(±SEM)

Normal bone marrow (NBM).

Control (n=7) 8(±1)

+ RBMom t(Stimulator)
(n=7)

28(±2)2)

Stimulator + AcSDKP (n=7)
(1 ng/ml, 2.05x10'9M)

10(±2)3)

Stimulator + DKP (n=3)
(1 ng/ml, 2.79x1 O-°fM)

16(±1)W

Stimulator + ADK (n=4)
(1 ng/ml, 3.01 x1 0'9M)

22(±8)5)

n) Medium conditioned by marrow 7 days after a 4.5 Gy whole body X-irradiation dose.
(2) Significant increase (P<0.0005).
(3) No significant change (P>0.1).
(4) No significant change (p>0.05).

(5) Significant increase (P<0.025)



Chapter 4:

Discussion.



Section 1

The characterization of the
in vitro HPP-CFCils+csf-i

assay.
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4,1.1 Characterization of haematopoietic colony-stimulating factor

synergism.

In the presence of interleukin 3 (IL3)/muiti-CSF, macrophage 

coiony-stlmuiating factor (M-CSF/CSF-1), or granuiocyte- 

macrophage coiony-stimuiating factor (GM-CSF), coiony-forming 

ceiis of limited proiiferative potential were sfimuiated. In the presence 

of combined haematopoietic coiony-stimuiating factors, the 

proliferation of a morphologically distinct colony-forming ceil 

popuiation, characterized by a high proiiferative potential, was 

stimulated, The stimulation of the high proiiferative potential colony­

forming ceil (HPP-CFC) popuiation, is a demonstration of 

haematopoietic coiony-stimuiating factor synergism. A synergistic 

interaction may be broadly described as one in which the end 

product of combining two (or more) components, proves significantly 

different to the sum of each of the component parts acting singly, 

Combinations of interleukin 3 (lL3)/multi-CSF and M-CSF/CSF-1, GM- 

CSF and M-CSF/CSF-1, and interleukin 3 (IL3)/multi-CSF were 

demonstrated to synergize to stimulate the proliferation of distinct 

HPP-CFC populations, The relationship between these distinct HPP- 

CFC subpopuiations is, as yet, unclear, The capacity of well defined, 

recombinantiy-derived haematopoietic colony-stimulating factors to 

synergisticaiiy interact with each other and to replace the synergistic 

activities in the appropriate ceil line conditioned media, is strong 

evidence to suggest that the interleukin 3 (IL3)/muiti-CSF, M- 

CSF/CSF-1 and GM-CSF are the synergizing activities in the WEHl 3B, 

L929 and AF1-19T ceil line conditioned media, although these results 

do not exclude the possible contribution of factors contained in the 

ill-defined horse serum (20% v/v) also present during in vitro HPP- 

CFC assay, In the absence of horse serum no colony formation was
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observed, even in the presence of colony-stimulating factors; while

horse serum aione failed to demonstrate coiony-stimuiating activity. 

Putative factors present in the horse serum may not be ;coiony- 

stimuiating activities, rather they may be colony-potentiating/ 

initiating factors, enhancing coiony-stimuiating factor synergism by a 

possible stimulation of coiony-stimuiating factor receptor expression 

by factor-sensitive colony-forming ceiis.

4.1.2 Possible mechanism of synergism between haematopoietic

coionv-stimuiatinq factors.

The capacity of ’sub-optimal’ concentrations of haematopoietic

coiony-stimuiating factors to synergize and stimulate the proliferation 

of high proiiferative potential colony-forming ceil populations, may 

suggest a possible mechanism for the synergistic interaction. The in 

vitro GM-CFC assay, is effectively a measure of the colony-forming 

cell proliferation induced by a coiony-stimuiating activity. The finding 

that ’sub-optimal’ concentrations of haematopoietic coiony- 

stimuiating factors, as determined by the GM-CFC assay, were 

effective in synergistic interactions, implies that the factors may be 

acting not as proliferation ’stimuli', rather, they may be acting as 

proliferation ’inttiatosg. A model can be proposed in which M- 

CSF/CSF-1 effectively acts to promote the proliferation of interleukin 

3 (iL3)/multi-CSF-, or GM-CSF- ’initiated’ coiony-forming ceiis, which 

are subsequently capable of the high proiiferative potential. The 

putative coiony-forming ceil ’initiation’ by interleukin 3 (iL3)/multi- 

CSF, or GM-CSF may involve the stimulation of the expression of ceil 

surface receptors for the more lineage-specific haematopoietic 

coiony-stimuiating factors, for example M-CSF/CSF-1. HPP-CFC 

populations sensitive to interleukin 3 (IL3)/multi-CSF, or GM-CSF
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initiation, may subsequently develop increased M-CSF/CSF-1 

receptors and, in the presence of M-CSF/CSF-1 undergo the marked 

proliferation characteristic of the HPP-CFC population.

During the assay of murine marrow in the presence of interleukin 

3 (IL3)/multi-CSF alone, colonies in excess of 1mm, but less than 

2mm, were occasionally observed after 14 days of culture. These 

relatively high proliferative potential colony-forming cells may be 

interleukin 3 (IL3)/multi-CSF initiated coiony-forming cells which, in 

the absence of M-CSF/CSF-1, do not subsequently receive as strong 

a proliferation stimulus from the interleukin 3 (lL3)/muiti-CSF and do 

not realise their full proiiferative potential. The presence of the 

interleukin 3 (IL3)/muiti-CSF may induce increased M-CSF/CSF-1 

receptor expression, however, in the absence of M-CSF/CSF-1, 

subsequent proliferation is limited to that stimulated by the 

interleukin 3 (IL3)/multi-CSF aione.

4.1.3 The absence to ’small in the in vitro HPP-CFC assay.

When appropriate haematopoietic coiony-stimulating factors

were combined in vitro, in addition to stimulating the proliferation of 

the high proiiferative potential coiony-forming ceil population, a 

consistent finding was the absence of a population of relatively small 

colonies, which were evident in the presence of M-CSF/CSF-1 aione. 

McNiece ef a/[1988b] suggest that the presence of the second 

synergizing factor as either interleukin 3 (iL3)/muiti-CSF, or GM-CSF, 

may act on the small coiony-forming ceil popuiation to stimulate 

granulocytic rather than macrophagic differentiation. Granulocytic 

colonies are less ’stable' than macrophagic colonies in 14 day semi- 

soiid agar culture and degenerate to be absent at subsequent assay. 

in the presence of M-CSF/CSF-1 aione, 'stable’ macrophagic colonies
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would develop to be observed as the small colony population at 

assay, Alternatively, the developing HPP-CFC popuiation may 

elaborate factors which act to suppress the development of the small

colony background,

4,1,4 The optimal time of assay of the in vitro HPP-CFC[?ccr 1 

population,

The optimal time of assay of the ^P-CFCgg+ggpe popuiation was 

investigated, At assay, sufficient cellular proliferation was required to 

allow a distinction to be made between the HPP-CFC^ecsp/derived 

colonies and the non-HPP-CFCIL3 LQ^-^drived colonies, Whiie 

differences in colony morphologies were evident at as early as day 7­

8 of culture when comparing WEHl 3B, L929 and combined cell line 

conditioned media as stimuli, a 12-15 day assay period was 

considered to best emphasize the HPP-CFClL3+CSp1/non-HPP- 

CFC^LcsFi"3erive3 colony distinction, Assay at day 14 of culture was 

determined as the standard time of HPP-CFClllcspl assay,

A number of other groups report a similar 12-15 day assay period 

when Investigating a number of high proiiferative potential coiony- 

forming cell populations stimulated by a variety of combinations of 

haematopoietic coiony-stimuiating factors [Bradley & Hodgson,1979; 

Kriegier ef a/,1982; 1990; Bradley ef a/,1985; McNiece ef a/,1986; 

1987a; 1987b; 1988a; 1988b; 1989a; 1989b; Quesenberry ef a/,1987; 

Williams ef a/,1987; Faik& Vogei,1988; Barteimez ef a/,1989; Niskanen 

ef a/,1990; Bot ef a/,1990], Pragneli ef a/[1988], Eckmann ef a/ [1988] 

and Lorimore et ai [1990], report the assay of the HPP-CFC 

popuiation stimulated by the combination of GM-CSF and M- 

CSF/CSF-1 (HPP-CFCqmcsplcsf-1 "CFU-A") on day 11 of culture,
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4.1.5 A criterion bv which to define the HPP-CFC|L3, c SF1 population.

The development of a criterion by which to define the HPP- 

CFCiL3 +(qf1-derived coionies at assay, was of considerable 

importance. The unique aspect of the HPP-CFC-derived coionies is 

their relatively large size in comparison to non-HPP-CFC-derived 

colonies in in vitro semi-solid agar culture. A size criterion was thus 

used to distinguish between HPP-CFC and non-HPP-CFC-derived 

coionies. HPP-CFClL34.CSM-derived colony diameter was effected by 

the number of marrow cells plated. During the titration of the cell 

dose required to achieve ’optimal’ numbers of HPP-CFC|L3+C3F.1, it 

was observed that while low ceil numbers gave few HPP-CFC1L3lCsf-i‘ 

derived colonies, those which did form were occasionally observed 

to exceed 5mm in diameter. With increasing ceil numbers, the 

diameters of the HPP-CFCuLL-cgp-rd'eNved coionies was observed to 

reduce. This observation may be a consequence of limiting in vitro 

culture conditions, alternatively the HPP-CFC population may 

elaborate factors which, in the absence of physical overlapping of 

coionies, serve to restrict cellular proliferation, in a similar manner to 

that suggested for the inhibition of small colony formation.

A cell dose of 2.5x104/5.0x104 normal marrow cells per 

30mm/50mm petri dish was found to give ’countable’ HPP 

-CFC^ lcsf-1 numbers (10-15/20-30). At this cell dose a direct 

comparison was made between the sizes of the coionies observed 

after 14 days in the presence of WEHI 3B, L929 or a combination of 

the cell line conditioned media, in the presence of the factors acting 

singly, coionies rarely exceeded a 1.0-1.5mm diameter, and never 

exceeded a 2.0mm diameter. A 2mm diameter criterion was thus set 

to preferentially select the HPP-CFCjLgL.QgF.fderived colonies, which 

generally exceeded a 2.0-3.0mm diameter. Pragnell et al [1988],
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Eckmann ef a/[1988], Falk and Vogel [1988] and Lorlmore ef a/[1990] 

apply a 2mm diameter criterion in the characterization of the HPP- 

cfcgm-csf+csf-i “CFU-A'—derlved colonies.

in contrast to the 2mm diameter criterion, set as the definition of 

an HPP-CFCIL3+csf-i - and HPP-CFCg^Qg^ "CFU-A" - derived 

colony [Pragneli ef a/,1988; Eckmann ef a/,1988; Falk & Vogel,1988; 

Lorlmore ef a/,1990], a number of laboratories apply a 0.5mm 

diameter as the criterion for the definition of an HPP-CFC derived 

colony. Coionies of less than 0.5mm diameter are considered derived 

from colony-forming ceils of a low proliferative potential (LPP-CFC) 

[Bradley & Hodgson,1979; Kriegier ef a/,1982; Bradley ef a/,1985, 

McNIece ef a/,1986; 1987; 1988a; 1988b; 1989; Williams ef a/,1987; 

Bertonceiio ef a/,1989; Barteimez ef a/,1989; NIskanen ef a/, 1990; 

Morris ef a/,1990]. However, the application of a 0.5mm diameter 

criterion as a definition of an HPP-CFC-derived colony would not 

have been appropriate in this instance. Such a criterion would not 

have been effective in distinguishing between HPP-CFC1L3+CS_1ZGM. 

csf+csf-i and non-HPPCSCCi^ccsf-i/gmcsf+csf-i derived coionies. Non 

HPP-CFCIL3+c^£^F-1/GM'CSF+cs^F., dorivod coionies, stimulated in the 

presence of interleukin 3 (lL3)/muiti-CSF, M-CSF/CSF-1 or GM-CSF 

alone, were often observed to exceed a 0.5mm diameter and 

occasionally reached a 1.0-1.5mm diameter.

Significantly, confidence in the 2mm diameter criterion in 

distinguishing between HPP-CFC|(|+CfM and non-HPR-CFC,^+<3^ 

derived colonies was justified when the effects of incubating normal 

murine femoral marrow with the S-phase-specific cytotoxic agent 

cytosine arabinoside (ARA-C) were investigated. Colony-forming 

ceils in S-phase during incubation with ARA-C are killed and their 

colony-forming potential is not realised in subsequent colony­

forming cell assays. The proportion of colony-forming cells in 8-
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phase is determined by the difference in the coiony numbers 

obtained in the absence and presence of ARA-C treatment, The 

number of colonies in excess of 2mm diameter in normal murine 

marrow was only slightly reduced in the presence of ARA-C, implying 

that the proportion of the colony-forming cells giving rise to these 

2mm diameter colonies in S-phase is relatively low, The number of 

’sub-2mm’ diameter coionies was markedly reduced by the presence 

of ARA-C, implying the proportion of colony-forming cells giving rise 

to these ’sub-2mm’ diameter colonies in S-phase is relatively high, 

The difference in the proliferative potential and proportion of colony­

forming ceils in S-phase implies that the ’sub-2mm’ and ’in excess of 

2mm’ diameter colonies are derived from distinct populations of 

colony-forming ceils, and that the 2mm criterion is able to distinguish 

between HPP-CFC and non-HPR-CFC-derived colonies,

4,1,6 The cellular composition oo the HPP-CFClL0+CSF1-derived 

coionies,

The use of 0,9% methyiceiluiose as a semi-solid support medium, 

allowed the cellular composition and celiuiarity of individual HPP- 

CFClL3+CsF_., -derived colonies to be investigated, The majority of HPP- 

CFC|L3-csF1-derived colonies were composed of large, mature 

macrophages, characterized by a heavily vacuolated cytoplasm, This 

would be consistent with the presence of M-CSF/CSF-1,

Occasionally, in association with the large mature macrophages, a 

population of relatively immature, haematopoietic progenitors and a 

population of mature cells characterized by a pale-staining nucleus 

and a cytoplasm containing abundant, uniform granules, were 

observed, In some cases, all three ceil types were observed within an 

individual HPP-CFClF+^F.1•rteiVved coiony, individual HPP-
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CFClL3+GSM-derived colonies are the product of the proliferation of an 

individual HPP«CFCi44+CFF4 and the presence of at least two 

morphologically distinct mature cell populations and a relatively 

immature ceil population, implies that the HPPsCFF|L3+CsF.i 

population is at least bipotential.

Pragneli efa/[1988], Eckmann efa/[1988] and Lorlmore eta! 

[1990], report the finding of at least four morphologically distinct 

blood cell lineages in day 11 HPP-CFCGIVFC3F+CSp1 "CFU-A"-derlved 

coionies. Macrophages, granulocytes, early erythroid ceils, 

megakarocytes and cells with a ’biast-iike morphology’ are reported. 

These ’mixed’ colonies, which demonstrate the muitipotency of the 

HPP-CFCGM_CSL+3SF_1 "CFU-^" population, were only demonstrable 

under defined culture conditions: a 37°C, fully humidified, 10% COg, 

5% Og, 85% Ng atmosphere. Pragnell efa/11988], Eckmann eta! 

[1988] and Lorlmore ef a/ [1990], report that the use of a 37°C, fully 

humidified, 5% CO4 in air atmosphere proved less effective at 

demonstrating the formation of ’mixed’ colonies. A 37°C, fully 

humidified, 5% COl in air atmosphere was used throughout this 

project in the culture of 14 day HPPsFFF|L3+CSF_1 and if these culture 

conditions are limiting, this does not rule out the possible multlpotent 

nature of the HIPP-CFC^^- population.

An average 14 day HPP-FFCaL+(LpL^<derived colony, in excess of 

2mm in diameter, was determined to have a celiularity of 

6.0(±0.4xx104 ceils. By comparison, colonies obtained after 14 days 

culture in the presence of either L929 ceil line or WEHi 3B cell line 

conditioned medium, were composed of an average of 0.8x104 and 

1.4x104 cells respectively.

Pragneli ef a/[1988], Eckmann ef a/[1988], Falk and Vogel [1988] 

and McNiece ef a/[1988b], report similar cellularities for individual 

HPP-CFCgm_C3F..C3pl OCFU-Ao-^derived coionies, while Bradley and
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Hodgson [1979], Kriegier ef a/ [1982] and McNiece ef a/ [1988b]

report similar cellularities for individual M-CgF/CGF-t-derived 

coionies.

4.1.7 The fto the HPP-CFC|L3+CGF1 population.

At assay the average HPP-CFC,^+Csp.i frequency in normal 9-12 

week old CBA/H mice was determined as 100(±1)1105 normal marrow 

ceils. In a normal CBA/H femur of 14(±1)xFp6 marrow ceils, a total 

femoral compliment of 14x103 HPP-CCCuacaa would be predicted. 

Approximately 1 in every 1000 femoral marrow ceils will be a potential 

WP-CTC,,^.

in comparison, Pragneli ef a/ [1988] report the average HPP- 

CFCGaassFa-ssF-i "CFU-A" frequency in NIHOia, BD26F1 and BALB/c 

mice to be 197(±22), 145(±16) and 180(±14) per105 normal marrow 

ceils respectively. By combining a range of typical values quoted by a 

number of laboratories for a wide range of mouse strains [Boggs ef 

a/,1982], an average in vivo CFU-Sday frequency of approximately

10-40 per 10i marrow ceils is reported. A seeding factor of 

approximately 8% [Playfair & Coie,1965] gives the absolute number 

of CFC-S per 105 normal marrow cells as 125-500 and a total femoral 

compliment of approximately 1(-a CFC-S. The frequency of the in vitro 

HPP-CFC[L3 icsf^ population in femoral marrow compares favourably 

with the frequency of the in vitro HPP-CCCGM.ssFa-csF-i "CFU-A" and in 

vivo CFU-Sday8.1Q populations.

In femoral marrow from 9-12 week old CBA/H mice, 3 days after a 

sublethai whole body X-irradiation dose of 2 Gy, the average HPP- 

CFC,^+qsm frequency was determined as 29(±1)1105 regenerating 

marrow ceils and femoral celiuiarity was significantly reduced to 

6(± ixx106 ceils, giving a total femoral HPP-CFC^acspa compliment
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of approximately 2x103. Approximately 1 in every 3000 regenerating 

marrow cells will be a potential HPP-CFC|L3+csf1.

An 85% reduction in the femoral complement of HPP-CFC|L34.csf1 

was observed 3 days after a whole body X-irradiation dose of 2Gy. 

interestingly, Hendry and Lajtha [1977] report an 80% reduction in the 

femoral marrow complement of CFU-S after a 1.5 Gy whole body X- 

irradiation dose.

4.1.8 In vitro HIPi^-<^IF<C seH-renewai and relationship with the In vivo

CFU-S population.

While providing a continuous and varying cellular output to meet 

the haematoiogicai requirements of the body, haematopoietic stem 

ceils must, of necessity, be capable of maintaining their own 

numbers. This implies the existance of a stem ceil self-renewal 

capacity. Siminovitch ef a/[1963] demonstrated that individual CFU- 

S-derived colonies contained a number of CFU-S giving evidence of 

CFU-S self-renewal. By replating individual HPP-CFCgm_csl+csf-i "CFU- 

A'-derived coionies, Pragneli ef a/ [1988] and Eckmann ef a/[1988], 

report evidence of HPP-CFCgm_csf+csfl "CFU-A" self-renewal. 

However, attempts to demonstrate a self-renewal capacity for the 

HPP-CFC|L3 lCSF_l population in this laboratory proved inconclusive. 

Replating individual day 7 HPP-CFCjLLccs-r-teNved coionies, cultured 

in 0.9% methyiceiluiose, gave rise to only sub-2mm, non-HPP- 

(LFC^LcL^ccS^L-e^rii/ed colonies. While this does not apparently 

represent evidence of HPP-CFC^ccss-i self-renewal, it does not rule 

out the possibility that the HPP-CFC1LlcCSs.i population is giving rise 

to other HPP-CFC subpopuiations for which the combination of 

interleukin 3 (ILSymulti-CSF and M-CSF/CSF-1 is not an optimal 

stimulus. This would correlate with the findings of McNiece et at
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[1987b], who report the replating of individual HPP-CFCsf 1+CSF^- 

derived colonies ("SF-1" - 'Synergistic Factor-1’) gives rise to a more 

mature HPP-CFC subpopulation (HPP-CFC-2), which is optimally 

stimulated by the presence of interleukin 3 (iL3)/multi-CSF and M- 

CSF/CSF-1 (HPP-CFC^+csm)- 11 W be that the sub-2mm colonies 

observed on the repiating of individual HPP4CFC1L3+GSf-1 may be a 

more mature HPP-CFC subpopuiation (HPP^CFC-3), for which the 

combination of other haematopoietic colony-stimulating factors is 

required to allow optimal proliferation. Alternatively, in day 7 HPP- 

CFCIL3iccsF-denved coionies, any in vitro HPP-CFC1L3+csf-l generated 

by the self-renewal mechanism, may have undergone maturation and 

differentiation with a resultant reduction in the high proliferative 

potential of the colony-forming ceil population, producing colonies of 

less than 2mm in diameter. Further experiments would be required to 

determine the optimal time at which to best illustrate HPP-CFC|L3+GSf 1 

self-renewal within individual HPP-CFC,L3+(cp-iLderived colonies.

in conclusion, the in vivo CFU-S and in vitro HPP-CFC 

populations demonstrate a high proliferative potential and 

multipotentiai character. in this respect they fulfill a number of the 

criteria expected of a component of the heterogenous 

haematopoietic stem ceil compartment. McNiece ef a/ [1987b] and 

Pragneli ef a/[1988], further demonstrated the relationship between 

the in vivo CFU-S and the in vitro HPP-CFC-1 (HPP-CFCfll +Ccf. J and 

HPP-CFCgm_csf+csf_i '’CFU-A” populations, respectively. The injection 

of a suspension of pooled ceils of day 4 HPP-CFC-1-derived colonies 

into lethaiiy X-irradiated recipient mice (approximately 200 

cells/mouse), lead to the development of day 13 CFU-S (0-6 

colonies/spieen), while the injection of a suspension of day 5 HPP- 

cfcgmcsf+csf-i "CFU-A"-derived coionies into lethaiiy X-irradiated 

mice, lead to the development of day 12 CFU-S (approximately 6, day
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12 CFU-S/ day 5 HPP-CFCgmgpggsffg "CFU-A"-derived colony). 

Further evidence of the ciose correlation between the in vivo CFU-S 

and in virro WP-CCCFC.^and "CFU-A“

populations is observed when the idnetics of the in vivo and in vitro 

populations are compared.



Section 2

An investigation of the 
proliferation and 

proliferation regulation 
of the in vitro 

HPP'CFC|L3+CS.F'i 
population.
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4.2.1 , The, proportion of the in vitro Hf^i^"-^IFF^,+CSM

population in S-phase.

The proportion of the HPP-CFCIL3+CsFo pulsation in S-phase in 

normal and subiethaiiy X-irradiated femoral marrow was determined 

using the S-phase specific cytotoxic agent cytosine arabinoside 

(ARA-C) (1.17). The proportion of the HPi-CFC^ccs-i population in 

S-phase in normal femoral marrow was determined as 9(±1)%, while 

the proportion of the GM-CFC population in S-phase was determined 

as 31 (±1)%.

Pragneli ef a/[1988], Eckmann ef a/[1988] and Lorlmore eta! 

[1990], report the proportion of the HPP-CFCgm.csf+csf-i "CFU<A" 

population in S-phase as approximately 8% and the proportion of the 

GM<CFC population in S-phase as approximately 30% in normal 

femoral marrow.

The proportion of the HPP-CFC|L3+Gll_s population in S-phase In 

S-phase in regenerating marrow from mice 3 days after a 2 Gy whole 

body X-irradiation dose, was determined as 40(±1)%. The proportion 

of the GM<CFC population in S-phase in the regenerating marrow was 

not significantly changed at approximately 30%.

Pragneli efe/[1988], Eckmann efu/[1988] and Lorlmore etal 

[1990], used a regimen of subcutaneously-injected phenylhydrazine 

hydrochloride to induce haemoiytic anaemia and produce a 

haematopoieticaiiy-stressed marrow. The proportion of the HPP- 

FFCcm.csf+csm "CFU-A" population In S<phase In the

haematopoieticaiiy-stressed marrow was determined as

approximately 28%.

it is significant that the in vitro HPP-CFF:1^+i^l^s- 1 and in vitro HPP- 

FLLLgm<csF+csf-i "CFU-A" populations show similar kinetic changes in 

normal and huematopoietlcally-stressed marrow, changes not
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observed with the in vitro GM-CFC population. Of greater significance 

is the fact that the kinetic changes observed for the in vitro HPP- 

CFC1L3+CSf.i and HPP-C^^g^,^sf+CSm "CFU-A1* populations mirror 

those observed for the in vivo CFU-S population. The proportion of 

the in vivo CFU-S population in S-phase in normal femoral marrow is 

reported as approximately 10% [Becker ef a/,1965], increasing to 40­

50% in S-phase in regenerating marrow from mice subjected to 

sublethai whole body X-irradiation [Guzman & Lajtha,1970] and 30­

50% in S-phase in marrow from mice subjected to phenylhydrazine 

hydrochloride treatment [Rencrlcca ef a/,1970] [Figure 63].

The favourable comparison of the kinetic changes observed in 

the normal and haematopoieticaiiy-stressed marrow, for both the in 

vitro HPP-CFC and in vivo CFU-S populations, together with evidence 

of a similar high proliferative potential and muitipotency, is further 

evidence of the relatively primitive nature of the in vitro HPP-CFC 

subpopuiations within the haematopoietic system.

4.2.2 ^r i^-ensitivitvt(3 the stem ceii pFQilferation

regulators.

The proportion of the HPP-CFC|L3+csM population in S-phase in 

regenerating bone marrow from mice 3 days after a 2 Gy whole body 

X-irradiation dose was determined as 40(±1)%. When incubated with 

medium conditioned by normal bone marrow, in which the proportion 

of stem celis in S-phase is relatively low, the proportion of the HPP- 

CFCO lcsf-v population in S-phase was significantly reduced from 

40(±1)% to 25(±1)% [Figure 64}.

Similarly, the proportion of the HPP-CFC,ll+CSf_ l population in S- 

phase in normal marrow was determined as 9(±1)%. When incubated 

with medium conditioned by marrow From mice 7 days after a 4.5 Gy



Figure 63: A comparison of the proportion of the in vitro HPP-CFC|L3+csf-i. 
in vitro HPP-CFCqm-csf+csf-1 "CFU-A" and in vivo CFU-S populations in S-phase in normal 

and haematopoietically-stressed marrow.

Colony-forming cell population.

Proportion of colony-forming cells in S-phase (+SEM)

Normal Bone Marrow Regenerating Bone Marrow

In vitro HPP-CFC|i_3+cSF-i 9(±1)% (n=255) 40(+1)% (n=177) Hl

in vitro HPP-CFCGm-csf+csf-i "CFU-A’ Pl ~8% -28% Pl

In vivo CFU-S -10% w 30-50% n &3-5l

- Approximately.
M Marrow from mice subjected to sublethal whole body X-irradiation. 
[2] Pragnell et a/[1988] and Eckmann et a/[1988].
Pl Marrow from mice pretreated with phenylhydrazine hydrochloride. 
I43 Becker et al [1965].
Pl Guzman and Lajtha [1970] and Rencricca et a/[1970].
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whole body X-irradiation dose, in which the proportion of the 

haematopoietic stem ceii popuiation in S-phase is reiativeiy high, the 

proportion of the HPP-FFF1l-+CfFo pupalation in S-phase was 

significantly Increased from 9(± 1)% to 24(+1)% [Figure 64].

The in vitro HPP-CFCIL3+CpFo puputation demonstrates a 

sensitivity to both the normal bone marrow-derived stem cell 

proliferation inhibitor and the regenerating bone marrow-derived 

proliferation stimulator. Significantiy, the changes in the proportion of 

the HPP-FFFlp3+CSF.1 population in S-phase under the influence of 

appropriate stimuli, mirror those observed for the in vivo FFU-S 

popuiation, and in common with the in vivo FFU-S population, no 

evidence of either stem ceii proliferation inhibitor or stimulator 

toxicity was observed against the HPP-CFCIL3+csf_ 1 popuiation.

Pragneli etal[1988], Eckmann efa/[1988] and Lorimore etal 

[1990], report a similar HPP-FFFccfc+cfl "CFU-A"-sensItIvity to the 

stem ceii proliferation regulators, in haematopoieticaiiy-stressed 

marrow from mice subjected to phenylhydrazine hydrochloride- 

treatment, the proportion of the HPP-FFF(ckccF+<ccF "FFU-A" 

popuiation in S-phase was determined as approximately 28%. When 

incubated with a source of the stem ceii proliferation inhibitor, the 

proportion of the HPP-FFFGc_CSFcgspl "FFU-A" popuiation in S-phase 

was reduced from approximately 28% to approximately 11%.

Similarly, the proportion of the HPP-F^F^F^sjcc^il+cc^f-l "FFU-A" 

popuiation in S-phase in normal bone marrow was determined as 

approximately 8%. When incubated with a source of stem cell 

proliferation stimulator, the proportion of the HPP-FFCgm.cfF+cffc 

"FFU-A11 popuiation in S-phase was increased from approximately 8% 

to approximately 49% [Figure 64[.

The demonstration of both in vitro HPP-FFC|c+CcF- c and in vitro 

HPF>-3FFiC(^^_csf+cslc "FFU-Au-sensitivity to the in vivo FFU-S-



Figure 64: A comparison of the proportion of the in vitro HPP-CFC|L3+csf-i , 
in vitro HPP-CFCqm-CSF+CSF-1 "CFU-A” and in vivo CFU-S populations in S-phase in the 

absence and presence of the stem cell proliferation regulators..

Colony-forming cell population.

Proportion of colony-forming cells in S-phase (±SEM)

Regenerating 
Bone Marrow DI

RBM +
inhibitor l2J

Normal
Bone Marrow

NBM+
StimulatorM

In vitro HPP-CFC1L3+CSF-1 40(+1)%

(n=177)

25(±1)%
(n=127)

9(±1)%
(n=255)

24(±1)%

(n=107)

In vitro HPP-CFCgm-CSF+CSF-1 
"CFU-A" HI

-28% -11% ~8% -49%

In vivo CFU-S Pl 30-50% -10% -10% 30-40%

~ Approximately.
DI Haematopoieticaiiy-stressed marrow.
t2l Medium conditioned by normal bone marrow.
I3i Medium conditioned by haematopoieticaiiy-stressed marrow.
(41 Pragnell etal [1988] and Eckmann et a/[1988] and Lorimore etal [1990].

Becker eta/[1965], Guzman and Lajtha [1970] and Rencricca etal[1970].
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characterized proliferation regulators, in addition to the evidence of a 

high proliferative potential, multipotency and kinetic changes similar 

to those observed for the in vivo CFU-S population, is further 

evidence for the in vitro HPP-CFC^, cSM nnd HPP^-(^I^CGM.CSF+ca^^1 

‘"CFU-A" populations being relatively primitive haematopoietic 

precursors, possibly components of the stem cell compartment 

within the haematopoietic system.

4.2.3 The relative sensitivity of the in vitro HHP-CFC,c,CSF 1 population 

to the stem cell proliferation regulators.

Tejero et al [1984], Wright et ai [1985] and Lorlmore et ai [1990], 

demonstrate an 'age-related' variation in the sensitivity of the various 

components of the haematopoietic stem cell population to the stem 

cell proliferation inhibitorand stimuiator(1A7). Day 10-12 CFU-S, 

believed to be a more primitive component of the haematopoietic 

stem cell compartment, demonstrate a significantly increased 

sensitivity to the stem ceii proliferation inhibitor, in comparison, day 

7-8 CFU-S, believed to be a more mature component of the 

haematopoietic stem cell compartment, demonstrate a significantly 

increased sensitivity to the stem cell proliferation stimulator [Figure 

13\.

The sensitivity of the in vitro HPP-CFCILs+csf„1 population to the 

stem cell proliferation regulators was investigated in an attempt to 

determine the relative position of the population within the stem cell 

compartment. Assay of the stem ceii proliferation regulators against 

the in vitro HPP-CCC^poi pupata^^, demonstrated that both 

normal and regenerating bone marrow-derived inhibitor and 

stimulator, are titratable activities. increasing the 'concentration’ of 

the medium conditioned by the normal, or regenerating marrow,
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resulted in an appropriate reduction, or increase, to a

minimum/maximum plateau value, of the proportion of the in vitro 

HPP-FFFIL3l.l£s_1 population in S-phase. Similar observations are 

reported by Wright efar/[1982] and Lord and Wright [1982], when 

assaying similarly-derived proliferation inhibitor and stimuiator 

against the in vivo FFU-S population.

A number of groups report the use of lyophilized Amicon 

ultrafiltered fractions of normal and regenerating marrow extracts, as 

sources of NBME-IV(stem cell proliferation inhibitor) and RBME-iii 

(stem cell proliferation stimuiator), and the use of increasing weights 

of lyophilized material similarly demonstrates that both factors are 

titratable activities against the in vivo FFU-S population [Lord et 

a/,1981; Wright & Lord,1979; Wright ef a/,1980a; Fork ef a/,1981; 

Tejero ef a/,1984; Wright ef a/,1985; Wright and Lorimore,1987; 

Lorlmore ef a/,1990].

in addition to the demonstration that both inhibitor and stimuiator 

are titratable activities, it is significant that the in vitro HPP- 

FFF„cccsf-i population demonstrates an approximately equal 

sensitivity to the stem cell proliferation regulators. in comparison to 

the day 10-12 FFU-S popuiation, which proves more sensitive to the 

stem cell proliferation inhibitor, and the day 7-8 CFU-S population, 

which proves more sensitive to stimulator, a cell population which 

demonstrates an equal sensitivity to each factor should theoretically 

prove to be more mature than the day 10-12 CFU-S population, and 

more primitive than the day 7-8 CFU-S population. in this manner, an 

approximate position for the in vitro HPP-CFCILcccsF.i population 

within the already established in vivo CFU-S hierarchy within the 

haematopoietic stem cell population, can be proposed [Figure 55].
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Lorimore et a/[1990], report a direct comparison between 

inhibitor and stimulator sensitivities of day 12 CFU-S, day 7 CFU-S 

and in vitro HPP-CFCgg.gFG+csf-i "CFU-A" population. Using 

lyophilized Amicon uitratiltered NBME-lVand RBME-iii, as sources ot 

stem ceii proliferation inhibitor anb stimuiator, a significant difference 

in the HPP-CFCGg.gsfgcsf-i "CFU-A" sensitivity to the stem cell 

proliferation regulators was reported. The HPP-CFCGgglfggsfg "FFU- 

A" population demonstrated a markedly increased sensitivity to 

inhibitor and a reduced sensitivity to the stem cell proliferation 

stimuiator. This pattern of stem ceil proliferation regulator sensitivity 

proved similar to that of the day 12 CFU-S population, believed to be 

a more primitive component of the haematopoietic stem cell 

compartment, rather than the day 7 CFU-S population and implies 

that the in vitro HPP-CFCgggsfgcsfg "CFU-A" population is a relatively 

primitive haematopoietic precursor within the haematopoietic stem 

cell hierarchy.

The age-related variation in the relative sensitivity of the 

haematopoietic stem ceii popuiation to inhibitor and stimuiator, may 

subsequently allow the positions of the various in vitro HPP-CFC 

populations within the haematopoietic stem cell hierarchy, to be 

established. Since the HPP-CFC-2 (HPP-CFC1L3+csm) population 

appears to demonstrate an approximately equal sensitivity to 

inhibitor and stimuiator, the more primitive HPP-FFF1 (HPP- 

CF-Lf gcsf^) population might be expected to demonstrate an 

increased /nr&tfor sensitivity, whiie the more mature HPP-CFF-3 

population might be expected to demonstrate an increased 

stimuiator sensitivity.
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4.3.1 An of cell prollferation

regulators in murine mveioid , leukaemia.

The in vitro HPP-CFCf+cui assay technique was subsequently 

used to investigate the regulation of the haematopoietic stem ceil 

popuiation in the haematopoietic, neoplastic proliferative disorder, 

myeioid ieukaemia. 'Leukaemia1, a term applied to a group of 

maiignant haematopoietic proliferative disorders, is characterized by 

an inappropriate production of white biood cells (1.28). in the case of 

'myeioid ieukaemig? there is an inappropriate production of abnormal 

myeloid precursors. One particuiarly significant aspect of most 

ieukaemias, is an apparent leukaemia-associated suppression of 

normal haematopoiesis. As a result, with disease progression, the 

'quality' of the peripheral blood deteriorates and anaemia, 

haemorrhage and infection are common secondary symptoms. The 

apparent suppression of normai haematopoiesis by the leukaemia 

allows the leukaemic population to deveiop a proiiferative advantage 

over the normai haematopoietic tissue. The possible mechanism(s) 

by which the leukaemias may suppress normal haematopoiesis were 

investigated using a number of X-irradiation-induced, murine myeloid 

ieukaemias [Hepburn ef a/,1987] and the in vitro HPP-CFC,c+Ccc 

assay.

initial investigations were performed to determine the levels of 

the stem ceil proliferation inhibitor and stimuiator in media 

conditioned by overtly leukaemic marrow samples (2.20). Media 

conditioned by overtly leukaemic marrow was assayed against 

normal marrow, to investigate the presence of the stem ceil 

proliferation stimuiator, and regenerating marrow to investigate the 

presence of the stem cell proliferation inhibitor OR the presence of a 

direct-acting ieukaemia-associated proliferation inhibitor. No
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evidence of the presence of the haematopoietic stem ceil 

proliferation stimulatorwas detected in media conditioned by the 

murine myeloid leukaemias. The proportion of the HPP-CFCIL3+csri 

population in S-phase in normal marrow was not increased by 

incubation with the leukaemic marrow conditioned media. Similarly, 

no evidence of the presence of the haematopoietic stem ceii 

proliferation inhibitor, or of any direct-acting leukaemia-associated 

proliferation inhibitor, was detected in the media conditioned by the 

murine myeloid ieukaemias. The proportion of the HPP-CFC^+CSF1 

popuiation in S-phase in regenerating marrow was not reduced by 

incubation with leukaemic marrow conditioned media. The absence 

of stem ceii proliferation stimuiator and inhibitor, or of any direct- 

acting ieukaemia-associated proliferation inhibitor, was not 

apparently a consequence of either the concentration of the 

leukaemic marrow conditioned medium, or the length of time used in 

the conditioning of the medium.

A time study of leukaemic progression was performed to 

investigate the variation in the levels of the haematopoietic stem ceii 

proliferation regulators with disease progression.

No evidence of the stem ceii proliferation stimuiator was 

observed during the progression of the murine myeloid leukaemia, 

however, significant changes in the levels of detectable stem ceii 

proliferation inhibitorwere observed with disease progression.

A possible explanation of such a finding may be to relate the 

levels of the stem cell proliferation inhibitorio the way in which the 

cellular composition of the femoral marrow changes with disease 

progression. In normai murine femoral marrow, there is a 

predominance of relatively mature haematopoietic progenitors: 

metamyelocytes, erythrobiasts, lymphocytes and band cells 

[Hepburn ef a/,1987]. In overtly leukaemic SA8LD marrow, there is a
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predominance of relatively immature haematopoietic progenitors: 

myelocytes, promyelocytes and generalized blast ceils [Hepburn et

a/,1987]. The change in cellular composition of the marrow may also 

include the cell population responsible for tpe production of the stem 

cell proliferation inhibitor. The inhibitor-producing cell population 

may become ’diluted' as the marrow becomes more leukaemic, with 

the possible result that the observed 'concentration' of detectable 

inhibitorwould reduce. However, while this dilution effect may play a 

role, subsequent evidence implies that the reduction in the levels of 

the stem cell proliferation inhibitor, may be a direct consequence of 

the leukaemic cell population.

The mechanism(s) by which the levels of detectable proliferation 

inhibitorwere reduced with leukaemic progression was investigated 

to determine whether the reduction was inherently linked to the 

developing leukaemia. Was the leukaemic popuiation reducing the 

levels of detectable inhibitor by either acting to prevent it's action, or 

acting to prevent it's production ? The effects of medium conditioned 

by overtly leukaemic marrow on the action of both the

haematopoietic stem cell proliferation inhibitor and stimuiator was 

investigated by performing assays of normai and regenerating bone 

marrow-derived inhibitor and stimuiator in the absence or presence 

of medium conditioned by overtly leukaemic marrow.

The presence of the medium conditioned by the overtly 

leukaemic marrow, did not significantly impair the capacity of the 

normal bone marrow-derived inhibitorto reduce the proportion of the 

HPP-CFC|1^+CSF_i population in S-phase, or regenerating bone 

marrow-derived stimuiatorto increase the proportion of the HPP- 

CFC|L3+csF.i population in S-phase. These results suggest that the 

reduction in the level of the proliferation /n/i/btfor observed with 

disease progression is not apparently due to a ieukaemia-associated
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inactivation of the haematopoietic stem ceii proliferation regulator. 

Stimulator action is similarly unaffected by the presence of medium 

conditioned by overtly leukaemic marrow.

The effects of medium conditioned by overtly leukaemic marrow 

on the production of the haematopoietic stem ceil proliferation 

regulators was investigated. Normal bone marrow conditioned 

medium was conditioned in the absence, or presence of medium 

conditioned by overtly leukaemic marrow and similarly, medium was 

conditioned by regenerating marrow from mice 7 days after a 4.5 Gy 

whole body X-irradiation dose in the absence or presence of medium 

conditioned by overtly leukaemic marrow.

Proliferation inhibitor, produced from normal bone marrow 

reduced the proportion of the HPP-CFC,cfsm ’n S-phase. Medium 

conditioned by normal bone marrow in the presence of medium 

conditioned by overtly leukaemic marrow, did not reduce the 

proportion of the HPP-CFC,cclcf-l population in S-phase. Similarly, 

proliferation stimuiator, produced from regenerating marrow 

increased the proportion of the HPP-FFC|L3cCst_1 population in S- 

phase. Medium conditioned by regenerating bone marrow in the 

presence of medium conditioned by overtly leukaemic marrow, did 

not increase the proportion of the HPP-CFC|p3ccsf_i population in S- 

phase. The presence of medium conditioned by overtly leukaemic 

marrow appears to significantiy impair the capacity of normal bone 

marrow to produce the stem cell proliferation inhibitor and 

regenerating bone marrow to produce the stem cell proliferation 

stimuiator.
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4,3.2 Possible of murine mveloid Ieukaemic

progression.

These results suggest that the leukaemic popuiation may be able 

to manipulate the levels of endogenous stem cell proliferation 

inhibitor and stimuiator by apparently impairing their production. 

Normally, stem cell proliferation inhibitor and stimuiator subtly 

interact to coordinate the proportion of the haematopoietic stem ceil 

population in S-phase and so tailor haematopoietic output to the 

haematopoietic demands of the body, if the production of the stem 

cell proliferation regulators was impaired, this subtle regulatory 

interaction could not occur and the coordination of haematopoietic 

output to haematopoietic demand would fail. With the additional 

haematopoietic stress induced during leukaemic progression and the 

inappropriate production of abnormal white biood ceils by a 

population of ceils able to proliferate presumably independently of 

inhibitor and sf/mu/gfor regulation, the 'quality' of the peripheral 

blood will deteriorate leading to anaemia, haemorrhagic episodes 

and infection due to the reduced levels of functional erythrocytes, 

platelets and granulocytes and macrophages.

The action of the leukaemic popuiation in apparently blocking the 

production of the stem cell proliferation regulators may be a 

modification of an already existing mechanism. For example, distinct 

inhibitor- and stimulator-producing cell populations exist (1.11) and 

are both present regardless of the proiiferative state of the 

haematopoietic tissue. Only one proliferation regulator is however 

predominant at any one time, which implies a distinct coordinating 

mechanism must exist. Lord and Wright [1982], demonstrated that 

isolated inhibitor-producing cells cease /W/Mtor production in the 

presence of exogenous stimuiator. Similarly, Lord and Wright [1982]
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and Riches and Cork [1987] demonstrated that sf/miz/afor-producing 

cells cease stimulator production in the presence of exogenous 

inhibitor (lzl4), One couid envisage a slight modification ot this 

regulatory mechanism could be exploited to the advantage of the 

leukaemic population. A putative leukaemic factor could be produced 

which mimics the proliferation stimuiator and inhibitor, but which is 

itself inactive. In this way both inhibitor and stimuiator production 

would cease, to give the observed absence of regulators in overtly 

leukaemic marrow. With the characterization of the stem cell 

proliferation regulators and identification of appropriate receptors, It 

may prove possible to perform competitiverbinding studies between 

appropriate factors, factor-producing ceils and the putative 

leukaemic factor, to further investigate the possible mechanism by 

which this apparent, Ieukaemia-associated suppression of the 

proliferation regulators occurs.

Similarly, a modification of the 'stem cell feedback factor' (SCFF) 

could be developed to leukaemic advantage. SCFF Is reported to be 

produced by the haematopoietic stem ceii popuiation and acts to 

maintain stem ceil numbers [Lord,1986] (1.1S). if stem ceii numbers 

are 'sufficient', levels of SCFF inhibit the production of stimuiator by 

stimuiator-produclng cells, if stem cell numbers are reduced, the 

levels of SCFF reduce and the inhibition of stimulator production is 

lifted. Increased stimuiator production acts to increase the proportion 

of haematopoietic stem cells in S-phase and stem cell numbers are 

restored through a self-renewal mechanism. Increased stem ceii 

numbers, increase SCFF production, which inturn increases the 

inhibition of sMator production, enabling the subsequent 

production of the proliferation inhibitor. The production of a 

ieukaemia-associated SCFF-mimic could thus be envisaged to 

modulate the production of the stem cell proliferation regulators.
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While the leukaemic population may inhibit the production of the 

stem cell proliferation regulators, by possibly modifying and 

subsequently exploiting these existing regulatory mechanisms to it's 

advantage, this does not rule out the possibility that the leukaemic 

population may use an, as yet unclear, novel mechanism. Future 

studies might involve attempts to characterize the putative 

leukaemia-associated, proliferation regulator production-inhibiting 

factor, perhaps through Amicon ultrafiltration. If such a factor could 

be isolated, it may be possible to exploit it to clinical advantage. By 

preventing the production of the stem cell proliferation stimulator, 

and so preventing the recruitment of haematopoietic stem cells into 

S-phase, it may be possibie to reduce certain aspects of 

chemotherapeutic haemotoxicity.

In conclusion, if the leukaemia-associated suppression of normal 

haematopoiesis and the subsequent development of a leukaemic 

proliferative advantage over the normal haematopoietic tissue, is in 

part due to a suppression of stimiAator production, would the 

controlled reintroduction of stimulator, as an exogenous factor, assist- 

in the management of leukaemia ? Provided the leukaemic 

population is not itself sensitive to the stem cell proliferation 

stimulator, a controlled reintroduction of the factor may allow 

sufficient ’activation’ of the marrow to allow a partial restoration of the 

’quality’ of the peripheral blood, which would inturn, reduce the 

secondary, often debilitating symptoms of anaemia, haemorrhage 

and infection. The ’activation’ of the normal, suppressed 

haematopoietic tissue may also act to overcome the leukaemic 

proliferative advantage, which may inturn act to Impair the 

progression of the disease and give a better disease prognosis. Such 

disease management may lead to essentially healthier (less anaemic, 

less haemorrhagic and less susceptible to infection) leukaemic
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patients, more able to withstand the subsequent rigors of chemo- and

radiotherapeutic regimes.



Section 4
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4.4.1 . Stability and activity of AcSDKP.

Information about the stabiiity and activity of AcSDKP was initially 

very limited. Caution was advised against the use of serum in 

medium used to dilute and incubate AcSDKP, due to the presence of 

degradatlve enzymes, and while heat inactivated serum (serum 

incubated at 56°C for 30 mins.) proved less degradatlve, AcSDKP 

activity was stili reduced. The use of serum albumin was also 

precluded by adverse binding of the AcSDKP to the molecule 

[Lenfant, personal communication]. After consideration, dilution and 

subsequent incubations involving the peptides were performed under 

serum-free conditions. Manipulation of diluted peptides was kept to a 

minimum and dilutions performed in polypropylene vials (Nunclon) to 

reduce loss of peptides by adhesion to plastic. Stock solutions of 100 

ng/ml of each peptide were produced, aliquoted and frozen (-20°C) 

and individual 100 ng/mi aliquots were not refrozen once thawed. The 

stability and activity of AcSDKP, SDK, ADK and DKP under incubation 

conditions and in the presence of marrow ceils was uncertain, and 

addition of peptides at t=Oand at each subsequent hour of 

incubation was hoped to maintain at least a minimum concentration 

of peptide present should degradation occur. A standard 

concentration of 1 ng/ml (approximately 10®M) was adopted for each 

of the peptides, following reference to reports of Monpezat and 

Frindel [1989] and Lauret ef a/[1989]. Subsequent reports of Guigon 

ef a/[1990] demonstrated maximal AcSDKP activity at a 10"9-10' 10M 

(approximately 1 ng/ml) concentration against a human progenitor 

cell population.

[Recent research performed by Lenfant ef a/,[unpublished], has 

characterized the enzyme present In serum which is responsible for

AcSDKP degradation as "angiotensin converting enzyme!1 (ACE). ACE
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has been previously characterized in the renin-angiotensin system, 

responsible for the regulation of blood pressure. Angiotensinogen, 

an inactive precursor found in the plasma and tissue fluid, is 

converted to angiotensin /, an inactive 10 amino acid peptide, by 

renin. inactive angiotensin I'is converted to an active, 8 amino acid 

peptide, angiotensin it, by the carboxydipeptidase activity of 

angiotensin converting enzyme (ACE), which is widely distributed in 

tissue. ACE aiso apparently acts to degrade the active AcSDKP 

peptide by enzymatic cleavage, and the behaviour and regulation of 

ACE in normal and aberrant haematopoiesis is currently under 

investigation by Lenfant ef a/in collaboration with this laboratory. The 

half-life of AcSDKP in serum has subsequently been reported as 

approximately 80 mins. After 4 hours no AcSDKP activity is 

detectable. in heat inactivated serum, the AcSDKP half-life is reported 

as approximately 20 hours [Lenfant & Wdzleczak-Bakala, personal 

communication].]

4.4.2 The direct and indirect haemoregulatory activity of SDK.

The direct, inherent stimulatory or inhibitory activity of SDK was 

investigated against both the in vitro HPP-CFCHL3+csf_1 and the in vitro 

GM-CFC populations. No evidence of inherent stimulatory or 

inhibitory activity against either the in vitro HPP-CFC^tQSf.i or in vitro 

GM-CFC populations was observed. Significantly, no evidence of 

SDK toxicity against either the in vitro HPP-CFC,^+CsF_t or in vitro GM- 

CFC population was observed at 1 ng/ml, 2.87x1 OtM.

The activity of SDK against stimuiator and /n/r/b/for action was 

investigated. The proportion of the HPP-CFC,^+csFt in S-phase in 

normal bone marrow was increased in the presence of medium
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conditioned by regenerating marrow, as a crude source of stimulator. 

However, in the presence of stimulator and SDK at 1 ng/mi, 

2.87x10'9M, no significant increase in the proportion of the HPP- 

CFCnl3+csF-i in S-phase was observed. Similarly, the proportion of the 

HPP-CFC|L3+GSm population in S-phase in regenerating marrow was 

reduced in the presence of medium conditioned by normal marrow, 

as a crude source of inhibitor. However, in the presence of inhibitor 

and SDK at 1 ng/ml, 2.87x1 O~9M, no reduction in the proportion of the 

HPP-CFC1L3+csF9 was observed.

These results imply that SDK at 1 ng/ml, 2.87x1 <O9M is apparently 

effective at blocking the action of the stem ceil proliferation 

regulators, in the presence of SDK, stimuiator aats to increase the 

proportion of the HPP-CFC^^gp in S-phase and /n/tf/Mtorfails to 

reduce the proportion of the HPP-CFC,^^,^ in S-phase.

The activity of SDK against stimulator and inhibitor production 

was investigated. The proportion of the HPP-CFC , ̂ ccpi population 

in S-phase was increased in the presence of medium conditioned by 

regenerating marrow. incubated with medium conditioned by 

regenerating bone marrow in the presence of 1 ng/ml, 2.87x1 O'9M 

SDK, the proportion of the HPP-CFC|93+9cs_1 population in S-phase 

was similarly increased. The proportion of the HPP-CFC^ 

population in S-phase was reduced in the presence of medium 

conditioned by normal bone marrow. incubated with medium 

conditioned by normal bone marrow in the presence of 1 ng/mi, 

2.87x10'9M SDK, the proportion of the HPP-CFC,^ .gp population in 

S-phase was similarly reduced. These results imply that SDK at 1 

ng/ml, 2.87x1 0'9M does not act to block the production of the stem 

cell proliferation regulators. in the presence of SDK, regenerating 

bone marrow continues to produce stimulator and normal bone 

marrow continues to produce inhibitor.
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4.4.3 The direct and Indirect haemoregulatory activity of AcSDKP.

A limited number of experiments were performed with the parent 

molecule AcSDKP. No evidence of an Inherent stimulatory activity for 

the in vitro HPP-CFCIL3+csf_|, or of an inherent stimulatory, or 

Inhibitory activity for the in vitro GM-CFC population was observed 

For AcSDKP at 1 ng/ml, 2.05x109M over a 3 hour period. In addition, 

no evidence of AcSDKP toxicity against either the in vitro HPP- 

CFCIL3+gsm, or in vitro GM-CFC was observed.

The effect oF AcSDKP on the action of t^e stem cell proliferation 

stimuiatorwas also investigated. The proportion of the HPP- 

CFC^cs-i in S-phase was increased on incubation with medium 

conditioned by regenerating marrow as a crude source of stimulator. 

In the presence of stimuiator and AcSDKP at 1 ng/ml, 2.05x1 O~9M, the 

proportion of the HPP-CFC|mpi in S-phase was not increased, 

implying that, in common with the Findings of SDK, AcSDKP appears 

to block the action of the stem cell proliferation stimulator.

4.4.4 The direct and indirect haemoreaulatorv activity of DKP and

ADK.

A limited number of further experiments were performed using 

the tripeptide analogues DKP and ADK. The proportion of the HPP- 

cfcil3+csf-i population in S-phase was not increased by the presence 

of 1 ng/ml, 3.01x10'9M ADK for 3 hours and no evidence of ADK 

toxicity against the HPP-CFCtL3+GSpi population at 1 ng/ml, 3.01x10'9M 

was observed.

The effects of both ADK and DKP on the action of the stem cell 

proliferation stimuiatorwere investigated. The proportion of the HPP- 

CFCl3lcspi in S-phase was increased in the presence of medium
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conditioned by regenerating marrow as a crude source of stimulator. 

in the presence of stimuiator and 1 ng/ml, 2.79x10'tM DKP, the 

proportion of the HPP-CFC, ^(gp, population in S-phase was not 

increased. No evidence of DKP toxicity against the HPF>-CFCt!tt+<D<^F.1 

population of 1 ng/ml, 2.79x10'tM was observed. in the presence of 

stimuiator and 1 ng/ml, 3.01x1 09M ADK, however, the proportion of 

the HPP-CFCIL3+qstt population was increased. These results imply 

that while DKP proved effective at blocking the action of the 

haematopoietic stem cell proliferation stimuiator, ADK appeared to 

be a less effective sf/mf//afor-’blocking’ agent. in conclusion, these 

results suggest that the low molecular weight, haemoregulatory 

tetrapeptide AcSDKP, may act by blocking the action of the 

haematopoietic stem cell proliferation stimulator. A number oF 

observations involving AcSDKP may now be explained in light oF this 

suggestion.

4.4.5 Possible mechanism of action of the haemoreg^Uatorv

tetrapeptide AcSDKP.

Lauret ef a/ [1989b], report the production of a polyclonal 

antiserum against an extended AcSDKP peptide, which cross-reacts

with the AcSDKP tetrapeptide. Use of this antiserum in vivo in mice is 

reported to markedly increase the proportion oF the haematopoietic 

stem cell population in S-phase [Monpezat & Frindel,1989]. iF as 

postulated, AcSDKP acts to block stimuiator action, the removal oF 

endogenous AcSDKP by the neutralizing antiserum, would remove 

the block to sf/mrz/afor action, and allow a subsequent increase in the 

proportion of haematopoietic stem cells in S-phase, as was 

observed.
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The exogenous administration of AcSDKP in vivo to mice, as 

crude diaiysate of foetal liver or bone marrow, semi-purified factor or 

synthetic peptide, is reported to prevent the recruitment of 

haematopoietic stem cells into S-phase and so acts to protect the 

haematopoietic system from the potentially haemotoxic effects of the 

S-phase-specic cytotoxic agent cytosine arabinoside (ARA-C)

[Guigon & Frindei,1978; Guigon ef a/,1980; 1981; 1982; 1989; 

Wdzieczak-Bakala ef a/,1983]. if as postulated AcSDKP acts to block 

the action of the haematopoietic stem cell proliferation stimulator, 

then the exogenous addition of AcSDKP will act to further increase 

the block in stimulator action. With the cellular damage induced as a 

result of an S-phase cytotoxic drug challenge, levels of endogenous 

sf/nttz/dferwill rise to increase the proportion of stem ceils in S-phase 

and begin tissue regeneration. However, with the continued presence 

of the S-phase cytotoxic agent, an increase in the proportion of stem 

cells in S-phase would lead to severe tissue damage. The presence 

of increased levels of AcSDKP would be envisaged to block the 

action of stimuiator, prevent G9-G1 transition of the haematopoietic 

stem cells, so ’protecting’ them from the persistant effects of the S- 

phase-specic cytotoxic agent.

Wdzieczak-Bakala ef a/[1990], report cyclical changes in the 

proliferative state of the haematopoietic stem cell population in in 

vitro long-term bone marrow cultures with refeeding, and offered an 

explanation in terms of levels of AcSDKP in the culture medium. 

Removal of exhausted medium at the refeeding of a long-term bone 

marrow culture and its replacement with fresh medium, would reduce 

the endogenous levels of AcSDKP and allow an increased proportion 

of haematopoietic stem cells to enter S-phase. With time, levels of 

endogenous AcSDKP would be restored, inhibition of stem cell Gi-G1 

transition would be restabllshed and a reduction in the proportion of
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the haematopoietic stem cell population in S-phase would occur. This 

can be compared with the observations of Dexter et al [1977], Toksoz 

[1980] and Cashman ef a/[1985], who also report cyclical changes in 

long-term bone marrow cultures at refeeding. They interpret these 

observations as the result of changing ievels of the stem cell 

proliferation inhibitor and stimulator. Cellular depletion of the 

haematopoietic culture, leads to the production of sf/anZafior and an 

appropriate increase in the proportion of the haematopoietic stem 

cell population in S-phase. An increase in the cellular output and 

cellular repopulation of the haematopoietic layer, subsequently leads 

to the production of inhibitor and a reduction in the proportion of the 

haematopoietic stem cells in S-phase. The two distinct models of 

proliferation regulation may be reconsiled with the finding that 

AcSDKP does not act directly, rather It interacts with the stem cell 

proliferation stimuiator. At refeeding exhausted medium is removed 

and replaced with fresh medium. AcSDKP levels in the medium after 

refeeding are reduced. The cellular depletion of the layer leads to the 

production of stimuiator. The low levels of AcSDKP allow stimulator 

produced to be active and to increase the proportion of theA
haematopoietic stem cell population and so increase the cellular 

output and repopulation of the layer. With time the levels of AcSDKP 

increase with an associated Increase in the blocking of stimulator 

action. A biock in stimuiator action may subsequently allow inhibitor 

production with the result that the proportion of the haematopoietic 

stem population in S-phase is reduced.

It is significant that the use of a neutralizing polyclonal antiserum 

against AcSDKP and the exogenous addition of AcSDKP elicit 

haematopoietic responses in vivo. This is strong evidence for the 

physiological role of the tetrapeptide AcSDKP. However, the precise 

mechanism by which the action of the haematopoietic stem cell
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proliferation stimulator is compromised, Is at present unclear,

although a number of possible mechanisms can be suggested. 

Stimulator-sensitive cells, which are likely to include the

haematopoietic stem cell population and possibly the inhibitor- 

producing cell population, are likely to express membrane-bound 

sf/rnu/afar receptors. An oversimplified illustration of the stimuiator! 

stimuiator r<^c^ejp'tor interaction may be that of a ’lock and key [Figure 

dda]. Subtle molecular interactions will occur between the active sites 

of both the stimulator and the stimuiator receptor and with the 

formation of a. stimulator! stimui/forrecepo complex Intracellular 

mechanisms are likely to elicit secondary messenger activity with 

subsequent signal transduction to the nucleus and the stimulation of 

the haematopoietic stem ceil population into S-phase. One possible 

mechanism of AcSDKP action may be to directly Interact with either 

the sfimniator molecule or the receptor, in the interaction of AcSDKP 

and SDK in the inhibition of rosette formation between human Jurkat 

T-cells and sheep erythrocytes the addition of exogenous AcSDKP, 

or SDK, is proposed to compete with the presence of an endogenous 

-SDK- sequence in a region of the T-celi CD2 receptor which 

subsequently determines the interaction with the sheep erythrocyte. 

The presence of exogenous AcSDKP, or SDK, is thought to Impair 

rosette formation by competing with the intramolecular interaction of 

the putative native -SDK- sequence and disrupting the tertiary 

structure of the T-cell receptor moiety so that no interaction with the 

sheep erythrocyte can occur [Lenfant, personal communication]. A 

similar mechanism may exist in the stimulator! stimniator receptor 

system, with native -SDKP-, or -SDK-, sequences being potentially 

significant in the interaction between agonist and receptor. The 

presence of free AcSDKP may compete with these putative native - 

SDKP-, or -SDK-, sequences at the level of qither the stimulator or the
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stimulator receptor, to impair the access of the one molecule to the 

other. Whether the AcSDKP interacts with either stimuiator [Figure 

66b] or the sf/mzzZafor receptor [Figure 66c] is, at present unclear, 

although Wdzieczak-Bakala ef a/ [personal communication] report 

the iow affinity binding of radiolabelled AcSDKP to a small population 

of, as yet unclassified, haematopoietic precursors in murine bone 

marrow. This may be interpreted as an interaction of AcSDKP at the 

level of the membrane bound receptor [Figure 66c}. This

low affinity binding of the AcSDKP to the putative sfZmi/Zafor receptor 

could imply that the interaction is possibly reversible. The use of 

unlabeiled AcSDKP is reported to displace the radiolabelled AcSDKP, 

suggesting that the binding of the AcSDKP to certain cells is 

relatively specific.

To investigate evidence for an AcSDKP interaction with stimuiator 

[Figure 66b}, a purified source of stimulator (RBME-lift could be 

incubated with radiolabelled AcSDKP. Dialysis of the combination of 

the stimulator and AcSDKP should remove unbound AcSDKP and the 

binding of AcSDKP to stimulator could be investigated by measuring 

the retained radioactivity. The specificity of any interaction could be 

investigated by the simultaneous addition of unlabeiled AcSDKP and 

the displacement of labelled AcSDKP observed.

Alternatively, the AcSDKP molecule may not interact within the 

active sites of the stimulator and receptor, but may bind to the 

appropriate molecule and indirectly alter the 3-dimensional 

conformation of the active site. Binding of AcSDKP may alter critical 

intermolecular bonds within the molecule, spfficient to disrupt the 

tertiary structure of the molecule and impair the interaction of agonist 

with receptor [Figures 66d& 66e}.

The above hypotheses are significant since they do not require

the presence of discrete AcSDKP receptors. An alternative
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interpretation of the reports of Wdzieczak-Bakala et al [personal 

communication] of low affinity binding of radiolabelled AcSDKP to an 

unclassified population of haematopoietic precursors, may be 

evidence of AcSDKP receptors. If discrete AcSDKP receptors exist, 

the binding of AcSDKP to the receptor may elicit a number of 

intracellular responses amongst which may be the inhibition of 

expression of stimulator receptors on the extracellular surface of the 

cell membrane. Other possible mechanisms may be envisaged.

The attraction of a haemomodulatory role for the low molecular 

weight tetrapeptide AcSDKP is its great potential flexibility. An 

increase in the levels of endogenous AcSDKP could be produced by 

increasing the activity of endoproteinase Asp-N, and so the cleavage 

of AcSDKP from the putative precursor Thymosin B4 and/or a 

reduction in the AcSDKP-degrading activity of angiotensin converting 

enzyme. Similarly, a reduction in the levels of AcSDKP could be 

produced by reduced endoproteinase Asp-N activity and/or 

increased angiotensin converting enzyme activity. In this manner, a 

less coarse regulatory mechanism can be envisaged than were 

changes in the proportion of the stem ceil population in S-phase 

solely reliant on changes in the production of inhibitor and stimulator. 

How the levels of AcSDKP are coordinated, possibly through the 

variation in the relative activities of endoproteinase Asp-N and 

angiotensin converting enzyme, to tailor the appropriate activity of 

the haematopoietic stem cell proliferation stimulator to the 

haematopoietic demands of the body is, as yet unclear.

In addition to thymosin 84, the -SDKP- amino acid sequence is 

also reported in tumour necrosis factor-alpha (TNF-alpha) [Lenfant et 

a/,1989a; Pradelles et a/,1990]. TNF-alpha is reported to demonstrate 

haemoregulatory activity [Old,1985; Broxmeyer et a/,1986; Munker et 

ai,t^QT, Peetrie ef a/,1988; Slordal ef a/,1989] and in this respect the -
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SDKP- sequence may be significant. Similarly, the minimal active 

amino acid sequence of the AcSDKP tetrapeptide, the SDK tripeptlde 

sequence Is found in murine leukaemia inhibitory factor (muLIF) 

[Gearing ef a/,1987]. LIF Is aiso reported to demonstrate 

haemoregulatory activity [Gearing ef a/,1987; Leary ef a/,1990; Metcalf 

ef a/,1990; Verfaille & McGlave,1991] and in this respect, the presence 

of the -SDK- sequence may be significant. With the characterization 

of other haematopoieticaily active molecules, the significance of the - 

SDKP-,or -SDK-, amino acid sequences may become clearer,

4.4.6 Another I ow moleeular weight haemoregulatory

oEEDCK/HP5b/SP1.

In addition to AcSDKP, another low molecular weight 

aaematopoietlcaily active peptide is reported. A pentapeptide of 

amino acid sequence pyro^Glu-Gh-A^j^|3cyy£^^Lys (pEEDCK) has been 

isolated from mature granulocytes and produced synthetically as 

"haemoregulatory pentapeptidd (HP5b), or "synthetic pentapeptide- 

T (SP1) [Laerum ef a/,1987; Foa ef a/,1987; Lu ef a/,1989; Paukovits ef 

a/,1990a; Paukovits ef a/,1990b]. The pentapeptide is reported to be 

non-species-specific, of low toxicity and is active in vivo and in vitro 

against both normal and murine myeloid progenitor cells and human 

and murine leukaemic cell lines. The molecule is reported to inhibit 

colony-formation by haematopoietic colony-forming cells and to 

suppress "myelopoietic stem cells" in a non-toxic, reversible manner. 

Paukovits ef a/[1990] have suggested HP5b/SP1 may prove to be a 

potential myelosuppressive agent effective during S-phase-specific 

cytotoxic chemotherapy, keeping the haematopoietic stem cell 

population out of a drug sensitive S-phase. Laerum ef ai [1990] have 

identified the EEDCK amino acid sequence of HP5b/SP1 in a
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subclass of G-protein, suggesting a possible interference by 

HP5b/SP1 with G-protein-mediated intracellular signal transduction. 

This Is additional evidence that low molecular weight peptides may 

be able to interfere with mechanisms involved in proliferation 

regulation and that smaii, iow molecular weight peptides can 

effectively mimic the binding sites of larger molecules. 

pEEDCK/HP5b/SP1 has also been demonstrated to possess a similar 

C-terminal chemical structure to the tripeptlde Giy-Cys-Giu (GCE, 

"glutathiond1), isolated from calf spleen and reported to regulate 

granulopoiesis [Fetsch & Maurer,1990]. Both pEEDCK and GCE 

possess similarly configured -COOH, -SH and -COOH and -NH2 

groups which may be significant in understanding their similar 

biological activity. Glutathione is reported to exist in a reduced, 

monomeric form and an oxidised, dimeric form. The former is 

reported to be a granulopoietic proliferation inhibitor, the latter is 

reported to be a granulocytic proliferation stimulator [Fetsch & 

Maurer,1990]. Neither pEEDCK/HP6b/SP1, or GCE/giutathione, show 

any structural similarity to AcSDKP.

Further evidence of the significance of iow molecular weight, 

potent regulatory peptides in biological systems can also be drawn 

from studies of the nervous system [Cottrell & Bewick,1989; Price et 

a/,1990]. A number of potent low molecular weight neuroactive 

peptides have been isolated in the invertebrate nervous system. One 

group of neuroactive peptides are characterized by a common 

terminal -Phe-Met-Arg-Phe-NH2 (-FMRFamide, Mr approximately 600 

amu) motif. The FMRFamide tetrapeptide is the minimal active amino 

acid sequence of the peptide family, and amino acid extensions of 

the tetrapeptide to a penta-, hexa-, or heptapeptide appears to play a 

role in modulating the activity of the FMRFamide moiety.



Section 5

Potential clinical 
applications.
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4.5.1 An in vitro assay of a primitive haematopoietic

precursor.

It has been demonstrated that the high proliferative potential 

colony-forming cell population stimulated by the synergistic 

interaction between interleukin 3 (IL3)/multi-CSF and macrophage 

colony-stimulating factor (M-CSF/CSF-1) (KPP-CFCl3.,csm) shares 

many behavioural and regulatory similarities with the in vitro KPP- 

cfcgm-csf+csf--i "CFU-A" population and more significantly with the in 

vivo '"CFU-S" population. This is considerable evidence to imply that 

the in vitro KPP-CFCIL3+csf1 population Is a relatively primitive 

haematopoietic precursor and is possibly a component of the stem 

cell compartment within the haematopoietic system.

The in vivo CFU-S assay has allowed considerable investigation 

of the behaviour and regulation of the haematopoietic stem cell 

population, however, a major drawback of this assay is it's use of 

large numbers of mice. Since each mouse has only one spleen, the 

numbers of mice required to achieve statistically significant results 

can be large. The development of an in vitro assay of a cell 

population which shares many behavioural and regulatory similarities 

with the in vivo CFU-S population would be significant, and while the 

replacement of the in vivo CFU-S assay with the in vitro KPP- 

CFC^+cf Of KPP-C^C:,iMYcs+CSf_i "CFU-A" assay, is not being 

advocated, these relatively simple, reproducible in vitro assays of a 

primitive haematopoietic precursor, should provide powerful tools 

with which to investigate haematopoietic stem ceil regulation and 

behaviour in normal and aberrant haematopoiesis.

The sensitivity of the in vitro KPP-CFC1L3+csm population to the 

haematopoietic stem cell proliferation regulators may, as previously 

demonstrated in the case of the X-irradiation-induced, murine,
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myeloid leukaemias, allow the levels of the endogenous stem cell 

proliferation stimulator and inhibitor in aberrant haematopoiesis to be 

investigated. Of particular significance is the possible use of the 

murine in vitro HPP-CFC|lh.c;.f-i or HPP-CFCGM.CSF+CSw "CFU-A" 

populations to investigate the levels of the stem cell proliferation 

regulators in aberrant human haematopoiesis, since inhibitor and 

stimuiator apparently demonstrate a non-species specificity (1.18). if 

human haematopoietic dysfunction could be related to abnormal 

levels of the haematopoietic stem cell proliferation regulators, it may 

prove possible to develop novel treatment regimes, perhaps 

involving the administration of exogenous inhibitor and stimuiator.

At present, no assay of the human haematopoietic stem cell 

population exists. However, McNiece ef a/[1989b] report the 

demonstration of a colony-forming cell population with a high 

proliferative potential from human haematopoietic tissue. if, as in the 

murine HPP-CFC,L3+csf1 and HPP-CFCsM.csf+ssfi "CFU-A" assays, the 

human HPP-CFC population could be demonstrated to be a primitive 

haematopoietic precursor, this may significantly assist the direct 

investigation of human haematopoietic stem cell behaviour and 

regulation.

it is significant that the in vitro HPP-CFCILg+CSf.i and HPP- 

CFCsm-csf+csfi "CFU-A" population prove sensitive to the 

haematopoietic stem cell proliferation inhibitor and stimuiator, and 

the in vitro HPP-CFCqm.csf+csf"CFU-A" played a significant role in 

the identification and characterization of the stem cell proliferation 

inhibitor as "macrophage inflammatory protein-1 aiphst' (MiP-1 alpha) 

[Graham ef a/,1990]. Similar procedures are likely to identify and 

characterize the haematopoietic stem cell proliferation stimuiator.

The clinical implications of a number of positive and negative

haemoregulatory activities have been reviewed [Moore,1991].
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Specifically, the clinical significance of the identified and 

characterized haematopoietic stem cell proliferation inhibitor and 

stimuiator will be great. The controlled administration of apparently 

non-toxic proliferation regulators, may allow the manipulation of the

haematopoietic system to clinical advantage.

4.5.2 Potential cili^i<^^i applications of the stem cell proliferation

inhibitor.

The use of exogenous stem ceil proliferation inhibitor may be 

particularly useful in reducing the proportion of the haematopoietic 

stem cell population in S-phase during chemo- or radiotherapeutic 

regimes. A reduction in the proportion of the haematopoietic stem 

cell population in S-phase prior to the administration of S-phase- 

specific chemotherapeutic agents, or radiotherapy, could markedly 

reduce the damage sustained by the haematopoietic system, damage 

which is usually a significant limiting factor of the dose and frequency 

of therapy. A potential reduction in the haemotoxicity of specific 

chemo- or radiotherapeutic regimes, may allow increased, or more 

frequent, and potentially more effective levels of treatment to be 

used. With a potentially greater tumour kill and reduced 

haemotoxicity, more effective chemo- and radiotherapeutic regimes 

may be developed.

Lord and Wright [1980], demonstrated the administration of 

exogenous stem cell proliferation inhibitor, prior to the administration 

of potential haemotoxic doses of tritiated thymidine, hydroxyurea or 

cytosine arabinoside, was able to 'protect’ the murine haematopoietic 

system, sufficient to allow survival. Lord ef a/[1987], report similar 

findings in the administration of the stem cell proliferation inhibitors 

in vitro long-term bone marrow cultures, prior to the addition of



190

cytosine arabinoside. Cultures exposed to cytosine arabinoside

alone were markedly suppressed, while those subjected to cytosine

arabinoside after pretreatment with the haematopoietic stem celi

proliferation inhibitor, were observed to perform at least as well as

control cultures not exposed to either inhibitor or cytosine 

arabinoside.

4.5.3 Potential cllnical appllcations of the stem cell prollferation

stimuiator.

The clinical potential of the stem cell proliferation stimuiator may

also be significant. The only sucessful treatment of a number of 

haematological disorders with the failure of chemo- and 

radiotherapeutic regimes, is haematopoietic transplantation. Prior to 

haematopoietic transplantation patients are subjected to a dose of 

whole body irradiation and/or chemotoxic drugs sufficient to ablate 

their haematopoietic tissues and subsequently receive 

haematopoietic tissue intravenously. However, while the 

haematopoietic tissue becomes established and haematopoietic 

reconstitution occurs, the patient develops a marked pancytopenia. 

During this period of pancytopenia, patients are subjected to marked 

anaemia and haemorrhagic episodes and a particularly high 

vulnerability to infection. With successful transplantation, after this 

period of marked pancytopenia, haematopoietic regeneration will 

occur and restore the quality of the peripheral blood. Management of 

this period of pancytopenia, specifically the neutropenia, by the 

administration of individual haematopoietic colony-stimulating 

factors, has met with considerable success and the potential use of 

the haematopoietic stem cell proliferation stimuiator, may allow a 

further reduction in the period of pancytopenia. The addition of
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exogenous stem cell proliferation stimulatorto donor tissue in vitro,

prior to its intravenous transplantation, may serve to ’prime’, or

’activate’ the haematopoietic stem cell population.

The controlled administration of the haematopoietic stem cell 

proliferation stimulator, may also serve to assist haematopoietic 

reconstitution after sublethal haemosuppressive therapies. Chemo- 

and radiotherapeutic regimes, by their nature, will unavoidably 

damage normal as well as target tissue. The haematopoietic system 

is particularly sensitive to such agents and the damage to the 

haematopoietic system is often a significant limiting factor to the 

dose and frequency of therapy. Provided the tumour system is not 

itself sensitive to the haematopoietic stem cell proliferation 

stimulator, it’s use may allow a more rapid haematopoietic recovery 

after and between treatments and may subsequently allow more 

frequent and potentiaiiy • more effective levels of therapy to be 

employed.

The potential efficacy of the appropriate use of controlled levels 

of both the stem cell proliferation inhibitor and stimuiator to 

manipulate the normal haematopoietic tissue to clinical advantage 

during both chemo- and radiotherapy, may be of great significance. 

The use of the haematopoietic stem cell proliferation stimuiator may 

also be significant in assisting the management of certain diseases 

which present with haematological suppression. Leukaemia- 

associated suppression of normal haematopoiesis has been 

discussed, and is largely responsible for the deterioration in the 

’quality’ of the peripheral blood. Leukaemic patients often present 

with anaemia, haemorrhage and increased susceptibiiity to infection 

which can be severeiy debilitating. The controiled use of the 

haematopoietic stem cell proliferation stimuiator, may serve to 

eleviate these symptoms and improve the quaiity of life’ for the
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patient. The use of stimulatorwould however, be precluded if the 

leukaemic cell population proved sensitive to it's action. in managing 

the disease in this manner, 'healthier' patients, more abie to tolerate 

more intense and/or frequent treatment regimes may allow a more 

optimistic disease prognosis.

4.5.4 Potential cilmcal appllcations of the low molecular weight

haemorequiatorv tetrapeptide AcSDKP.

Many of the beneficial aspects of the use of the stem cell 

proliferation inhibitor and stimuiator involving the manipulation of the 

haematopoietic system to clinical advantage, are equally applicable 

in discussing the clinicai potential of the haemoregulatory 

tetrapeptide AcSDKP. AcSDKP appears to modulate haematopoietic 

stem cell proliferation at the ievel of haematopoietic stem cell 

proliferation stimulator action. The addition of exogenous AcSDKP 

has been demonstrated to block the recruitment of haematopoietic 

stem cells into S-phase in vivo in mice [Frindel & Guigon,1977;

Guigon & Frindel,1978; Guigon ef a/,1980; 1981; 1982; 1989; 

Wdzieczak-Bakala ef a/,1983], while removal of endogenous AcSDKP 

by a polyclonal antiserum has been demonstrated to increase the 

proportion of haematopoietic stem cells in S-phase [Frindel & 

Monpezat,1989].

The use of exogenous AcSDKP to prevent the recruitment of 

haematopoietic stem cells into S-phase has been demonstrated to 

protect the murine haematopoietic system from potentially 

haemotoxic doses of the S-phase-specific cytosine arabinoside 

[Frindei & Guigon,1977; Guigon & Frindei,1978; Guigon ef a/,1980; 

1981; 1982; 1989; Wdzieczak-Bakala ef al,1983]. The manipulation of 

the proportion of the haematopoietic stem cell population in S-phase,
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through the use of the non-species-specific, non-toxic, low molecular

weight tetrapeptide AcSDKP to clinical advantage could thus be

envisaged.

Increasing the concentration of AcSDKP, by the addition of 

exogenous factor, would increase the impairment of stimulator 

action, and prevent the recruitment of haematopoietic stem cells into 

S-phase and would be particularly effective in protecting the 

haematopoietic stem cell population from the effects of both 

chemotherapeutic agents and radiation.

A reduction in the levels of AcSDKP, by the administration of anti- 

AcSDKP poiyclonai antiserum, wouid reduce the blocking effect on 

the action of stimulator and the proportion of haematopoietic stem 

ceils in S-phase would increase. Such increased haematopoietic 

stem cell proliferation would assist in haematopoietic recovery after 

an episode of chemo- or radiotherapy, or else may be effective in the 

priming of haematopoietic tissue in vitro prior to transplantation, and 

so to reduce the period of pancytopenia. Similarly, the clinical 

manipulation of AcSDKP levels In diseases which present with 

haematological dysfunction may assist in disease management.

Liozon ef a/[1991] report evidence which may implicate a 

pathological role for AcSDKP in a number of human 

myeloproliferative disorders, increased levels of AcSDKP are 

reported, which may act to suppress normal haematopoiesis to the 

advantage of the pressumably AcSDKP-, or sf/mu/afor-insensitive 

aberrant myeloproliferative disease. The physlopathology of AcSDKP 

may prove significant and the roies of the AcSDKP-liberating enzyme 

endoproteinaseAspN and AcSDKP-degrading enzyme angiotensin 

converting enzyme, may also play an important role in certain 

disease mechanisms. It may prove possible to manipulate the relative 

activities of these two enzymes to indirectly manipulate the
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endogenous levels of AcSDKP to clinical advantage, or to correct 

possible pathologically high or iow enzyme activities.

4.5.5 In conclusion.

The manipulation of the haematopoietic stem celi population to

clinical advantage would be a powerful technique. By manipulation of 

either the levels of the haematopoietic stem cell proliferation 

stimulator or inhibitor, and/or levels of the low, molecular weight, 

haemoregulatory tetrapetide AcSDKP, appropriate changes in the 

proportion of the haematopoietic stem cell population in S-phase 

could be induced. However, while, at present, no alternative role has 

been attributed to AcSDKP, the identification and characterization of 

the stem ceil proliferation inhibitor as macrophage inflammatory 

protein-1 alpha (MiP-1 alpha) [Graham ef a/,1990], might suggest that 

the administration of exogenous inhibitor, with a view to reducing the 

proportion of the haematopoietic stem celi population in S-phase, 

may also elicit an inflammatory response and macrophage activation. 

MIP-1 alpha Is also reported to be active against clonogenic 

epidermal cells. A monocyte/ lymphocyte-derived Langerhans ceil 

population within the murine skin ’epidermal proliferative unit’ (EPU), 

is reported to produce MIP-1 alpha and to inhibit EPU proliferation 

[Dr.M.PIumb, instutute for Cancer Studies, University of Leeds, 

personal communication]. These alternative roles for MIP-1 alpha 

may somewhat restrict it’s potentiai clinical use in vivo.

Evidence of MIP-1 alpha activity in a number of different tissues 

implies that the molecule is an important, conserved proliferation 

regulator, and Its effects may subsequently be identified in other 

tissue systems. To act separately in these different tissues and elicit 

an appropriate proliferative response, MIP-1 alpha must be produced
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and active locally. Evidence of the local haematopoietic action of 

MIP-1 alpha has been identified by part body X-irradiation studies 

[Croizat ef a/,1970; Gidail & Lajtha,1972] (1.9). The localization of MiP- 

1 alpha to either bone marrow, skin EPU or foci of Inflammation, may 

be maintained by a biood-bone marrow/ EPU barrier, similar to that 

demonstrated for M-CSF/CSF-1 [Shadduck ef a/,1989]. However, 

while the presence of such a localizing barrier is precluded by 

evidence that the intravenous administration of the stem cell 

proliferation inhibitorio mice demonstrated a haematopoietic 

response [Lord & Wright,1980], such a compartmentalized system 

would allow levels of MiP-1 alpha to vary Independently between the 

various MiP-1 alpha sensitive tissues. By comparison, the low 

molecular weight haemoregulatory tetrapeptlde AcSDKP, has been 

demonstrated to be present in both serum and within the 

haematopoietic system, using an AcSDKP enzyme Immunoassay 

technique [Pradelles ef a/,1990] and It's relatively low molecular 

weight would allow it to cross any putative blood-bone marrow 

barrier to effect a haematopoietic response. The local concentration 

and subseqent activity of AcSDKP could be regulated by the 

presence of the AcSDKP-degradIng enzyme activity, ACE, within the 

haematopoietic microenvironment. The intravenous administration of 

AcSDKP to effect a haematopoietic response may thus prove less 

problematic than the use of the multiple activity MiP-1 alpha. Whether 

alternative roles for AcSDKP will subsequently be identified and 

whether similar multiple functions will be attributable to the 

haematopoietic stem cell proliferation stimulator, once identified and 

characterized, will be of considerable Interest.



Section 6

Summary.
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1) Characterization of the in vitro HPP-CFC^+CSM population.

a) In conclusion, the combination of interleulin 3 (!L3)/multi-CSF

and macrophage colony-stimulating factor (M-CSF/CSF-1), as either 

media conditioned by the WEHi 3B myelomonocytic leukaemic cell 

line and L929 fibroblast ceil line, or recombinantly-derived factors, 

stimulates the proliferation of a distinct coiqny-forming cell 

population from murine haematopoietic tissue in vitro. The colony­

forming cell population, not observed when either factor Is used 

singly, is characterized by a high proliferative potential. The high 

proliferative potential colony-forming cell (HPP-CFC1L3+csf_ J 

population has the capacity to produce macroscopic colonies in 

excess of 2 mm diameter and of approximately 6x 10" cells after 14 

days In seml-solid agar culture. The HPP-CFC|Li+CsF1-derived 

colonies are occassionaiiy composed of cells of more than one 

haematopoietic lineage, which implies a degree of HPP-CFC1U3+Cspi 

multipotency.

b) An HPP-CFCJL3+csf- frequency of approximately 100/105

normal CBA/H femoral marrow cells is determined, which, in an 

average femoral marrow cellularity of 14x10® cells, gives an 

approximate total CBA/H femoral marrow compliment of 14x103 HPP- 

CFCllJ3—gsf-v ,n marrow from CBA/H mice 3 days after a 2 Gy sublethal 

whole body X-lrradlatlon dose an HPP-CFClL3+CSFb frequency of 

approximately 29/105 regenerating marrow cells is determined, which. 

In an average femoral marrow cellularity of approximately 6x106 cells, 

gives an approximate total femoral marrow compliment of 2x103 HPP- 

b-FCjuj+FSFr
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c) The proportipn oo nhe HPP-CFCfj+fspi population tio S-phase as 
normal femoral marrow was determined as approximately 9% and

Increases to approximately 40% in marrow from mice 3 days after a 2

Gy whole body X-irradiation dose.

d) The in vitro HPP-CFC1Lc+copl population proves sensitive to the 

previously characterized haematopoietic stem cell-specific 

proliferation regulators. Stimulator, derived from regenerating bone 

marrow from mice 7 days after a 4.5 Gy whqie body X-^adiation 

dose, significantly increased the proportion of the HPP-CFCILccccpl 

population In S-phase from approximately 9% to approximately 24%, 

while inhibitor, derived from normal bone marrow, significantly 

reduced the proportion of the HPP-CFC,l3+qcp l population in S-phase 

from approximately 40% to approximately 25%. No evidence of stem 

cell proliferation stimulator or /p/r//Mertoxic<ty against the HPP- 

CFC|L3 ccso-< popuiation was observed.

c) Titration of the stem cell proliferation regulators demonstrated 

that the HPP-CFC,cl+cpFc population proved equally sensitive to both 

stimulator and inhibitor.

f) A high proliferative potential, evidence of multlpotency and a

sensitivity to the stem cell proliferation regulators, is strong evidence 

to suggest that the in vitro HPP-FFFCCc+ccpl population is a relatively 

primitive haematopoietic precursor, possibly a component of the 

heterogenous stem cell compartment.
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2) In vitro HPP-CFC,,+^r-i investigation of haematopoietic stem cell 

regulation in murine, mveioid leukaemia.

a) The use of the in vitro HPP-CFC,3+CSp3 assay to Investigate the 

levels of the haematopoietic stem cell proliferation regulators In a 

number of X-lrradiation-induced murine myeloid leukaemias, 

demonstrated the absence of detectable levels of the haematopoietic 

stem cell proliferation inhibitor and stimulator, and no evidence of a 

direct-acting leukaemia-associated proliferation inhibitor was 

observed, in medium conditioned by overtly leukaemic marrow.

b) Medium conditioned by overtly leukaemic marrow did not 

Impair the capacity of stimuiator, derived from regenerating bone 

marrow, to increase the proportion of the HPP-CFC|L3GSf3 population 

in S-phase or, the capacity of inhibitor, derived from normal bone 

marrow, to reduce the proportion of the HPP-CFC,^ggp, population 

in S-phase.

c) Medium conditioned by overtly leukaemic marrow did appear 

to impair the capacity of regenerating bone marrow to produce 

stimuiator or, of normal bone marrow to produce inhibitor.

d) The mechanism by which the leukaemic population impairs the 

production of the haematopoietic stem cell proliferation regulators Is 

at present unclear. Characterization of this mechanism may allow the 

development of more effective disease treatment and management

regimes.



199

3) In vitro HPP-CFC,^, ccr i investigation of the possible mechanism 

of action of the low molecular weight, haemoregulatory tetrapeptide

AcSDKP.

a) Use of the in vitro HPP-CFCIL3+Cpi.i population to investigate 

the possible mechanism(s) of action of the haemoregulatory 

tetrapeptlde acetyi-N-Ser-Asp-Lys-Pro (AcSDKP, Ml=487 amu) and 

the minimal active tripeptide sequence Ser-Asp-Lys (SDK, IV r=348 

amu), demonstrate that neither peptide is inherently a stimulatory 

activity. The proportion of the HPP-CFC,LL+CgFL population in S-phase 

is not significantly increased by the presence of AcSDKP, or SDK, at 

1 ng/mi (2.05x10'9M and 2.87x10dM respectively) for 3 hours.

b) The presence of AcSDKP, or SDK at 1 ng/mi (2.05x1 O_9M and 

2.87x1 O*lm respectively), did however, Impair the capacity of the stem 

ceil proliferation stimulator to significantly increase the proportion of 

the HPP-CFCLgLcsM population in S-phase.

c) The tripeptide Asp-Lys-Pro (DKP, Mr=358 amu, at 1 ng/mi, 

2.79x10'LM) proved less effective In impairing the action of the stem 

cell proliferation sf/muiatorthan either AcSDKP, or SDK while the 

tripeptide Ala-Asp-Lys (ADK, Mr=332 amu, at 1 ng/ml, 3.01x1 0'LM) did 

not significantly impair stimulafgr action.

d) Once the mechanism of action of AcSDKP and SDK has been 

characterized, a further investigation of other peptide analogues can 

be made in association with molecular modelling techniques, to 

produce potentially more potent peptides, or peptides more resistant

to enzymatic degradation.
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