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ABSTRACT

We have carried out an experimental investigation of the resistance
transition in Indium and Thallium wires when superconductivity is destroyed
by & current. Our results, as well as those obtained previously by other
workers, do not agree with the theories put forward by London(1937) and
Gorter(1957) and the consideration of secondary effgcts does not satisfac-
torily account for the discrepancies. We present a new model of the
intermediate state in Type-I current-carrying superconductors. In addition
to predicting a resistance transition in reasonable agreement with experi-
mental observations, the model gives good agreement with experimental values
of the radius of the intermediate state core as obtained by Rinderer(1956).
A treatment-of secondary effects is also given and together with the basic
resistance transition predicted by the model, they provide a better under-

standing of the destruction of superconductivity in Type-I wires by a current.
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1. SUPERCONDUCTIVITY

1.1 INTRODUCTION: .

Sooﬁ after Kamerlingh Onnes first iiquified Helium in 1908, he started
investigating the resistivity of metals in the newly attainable range of low
temperatures. In 1911 he observed (Onnes, 1911) that the resistance of a

69 at about

sample of mercury dropped from about 0.08Q to 1ess‘than 3 x 107
4°K and that the drop occurred over a temperature interval of less than 0. 170
Onnes recognised that he had discovered a new state of matter, characterised

by 'zero' ohmic resistance, which he called the superconducting state. While -
it can never be proved by experiment that the resistance of a superconductor

is in fact zero, no experiment has been able to detect any resistance in the
superconducting state. Recent experiments have shown that the resistivity of
lead in the superconducting state is less than 3.6 x 10"23Q.cm (Quinn and
Ittner, 1962) and that the transition width in lead is less than 3 x 10"'4 %
(Neighbor et al, 1965 ). Superconductivity is now known to occur in over

twenty elements and in hundreds of alloys and compounds of both superconductive

-..and -non-superconductive .elemenis.

The temperature below which a metal is superconducting is termed its
eritical or transition temperature Tc and is characteristic of the  superconduc-
tor. At any temperature below Tc’ superconductivity can be destroyed'by the
application of a minimum magnetic field Hc, called the thermodynamic critical
field, which is a function of temperature. . For all superconductors tﬁe vari-
ation of critical field with temperature-is given, to within a few percent, by

the relation:
2
H,(T) = Ho[l - ('I‘/’I'c)] . . (L.1)
where Ho is the critical field at absolute zero. Superconductivity can aiso

be destroyed by passing a minimum current i_,, called the critical current,

c

through a specimen.  Silsbee's hypothesis (Silsbee, 1916) states that the




critical current is that which'produces a magnetic field ‘equal to the critical

field at the surface of the specimen.

The property of perfect conductivity implies that there is no electric
field inside a superconductor and it follows from one of Maxwell's equations

that i
B = 9Bfot = -ccurlE = 0

i.e. the magnetic induction B in a superconductor is independent of time and
will always remain equal to the value of B at the instant the specimen becomes
superconducting. However Meissner and Ochsenfeid (1933) demonstrated experi-
mentally that the magnetic induction inside a bulk superconductor is always

Zeros
g ] 0 ve oo () (1-2)

irrespective of the circumstances under which the specimen becomes supercon-
ducting. This property,commonly knmown as the Meissner effect, implies that a

superconductor is a perfect diamagnet in addition to being a perfect conductor, °

1.2 THERMODYNAMICS OF SUPERCONDUCTIVITY. THE TWO FLUID MODEL.

~It follows from the Meissner-effeet-that the normal-superconducting
transition is reversible so that ordinary thermodynamics can be applied to it.
By equating the Gibbs Free Energy in the two phases it is easy to obtain the

following expressions (see for example Shoenberg, 1952):

Gn(0) - Gg(0) = V.HZ/8x s " (1.3)
8. -8, = p VH (dH, /aT) .o . (1.4)
G -0 = P (dS/dT)
= PBoVTH_(a°B /dT?) + p VP(aE_/ar)? (1.5)
L = T8 = —pOVTHc(dH;/dT) e - (1.6)

where G,(0), GS(O), Chs Cgs S, Sy are the free energies in zero magnetic field{
specific heats and entropies respectively in the normal and superconductive
phases, L is the latent heat of the phase trardsition and V is the volume of the

material.
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If we use equation (l.1) for the variation of the critical field with

temperature, we get:

Cg =~ Cp = qpov(noz/mc)[}w/mc)3 = (T/3Tca | . (1.7)
In the absence of any definite experimental evidence to the contrary, we may
assume that the properties of the lattice are unchanged during the transition
so that expression (1.7) really represents the difference in electronic specifiqé
heats between the normal and superconducting states. Since it is known that ‘
at low temperaﬁures the electronic specific heat of metals is of the same orderfé
as the secon@ term of expression.(1.7), we mayvconclude that the electronic

specific heat Ces of superconductors is proportional to T3. Early experimentaiﬁ

regults were thought to confirm thisg T3 dependence of Cgy as well as the para-

bolic T dependsnce of the critical field Hee

In 1934 Gorter and Casimir formulated a phenomenological two~fluid model
of superconductivity based on the assumption that in the superconducting state
a fraction x of the conduction electrons are condensed into an ordered state
(such electrons may be termed 'superelectfons') and do not contribute to the
entropy of the system while the remaining fraction (l-x) remain 'normal' and
have the same properties as conduction electrons in the normal state. If gg(T):
and gh(T) represent the free energies per unit volume of the superconducting :
and normal electrons, the total Gibbs free energy per unit volume of a super-

conductor may be written:

Go(T) = F(x).g,(T) + F'(l-x).8,(T)
from which expressions may be calculated'for the entropy and the specific heat %ﬁ
of the superconducting state. In order to obtain the T3 dependence of the
specific heat, Gorter and Casimir were led to assume F(x) = x and

e
F'{l-x) = (L-x)® which then led to the following resultst

C,, = 3 (z/r )3 - o (1.8) }
Sy = Yo (1/T.)3 . - = £3e9) f
x(1) = 1 - (1/0)* .. .




ihére v = (1/21)(H°/Tc)2 ) =

However later and more careful measurements showed that the T3 dependence
of Ces and the T2 dependence of the critic#l field were not strictly correct.
For examplé, the specific heat can be more accurately represénted by an expo-
nential function. Thus the Gorter-Casimir model does not provide a quantita-

tive understanding of superconductivity; nevertheless the two-fluid concept 'f

does help quaiitatively,in understanding later microscopic theories.

1.3 THE ELECTRODYNAMICS OF SUPERCONDUCTIVITY:

In 1935, F.London and H.London showed that the electrodynamics of a super- é

conductor could be adequately described by the addition of two equations to @
the usual Maxwell's equations of electromagnetism. These 'London equations' %
ares f
i = (nsez/m)fl_ .e ve (lo 12)
.li = - (m/nsez) curl i oo ae (10 13)

where J .is the current density in the superconductor, B and E are respectively

the magnetic and electric fields in the material, n_. is the number of supexr-

s
--conducting electrons per-unit-volume-and -m-end -e-are their mass and charge 4
respectively. Equation (1.12) describes the perfect conductivity of a

superconductor while equation (1.13) describes the property of perfect dia-

magnetism.

The London equations together with Maxwell's equations may be used to

show that the magnetic field inside the superconductor satisfies the equation:

VB = QAR . with AL = (n/ponge?) 2 (1.14)
This shows that the magnetic induction decreases exponentially inside a super-
conductor falling to 1/e of its value at the surface at a distance of Ays which
is called the London penetration depth. .Thus the London equations lead to the'f
Meissner effect mentioned previously; the existence of the penetration depth
has also been confirmed although experimental valugs_are not in good quantita-

tive agreement with AL.
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In equation (1l.14) defining Ay the density ng of superconducting electrdné
is the only temperature dependent factor and by using‘(l.ll) we obtaiﬁ :
) = A - (z/me)*] - (1.35) |
where A;(0) is the penetration depth at absolute zero.  Although experimental |
results obtained by Daunt et al (1948) could be represented reasonably well by
(1.15), more precise S anite by Schawlow (198) show deviations at low
temperatures and give better agreement with the BCS theory to be described %
later. .
In the course of an extensive investigation of the high frequency surface
impedance of superconductors Pippard noted a number of experimental facfs whiché
could not be understood-on the basis of the London equations: (a) the pene-
tration depth is anisotropic in single crystals, (b) the presence of a small ;
amount of impurity changes the penetration depth considerably, (c) A is almost I
* independent of any externally applied magnetic field near Tc which implies a
large chaﬁgg in the entropy density within the penetration depth. These led
Pippard (193) to conclude that superconductivity involved a rather long range
interaction within the electron assembly so that a perturbation at one point
would be felt over a distance £, called the ranée of coherence or coherence
length, and similarly the response of any point to a spatially extended pertur—f
bation could only be obtained by integrating over a region surrounding the poinﬁ
Pippard modified the London equations to take account of the range of coherencej
end proposed that the electromagnetic behaviour of a superconductor would be
governed by the relation:
J(R) = (3ne?/antm) fR(R-A)e /% ar/at " (1.16)
where R is the position vector, A is the electromagnetic vector potential, £,
is the coherence length of the pure superconductor and £(1) is a parameter
depending on the mean free path. The penetration depth is now a function of

the mean free path:

% = aglefe()s® .. " (1.17);
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where A; is the London vélue of - the penetration depth. Pippard found that
his eiperimental findings on the mean free path dependence'of the penetration
.depth could be understood by aésuming a relationship of the fofmz

1/€1) = 1/g, + 1/ad o - (1.18)

where a is a constant of order unity. ) ;

The existence of a penetration depth and a coherence length implies that
the boundary between normal and superconductiﬂg parts of the same specimen will
bave a free energy per unit volume different from that on either side. In :
other words the boundary may be said to have a surface energy a per unit area.

The surface energy is given approximately by:

« = (§-2a)(HS/8x) = AH2/en 2 (1.19)ﬁ;

where A is called the surface energy parameter and has the dimension of length. |

Well before Pippard introduced the concept of coherence length, He.London
had recognised that the Meissner effect required the existence of a positive
surface energy as otherwise a specimen in the presence of a magnetic field

would break up into normal and superconducting layers of thickness d, and ds,

with dn << ds < A and still have a lower energy than the Meissner state.

l.4 MICROSCOPIC THEORIES OF SUPERCONDUCTIVITY:
Thus far we have considered superconductivity in purely macroscopic terms;

for example in the two-fluid model we have considered superelectrons without

% &R A
BT IR TG L PR AT SN TR .

discussing how this state arises. Unfortunately the complete microscopic
theory of superconductivity involves advanced quantum mechanics and complicated
mathematics. Besidés, the work to be described in later chapters can largely

be understood on the basis of the macroscopic theories already outlined. We

shdll therefore only give a brief qualitétive discussion of the basic physical

jdeas involved in the macroscopic theory of superconductivity.

Since superconductivity involves the general properties of electrons in

solids, its explanation had to await the development of quantum mechanics and
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its appiié;{ibn to the normél state. The abgence of any significant change in{é
the lattice properties of a specimen during the phase transition and the sharp—i%
ness of the changes in thermod&namic and other properties suggested that 3
superconductivity was caused by an interaction between electrons. Numerous A
attémpts were made to use the Coulomb repulsive interaction between electrons
to account for superconductivity but they were unsuccessful. Frohlich (1%50)
first suggested the interaction which is now believed to be responsible for
superconductivity. The Frohlich interaction consists of the exchange- of
momentum between two eiectrons with a phonon acting as intermediary. Thus an
electron with momentum kl can emit a phonon of momentum g which will be absorbedf
by another electron with initial momentum kp.  The net effect is to change the ﬁ
.electrons' momenta from kl, kz'to kl-q, k2+q, The Frohlich interaction dependé&
on the energies 61 and 62 of the participating electrons and it can be shown w
that the interaction is attractive if Iél - Gzl is sufficiently small whereas

it is repulsive if |€ - 62' is sufficiently large.

1
If the Frohlich interaction is indeed the decigive interaction producing
superconductivity, two important consequences follow. Firstly, since the
interaction involves phonons, superconductivity must depend on the properties
of the ionic lattice and Frohlich predicted that the transition temperature
should depend oﬁ the mass of the ion cores. Experimental investigation
(Maxwell, 1950; Reynolds et al, 1950) of different isotopes of a number of é
superconducting metals confirmed Frohlich's prediction and showed that in the g
case of almost all non-iransition metals ;ne could write: :
T, M% = constant ' . & (1.20)

where M is the isotopic mass.

Secondly, the Frohlich interaction will only be significant if the electron:

A

phonon interaction is relatively strong which implies poor electrical conduc~
tivity in the normal state. Thus the poor metallic conductors are more likely .

to exhibit superconductivity than the better metallic conductors and this is '%




confirmed by experiment.
In 1956 L.N;‘Cooper showed that even a weak electron-electron interaction

.(such as the Frohlich interaction) together with the Pauli exclusion princible

could lead to the formation of stable, bound pairs of electrons. Consider,
for _example, two electrons with energy and momentum €3, ky and €o, k; respec-
tiv\ly. As a result of an attractive interaction they could form a bound
state with energy €, + €, -~ 2Awhere 24 is the binding energy due to the
Ainteraction. Presumably the electrons could break free of each other with
new values of energy 6: = € -0 and €;_= €, - A, However the new momentum
values k| and k! corresponding to e: and * €, may already be possessed by other
electrons and would therefore be forbidden to the original electrons by the
Pauli exclusion principle thus forcing them to remain in the bound state.

It turns out that the Frohlich attractive interaction is strongest when ¢,= €,
ises k, = k, and when the electrons have opposite spins. - Such & pair of

bound electrons is known as a Cooper pair.

The pairing effect led Bardeen, Cooper and Schrieffer (hereinafter
referred to as BCS) to assume that a superconductor at absolute zero had all
its electrons paired off in Cooper pairs. They (and also Bogoliubov et al,
1958) showed that such a system of Cooper pairs had a lower energ& than the é
free electron model of the normal state and would therefore be the thermodyna- %
mically favoured system. Their detailed mathematical treatment further 4
demonstrated that a system of Co&per pairs would indeed exhibit the Meissner

effect and the property of resistanceless current flow.

At non-zero temperatures, the thermal ehergy present causes the break up
of some of the Cooper pairs into seperatg unpaired electrons which are often

called quasi-particles. As the temperature is increased, the number of quasi-fi

particles will increase while the number of Cooper pairs will decrease. We
thus get back to the qualitative piciture of the two-fluid model described -

earlier.
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The break up of a Cooper pair requires a minimum energy equal to the
binding energy of the pair, say 24. In other wordsia minimum energy of A perf
electron is required to create two quasi-particles. There is thus an energy
gap A bhetween a paired and'an unpaired electron and it follows that, at low
tempefatures T, the number of unpaired elecirons will be proportional to
exp(-A/k‘I') where k is Boltzma.;m's constant. Since the unpaired electrons are
fesponsible for the electronic specific heat of a superconductor, the latter é
should also be expected to have a similar temperature dependence. Careful
experiments have shown that C,y is indeed proportional to exp(-tyhfr) rather
than to T3 (see for example Lynton, 1969) Further confirmation of the
existence of the energy gap comes from experiments oﬁ thermal conductivity,
ultrasonic attenuation, absorption of electromagnetic energy, tunnelling of ;
electrons from a superconductor.to another superconductor orinormal metal,
the results of all of which can be understood on the basis of the BCS theory.
The energy gap A drops very slowly as the temperature T 1ncreases from 0°K
until T~T /2 when it begins to fall more rapidly, approachzng zero at T, with ﬁ

a vertical tangent. Near T,, & may be expressed as: f
A(T) ~ 3.2 kT, [1 - (T/Tc)]% o (1.21)

Cooper (1956) has pointed out that the size of the wavefunction of a
Cooper pair (in- other words the mean distance between the two paired electroné)g
is of the order of 10'4cm. Thus the existence of Cooper pairs provides an

explanation of the concept of coherence length introduced earlier by Pippard.

Indeed equation (1.16) proposed by Pippard can be derived from the BCS theory.

P B tn SL B A T % 1 e

In general the BCS theory has been remarkably successful in explaining

s b oo g i)t

the properties of superconductors. However, in the case of the transition
metals, a number of discrepancies exist and several more or less successful
attempts have been made to extend or modify the theory to explain each

discrepancy as it has arisen. Matthias (1969) has suggested that perhaps a

mechanism other than the BCS one is regpponsible for superconductivity in these




metals. .

1.5 TYIPE-II SUPERCONDUCTORS. THE GINZBURG-LANDAU EQUATIONS.

In some superconducting metals and most superconducting alloys the

coherence length happens 10 be smaller than the penetration depth so that the

interphase surface energy in these substances is negative and the formation

of such surfaces becomes energetically favourable. In the presence of an

applied magnetic field these substances would not exhibit the Meissner effect

but would rather split into a fine mixture of superconducting and normal regions%

in such a way as to maximise the interphase surface area relative to the volume =

of the normal regions. Such a state is called the mixed state and supercon-—

ductors with a negative surface energy are designated Type-Il superconductors

ag distinct from Type~I superconductors which have a positive surface energy

and exhibit the Meissner effect.

In 1950 Ginzburg and Landau (G-L) proposed a phenomenological theory which .

is particularly useful. in treating superconductors in the presence of a magnetic:

field as for example in the mixed state. G-L assumed that the behaviour of

the superconducting electrons may be described by an effective wave function

such that P%lz = ng, the density of the superconducting electrons. At tem-

peratures near Tc the free energy of the superconducting state differs from

that of the normal state by an amount which can be expressed in the form of a f

power series in bylz $

2
G, (0) = G (0) +a|¥|® + (ﬁVz)Lyi4 + eeee. .o
Minimising GS(O) with respect to FP|2.gives the zero field value
2

l\I’ol — r a'/ﬁ . . (R

and GS(O) = c'n(O) - d:./Zﬁ .o .
G-L

assumed: ¢(T) = (T - T)-(d‘/dT)T=Tc

B(1)

B(Te) =8¢

g0 that 2

Hee = 81[Gq(0) - Gs(0)] = (4n/po)e (To - PP (ae/ar)Ppg,

(1.22) é

(1.23) f

(1.24) °

(2.25)3
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which agrees with experiment, thus justifying the assumptions.

1
¢
5

]
Y

In the presence of a magnetic field H, the wave function ¥ varies spatialle
and the free energy of the superconductor is increased not only by the volume

term Hez/Sx but also by a term depending on the gradient of Ww. G-L write
G (Hy) = Gg(0) + Hea/&t' + (1/2m) [-inV¥ - e*/c . Av] (1.26) ‘j

where m is the electronic mass, e* is an effective charge and A is the vector
potential of the applied field.
The total free energy is now the volume integral of equation {1.26) and

minimising this with respect to¥ and A yield the two Ginzburg-Landau equationssé

(1/2m) [ ~in¥ - e*/dJ¥ + 3G4(0)/0¥ = © (1.27)
a = (4nfc) Iy = (2mime*/me) (¥¥VF ~FTI¥) + (4ne¥’/mo?)|¥|%a (1.28) .

The application of the above equations to a planar boundary leads to a

penetration depth in zero magnetic field (weak field limit) of the form

Ay = (mcz/ﬁﬂe*gybz)% o i (1.29) ;
G~L showed that the interphase surface energy is closely related to a d;mensionif
less quantity ;
K = |(2e*2/h202)}1°2ko4|% i e (i.30)
which is characteristic of a superconductor and is commonly known as the
Ginzburg-Landau parameter. For «<<l, the surface energy parameter is closely -
approximated by ;
6 = 1.89 (A /k) - . (1:31) .
and it can be shown that the surface eneréy of superconductor is positive oxr '
negative depending on whether « < 1/§2 or x>1/§2 respectively; thus the
"~ value of l/J? for k defines the boundary between Type-~I and Type~II super-

conductors.

The applicability of the G-L theory as outlined above is restricted to

temperatures close to Tss where the order parameter is small and its spatial %




variation is slow. However Gorkov (1959) has shown that the G-L equations 7]
caﬁ be defived from the BCS theory and the theory has since been extended to &
cover all temperatures. (see e.g Eilenberger, 1966, and De Gennes, 1966).

More recently attempts have.been made to extend the use of the G-L theory to

cases where the order parameter ¥ varies with time (Lucas and Stephen, 1967) %

The Ginzburg-Landau equations have been extensively used by Abrikosov i
(1957), De Gennes (1966) and other workers to successfully describe the §
properties of Type-Il superconductors. However, as the present work is é
almost solely concerned with Type~I superconducfors, the properties of Type-II

superconductors will not be reviewed hers.




2. THE CURRENT-INDUCED INTERMEDIATE STATE.

2.1 THE INTERMEDIATE STATE:
A gample of Type-~l superconductor is said to be in the intermediate state

when it contains coexistent superconducting and normal regions.

There are two major experimental situations which produce an intermediate
state. The first is the application of an external magnetic field Hy to a
specimen of non-zero demagnetising factor D. The diamagnetism of the super-

conductor distorts the applied field and produces a non-uniform surface field.

If the external field is gradually increased, the sample enters the intermediateé

state at He = Hc(1~D) and it becomes fully normal only when Hy = Hg.

The second major experimental situation which produces an intermediate
state is the passage of current through a superconducting wire (cylinder).
It is clear that when the applied current reaches the critical value isy the
whole wire cannot pass into the normal state. If it did, the current density
in the wire would be uniform and at a distgnoe r from the axis of the cylinder

the field would be
H(r) = (r/a).H(a) .o i (2.1)

where a is the radius of the wire. Thus when the current has the critical
i.e.

value,AH(a) = H, by Silsbee's hypothesis, the field near the axis would be

well below critical which is incompatible with the assumption that the whole

wire had become normal. Thus the wire cannot be fully normal, nor can it be

wholly superconducting since the surface field has reached the critical value.

The intermediate state produced in this way may be termed the current-induced . -

intermediate state, and the rest of this work is concerned with the study of

this state.

2.2 THE LONDON THEORY:
We have shown that when a critical current is passed through a supercon-
ducting wire the whole wire cannot go into the normal state. A possible

alternative would be for the wire to have a superconducting core of radius r,

TR Al O G . TR RN | S G PR LU I P

Ry



22"

along the axis with a normal sheath outside 1%, Then_the core wouid carry
the entire current and the field at the core boundary would be 3
H(r,) = i /exry, > 1 /2na = H(a) = B
so that the boundary would Aot be in equilibrium. Thus the simple model of
a superconducting core surrounded by a normal sheath is not self-consistent
and we are led to assume that the core itself must be in the intermediate states:
At equilibrium superconducting-normal interfaces must be electric equipotentialé
so that if the intermediate state structure is laminar, the laminae must be é

oriented perpendicularly to the direction of current flow.

These considerations led F. London (1935) to suggest that for ic < i

the wire would have an intermediate state core of radius r, < a surrounded by

a cylindrical sheath in the normal state as shown in Fig.Z2.1. The normal ;

sheath corresponds to the region where the magnetic field is greater than Hge :

London assumed that everywhere inside the core the field is Hg,, so that the .

current flowing within any radius r < T, should be ‘
| i(r) = 2xmH, - " (2.2) |

and, in particular, the total current carried by the intermediate state core |

is -

lcore = i(ro) = 27[1'ch *e oo (20 3)

At the surface of the core the normal regions merge continuously into the

//T><f\><(i><f\\x<!\\(/.
§ 1Y
: \\ U & \ A ff \\._ ,'/ \.\ /
{ ' :
k

Fig.2.1 Structure proposed by London for the intermediate state

o

in a cylindrical wire in which resistance has been partially

restored by a current. The dark areas represent normal regions.




sheath so that there cannot be any discontinuity-in the current demsity at
the core boundary (r = rc)o Within the core the current density is given by
J(r) = (1/2xr).(aifar) = H/r - (2.4)

In the normal sheath itself the current density must be uniform so that we can .«

write ‘
sheath g I(zy) = Hyfz, = oo (2.5)
Hence the total sheath current is:
- a 2 2 2
lsheath (e~ Te )Jsheath nHg(a" ~ To )/Tc - (2.6)
Since the sheath is fully normal, its resistance per unit length is
- 247 8 2
Rsheath = Rpa /(a"~ re ) oo - (2.7)

where Rn is the normal resistance per unit length of -wire. The electric
field per unit length of wire will be

E = Ri = R(i

)

sheath % icore
or, considering the sheath only,

. 2
E = Roeath’ *sheath =~ Tpe HQ/TG oo (2.8)
It follows that

R = B/i = [%Rn 1o {1 ” (2naHo/i)ZH% - ;%En(l e (ic/i)z) (2. 9)

Thus the London model predicts that the resistance of the wire should

rise discontinuously to half its normal value as soon as the current reaches
its critical value and then continue to rise gradually as the current is
further increased, reaching its full value asymptotically. The return of
resistance has been experimentally investigated by a number of workers (see
for example, Scott 1958, Rinderer 1956, Meissner and Zdanis 198, Freud et
al 1968). Their results aéree qualitatively with the London predictions
but quantitative-agreement is poor. The discontinuous jump p in the value
of R/Rn when the current is critical is found to vary between 0.7 and 0.9
depending on such factors as wire diametér and purity as compared with the
value of 0.5 given by London's theory. For i, < i the experimental values

of resistance are generally higher then those given by expression (2.9) as
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Fig.2.2 The resistance transition predicted by London
(solia line) compared with experimental values obtained
by Scott (1948) for 0.286 mm. diameter Indium wire.

shown in Fig.2.2 where Scott's results for a 0.286 mms diameter Indium wire

are compared with the curve of (2.9).

Several attempts have been made to explain the discrepancy between

London's theory and experimental results. Scott (1948) found that the value

of the resistance jump p varies approximately inversely with the wire diameter

and suggested that London's expression (2.9) might hold for thick wires.
However later work on thick wires by Freud et al (1968) has shown that.this
was not the case. Kuper (1952) attributed the discrepancy to additional
resistance due to the scattering of conduction electrons at the interphase
boundaries. An accurate calculation of this effect is difficult because
London's model does not specify the periodicity of the structurs. Kuper's
approximate calculations showed that boundary scattering would indeed
increase the value of resistance, in particular that of p, but consistent

agreement with experimental values was sti;l not obtained.

Troinar (1960) investigated the variation of p with temperature for
tin samples and made some of his measurements at temperatures below the
Helium A point. His results indicate that the value of p increases as the

critical current becomes larger. Further, for impure specimens with high

2.47%




residual resistivity Troinar observed a discontinuous fall in the value of
as the temperature is lowered below.the A point, but he did not find a similar
effect for pure 'thick' samples of low residual resistivity. These findings
suggest that the value of p depends on and increases with joule heating in the <
specimen. Berkovich and Lapir (1963) have given a theoretical treatment in
which they have modified London's treatment to take account of joule heating.

They obtain the following modified formula for the resistance of the wire:

n

R = 0 for 0 < 1 < ic )
R = o [1 +8/2 +]1 +6 - (ic/i)z] 3
2 + (1/1,)%(6%/2) | R ,
i ;
for : < i < "'& % e (20 10) :
1+6 s ) -
R = R for i"" < A §

where & = Hc|%%“4(po/8n2ha), Po is the resistivity of the normal phase and

h is the coefficient for heat transfer across the sample -~ liquid Helium
boundary. Berkovich and Lapir find that in the case of samples of relatively
high residual resistance the values of h required to fit expression (2.10)

to the experimental curves of Troinar lie within the range'of values 6btained

from direct measurements of h. However (2.10) does not agree well with

Tioinar's results for samples of high purity. Besides, Troinar's observa-—

v a i g, e 2T S O R U < = “le F
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tions show that even at temperatures close to Tyy where joule heating effects
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should be small, the range of values obtained for p does not agree with the 3

PR SN -

London value of 0.5. Thus Jjoule heating alone cannot account for the

discrepancy between's London's expression (2.9) and experimental resulis.

2.3 GORTER'S DYNAMIC MODEL:
Gorter (197) suggested that the boundaries between normal and super-
conducting regions might tend to orient themselves parallel instead of

perpendicular to the direction of current flow. In the meodel proposed

by him the intermediate state consists of cylindrical shells of alternately
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Fig. 2.3 Gorter's dynamic model for the intermediate

state structure in a current carrying wire.

normal and superconducting regions as shown in Fig.2.3. Gorter showed that
the current through the wire would cause a continuous inward motion of the
shells resulting in eddy current losses. Gorter and Potters (1958) calculated j
the effective resistance due to the eddy current losses and obtained an
expression identical to the London expression (2.9). They also showed that
if supercooling occurs this leads to an increase in resistance over that given
by (2.9) by only a few percent when the current is slightly greater than iss
this increase can only account for a fraction of the discrepancy between

experimental results and expression (2.9).

In Gorter's model the surface sheath of the wire would alternate between
the normal and superconducting states and it follows that the magnetic field
produced by the current on the surface of the wire should have a variable
component. Shalnikov (1957) attempted to measure this variable component of
the field but failed to observe any periodic or non-periodic signals. In
another series of experiments Shalnikov used magnetic powder to display the
structure of the intermediate state in a wire and found that the superconduc-
ting and normal regions oriented themselves perpendicularly to the general

direction of current flow.
(11¢8)
In a recent theoretical study Kuper and Taitﬂhave shown that under ideal

conditions Gorter's model is self-consistent only for those Type-I1 superconduc-

tors which have their Ginzburg-Landau parameter in the .very limited range




0.64 < « < 0.T07. Thus Gorter's model has not proved satisfactory from

either a theoretical or an experimental point of view.

2.4 PLAN OF THIS WORK:

We have seen that neither of the models proposed by London and Gorter -
gives quantitétive agreement with experimental values on the return of
resistance aﬁd that Gorter's model also appears to be unsatisfactory from a

theoretical point of views

At the start of this work it was decided to check the experimental
gituation by some careful measurements of the return of resistance in Indium
wires - these measurements are described in the next chapter. A few experi-
ments were sufficient to confirm the general trend of previous results. The
fact that various workers under different experimental conditions had all
obtained results which wére similar in nature, in qualitative agreement with
London's model but with a considerable quantitative discrepancy, suggested to

us that this discrepancy was perhaps not entirely due to secondary effects.

In Chapter 4 a closer look is taken at the London model, it is shown that the -

model is theoretically unsatisfactory in some ways and the numerical methods
used to obtain a more self-consistent model are described. The new model
itself is presented in Chapter 5 and it is shown that the return of resigtance
as predicted by this model agrees better with experimental results than is the
cagse with the models presented earlier in this chapter. The various
secondary effects mentioned in connection- with London's model may also be
applied to the present model and taken together they provide a reasonable

understanding of experimental results.

During the course of this work another model was proposed by Andreev(1968).:
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This is briefly described in Chapter 6 where it is shown that Andreev's model
does not agree well with experiment and that it is perhaps not quite satis- y
factory from a theoretical point of view either. Finally, Chapter T concludesé

the thesis with a review of the work.




3. THE EXPERIMENTAL INVESTIGATION

3.1 INTRODUCTION:

As mentioned in the previous chapter, the resistance transition in Type-I
wires had been experimentall} investigated by a number of workers prior to this {
work. However in almost all these cases curves showing the return of resistancef
as a function of.current had been obtained by joining discreet experimental ;
(iyR) points. This did not make for the most accurate determination of the :
resistance jump p at the critical current. A prime object of our experimental

investigation was to obtain a continuous plot so that the value of p could be é

more accurately determined.

Basically the experiment consisted of passing a very slowly but steadily

increasing current through a superconducting wire which was kept at a constant

temperature T just below the critical temperature T, and of continuously

monitoring the voltage across the wire. The current through the specimen and {
the voltage across it were plotted on an X - Y recorder which thus plotted a

V-1 ourve for.the specimen at that particular temperature. From this it was 5
easy to compute a resistance-current curve for the specimen. Thus for any

given specimen a range of R-I curves could be obtained at different temperatures

close to but below Tg.

3.2 THE ELECTRICAL CIRCUIT:

Fig. 3.1 shows a block diagram of the electrical circuit used.

P is a remotely programmable constant current power supply. Two Hewlett-
Packard models -~ 6824A and 6284A - were used allowing coverage of O = 1.2 Amps.
and 0 - 4.0 Amps.'respectively. These modqls were chogsen for good load
regulation on constant current operation, for their high stability and low noise :
characteristics. The current output'was ﬁontrolled by remote resistance é

programming at approximately 500 ohms per ampere. A ten turn (500 ohm or :
2000 ohm) Beckman potentiometer "R fitted with a digital counter was used as theé

controlling resistance and a uniform change (increase/decrease) in the current
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Fig. 3.1 Block diagram of the electrical circuit.

was achieved by using a small variable speed d.c. motor m to drive the potentio- :!

meter, with an appropriate gear system. The speed of this motor and hence the
rate of change of the current i in the main circuit could be controlled by

regulating the output voltage of a laboratory power supply p which was used to

power the motor m. The rate of change of current could be varied between about :

50mA/mt. and 3A/mt.

The main circuit was composed of the foilowing other elements:
(i) D is an oil-immersed, four terminal standard resistor of nominal value
1 ohm and ratéd to carry upt6-3 Amps. with a gquoted accuracy of 0.001%. It
served two purposess:

(a) The value of the current could be determined accurately by measuring the
voltage across D with a d.c. potentiometer V. This enabled the current to be
determined to + 0.25mA and was used to calibrate the scale of the Beckman

potentiometer in terms of current.

(b) The potential across D was fed into the X channel of an X-Y recorder xxaf
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thus enabling the value of the current toAbe plotted along the X axis.
(ii) A is an Avometer which, used on its current rangeé, provided a rough
~indication of the current. |

(iii) S represents the specimen of superconducting wire and will be described
below. The potential. across S was fed into

(iv) K, a low noise dec. amplifier with an adjustable gain of upto 108,  The
model used was a Keithley 149 milli-microvoltmeter which, on its most sensitive ;
range, gave a full scale deflection for 0.1 microvolt. The accuracy wés within é
2% of full scale on all ranges. The input shorted noise level was quoted at
less than 3 nanovolts peak to peak and, in practice, was always found to be -
below 5 nanovolts peak to peak. The Keithley Model 149 acting as an amplifier

gave a d.c. output (10 volts for full-scale deflection) and this was fed into the{

«}
5

Y channel of

(v) the X-Y recorder XY. As indicated previously, the potential across the
standard 1 ohm resistor was fed into the X channel of this recorder; thus the
recorder gave us a continuous plot of V-I for the specimen involved. The
voltages fed into the recorder being in the ranges 0 to 3 volts and O to 10

volts, the recorder did not require sensitive amplifiers and the model used was

a Moseley T035.

(vi) L is a load resistor. The remaining elements of the main circuit had a
total resistance of just over an ohm and the value of L was chosen in such a

way that the Power Supplies P were delivering about two thirds of their total

available power under conditions of maximum current,

3.3 THE CRYOGENIC SET-UP:
Cryogenic experiments are fairly common nowadays and, as our experiment
was a simple one and did not require any special techniques, the apparatus used

will be described briefly.

Fig. 3.2 shows a sketch of the experimental set-up used. H is the Helium
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dewar made from Monax glass which is attached with an 'O'ring seal to the
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Fig. 3.2 Schematic of the cryogenic set-up.

cryostat neck and sits inside the liquid nitrogeh dewar N. The latter is
surrounded by a Mumetal cylinder G, open only at the top, whose dimensions are
such that the lower part of the helium dewar (upto a height of about 10 cms. from
the bottom) is screened from the earth's magnetic field. It was found that the

shielding was about 98% effective.

The cryostat neck has three openings. U is a quarter inch copper tute
connecting the helium dewar to a mercury manometer M and an oil manometer O.
The mercury manometer together with the reading of a Fortin's barometer gave the
absolute pressure of the system at any instant. With the help of a cathetometer
the wide bore mercury manometer could be read to an accuracy of of 0.05 torr.
During tbhe latter part of the work a Van Mal-Akerboom (1968) type single-reading

manometer was used. The 0il manometer was filled with butyl phtalate and was




3¢5

particularly useful for monitoring changes of pressure.. Another quarter inch
line V connected the cryostat to the helium gas recovery line R. W is a 6ne
-inch line connecting the cryostat via valve u to a rotary punp whose exhaust
could, when the system was pﬁmping on helium, be connected to the helium gas
recovery line R. The bié va#lve u could be bypassed by a quarter inch line
containing a sixteen turn needle valve v and this provided a very fine control
of the pumping rate. By monitoring the pressure of the system on the oil
manometer and/or the mercury manometer with the help of a cathetometer and by
using the needle valve v, the pressure could be kept constant to within about
+ 0.5 mm on the oii manometer which, in the relevant range of pressure, is
equivalent to keeping the temperature constant to witﬁin £ 0.25 millidegrees.
During the later stages of the work the use of a Cartesian Manostat made it

easier to control the temperature in the system.

The cryostat top plate T has an opening F for the 1iqui@ helium transfer
siphon and several glass-metal seals S for taking electrical leads into the
cryostat. fhese were of the hollow type and copper leads were passed through
them and soldered on both sides. Thus the potential leads to the specimen were
all copper leads thereby reducing thermal noise.  Seals were required for two
voltage and two current leads to the specimen, two current leads to a carbon
resistor heater h and an earth point. The carbon resistor had a nominal room
temperature resistance of 10 ohms and was fed from the power supply p (Fig.3.1).
It was used to raise the temperature of the helium bath if required and also to

help boil off excess helium at the end of an experimental run.

Three stainless steel'tuﬁes r soldered to the base of the top plate helped
support two copper discs b which acted as héat shields. The copper plates
had concentric circular holes cut in them.to allow the helium transfer siphon to
pass through. At their lower ends the tubes r terminated in hooks from which

the specimen holder A was suspended by neans of nylon thread.

The specimen holder A (see plate 1) consisted of a cylindrical former made
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of tufnol, a bakelite, of radius about one inch so that. it just slipped comfor-

tably into the helium dewar and about 2% inches long. The cylinder had
circumferential ruts cut into it so that the specimen could be laid in one

of these ruts, without completing a full circle. In this way it was possible

to mount a longer specimen (upto about 6 cms. in length) at the same horizontal

level than would be possible with a straight specimen. When specimens were

superconducting wires of diameter of the order of 1.0 mm. or .larger, the normal

regsistance of the specimens were sufficiently
L3

gmall that the noise (mainly thermal) voltage Al

became significant enough to make the experi- {

ment unsatisfactory.  For such wires longer I I

specimens were used and these were wound |

round the former as shown in Fig. 3.3 so that ' —v

(a) the winding was non-inductive, and
(b) the magnetic fields due to neighbouring Fig. 3.3 Diagram indicating
portions of the wire were self-cancelling. how a long specimen was
Such a specimen would be spread over a height

of about 2 to 3 cms. in the helium so that the temperature of the specimen may
vary by about a millidegree, and the resistance jump is slightly less shaxrp
than would otherwise be the case. However by comparing results obtained with
long and short specimens of a thin wire, it was found that the value of the
resistance jump p itself was the same (to within experimental spread) in both

cases. Hence for our purposes the slight spread in the transition was not an

important factor.

Enamelled copper wires were used for the current and voltage leads and

optimum guages were calculated following Rose-Innes(l959) to minimize the heat

input due to thermal conductivity and joule heating. The leads were soldered .

on to the specimen with Woods Metal solder using a low temperature soldering
iron. A 5 Kohm, 25 watts potentiometer was connected in series with the

soldering iron to regulate its temperature.

mounted on the tufnol former.g

3 W Mm re




PLATE I. The Specimen Holder




'dn-308 TejuUomTIOdXYe Oy} JO MOTA TTBISAO UY °*IT FIVId

5

S ) e e




PLATE III. Rear view of experimental set-up with the

dewars removed and the specimen holder in place.




An overall view of the experimental set-up is shown in Plate 2 and in I

Plate 3 the specimen holder is shown in situ with the dewar removed.

3.4 THE SPECIMENS: | ]
The expgrimental investigation was carried out mainly on In@ium specinmens. ¢!

We were primarily interested in obtaining a few accurate observatiéns

(particularly on the resistance jump P ) for very pure metal. On the basis

of theory and previous work there was no reason to suppose that the transition

differed fundamentally as between different metals. On several counts it was %
particularly convenient to work with Indiums

(a) it is easy to obtain very pure Indium.

(b) with a « value of about 0.11 Indium is a strongly Type-I superconductor.
(e) it is relatively easy to extrude Indium wires.

(d) Indium anneals at room temperature. E
(e) Indium has a critipal temperature of 3.407°K. which is very convenient ‘é

for experimental purposes.

Pure Indium was obtained from two sourcess Johnson Matthey and Co., London,f

whose Indium had a quoted purity of 99. 9995%, and Consolidated Mining Co.
(Cominco) of Montreal, Canada, who quoted the purity of their Indium at 99.9999%%
Resistance measurements on the Indium specimens at room temperature and at 4.2°K§
showed the Cominco Indium to be much the purer and most of the experiments were ’

done with their Indium. It was interesting to note that the purer Indium was

much stickier too. This stickiness constitutes the main problem in extruding

Indium wires, as the Indium tends to creep up the sides of the extruder piston @
and jam it. With this in view, an extruder was made out of tool steel with theg
piston made to fit the cylinder to a fine degree of tolerance and the whole was 4

heat treated in an atmosphere of hydrogen. The piston head was recessed and

this helped to reduce the creep of Indium up the cylinder wall during extrusion. -

The extrusions were carried out at room temperature with the help of an automati

hydraulic press; Dby this means the wires drawn had their diameters constant to{é

%
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within + 0,005 mm.

Altogether seven Indium specimens were used with their diameters varying in ;
the range 0.25 mm. to 1l.65 mm. Additionally experiments were carried out with
one specimen Of Tin wire of 0.5 mm. diameter and a specimen of Thallium wire of ‘E
1.0 mm. diameter. Both of these wires were obtained from Metals Research Ltd.,};
Royston. Table 3.1 describes the specimen used; +the purity given in column 4
is that quoted by the suppliers while column 5 gives the ratio R4.2/R293 of the
registivities of the specimens at the temperature of liquid helium at atmospheric%

pressure and at room temperature.

e
<
<

In the case of Indium I the current and .1 I (G) 9

voltage leads were connected close together
near the ends of the specimen as indicated in

Pig.3.4(a). However this set-up resulted in fv fV

a tail in the resistance transition curve, i.es ‘| Ti
instead of a sharp jump in resistance when the

current became critical, the resistance showed Pig. 3.4 Sketch showing the

. . relative iti here the -
a slow increase even before i, was reached as Pon ons waer 0

voltage and current leads werd
may be seen in Figs. 3.5 and 3.8. In the case |

vi

attached to the specimen

of Indium II the voltage leads were connected (a) for Indium I and Thalliws
I and (b) for all other

specimense.
from where the current leads were soldered, as 3

to the specimen at points about a cm. away

shown in Fig. 3.4(b) and no 'tail' was obtained (see Figs.3.6 and 3.9). This

LB
Frots AT o ns

can probably be explained as follows: The current leads being of copper, a non~ fé
superconducting metal, a certain amount of heat is generated in them by the
pasgage of current. Consequently the ends of the specimen, where it makes ¥
contact with the current leads,will be slightly heated and will have a lower A
critical current than the rest of the specimen, thus giving risg to the 'tail’

if the voltage leads are connected close to the current leads. For all speci-

mens other than Indium I and Thallium I the current and vbltage leads werxe
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connected as shown in Fig. 3.4(b) with a minimum gap of 1.0 cm. between the

current and voltage connectionse.

3.5 THE EXPEﬁIMENTAL RESULTS s
The output from any experiment consisted of an X-Y recorder plot of the é
current-voltage characteristic.for a specimen kept at a constant temperature. '
Three typical curves are shown in Figs. 3.5, 3.6 and 3.7, and it can be seen from'g
these continuous plots (except in Fig. 3.9 for reasons discussed in the previous é
paragraph) that when the current reaches its critical value the resistance jump
is well defined. We thus obtain a more accurate value of p than would be
possible if discrete measurements of (V,i) were made and a curve drawn to pass %
through them. Figse 3.6 and 3.7 show that the resistance jump at i = i, is <
spread over & small current ranges this is an experimental artefact due to the ;
small but finite rate of change of current. By manually operating a very fine -
current control it was possible to eliminate the transition width and it was .~
found that the values of p obtained in this way lie within the experimental

spread in the values of p obtained from the continuous plots.

It is the resistance of a wire specimen rather than the voltage across it
that is the basie quantity of interest to us. Accordingly our experimental
results are presented in Figs. 3.8 to 3.15 in the form of curves showing the é
variation of the resistance ratio R/R, with current i. ' These have been obtaineé

by conversion from the V-i curves on a point by point basis and since the latteré

were continuous curves, it has been possible to use a large number of points at

regions of large curvature.

The inherenf noise level in the experiments was of the order of 20 nano-
volts. As may be seen in Figs. 3.5 to 3.7, there were occasional random
excursions of the order of 100 nanovolts 6r less - if these occurred where the
curvature was small, the curve was smoothed out, but when they happened near the£
sharp transition, the curve was rejected and the experiment was repeated if

required.
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Fig. 3.8 The resistance ratio R/R, as a function of
current i for specimen INDIUM I (:R4 2/3293 =1.72 x 10"‘3,
wire diameter = 0.5 mm. )

1.0 -
0.75 |- / r
5 &: 2.379°k
ﬁ; 1 3.2370°%°<
0.5 |- o B BTk
q * e ;i 3.354° K
2 3,246 kK
0.25 |-
| |
) 0.5 1.0

i (amps.)

Fig, 3.9 The resistance ratio R/R, as a function of :
current i for specimen INDIUM II (R4 2/R293 = 1.72 x 10"3,
wire diameter = 0.5mm. )
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Fig, 3.10 The resistance ratio R/Rh as & function of

current i for specimen INDIUM III (R4 2/12293 = 1le51 x 10"4,

wire diameter = 0.25 mm. )
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Pig, 3.11 The resistance ratio R-/Rn as a function of

current i for specimen INDIUM IV (R4 2/R2 93 = 1. 60 x 10

wire diameter = 0.45 mm. )
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Fige 3.12 The resistance ratio R/R, as a function of
current i for specimen INDIUM V (R4 2/3.293 = 155 x 10—4,

wire diameter = 0.72 mm. )
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Fig., 3,13 The resistance ratio R/JEIn as a function of _

=1.63 x10 7,

current i for specimen INDIUM VI (R4. 2/3293

wire diameter = 1.40 mm. )

ety by guh e ey s e S s el




.E. 4: 3.3%1°k
" b 2.3771°%
0.5 - C. 3 .37\ %%

of bf < & % * A 3.BEY TR
e 3.35%°k
0.25 |- 5
£ 334457
| 3 ]
1.0 20 j(amps) 39O 4.0

Fig., 3.14 The resistance ratio R/R, as a function of

current i for specimen INDIUM VII (1{4.2/']5!293 = 1.61 x 10f4,

wire diameter = l.65 mm. )
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Fig, 3.15 The resistance ratio R/R, as a function of
current i for specimen THALLIUM I (R4 2/R293 = 3,5 x 10-4,

wire diameter = 1.0 mm. ) '
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3.6 DISCUSSION:: i
We shall now discuss the conclusions that may be drawn from our experimen- *

tal results.

With certain exceptions which will be discussed below, the basic current-
induced transition in superconducting wires may be described as follows: for
values of current less than a certain critical value i, the wire is fully
superconducting; at the critical current resistance suddenly appears and jumps
to a considerable fraction p of the fully normal resistance; as the current ‘

is increased further, the resistance increases gradually until it asymptoticallﬁ

reaches the fully normal resistance at a current of about 4i, for very pure

metals. 3

For very low current transitions, the resistance jump at i, is not sharply E
defined but becomes smoothed out as may be seen in Figs. 3.8, 3.9, 3,10 and 3.11;
This has been observed before (D.C. Baird, private communication) but is not
yet properly understood. However it may be pointed out that a comparision
between the results for INDIUM II and INDIUM IV shows that the effect of makingf
a specimen impure is to increase the range of current over which the resistanceé

jump is not sharply defined. !

3

ieaving aside these 'low-current' transitions, our results (as well as the@
results of other workers) indicate that the value of p varies from 0. 69 ;
upwards. The exact value seems to depend on temperature (i.e. the critical
current), the diameter of the wire and on the purity. For example, Fig.3.16

shows the variation of the resistance Jjump P with critical current for two

B PR T 0 T T X T N

cases: INDIUM II and INDIUM IV. In the case of INDIUM II the value of p goes
up as the critical current increases. However in the case of INDIUM IV, which’
is a purer specimen, the value of_p remains constant (within the limits of ‘
experimental accuracy) for values of i, less than about 0.9 Amps. and then '5

begins to increase as the critical current is increased further. In the case -

33

of INDIUM VI%which has the same purity as INDIUM IV but is a much thicker wire,ﬁ




0.8

the value of p remains constant upto at least ig = 2.5 Amps. (see Fig.3.1ﬁ0.

A INDIUM 1I

® INDIUM IV
A :
A :
'0 A o | E
] L = & n n | | n
0.6 ) }
0.2 0'6 Lo ‘l’f
ic (Amps. ) E
Fig, 3,16 Variation of the resistance Jjump (at 1 = ic) with critical E
current for INDIUM II and INDIUM IV specimens.

These observations suggest that the value of p is independent of the critical

current as long as the latter is below a certain limiting value; this limiting-§

value becomes smaller as the wire becomes thinner or less pure. When the

critical current is greater then the limiting value 1, p increases as i,

goes up and the increase is larger for less pure specimens.

Fig. 3.17 shows the variation of the resistance jump p with diameter of

R T e L. A AR 1 0 P O T o 13 SO,

wire for very pure Indium where the point corresponding to a wire diameter of

3 mm. has been taken from the work of Freud et al (1968). It appears that f>;f

has a value of about 0.69 for thick, pure Indium wires but rises gradually as ;
the wire diameter is reduced below about 1.5 mm. Scott (1948)4and Meissner
and Zdanis (1958) amongst others had previously studied the variation of

as a function of wire diameter. The present work along with that of Freud

and his collaborators confirms that even for thick, pure wires the value of




‘ ? This work é

0.75p ! ® Freud et al (1968) ‘ ’
6

F ] P

-5 0.7 i ' ] °
0.65}¢
0 1 2 3 ]

P s S T

Wire diameter (mm. )

Fige 3,17 Variation of the resistance jump with

diameter of wire for very pure Indium,

is well above the figure of 0.5 predicted by London.

A comparigsion between the resistance transitions for relatively impure

Indium wire (specimens I and II) and pure Indium wire of about the same diameteﬁ
(specimen IV) shows that the less pure specimen reaches its fully normal

resistance fofr a lower value of current than the very pure specimen.

Finally we note that for any given wire, if we restrict ourselves to that g
range of current where p is independent of i, all resistance transitions lie é
(within the limits of experimental error) on one basic curve when the normaliseqd

resistance R/R, is considered as a function of the reduced current i/ic.

This has been illustrated in Table 3.2 for the case of INDIUM VII.

A valid model of the intermediaté state in current carrying wires must be 3

i

able to predict a return of resistance in agreement with the basic experimental.

curve and must also be able to explain the various effects due to temperature,
purity and diameter of wire which have been detailéd above. In Fig.3.18.
experimental points taken from the basic resistance transition curves for
INDIUM III and INDIUM VII are compared with the curve predicted by London.

INDIUM VII is a pure Indium wire of diameter 1,65 mm. and our previous
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By e INDIUM III
A INDIUM VII
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Fige 3.18 BExperimental values of the resistance transition
of INDIUM III and INDIUM VII specimens compared with the
theoretical curve predicted by London.

discussion has indicated that (a) increasing the wire thickness any further hasﬂ
negligible effect, and (b) increasing the impurity content only increases the
value of the resistance for any value of ifi,. - It is therefore clear that the.d

predictions of London's model do not agree quantitatively with our experimental§

results. :

¥

Our discussion so far has been restricted to Indium specimens because the -
availability of results on wires of different diameters and different purities g
enabled us to draw conclusions on the dependence of p on these factors. ﬁ
However resistance transitién experiments were also carried out with a Thallium%
wire of 1.0 mms diameter and a Tin wire of. 0.5 mm. diameter. The results for f
Thallium are shown in Fig. 3.15¢ There was considerably more noise in the V-i .?
curves obtained for Thalliumand the curves of Fig. 3.15 should only be taken as‘i

accurate to within 3%; taking this into consideration, the Thallium curves

fit in quite well with the transitions obtained for Indium wires of different

diameters, suggesting that, apart from some possible secondary effects, the

R D e T R R AT T T D)
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basic resistance transition is independent of the Type-I superconductor used. g1

OQur results for the Tin specimen were not very meaningfulj no sharp
transition was obsérved even for currents upto 3 Amps. as shown in figs3.19.
This was perhaps due to the specimeh being an extruded sample and hgnce quite .
polycrystalline. De Haas and Voogd (1931) and Aziz and Baird (1$59) have shown
that the presence of grain boundaries broadens the transition. The experiment :
was repeated after the tin wire was annealed for about twenty four hours at just£
below its melting point; this time the transition remained wide and seemed to :3
proceed by more distinct jumps (see Fig. 3.20) suggesting an increase in grain :
size, with each jump perhaps representing the transition of a single grain.
Further annealing appeared to mgke little difference and in any case it was é

felt that the influence of grain size on the transition was a problem beyond

H vrip ahes e

the scope of this work.
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4. THE SEARCH FOR A SATISFACTORY MODEL é

4.1 DISCUSSION OF THE LONDON MOIEL:

We have seen in the last chapter that the predictions of London's model -E
on the return of resistance do not agree well with experimental results. We |
shall now investigate if the model is satisfactory from a theoretical viewpoint é

and whether it can be improved.

London assumed that throughout any normal region of the intermediate state;?
core the magnetic field has the critical value H,, from which it follows that

in such a region (see 8 2.2)

i(r) & r and i(r) o« % ¢ - (42)

However he did not show that such a current distribution would result from the

structure he suggested, which is shown in Fig.4.1 for the case i = ige Indeed %
it is easy to see that this structure does not give the required current '%
distribution. Since_there is no potential drop across a superconducting regioné

the interphase boundaries must be equipotential lines and the current lines in

the normal regions must intersect them normally. Hence the current lines

i3k

cannot be parrallel to the axis of the cylindrical wire; thus, in Fig.4.1,

ABCIDE is a typical current line (noting that, in the first approximation, curreh?

¢

3

only flows along the surface of a superconducting region). Then'comparing

Fig.4.1 Structure proposed by London for the intermediate
state in a wire carrying the critical current. The figure
has cylindrical symmetry and the shaded areas represent

normal regionse.




radii, currents and fields at B, C and D we have: '%
rB = J’.‘D < rc
i = i = i

so that
H = H > H

which shows that the field is not constant throughout the normal region.

London did not specify the angle o at the apex of the normal regions.

Obviously as o is decreased, the curvature of the current lines will decrease ﬁ

and with it the difference HD - HC' However London's requirement of the field'%

being constant and equal to the critical value throughout the normal region

ot

3
would only be approached if o was made infinitesimaliy small. However a ,3
gtructure with such a small apex angle is unreasonable on two counts:
(a) It would imply a very large number of boundary surfaces per unit length of

wire; these would contribute a large surface energy making such a structure

energetically unfavourable in Type-I superconductors.

(b) As a approached zero, the shape of the normal regions would approach that

B

of a thin cylindrical disc with a constant current density so that the condition’

b |

expressed in equation (4.1) would not be satisfied.

To put the dilemma differently: if the interphase boundaries are normal

to the axis, then the current density is constant and condition (4.1) is not

S RATRLLE.L SR 3 S SR DA A

satisfied; on the other hand if the interphase boundaries are not normal to
the axis, then the current lines are curved and the field is not constant

throughout the normal region.

Thus no structure would quite satisfy London's criterion of a constant
field H = Hgy throughout the normal regions -of a wire in the intermediate state.iﬁ
And as London's derivation of the resistance as a function of current is based

on the assumption that H = Hc throughout the normal regions, it is somewhat

unrealistic and it is not surprising that London's predictions on the resistance

2

transition differ considerably from experimental results.




4.2 AN ALTERNATIVE CRITERION: . :
Since London's criterion of H = Hy throughqut each normal region is

unrealistic, we must look for an alternative criterion which must be satisfied

| mpantae ¢ repiwans 5ok

by the intermediate state structure. Clearly, for superconducting and normal
regions tb coexist in quasi-equilibrium conditions, the field along the boundarﬁ

must be the critical field. Inside any normal region the requirement of H = Hi

Oeciv,

is not quite that important as a certain amount of supercooling may be allowed %
for. Both theoretical treatments and experimental results show that é
ooqsiderabla supercooling is possible not only in ideal, unflawed specimens, E
but even in extruded wire. (see for example Deltour et al (1970)). g

It therefore seems reasonable to apply the criterion H = Hc only to the {
interphase boundaries; inside any normal region the field may fall slightly %
below the critical value, but it must still be greater than the supercooling i
field and, additionally, the amount of supercooling called for must be minimiee%

so that London's ideal criterion may be approached as far as possible. 4

The problem, now, is to see whether any structure can be found to satisfy

7R LS. B KR o4

our new criterion and, having found the structure, to evaluate the return of

resistance on the basis of the new model. The ultimate test of our alternativé
criterion will lie in the measure of agreement that can be obtained with i
experimental results. : g

%

4.3 FINDING THE STRUCTURE:

To begin with we shall restrict ourselves to the situation when the current:

FEX SRS

is just critical.

When the current through a superconducting wire reaches the critical value,f

T

normal regions will nucleate near the surface and such nucleation will occur

v oA

preferentially around 'weak points' which are regiops with a surface energy
that is negative due to the presence of impurities or imperfections. Faber

(194, 1955) has shown that each nucleus will first expand to form an annular -

ki

sheath around the wire and the annulus will then expand both inwards and along %




the length of the wire. Restoration of resistance will occur when the normal-%

regions meet at the axis of the wire and thus break the contiﬂuity of the
superconducting core. If the shape of the normal regions is such that H = B, o
on the interphase boundary, then the motion of the boundary will stop and the
equilibrium will not be disturbed until the current is further increased.

Finding this static equilibrium structure is the first objective.

Shalnikov's (1957) experiments, referred to in g 2.3 have shown that the

£
Ao

superconducting and normal phases were distributed perpendicularly to the
direction of current flow. Also; when ‘the currént is critical the field at

the surface of the wire is Hg. These two considerations suggest that the

X
o e IR

normal regions would be roughly perpendicular to the axis and would be hroad %
near the surface tapering off near the axis. London's picture itself conformsi
to this rough pattern and can be used as the starting poinf in our search for

a satisfactory boundary shape.

" In Fig.4.2 let ABCDEF represent a typical normal region in a cylindrical %
wire which has Jjust entered the intermediate state and is in equilibrium with
is= ic (the axial width BE has been exaggerated for clarity). ABC and DEF are%

two interphase boundaries at equilibrium and they must therefore be electric 4

>

‘N
~

-

|
'v" I Pa
l
ot---~-=

-
-

C

Fige4.2 Schematic of a typical normal region ABCDEF in ;
a wire which has just enetered the intermediate state
with i = i.. The axial direction has been chosen as

the 2 axis of a cylindrical coordinate system.




.equipotentials. The potential distribution in the region ABCDEF can be

obtained by solving Laplace's equation, in cylindrical coordinates, subject to é

the-following boundary conditions:

(i) The potential is constant on each interphase boundary, iees
V along surface ABC = VABC = gconstant = V

A

V along surface DEF = VDEF = g¢onstant = VF? and

(ii) No current can flow out of the surface of the wire, i.e.

SA LA e B g s Ll

2% = O at the surface of the wire.

Qs

&

Assuming Ohm's Law to hold in normal regions, the current distribution cané

be calculated from the potential distribution using the slectromagnetic é

equations: d = -oW
L LA (4.1)
and i o= fy Leas

which hold for steady flow conditions in a conducting wire (see, for example,

e i e xa n of

Scott (1959) pp. 182-183) and where o represents the normal conductivity of

the specimen.

Finally, the magnetic field distribution in the normal region can be
obtained using the circﬁital form of Ampere's Law:
jﬁﬂr,z).d& = i(r,2) ;
noting that, because of gymmetry, H and i are independent of the # coordinate.
In particular we can thus obtain the field distribution along the interphase é
boundaries. In the present problem we know the kind of field distribution
that is required on the boundary surfaces and what we must find is the shape k
of the boundary that will give rise to such a field distribution. The solutio%

of thisg problem may be attempted in two ways.

(a) Analytically. The problem, as enunciated above, is clearly independent

I 270t I o AL

of the @ direction. Thus the boundary may be represented as a function F(r,z):

3N LN

of » and z only. The potential, current and field distributions may be found
as a function of F and then the boundary conditions may be applied to find a§

F(r,z).A




(b) Using numerical methods. -A guess may be made of the possible boundary
shape, arbitrary poteﬁtial values could be given'to the boundaries, and ..
Laplace's equation could be solved by using numerical relaxation methods
consistent with the boundary conditions on the surfaces of the normal region.
This would give the potential distribution and using this the current and field:
distributions could be evaluated numerically. The knowledge of the field é
distribution along the interphase boundary would enable a better guess of the
boundary shape to be made and the process repeated as many times as necesasary
until a boundary shape is obtained that satisfies the requirement of constant j
field along the boundary. This method of solution is only made possible by {

the avaiiability of computers.

\

In this work we have used numerical methods to find satisfactory boundarie{

St

This method had the advantage of producing actual numbers for the potential,

current and field at points on a regular array in the normal region and of thus:

AENT . ik

giving a real feel of what was happening. In addition this approach served as™

an introdu ction to computational techniques.

An attempt at solving the problem by analytical methods has since been
made by McGill (1968) who found that the ultimate solution of a system of 5

equations still required the use of approximation methods. Thus it would

4 vr B ) Ry

appear that the analytical method had no advantages over the numerical approach{
which has been followed in this work. g
4.4 THE RELAXATIONAL SOLUTION OF LAPLACE'S EQUATION IN CYLINDRICAL COORDINATESé

The relaxational solution to a differenﬁial equation consists of values ofé
the wanted function, say w, at a number of equally spaced points of subdivisioné
along the range of integration. Thus, if the range of integration is given byé
x = a to x = b and if the range be divided into n intervals of length h each,

the relaxation process will yield values of w at the points x = a+h, a+lh,

B ke .5 S IATRA N R 8 .

eeess a+(n-l)h, the values at x = a and x = b having been specified by the

boundary conditions.




In applying a relaxation method, we shall need to replace derivatives by

certain finite difference approximations and we shall now derive these.

In Fig.4.3 let O represent a

typical pdint of subdivision in

s s B

& ® 2 * » X
the range of integration along, 1 0 3
say, the x axis and let 1 and 3 FPig.4.3 Three typical points along

represent adjacent points of sub-
division. Using Taylor's series
the function w can be expanded in the neighbourhobd of O

e

the range of integration.

2 : 3
L wo + (%)'Q(I-XO) +-2}§ (%}év')o(x"xo)z + 3, (%‘ﬁ)o\(x—xo)3 * ssece

Replacing x successively by ngh and x,-h we get, in turn,

d ne , g2 n3,g3 nt a4
W= wo + B(gre ¥ TG * T (ES)ot ar(ao

wy = woﬁn(g)oﬁu%-(g—;z - (—!}) (—2) i

so that

2 4% 4
WI % W3 = '2w0 + h (‘d‘;g)o'.' O(h )
where O(b4) contains terms with fourth or higher powers of h.

.be small, O(h4) may be neglected and we have
P
h ( )0 - + w3 - 2W° oo
2
which is the finite difference approximation to (%;g)o.

Similarly we have
- aw 3
Wy = Wy = 2h(dx s ¥ 0(b”)

and neglecting terms with B3 or higher powers of h, we obtain

h( )Q Y1 %(wl g W3) _ co‘ .

Assuming h to

-  {4a2)

- (4. 3)

The problem we are interested in here has cylindrical symmetry. It is

therefore appropriate to work in cylindrical polar coordinates.

coordinates, Laplace's equation for a potential function V ig:

2 2
ocV & 1 oV + 8 g 0

9 ror 32 it

In these

.o (4.4)
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when V is independent of ¢ as in our problem.

The entire range of integration (in our - Ir
case, the normal region) is divided into a . e e
square net of side ﬁ, the two main coordinates
being the r and z coordinates. We note that 3@ ® @ —~>
since V is independent of 6, the problem is °
really a quasi-twodimensional one, except

B e L

that the appropriate Laplace's equation is 4
the one for the cylindrical case. Fig.4.4 PFig.4.4 Part of the squareé
shows a portion of the square mesh; let O mesh used in the numerical °

solution of Laplace's
be a typical node and let its nearest neigh- equation

bours be termed 1, 2, 3 and 4 as indicated
in the figure. The finite difference approximations (4.2) and (4.3) applied

to node 0 give:
vV, + Vv, -2V

no

3 . 2T Y 0
3 02
o2y Yy V-2, .
622 h?

1oy 1 hR-Y

rar ro 2h

so that Laplace's equation in cylindrical coordinates (4.4) becomes

h h
4%, &= N A v3 + (1 + -2-;3)\[2 + (1 - -2—-1-‘:)-)\r4 i (4+5)

This is the important iterative equation whiéh enables the value of V at node Oqf

to be determined from the values of V at points 1, 2, 3 and 4.

Nodes on the axis (r=0) constitute a special case as the term in % in

equation (4.4) becomes indeterminate and must be replaced by

1ovy _ 9%y
B st r(dr) T 4

so that (4.4) becomes




2y .32
29"'2!' + Lv" = 0 .o .o (40 6) )7
or 32° :

.We also note that when the node of interest O is on the axis, the axial symmetry%

of the problem implies that Vo = V,o  Now using (4¢2) and (4.3), (4.6).gives é

6V0 = Vl + 4V2 + V3 ‘ee e (4.7)

which is the iterative equation applicable to nodes on the axise.

4.5 APPLICATION TO THE PRESENT PROBLEM:
Our problem can be considerably simplified by taking into consideration !

the various symmetries involved: (See Fig. 4.2, page 4.4)

(a) There is cylindrical symmetry, so that the potential V is independent of

the 6 direction. The problem can therefore be treated as a two-dimensional

one, say in the plane of Fig.4.2, with the proviso that tﬁe appropriate form

of of Laplace's equation to use is that which is expressed in cylindrical

coordinates.

(b) The axis of the cylinder, i.e. the z axis, is an axis of symmetry. The

solution of Laplace's equation may therefore be confined the region ABEF.

(c) However the region ABEF is itself symmetric around the line PR.  We may

therefore further confine the solution of the problem to the region ABPR. As e
AB and EF are interphase boundaries, they must be equipotential lines and the

symmetry just mentioned then implies that PR must also be an equipotential line..:

The problem has thus been reduced to solving Laplace's equation in the

region ABPR, with the following boundary conditions:

(i) AB and PR are equipotentials.

&
P A

(ii) AR being on the surface of the wire, no current can pass across it,

. oV
ie e (3‘5) = 0 along AR.
(1ii) PB is really the axis of the cylinder so that the relaxation equation

(4.7) must be used for nodes on PB.

Fig.4.5 shows how a region such as ABPR can be covered by a square mesh of °

nodes to obtain a relaxational solution. A rectangular coordinate system
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Fige4+5 A typical region ABPR (see Fig.4.2) covered by a

square mesh for numerical solution of Laplace's equation.

The boundary AB is approximated by a zigzag of mesh lines
as shown in the figure. The line OP represents the axis
of the wire.

helps to identify the mesh points and the origin of the coordinate system is
taken at O, the projection of A on the axis of the wire; this choice helps to

make the computer programme a little more flexible. The axis of the wire

congtitutes the I axis and the J axis is then the direction of the radius r.

Al e s s A e

For computational convenience the origin is labelled (1,1) instead of (0,0)

as is usual in coordinate systems. Points along AR have the maximum J
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coordinate and we shall designate this value by JMAX. Similarly points alongé

wralen

&34

RP have the maximum I coordinate IMAX. Any arbitrary boundary shape AB is

approximated by a zigzag of mesh lines and Fig.4.5 shows an example of thié;

B

making the mesh finer improves the approximation.

The main object of the computer calculations is to find the distribution
of magnetic field along any specified interphase boundary. When a boundary
satisfying our criterion of field constancy has been found, we would wish to
know
(a) the magnetic field distribution throughout the normal region - this would
give us an idea of the supercooling involved, and
(b) the ratio of the electrical resistance of such a region to that of a similari

region (AOPR) in a fully normal wire.

In practice it is easier to write one programme to achieve all this. The

Al Sl paat A

amount of computer time required to carry out the steps required for (a) and

(b) is negligible compared with the time required to achieve a numerical

e ii'ﬁ:f‘ s ns

solution of Laplace's equation.

sSay

The computer calculations involve the following steps: §
I. Any boundary of interest is approximated by a zigzag of mesh lines and

the coordinates of the nodes on this zigzag line are fed into the computer.

II. Boundary conditions. AB and PR are equipotentials. Without any loss of
generality they are allotted the arbitrary potential wvalues 100.0 and 0.0
respectively. The other bouﬁdary condition is that (%% = 0 along the surface'%
of the wire. This is achieved by setting V(I,JMAX) = V(I, JMAX-1l) where /

V(I,J) represents the popential at any point of coordinates I and J.

III. Solution of Laplace's equation. Using equations (4.5) and (4.7), and

subject to the above boundary conditions, the computer evaluates V(I,J)

sweeping through all values of (I,J). As the number of iterative sweeps
increases, the values of V(I,J) begin to approach the exact values which are

a solution to Laplace's equation. For our purposes it was sufficient to




find the value of V to an accuracy of O.1l%. By comparing the numerical solutio&
of Laplace's equation in the case of a fully normal cylinder with the known
analytic solution it was found that an accuracy of about 0.1% was being achievedg

when successive computer sweeps did not cause any V(I,J) to change by more than -

st et arvedan S

0. 001, The computer was accordingly instructed to stop iterating when this
stage is reached. Thus for every (I,J) we obtain the value of V at that point 9

which is a solution of Laplace's equation; in other words we obtain the poten- 3

LGS

N1t

tial distribution throughout the normal region.

L P .2

D

IV. The current and field distribution. In order to find the value of the

.'.—’Eaj-}i'-". PERAe

magnetic field at any point M(IM,JM), it is necessary to know the total current -

s L e
S g AN

iM flowing within a cylindrical core of the same radius as M Then we can use

the circuital form of Ampsre's laws

ﬁHo dl -, i
or HM?“TH = iM :
, £
so that HM = 2KIM 0e o .o (40 8) 5

The total current iM can be found by adding the currents through all the volumejé

elements defined by the mesh on any one cross-sectional plane, e.g. that throughé

PR. This may be best understood by considering a particular example. In o

SE S

Fige4.6(a) XY represents the axis of the wire and A, B, ... N are mesh points

with coordinates A(IA’JA) etce. In this case we note that XY is also the I

Sy
Lot i Ay

axis. Assuming Ohm's Law to hold in the normal region, the average current

5% e

density in the element ACDB may be approximated bys:

VC + VA -_ VD + VB

do1 = 2

R S

o

where o-is the normal stabte conductivity. This current density is now flowingiﬁ
through a little cylinder of length AB and radius AC, whose trospection is: <

. = 2.'“ =z 2 &= iz
sel . AC K L™ T, = z

Hence the total current through the element ABCD is
vV, + VA_MVD + VB

c
-2 2

ox

%el = Jel * gel "
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‘Fig.4.6 Two ways of dividing the computational mesh
into volume elements for the purpose of calculating

the current and magnetic field at mesh points.

This is now the total current flowing through a loop of radius AC. Hence the
magnetic field at C is given by

ic ) i, grivc + Vv, v, + VBz

Bo = 2(a6) = .1 " 2 )3 3

Since the factor gfis constant and will appear in every single element, it may &
be taken out of the actual numerical evaluation and the computer only needs to

calculate c A D

Hc“’%""’é’“—"_z—

Similarly we next consider the element CEFD. The average current density &

V, + V V., + vB%

through this element is

. g . wrll o
Yol 2 2 3

The volume element involved is now the cylindrical sheath of inside radius AC %

and outside radius AE. The crossectional area of this sheath is

s, = n(aEf-ac?) = x(222%) = m

50 that the current through this element is

V. + V .
. s ¥ Vo r* Y
g = o 5 = leteeg ;

The total current passing through the loop of radius AE, say iE’ is the sum

of the current through the element CEFD and the current iC through the element




ACDB: . N e, Vo 4V
g = lqtig ¢ BT s TP Y Y

where ic has already been determined. The magnetic field at is now

1

U = %28

Similarly the calculations may be continued to find HG, HM etc..

The above approximation is not the only method by which the current can
be calculated. Other approximations are possible - for example, the current
and volume elements may be chosen as shown in Fig.4.6(b) instead of as shown in ;
Fig.4.6(a). However although various forms of approximation are possible, |
they all give values of H(I,J) which are within 0.5% of each other in the case

of the finest mesh used, and this is an indication of the accuracy of the

caloulations.

V. The resistance ratio. The resistance ratio was determined as follows (see

a3

PigedeT)e " For any particular

interphase boundary AB, the total

A R
current I, passing across PR (iee. : ;
the diametral section of the wire : ;
at P) is found as indicated above. : ;

I 3

This is compared with the total TR . e s el

. ©) BP

current IN which would have passed Fig.4.7 Sketoh illustrating how %

through PR if the vwhole wire had the resistance ratio was deter- f
been normaly i.e. if the boundary mined for a typical interphase

boundary AB.
was simply AO and was given the

gsame potential value 100.0 as was given to AB. The resistance ratio is then

given by:
RIntermediate Ey
R I
Normal I
for V= INRN = IIRI .

All the calculations detailed above were carried out by computers.
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process consisted of 'guessing' a boundary and feeding it to the computer, then-}
using the field variation along that boundary to try.and'improve the boundary '
so as to get a better constancy of magnetic field, and feeding the new boundary;{
to the computer. And so on, until a shape of boundary was found which would 3

satisfy our criterion of H constant along the boundary. The whole process =§

" was slow because it was difficult to 'adjust' a boundary so as to make it

satisfy our criterion better.

Initially the work was carried out on an IBM 1620 computer available

locally. By modern standards this is a slow computer and later, for finer aé

P

-meshes the much faster ATLAS and IBM 360/44 computers were used. In the finesté

<

mesh used the radius of the wire corresponded to 200 mesh divisions. The 3

computer programmes were written in FORTRAN language and a typical example is

o AN

given in Appendix A. %




S THE NEW MOIEL

5.1 THE NEW MOIEL (1 =41)

In the previous éhapter we have suggested a realistic criterion which

must be satisfied by the intermediate state structure and we have established

the methods of looking for éuch a structure.

that there is no unique solution to
the problem but that a structure to
satisfy the criterion of H = H, on
the interphase boundaries can be
found for any given value of the
structure periodic length 24 upto a
minimum value dpi, = 0. 7152 where a
is the radius of the wire. In
FigeHs1l three such structures are
shown in axial crossection. The
axial width w of the normal regions
at the centre of the wire falls

rapidly to zero asg d approaches

0 T15a and we have found it impossible

to find satisfactory structures for

d smaller than 0.715a. In Pig.5.1

the axial width in case (i) has been

exaggérated to make its existence

clear - actually in this case w = a/140.

Using these methods we find

s ,'.‘: R -(i,r i
7

(ii)

{iii)

Fige 5.1 Equilibrium intermediate

state structures shown in axial
cross=section for three different
values of periodicity: (i) 4 =

Oe 7158, (ii) @ = 8, (iii) d =
1l.5a.

It is not entirely surprising that there should be a minimum periodic

length below which no structure can be found to satisfy our criterion.. For,

in the limit of very small d the current density in the normal region would

approach constancy rather than satisfy the requirement of j(r) o« l/r. It is

also intuitively satisfactory to find that an abrupt increase in the resistance%
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should correlate with a minimum value of d.

It may be pointed out that for any given value of 4@ we required about .
fifteen tries in order to obtain a boundary that gave a constant field along
the boundary. In each case the work was first carried out on a coarse mesh
and then refined on a fine mesh until constancy of the field at the boundary

could be achieved to within about 1 percent.

As we have pointed out in B4.1, no structure quite satisfies the idezl
requirement of H = H, throughout the normal regions. For sﬁructures which
have H = Hc on the boundary the field in the normal regions is less ithan or
equal to Hg. There is thus a certain amount of supercooling and, in choosing
the optimum structure (i.e. thg optimum value of d) from the solutions we have
‘6B£;ined, we must minimise the supercooling required per unit length of wire.

Quantitatively this amounts to minimising

1 ch H2
e = e Ed —S—n—- n = ";n "8“‘1'{‘ av e (5-1)
C .

where Vn is the volume of the normal region. Values of e have been calculated -

and Table 5«1 shows the variation of e with %., As 3s only to be expected
e decreases as % becomes smaller, the supercooling involved is reduced as the

gtructure becomes thinner.

We know that for Type~I superconductors the normal-superconducting
interfaces have a positive surface energy. Hence, in choosing the optimum
structure we must also minimise the surface energy s per unit length of wire.
We have calculated values of s for our structures in the case of Indium which
is a strongly Type-I superconductor (A ~ 3.4 x 10—5cm.) and these are given
in Table S+.1 for three different radii. It can be seen that for values of

radii normally used in experimental work, s is negligible in comparision with e.

It follows that in choosing the optimum structure, it is e that is the
determining factor, and since e is minimum for the structure corresponding to

A ins We suggest that at i = i; the intermediate state structure in the wire
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Fig. 5.2 Variation of magnetic field H along
interphase boundary. Solid line, this modelj

broken line, London's model (assuming d = 0.715a)

is that shown in Fig.5.1(i). The variation of magnetic field along any
interphase boundary in this structure is compared with the equivalent variationvf

in London's model in PFig.5.2. If one accepts the criterion that the magnetic

TR TP

field along a normal-superconducting boundary should be H,, it is clear that b

the present model ig much more satisfactory than London's model. é

The normalised resistance of the structure shown in Fig.5.1(i) is 3

R
s (-R;) =iy o

which agrees much better with experimental values than London's figure of 0.5

The above value of p is calculated on the assumption of a perfectly é

periodic structure. We note however that e is only a slowly varying function 3

vy Thear

of (d/a) and in the presence of any sharp local variation of surface energy,

caused by matallurgical defects or impurities, it is possible that the optimum

s

value of d will be slightly larger than O.715a and the probable local structure

:
:

will be that corresponding to doptimume The values of p corresponding to
the equilibrium structures for various values of (d/a) are shown in Table H.2
and it can be seen that any distortion in the periodicity will, if anything,

cause an increase in the value of e for the whole wiree.




TABLE 5.2 ;

a
2 P :
0. 715 ~ . 0,69 :
1,00 0. 724
1.24 0. 747
.53 0. 788

5.2 THE SUPERCOOLING INVOLVED IN THE STRUCTURE:

As indicated earlier the magnetic field does not quite have the critical

value throughout the normal regions. Overall, the amount of supercooling may-ﬁ?
be characterised by the summing H/Hc over the whole of any normal region, H -%

being the actual magnetic field at any point. For the structure of Fig.5.1(i) .-

Ho

The actual distribution of field over the normal region can be understood by

S = 2% 3 over a normal région = 0.82

referring to Fig.5.3 where the essential part of the structure is shown at

PRI

o

Fige 5.3 Distribution of the magnetic field in a
normal region: A quarter of the axial section of a
normal region is shown at left, and the field distri-
bution along the lines AP, BP, CP and CD, EF and GH

is shown at right.
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left and the field distribution along a few interesting directions is shown at
right. It can be seen that apart from a small region around AD the field is

everywhere greater than 0.8 H.. At A the value of H decreases to about 0.5Hq.

We note that for computational purposes the axial width w of a normal

TR e S S

region cannot be smaller than one mesh unit length. In practice w should be

roVenn 3

infinitesimally small but finite, so that the values of H/H, in this region
will really be considerably higher than shown in Fige5.3. The effect of this

correction will become smaller as one moves away from A.

We have seen that in an ideal solution to the problem the current density
in the normal regions should be inversely proportional to x. Although our
solution does not quite satisfy this ideal condition, it is clear from the
shape of the boundary that the current density will be highest at A and will
decrease progressively as the distance from the axis increases. It follows
that joule heating will be relatively greater near the axis. On the other
hand, in any actual experiment the wire is cooled from the surface inward.

Thus the axial region is likely to have a slightly higher temperature than the

i Sk, 2

surface. This is an additional reason why the supercooling near A will really

be smaller than shown in Fig.5.3.

We note that experiments on resistance transitions in superconducting

wires are all carried out at temperatures close to the critical temperatures. :ﬁ
Ginzburg (1956) has shown that under these conditions the lower limit of mag- %
netic field Hl t0 which an ideal Type~I superconductor can be supercooled is

given by H. - f
S1 = ﬁl" = JZ &
c

For T close to T,, Faber (19%7) experimentally obtained the following values
of Sl= Pin: S1 = 0,164 and Indiums Sy = 0. 112. Using values of k deduced
from experimental measurements of the penetration depths, these results agree

well with Ginzburg's theoretical formula. Faber's measurements were carried

AL AR e 2T

out on wires about 1.5 mm. in diameter which is of the same order as that of &




wires used in resistance transition experiments. Besides, recent experiments

by Deltour et al (1970) with extruded polycrystalline Indium wires, similar

to those used in our experiments give S ~ 0. 36.

The maximum supercooling involved in the present model is considerably
less than that allowable on the basis of Ginzburg's theory and the experiments
of Faber and Deltour et al. -Thus the struoture we have proposed for the
intermediate state when i = i, (Fig.5.1(i)) satisfies the thermodynamic
equilibrium condition that H = Hc'along the boundary while the supercooling

required is well within acceptable limits.

5.3 THE NEW MOIEL (i, < i)s

When the current through the wire rises above ic, it may be assumed that
the superconducting cores will shrink to a new equilibrium shape for each valuerf
of current, so as to maintain the condition H = H, along the boundaries.
Obviously the magnetic field in the continuous normal sheath along the surface
of the wire will be greater than Hc' Using the same computational techniques
as before, boundaries to satisfy the criterion have been found for several

values of i > i,, and two of them are indicated by the broken lines in FiepS.4.-£

8!
i

Fig.5.4 Possible evolution of the intermediate state structure
as i increases over ig. The solid lines show the interphase

boundaries at i = i, As i increases the superconducting cores 3
may shrink to successive equilibrium boundaries; two such J:

boundaries are shown in dotted lines.




It can be seen from the figure that as the current increases, so the axial.
width of the normal regionﬁ‘ipcreases (the periodicity stays the same), and it
-follows that the supercooling in the normal regions increases. In particﬁlar
the magnetic field at the centre of the axial width becomes very small and at
i= 2.25 ic tﬁis is less than O.IHO. This amount of supercooling cannot be
Jjustified and such a model is therefore unacceptable even though it gives a

return of resistance curve in reasonable agreement with experimental resulis.

An alternative possibility, first suggested by London in his model, is
that for i > ic there will be an intermediate state core and a normal sheath
in the wire. As the current increases the core will shrink in diameter and
the normal sheath will expand inwards until finally the whole wire becomes
normal. The core will consisf of normal and superconducting regions and,
once again, the structure must satisfy the criterion that H = Hy on the inter-
phase boundaries. We therefore suggest that the interphase boundaries in the
intermediate state core will be identical in shape to the boundaries proposed
for the case of i = ic. The periodicity of the structure will therefore be
a function of the radius of the intermediate state core. Fig.5.%5 (page 5.9}
shows the structure for three different values of current and it can be seen
that as the current increases so the periodicity of the intermediate state
structure decreases. The magnetic field distribution in the normal regions
of the intermediate state core is now the same as discussed in 85.2 and the

supercooling involved is therefore within acceptable limits.

5¢4 COMPARISION WITH EXPERIMENT., THE RESISTANCE TRANSITION:

Registance values for structures corresponding to various values of
current have been numerically evalﬁated and they have been used to plot a
smooth curve in FigeH.6 where a few of our experimental points have been
shown for comparision. In Table 5.3 the reszistance values predicted by our
model have been compared with experimental values ohtained by us and other

workers on 'thick' wires near T, (we shall see later that in thin wires certain:




®rgz=1 (0) 191 =1 (a) il JE () s:3uezano petrdde jJo senyea

9143} I0J 938B3}S ©3RTPSWISOJUT oY} JO SINONILG °*TSPOW MOU Oyl G°C °Srd

(9) @ (D)




R/Rp
1.O |

Rk appo £as s v Nasswasd

0.6

0.4

{ 1 |

R L T R T R P L ey

.0 .5 2.0 2.5 g .|
Figs 5.6 Return of resistance curve (R is actual resistance, R, is 4
fully normal resistance): solid line, this model; broken line, 4

London's model; closed circles, our experimental values for 1l.65 mm.
diameter Indium wire; c¢losed triangles, experimental values for
3 mme diameter Indium wire (Freud et al, 1968)
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secondary effects can occur). The table also shows the values given by

London's model and Andreev's model (to be discussed later) and it can be seen
that the predictions of our modsel are in reasonably good agreement with :

experimental results on Indium whereas the two other models do not give such

'.)‘-:Fi'- Sagiind g5 Lo

good agreement. In comparing the values obtained by Freud et al for 3.0 mm.
diameter Indium wire with those obtained by us for 1l.65 mms diameter Indium
wire, it must be borne in mind that Freu& et al worked with very high currenis. é

(ig ~12 amps.)

Table 5.3 also gives our experimental values for Thallium and, noting

that these values are only accurate to about 3% (see page 3.22), it can be i




- 896 *0 - 260 y16 *0 1460 0°€

j - 966 *0 - 8%60 960 296 *0 9°2
- 1€6°0 - L€6°0 86 *0 Gt6 *0 2°2
Gv6 *0 626 *0 - €260 956 *0 €€6 °0 0°z
¢€6*0 616 *0 - 806 *0 616 *0 916°0  "8°T ;
: 0160 %g*0 L06 *0 688 *0 €690 068 °0 9°1T
088 *0 998 *0 , LLg*0 €G30 €6g*0 0680 ¥t :

€68 °0 €98 °0 06g*0 828 °0 €28°0 818 °0 €°1

028 °0 608 °0 6180 g6L°0 6LL°0 9LL°0 2ot

gLL*0 €9L®0 til o 26L0 2IL*0o 8oL *0 1°1T

Thl*0 92L°0 - GzlLeo L89*0 €99 °0 Go°1

00L°0 L69 *0 69 *0 269°0 €190 © 6% 0°T
WIOM STUJ JI0M STYY (896T) 1® 3° pueag ,
OITM UMTITBYL 8ITM UNTPUT 9ITM WNTPUT 1epou £x0973 1epou 9 7
J9}0WETP ‘UMW O °T JojowsTp °‘mm Gg°T J230WeTp ‘um QO °¢ STYJL $,A90JPUY  8,U0PUOT .M ;

egonTeA TRjUomTISadX® pUR STSPOW JUSISIITP JO SUOTHOTPaxd

oys uooMjleq uOTSTIedWO) SUOTLTEUBI] S0UBRYSTSeY oYy

| TG Tiav




seen that they agree reasonably well with our model. -

Experiments on tin have been carried out by a number of workers, for

A
example Rinderer (1956), Meissner (1958), and Freud et al (196@9. Of these

both Rinderer and Freud et al worked with polycrystalline specimens and Meissneré

used both single crystal and polycrystalline specimens. Their results do not
agree very well with each other and it is difficult to establish general
qualitative trends which could perhaps be caused by secondary effects. For

: . )
his purest specimen (R3.8/R300 =2,0 x 10

s diameter = Q.75 mm. ) Rinderer
does not get a sharp transition below about T amps. when he gets a value of
about 0.6 for p. Freud et al used very pure (R4.2/R3OO = 6.4 x 10-5) but
thick wire (diameter = 3.0 mm. ) but even for currents upto 10 Amps. their
results do not shcew a sharp transitiond Meissner worked with a large number
of gpecimens of varying purity and diameters but his results vary to an extent
that makes positive conclusions rather difficult. On the value of p for tin
Meissner's own conclusion is 'on the whole, the result of these measurements

is that for ideally pure tin, p depends only slightly on the diameter between

@ = Ol mme and 4 = 3 mme and has values 0.57 < p < 0 T3e t

Pink (199) studied resistance transitions in Tantalum wires and found
that they were in qualitative and quantitative disagreement with London's
model. It is now known that his results are typical of Type-II behaviour
and that Tantalum of the same purity as used by Fink is indeed a Type-II

superconductor (see Bots et al, 1965).

5¢5 COMPARISION WITH EXPERIMENT. RADIUS OF THE INTERMEDIATE STATE CORE:

An independent check on the validity of any model of the current-induced
intermediate state is provided by Rinderer's (1956) measurements of the radius
of the intermediate state core as a function of applied current. Rinderer

considered the effect of a steadily increasing transverse field Ht on the

intermediate state in a wire. Fig. 5.7(&) represents a diametral cross-
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(b) (c)

Fige 5.7 The effect of a transverse magnetic field on the
current-induced intermediate state in a wire specimen. The

intermediate state core is shaded. (Based on Rinderer, 1956)

section of a wire which has a current greater than critical flowing through
it; the shaded region is the intermediate state core of radius r, outside

of which is the fully normal sheath. The only magnetic field present is the

circumferential field Hi produced by the current. If now a transverse field
Ht is appliéd to the wire in the direction shown in FigyS.?(b), the effect é
will be to increase the absolute value of the magnetic field in the left half “
of the cross-section and to decrease it on the right half, and hence the core 'E
moves to the right. Rinderer found that as H% is increased the resistance

of the wire does not change appreciably until a specific value Hto is reached

at which point the resistance begins to increase presumably because the core

begins to disappear as shown in Fig.5.7(c). From values of Ht for different
c
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values of i/ic Rinderer could calculate the corresponding values of rc/a.
Fig.5.8 shows that the valués obtained by Rinderer are in good agreement

with the present model whereas they do not agree well with the values predictedéf

by London.

5.6 SECONDARY EFFECTS. I. JOULE HEATING:

In the previous paragraphs of this chapter we have introduced a new model

of the intermediate state and we have shown that the basic resistance transition?




OI.O - !i5 210 215
i/ic
Fig, 5.8 Variation of the radius r, of the intermediate state
core as a fraction of wire radius a, with applied currents
solid line, this model; dashed line, London's model; experi-
mental points are those obtained by Rinderer (1956)

predicted b& the model is in reasonably good'agreement with experimental
results for thick wires. However in 83.6 we have seen that the value of
the rsistance jump p depends on such factors as diameter of the wire and
the actual value of the critical current. We shall now consider how these

effects may arise.

Following London, we showed in 82.2 that, ideally, the current distribu~

tion within any normal region of the intermediate state should satisfy the

condition |
J(r) o 1/r

which implies a very high current density near the axis of the wire. Although
the current density distribution in the present model does not quite satisfy
this ideal condition, it is similar, as sﬁown in Fig.5. 9 where the current
density J has been ploitted as a function of the distance r from the axis

along a line in the centre of the normal region (e.g PR in Pig.4.2 page 4.4)

It follows that the majoxr contribution to the joule heating occurs near the




100

Fig., 5.9 The new model. Variation of current density
with radius along a radius at the centre of the normal
region.

axis of the wire. However in any actual experiment the specimen is cooled
by immersion in a Helium bath so that the cooling takes place from the surface
of the wire inwards. Thus, even at equilibrium, it is reasonable to expect

a thermal gradient in the wire with the axis being at & higher temperature
than the surface. A calculation of the temperature gradient involves a
large'number of factors:

(a) The Kapitza thermal boundary resiétance at the surface of the specimen.
Experimental evidence indicates that the Kapitza resistance is strongly

dependant on the state of the surface (see e.g Pollack, 1969).

(v) The thermal conductivity of the metal in the normal state.
(c) The thermal conductivity of the metal in the superconducting state.

(d) The thermal resistivity across an interphase boundary.

v 3= g kB o SRR
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(g) The shape of the interphase boundaries in the intermediate states
(f) The current density distribution.

-Neither the shape of the boundary nor the current density distribution aTe | 5
known in analytic form so that numerical methods would have to be useds  Thus :
a calculation of the temperature distribution across the wire is a major ;
computational undertaking and outside the scope of this work. We shall -
therefore restrict ourselves to a qualitative discussion of the effects of

Jjoule heating.

Since the critical field Hc is a function of temperature, a thermal
gradient in the wire with its axis being at a higher temperature than its
surface implies a variation in the value of Hc with distance r from the axis, §
Hc being smaller near the axis'than at the surface. In formulating our model
we have used the criterion that Hc be constant along the interphase boundary.

In the course of the computational work involved in obtaining the best boun-
dary, we have found that if the criterion is relaxed so as to allow the value

of magnetic field on the interphase boundary to decrease near the axis, then

the boundary shape is modified so as to increase the axial width w of the

normal regions and the resistance of the resulting structure is higher than %
that given by our model. Thus the effect of joule heating is to increase ‘
the resistance of the intermediate state and, in particular, the value of the
resistance jump p at i, As a specific example we have found that if H, at
the axis is about 25% less than its value on the surface of the wire, this

results in an increase of about 8% in the value of e

Joule heating is proportional to the resistance of the specimen and to the.i
square of the current flowing through it. Hence for very low current transi- .é
tions only a negligible amount of heat will be produced with little effect on :
the resistance transition. For transitions at higher values of critical
current joule heating would become significant and we would expect that the

value of P will increase as ic is increased. Since the resistance of a wire
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specimen is inversely proportional to its crossection, we would expect the
effects of joule heating to show at lower currents for wires of smaller
diameter. Furthér-since the presence of impurities increases the resistivity
of specimens, we would expect impure specimens to show the effect of joule
heating to a greafer degree than would be shown by pure specimens of the same

diameter.

In qualitative terms the above discussion agrees very well with the con-

clusions drawn in 83.6 (page 3.18) on the basis of our experimental results.

5«7 SECONDARY EFFECTS. II., THE SIZE EFFECT:

In our method of calculating the resistance of any intermediate state
structure (described in 84.6) we have assumed that Ohm's Law holds good in the
normal regions but we have neglected the possibility of electrons being
gscattered at successive interphase boundaries. Such scattering was first
suggested by Kuper (1952) and would become important when the seperation
between successive interfaces is comparable to or smaller than the mean free
path of electrons in the normal phase. Since in the present model the
periodicity of the structure is directly proportional to the radius of the

wire, it follows that scattering of electrons at interphase boundaries would

only become important for relatively thin wires, and, following Kuper, we shall -

call this the'size effect’s The effect of the additional scattering would be
to enhance the resistance of the wire in the intermediate state over the value
calculated purely on the basis of Ohm's Law scattering. Thus we would only
expect thick wires to have resistance transitions in agreement with the
predictions of the present model. Fér "thin' wires the resistance vaiues
should be higher and this expectation is confirmed, qualitatively, by our
experimental results as shown in Fig. 3.17 and discussed in 83.6 (page 3.17)

and by those of other workers in the field.

Because of the geometry of the intermediate state structure in the present -
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5.8

boundary scattering is -impracticable. Even for the more simple London model
Kuper had to use a 'crude approximation' and the following calculation is"

adapted from his treatment.

We assume the effective conductivity o to be a point function and we write *

o = 0, %’ e oo (5.2)

where 0, and 1 are the conductivity and electron mean free path respectively
in bulk normal metal and L is a quantity which we may call the ‘effective
mean free path' in a normal region of the intermediate state structure. For f%

any given point P in such a region, L may be evaluated as follows:

We construct a sphere of radius 1 about the point P. Let A be the
distance from P to the surface of the sphkre or the interphase boundary which- "

evexr is the smaller. Then

L = 4_1;{‘.")\. dw LX) A o (5. 3) :

where dw is the element of solid angle with P as vertex. Since our inter-
phase boundaries are not analytically defined, it is not possible to evaluate
the above integral. Instead we may, once again, use a numerical approach and

write
L =

M =

E )t' LR ] e [ ] ;
A (5.4)
where the Ai can be numerically evaluated along i different directions. In our 5

calculations we have used 60 such directions for each point P.

Our method of calculating the resistance of the intermediate state has
been described in B4.5 where we showed that the ratio of the intermediate state ::

resistance to that of the normal state is giVen by

RN II

where II and IN represent the values of total current passing across a diametrai‘

cross-section of the wire in the intermediate and normal states respectively :

and I._ we had «%

under the same applied voltage. In calculating the values of IN 1




assumed that the normal phase conductivity was the same in both cases. Due
~ to the size effect this is not strictly correct and the calculations may be
repeated with the difference that in evaluating II tﬁe current flowing across
each mesh element has to be multiplied by the factor g%; appropriate to that
element and calculated as described above. In this way a corrected value of
the resistance jump p can be evaluated for any given mean free path 1 and

wire radius a.

It should be emphasised that the above method of correcting p to take
account of the size effect is only a crude approximation. In particular we
have restricted ourselves to calculating L/l only for mesh points along the

cross-sectional plane RP (see Fig.4.2, page 4.4) and have used this value as

" 5619

the corrscting factor. A truly accurate calculation would require the correc-

tion factor to be evaluated and applied along every point of each current line
in the normal region.

However, our approximate calculations are useful in giving a rough picture é
of what is happening ;nd in Fig.5.10 (next page) we show a curve of p vs. h
wire diameter for very pure Indium assuming 1 = 0.1 mme which is derived from

the o /1 value of ‘9.0 x 10%° @7 em =2

obtained by Lyall and Cochran for 69
grade Cominco Indium; experimental values of p obtained by us and other

workers are shown for comparision.
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Fig., 5.10 Variation of the resistance jump o as a function of the
wvire diameter 2a: solid line, this model; broken line, Andreev's

theory; sources of experimental points are as indicated in the figure.
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6. ANDREEV'S THEORY

6.1 ANDREEV'S MODEL: , E
During the course of this work an alternative theory for the destruction

of superconductivity by a current was put forward by Andreev (1968A). We

find Andreev's paper rather hard to follow in places but we shall attempt to f

describe his approach and to compare his theoretical predictions with experi-

mental values.

Andreev defines average values H and E of the magnetic and electric fields {
in the wire and writes the macroscopic electiromagnetic equations which must be -
satisfied in the intermediate state in terms of these averaged quantities.

The structure of the intermediate state will be given by the solution to these

equations and Andreev obtains a family of solutions which are a function of an

arbitrary constant &« . The structures thus obtained are not stationary but
have a velocity which has components in both the axial and radial directions.
For a.= 0 the London structure is obtained and when « tendé to infinity the
Andreev theory leads to the Gorter model. The parameter « corresponding to
the equilibrium structure is determined by minimising the free energy and
Andreev gets « = lo3 in the limiting case of materials with a small Hall

constant. Both the London and Gorter structures have higher free energies

but Andreev points out that the potential of the London structure only exceeds
that of his optimum structure by about 1%, and that 'friction forces' due to
inhomogeneities and crystal defects will reduce the optimum value ofeX' and the
structure will approach the London structure. For « = 1.3 Andreev finds the

periodicity of his structure to be given by

2 L
2d ~ 2.9 a’A? e oo oo (601)

and the velocity in the axial direction to be ; ' |
5 ;

Iul ~ -~ 01 (c /0‘3) e e (602)

where A is the surface energy parameter and o is the normal state conducti~

vity for the specimen. Using the above expressions, Andreev predictis a
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resistance transition of the form:

R _ 1+(-1)EF a 4d®

i 2) rc(l +°(2)

R, 2 i F L (6.3)

where i' = i/i, and r  =a {i' - {ai* 1)%}

is the core radius as given by London.

Further, Andreev finds the resistance jump p at i = ic to be related to

the radius of the wire by the relation:

2/9
A
p = '%' + 0064(;) oo (X (6.4)
6.2 COMPARISION WITH EXPERIMENT:
Comparision of Andreev's theory with experiment is possible through the

resistance transition and the variation of p with wire diameter.

Andreev's prediction for the resistance as a function of current is given
by equation (6.3} but it needs to be pointed out that this expression has an

analytic discontinuity at 1 = i,5 for i = ic or i' = 1, r, = a and the second

c
term on the right hand side becomes infinite! Presumably we may use equation

(604) to get the value of resistance at i = i
We have calculated the resistance transition as predicted by Andreev's

theory for Indium wire of 1l.65 mm. diameter using equation (6.3) for i'>1

and equation (6.4) for i' = 1., The values obtained are given in the third

column of Table 5.3 (page 95.11) and these values may be compared with the

predictions of our model and with our exﬁerimental values for l.65 mm. diameter

Indium wire. It can be seen that Andreev's. theory does not agree particularly £

well with experiment. Indeed comparisﬂbn with the values given by London's
model shows that for i'>l.el Andreev's values exceed London's predictions by

only about 3%

In so far as the radius of the intermediate state core is concerned,

Andreev's theory does not differ from London's model and we have already shown




(Fig5.8 page 5.14) that Rinderer's experimental values of the core radius

agree with our model but not with London's.

The variation of the resistance jump p with diameter of wire as given by

Andreev has been evaluated for Indium and is compared with experimental results

in Figs5.10 (page 5.20). It would appearthat our model together with the
correction applied to it due to the size effect agrees better with experimental

values than does Andreev's theory.

Finally we note that for the case of Indium wire of 1l.65 mm. diameter,
Andreev's theory gives a value of 0.178 mm. for the periodicity of the inter-
mediate state structure. The structure itself should be moving in the axial

direction with a velocity of about 1.6 cm./sec.

6.3 THEORETICAL CONSIDERATIONS:

In constructing his theory Andreev has formulated the equilibrium condi-
tions in the intermediate state in terms of average values of the magnetic
field. We doubt if this is a valid approach. Whether any point in the wire
specimen should be in the normal or the superconducting state will surely be
determined by the magnetic field at that point and not by an average of the
field values along the length of the wire. The magnetic field at any point
will be determined by the current distribution which is itself uniquely

specified by the structure and the boundary conditions.

In his paper, Andreev (1968A) does not give any indication of what the
equilibrium structure actually looks like. In presenting a paper at the

XIth International Conference on Low Temperature Physics held at St. Andrews

in 1968, Andreev (1968B) included & slide which showed the interphase boundaries{

to be fairly macroscopic paraboloids of revelution but this picture was not
published in the proceedings. Since the interfaces shown were curved, it
follows that the current lines in the normal regions would be curved and hence

the field would not be constant throughout the normal region for the same




reasons as mentioned in 84.1. Thus, similarly.to our model, Andreev's theory
t00 calls for a certain amount of supercooling but this problem has not been

discussed in his paper.




7; SUKMARY AND CONCLUSIONS.

This work was staried with the object of obtaining-a better understanding

of the resistance transition which occurs when superconductivity is destroyed

in Type-l wires Dy passage of a large enough current.

The two theories put forward by London (1937) and Gorter (1957) did not

Zive gquantitative agreement with experimental measurements of the resistance

transition. Besides, Shalnikov's experiments (1957) showed that the mechanism

suggesied by Gorter did not actually occur. Our own careful measurements of

+the resistance transition for a series of Indium wires and a Thallium specimen

showed that London's model was indeed quantitatively inadequate.

We then investigated london's theory more closely from a theoretical point -

of wisw and found that the intermediate state structure which he had suggested

did mot zatisfy the conditions necessary for the coexistence of normal and

supsreonducting regions in thermodynamic equilibrium; we found that no finite

stracture could guite satisfy the conditions. This led us to formulate a

8lipghtly less *ideal' criterion for the coexistence of the two phases in the

intermediate state. Our new criterion required the magnetic field to have

the critical value along the interphase boundaries but allowed for a certain

anount of supercooling within the normal regions providing this was within the

1imite acceptable on the basis of theory and independent experimental obser-

vations.

Using numerical methods we found a series of intermediate state structures

which all satisfied our criterion and by requiring the supercooling to be a

mimimmn we found the optimom structure.

ssAtion on the basis of our new medel and found it to be in reasonable agreement.

We calculated the resistance tran-

with experimental values obizined by us and other workers for 'thick' Indium

and Thallium wires

-4
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in independent check on the validity of our model was provided when we
found that the radius of the intermediate state core as given by our model

agreed with the values obtained experimentally by Rinderer.

Experimental investigations had revealed that the resistance tramnsition
was a function of such factors as wire diameter and purity. We have shown
that these variations could be undersitood, at least gualitatively and to some

extent quantitatively, by considering the effects on our model of joule heatingf

PTVEE CoR T Y, DO

and of electron scattering at the interphase boundaries.

An alternative model put forward by Andreev (1968A) almost simultaneously '3
with ours does not give good agreement with experimental results of fhe resis--
tance transition and of the radius of the intermediate state core. As
mentioned in the previous chapter, we are alsc not convinced that Andreev's - é

approach is theoretically justified.

Thus the model presented in this work gives better agreement with experi-

P TS

menial observations than any of the other models proposed and we may conclude

that our work has improved our understanding of the destruction of supercon-

Nt N

ductivity by a current.
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APPENDIX I

A TYPICAL COMPUTER. PROGRAMME

We give below an exampie of the computer programmes used to find the

most satisfactoxry interphase boundaries for the current-induced intermediate

state.

The various steps involved have been described in Chapter 4.

The

programme is written in FORTRAN language and headings in the body of the

programme describe the various phases of the calculation.

C--'-.- ------- Wn Mmooy G S T e O AR NP s P AR B e e 00 e D G TR A S Sw TR e e TR A SR TR oon P ORI G T ap ES DT AR S A B ey Be e W g

CALCULATION 8F THE MAGNETIC FIELD DISTRIBUTION ALABNG THE
INTERPHASE BBUNDARIES OF ANY GIVEN INTERMEDIATE STATE STRUCTURE

Cn--nnn‘n-q--—-—--m-qwnwn-n---u-wu ------ AT e o I N Gw W P e UR R R WS UK S Y g B OND W PR R D YT SN W T 40 o W

DIMENSIBN V(P#pl“i):IMIN(141)pCUQEL(141))CUR(141):FIELD(141);

G

OO0

101
102

103
104
105

106
107

108

108
110

1000

1001

20

16
30
15

1CURRAT(141)sFIRBRA(141)
FBRMAT (20F6.1)

FORMAT
11426X27HDIFMAX=2F8a5)
FORMAT (11X21326Xs13)
FORMAT (4012)

FORMAT
15XsF603)

FORMAT (////77777730%X37THRESRAT=2F643)

(4X2BHIMAX=, 12,5X, BHUMAX =, 12,5X,2HG=2F341,5X, 7HICOUNT =,

(T42sBX2]12sBXaFbe1s8XsF6e328X2F6e128X2FR82128X2F603s5X2F6e1r

FORMAT (3X2 1HU» 4 X, 4HIMING 7X2 1HR 8X2 6HRRATIB 2 5X2 SHCUREL » 9X» 3HCUR,

17X26HCURRATI»GX)EMFIELD»BEX»6HFIRARAY
FORMAT (15X, 44HCURRENT  DISTRIBUTIBN
FEPMAT (15X, 42HCURRENT DISTRIBUTIBN
FORMAT (1H1)

AT
AT

DEFINING THE RBUNDARY

READ(S,103) TMAXsJMAX
IF (IMAX) 1001.,900,1001
READ(52104) (IMINCD)s J = 1,UMAX)

SETTING THrF BUMDARY AND INITIAL vALUES
DB 20 J=1,JMAX

DB 20 I=1,IMAX

VIIsd) = 00

N8 15 J=1aJMAX

IMINJ1 = IMIN(J) « 1

IF (1-TMINJ1)Y 16,16,15

DB 30 I=1,IMINJ]

Vilad) = 100.0

CONT INUJUE

THE
THE

BARUNDARY)
CENTRE)
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OO

100

45}

190
160
35

36

60
40
45

70

ieRelg!

90

121
123

122
124

ITERATIVE SQLUTIBN AF LAPLACE'S. QUATIBN

ICAUNT = O

G = Qa8

IMAX1 = TMAX=1
JMAX1 = UMAX=1

DIFMAX = Q0

IMINY = IMIN(1)

IF (IMAX=]IMIN1) 35,35,25

DB 140 I=IMIN1,IMAX1

VAL = (V(I+121)4V(Im121)440%V(]22))/6+0
DIFF = VAL = V(I,1)

IF (DIFF=-DIFMAX) 140,190,190
DIFMAX = DIFF

V(I»1) = VAL+G*DIFF

DB 45 J=2,JMAX1

R = J=1

B = 140 + Qe5/R

C = 140 = 0s5/R

IMINJ = ITMIN(J)

IF (IMINJ=IMAX1) 364136245

DB 40 I=IMINJsIMAX1

VAL = Qe25%(VII+10 ) +VIIn1a ) +R %YV (12 J+1)+C¥V(Tad=1))
DIFF = VAL = v(1,J)

IF (DIFF=DIFMAX) 4056060
DIFMAX = DIFF

VIIsJ) = VAL + G*DIFF

CONT INUE

DB 70 TI=1,IMAX

V(I,JMAX) = V(I,JUMAX1)

ICBUNT = JCRUNT + 1

IF (DIFMAX =~ 04001) 90,100,100

PRINT BUT 8F THF ELECTRIC PATFNTIAL DISTRIBUTIBN

WRITE(462110)

WRITE(62102) IMAX, JMAXs G» ICBUNT, DIFMAX
IF(IMAX=20)1P1,121122

DG 123 K=1,JMAX

J = UMAX = K + 1

WRITE(62101) (V(Tsd)s 1=21,1IMAX)
GB TH 180

DB 124 K=1sJMAX

J =2 UMAX = K o+ g

WRITE(62101) (VI T,J)s 121,20)
WRITE(A2110)

IF (IMAX=40) 125,125,126

DB 127 K=1asJMAX

J o= UMAX = K o+ 1

WRITE(42101) (V(I2J)s 1=21,IMAX)
G8 T8 18D

DB 1728 K=1sJMAX

JoE JMAX = K o+ 1

WRITF(62101) (V(Tad)s 1 =21,40)
WRITF(62,110)

DB 131 K=1,JMAYX

J = UMAX = K + 1

WRITE(62101) (V(1sJ)s T=41sIMAX)
TMINY = IMIN(1)

|
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410
430
420
400

450

445

440

eleRale

500

510

515

CALCULATIAN BF CURRENT AND MAGNETIC FIELD D{STRIBUTIBN ALONG

INNERPHASE RBUNDARY

CURELI11) = {1000 = WITMINI1))#0.25

DB 400 J=2asJIMAX
R = J

R = RJ = Da5
IMING = IMIN()

CUREL(J) = (1D0«0 = VIIMINJ2J))*(2+s0%Rw100)
IF (IMIN(J) = IMIN(J=1)) 41D2420,420

TMINJ = IMIN(J)
IMINIM = IMIN(J=1) = 1
D& 430 I=IMINJsTMINJIM

CUREL(J) = CUREL(J) =+ (1000=V(1,J))*2+0%(R=1:0)

CONT INJE

CUR(1) = CURELI(1)

CUR(.JM) = CUR(J=1) + CUREL(J)
DB 450 J=12JMAX

R = J

R = RJ = 05

FIELD(J) = CUR(JI/R

CURRAT (J) = CUR(.J) 7CURY{JMAX)
DB 445 J=1sJMAX

FIBARA(J) = FIELD{JIAFTELDLIMAX)
WRITE(62110)

WRITE (42108)

WRITE(4,107)

DB 440 K=1:JMAX

J o= JMAX = K o+ 1

RJ = J

R = RJ = D=5

RJMAX = JMAX

RMAX 3 RJMAX « 0.5

RRATID = R/RMAX

WRITE( 62105) Js» IMIN(J)» R, RRATIE, CUREL(J)s CUR(JYs CURRAT(J) .

1,FIELD(J)2 FIBSRALLY)

CALCULATIBN BF CURRENT AND FIELD DISTRIBUTIBN ALBNG CENTRE BF THE.é

NBRMAL REGIABN

CUREL(1) = V(IMAX121)%D+25

LB 500 J=2sJMAX

RJ = J

B » Ry = DuB

CUREL(J) = V(IMAX1sUJ)*#(2e0%R=1.:0)
CUR(1) CURFL (1) -

CUR(.J) CUR(J=1) + CUREL(J)

DB 510 J=1,JMAX

RJ = J

R = RJ = Da5

FIELD(J) = CUR(J)/R

CURRAT(J) = CUR(.I)/CUR(IIMAX)

DB B15 J=12JMAX

FIRBRALJ) s FIELDIDMI/ZFIELDLIMAX)
WRITF (A2110)

WRITE(4»109)

WRITF(4A3107)

DA 170 K=1a2JYAX




£
o

e

170

900

J = UMAX = K
RJ = J

R = RJ = 0«5
RJUMAX = JMAX
RMAX = RJUMAX

+ 1

= 0e5

RRATIB = R/RMAX

WRITE( 6510%) JsIMIN(J)sRsRRATIAICUREL (J)sCUR(J)sCURRAT(J)SFIELD( ¢

1J),FIBARA(J)
CALCULATION
D

E
F

]

JMAX =~ 1
IMAX = 1§
JMAX

u

RESRAT = 100,0*FxD/(E*CUR(JMAX))

WRITE(62105)
G8 T 1000
CALL EXIT
END

BF RESISTANCE RATI!®

RESRAT
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PUBLICATIONS BASED ON THIS WORK

In the following pages we present publications based wholly or partly

D.Co Baird and B.K. Mukherjee, (1967), Phys. Letts. 254, 137.

B.K. Mukherjee, J.F. Allen and D.C. Baird, (1968) in ‘'Low Temperature
Physics LT11l' (University of St. Andrews, Scotland) 2, 827

D.Cs Baird and B.K. Mukherjee, (1968), Phys. Rev. Letts. 21, 996.

B.K. Mukherjee, H.Ds Wiederick and D.C. Baird, (1970) To be published é
in the Proceedings of the XIIth International Conference on Low : 8
Temperature Physics held at Kyoto in 1970.

D.Ce Baird and B.K. Mukherjee, (1971), Phys. Reve B. 3, 1043,
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DESTRUCTION OF SUPERCONDUCTIVITY BY A CURRENT

D.C.BAIRD * and B. K. MUKHERJEE
Depaviment of Physics. University of St. Andrews. St, Andrews. Scotland

Received 12 June 1967

A revised form of the London theory of the destruction of superconductivity by a current is presented.
Numervrical methods are used to find the optimum phase boundary configuration. The result speciflies
the scale of the structure and the resistance of the intermediate state.

When the current through a supe;conducting
wire is gradually increased, a critical value i,
is reached at which resistance is restored dis-
continuously to some fraction p of the normal
resistance. The observed value of the critical
current is generally in agreement with Silsbee's
rule [1]. The present theory of the destruction
of superconductivity by a current, put forward
by London [2], predicts a value of 0.5 for p.
However, experimentally p has been found to
vary in the range 0.6 to 0.8, depending on pa-
rameters such as temperature and purity of
specimen [3-6]. Attempts have been made to
resolve this discrepancy by considering sec-
ondary effects such as heating of the wire {7] and
electron scattering at the normal-superconduct-
ing phase boundary {8], but no attempt seems to
have been made to correct what appear to be bas-
ic defects in the London theory. We present here
a revised form of the theory which predicts for
p a value in excess of 0.5 and which also indi-
cates the scale of the intermediate state struct-
ure.

When the current in a superconducting wire
reaches a value such that the magnetic field at
the surface has the critical value Hp, flux should
start to penetrate the wire, thus creating a nor-
mal region. Throughout this region the field must
obviously be H;, or as close to H, as possible,
and it follows that the variation of current den-
sity with radius # must have the form:

j () =i/ 2ua. v (1)

whtre a is the radius of the wire. Or, in terms
of the current #{») within radius #, the require-
ment in the normal region is that

* On leave from the Royal Military College, Kingston,.
Ontario, Canada.

i(n) =icv/a (2)

In the original presentation by London and in
the description given by Shoenberg [9], it is as~-
sumed that the reguired current distribution will
be produced by the phase boundary configuration
illustrated by them [2, [ig. 40; 9 fig. 56]. How-
ever this is true only if the angle at the apex of
each normal region is vanishingly small. It
would be more satisfactory if one could find a
finite interphase configuration which gives the
required current distribution, This would have
the advantage of specifying the intermediate state
configuration uniquely and the resistance associ-
ated with the state would automatically follow.

The current distribution can be calculated
from the potential distribution in the normally
conducting region. This potential distribution
is simply a solution of Laplace's equation subject
to the boundary conditions which are (i) that V =

|

o H{ARBITRARY UNITS)

DISTANCE 7 2
ALONG RADIUS OF

(a) (b)

Fig. 1. (a) Axial section of the conductor showing the
most {avourable phase boundary. (b) The variation of
field along radius OE for the phaze boundary shown in

(a).
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constant on any s-n boundary, and (ii) that 2 V/a»
= 0 at the surface of the wire. In a search for

a phase boundary which will give the most nearly
uniform distribution of field along the radius, we
have used a relaxation method to obtain numeri-
cal solutions for a number of boundary configura-

_tions. The most satisfactory boundary shape

which has emerged is shown in fig. 1(a), and the
corresponding variation of magnetic field along
the radius OE is shown in fig, 1(b)., There is a
major variation of field near the axis and a small
departure from constancy away from the axis.
The latter could almost certainly be removed by
further slight adjustment of the boundary shape,
which would be facilitated by the use of a finer
computational mesh than the 30 X 30 mesh which
we have used so far. The deviation near the axis
is only to be expected since no finite computatio-
nal mesh can reproduce the current density sin-
gularity at the centre implied by equation (1).
Besides, this condition also entails a {empera-
ture singularity at the axis. Such singularities
are physically unrealistic and it appears reason-
able to expect an equilibrium situation with both

i
v

tive to variations of the critical field in the nor-
mal region and only a small percentage variation
of field need be allowed for p to give a value as
high as 0.8. Such small variations in the critical
field could easily be caused by secondary effects
such as Joule heating. In our treatment we have
assumed that the mean free path of the electrons
is small compared with the scale of the interme-
diate state structure. If this is not so, the effect
will be to increase the resistance ratio p. We are
currently investigating these effects and extend-
ing our treatment to cover the resistance curve
for currents greater than é¢.

We wish to express our thanks to Professor
J.F,Allen and to Dr, C. G, Kuper for many help-
ful discussiops and suggestions, and to Dr. A, J.
Cole and the staff of the St. Andrews University
Computing Laboratory for their assistance with
the numerical solutions.
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B4.4 DESTRUCTION OF SUPERCONDUCTIVITY BY A CURRENT.

B. X. Mukherjee an& J. F. Allen, School of Physical Sciences,
University of St. Andrews, St. Andrews, Scotland and D. C. Baird,
Department of Physles, Royal Military College., Kingston, Ontario,
Canada. A

It is well known that, when the current through a supercon-

ducting wire is gradually increased. a critical value i, is reached

at which resistance 1s restored discontinuously to some fraction p

of the normal resistance. As the cyrrent is increased further the

resistance asymptotically approaches the normal value. The ocbserved
value of the critiecal current is generally in agreement with Silsbge's

rule. In 1936, F. London(a) thecoretically predicted a value for p
(3.4.5,6) generally give values for
p of between 0.7 and 0.9. Proposals have been made to resolve this

of 0.5. However. observations

disecrepancy by considering secondary effects such as heating of the

(7)

wire and mean free path effects(g). In pointing out(1) that the

model suggested by London was also not satisfactory theoretically,

we presented a new treatment which accorded better with observation.

We glve here an extension of that treatment which covers not only .
the conditions at ic but also gives the resistance at higher
eurrents. *

When the current in a superconducting wire reaghes a value
such that the magnetic field at the surface has the critiecal value
Hc’ flux should start to penetrate the wire and create a series of
normal regions along the wire. Throughout these regions the field
must obviously be Hc or.as close to He as possible. It follows
that, in the normal regions, the variation of current density with
radius r should idea%ly have the form

ic 1
- J (r) = 2ma © T

where a is the radius of the wire, However, it 1s not possible to
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find a finite structure which gives H = Hc throughout the whole of
the normal volumes, and the most important condition is obviously
that H = Hc at any normal-superconducting interface.

For a given boundary, the potential distribution in one of
the normal regions can be obtained by a numerical solution of
Laplace's equation subject to the boundary conditions

1) V = constant on any s-n boundary,

2) %% = 0 at the surface of the wire.

7/
The current distribution and hence the
field distribution can then be calculated %
from the potential distribution. Using £

(i}

trial and error methods a boundary satis-
fying the above condition can be found

for any given ratio of radius toc a

structure periodic length d up to a
limiting value (a/d)max =1.4. Some

of these boundaries are shown in Fig. 1.
Beyond this limiting value of (a/d)max

it has not been possible to find satis-

factory boundaries. The criterion that Fig. 1. Best boundaries
for a/d values (i) 1.4

throughout the normal region H be as
& = (11) 1.0 and (1ii) 0.67

\close as possible to Hc requires that
&/d has its maximum value, and we have chosen a/d = 1.4 as the op-
timum proportion. Surface energy effects have been calculated and
found to be negligible for values of a/d of this order.

. . e resistance due to such a structure has been calculated
ard we 7ind a value of p = 0.69.

When the current rises above 10, the superconducting cores
rust snrink to an equilibrium shape for each value of current so as

te oiuntain the condition H = Ho along the boundaries. Boundaries

T
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to satisfy this criterion have been found for several values of
i> ic’ and two of them are shown in Fig. 2. The resistances of
these structures have been evaluated and the return of resistance

curve as predicted by this model is shown in Fig. 3.

R/Rp

ol

o8}

o6

. SCOTT
04k A BAIRD ETAL
o2
*0 s 20 /i
- Fig. 2. Successive bound- Fig. 3. Return of resistance

aries for :L/ic values of 1.0, curve: (present model), ===~
W3, 2.8, (Iondon), e Scott (0.286 mm. diameter

Indium wire), 4 Baird et al (0.5 mm.

diameter Indium wire).

Since the present model gives a definilite size for the structure,
it is amenable to the inclusion of secondary effects such as mean -
free path and Joule heating.

In the above calculations we have assumed that the mean free
path 1 in the normal material is small compared with the dimensions
of the normal regions. Kuper has suggested that when this is not
the case, scattering of electrons at n-s interfaces will reduce the
ef.ective mean free path, thereby increasing the value of p. He has
proposed(s) tnat for the London model the average effective conduc-
tivity is

5

‘o(r) = o [1 - (1-s) exp (—ra/eﬂ
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where s = sinyr and ¥
is half the angle at

the apex of the normal © SCOTT
% ot o MEISSNER ET AL

region. Assuming that 8 BAIRD ET AL
in the present model 09 4 FREUD ET AL
the phase boundary near 'x

0-8 I
the axis may be reason- P o %

Q
ably approximated by 07+ N — ; 8 ol
a straight line, we
have used the Kuper 06+
L 1 1
formula to find the 0 0 2:0 30
ferei, diameters of Fig. 4. The mean free path effect: the
S : resistance discontinuity p at i plotted

Toadm wire ?gsuming as a function of wire diameter.  The
l=2.5%x10 cm. solid line represents the prediction

By awrva i ahoumn of the present model.

in Fig. 4 along with
experirzental results for comparison. .

It is obvious that, due to Joule heating, a temperature
gradient will be set up along the radius of the wire, with the axial
region naving the higher temperature and correspondingly lower Hc.
We have found that even a small relaxation of the field condition
at the boundary near the centre of the wire has a marked effect on
the shape of the boundary near the axis with a resultant increase in
p. This effect will clearly be greater both when ic is increased by
lowering the temperature and when the residual resistance is greater.

Refererces: Reference numbers are as given in (1): D. C. Baird and
B. K. wukherjee. Phys. Letts. 25A (1967) 137.
In Pigz. 4: R. Freud, Cz. Sulkowski and B. Makiej, Phys. Letts.
27 {1968) 187. .
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- DESTRUCTION OF SUPERCONDUCTIVITY BY A CURRENT

D. C. Baird
Department of Physics, Royal Military College, Kingston, Ontario, Canada

and

B. X Mukherjee
Department of Physics, The University, St. Andrews, Fife, Scotland
{Received 19 August 1968)

‘We present 2 new model of the intermediate state n current-carrying superconduc-
tors., The model predicts a resistance transition which is in reasonable agreement with
experimental values. An introductory treatment of secondary effects is also given.

When superconductivity in 2 wire is desiroyed
by a current, resistance returns in a manner dif-
ferent from that predicted by London,'™ and the
consideration of secondary effects®® does not ac-
count satisfactorily for the discrepancy. We pre-
sent a treatment which gives the structure of the
intermediate state, predicts a resistance transi-
tion in reasonable agreement with experimental
observations, and enables the evaluation of sec-
ondary effects.

‘When the current in a superconducting wire
reaches the value 7, at which the magnetic field
at the surface has the critical value H,, flux
should slart to penetrate the wire and create a
series of normal regions along the wire. Through-
out these regions the field must obviously be H,
or as close to H, as possible. It follows that in
the normal regions the variation of current den=~
sity with radius » should ideally have the form

Hx)y=(io/2ma)i/7),

where a is the radius of the wire. However, it is
not possible to find a finife stractnre which gives
H=H, throughout the whole of the normal vol-
umes, and the most important condition is ob~-
viously that # =X . at each normal-superconduct~

996

ing interface.

For a given boundary the potential distribution
in one of the normal regions can be obtained by a
numerical solution of Laplace’s equation subject
to the following boundary conditions: (i) V=con-
stant on any s-n boundary and (ii) 8V/87=0 at the
surface of the wire. The current distribution,
and hence the'field distribution, can then be cal-
culated from the potential distribution. Using
trial and error methods, boundaries satisfying
the field criterion mentioned above can be found
for any given ratio of the wire radius ¢ to the
strncture periodic length d, up to a limiting val-
ue (a/d)max =1.4. The axial width of the normal
regions at the center of the wire falls rapidly to
zero as a/d approaches 1.4, thus making it im-
possible to find satisfactory boundaries for a/d
larger than 1.4,

As has been pointed out by Shoenberg,” two mu-~
tually opposing criteria will determine the opti-
mum value of @/d: (i) That throughout the normal
Tegion _H be as close as possible to H,. Quanti-
tatively, this amounts to minimizing

H?2 H?
N S s
e_8ﬂvn fV 87 e
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(a)

=3
o

©)

FIELD ALONG n-3 BOUNDARY
[ARBITRARY LUNITS)

O T DISTANCE FROM AXiS OF WIRE O

FIG. 1. (a) Intermediate-state structure for a/d
=1.4, (b) Variation of H along the boundary compared
with that of London’s model, i

per unit length of wire, where V,, is the volume
of the normal region. It is obvious that e de-
creases as a/d increases. (ii) The n~s surface
energy s per unit length of wire be a minimum.
This makes smaller values of a/d more favor-
able. Values of e and s have been calculated for
indium and it has been found that for the values
of a/d under consideration, s is only a few per-
cent of e, and is therefore negligible. In type-I
superconductors s becomes important only when
a/d is much larger than 1.4. Hence, we have ac-
cepted (a/d)y,a, =1.4 as the optimum value, and
we suggest that at ¢=¢, the structure of the inter-
mediate state is as shown in Fig. 1(a). Sucha
structure has the normalized resistance

p=(R/Ry)i=i,=0.69,

and the variation of field along the n~s boundary
is shown in Fig. 1(b).

When the current rises above 7., the supercon-
ducting cores must shrink to an equilibrium
shape for each value of current so as to maintain
the condition # =H . along the boundaries. Bound~
aries to satisfy this criterion have been found for
several values of ¢>i,, and two of them are indi-
cated by the broken lines in Fig. 1(a). The re-
sistances of these structures have been evalu-
ated, and the full return of resistance curve as
predicted by our model is shown in Fig. 2.

Since the present model gives a definite size to
the structure, it is amenable to the treatment of
secondary effects such as mean free path and
Joule heating.

In the above calculations we have assumed that

R/Rq
1o}

08
o6F
04}

0-2F

1-0 =3 2:0 i/ig

FIG. 2. Return of resistance curve: solid line,
present model; dashed line, London (Ref. 1); closed
circles, Scott (Ref. 2) (0.286-mm-diam [n wire);
closed triangles, D. C. Baird and B. K. Mukherjee
(unpublished) (0.5-mm-diam In wire),

the mean free path 7 in the normal material is
small compared with the dimensions of the nor-
mal regions. Kuper has suggested that when this
is not the case, scattering of electrons at n-s
interfaces will reduce the effective mean free
path, thereby increasing the value of p. He has
proposed® that for the London model the average
effective conductivity is given approximately by

o(#) = o {t ~(1-p) exp(~+p/D)}

with p =sing, where ¢ is half the angle at the apex
of the normal region. Assuming that the lower
part of the phase boundary in the present model
may be reasonably approximated by a straight
line, we have used the Kuper formula to find the
values of p for different diameters of pure indium
wire assuming that /=2.5X10"° c¢m, and our re-
sults are shown in Fig. 3 along with experimental
results for comparison.

It is obvious that due to Joule heating a temper-

1of
0-9
08
P
07 ) 3 a
0-6}
i 3 1
0 10 T 20 3.0

WIRE DIAMETER {mm)
FIG. 3. Mean free path effect: The resistance dis-

_ continuity p at i, plotted as a function of wire diameter.

Solid line: prediction of the present model; open cir=-
cles: Scott (Ref. 2), closed circles: Meissner and

_ Zdanis (Ref. 4), open squares: D, C. Baird and B. K.

Mulkherjee (unpublished), and closed triangles:

R. Freud, Cz. Sulkowski, and B, Makiej [Phys. Letters '

27A., 187 (1968)].

997

e e Ty

i




VoruMme 21, NUMBER 14

PHYSICAL REVIEW LETTERS

30 SEPTEMBER 1968

ature gradient will be set up along the radius of
the wire with the axial region having the higher
temperature and a correspondingly lower H,.
We have found that even a small relaxation of the
field condition at the boundary near the center of
the wire has a marked effect on the shape of the
boundary near the axis, with a resultant increase
in p. Thus, if H, near the center is about 25%
less than at the surface of the wire, the resis~
tance ratio increases by about 8%. This effect
will clearly be greater when (i) 7, is increased
by lowering the temperature, and (ii) the residu-~
al resistance is increased.

We wish to express our thanks to Professor
J. ¥. Allen for many helpful discussions and sug-
gestions, and to Dr. C. D. McKay of the Royal
Military College Computing Center and Dr. A, J.
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cal solutions.
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AéSTRACT _

We have revised our model of the intermediate state
in current carrying Type-1 superconductors. Several other
models have also been put forward. We combafe these models
on the basis of evidence from three different kinds of

experiments.




At LT 11 we presented a mode]l for the current in-
duced intermediate state in Type-1 superconducting wires. In
developing that model we had used the criterion that, at
equilibrium, the magnetic field along any normal-superconduct-
ing boundary should have the critical value Hc’ and we had
pointed out that for any finite structure the field within a
normal region will be equal to or less than Hc: thus the model
called for a certain amount of supercooling. We have since
improved the model in order to reduce the supercooling 1nvo]ved2.
Fig. 1 shows the improved model: the intermediate state remains
the same as that given in (1) for the case of critical current

(i = ): however, as the current increases the intermediate

ic
state core will shrink but it is not necessary for the éxial
periodicity of the structure to remain constant. The super-
tonducting regions pack together in order to maintain the
optimum n-s boundary which allows H to equal HC on the boundary.
The supercooling called for by this model has been discussed

in (2) and shown to be plausible under normal experimental
conditions.

An alternative model for the current-induced inter-
mediate state in Type 1 superconducting wires has been put
forward recently by AndreevB. We discuss below three different
kinds of experiments which enable one to discriminate between
the validity of different models.

h (98 The Resistance Transition: In Fig. 2 we compare the

resistance transition predicted by the present model with the




London mode14'and with experimental values obtainea far “thick®
wires (diameter X 1 mm.). The secondary effects which occur
for thinner wires have already been discussed in (1) and remain
valid. The complete resistance transition given By Andreev's
model depends on a parameter o which we cannot evaluate. How-
ever according to Andreev the value of the resistance jump p

which occurs at i = ic is given by

o = 0.5+ 0.64 (a/a)?/?
where A is the surface energy parameter and a is the radius of
the wire; this gives p = 0.597 and p = 0.585 for pure Indium
wire of 1.65 mm and 3 mm respectively as compared with the ex-

perimental value of 0.697 and 0.695 respectivelys’ﬁ.

i The Radius of the Intermediate State Core: This
radius has been measured experimentally as a function of (i/ic)
by Rinderer7. We have used numerical methods to evaluate the
values of (i/ic) corresponding to any given core radius and,

as shown in Fig. 3, the values obtained by Rinderer are in good
agreement with the theoretical curve predicted by the present
model. From the macroscopic description given by Andreev it
would appear that the core radius in his model is the same as
that given by London's model and, as may be seen in Fig. 3,

this does not agree well with the experimental values.

199 2) (N Concentration of 'lormal Phase: Following the method

suggested by ‘.-h‘ederick3 we have carried out an experiment to

find the concentration of normal phase as a function of (1/ic).

In this the specimen wire is placed along the axis of a thin




solenoid whose a.c. inductance is monitored as a slowly in-
creasing d.c. current drives the snecimen through the inter-
mediate state. In effect the small a.c. field (which distorts
the d.c. field hy about .1% only) is used as a probe to "see"
the normal regions in the wire and demagnetising effects can
be taken account of by the use of numberical methods. Further
details will be published elsewhere. Results.of a preliminary
experiment are given in Fig. 4 where we show the change of
inductance of the coil as the wire is driven through the
intermediate state. The theoretical c]acu]ations.taking
account of the demagnetising effect can only be done if the
physical structure of the n and s regions is known for any
model. Since Andreev has not specified the structure and since
we do not know the appropriate value of a, we have restricted
ourselves, in Fig. 4, to showing points which represent

the actual normal phase concentrations given by the models.
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FIGURE CAPTIONS

FIG. 1.

Structure of the intermediate state for three values of
applied current: (a) i = L (b) i = 1.6 L (c) 1 = 2.3 ige
Superconducting reqgions are shaded.

EIG. 2.

Return of resistance curve: Solid line, this model;
dashed 1ine, London (Ref. 4); closed circles, experimental
results for 1.65 mm. diameter 1n wires (Ref. 5); closed
triangles, experimental results for 3 mm. diameter 1n. wires
(Ref. 6).

FI8: 3

Variation of the radius of the intermediate state core
as a fraction of wire radius with applied current: solid
line, this model; dashed line, London (Ref. 4); experimental
values are those obtained by Rinderer (Ref. 7).

FIG. 4.

Change of inductance of the solenoid as a slowly in-
creasing current drives the wire from the fully supercond-
ucting to the fully normal state. Points represent normalized
concentrations of normal phase as predicted by the various

models.
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We have improved our previous model of the intermediate state in type-1 current-carrying
superconductors. In addition to predicting a resistance transition in reasonable agreement
with experimental observations, the model gives good agreement with experimental values
for the radius of the intermediate-state core as obtained by Rinderer.

In a previous paper' (referred to hereafter as mal-superconducting boundary should have the crit-
BM) we presented a model of the intermediate state ical value I{,. Ideally the field should also be H,
in current-carrying type-1 superconductors. The throughout the whole normal region, but it is not
main theoretical criterion used was that, at equilib-  possible to find a finite structure to satisfy this ideal
rium, the magnetic field # at all points on a nor- condition. Supercooling is therefore involved, since
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the structure gives values of H in the normal regions
less than H,. We now present an improved model
which produces less supercooling than the earlier
model did and show that the supercooling required

is acceptable.

The intermediate-state structure presented by
BM for the case of critical current ({=i.) is shown
in Fig. 1(a), and the magnetic field distribution in
each normal region is indicated in Fig. 2. It can
be seen that the supercooling required is maximum
near the axis of the wire. We note, however, that
on the axis itself an infinite current density would
be required to produce the critical field #, and this
is not only physically unrealistic but would also give
rise to a temperature singularity, In practice it is
reasonable to expect that the structure is such as
to give a large, but finite, current de asity and a
small finite increase in temperature near the axis.
As a result, H, would have a smaller value near the
axis, and hence the supercooling requirement there
is diminished. :

The question now is whether or not the supercool-
ing indicated is plausible under normal experimen-
tal conditions. We note that most resistance transi-
tion experiments are carried out near T, and, under
these conditions, Ginzburg? has shown that the lower
supercooling limit for an ideal type-~1 superconduc-
tor is given by

Sy=H,o/H,=VZ & ,

where H, is the lowest field at which the normal
phase can persist and « is the Ginzburg-Landau pa-
rameter. In agreement with this theory Faber® ex-
perimentally found values of S;~ 0. 16 for tin and S,
~0, 11 for indium. Besides, recent experiments?
with extruded plycrystalline indium wires (similar
to those used in resistance-transition experiments)
give S;~0.36. Thus the supercooling required by
the structure of Fig. 1(a) is well within acceptable
limits.

BM suggest that when the current increases above
i,, the superconducting cores will shrink to an equi-
librium shape for each value of current so as to

(a) {b) (c)

FIG. 1, Structure of the intermediate state for three
values of applied current: (a) i=i,, M) i=1.61, (c) ¢
=2.8 i,
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FIG. 2. Distribution of the magnetic field in a nor-
mal region. A quarter of the diametral section of a
normal region is shown at left, and the field distribution
along the lines AP, BP, CP and CD, EF, and GH is
shown at right. % represents a radial direction and z
the axial direction.

1
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——— THIS MODEL
~=~== LONDON'S MODEL
I RINDERER'S EXPTL VALUES

(b)
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FIG. 3.(a) Return of resistance curve (R is actual
resistance, R, is fully normal resistance): solid line,
this model; dashed line, Ref. 5; closed circles, experi-
mental values for 1, 65-mm-diamIn wire, D, C, Baird
and B, K. Mukherjee (unpublished); closed triangles,
experimental values for 3~-mm-diam In wire, Ref, 6.

(b) Variation of the radius 7, of the intermediate state
core (see Tig. 1) as a fraction of wire radius a with
applied current: solid line, this model; dashed line,
Ref, 5; experimental values, Ref, 7.




3 CURRENT-INDUCED INTERMEDIATE STATE...

maintain the condition H =H, along the boundaries,
and show two such struetures. These structures in-
dicate that, as the currentincreases, sodoesthe
axial width of the normal regions, and itfollows that
the supercooling required near the center of the nor-
mal regions would increase and become unacceptably
large. An alternative possibility is shown in Fig. 1:
Asiincreases overi,, afully normal sheathisformed
surrounding an intermediate state core: within the
core, the structure will be determined by the same
equilibrium conditions as are valid at i=7,, and we
may therefore assume that the axial periodicity of
the structure decreases soasto maintain the opti-
mum # — § boundary shape which allows H to equal
H, on the boundary. It follows thatthe supercooling
called for in the normal regions is not greater than
it was at i=i_.

In Fig. 3(a)the resistance transition predicted
by the present model is compared with the London
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model and with experimental values obtained for

“thick” wires (diameter21 mm). For thinner wires
secondary effects occur; these have been discussed
by BM.and the treatment given there remains valid.

In addition to the usual consideration of resistance
transitions, an independent check on the validity of
any model of the intermediate state in current-carry-
ing type-1 superconductors is provided by Rinderer’s
measurements of the radius of the intermediate-state
core as a function of applied current.’ Figure 3(b)
shows that the values obtained by Rinderer are in
good agreement with the present model, whereas
they do not agree well with the values predicted by
London. '

We wish to express our thanks to Professor J. F.
Allen for many helpful discussions and to Dr. A, J.
Cole and the staff of the St. Andrews University
computing laboratory for their assistance with the
numerical solutions,
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