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Into this Universe, and WAy not knowing,
Nor Whence, like Water willy-nilly flowing;
And out of it, as Wind along the Waste,

I know not Whither, willy-nilly blowing.

Omar Khayyam




Abstract

The hypothesis adopted in this work is that any permissible
metric field whatsoever must satisfy the field equations deduced from
an action principle in which the Lagrangian is quadratic in the
components of the Riemann curvature tensor. The adoption of such
a hypothesis is motivated by the precariousness of the general
relativistic interpretation of Mach's principle, which is often used
to justify a phenomenological approach to the theory. The quadratic
action principle is chosen to provide the fundamental equations of
the gravitational field because it is logically and aesthetically
appealing, and causes us to lose nothing of the standard relativity
theory based on Einstein's vacuum equations. The set of relation-
ships, ¥2‘P6'_'%jaPG:PL = —ﬁtvw];d_, is retained as a definition of
the matter tensor uﬁéc..

Attention is concentrated on the solutions of the (generally
fourth order) fundamental field equations in the static, spherically
symmetric case, Sets of exact, series and numerical solutions are
obtained corresponding to certain boundary conditions, or with
certain properties in common. Study of the geometrical, topological
and physical properties of several of the universes obtained as a
result of our hypothesis leads us to believe that our theory is not
implausible. We conclude by considering the further possibilities

of the theory.
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"INTRODUCTION

The theory of gravitation that will be described is not in any
sense an alternative to Einstein's theory., Of all modern physical
theories, the latter must surely be the most beautiful, both in terms
of the underlying physical and philosophical ideas and in its mathe-
matical elegance, It is suggested that what we describe be regarded
as a tentative extension of the theory, in which matter is represented
in a more natural way, arising clearly as an aspect of geometry.

Let us consider the framework within which matter is represented
in standard relativity theory. Space-time is a four dimensional
Riemannian manifold of normal hyperbolic type. The Einstein gravi-
tational equations for free space,F&Fc = 0 (in which the components
of the Ricci tensor FLPU-are obtained from a differential combination
of the components of the metric tensargpc), describe the coupling of
the gravitational field to the space~tiie geometry. These are
generalised, in order to express the idea that all forms of energy
also act gravitationally, to the form R—po‘“‘k_apo-R'—“ -K._Gm, where the
stress-energy (matter) tensor.t;g represents the contribution from
all force fields other than gravitation. Thus, two fields — the
matter field and the metric field — together satisfy Einstein's
gravitational field equations for non-empty space.

Mathematically, since there are ten unknown Yper and ten unknown
T;G, the set of ten field equatioens is highly undefdetermined for
‘solution. The problem of solving them becomes trivial if it is
assumed that the metric tensor is given arbitrarily, for then we have
only to calculate theFaPs from the 8P¢ and read off the components of
the matter tensor lpe . In most cases the'T%;.obtained in this manner
will be unphysicaf, hence this procedure cannot be justified and is

not used, An improvement on this approach is to suppose that the




-

metric and matter tensors are in some way of ''equal significance',
with the Einstein equations representing a set of constraints on the
- twenty unknown quantities. The latter are further restricted by the
imposition of conditions of signature and smoothness on the Qpe and
reality of eigenvalues and positivity of energy density on the tensor
j}w. This is not really satisfactory as the equations are still
indeterminate. The most frequently adopted means of dealing with the
equations is to remove their indeterminacy by forming a phenomenol-
ogical description of matter through the stress-enexrgy tensor so that,
with appropriate boundary conditions, the differential equations may
be solved to determine the metric field corresponding to the particular
matter distribution. Of the different approaches to the field
equations, the last one seems the most reasonable.

Viewed on its own, however, this procedure is disquieting. It
is an ad hoc method, in which matter is necessarily accorded an
a priori privileged position. Our conceptions of matter are limited,
and we must further limit the mattexr distributions we consider to
those for which the solution of the differential equations presents
a tractable problen. If experimental verification of the predictions
of general relativity theory is required we need only turn to the
solutions of the vacuum equations; and as Einstein pointed out
repeatedly in later years, it is the theory of the limiting case of
the pure gravitational field and its relation to the metric structure
of space-time which can possibly make a claim to final significance.

There are two obstacles in the way of abandonment of the phen-
omenological approach. Firstly, it may be justified by appeal to
the validity of Mach's principle; in this way its defects are
camouflaged. Secondly, it is convenient; alternatives generally
require that the basic structure of the theory be supplemented or

modified and some complications are unavoidably introduced.
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The aim of this work is to overcome these two objections. Mach's
principle is elusively vague; its status within the confines of
general relativity is examined at the outset and seen to be low. We
shall give plausibility arguments for the introduction into the theory
of a sourceless set of equations for the QPV’ to be regarded as the
fundamental equations of the gravitationai field. Complications do
arise, but these are associated with the mathematical problem of
solving differential equations; the basic framework of the theory is
retained.

It is, of course, essential that the choice of the equations to
serve as the fundamental equations of the field does not involve the
destruction of that which stands firm in the theory: the solutions
of Einstein's vacuum equations. These are retained if we take as our
basic equations those deduced from an action principle in which the
Lagrangian is quadratic in the components of the Riemann curvature
tensor; as we shall see in chapter 2, this choice has a certain
justification on the grounds of logic and of aesthetic appeal. The
set of relationships,F§P¢-%§k3F5=~Q(T;U , cease to be regarded a;
field equations, but rather as a definition of the matter tensor 1. o
We make the hypothesis that any permissible metric field whatsoever
must satisfy the field equations of the quadratic action principle,
and that the associated matter distribution is determined from
Tpo-z —'!'R.(‘Rf’a' "Z.Sf“"R) In this way, matter is represented in the
theory, though it would be naive to expect to obtain a realistic model
of elementary particles therefrom.

There have been various interesting attempts to obtain realistic
descriptions of matter from purely field theoretic considerations,
without modifying Riemannian geometry., The Rainich-Misner-Wheeler
"already-unified" theoryl’2 of the gravitational-electromagnetic

field operates with equations which involve only the contracted




o o)

Riemann tensorFipg, and eliminates the singularities of the field by
geometrical construction. Das and CoffmanS have worked with the
fully determinate system of the combined Klein-Gordon-Maxwell-Einstein
eQuhtiQnSﬁobtain@d'bY*Dass as a result of introducing the complex
scalar field into general relativity to replace the standard phen-
omenological approach. Lanczos4’5 has used the quadratic action
principle in general relativity in order to construct some static,
non-singular models of particles through the assumption that material
particles represent only a weak superstructure on a very strong
metrical substructure.

OQur main interest will be in studying the solutions of the exact,
non-linearised field equations obtained from the quadratic action
principle in its most general form suggested by Lanczos. Due to the
complekity of these equations, an algebraic classification of admissible
space-times by their Weyl tensor, or by the continuous groups of
motions that they admit, though desirable, seems out of the question.
Instead we concentrate attention on the solutions in the static,
spherically symmetric case for which the field equations reduce to a
pair of coupled differential equations, one of fourth and the other
of third order. Our method of approach is to impose certain boundary
conditions at the outset and search for solutions with specific
properties; these properties are, however, those that would be expected
of reasonable space-times. The results of chapter 3 reduce the
problem — and the order of the differential equations — to a consider-
able extent and sets of series solutions exhausting the various
possibilities are obtained in chapter 4. In addition, we obtain
several exact solutions, including the complete set of space-times
Minkowskian at spatial infinity. The geometrical, topological and
physical properties of some of the exact solutions are studied in

chapter 5. The cases studied in chapter 3 for which we have been
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unable to obtain exact solutions are dealt with numerically in

chapter 6, the work being based on the series expansion results of
chapter 4. Buchdahl6 has studied the field equations generated by

a quadratic Lagrangian that is a component of the complete Lagrangian
which we shall use. The application of his methods to the complete
field equations is investigated in chapter 7 and a further set of
exact solutions obtained. We conclude in chapter 8 by considering
the further possibilities of the theory and by examining whether or
not our objectives have been attained. First, we provide the details
of the conventions to be followed and notation to be employed through-
out this thesis. Then we return to the task of motivating this work

by entering into a brief discussion of Mach's principle.
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NOTATION

The conventions and notation that will be employed throughout this
thesis are as follows:

Greek indices take the values 1-->4, Latin indices 1—>3 and the
summation convention is followed,

Space-time, represented by a four-dimensional Riemannian manifold

\/LF with metric form

i i P fup

ds* = Bpe gl dae
is of normal hyperbolic type with signature - 2.
The metric tensor QP‘T has determinant ¢ = I{_Jj/m-l .

The full Riemann-Christoffel (Riemann) curvature tensor is given by:

Rocpgs ‘5;3[@55‘;] —ﬁbs [eysec] + {ng] [x8.p ]~ {p%} [y,
where IE[&, X’] . {;g} represent the Christoffel symbols of first and

second kind respectively, defined according to
Eeyl=z( 3%+ S3 - g )
OL - oL - 048
{pg} = r;ag = 0 Bhel

The Ricci tensor is defined in texrms of the Riemann tensoxr:

Bl 2o sy
2 Y
and the curvature invariant (Riemann scalar) is given by:
.. {
R= g™ Rpy -

The partial and covariant derivatives of a tensor component will be
indicated by a comma and a semicolon subscript respectively,

The fundamental alternating tensor density in Vq_ is denoted by
E,"prs , which has the value + 1 when the indices form an even permu-
tation of the natural order 1234, and - 1 when they form an odd

permutation, and the value 0 if any two (or more) indices are the same.
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. g - 1.8 - -
Einstein's constant of gravitation, W = 2,073 x 10 4 cm”' gn™' sec*

is related to the Newtonian constant G = 6.667 x 10°° dyne cm® gm~2

by

- 8nG
L :4

where C = 3,00 x 10'® cm sec™ is the velocity of light in vacuo,
We shall generally use units such that the constant ¢ has the value
unity.

Appendices are labelled according to the chapter to which they

refer, For example, appendix A2.3 refers to section 3 of chapter 2,
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1. MACH'S PRINCIPLE: A DISCUSSION

Synge7 has referred to Mach's principle and the Equivalence
principle as "a pair of decaying and dangerous ruins.'"  Whether oxr
not this is an overstatement, the relationship of Mach's principle
to general relativity is' still a subject for debate. Although
Einstein was led towards his formulation of general relativity as a
result of Mach's ideas, his view was ultimately quite different from
that of Mach: that the world is undefstandable entirely in terms of
geometry, which exists before any physical experiment is carried out.
He came to regard all attempts to represent matter in the theory as
unsatisfactory and, in order to free it from any particular choice of
matter tensor, dealt eventually only with the gravitational equations
of free space.8

It seems that Mach's principle in the sense in which it is
usually understood is illusory; it has never found expression in a
satisfactory mathematical form, nor can it be verified experimentally,
Mach's principle is not basic to the theory of relativity, nor does
that theory imply it. Let us review how this is so.

Mach's positivistic view was that only experiments have a physical
meaning and any theory should be concerned and built up only with
observable material objects. He believed that the principles of
science offer an economic description of a great diversity of sense
observations and expressed the idea — Mach's principle — that the
familiar inertial effects observed terrestially are '"reducible to the
comportment of the earth with respect to the remote heavenly bodies.
If we were to assert we know more of moving objects than this their
last mentioned, experimentally-given comportment with respect to the
celestial bodies we should render ourselves culpable of a falsity".9

This is a rather vague, untestable statement that inertial properties
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are determined by the actual contents of the universe in the large.
The mechanism by means of which the local behaviour is influenced is
not made clear, but the principle implies that it is not just
coincidence that bodies rotating with respect to the stars experience
centrifugal force, while others do not. Mach's principle usually
finds its interpretation in general relativity in a form equivalent
to the statement that the geometry of space-time is not given a pxiori
but is only determined by the matter present.10
The Einstein equations (fos-igpgR =-K'fi;¢-) may be regarded as
expressing the dependence of the space-time geometry on the matter
distribution. Einstein's interpretation11 of Mach's principle
required that the inertial field (defined by the geometrical quantities
QP’) should be not merely dependent upon, but indeed be entirely
determined by the matter present (represented by the'xg¢). In order
to ensure this the Einstein differential equations must be supple-
mented by boundary conditions to change the dependency of the Ypo
on the'ch into the stronger relationship of determinacy. It was
demonstrated by Einstein that it is impossible to choose boundary
conditions so that the inertial field is fully determined from the
field equations, since a neutral test particle in the Schwarzschild
field will have inertial properties as nearly Newtonian as required
at indefinitely large distances. It cannot be maintained that these
are due to the central mass.12 In view of this, Einstein introduced
the cosmological term into the field equations, for in this way all
the difficulties at infinity were avoided.
Implicit in Mach's philosophy.is the idea that a world without
matter is inconceivable. Accordingly, Einstein required not only
that the inertial field should be completely determined by the matter
present, but also that it should be completely indeterminate in the

absence of matter. However, the cosmological equations
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(‘Rf,c,—i—,ngv'Rﬂ—_/\. 3PU=~KT o) which he now assumed admit as a solution
the de Sitter space-time for which “;Ec'= 0 and the inertial
properties of neutral test particles are well-defined (they accelerate
away from an observer at the spatial origin). That is, although

there is no matter in the universe, the inertial field is completely
determined. Einstein could not reconcile this with his interpretation
of Mach's principle.

A further nail was put in the Machian coffin with the discovery
of the Godel solution in 1949.13 For even if we do not accept
Einsteinis postulate that thegjpﬁ should be indeterminate when"ka =0,
from the point of view of almost any interpretation of Mach's principle
we should éxpect that the matter of the universe should wuniquely
determine the geometry of the universe. Godel's solution meant that
there are two, essentially different solutions of Einstein's cosmo-
logical equations in which'ﬁgg represents an incoherent matter distri-
bution: the Godel cosmos and Einstein's static universe. Furthermore,
according to Mach's principle it might be expected that if the bulk
matter is at rest in a particular coordinate system then the path of
a single test particle (given an initial radial velocity) should not
rotate relative to it; the system should be inertial.14 But this is
not the case for the Godel universe. Given an initial radial velocity
in the direction of distant matter, a test particle will spiral out-
wards instead of travelling in the straight line that one would expect
on the basis of Mach's principle. The Godel universe is a consequence
of general relativity but is not consistent with Mach's principle;
the 1atter.is in no way built into general relativity.

Then if Mach's principle is to have any real meaning in the

context of general relativity it must be built in by the addition of

some suitable boundary condition. It was mentioned previously that
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it may be argued that the Schwarzschild universe is non-Machian. As
a result the required boundary condition is often taken to be that
only those solutions of Einstein's equations (the cosmological term
having been removed) are allowed which are such that the spatial
geometry is closed and singularity free. Even so, problems arise.
In 1951 Taub15 took the general relativistic interpretation of Mach's
principle to be the statement that the nature of space-time is deter-
mined by the matter present. The latter is to be described by the
stress-energy tensor-ch or by singularities in the 3P" Taub points
out that on the basis of this interpretation one could conclude that,
in the absence of matter (—er= 0) and singularities in theigpw, the
field equations (Rpo= 0) should imply that space is flat (R’”.‘Pw= 0).
He gives counter-examples in the form of space-times admitting tran-
sitive three parameter groups of motions which are not flat and for
which the gpg are finite for all finite values of the time. This
would tend to imply that the above conclusion, a consequence of Mach's
principle, is incorrect. Taub reminds us, however, that the lack of
a suitable definition in the theory of a real singularity — corres-
ponding to matter — means that the implication cannot be firmly made.
More recently, McVittie16 has pointed out that although the objection
has been made to Taub's solution that it must contain a singularity
of the energy tensor, the physical system represented by the singularity
has not been indicated. A corresponding objection to the solution
of Ozsvath and Shiicking17 (similar in thatF{PG-= 05 Ft:;gv= 0) has
not been raised.

The Taub universe apparently satisfies the conditions that it
is spatially closed and singularity free. It is also an example of
a pure gravitational field. Then, if Mach's principle is still to
have any meaning, it is necessary to specify the distribution of

gravitational radiation in addition to the matter distribution.
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This leads to the well known '"circularity" argumentis, and it seems
that this may be avoided only by formulating the principle precisely
and putting it into mathematical form.

However, Mach's principle strongly resists its mathematization.19
In his work on the problem, Lynden-Belle has given a convincing
argument (based on the fact that the null cones are fundamentally
invariant structures of space-time) that if the inertia of a body is
attributed to the influence of distant matter, then the local space-
time in which the body is situated must be attributed to the same
cause, His mathematical formulation (in which Einstein's equations
Are written as explicitly covariant integral equations involving
retarded bi-tensor Green's functions) leads to a scheme for determin-
ing which universes are Machian, but it seems that this may be restr-
ictive and difficult to apply. Lynden-Bell's conclusion is that any
" Machian universe must be such that the influence of matter propagates
out to make space and it is that space over which later influences
propagate out to make the space at a later time. In recent work,
McCrea21 interprets this as saying that the model must be caused by
the model. He comments '"It is hard to see what this could mean';
furthermore, he reaffirms "..., the discussion of Mach's principle in
the context of general relativity is given some significance only by
retaining concepts of pre-general relativity physics. I consider
that Mach's principle has never been formulated strictly within the
concepts of general relativity."

From the preceding discussion, it has become clear that we shall
violate little or nothing by not seeking to adhere to Mach's principle.
With reference to McCrea's comment, it seems to us that perhaps one
should not be surprised at drawing a meaningless conclusion from the
meaningless premis that there exists a causal relationship between

matter and geometry, related as in Einstein's theory. SchrBdinger
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too has rejected such a causal notion.22 Drawing a parallel with
Poisson's equation in electrostatics, he tells us not to regard the

set of relationships F&Pa'%gpcﬁl =-’KT}¢ as field equations, in which
matter causes the geometrical quantity on the left hand side to be
other than zero, but as a definition of the matter tensor—ﬁbg, It is
not an uncommon view that matter is in some way a secondary phenomenon
to the underlying reality of space-time, This was Eddington's
opinion, for example.23 He regarded energy, stress and momentum as
belonging to the world and not to some extraneous substance in the
world. But care must be taken that one philosophically unsatisfactory
attitude is not replaced by another, in which we regard, consciously

or unconsciously, matter to be caused by geometry. If we are to take
the view that there is one fundamental reality — space-time - and that
what we familiarly call matter is an aspect of it -~ the certain quantity
defined by Einstein — then we must find a means within the concepts

of general relativity of deciding which space-time geometries are
possible.  Thus, we look for a sourceless set of field equations

for the 3Pg,
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2. THE FIELD EQUATIONS

2.1 Introduction

Einstein said, "It is my conviction that pure mathematical
construction enables us to discover the concepts and the laws connecting
them which gives us the key to the understanding of the phenomena of
nature".24 In this spirit, let us check what our construction
involves,25

Geometry is of Riemannian type. The means of deciding which
particular space-time geometries are permissible is provided by a
self-contained set of field equations for the metric gensor QPU R
Satisfaction of these fundamental gravitational field equations does
not mean that the gravitational field is necessarily '"pure'; the
matter distribution is given by substitution of the determined Yp
into Einstein's equations for non-empty space,Ta = '-,'Z ('R.Pc._lap‘;@ ,
which are now regarded as a definition of the matter tensor. For
consistency with standard relativity theory, all space-times which
satisfy Einstein's gravitational equations for free space;FL o =0
(equivalently,TiPU-—%ZQPGJQ,= 0), must be solutions of our field
equations. In view of the universal appearance of action principles
in all branches of theoretical physics, and in particular, since
Einstein's gravitational equations for free space are deducible from
one, we expect an action principle to provide the field equations
that we require, Since Riemannian geometry is retained, the basic
Lagrangian must be composed of the components of the Riemann-Christoffel
tensor, and in order that the field laws be independent of the
accidental choice of coordinate system to be used, the action integral
must be invariant with respect to arbitrary coordinate transformations.
We now consider the choice of Lagrangian, the field equations derived

from it, and their first consequences.,
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2.2 The Action Lagrangian

It is well known that the simplest non-trivial Lagrangian density
that can be formed algebraically from the Ypo and the components of
the Riemann-Christoffel tensor is based on the Riemann scalarFi;
and that the Hamiltonian derivative S(R{Fg)/89” of this Lagrangian
density is equal to the Einstein tensor density ﬁ%ﬁ:'zﬁ#n$0J;§‘ .22
Since it is necessary that the Lagrangian density of the action
principle is a scalar density in order to make the action integral an
invariant, the next most simple Lagrangian density that can be formed
will be based on scalars which are quadratic in the components of the
curvature tensor. Due to an algebraic identity, the set of such

scalars may be reduced t026

L.‘ = RP@-RPW:; Lz_ = Rl 3 L.3 = R/bo-d.fr R,oo-a'r,

T8

Now the Hamiltonian derivatives of (Lp-kbj+L, ) =g and L, J-g
vanish identica11y27 so that the only quadratic terms that we shall
need to consider are Lq andl_l.

Various motivating factors have influenced the investigation,
from time to time, of Lagrangians incorporating L_.,.. -,L_W. Some -
times a term representing matter i§ included in addition. Weyl28
introduced such a Lagrangian when he proposed a generalisation of
Riemannian geometry in order to embed into it the theory of the
electromagnetic field. This proposal was taken up principally by

29 30

Pauli®” and Eddington. Lanczos, convinced of the necessity for

the fundamental action integral of general relativity to be independent
of the arbitrary umits employed in measuring lengths in space—time,27
i.e., gauge invariant, has studied purely quadratic Lagrangians.4’5

As mentioned in the introduction, he has used the field equations

derived therefrom in order to construct some static, non-singular
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particle models. Buchdah16’31 has investigated the field equations

arising from quadratic Lagrangians, in particular, from Ll, regarding
them as equations of the pure gravitational field to replace those
derivable from Einstein's linear R Gregory32 has considered the
effect of adding the Lagrangian L_l to K insofar as the problem of
motion is concerned. A similar combination is employed by Pechlaner
and Sexl53 in a phenomenological approach following that of standard
relativity theory; they suggest that such a theory would yield
unrealistic results.

Let us consider the choice of our basic Lagrangianl_.. As
implied previously, any quadratic Lagrangian in \4+ is such that the
action integral is not only invariant under arbitrary coordinate
transformations but also invariant under changes in gauge. This is
because the four-dimensional element of volume,dar:'FEECUBC , has the
dimensions of the fourth power of a length and the Ricci tensor Fifc
(obtained from the second order, and first order — second degree
derivatives of the ekw )} has the dimensions of the inverse of a
length squared. If the action integral is other than gauge invariant,
it can (formally) be made arbitrarily small by a suitable choice of
the units in which lengths are measured. Lanc20527 contends that
the minimising procedure is consequently without meaning. Such an
argument, however, loses validity in view of the fact that although
the variational procedure ensures that the action is stationary, the
action is rarely a true minimum. Thus, unlike Lanczos', our choice
is not governed by any need for gauge invariance. Our Lagrangian

could be composed of L_\, L.L and the Riemann scalmrFi, i.e.,

L—= OLL\ +/6LQ_+XR
in which the constants ol and.ﬁs are pure numbers while the constant ¥

must have the dimensions of the inverse of a length squared. In this

«
~
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way a fundamental unit of length would be introduced into the theory.
The view could be taken that at least one fundamental constant with

the dimensions of a length should be present in order to fix the size
of particles — Nature does not allow particles of arbitrary radii.
However, the presence of the ¥—term would considerably weaken the
field equations, Its inclusion would mean that there is no a priori
reason for rejecting an additional "cosmological' type of Lagrangian
term,JAb » with the dimensions of the inverse of a length to the fourth
pover, It seems logically persuasive that there should be as few
terms as possible in the Lagrangian. Consequently, in the present
work, we put 8’ equal to zero, bearing in mind that inclusion of the
linear term may well yield a more realistic model. The pure number

& may be chosen to have the value unity (for the field equations
arising when the Lagrangian L_z,is present alone, i.,e., the case ok = 0,
has been studied already by Buchdahl.6 . We shall consider the appli-
cation of his methods to our Lagrangian in Chapter 9). Accordingly

we shall henceforth consider the purely quadratic Lagrangian

L=L,+pl,
~— RPG‘RPG-+/5R1 .

The Lagrangian (2.1) is similar to the Lagrangian introduced by

2l

Weyl in his modification of Riemannian geometry, mentioned earlier

in this section., It was essential for Weyl's theory that only the
ratios between the components of the metric tensor should be fully
determined from the field equations., This was because he hypothesised
that not only is the transference of the direction of a vector from

one point to another path dependent, as in Riemannian geometry, but
there is also a corresponding path dependence for the transference

of length. Lanczos34 points out the similarities and differences
between a theory based on the Lagrangian (2.1) and Weyl's theory;
Einstein's criticism of Weyl's theory on the grounds of the indeter-

minacy of the gﬁf is inapplicable to ours because in our case the BPU

P
£,
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are fully determined. There is a point of tangency34 between the
field equations obtained from (2.1) and those of Weyl; this fact will

be very useful to us in obtaining solutions of the field equations.

2.3 The Field Equations and their First Consequences

Our hypothesis is that any allowable metric field whatsoever
must satisfy the field equations obtained from the vanishing of the
Hamiltonian derivatives of L_J;§ where L. is given by (2.1). The

action integral is

—_ P 2\ [T b 242
= *‘L(R,MR + RIS ’
("
and the field equations obtained by setting the Hamiltonian derivatives
equal to zero are35

G-CT:O 3

where 2.3
%" oLt o o
G‘Fc\' LS 8[_)0- R 2oL a RFQ-SQU‘V G R- G 3/004. o R ./o y oo
) LG A
+-2L; g‘ou-RcU‘lR _LRL\’,{D R.d: o
AV | 29 2

+[3(23{°G_% R;o(,’*r "R3fc'--R;o-/-\ +23P¢R 21?\\\{36) .

Provided that the metric tensor satisfies (2.3) we may insert it into

Einstein's equations

e = 2.4
to determine’wku-. The set of all solutions of (2.3) will thus

indicate what distributions of energy-momentum-stress may be permitted
in Nature, within the limitations of our hypothesis.

We now look for the immediate consequences'of (2.3). At the
beginning of this chapter it was specified that all space-times which
satisfy Einstein's gravitational equations for free space should be

solutions of our field equations. It is easy to see36 that a first
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consequence of (2.3) is that any Einstein space, given by

RPG‘ -_—_/\._af:.o- b) 2.5

where fo.is an arbitrary constant, satisfies (2.3) for all values of
the constant @ . In particular, since /\ may be chosen to have the
value zero, there is no conflict with any of the standard relativity
theory based on the vacuum equations, as required. A theory based on
the field equations obtained from the Lagrangian (2,1) thus includes
the standard relativity theory described by (2.5); the set of solutions
of (2,3) augments those of (2.5).

A second consequence is obtained by transvection of (2.3) with

o
9 . This gives:

G"—_': G'?F = 2—(\4‘3@390(# 'R:’o(_"l' = O 5 2.6
so that any solution of (2.3) must satisfy

3&¢${5&q = O 2.7

unless @, = —'% in which case C;qg is identically zero and Lanczos'

equations are underdetermined for solution since an equation is lost.
Now Buchdahl31 has shown that the field equations generated by the
Lagrangian (2.1) in which F, = —-ﬁ are satisfied by all spaces
conformal to an Einstein space. This may be seen from the fact,
mentioned in the preceding section, that there is a point of tangency
between the theory considered here and Weyl's thepry. This occurs
when the Lagrangian of Weyl's theory is that considered by Pau1129
and for the specific value (3; = -Jg . Now for all values of I
a subset S, of the solution set S of Lanczos' equations is the set
of Einstein spaces, given by (2.5). When g = —%; ,» S is the same

as the solution set of Weyl's theory for which only the ratios of the

QP¢ are determined, that is, a subset Sz ’(81C: S:) ,. OF ES is the
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set of space-times arbitrarily conformal to spaces given by (2.5).

2.4 Specialisation to the Static, Spherically Symmetric Case

It does not seem possible to obtain readily further consequences
of the field equations (2.3) without the imposition of symmetry
requirements. In view of the comparative simplicity of spherical

symmetry it is natural to consider this first in any detailed examin-

ation of the differential equations that may arise in general relativity.

There are many equivalent ways of writing the metric in this case.
Following Tolman37 the metric form for a spherically symmetric space-

time may be written:
ds® = —e™ dr* = v (A8  + 5> O ddp¥) + ¥ gk 2.8

where the functions A and V) are generally dependent upon the radial
coordinate ¥ and the time coordinate t:; (2.8) has the advantage of
being simple and conceptually convenient, It is well known (Birkhoff's
theoremzs) that for Einstein spaces, given by (2.5), the time dependence
of the components of the metric tensor in the spherically symmetric

case may be removed by a coordinate transformation, but we cannot say
that this is true for spherically symmetric space-times satisfying
(2.3). Thus we make the additional assumption that the field is
static; i.e. that the Spm vanish and the remaining EVG‘ are inde-
pendent of the time coordinate € , taking X and vV to be functions of

Y only,

A=Al ;, V=vl)

Writing o' =1, 2> = 0, «*= ¢, X*=t ; and with a dash denoting
differentiation with respect to ¥, the 8P“ 3 3P°- for the metric (2.8)
are given in appendix A2.4 by (A2.19), the Christoffel symbols of the

oL
second kind TFG by the set (A2.20), the components of the Ricci

X
{
3
4
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tensor (in mixed form) Fif:r and the curvature invariant Fi by (A2.21),
(A2.22) respectively.

One of the advantageglof a variational formulation of a problem is
that it allows information about the symmetry of the situation under
examination to be inserted before carrying out the variation. Thus,

we may form the Lagrangian density of the action integral:

(Rpe RF” +aRYA
for the metric (2.8) and derive the field equations directly from the
action principle., More laboriously, the various terms on the right
hand side of (2.3) may be calculated from (A2,19)—> (A2.22) and
combined to form the (%Ow for the spherically symmetric, static field.
Although these two methods are equivalent in the present case, a
check on accuracy is thereby provided which is not only useful but
also essential in view of the lengthy and tedious nature of either
calculation, Furthermore, it is well known39 that the Hamiltonian
derivatives of any invariant density that depends only on the 9p°* and
their partial derivatives with respect to the coordinates up to any
finite order have an identically vanishing divergence. This means
that whether or not the C}Pe given by the latter of (2.3) vanish,

they must satisfy the identity

GEG‘BPEO . 2,9

In consequence, for our metric (2.8), i (= C;Z ) may be identically

expressed in terms of G: and G—t :
- ) |
Gr=3lr{(h 8- Ple-e04g 36l - 6h] 20

so that there are only two independent field equations as would be
expected, and (2.10) serves as an additional check on our accuracy in

obtaining the (}P°' from (2.3). Since the calculation of the G%pc -
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by either means — is long but straightforward it is omitted, as is
the expression for C}z since knowledge of it is not required as a
result of the identity (2.10).

The system to be solved is thus (in mixed form):

Gl 0 }
L:_\——O 2.11

H

and these two equations are given by (A2,23), (A2.24). Since (}é
|y
is expressed in terms of Gr‘ and G#E_ according to (2.10), the

invariant & may be written in terms of GA and (}?; s
= L _INEY.. G G\ )

G w{(z_a—‘, W[J)((}I LL)-\—%FL}—{-MG‘ :
Then a system of equations equivalent to (2.11) is

G‘.=0} .18
G =0 J

unless dv /d+ = 2/ in which case the vanishing of (3: is sufficient

in itself to ensure the vanishing of G and it is necessary to demand
the additional vanishing of G:i 7 When this case, dv /fdr= 2/v ,

is investigated it is found that there is no solution as the pair of

equations (2,11) are inconsistent. Thus it is sufficient to solve

(2.12), A further reduction is possible, since C} is given by (2.6):

G = Z(\+’3Ma°"‘R3¢~r 5

so that, excluding consideration of the special case R = m-% , it is

sufficient to solve the system
Vo

G-‘ =~ O

(a)

aour R.;m. =0 2,13

(b)

We shall consider the caseIFB = m-%g at the end of this section.

The pair (2.13) is more convenient to use than (2.11) because

.
4
2

3
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(2.13b) is a condition on the scalar curvature which does not depend

on the value of the constant /3 ! It reads

%
{+ dv - LdA +2 " 2.14
R (E -4 4R v2)dR =0,

which has the first integral

R .

ol

Sy g dL
£ @& "B 2.15
W'Z.

where C is an arbitrary constant. Explicitly (2.13b) is fourth
order in V and third order in A ; it is not necessary to write it
out in full as it may always be conveniently replaced by (2.14),
The differential equation (2.13a) is third oxder in V and second
order in A ;3 it is sometimes useful to have it written in terms of
A,V , their derivatives up to second order only, the curvature
invariant’FL and its first derivative, In this form, (}1 = 0 is
given by (A2.25), All spherically symmetric, static solutions of
Lanczos' equations therefore satisfy (A2.25) and the condition (2.14),
the Riemann scalar being given by (A2.22).

From (2,15) — more generally, from (2.7) — it can be expected
that some solutions of the field equations will be such that the

Riemann scalar has a constant value, i.e.
kK=K 2.16

( K= constant), corresponding to C = 0 in (2.15). Explicitly this

is:

ék{[-“—‘..-v”'—v% L)+ Liastn)- é} y 2 -K=0. 2.17
v 2 i xS P 3 .

There is no.a priori reason to suppose that (2,16) is not only a

possible, but also a necessary consequence of the field equations, as

is assumed for his purposes by Lanczos.40 We shall find, however,

in the next chapter, that on the basis of a "regularity condition'"
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this will indeed be the case.
We now turn to the solution of the equations in the underdetermined

case FS = n-% . In the preceding section the result was given that
a subset of the complete set of solutions of Lanczos' equations when

R = "%5 is the set of all space-times conformal to an arbitrary
Einstein space. Buchdahl31 has shown, by employing a simple

coordinate transformation, that when the space-time is static and
spherically symmetric, solutions of this kind are the only solutions;
that is, any member of the set of '% = ~-§ solutions must be reducible
to the form:

dg*= D"(p)i_:é,cf_“__ % (¥4 st © cl§) + [1=2m ~A &)ote‘] 2.18

(i=2mfp - Ap/a) Po3)

where m and /\ are arbitrary constants and ) is an arbitrary function
of f> . This strong result would be of no further interest, as

R = ‘%S is a degenerate case, if it were not for the fact that
contained in (2.18) is a set of well determined solutions of Lanczos'
equations; in particular, the set of all solutions Minkowskian at
spatial infinity. This latter result depends upon the theorem
obtained in section 2 of chapter 3; the set of well determined

solutions referred to will be obtained in section 5 of chapter 4,

f
3
:
i
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3. BOUNDARY CONDITIONS AND EXISTENCE THEOREMS 4
FOR THE STATIC, SPHERICALLY SYMMETRIC CASE

3.1 Introduction

S e T R

The field equations to be solved, (2.13), are differential

e

equations of high order, coupled and non-linear, and there is no hope §
of obtaining the general solution with the full number of arbitrary
constants. Our method will be a simple one: to loock. for solutions 4

which have certain properties, imitating in some respect the static,

spherically symmetric space-times that arise in standard relativity
theory. Our interest will be only in space-times which satisfy the
field equations for values offa other than -'%' ; those that satisfy
the equations only when {5 = -»"g will not be considered to be true
solutions, It will be useful to list those space-times that arise
in the spherically symmetric, static case in standard theory.42

a) The most reliable verification of general relativity is based on

the Schwarzschild line element:

dets =drl - o (a6 B )+ (1), s
—Zna

sk

which satisfies Einstein's vacuum equations

R[JO':- O'

The gravitational field represented by (3.1) is regarded as generated

by a point mass M situated at the spatial origin. The mass T4 is
related to the constant of integration wi by ™M = grm/x.c”,

b) A second important space-time is the Riessner-Nordstrom solution,

which corresponds to the gravitational field due to the electromagnetic

field energy of a point charge at the spatial origin:

dE = — vt v (AOZ+ s *® ch\\l)'*' (| —~Zm +).<.‘-.E'.:.")Czdtl¢ 3.2
|-l g x & ¥ RE
¥ 3

P
*:
3
i
o
53
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This satisfies Einstein's equations
R oo —JZ’RSPo:”K' po 3.3

in which the energy-momentum tensor -Tk@ is due to the electric field
of the point charge. The constant of integration m is related to
the mass of the particle as in the Schwarzschild solution (case (a)),
while the constant of integration € is the charge of the particle.
Both the Schwarzschild solution (3.1) and the Riessner-Nordstrom
solution (3.2) are asymptotically flat, i.e. in the limit as the
spatial coordinate ™ increases without bound the metric approaches

the Minkowskian form:
As* = —dv* = (8 * +-stn?0 df\’1> + crdE" 3.4

Neither (3.1) nor (3.2) is regular at the spatial origin. Three
space-times which exhibit regular behaviour are de Sitter space-time,
the "interior" Schwarzschild solution and the Einstein universe,
c¢) De Sitter space-time is unique in having constant space-time
curvature everywhere. It has the metric form:
dgs = —dy* = {(do™ + 50 g ™) + () —J\—z@ chdE , 3.5
L=\ 3

which satisfies the field equations (2.5):

RPO" :.A-aroo- ¥
d) If, in (3.3), the energy-momentum tensor po is taken to be that

of a perfect incompressible fluid with constant proper density fk°’

the "interior' Schwarzschild solution is obtained:

ds*= —dr*  —+*{dB% s Bctcb’")-!— St g Gl %K)vko )“‘olt 3.6

|- wya“/s A
The constants of integration oL and (: are related to the physical

properties of the fluid sphere.

SN el BBy
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e) The Einstein universe,

(iSL - _dH‘JL — L(dez.‘\_ 3\‘”\16 ok(b‘% + cralke™ y 3.7
) ety

is a solution of the cosmological equations

RPW‘L‘JNR + I\ g = —KT{W : 3.8

The energy-momentum tensor vT;F is that for an incompressible perfect
fluid., The constant of integration <, , which must be real for a
realistic model, is related to the cosmological constant.j@; , the
constant pressure YD and constant proper density fA° of the fluid

according to

%: A, = W{TD W{LAQ + JAL g

(+}

When the pressure P is put equal to zero the line element (3.7)
represents the gravitational field of an incoherent matter distri-
bution.

Of the most important spherically symmetric, static space-times
of standard relativity theory, (a),....,(e), only the Schwarzschild
solution and de Sitter space-time are also solutions of our field
equations (2.13). The Riessner-Nordstrom solution, the '"interior"
Schwarzschild solution and the Einstein universe (which satisfies the
field equations only when fs = —-% ) are lost. We wish to know what
solutions arise in our theory to replace thenm.

Our investigations begin in section 3.2 with the search for
solutions to replace the Riessner-Nordstrom solution, or extend the
Schwarzschild solution. Such space-~times are flat at spatial
infinity and have corresponding matter distribution of only finite
influence. We cannot be certain that it is in any way meaningful to
talk of "infinity" but such solutions — especially the'Schwarzschild

solution — play a role in standard theory that is important on
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historical and psychological grounds at the very least. Thus, it is
natural that our attention is turned first in this direction.

It is difficult to conceptualise "infinity'" but it is easier to
give its meaning mathematically, On the other hand, we feel that we
know what is meant by 'regularity" but it is difficult to reach a
satisfactory definition in general relativity. What we mean by
"regular'" will be made precise in section 3,3, We shall look for
solutions which share this property with de Sitter space-time, the
"interior'" Schwarzschild solution and the Einstein universe, and
which replace the latter two space-times, It is found in section
3.4 that there is no solution, regular or not, which is asymptotically
like the Einstein universe. We cannot say, however, that de Sitter
space-time is the unique solution with asymptotically constant curva-
ture; solutions which have this property are examined in section 3.5,

It was stated earlier that those solutions in standard theory
which are Minkowskian at spatial infinity are not regular at the
spatial origin, It is also true that those solutions in standard
theory which are regular at the spatial origin are not asymptotically
flat, It is thus a question of considerable interest whether or not
our field equations permit a solution (other than, of course, the
trivial Minkowski solution) which has both properties. In section
3.6 the results of sections 3.2 and 3.3 are combined to provide the
information needed to answer this question.

In our investigations in this chapter it is necessary to assume
that the unknown functions possess appropriate series expansions,
but it is recognised that in using this technique certain solutions
could be missed, For example, the function 53QX3 = exp( - e S ) is
such that 5: and all its derivatives at 2C = 0 vanish, and consequently
-f(dﬂ has no series expansion in positive powers of X u# Our technique

is justified, however, by the fact that we are interested in solutions
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1
i

with certain asymptotic properties. This is not our exclusive

interest; it is an essential line of attack in dealing with what
could otherwise amount to an intractable problem. Solutions without
the properties mentioned may arise; their physical interpretation may,

however, be obscure.

3.2 The Non-Existence of Asymptotically Flat Space-Times with Non- .

Vanishing Curvature Invariant 4

In a preliminary investigation of Lanczos' equations to look for

spherically symmetric, static, asymptotically flat space-times the
following approach was taken, The unknown functions G?“, e? of the
metric form (2.8) were assumed to have series expansions in terms of
decreasing powers of the radial coordinate " with leading term unity.
These were substituted into the field equations (2.13). The
coefficients of successive powers of 1/¥ were then equated to zero
and the equations solved in order to find expressions for the first
few unknown coefficients of the negative powers of T in the series
expansions of £2L, e? . It was found that the first coefficients

are algebraic functions of only two unknown constants, and do not

depend on the value of (3 . This latter fact is highly suggestive.

For, if the series solutions are completely independent of (3 then

they must simultaneously satisfy the equations obtained from the
separate vanishing of the Hamiltonian derivatives both of the

Lagrangian F{PGY<ET and of the Lagrangian R . Now Buchdahl6 has ;
shown that the field equations obtained from the vanishing of the |
Hamiltonian derivatives of the Lagrangian Fif' have no asymptotically E
flat, spherically symmetric, static solutions such that the Riemann

scalar R is not zero everywhere. It is thus possible that Buchdahl's

N o g Fo o Zasmb o, ile oy b

result is true for the equations obtained from the complete quadratic
G 2
Lagrangian RPG-RP +,<3R . That this is so is demonstrated by the “

following theorem:
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Any spherically symmetric, static metric that is a solution of
Lanczos' equations and tends towards the Minkowski form for large
values of the radial coordinate must be such that the curvature
invg;iant vanishes everywhere.

For large 7 we suppose that the unknown functions e?’, e” of

the metric form (2.8) may be expanded:

B g Ao B b B Gvpgs ,

8 P
" 3.9
¢ =41 +hb + byt 5

g il Y-

for some constants & ,Q5,.0.5 b , bysee
Then from the expression for the curvature invariant R given by
(A2.22) the highest power of 7 that can occur in its expansion is

clearly ">, Thus:

P\. -“~"”_n(co+ ot QJ—
™

kA

*.02), Cos O, 3.10

for some constants CO 5 Cl 3 Cz, 5.+, and for some integer YL
. 3.11

Now since it is required that the field equations be satisfied, (2.14)
(equivalently, (2.15)) is true. With the expressions (3.9) for
Qh s {’,v , and (3.10) for r , we obtain from (2.14) the condition

on i :
Con(n—\) = O

which is a contradiction, from (3.11).

Then, in (3.10), Co and all successive coefficients must vanish.
Thus R. = 0 to any order in 1/4* in the region of spatial infinity.
Hence R =0 everywhere.

If we suppose more generally that the expansions for -e", Qﬂ are

QW=Q.0+9—J-\-Q.’L+--' 3 O.o'-‘#'—oj
< kS

i

Q-D':-bo’\'b_s-\- O = I 5 bo#OJ
"—’

Y2

=T <
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then the proof follows in identical fashion, with the condition (3.11)
replaced by n %7 2. The additional condition O.s= 1 is obtained;
bo may be chosen to have the value unity by a transformation of the
time coordinate.

As a further generalisation, we may assume that the expansions
for e?“, -éy are in powers of 1/+™, where ™  is not necessarily

an integer:

p
B = OB A LE s o s s as % O

'YuW\- ,YN'Z.VV\—
” 3.9!
e el 4+ B o4 5 b, # D

AL W~ 2

If the field equations are satisfied, it is found that i must have
the value unity. This result is proved as a lemma in the appendix
to this section, A3.2. The theorem then follows as above.

The theorem that has been proved in this section concerning the
boundary condition of asymptotic flatness is of some interest, despite
the condition of spherical symmetry on the static field. Buchdahl6
has shown that when the field equations obtained from the Lagrangian
1%% are being considered, his result may be generalised by abandoning
the condition of spherical symmetry; that is, there exist no static
(sufficiently often differentiable) solutions of the field equations
generated by T{% which are asymptotically flat but do not satisfy
R = 0. His methods are discussed in chapter 7; the generalised
result may not readily be shown to hold for the field equations
generated by'Rfogym}'ﬁ¥{l . Buchdahl's result is unfortunately of
no great interest since the field equations generated by ¥<? are very
weak: they are satisfied by all space-times with vanishing curvature
invariant. However, the field equations generated by the complete
quadratic Lagrangian are much stronger; only a finite subset of space-
times with Fi = 0 will satisfy them, In view of this, our theorem
is extremely useful. As will be shown in the next chapter it has

the consequence that we are able to obtain the complete exact solution

e sy
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in the static, spherically symmetric case under the imposition of the

boundary condition of asymptotic flatness.

3.3 The Non-Existence of Regular Space-Times with Non-Constant

Curvature Invariant

The problem of singularities in general relativity is a crucial
one and is only partly solved at the present time. In this section

we shall see how it appears in the context of Lanczos' equations.

3.3.1 The Singularity Problem in General Relativity

The task of defining a real, or physical singularity in general
relativity is made very difficult as a result of the general covariance
of the theory; an apparent singularity of the space-time may not be
physical but may exist merely as a result of an unfortunate choice of
coordinate system used to describe the space-time.

Intuitive notions as to what should constitute a real singularity
fail because we are not considering the behaviour of certain quantities
referred to a background metric, as in other field theories, but
rather the background metric itself. Geroc’h43 has examined the
arguments which lead to a definition of a physical singularity based
on the idea of geodesic incompleteness, but he shows that no definition
is entirely satisfactory due to the existence of geodesically complete
space-times containing timelike curves with bounded acceleration and
finite total proper length. Hawking and Penrose44 have carried
through a programme the aim of which is to find conditions to predict
whether a solution has singularities, the nature of any predicted
singularities and the consequences of their existence for general
relativity theory. Timelike or null geodesic incompleteness is taken
as the indication of the presence of a singularity and it is shown in
a "corollary" that any space-time satisfying a set of four conditionms,

together with Einstein's equations (3.3), cannot satisfy causal geodesic
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completeness. They say, '"We may interpret failure of the causal

geodesic completeness condition in our corollary as virtually a state-
ment that any space-time satisfying (these four conditions) 'possesses

a singularity'...." (our italics}.

3.3.2 The Singularity Problem and Lanczos' Equations

In order to apply the Hawking-Penrose corollary44 to indicate
the presence or otherwise of singularities it is necessary to know
more about the space-time than the field equations that it satisfies.
Thus, no direct application may be made to our field equations to tell
us whether or not they admit non-singular solutions. Furthermore,
the Hawking-Penrose result is in general inapplicable even with full
knowledge of the metric form and corresponding matter distribution.
This is because one of the four conditions required by the corollary
is an "energy condition'': the energy density must be nowhere less
than minus each principal pressure nor less than minus the sum of the
three principal pressures. This is a completely reasonable condition
in view of the aim of the authors of the corollary to relate their
results to the known universe in order that these results be experi-
mentally verifiable. However, it is also rather strong and restrictive;
the solutions of our field equations will not usually satisfy such a
condition.

‘Thus there is hope that Lanczos' equations may admit non-singular
solutions, on the somewhat negative grounds that if the Hawking-Penrose
energy conditions are not satisfied there is very little that we can
say about the presence or otherwise of singularities. More positively,
however, we know that these energy conditions are also violated by
the C-field of Hoyle and Narlikar,45 while the presence of the C-field
in the gravitational equations of standard theory can prevent, in a

very obvious way, singularities from occuring. It will be generally
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necessary for us to consider the singular nature of each solution as
it occurs, as far as this is possible.

In looking for solutions of our field equations which are regular,
we must use a very unsophisticated working definition of "regularity'.
We shall follow Bondi4§'in saying that a space is non-singular or
regular at a point if a local Minkowski tangent space exists at th;t
point. If it does not then, at the point under consideration, the

space is singular. We now examine what this means for our metric

(2.8).

3.3.3 The Regularity Definition

The point that is problematic when using a pseudo-polar coordinate
system , O, ¢ ,t , as in (2.8), is the spatial origin, = 0.
This is because the determinant of the metric tensor

Y e 7k a0
is either undefined at " = 0, since there is no preferred radial
direction, or zero there, In either case, the tensor congruent to
ng“' i.e, SPU s does not have meaning and the field equations
break down.

In terms of the regularity of the space-times that satisfy the
equations (2.13), our interest will thus be focussed on the spatial
origin. Since it is easy to detect when a space-time is not well
behaved at points other than Y = 0 we choose to apply Bondi's
definition of regularity specifically to W = 0, Then the condition
for regularity that we impose on any space-time whose metric is exhibited

in (2.8) is that

ékﬁz—)i as T— 0, and:
V()
€ is continuous and bounded away from the origin
3.12
as ¥ —>0.
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This condition, (3.12), is not by itself sufficient to ensure that the
determinant of the metric tensor, after transformation to a set of
coordinates meaningful at the spatial origin, does not vanish there.
For, if a coordinate transformation is applied to (2.8) to put it in
the form described by pseudo-Cartesian coordinates, which have validity
D

; b : . A ;
at the spatial origin, then 9 is given in terms of €, € in the new

coordinates by
g= -t 3.13

and it is clear that the condition (3.12) does not stop this from
vanishing at ¥ = 0, (The formulae of transformation from pseudo-
polar coordinates to pseudo-Cartesian coordinates, together with the
components of the metric tensor in such coordinates are given in the
appendix to this section, A3.3, by equations (A3.31), (A3.32), (A3.33).)

The fact that ¢ may vanish in a particular coordinate system for
some value of the coordinates does not mean that there necessarily
exists a real singularity at the point represented by the coordinates.
For example, when a synchronous coordinate system (G, = 0, Quy = 1)
is used in cosmological problems, 9 vanishes inevitably for some
finite value of the time coordinate, whatever the matter distribution
assumed. Belinskii, Khalatnikov and Lifshitz47 have discussed this
matter in their analysis of the problem as to whether or not singu-
larities occur in fully general solutions of Einstein's equations.
They show that in this case the singularity is fictitious — it
disappears in other coordinate systems. Consequently, we need not
be concerned that the definition allows the possibility that 9 might
vanish in some coordinate system.

We shall find, however, that 8 does not vanish in pseudo-
Cartesian coordinates at the spatiai origin for solutions of (2.13)

that are regular in the sense of (3.12). In addition, all components
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of the metric tensor SPJ are well behaved. Then the components of
the conjugate tensor are well defined and well behaved at the spatial
origin. Any space-time satisfying (2.13) and (3.12) cannot have a

physical singularity at * = 0.

3.3.4 The Application of the Regularity Condition to the Field
Equations

The aim of this section is to demonstrate that there is no

solution of the static, spherically symmetric field equations satisfying
the regularity condition (3.12) that does not have constant curvature
invariant everywhere,
. 5 i o i 7
It is first assumed that near the spatial origin € , € possess
series expansions in texrms of rising powers of T . In accordance

with the condition for regularity (3.12) these may be written
~

B7 = | 4 o & g, o e 3
3.14
YA A o 3
e = dot U+ v GePrggr e e}, dog#0
for some constants A, O ; Oy, Qg s «sv 5 Cys Co s Ca s wes 5 g

There are no constraints on A to take non-negative or integer values.
It is now supposed that <fk, & given by (3.14) satisfy Lanczos'
equations (2.13). The following results are proved as lemmas I, II

and III in the appendix to this section, A3,3:

I, The constant A may take only the values 2, -2, 0.
I The values A = 2, A = -2 are excluded,
I1I. The expansions (3.14) are in terms of even, non-negative powers

of the radial coordinate only.
We may now state and prove the theorem:

Any solution of the static, spherically symmetric field equations

that is regular in the sense (3.12) must satisfy, for some constant K‘:

R=K




BT
everywhere.
n Vv .
For small ¥ , € , £ may be expanded, according to the results
of lemmas I, II and III:

et | ot o vy

3.15
v
@« = doll*rer*+Ccyuvr i)y A0,

for some constants Qz, Qu ,..., Co , Cp ,e00, dyge

Then from the expression (A2.22) for the curvature invariant Fi., with

Q?', Q? given by (3.15) we must have

I
R=6layg-c)+ Dov* + P, % 18

for some constants ]2L ,j%P s @

Now since it is required that the field equations be satisfied, (2.14)
(equivalently, (2.15)) is true. Clearly, by (2.14), the successive
coefficientsiDE,,jzy see. in (3.16) must be equated to zero. Then

F{ = constant = K to any order in v near the origin. Hence

everywhere.

It is easily seen, from the formulae (A3.32), (A3.33) for the
metric tensor in pseudo-Cartesian coordinates, that, with e?; é?
given by (3.15), apo' is well-behaved, 9 non-zero and g’ow.well—
defined and well-behaved at the spatial origin. The invariants that
may be constructed from such quantities cannot be singular, We can
be sure that the imposition of the fairly weak regularity condition
(3.12) on Lanczos' equations in the spherically symmetric, static case
results in space~times that have no physical singularity at the spatial

origin.
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3.4 The Non-Existence of Space-Times Asymptotically of the Form of the

Einstein Universe

It was mentioned in section 3.1 that the Einstein universe
satisfies Lanczos' equations only when B o ‘}5‘ and thus does not
constitute a true solution. It is reasonable to enquire whether or
not there are any solutiéns that are asymptotic to the Einstein universe.

That is, do there exist solutions of the form
o e TN
Bl = 3,17
.\)
e - 1
as T—> T ? From purely formal considerations, ﬂ’”o" may take
positive or negative values.

In order to find if (3.17) is a sensible form to try it is

necessary to find what formal solutions exist for large T of the type:
-

= U Lt by, e s s g Wm0,
'YJ
» 3.18
e =
Vo + Yo Yo+ Yo+ 0y Ve # 0,

for some constants Wy, Uy , Ugy ,e0e Vo 53 Vi 5 Vo 5e0e o

It is found that there are no solutions of this type for' Woe# 03
furthermore, there are none of the type (3.18) with W,= 0 and Y, # 0.
This result is proved as a lemma in the appendix to this section,
A3.4., When tLy and W, are both zero we ari¥ive at the asymptotically
Minkowskian form analysed in section 3.2,

Then there are no solutions, regular or otherwise, that are

asymptotically of the form of the Einstein universe.

3.5 The Non-Existence of Space-Times Asymptotically of Constant

Curvature with Non-Constant Curvature Invariant

We know that there exists at least one solution of Lanczos'
equations that has asymptotically constant space-time curvature.
This is the complete solution of the field equations (2.5) in the

spherically symmetric case, being given by the metric:

. o) .
o ke Bty - < o a
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= ~ dp® ~ (0% 4 st O old®) + () = Zup ~A ) clt™,
| =2 fore AN/ L
There is no reason to believe that there are not others with asymp-
totically constant space-time curvature; indeed, numerical results
seem to indicate there are. We show in this section that solutions
with this property must have constant curvature invariant.
For large ' we suppose that the unknown functions ér 5 e’ of

the metric form (2.8) have the formal expansions

i
e —borl(l+b¢ v ba o+ byt ) 5beybt O

¥ 3.19
P : ®
e =OL°1”J'(\+%| + %z,’--}— %33+-..); ao,ol%o,

for some constants Og , &y 5 O seews Pos By 5 by 5o o

(The form assumed, (3.19) is more general than that required to
represent a space-time with asymptotically constant curvature, i.e.,
one which is asymptotic to the de Sitter form (3.5). It transpires,
however, that an application of the field equations reduces (3.19) té
the latter). The curvature invariant R. is found from (A2.22) to

be given by

. A
K= LZ_:o Ex 3.20

and the combination (-12-0%&— - ‘2% +,—2;: ) is given by
ddo - fdd v 2 = by S Bi, 3421
2 A * ¥ g Z—‘.—L 5"
L=

where, in (3.20) and (3.21), 9'\, and BL are constants such that
A gt(o.j,bj ), B = B;,(og,\'3 » 5 ) forj 40U and each L 7% 0.
As usual, €7\' and e" , given by (3.19), must satisfy the differential
equation (2.14). Substitution into the latter from (3.20), (3.21)
yields a succession of relationships, the first two of which are the
equations Q‘ = 0 and Hz= 0. In place of an algebraic equation for

93 , however, an identity is obtained. It is clear that gnﬁ 0 for
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all n? 3 if F}5 = 0, and to show that the latter is true we must
employ in addition the second field equation (A2.25). That Fﬁg
vanishes is proved as a lemma in appendix A3.5. Then, as in previous

sections, R = qu = constant everywhere.

3.6 Conclusions

As stated in section 3.1, it is pertinent to ask if there are any
solutions which are both asymptotically flat and regular, apart from
the Minkowski metric. To answer this question, we may draw a

corollary from the theorems of sections 3.2, 3.3:

Any spherically symmetric, static, regular metric that is a
solution of Lanczos' equations and tends towards the Minkowski form
for large values of the radial coordinate must be such that the

curvature invariant vanishes everywhere,

In chapter 4, section 5 we shall find the set of solutions that
satisfy R = 0 and see that there is no such regular, asymptotically
Minkowskian solution.

The fact that in the spherically symmetric, static case all
regular solutions of Lanczos' equations satisfy R = constant is
interesting in itself. In addition, it ratifies (at least under
these symmetry conditions) Lanczos' claim that R = constant is not
only a possible, but also a necessary consequence of the field
equations.40 Einstein's requirement that the gravitational field
equations should be quasi-linear and of second order only in the
components of the metric tensor is to some extent heuristic. However,
the condition of regularity on the solutions of the field equations
is in this case sufficient to ensure that it is completely fulfilled,
For the field equation (2.13a) is now given by (A2.25) with R

replaced by the constant K (we henceforth denote this equation




s

(A2.25)y ), while (2.13b) is replaced by (2.17). It is clear that
the highest derivatives N Y appear only linearly; knowledge of
s X' and V' is sufficient to determine them uniquely. Any

objection to Lanczos' equations as the fundamental gravitational field

equations on account of their high differential order is thus
diminished.

The system of field equations to be solved when R =K 2
consisting of (A2.25)g and (2.17), may be reduced to a single integro-

differential equation. Making the change of variable

o= e
and writing
X = o1 ,
oz

(with a dash here denoting differentiation with respect to z ) the
integro—differential equation is i

F (8){(34-\)*3 -2y -2y +8) ) (o Rl X+m(x—z)}

+F(X\{—zzg’*+83 -8 +hyy'- 8y 3.22
-Ke* E(1+2@3)3+(5+ 18R+ 16 (-+22)y + 4 (3+8p) +Zx‘(x~2)]}
2 =K (y+ ) + K= (1 - Keb= ) (y+ LY (1+2.8) =
in which

= ._1._ 2 KG»Z‘A) o
G(@U PR R U +C} °

where C is an arbitrary constant and

~B% 24 \2. :
G =< “ly+y) epr[(XHQ +(x’*'~'f»> o\L] )
(except when ¥ = - 4. This case must be treated separately but it

may be shown that there are no solutions of this type).

The unknown quantities ~€?‘ and -(’_7) are given by

(K ~ 1/F(X) )
ij = QAP {SXC\ZJ} :

Analytic solution of (3.22), however, presents an intractable problem, ;

1

though numerical solution by iterative techniques may be possible.
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4. SERIES SOLUTIONS AND EXACT SOLUTIONS

4.1 Introduction

Our aim is now to develop series solutions, and, where possible,
to obtain exact solutions, corresponding to each of the boundary
conditions studied in chapter 3. The first few terms of a series %
solution satisfying the regularity condition (3.12) are given in
section 4.2 and lead to two new exact solutioms. Series solutions :
consistent with the boundary condition of asymptotically constant
space-time curvature are investigated in section 4.3. In the
following section 4.4 a family of exact solutions is obtained which
includes those of section 4.2, We then return, in section 4.5, to
consideration of perhaps the most interesting boundary condition -
that of asymptotic flatness - and derive, amongst other solutions

without the property of asymptotic flatness, a solution corresponding

Yo B0 2 N, 5 n?], B EASSS

to a line element that contains the Schwarzschild metric (3.1) as a

special case. The properties of the universes obtained as solutions

in this chapter will be discussed in chapter 5.

4,2 Series Solutions corxesponding to Section 3.3 for Small Values A

of the Radial Coordinate

n
Regular solutions are such that € and ¢ have expansions of o

the form (3.15), in terms of even, non-negative powers of the radial

coordinate and satisfy R =K . Por small values of v we expand: 3
€*=w FVoTE vt v Tt L L 3 ‘
04
2 = do (VU ™+ U P U, ), de®0, 41

for some constants Vo , Vi 5 Vb seees Mo s g 3 We peviey Ao i

and substitute these expressions together with those for the derivatives ]

A%
of ~€} and € into the pair of equations (A2.25)K i (2317
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Equating the coefficients of successive powers of Y to zero we
obtain equations for the constants Vi , Vi, ,..., Y44 , Wy ,... which

may be solved and substituted into (4.1) to give

= 1w +L (U v T va =3 (g v vt

A (aVa) [ (-2 + 200+ 143U vad(2u - va) -2 (38) (U VY ey

bl 4.2
&la, =+ Wt -i—._L(uf-\/{) TCuy, +va) +3(2>tuxl+v1ﬂw‘*

+ (w 3-'\/12 [ 2.0 \Lz D,y Vg - 1’5\/3_)4"5@ (U\q_‘\' \/D (25& “\/’L) +1 (%F:) (U‘:."'Vq) J'f' e

2% 5:7
with

K = —6lup+va) . 4.3

In addition to the parameter @ , two arbitrary constants, w, and
V, , are present in (4.2). The two situations U, = IV, are of
immediate interest. Firstly the case 1\, =V, corresponds to

de Sitter space-time, which we had expected. Secondly, when W, =
-Vy, 4, K =0 and there is no dependence upon @ . The series

expansions (4.2) become:

N

€5 =l ug vt 2 udrh =3 ude bl (a)
5 5 4.4
-ef’/o\o= | +ur® 2 wre% 4+ _?’-__ W S s 5 (b)
B i
A
Up to terms in ™°, €€ = cla, and the right hand side of (4.4b)

is the expansion of

w A i A0 | > (o ;
%U«;_T'Z' sunh ( '3\*’).'?} or ?Jb\«;:wl s ( ?)ul "f‘) * 4.5

A check shows that

é: ' o= {‘_C:I_'_____‘}land, Q}: 2 = %‘_ﬁ_‘,.ﬁgl“._ﬁ_}x)
o Suad (C) do sin. ( Cw)

where C is an arbitrary constant, do indeed constitute two exaet
solutions of the field equations, Then, from (2.8), the metrics

corresponding to these solutions are

i




_rm
dgr= —Coem A _or (a0 +3unsB dgt) +~ X7 det o 47
sua* (C) suah*(Co
dst = = O dpt o (d@ +5in @ dg) + _Cix ol 4.8
s (C) su{cr)

That a second arbitrary constant may be introduced into the metrics

(4.7), (4.8) will be demonstrated in section 4.4 .

4.3 Series Solutions corresponding to Section 3.5 for Large Values
of the Radial Coordinate

It was shown in section 3.5 that any spherically symmetric,
static solutions of the field equations representing space-times
asymptotically of constant curvature must have constant curvature
invariant_. The formal series expansions, given by (3.19), are to be
substituted into the pair of equations (A2.25), (2.17) in order that
relationships between the constants o, bi may be obtained by
equating to zero the coefficients of successive powers of !/v
We denote by ‘6\(., the pair of coefficients which involve terms of
the form Cop, Gy, oo c,,WP where each Cnv, represents either OLrey,
or b,‘vb and K 2, =v. ., Equating C‘ so00s G5 to zero and

v= |

solving the resultant equations we obtain (as in appendix A3.5):

o
]

o, =0,
bz_z"a’)__:l/bo’

by = aa, 4.9
bu_ = %a;l b

The set (4.9) suggests the exact relationship

-
2

=L yhet o be o7 (&Y _9) 4.10
3 ?)Clo o\m{-}
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between ﬁk and E’:) . It has not proved possible to demonstrate
the general consistency or otherwise of the equations (A2.25) and
(2.17) under the substitution (4.10); that the latter cannot hold in
general for this type of solution is shown by considering higher terms
in the expansions.

As each successive pair Gw, 18 equated to zero two possibilities
are generally obtained., One is that the constant ;6 takes a

specific numerical value, the other that a pair Qi , V¢ vanish but

F:‘) is unrestricted. Considering values of w 5= 10 the following
series expansions of the form (3.19) are obtained:
Case A: Special ([ values
i = '—_.L_. = _~J_ 17
For the particular values (3 G e Tl —|L2!T E g

certain pairs of coefficients @ , ©_ vanish and higher coefficients
are given in terms of three arbitrary constants. (To determine the
coefficients Qgq, bq and higher the expansion would have to be

taken to greater order than v = 10),

(1) /6 & —Tli: Qg C()); Qu s Qq » Oy arbitrary,

by =
£ o™ B iy allh Bl il - 18 |
e Qo 4o0s dekk gl Qe == 19 ogan
&8s, o M = 3 A = e
Bl | Bt 0B | b o)
=B g o o G . - e
R "’“C‘“—(‘ic‘l ‘]QL;)‘_T_% +7~ﬁ = )’
-‘)
& . ao,.r.‘ k‘ 0 4 Ay 4 Qun O —.f‘.)_. Qo Qi -——J-
> 3 P w5 7 & o
-5 ! |
- Grautl +a y =l Lo+ Q3 +Q
A0y LA Ou)l 4+ Q9 +Cew..) .,
6 7 "‘(‘1 6 )T v % 'r“’*-
(i1) P = —-wz) : oy =0Q,=0; a,, ay , ag arbitrary,
bu: b(3=
S o %5
e,=__(1+93m+23+_1+§___5‘,+£v_§z_2§
B v T3 wE gl i el
~23 azas 4+ ba 4 Le e )
L3t T + e )
-‘)
-({:CLO'“("Q'(\‘\‘“QL +83 L O 4+ @5 4+ O —1'3 GaQs
'le T T4 B ) ™o 22 ™7
-1 azas . Qaq Qe
R i L

b =g P is" ' o =

[
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(i) P =72 Qu =05 = 03 =0; a,, @y , @, arbitraxry,
bu. = }.')i’-'_ ol ;’:"‘] = O
-A s 5
€< = — (l +82 + Qs +0+20;, + O ~ 39 A.a, +b.3“"b.l£’""v-');
2, T3 U S L T 2
~J
€ L o™l #0 +21 40 +Q + 0 L8 WA Qg +an £
e ~N3 R U W % NG e
" 1] ;
(iv) F’ =t AQp= Qs =0y = ag =03 a,, @y , ay arbitrary,
bq,: bs = b(, = bS =6 5
57“-“_”‘(144;». % +0 +2 2 O + bq ¥ Ee -
O R R B B o S
)
€ = Q™| +02 +2 +0 + 81 + 6 w29 4 Ow 4,
~N % <7 % A Erat e}
FL ’ .
) ff”-‘"@- Qu=0g = A, = @3 =0; 0., a3 , oy arbitrary,
bb}.= b5 = \‘.'J‘:,\ = b—' = O %
b | S \‘ 1
. (V4% + % +0 +8a8 4+ Pa o4 ki 4 )
Qg R A 3 w o i D

coorrll 482 vy 10 & as
s S

Presumably in this case i, and
pattern in (i), (ii), (iii), (iv

invariant is given by

R=

17
Q.

The above expansions (i),..

conjecture: if (3 assumes one

., will vanish, following the

) above. In all cases the curvature

.»(v) support the following unproven

of the particular values (n*+%5n --‘),)/M\.,

% =0, 1, 2,.. then the solution may be written in terms of three

-

arbitrary constants Q; , (i,

Case B: /3 wunrestricted
CH_,, = C\f:‘) = Clb = C\-' = 0_8 =
bH' = \Q[n = b(‘: = I")nf = \,,;2 =
- &
e = & = () & 22

th_“( Qo= l/az' )‘

+ OL4d)-

i,




-47-
We speculate that either the higher coefficients O.o, buo St

vanish, or that they are functionally independent of & . If the “

latter is true, any solutions that exist for unrestricted @ in this

case are solutions which are independent of @ .  Such solutions

must satisfy the field equations obtained from the vanishing of the

Hamiltonian derivatives of the Lagrangian R* . Now the only
R = k: % 0 solutions of the latter field equations must satisfy6
Fifcsﬂﬁj%“3f°‘= 0. Thus the most general solution of Lanczos'

equations satisfying R =K # 0 and independent of B is given by

the set of Einstein spaces F{ o 8 JP&_%PG.. In view of our choice
of the metric form (2.8), this means that the coefficients O  ,

b,o,.... must vanish.

A numerical search for solutions which are regular and have the

asymptotic form described under case A has been carried out; this

work is discussed in section 6.4. However, the series solutions
that we have obtained in this section do not enable us to obtain
exact solutions and are not instructive; they are of little more

than formal interest.

4.4 Space-Times I ——>1IV

In section 4.2, as a result of seeking solutions regular at

)
vy = 0, two exact solutions, (4.6), were obtained such that-é} =€

Making no assumptions about the constancy of the curvature invariant

we now look for further solutions of the field equations when e -
2.
The field equations to be satisfied are (2,15) and (A2,25), with
F{ given by (A2.22). When {fL = 2* s, (2,15) may be integrated to é

give
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R=8 +7D , 4.11
T
for some constants A and D . It is convenient to make the change
of variable
A kg5
and to define
P=P&) = R&*. 4.12

Then (4.11) is replaced by
P= Re*+ D™ , 4,13
and the expression (A2.22) for R by

= N (=N AN -D) 4.14

v
where we have substituted © = € and denoted by a dash derivatives

with respect to 2 . Now employing (4.14) as the defining relation
for M’ , we obtain in the place of the second field equation (A2.25)

a first order differential equation for %gk, which is
(2@ PHAP+ 8PE™ + Pe™ (-aX-1)] + 8/3(P~P’)€7‘ =0, 415

where F’ is regarded as a function of the independent variable = ,
given by (4.13). (4.15) is now differentiated with respect to =

and substitution made into this expression for P” in terms of P

and P’ from (4.13) and for A in terms of A and P from (4.14).

We obtain

(z—x')é’*{(wz@(—rﬂx +2P)+ hp (P- Py =0 . 4.16

el
s
L )
>3
2
3

e
e foat
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Since no solution is obtained from A/ = 2y dies o\l/dw = 2/v, (4.16)

may be replaced by
(\+Zp)("P'l' +2.P) -\—L!.«[_{.(P—P'):O . 4.17

We now consider the case when P $# 0 and &) $ - 7‘; Equation (4.17)
may be integrated without difficulty. However, substitution of the
resulting form forx g™ into (4.14) and (4.15) where P is given by
(4.13) yields a contradiction which may not be resolved by assigning
specific values to the arbitrary constants of the solution. The

cases P = 0 and f& S - -}: are now considered.

(1) P =o. The differential equation (4.15) is identically
satisfied. Any solution of (4.14) with the left hand side zero
automatically satisfies the field equations. The complete set of

solutions of this equation, i.e. of
=A
0 =&™ (- A - +2

is given (substituting 'V = e” ) by

S (1 49T (a)
et = Cr = 4.18(b)
Sual (C (v - Q)
x Cv %
& lsWL(cc«v—rmw) ? b

where o , B and C are arbitrary constants. We note that the
pair of solutions (4,6) obtained in section 4,2 are special cases of
(4.18b), (4.18c). The C7\ = g¥ solutions (4.18) correspond to

three space-times given, from (2.8), by the metrics

2 - Ayt ey (CLQ‘L"“ cuntl qul) e adk*
o ()~ +aim* (a)
i = CEp e el IR L 08 et __Ehtak”
SM/\J,,\’L(C(‘__B)) T ( W o C\i \ o Surdin? (C( i L‘fS) +4.19 (b)

dg* = A2 (AO* +5un™ A¢Y) 4 Gl

Sun=(Clr-8)) " s Cecrony ) (@

o e s .
3 % A e S

|
3
-
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which we shall denote Space-Time I, Space-Time II and Space-Time III

respectively.
(ii) = - 4, The differential equation (4.15) is satisfied
7. q
provided that F' =P . Accordingly the constant ) in (4.13) must

vanish. Then any solution of (4.14) with the left hand side replaced
by Re* automatically satisfies the field equations. It has been

possible to find only a particular solution of
7 -A 2
Re* = &M (W -7 +2 4 4.20

. . N v
which is, in terms of ~ = & :

A ) e ol
.e’ =
(2-Ac)?

This solution corresponds to Space-Time IV:

7 SRS ol e Ld r-‘ “ P o » Y TP 5 dtl
da’ = ~SRTY QT (Al s n26 d A PR o llll“ 4.21
(2.~ ey ° ¢ (2~ar)?

(/5 = -—& only). More generally, any solution of (4.20) for {fL

, 7 v . . .
constitutes an € = €  solution of Lanczos' equations. The family
A v A 7 : ; .

of exact € =€ solutions obtained in this section consists of

Space-Times I— IV,

4.5 A Set of Exact Solutions including the Extended Schwarzschild
Solution

Our investigations in this section are motivated by the boundary
condition of asymptotic flatness. It was shown in section 3.2 that
any spherically symmetric, static solution of Lanczos' equations
satisfying the boundary condition of asymptotic flatness has zero
curvature invariant. Now, regardless of any symmetry conditions, the
field equations generated by the Lagrangian R*  are satisfied by all
space-times with FL = 0. Consequently, an R = 0 solution will

satisfy the field equations generated by F§pc$vmlkﬁﬂ31 for all

T k]
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values of p , and, in particular, when 8 = - -1.5— A But Buchdahl's
resu1t31, given in section 2.4, is that under static, spherically
symmetric conditions the complete set of ﬁ = -%— solutions of
Lanczos' equations is the set of space-times given by (2.18):

2 —o\" 2 st A ‘ R
ds* = ){ (o (A8 sin20 dg) + ( 2 - INGECERE

where m and [\ are arbitrary constants and D is a completely
arbitrary function of the radial coordinate ,0 . Then, under our
symmetry conditions, any R = 0 solution must be reducible to the
form (2.18), i.e. the set of space-times (2.18) includes all R =
solutions and, in particular, all solutions that satisfy the boundary

condition of asymptotic flatness.

In order to generate the set of R. = 0 solutions of the spherically

symmetric, static field equations, we need only find the functional
forms for D (P) which are such that the Riemann scalar of the metric
(2.18) vanishes. To do this we proceed as follows:

For any metric

()

dg*=— oL’ot— f)le[‘)’(p (d0™ 4 su 0y + Q8(P> ot 4,22

the curvature invariant is given by49

R=<" ( W F’X A o '-7/3>" -3 et

4.23
+oc’p’ - é@.’ * ot -2 )

+e/3’(‘o,)

(a dash denoting differentiation with respect tof) ). Using (4.23),

the curvature invariant R of any metric
ds® =P der, D=Dlp, 4.24

is related to the curvature invariant R\ of d.o*, where

A ((A)

do* =~

. 2 W o2
dpt - pr(dO™ + sin*& Ao+ de P 4,25

SR ks
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] e
by

- - ’ ; /
R —‘]'})7’ ’R\ - %i_._ {’D/ '\‘—D (‘\J——i,l_ ')—EJ‘ ‘|'—-2;-)] % 4,26

Then the curvature invariant R of the metric (2.18) is related to

the curvature invariant R\ (= 4/\ ) of the Einstein space

Ok":—_ “"CLPL A e‘L v :;_,edl <D -—'Al t)"
T Tommemay P (dB™+sla*® dg?) e — L) AET 427
F 3l
by (4.26), in which & = " = LB ~ip® . He ek

functional forms of P such that R = 0. Thus, setting R = 0 and
substituting for R\ . 7L| and V| , (4.26) yields the second order

linear differential equation for P :

Pl (-%— el -p +1m/a) +D'( 1—#% /o?’~2[.> +Q.m) 42, %"PP"“ =0, 4.28

We consider the solution of (4.28) in the four separate cases

(1),..0 (V).

(1) A =0, m = 0, The solution of (4.28) is

P = Hg;o—, 4.29

(B , oo arbitrary) corresponding to a solution of Lanczos' equations

given, from (2.18), by the conformally flat metric

ds*= (ﬁ%@’”% dp* = p(domrsun 00D +de] . 4.30

We examine two non-trivial cases of the metric (4.30), (a) and (b):
(a) \-\ % 0. Then let B = 1 in order that (4.30) may tend to the
Minkowski metric as 'o—é w . This may be done without loss in
generality since if Lanczos' equations are satisfied by d.o* =
gPO'dDLPdOLd- they are also satisfied,for any constant C , by
ds® = C*do™ (as a result of the gauge invariance of the action

principle). The metric (4.30) becomes

fanlotoh o i San A8y, v Sifter

S ae ¢ne st

B

S B s
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dat = Lp=2d™ foclpm - px(alO™ +5L*E dgr) +ot*) . 4.3

F

However, (4.31) is simply the metric of space-time I, given by (4.19a),

after the radial coordinate has been transformed according to

(5 il — f)—C\__ ’
(b) A = 0. The metric (4.30) becomes (setting o. = 1)
dsv=L {— dpt = p (@™ +sunt B dg™) + et 4.32

The coefficient of the angular term in this metric is unity. (4.32)
represents a ''class 2' space-time to be discussed further in chapter
2 We shall refer to (4.32) as Space-Time V.

(11) Z/\ =0, wL 4 0. The solution of (4.28) is
17=~F\+Y5-Q”L(1—7%) : 4.33

(A ,B® arbitrary), corresponding to a solution of Lanczos' equations
given, from (2.18), by the metric
ds* = {nus.m(h 7-_;;»)}1{1&32 ~ p* (6 +sin 8 d )

| — 2o

) ) 4.34
+ (1 —_V.VFL)CLL } :

(4.34) is conformal to the Schwarzschild line element (3.1). As in
case (i), there are two separate cases to examine, (a) and (b):

(a) A 4 0. As before, B may be set equal to unity so that (4.34)

tends to the Minkowski form as ,D—> = S The metric
st = 0] +B8a (1= 2000 ZP" - oo (™ + 50O cdd?
aiid! Ui e i Sl R

. 4,35
+ (- "g—‘;;\:.\ti l‘)

will be referred to as the Extended Schwarzschild Solution or Space

Time VI.

(b) R = 0. The metric (4.34) becomes (setting B = 1):

4 faiet




-

2 Vi % ol 2 2 1 X <
ds =&£m..(1*2_(?)} il—"i%» (A(o\@+sm9d¢)+(l 2 \dtz} 4.36

The properties of the space-time represented by (4.36) are very
different from those of space-time VI. We refer to (4.36) as

Space-Time VII.

(iii) m = O,JAL 4 0. Two solutions of (4.28) are

D [FH-M\,C‘A]TP + BJAB Y, Avo,
L Biew q} p_+ RIS y IN==A Y0

T 1‘7’\
«L/\/ 3

(R LB arbitrary), corresponding to two solutions of Lanczos' equations 4

given, from (2.18), by the metrics

as* ——3 TL—m\c\ ,J 'im a—BJ—’E—] i( - - p* (O + stn*C o)

(1 R -A-_.S_Fz) dtl} 3 (a)

B TR TSt T AP

ds=2 T Fdai YA BJATYY .
=, ‘OP £t NS {(_JY’_) —p(d® -\—Sm@d«b) 5

ol P‘“\dt}
Again, there are two cases, (a) and (b), to examine.

(a) R # 0. Then R may be set equal to unity and the metrics

(4.37a), (4.37b) become respectively
ds* =3 iount™! [_jfg o +BAATA] i CHO
i LpY)
+ () *%.P"\ dtt?“} 3

f)(d@-%&m,@d¢)

4,38
= 2 Tidec' JNTA p BJNT3) i -p (Ot + s Qg
2 ™ (+P““ S, )
R A ;
3 il }J
However, we are not surprised to find that the space-times represented b

by (4.38) are simply space-times II and III, given by (4.19b), (4.19c),
in a different guise. ~Transforming the radial coordinate in the

latter metrics according to

e il
R R B T TR




.
& s ——é—"‘t‘{v'\(‘r:l (‘C()) + 2 5 (a)
4.39
Sl -]é-: den”! (C'o\ + 2 (b)
respectively, and setting
c=JATA | ()
4.40

c= ANz, ®)

the forms (4.19b), (4.19¢) become identical to (4.38a), (4.38b).
Nothing new is obtained by setting the constant B equal to zero.

(b) ® = 0. The metrics (4.37) become (setting B = 1):

AP | = e st OA ) + (=2p) a6, (W0, (a)
p \~ F P 4.41

st = __.._"df —{(d &>+ sun> Saatis & e L + P‘)clL“ (/\70) (b)

The pair of metrics (4.41), like the metric (4.32), represent ''class 2"
space-times, which we shall meet again in chapter 7. We refer to

(4.41a), (4.41b) as Space-Time VIII and Space-Time IX respectively.

(iv) m # 0, FoY # 0. It has not been possible to obtain any
solutions of the differential equation (4.28) in this case. The

latter may be reduced to the Riccati form

%fi- = x 4 W e % F) 4,42
P s F‘* -p -\—Q.mf)

through the substitution

D) = L wip 4.43
—D(é) f%%P4+FL—2wwp

but the solution of the Riccati equation in general requires infinite

series closely connected with Bessel functions. From the metric form

(2.18), such a solution clearly could not be asymptotically Minkowskian.
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The complete solution in the static, spherically symmetric case
under the imposition of the boundary condition of asymptotic flatness
is represented by the two exact metric forms (4.31) (space-time I)
and (4.35) (space-time VI). In section 3.1 we asked whether or not
our field equations permit a non-trivial solution which is both
asymptotically flat and regular. Neither space-time I nor space-
time VI is regular. Thus there are no static, spherically symmetric,

regular, asymptotically flat solutions of Lanczos' equations.

4.6 Summarx

It is interesting and instructive that the use of straightforward,
and somewhat naive, series expansion techniques has led, directly or
indirectly, to each of the exact solutions obtained in this chapter.
In addition, we have seen in section 4.5 how an apparently redundant
result concerning the set of ''solutions'" in the underdetermined case
may be employed to obtain well determined solutions of the field
equations. It is reasonable to suppose that the use of such methods
may be efficacious in obtaining solutions of Lanczos' equations under
different symmetry conditions.

For future convenience we collect together all the exact

solutions found in this chapter:

Space—Time I

e wddt iy e o ™ )
—(\4_%\1 > (d® +Sw1’90\(\)) - WL 4.44(a)

Space-Time II

—Cd 2 (O suntBdgD) & _CPrrdET 4 44

o 5 R
: s 2( C (- R)) SuAlF (C(r-8)

1




<
Space-Time III
dgt= . . < d«r"‘_ (A0 + Sl d(PL\) o PP R g d___ki
swmr(c(r- Bﬂ Sun (G r-1))

Space-Time IV (p = - J,: only).

dat= =3R*>Av*t f’-(c\@“ ¥ sin € (:'l\(\') ) + AR AR

(2= Be)? (2-Av)2

Space-Time V

dg= e L a~dﬁﬂ'—vlkd®‘+SCn1®cHP) +cib“u
.YJ kS

Space-Time VI

® - —— o T 2
dst = {l.}.n{)m({.-’)igx)} {(\_:C%ﬁ_g‘r)—'f"l(dﬁl-'kgw\ 9(243) 1
+-I-0g;£)cit*j

Space-Time VII

R e L L
+Q~gg3dwﬁ.

Space-Time VIII

ds*= —dr* ——(d@?—+sdm”‘9clc|ﬂ+(\ "é\if’\d’c‘ .
¢°-(\-%_\»{~ﬂ ir=

Space-Time IX

{
dst = —dv™ - (40 + 520 ddd) + (I +F+) aer
h(«'L

e ( \ + _!‘.};'.‘\?_3

v

. 4.44(c)

4.44(d)

4.44(e)

4.44(£)

4.44(g)

4.44(h)

4.44(1)
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5. PROPERTIES OF THE EXACT SOLUTIONS

5.1 Introduction

Our original hypothesis was that any reasonable metric field
whatsoever must satisfy Lanczos' equations. Provided that the latter
are satisfied, the metric tensor may be inserted into Einstein's
equations (2.4):

TPO_ = *;."‘_{“ (RP"'“TRQI"V)

to determine the stress-energy tensor —T%g--

The problem of interpreting ‘the stress-energy tensors obtained
by the above procedure is not, however, a trivial one, Making the
assumption that the cosmological constant JpL. is excessively large -
the reciprocal square of a length of subatomic dimensions - Lanczosso
has performed a '"practical linearisation' of his original Lagrangian
(2.1). Although the terms of the new Lagrangian obtained in this
way include the standard cosmological and Maxwellian invariants, the
interpretation of the additional invariants is obscure. Furthermore,
the assumption concerning the cosmological constant has no justification
in the present work.

Thus, in general, the interpretation of —T;& in the light of our
?resent knowledge is uncertain or incomplete. In addition the
information contained in the stress-energy tensor provides only a
partial description of a universe; some discussion of other properties
is required. In order to avoid a repetitive detailing of the
properties for each of the universes obtained in chapter 4, we shall
concentrate attention on four that seem to be of particular interest.
These are space-times I and VI, which are the only spherically
symmetric, static, asymptotically flat space-times permitted by

Lanczos' equations, and space-times II and III which are regular,

dado
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Space-time I is discussed in some detail and the major properties of

space-times VI, II and III are considered.

5.2 Properties of Space-Time I

Space-time I has the very simple metric form (4.44a):

¢ = —dr* -+ (de? s O dd*) + ol
RS R g

which is Minkowskian at spatial infinity. It is a non-empty universe,
with the T‘; component of the stress-energy tensor non-negative
everywhere, but is not easily interpreted physically. In standard
relativity theory the physical situation is known a priori, and
correspondingly the Newtonian gravitational potential. Thus one can
identify the signs of the constants of integration, as in the
Schwarzschild case. The same is not true in our theory and we can
at this point say nothing definite about the sign of the constant of
integration & in the metric form (4.44a). As we shall see,
geodesic behaviour is more interesting for oo > QO so the following
discussion of the properties of the universe are mainly concerned
with this case. It will be convenient to categorise properties as

geometrical, topological or physical, following Das and Coffman.3

5.2.1 Geometrical Propérties

We consider first a T -constant hypersurface \/3 (for a¥0 )
followed by a discussion of the universe VLP.
Vg has the metric form

do* = (“\ibgu;z. (A0 %+ sl 2O ) . 6.1
=2

Then the square root of minus the determinant of the metric tensor
in \/3 is everywhere positive for 0 &~ L « , 0 ¢ 8 L .

Both the radial distance G{(ﬂ and the volume \j('w) are positive

A
i
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in this range and approach their Euclidian values as "~ -> ©0 , being

given respectively by

(R,("(") = v - ad ("(\'—:;05 3

UV%=E¥?+Lm{ﬁ%I+WW'Hf&ntéﬁﬂ.
The length of the circumference of a circle, and the area of a sphere,
at the radial distance (R('W) have the usual Euclidian values. Both
the ratio of the circumference of a circle at (R(Y") to the radial
length, and the solid angle subtended by a spherical surface at v = 0,
are infinite at Y = 0 and tend to the Buclidian values for these
quantities as v increases, being given respectively by

2
{W— a L (1 +"—&)}

and

'

R
E'w — alm (1 + %)}2'

V3 is a totally geodesic hypersurface of Vq, - that is all the
geodesics -of \/3 are also geodesics of \/q,- due to the general
property that the gravitational field under consideration is static,”?
Lines of constant O and ¢) ( -lines) form a subset of the set of
geodesics in Vg and therefore are also geodesics in \/Lp . The
geodesic deviation between two adjacent radial geodesics has the udual 4
Buclidian value.

In \/,_‘_ , with the metric given by (4.44a),

(—S\J’: = F 3 O/ (v +a)* >0 ta OLvriw®, 0LO4T,

h o
\/(ﬁr’,t\ :“,;\-\-5 &_‘Sqﬁ - o 4+ 2%y -t—éf% + a2 (éﬁ\} d.
o

Lines of constant =, O and <b ( £-lines) are not geodesics in
VHJ , other than the one at spatial infinity. The proper time

along a U-line between two t-constant hypersurfaces ,
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e = g0 I

(v + )

increases with the radial coordinate v of the T-line and at spatial
infinity is equal to the coordinate time., The slope dv-/dt of the
radial null curve is everywhere = 1, discounting the singular hyper-
sphere 7' = 0, The non-vanishing components of the Riemann curvature

tensor Rot)egs are given by41

— I s
R’zams = asn® (2 +a) ,
oy s $ = L - -
Rm_\-z. N R?.J-n.ur~ Ran:m /sm"‘@ —Rll%\ ISWL e (‘w—y&o\) ?

anp = a(2++a) /(“’“'*O‘)Lps

ol
and those of the Ricci tensor R‘ﬁ in mixed form, by

R"‘.—: L\:O. e =
3 ok 2
7___ '?) P - 2
Rl‘ Rs” —-?;f; %,4, 3 5.2
H a — 2
s 08

'5.2.2 Topological Properties

Clearly we cannot cast VL;» into a form which would satisfy the
regularity condition (3,12). There is little doubt that the singularity
at W= 0 is not a function of the observer, but of the physical
space~time itself, The singularity at v = - a. (supposing that the
constant O. may take negative values) is, however, only of a coordinate
nature. This may be seen by obtdining the invariant components of the
Riemann tensor R“‘F‘XS by transforming to the Petrov canonical form.52

Choosing unit tetrad vectors along the coordinate axes and letting the

index pairs obey the rule:

9% et 1, B eeulhB [P omen B A el ff, 2 B, B4 B4
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the bitensor (symmetric 6-tensor) Fixa? (I,J =1,...,6) is obtained

in canonical foxm:

() 8 5.3

where
oL =2 (r+a) , p= -2 ).
S G
Whether (. is positive or negative the scalar invariants oL and R
of the Petrov canonical form diverge only as the value of the radial
coordinate decreases to zero, indicating that the singularity at
T = - & is due to an improper choice of coordinates for that hyper-

sphere, (We note that the structure of the bitensor F{ (5.3) is

13
identical for each of the space-times I-——III due to the existence
of certain algebraic relations between the components of the Riemann
tensor).

When O. is positive there is no coordinate singularity. Now
in the case of the multiply connected Schwarzschild universe (3.1),
it is, in effect, the v = 2m. coordinate singularity which prevents
a breakdown in causality via the "pinch-off" effect,53 but there
would be no such similar circumstance to prevent causality breakdown
if the topology of \(5 (with o  positive) of space-time I were to
be other than simply connected. Thus we seek a single non-singular
coﬁrdinate system by means of which we may embed V% (without

singularity) in four dimensional pseudo-Euclidian space EEH" For

\43 of space-time I the embedding is given by

o = dX'* = dX** —dX®F - XA

with

$ s, s sie »

st didde s

S0
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Li6F-

X' = 2o {l '\Jfl.ow" +o* - toad! J’l,m"-l-cf‘} s
(o o8
X""’:vsi.m_e cosc#)) ¥E = sl & gl 9\: 5 XL*‘ =wcos®

Through elimination of the coordinate v , V3 may be represented
as a hypersurface in E“, and is topologically Buclidian, When
o. L O , two coordinate patches are required to cover Vg, s which,
like the spatial hypersurface of the Schwarzschild universe, is not
topologically Euclidian.

Clearly, \/H. cannot be embedded in a five dimensional pseudo-

Buclidian space E5 3 Takeno54 has given the conditions necessary

Pt

for a spherically symmetric \/“r to be embedded in a five dimensional
space of constant curvature R s and space-time I does not satisfy
these whether or not ﬁ = 0, It is, however, possible to embed
space~time I in a pseudo-Euclidian Eb ; this may be done by following
Fronsdal's method55 for obtaining the analytic extension of the r

Schwarzschild manifold., The embedding of \/,+ in Eb is given by

ds™ = dz'* - dZ** + 2% - dz** - dz 5P~ o zs* ]
|

= iy S £)

2
ey 0 5 > 5.4 )
7% = JH@YHOJL (Lo +a%) + W o(‘*}t/(v"-i-a\ﬂ v

Z“ = ws'uf\,etogc‘v) T 'Y*'Simesbntﬁﬁ ” 7 R T

For o 70  the embedding (5.4) is real and non-singular in the
entire coordinate range. When o L 0O a suitable choice of units

ensures that Z° is always e Formally, the ~ , O | ¢ and

S LA g < RIS

t  coordinates may be eliminated from (5.4), but since Z,S is a &

@b

monotonically increasing function of ¥’ , Y may be retained as a
parameter, Then \]W may be represented as the surface

% - 4
pé —Z,'z'z-_Lp (1 +5 ) i =5L{(v+a\"(lor+(f‘)+hﬂ“}t/(r‘-ﬁ-a)ﬂ e, 3

2. - 2. - -
Z)Ll’ +Z_,5 +’Z16 ':’Y\’L .

5.5
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The translation and rotation properties of the surface (5.5) are
similar to those of the analytic extension of the Schwarzschild mani-
fold, It is interesting to note that the embedding of space-time I
in this way requires the employment of four space-like and two time-
like coordinates, while the Schwarzschild embedding is of signature

(-4).

5.2,3 Physical Properties

In the preceding section we stated that there is little doubt
that the " = 0 singularity is of a physical nature. Any lingering
doubt is dispelled by consideration of the accessibility of this region
of space-time. For, as emphasised by Geroch45, we would not wish to
call a space-time singular if an affine parameter on every time-like
half-geodesic (geodesic curve which has one endpoint and which has
been extended as far as possible in some direction from that endpoint)
attained arbitrarily large values, As Geroch suggests, in a non-
singular space-time, observers who follow '"reasonable" (in some sense)
world lines should have an infinite total proper time, Let us consider
then an idealised observer who falls freely from v = ™, ,° His
path must be an < -~line, and -~ -lines are geodesics in \A+ . The
geodesic equations may be integrated to give the expression for the

proper time taken in travelling from T =Y, to " = 0:

0
» L dr ,
= )
{Gral)==1Y72 3.6

A
where Q is a positive constant related to the energy/unit mass of our
observer, Clearly, for suitable values of 17 (and, in addition, for
suitable values of v} if o« L O ), the integrand in (5.6) is an
essentially finite quantity. This means that ¥ = 0 is an accessible

region of space-time, and since a radial geodesic would not seem to be
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other than a "reasonable' path, we can conclude that space-time I has
a physical singularity at ' = 0,

Perhaps the most vivid description of space-time I is provided by
its geodesics, Pirani57 has studied the approximate perihelion
motion corresponding to the metric (4.44a). This was in connection
with Littlewood's58 suggestion that Einstein's vacuum equations should
be replaced by the single equation T{.= 0 together with the assumption
that space~time is conformally flat. In Littlewood's theory, space-
time I (obtained in the form (4.31)) would replace the Schwarzschild
solution as the fundamental vacuum solution, Interpreting the constant
of integration Q. as a Schwarzschild-type mass, Pirani found the
approximate perihelion advance to be one sixth of the value obtained
from the Schwarzschild solution and in the opposite direction, Since
this was a result in distinct contradiction to observation, Littlewood's
theory was rejected, In our theory, however, space-time I does not
represent a vacuum solution and there is no a priori reason to interpret
the constant O- as a central mass. We now discuss the geodesic
behaviour more fully,

For any static, spherically symmetric metric

ETIE L F RT il FTURN ™) +3° dt* 5.7

the Euler-Lagrange equations lead to the differential equation of the
geodesics:

gt 4wt P L4 TP L e gt 5.8
(& W L
For timelike geodesics, which represent the motion of neutral test
particles, the constant & takes the value + 1, while for null
geodesics, representing the path of light rays, € is zero. The

variable w. employed in (5.8) is the inverse of - , For particle

o
L5

A
{
el
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geodesics the constants lh and £ represent, per unit mass of the
particle, the angular momentum about the origin and the energy

respectively, being given by

g

be b
RO

_ ¥ db

'Ql""eag‘

In deriving the equation (5.8) the B = 0 axis was chosen so that at

some point on the geodesic 6 = %%‘ and © =0. The Buler-Lagrange

equations then imply that € = 0 and all higher derivatives of O
vanish, so that geodesic motion lies entirely within the plane © ==¥%.
Particle geodesics are now discussed, followed by a description of
the null geodesics.,

For space-time I, with metric form (4.44a), the differential
equation of particle geodesics is given, from (5.7) and (5.8), by

<%LCL£)2' = +L§M>l§u7~ (L0~ Wo) + Zatin + (L*- D} ' 5.9

We shall consider in any detail only those orbits which possess
perihelia., These are of the type normally associated with an attractive
force and arise only when the constant oO. is positive. The condition

that there should be real motion between the two real roots of
M,LK'Q:LQL— ‘/LZ) + 2o lfw + (‘{l"b = O 5.10

reduces to a conditional relationship between the energy and the

angular momentum of the particle, for it is given by

\ Q,U‘L_%,

|+ 5 5.11

where

B R Ty

EIBRRLTE &2 o3
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(The only behaviour available to a test particle for positive Oc
other than perihelic motion occurs when ol Ti\_ and is to fall in
to the origin). The orbits described by (5.9) with the coﬁdition
(5.11) fall into the expected categories. Denoting the (real) roots
of (5.10) by «, and w, , with W, & w, , the motion may be

illustrated by the following schematic graphs of (du./dd )2‘

(cku)z N (OL\,L)')“
dd EX
/]
Ly T g
7 K K’
_%‘]‘\_,/J‘_‘ iy __A_' W, o,
Blliptic type (i, » 0, 4* &4 1), Hyperbolic type (w,4 0, £*Y 1).

(Motion takes place within the hatched regions)

In addition, the usual special cases of circular motion (W, =
Wq, B L 1) and parabolic motion ( w,= 0, 4> = 1) are obtained.

The differential equation (5.9) is easily integrated, using

h duw
J (e Vo (Let - hi*) +2o i + (42=1)

5,13
= _h gl _|{ Ww —a }9
JHEr o (1+aw) V2 (o® + ) ~ h>
to obtain the equation which describes all geodesic orbits with
perihelia:
w o= f\ + AD cos (T+ A )
=4 5.14
R L‘ — Decos ('J\+Prd>\
where

D= JO+/R) -1/A

PO\ e IO
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(putting ¥ = 1/w ), The similarities between (5.14) and the
classical orbit equation are immediately apparent. The periodic
recession is independent of the energy of the particle and is equal

to

2l - /v e ]

5,15

per orbit, Some quasi-elliptical orbits of space-time I for different
values of & and B are shown in Figs, 1—>11. It should be
observed that classically values of £ much less than unity would é

correspond to the motion of particles in the vicinity of very massive

objects,

TR WA < N

In order to compare particle motion in space-time I with that

expected classically we differentiate (5.9) with respect to ¢ to

obtain
Pw o = o (282D + 22w (642-))
P “ T{*( W

+3au* (’Lo?%—l) +2a*u? (%’” - l) . 5.16

Now the classical Binet equation for the motion of a particle with

otential ener () er unit mass is
P gy P

2 M'L
where H = ~* %% = constant,

For slowly moving bodies in weak fields we may take H == \+ and

NPT

b

compare (5.16) with (5.17). In addition to a term representing an
inverse square force (attractive or repulsive as o,(ZQF'n-l) 7 0
or 4 0) there are terms present in (5.16) representing forces of
higher orders.

The discussion of the geodesics seems to indicate that the

constant O. 1s positive, In the case that L 1is negative,
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there is never any stable periodic motion, but hyperbolic orbits of

the type normally associated with a repulsive force may be executed

for all values of £° outside the coordinate singularity at v~ = - O-

For i Iﬁ , a test particle which starts its existence at any

value of 7 less than -CA  will terminate its motion by falling in

to the origin., No real particle can cross the "boundary" at ¥ = ~a..
The differential equation governing the null geodesics representing

light rays in space-time I is given by (5.8) where €& takes the value

zero and ©¢ | f3 and ¥ are obtained by comparison of the general

metric form (5.7) with that for space-time I, (4.44a). This may be

integrated to give

~ o=l &—_O;Q—_ +sec¢a] .
L o

For positive @ , real motion is possible only if o < %ﬁ s, and the
light ray ultimately resumes its original course after moving towaxrds
the spatial origin, When & is negative any light ray originally
outside the coordinate singularity has a path which remains outside,
while if it is inside = -k | it is trapped and never emerges.
Some typical null geodesics in space-time I are shown in Figs. 12 and
13,

The gravitational shift of spectral lines in space-time I is

given, for large v , by

where ™), is the characteristic frequency of a spectral line and
VY, » Vg are the coordinate frequencies at -~ , v, respectively,
This result is identical to the Schwarzschild formula if o is

replaced by the constant v ; the shift is thus in the same direction

as the Schwarzschild shift,




I

It was emphasised in section 5.1 that the problem of the inter-
pretation of the stress-energy tensor is far from trivial, With the
components of the Ricci tensor given by (5.2), the non-vanishing

components of the stress-energy tensor are given from the definition

(2.4) by

T 4l - )

2 e A [2e g ci‘)
T;_, = TQ = w(?‘?, /)

: 5 5 5.18
Th 2 % =ew

It is tempting to split the stress-energy tensor (5.18) into a material
and an electrostatic part, in which the usual algebraic relations for
the spherically symmetric case hold, with the familiar expression for
the energy density due to the electromagnetic field created by a

charged particle at the spatial origin. Then

nrfc' = quxr +'fi¢cr 3

with %
| 2 3 N 8o
1"_'—”-%')_':“ 3=EH'- 'K."t"‘*‘ 3
kS
L 4 2 3 1(0 4 O )
2 =M= ™, =% \= e/,

My = 0

The problem of the interpretation of the material stress tensor Mfe »
however, remains; it is clearly not due to any of the more frequently
studied physical situétions.

| The stress-energy tensor represents all fields other than gravi-

tation. In a general Riemannian space we can therefore expect that

only some combination of _TFa- and 3fm' represents a conserved

quantity. There is no uniqueness about the choice of such a combin-

ation, and although the various expressions give consistent results,




Tl

they are intrinsically non-covariant, Furthermore, the concept of
total energy is ill-defined unless the coordinate system employed is
Lorenzian at the spatial infinity of each coordinate. However, we
may represent space-time I by a coordinate system of this type.
Transforming the spherical polars p , © and & of the metric

(4.31) into Cartesian coordinates:

- X (Dsfm.ecos# 5 Y .—_/osim.e s, L=Pcos® .

we obtain
ds®={} ~ %)L (- do® —cy®= ™+ k™) . 5.19

We may conveniently use the expression obtained by Adler, Bazin and
Schiffer59 for the total "energy" T%+ of any finite V% bounded

by surface S for a metric tensor which is time-independent, diagonal
and spatially isotropic :

o 20 J-«J-e 39 n, ds

5.20
W 81T K J Boia )

where n.: 1is the unit outward normal to oS . Then in order to

J
obtain the total energy in space-time I, exhibited in the metric
(5.19), we may perform the integration in (5.20) over a sphere of

radius Fi and let R tend to infinity, We obtain

The Schwarzschild result is FL = +'WICL/w( ‘ Thus it is clear
that, despite some superficial similarities between the Schwarzschild
universe and space-time I, they are fundamentally of a very different

nature,

5.3 Properties of Spdce-Time VI

Space~-time VI (the extended Schwarzschild solution) is, like

BN
b
3
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space~-time I, Minkowskian at spatial infinity. It is represented

by the metric (4.44f):

= [\ + B (I = Z%L)T —dt* 2 (doRsn?E ddd) + = 2) olt"} ;

= Zen~=

which reduces to the Schwarzschild metric (3.1) when B 1is zero.
We wish to know how the properties of the Schwarzschild universe are
modified by the presence in the metric (4.44f) of the non-vanishing
constant of integration B .

It is of immediate interest to determine whether or not the
v = 2w singularity is still of a coordinate nature. This will be
indicated by the behaviour of the scalar invariants of the Petrov
canonical form; to obtain these the components of the Riemann tensor

are first required:

R. = <2y sn*® {D* - 20 —28D)

ACYRC

Rl').\').. =R3I'3\ /Sbﬂze oA s 'D —LR%n + 20D (\m-w\} ;

(=) B =2 & =T

Rmm = i—pl+ %’E—Y\x\ - Z'B’D}
- - - 9- —
Rzuzu KRR / sun”0 W—"——-;—,_g'm\{? i (L‘#!'%TTM\ L ”(QF&TQ}
where

D= + Bl ll—22) .

For future use, we also give the components of the Ricci tensor in

mixed form:

R = hwtB” is - (?ww-—l'w)} \

43 (2 =2en) DH mB

3 ('\*’ "Q-W\)'Dq'

R - RY = Lw?B (- -2 (_,M_lwqui 5.21

A 2% s
R w«L:C:—BM”E‘* gl -

i
4
;
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Choosing unit tetrad vectors along the coordinate axes the bitensor
Fils (L, =1,...,6) is obtained in canonical form
> 0

s 0 Xss ?

]

where
ol = -'2xn, i — ZenB® o 2B k 3
?1‘ («r’ *ZWD-DL*’ D 3

FB «“3%_])— ﬁtFEZ:TI) E;TEECZS?BE }

—l + %% :___Bm ZWQD“'S )

-5 + HhwmB h~x~vﬁ - BBl
)6 3 ('f“ —'J..W\) {L ﬂDL"

For B = 0 the Petrov scalars o , p > ¥ and & are finite at

ol
i

S

i

T = 2w and the singularity in the metric (4.44f) is of a coordinate
nature only, However for B # 0 the scalars diverge as ™ —> 2n .
This indicates that the singularity is a property of the space-time
itself and not of the coordinate system used to describe it. In

this respect at least, space-time VI differs radically from the
Schwarzschild universe.

The spatial hypersurface \Jg of the Schwarzschild universe is
not topologically Euclidian: it cannot be covered without singularity
by a single non-singular coordinate system, It is not surprising
to find that there is no value of the constant [ for which this is
possible for the \@ of space-time VI, The Schwarzschild \A+ can

be embedded in a pseudo-Euclidian Eié as shown originally by Kasner60

55

and later, amongst others, by Fronsdal™™, but this does not seem

possible for space-time VI, Following Fronsdal's method (as for

space-time I) we look for an embedding for which the metric is
2
der = Az - A z2* - Azt - dzhb - dz 5t gzt

with56
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Z' = 2D(1 =L)E st (£)
ZF = 2D U =LY% cosh (£),
7z = g

Z¥ = v+ Dsin cos ¢ 4

5'—?— "t"‘FDS\'JvLe‘ Sn d)j
Z-6= +Deosd

where g(*r‘) is determined from

(%\‘%) o Tl +*1~’+l —28D (v - j:") - B* "f:ig-l::r:-gzl-k

This is a suitable embedding if it is real and exists within the

entire coordinate range. This, however, is not the case since for

values of T close to unity Z.° ceases to be a real coordinate

as OLg/olf' becomes imaginary (unless, of course, P = 0 when the

embedding exists in the whole interval 0 L v 4 oo ),

Comparing the general static, spherically symmetric metric form

(5.7) with (4.44f) and substituting into (5.8) we obtain the diff

ential equation of the geodesics in space-time VI:

(OL\Z\: o (1= 2mu) — 1 ‘—._Q. (l 2wmu) ()~ BULU*ZW\UQ)

in which w = 1/ and
h = ~»*D"d¢
ds

Differentiating (5.22) we obtain

OL?' —~Am? +wu
d¢\7

= _%m (E(\J«—?I,’Q HBMU-ZMM)EEI + B,M(\-—zmﬂ} ‘

Comparing (5.23) with the classical Binet equation (5.17), the

classical inverse square force upon a particle for large Y  is

exr-

5.23
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modified by the factor (1-+2R ). For orbits which possess perihelia

the approximate perihelion advance is also modified by this factor.

For large ¥ we may write in place of (5.22) (putting € = 1):
(Q\&T = 2mud —u* £ 2me (2R + (L2 5.24
do W* h?

where we have retained only terms of order unity in (ywmuw), which

would be reasonable for planetary orbits.61 We suppose that (du/d&;)’“

has three real roots W, , W, , WUa such that W, , Wq are small

in comparison with Wg and are positive (i.e. considering orbits of

quasi-elliptical type only). Periodic motion takes place (i.e. dw/d¢

is real) between W, and W, :

(&5

N

s

We may write

<d.“_u'>z' = 2mu-uu-uDdlu-wgy 5.25
o

whexre, by comparison of (5.25) with (5.24):

Uy +Uy g = X . 5.26
v
Then
ZW\,\A|
¢4
2
2\/\/\\/\-)_ 3 !

The angle between successive apsides is given, from (5.25), by
L

A¢=j du '

b J{Zmu% {u=ud(ug -yl = U\/us)}

i
; Uye s Myl
ot bt e My e SRR

1
§
i
|
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Using (5.26), (5.27) and the approximation that during the motion
W/Ws is small the expression for Aci) becomes
A = \r-(l o (g +0) + O] du
%y

(B ‘
== T il +3_'VZVL lunm—uﬂ]

The perihelion advance is thus
2A ¢ =2 == e Tr Luruy) 5.28

Again, by comparison of (5.25) with (5.24), the sum of the products

(taken pairwise) of the roots is given by

Wilhy +UUa +lgwy = (+21) | 5,29

b=
Multiplying (5.29) by 2w and using (5.26) and (5.27) we obtain to the

required order

— 2m1+2B)
by, = B
so that, from (5.28), the Schwarzschild perihelion advance is modified
by the factor (1+2B8). The behaviour of the null geodesics in space-
time VI is identical to the Schwarzschild behaviour, as is obvious
from putting € = 0 in the geodesic equation (5.22).

From (5.21), the non-vanishing components of the stress-energy

tensor are given, from the definition (2.4), by

P> D -
| =B 3 4 i B2
TR T FB + .
i g K'\*':(/'Lv“—lm'])“ {Ll ——n:E'B Sl ﬂj ’ 2+30

ap &
Ti=doel o fr+ 2]
5 B w3 -2m) D Q) :
T is positive only in the region ~ » where ~”, depends i
b P P _

on B according to the relation i

PR
[ =M F1/7B) 5

npty =




ST

which approaches 2wL as E%-——% 0 from the right. The interpretation
of the matter tensor (5.30) poses considerable problems for it does
not seem to represent realistically any simple physical situation.
We must leave discussion of this problem open.
In order to calculate the total '"enexrgy" Fiy in space-time VI

we cast the metric (4.44f) into the spatially isotropic form

e

ds* = D> (P){I -\—W;) (obc el - dz¥) + \! T 7P, ((l

P
’”IE

where

A4S
Dipy = 1 +2B e [ 28] ,
(1 + L)
‘2{0
through the usual transformations for the Schwarzschild universe:

= pl g

x;szsumgcxs¢)) Y =,og&aE}sbnck ’z,=73aﬂ9.

The coordinate system employed in (5.31) is Lorenzian at the spatial
infinity of each coordinate and we may proceed in calculating Fﬁ,
exactly as for space-time I, It transpires that the total energy in

space-time VI is given by
e
P = ;& (1-28)
K ®

so that the Schwarzschild result is in this case modified by the factor

(1-28).

5.4 Properties of Space-Time II

Space-time II is represented by the metric (4.44b):

B, AP ol g SO ) e LIl
ds s 2 (CH -B) .k ¥ swwccw Q)

As demonstrated in section 4.5, (4.44b) may be recast in a form

conformal to the closed de Sitter model by setting
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¥ =%+w{‘ (c)o) +B

s¢o that the metric becomes

dst = Do (Co) +Bc]z%"§ﬁe;,. ~pHabtrsue d2) 5.32
@/3)2- LR +(1-cp?) dt“j .

Retaining the meaning of P as some sort of radial coordinate, the
extension of the physical space in the space-time exhibited in (5.32)
is

0épéifc ,040¢m , 0 & ¢ <z

Thus, since (1/¢ )towW™’ (Cf) ) > 0, the metric (4.44b) is meaningful

in

B v L o0 O £6 ¢, O &b €2

)

Now when B = 0 the metric (4.44b) is regular at ~ = 0, from the
regularity condition (3.12), but when B f D it contains an apparent
singularity at W = B . The scalar invariants ol and p of the
Petrov canonical form (5.3) are

o=k (-1 o+ SMW‘(C(““"“B))}
i = :

p =SB o cutcem-B)-

For B 74 0, at v = B, « and ]3 have the values
I "
0(., " ‘62‘ 3) ['3) - O’
confirming that the singularity is only of a coordinate nature. As
TY—3 o, oL and F} become infinite, but we should not wish to

43

call this circumstance a singularity. We note the components of

the Riemann and Ricci tensors:

A
%
;

]

1
|
‘ ‘l'”
¢
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- '\ g u/\,Q,\"'(,C.(‘N'"E‘))
RL’%;'J.'B e e B {“\ = Crr*
Rmv_ = Rzmw = Rzm lsin*6 = me/s&n‘@ ==L+ Cr cotle (Clv-R),
" C* ” (Cisordn
F{“”“ suh t{C (v -2) &‘ su*(Clr - Q“}
R‘l = D suh P (CLe-BY) — 1« Z b (Clr—=Tcosh (€L r-R) ,
CIn A Cwd
2. ey 2 -
R:=Ri= - Sw&pcgﬁf:\‘ R) 4~_J¢ ) s 0y
e e, 2 2 - 1 i ®
R Smcgiﬁf ) Ly e, sunk (lr B) cosh (¢Cr-Y) |

Can we embed the spatial hypersurface \/3 of space-time II in

a pseudo-Buclidian EL‘_ ? A suitable embedding may be given by

' 57—— e (‘kX] CLXJNL e C:{X—“")‘ b O\XH}L

)
&(I - i )t clvy 5,34

s M (C(r-1RY)
= 7300 cosd, K3=rsuBsind, Xt = weosO .

When B & 0 the embedding (5.34) is real and non-singular so that
\/% may be represented as a hypersurface in EL\_ and is topologically
Buclidian (like space-time I but unlike space-time VI). When B 7> o,
X' is not real everywhere within the coordinate range and a second
coordinate patch is required; in this case \/3 is not topologically
Buclidian. As for space-time I it is easy to show, using Takeno's
condition554 that \{‘+ cannot be embedded in a five dimensional space
of constant curvature nor in a pseudo-Euclidian EE . However,\/uv
can be embedded in an E(, . This may be demonstrated using Fronsdal's
methc::d55 which we employed for the embedding of space-time I. A
different embedding exists which depends upon the fact that the metric
of space-time II may be written in the form (5.32), conformal to the

closed de Sitter model, The latter is represented by the metric

=:_Lf_d = —p(dE* + 5?0 ddD) + (1- Cedb*
l—'CQ‘/O" P /o J
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(oé(.sé 1/C,0 £ 60 &£77,0% ¢ < 217).
Following Tolman62 we introduce the new (real) coordinates <

by . -} b 95
nrV=/e(\«c(o”')?fue 5

T - | i PR S
t =t ol tnll-C )
which leads to the expression
2EC -
dot= -€  (dw® + A0 +sin20 dd¢?) + &>

(0 & ~ <00y,

A2

As is well known, the metric (5.35) may be cast into conformally

Minkowskian form by the introduction of the new variable
o e:c:“é
.—c-n .

Then the de Sitter metric (5.35) becomes

do* =l (—dw* —H do + st &™) +d?) .
c)*

Thus employing a similar sequence of transformations, space-time II,

given by (5.32), is represented by the metric form

dg* = Lo () &+ BCT%M-w(de“-ﬂ-sweddﬁ rord] . 5036

C"L,.,(\;'L

With the final transformation of coordinates

o =rcos@sind , o =sin® stnd | 2= Pes® , ot =y,

the metric (5.36) of space-time II (suspending the summation

convention) is

by
ds* = P> Z:| cp l dok)?,

where C, = & = C, = -1, ¢, = +1 and




<8<

'\P‘ = Y 3 (20 4> +—'>c3°“\)l"—j roc] .

C (b0 +52* 423 E

Now Eisenhart63 has given the result that any \4L conformal to an

E,  may be embedded in an k..., and described the embedding. In

our case it will be
e 2
= R
E;\C”(dz) ; 5.37

where C‘ = Cyp = C;’) = C(:’-_.- ..1’ Cy = C5 = +]1 and

2f= ol gl b

H
25 = w(ﬁz=l Ca Y 1) » 5.38
Z° = ) ((é. Ca (’)L“Y‘+—'L—P)

Then \A* may be embedded in Eié, as given by (5.37) with (5.38)

and is a hypersurface of the hypercone
6
N
Z CH(ZH) = 0 3
fr=|

with the fundamental form (5.37). We note that we could have
embedded space-time I by this method since it may be written in the

conformally flat form (4.31).

We now consider some of the physical properties of space-time II.

A neutral test particle will have a timelike geodesic as world line;
et 4 0% daxf T - 5.39
S P ds ds

If the particle is initially at rest (dx™/ds = 0), the initial

acceleration is given, for our static, spherically symmetric metric

(2.8) by

ke

d ™ \—‘Q LE“E)l =0 .
OLSL OLS

SATINES JPREY
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— CL
From the formulae for the Christoffel symbols (A2.20), the only [ :““\_

| g
is \_\Lm = _12:3) < so that, initially,

ST PP (ot_t)% o
as® i ols

and since (ol /b ) = 0 initially, this gives

dxv L 1l =0 . 5.40
P Qi (=

Now for the metric (4.44b),

v 5 Dbl
€ =& 2 FuWAClr-8)

.

%%
Substituting for € = Ql’ into the geodesic equation (5.,40) we

‘find that if B ¢ 0, (d*/ th")_V_B is infinite. Thus it is

meaningless to suppose that at observer may be situated at T = B # 0,

However, when B = 0, (5.40) gives, for small ™ ,

A o | Ch
dr? 3

so that the radial acceleration at v = 0 is zero and there is no

contradiction implicit in considering an observer stationary at that
point, Now suppose that a spectral line emanating from a distant

source at rest has frequency Vs . For an atom at W = W, the
coordinate frequency is given by V| = Vs (m ),rr‘\,l and for an
identical atom at Y = 0, V,= Vg (,J_a)‘r,= o+ Then an observer
at Y = 0 will observe a gravitational shift to the blue or red end

of the spectrum according as

(o Joam

—— L

(m)vao

is greater or less than unity, Putting B = 0, for space-time II

Che

am’* - Sunh 2 (C)




B

so that the spectral lines emanating from distant sources at rest will
appear to the observer at the origin to be displaced towards the red
end of the spectrum,

Finally we consider the stress-energy tensor, From (5,33) and

the definition (2.4) the non-vanishing components of —T-fc' are given

by
Th = L (=3slnb (Cro) 11 4 2 sinte (e cose (-8
C* v P C»
T =T | iSW\,‘?,\,l(C(r-(D\ o]
9. 3 R T2l =) 3 5.41

T = %& sunfh *(C(r-rY) — 2 stnd (Cr-B) cosh (c(v—@% .

|
CxvH N C-0%

For B 4 0, at v =B, T: = -Tll:_ —_\_22~ (= 1/®*), which are the

usual algebraic relations in the spherically symmetric case for a

purely electromagnetic field, It is thus tempting to try to interpret
the stress-energy tensor (5.41) in terms of the superposition of the
field of a perfect fluid and an electromagnetic field, satisfying
Maxwell's equations. Under such an interpretation the matter density
and isotropic pressure would take values £ 0 throughout the entire
coordinate range. For B = 0, at v~ =0, T\l = T;’ = - TR:/S}Q:; CZ/SK}
and such an interpretation must clearly fail, It has not beeﬂa

possible to find a realistic interpretation of (5.41) in terms of any

simple superposition of fields,

5.5 Properties of Space-Time III

Space-time III is represented by the metric (4.44c):

Bowy il D o > S o C2l >
s ey e (6™ +-30n?® dgf) *”smx(c,cv-e)) ’

(Bews%+e,o £B 4w ,0 ¢ ¢ ¢ 2mm).
As demonstrated in section 4.5, (4.44c) may be recast into a form

conformal to the open de Sitter model by setting

R
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'Y*=_‘_"WC4(CI® + B
C

so that the metric becomes

ads® = [ (CQ) +BC]Z{-—3L@"“ - 2 (O +SunE D)
® (cf'f)l j+Cp e (

+(\+C1[)9'3dt1’} 9
(0 é—.P £ 0 )

5.42

For the metric (4.44c) the non-zero components of the Riemann tensor

are given by

R = ~*gu2B {*I A~ sun (e (r-_)1

PAC YR e )

R\u'). = Ro_m.;.,_ = Rgm [si6 = R3I‘L’$H [s6n*0 = = | + Cv cott (C (¢ -B)),

Ll T e i\ = i s .
sun > (C(w-RY) o> (C (v ~BY))
and those of the Ricci tensor by
R‘ = 3sin?lclr-p) -\ =2 s (Cle-) cos (CCT——B))
‘ Coake S e s J
R = mstin*(c(r-B) \
R,), Rg 3 WLC’“(“‘\' T prec 5.43
R¥ = =stn®(Clr-B) _ 1 4 2 gl (Clr-B)cos(cir-8).
. Cri N Crd

The scalar invariants of the Petrov canonical form (5.3) are

::_l — St Z(C( )
OLT’-[L‘-FMC"T:@})

CPps

so that the singularity at v = B is of a coordinate nature only,

The spatial hypersurface Va of the metric (4.44c) can be

covered without singularity by a single non-singular real coordinate

system which embeds it into a four dimensional pseudo-Euclidian space

E;*_ M
dst = — X" = dX2® = X — A,
X = 5{_C_T____ _1]%: dv
sin*(cCr-nY)
Xr= #snb cos b, X =wsinbsin § Xt =vcesO |

5.44

FOUE L TABI Tt A L v
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The coordinate Y’ may be eliminated from (5.44) and Vg may be
represented as a hypersurface in ELP ; thus it is topologically
Euclidian, \A+ cannot be embedded in a five dimensional space of
constant curvature nor can it be embedded in an Eib by either of
the two methods described for the other space-times studied in this
chapter. It can, however, be embedded in an Eq . The embedding

is easily obtained and is given by

ds™ =~ ™ = AXET - dAXPH = AKEF A RE T AT AT

| 2 ‘ n g ‘
where XK, W, X* and ¥ are the coordinates defined above in

(5.44) and
5 = ot o )
X S (CCrF-13Y) sl (’T) )
b o Q,C'Y“ 3S L
A sum (C(r=n)) o1 (Z)
X7 = 2. .

St (C (v =)

Retaining 7Y as a parameter, \ﬂ+ may be represented as the surface
in E7
2 e Z: e m % Up
X:L B hE ><l| o e : W xo s 7

i
-1~
Kie j SbVLLCC(“(" BY)) } -

3

We now consider briefly the main physical properties of space-time

III. To discuss the behaviour of neutral test particles in \4¥ we
use an identical argument to that employed for space-time II, This

again shows that in order to examine how the universe appears to some

centrally situated observer the constant B must be put equal to zero.

Then from the equation (5.40) the radial geodesic equation governing

the behaviour of a small test particle is, for small ~ ,

div = = C*
d.e* 9

)

3 owa N oy
I ZONR AR L' { 4 PP

ot kb Al .
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where we have used, in (5.40):
) e C"’V" %
st (C

Then, as for space-time II, the radial acceleration and force at the
origin of this spherically symmetric universe is zero. Unlike space-
time II, however, test particles near T = 0 will move in to ' = 0,
since Qi?r‘/CAG'LM%O < 0, and spectral lines emanating from distant
sources will appear to the observer at the origin to be displaced
towards the blue end of the spectrum,

The feature that distinguishes space-time III from those examined
earlier is that we can find a realistic interpretation for its stress-
energy tensor. From (5.43) and the definition (2.4),'1'65. has non-

vanishing components

—rl s ) =3 sun(C (v -B)) ok R sum(C(w~6%cos(C(W-Ei%;
% ot opk Cy®
e 3 " c’“ﬂ““‘ N )
T s HC (-BY) B e B o8 e ).
u W({ Mﬂczwﬂ‘ — ZFF$3pn,(CCW @) cos (Clv-R))

Now the stress-energy tensor corresponding to the superposition of the

field of a perfect fluid and an electromagnetic field is

= (prplucu, —bgye: L TR e -mgc({,e L FTT, s

where ‘D P /3 and u® are respectively the pressure, matter density
and four velocity of the fluid (WU = 1) and T;xp is the electro-
magnetic field tensor satisfying Maxwell's equations
dp s n&
;F} = L\‘TTJ )
5.47
F‘d.@ - ¢°LJF) —¢p,d )
where dhi is the four potential and J % is the current density

four-vector. Under our symmetry conditions, the surviving components
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of (5.46) are (since A 0,?\“'?\4 =

Ti==p-LF"F, , ()
To=Ti=-p+L L TRy 5.48(b)
o %{TFMEH : (©)

Comparing (5.48) with (5.45), we must have

=1 (s (Cle®) - | sinlclr-ghcos(clr-ml), (@
% L C*vH Cy2 ’
= 3p,

5.49(b)

»< r'HF mecgcf:v =) _3‘& _ éf siv (C(+-8) cos (Cle-B)(c)
fY"

It is now necessary to check that P>/ 0 and that F'H'Fm 4 0 so that
the radial electric field F“,Lf is real, Clearly, from (5.49a), F

is non-negative only if

Fon (C(w-B)) » Cr. 5,50

However, this inequality is always violated within the coordinate
range B &+ L B+T/2C unless B = 0, in which case (5,50) holds
everywhere, We henceforth take B=o (although it should be noted
that even when B # 0 the negative pressure range is bounded below

and could be ascribed to the necessity for the presence of a constant

of the '"'cosmological' variety in the definition ofT'.ocr). To show
i y "
that FL‘“F.,{, is everywhere & 0 we must show, from (5,49c) with
B = 0, that
2 smPe +x* + % suoe cose 7 0 5.51

where we have written = = C~¥ , Employing series expansions for
gun (2x) and cos (2¢), it may be shown without difficulty that

(5.51) is true everywhere within the stated range. Then, from (5.49),
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the pressure, matter density and radial electric field are given by

P .—.% S%_(_WC%JP s (C) = Cv cog (CF)‘}

f) =3P, (the equation of state for pure radiation),

|
.= /3 \ Y =2 sin* g
Fy i m){\ + SUYL (¢ cos () E"T"QL ¢ (CV“)}

We give the following limiting values of ID 4 P and F:,H, :

. gt Gk
(l)r‘“:O:P:?{“’P:T’EL\':O.

anved b S e - RE L Tu SEE

It should be noted that if we do not demand strict adherence to
the concept that the variable {D in the metric form (5.42) should
represent a radial coordinate and allow its range to be — LID L 0
the range of T in (4.44c) is extended to cover R 4+ LI +B
In this case our previous comments concerning the topology of space-
time III are unaffected, as are the statements concerning the non-
negative character of ‘3 . /D and TﬁH_ . We addend the values of

'P»(" and Fl”r at V= /o

8

i) v =% : P =0, p

5.6 Conclusion

Only four of the space-times arising as solutions of Lanczos'
equations have been examined in this chapter. A detailed study of
the properties of all the universes obtained could well prove inter-
esting. For example, the ''class 2" space-time V, given by (4.44e),
is a known solution of the Maxwell-Einstein equations, found by
Robinson.64 Space-~time V represents, in the weak-field approximation,
a constant electric field, or a constant magnetic field, or a super-
position of the two, The investigations of this chapter lead us to
expect that our theory may well prove fruitful in predicting space-

times which are of physical interest,
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Figs. 1—9

Timelike geodesics in space-time I arising when a > 0.
The scale is in units of & /R and two successive orbits are shown

in each case.

Figs. 10 and 11

As for figs. 1— 9, but showing sets of timelike geodesics
for different particle angular momentum values corresponding to
fixed energies. One orbit is shown for each pair of values ( {* ,A

considered.
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Fig. 1 Timelike geodesics in space-time I

¢~ =0.80, R =0.30
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é-_ 100 ._%

Fig. 2 Timelike geodesics in space-time I

% =0.8, R =0.60
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Fig. 3 Timelike geodesics in space-time I

£ =0.80, R =0.80
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Fig. 4 Timelike geodesics in space-time I

£* = 0,50, R = 1.05
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—

¢ 1.0

Fig. 5 Timelike geodesics in space-time I

£ =0.50, R = 1.20
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4_______1.0“___5

Fig. 7 Timelike geodesics in space-time I

L2 =0.20, B = 4.01
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¢ 1.0

Fig. 8 Timelike geodesics in space-time I

£ =0.20, p=4.10

T
R 5. -
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Fig, 9 Timelike geodesics in space-time I

£ =0.20, R=4.60
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Fig., 10 Timelike geodesics in space-time I

£ =0.20. R=4,01, 4.10, 4.40, 4.90




-100-

1.0
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v

Fig. 11 Timelike geodesics in space-time I

2 =0.10. R =9.01, 9.10, 9.40, 9.90
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Figs. 12 and 13

Null geodesics in space-time I arising when o » 0, o & 0
respectively. The = -scale is in units of h /£ and the Y -scale

is indicated in each case.

]
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Cl"e..:
T

L

1.0

A~
%

Fig. 12 Null geodesics in space-time I, a > 0
(y-scale) = (x-scale)/8
9'}% = 0, 0.20, 0.50, 0.95
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[/

— 1O —

Fig. 13 Null geodesics in space-time I, -a=b> 0
(y-scale) = (x-scale)/3

b4 = 0.5, 1.0, 2.0, 3.0
h
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6. NUMERICAL SOLUTIONS

6.1 Introduction

In chapter 3 we considered the imposition of several boundary
conditions on the spherically symmetric, static field. The various
boundary conditions, chosen according to certain reasonable require-

ments discussed in section 3.1, are the following:

(i) Space-time is asymptotically flat,
(i1) Space-time is regular,
(1ii) Space-time is regular and asymptotically flat,
(iv) Space-time is asymptotically of the form of the Einstein
universe,

(v) Space-time is asymptotically of constant curvature.

The results that we have obtained concerning the compatibility
of the conditions (i), (iii) and (iv) with the field equations are
conclusive. We have now to investigate the complete form of the
solutions which are regular (condition (ii)j and determine whether
or not there are regular space-times that also satisfy condition (v) —
that they have asymptotically constant curvature. To do this we
shall use numerical methods.

It was shown in section 3.3 that any regular solution of the
static, spherically symmetric field equations has constant curvature
invariant. As a consequence, the field equations based on the metric
(2.8) become quasi-linear and of second order in the components of
the metric tensor (section (3.6)). The problem may then be reduced
to finding the solution of a single integro-differential equation
which, however, we have not been able to accomplish, Consequently,

in section 4.2 we investigated the form of regular solutions near the

AL
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spatial origin by obtaining the first few coefficients of the rising
powers of 1 in the assumed series expansions of the unknown

)

functions Q?L, £, These series expansions will be used as the

basis for our numerical work.

6.2 The Numerical Method

Our aim is the numerical integration of the pair of coupled
second-order differential equations (2.17), (A2.25)g , with given
initial values. From section 4.5, it is known that no non-trivial
static, spherically symmetric, regular solution is asymptotically
Minkowskian; thus we may expect that the behaviour of i 5 e’ will
show considerable deviations from Minkowski form. It is therefore
very important that a numerical integration procedure is adopted that
is especially stable. Such a procedure is Hamming's modified
predictor-corrector method for the solution of general initial value
problems, which is conveniently incorporated in an IBM subroutine.65

The initial values that we provide must be sufficient to ensure

the uniqueness of the corresponding numerical solution. Thus, it is

not sufficient to give the initial values

eh=| , <=1
ot v =0, -~
£L2§ =0, 9522 = .
ol el
as every regular solution must satisfy (6.1). From the series

expansions (4.2), however, we know that, for given p , regular
solutions depend upon two arbitrary constants, L\; and V, . In
order to ensure uniqueness we must first assign W, and V, .
Then, from (4.2), we choose initial values for -e7‘ and € and

their first derivatives at some point T = h :
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er= (] + vt +._'5_ (u,=Vo) Tve =@ (g +va) ] W

Y T V’DE (ZuZ +2uavs + Vo) +3R (U V) (20, Vi)
257 o
—2 (3p)" (o \/937":[ h."} . 6.2
&=\« W, +ﬁ(ug_——\/z_) LChug +V2) 23R (g +vaY] M

% Dl iy [(ZO Wr-2BU,Ve ~13V,Y) +30 (U V) (2B U~ 1 V2)
217097
2 (3{3\7‘(u2_+\/o:)7“] He .
together with corresponding formulae for their first derivatives.
(We have transformed the time coordinate in the usual way to make
€ =1 at the origin). The value of K must be chosen such that
the validity of the series expansions (4.2) in representing the
functions Q?',=4§Q extends to the point ¥ = W .  In practice
this is no problem due to the presence in the IBM subroutine of
devices to inform the user of any choice of inappropriate initial
values.

So far, it has appeared necessary to assign numerical values
independently to W, and V, , so that the numerical solution set
N( ﬁ s Wo , Vo ) is trip'ly infinite. However, the essential
solution set (which contains all the information required) is only
doubly infinite. For a consequence of the gauge invariance of the
action principle is that if the static, spherically symmetric field
equations based on the metric (2.8) are satisfied by €?‘ = G?’Or),
€9J= Gf’(w*), then they are also satisfied by é?'CDwd),-e? (D) for
any non-zero constant ) . Without losing any information about
the form or the properties of the solutions of the equations, we have
thus the free choice of one of the constants ., , V, , though we
must clearly take into account the two possibilities as to the sign

of these quantities. We shall find it convenient for the purposes

of comparison of the numerical solutions if the choice is made such

RS &3:
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that the constant value of the curvature invariant, K =-6 (wo+Vva ),
is absolute. Since the case when K vanishes has already been
dealt with in section 4.2, our interest lies in the study of the

following two cases, A and B:

Case A

L _“13“ =i g

K=+2 . Sucdi (]
Case B
T V., = —'5 =W, 4

K=-2 . 6.3 (b)

Then the essential solution set is the union of N (p, o, —-'—3-—ut;._ )
and N (Fs s Wy ,--‘3 — 1\, ), where F} and W, vary over all negative

and positive real values. The initial values of e

and @ are
given by (6.2) where V, is determined by (6.3a), (6.3b) for cases

A, B respectively; the formulae for the initial values of the derivatives
der /o~ , de /do are obtained similarly.

The task of setting up the integration procedure was simplified
by the fact that the de Sitter solution occurs when L\, = V5 (=-—t f+%5,
for the two cases), so that comparison could be made between the
numerical values obtained as a result of numerical integration and
those obtained from the exact solution. The de Sitter solution was
thus used as a monitor, whereby the efficacy of the input parameters
(step size, error bounds, etc.) in producing accurate and non-spurious
results could be optimised. The high accuracy obtained for the de

Sitter solution enables us to place confidence in the numerical

solutions obtained.

6.3 Properties of the Numerical Solutions

Numerical solutions were obtained for a wide range of values of W,




-108-
and 2 ; a representative selection is shown schematically in Figs. 14
and 15, which correspond to cases A, B respectively. To classify
the solutions according to the values of W, and {6 would be some-
what artificial, as in general the boundaries between classes are to
some extent arbitrary and we cannot attach any significance to the
results, It is more instructive to attempt to describe the properties
of the corresponding universes. Our interest lies principally in
"realistic'' models: those for which the energy density Tl:; is
nowhere negative, but we shall not restrict the values of the pressures
given by T: and T; (= Tq‘é ¥ During the following discussion
of the solutions included in cases A and B it will be helpful if

reference is made to the figures.
Case A

Vl:':---].s—t.L2~ ; K=+2.

These numerical solutions include the closed de Sitter model

(LAL:_\/L—_-“--I@—- ’—rll——'TZi :T%:Ti =2!q_<,):

e = e dO* + s O dd?) 4+ (V) dEr .
- =6 e " o =

For increasingly negative (positive) values of U\, , the behaviour
of the numerical solutions approaches that of the limit of the special

case of space-time II (space-time III):

V_ N . -3
€Y= e = Lum { e ] space-time II),
U - s 2 (=300, ) ? (epes )
) AL ) %
Y= et = Lim i Bty v space-time III).
Uy 00 L sin® (W30, ) 2 (sp )

We are especially interested in solutions such that TLL 7 0
everywhere. From the definition of the stress-energy tensor (2.4),

using the formulae (A2.21), (A2.22) for the Ricci tensor and the

3
)
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curvature invariant,
T e 1§ (o) - e,
O S e N v 6.4

Then T}, is dependent upon e only and is non-negative if and
only if
o det 4 ™A %O . 6.5
dr
Using the first of the series expansions (4.2) for o™ it is easily

shown that (6.5) is true near ™ =0 only if (i) or (ii) is true:

) e ;
(i) (ch‘" ’1“:050 (i.0,. Vo 4. 0},

x

(ii) @:il)ﬁ:o:o (i.e. V, = 0) and <%k%)ﬁ(?o (i.e. @7 0).
Then for a numerical solution to be realistic it must satisfy either
(1) or (ii) in order that "TT; is positive near ~ = 0. Clearly,
from (6.4), the energy density decreases monotonically throughout any
region in which de*/dw L 0. It seems that for case A space-times
which have T4 7 0 everywhere, @~ diverges to infinity at some
finite point ~, . The rate of divergence enables us to make the
conjecture that the radial length

y!

(Rv(ﬂrﬁ = LY e?%L cbw3
o

and the volume

-
X
\J () ::]+TFS\GF1Q_ALCVW "
o}

both of which are monotonically inreasing functions of v* , have
finite limiting values as v = s ( \A3 is closed). Then both the
ratio of the circumference of a circle at GQ,(T"] to the radial length,
and the solid angle subtended by a spherical surface at Y = 0 have
their Buclidian values at ™~ = 0 and decrease monotonically to non-

zero limiting values at ™ = ', being given by
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NS A
2 /L e /low’ P

LHT’\"'L/ SL ;S, g o\w}l g

respectively.
In \/ 5 rJ~3 7 0in 0 & L% . The proper time

along a T1-line between two T -constant hypersurfaces is given by
Vi,
LN woa ANE

Y
Now the initial behaviour of € is determined by the given initial
conditions; its behaviour for values of ~* 7 0 is apparently as

follows (for all case A solutions):

L, L0 -e\) decreases monotonically to zero. j
W,= 0 ev decreases monotonically to zero if IS 7 S, -!e)— >

2 increases monotonically if @& 4L - —‘3 .
W, 7 0 ¢’ initially increases but for small values of iy

and for some values of F—L reaches a maximum and o

decreases again.

The proper time along a Ut -line thus depends upon ~ in a similar way.

The radial null geodesics satisfy the equation

0 = - dvt +e¥der,

The slope of the null curve is dv/dt= (Q\)/Qk )Ji‘ 2 Near Y = 0,
dv/dt {1 for all case A solutions; for physical solutions

];.ié'mfo (dv/dk) = 0. This implies, as for the closed de Sitter model,
that an infinite amount of time as measured by an observer at v = 0
would be required for light to travel between v = 0 and Y = %

For the observer at v = 0, the universe has a horizon at v = v, .

Spectral lines emanating from distant sources at rest will appear

:J
f
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to the observer at Y = 0 to be displaced to the blue end or the red

end of the spectrum according as

(J@uw Jrver

(T

is greater or less than unity. Then the apparent displacement of

,.g
spectral lines is determined by the behaviour of 41/L

, which has
already been examined. The displacement may be always to the blue,
always to the red, or sometimes blue and sometimes red, for all the
universes (physical or not)., When both red and blue shifts are
present the lines from lZess distant sources appear to be displaced to
the blue, while those from more distant sources appear to be displaced
towards the red. The reverse situation does not, apparently, arise.
The initial acceleration of test particles initially at rest is

given for our metric by (5.40):

CLl-.(v 1% val‘e\)—W s O

&> 2

Since (d¥/dv) vanishes at ~ = 0, the acceleration and force at

the origin of the universe is zero. If <i£v/c%v' is negative for

Y 7 0, test particles accelerate away from the observer at v = 0,
as in de Sitter space-time. Then test particles accelerate away

from v = 0 only if W, L 0 or w,= 0 and & b B %5' An observer
at ¥ = 0 may see both a local contraction and a large scale expansion

present in his universe, but it seems that he will not observe the

reverse.
Case B

N, = J@ Sk KRl

These numerical solutions include the open de Sitter model
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(L,LZ—_—-_\/Z_: _1_6 ; Tl] —_-Tt -:‘.—T‘(,&1 :T‘Tl-.—_ "“2_%;{‘)"
de*= —dw* —~2(dO* +sn*O dd*) + () + %1) dE?,

(I +~+>/6)

The limiting behaviour of the solution set as W, - <o (+o0) is the
same as for case A. Again it seems that all the case B solutions

which have T% % 0 everywhere are such that o™

diverges to

infinity at some point (but in this case, e diverges less rapidly

than <’ ). It has not been possible to conclude either that these
universes are closed or that they are open.

In V;; the proper time along a tT-line between two ' -constant

hypersurfaces is given, as before, by
Vv,
Ao o= g5k,

Vv
The behaviour of £ is apparently as follows (for all case B

solutions) ,
!
p
W, {0 € initially decreases but may reach a non-zero ;
.‘1
minimum and increase again. ,]
4
4 . 3 e 4
W= 0 @ decreases monotonically to zero if @7 - -3z and :
increases monotonically if B L - -% . :'j
Yo :
U2 0 € increases monotonically.

The slope of the null curve, d¥' /dt = (e‘)/{aﬁ't )J?: , 1s 7 1 near
¥ = 0 for all case B solutions but this is not necessarily the case

for all ~™7 0.

For solutions such that TLL 7 0, the displacement of spectral %
lines appears to be always to the blue end of the spectrum (for, as
mentioned earlier it is necessary that V, & 0 for T}, 7 0 near
~ = 0, and this in turn implies, for case B solutions, that W, % 'Jg s :'i

A test particle initially at rest in such a universe will move in to k7
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the spatial origin (at which the acceleration and force is zero, as

before).

6.4 Regular Solutions Asymptotically of Constant Curvature

In section 4.3 we investigated the existence of series solutions
for large values of the radial coordinate consistent with the boundary
condition of asymptotically constant space-time curvature. The
formal series expansions (3.19) were substituted into the field
equations in order to obtain relationships between the constants
Oi. ; B . We made the conjecture that the only solution of this
form for unrestricted f3 is the Einstein space (4.27). In addition,

we obtained the result that such solutions may exist for certain

! Ll 17

5 = +~ff 2 7z »+++)s each

discrete values of g (@ = :%Z )

solution having the form
A

R
L LR
Gl Gy W Az w3y T
6.6
v P, & - b
¢ =pes (At 8.l 3 LS B ) ,
@] 'L( Q.. B Ny 5\1 %{;3 AN =2

where Vvt 1is an integer and at least one pair ClP, k’P ( P'? 3)
is non-zero, higher coefficients being expressed in terms of Q, , Qg
and Clp - For all such solutions the curvature invariant is a constant
(R=- 12/, ); this fact is not inconsistent with their form at
the origin being regular. We thus search among the numerical
solutions (the derivation and properties of which have been examined
earlier in the chapter) for any which are asymptotically of de Sitter
form. The de Sitter form is given by (3.5) (putting C = 1):

ds* = =™ _ v (d0 st O d ) +(1 = AP de> 6.7

=LA 3

We now deal with cases A and B separately.
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Case A

Numerical solutions are based on the series expansions (4.2) for

b

. = % %
small v , for which the de Sitter solution is € g €° Jdg= | U,
where U, = Vo. = -R /12, We have set, for reasons given previously,
do= 1 and, for case A solutions, R = 2, Then Wy, = Vo = -A\/3 = -2; s

Now any regular case A solution that is asymptotically of constant

space-time Eurvature tends to the form (6.7) with -A/S = --‘5 ‘ This

is so because for the large T expansions of section 4.3, R = - 12/q, .

Setting this equal to 2 we obtain Q, = - 6. Now since the de Sitter

: R ; S —~A v :
solution itself (with initial values <€ =€ = 1) must arise as a

member of the numerical solution set, we obtain from (6.6) that Q¢ =

1/ &z, . Then the asymptotic form (6.6) becomes
PR e P e BRI Tt .,
(&) & A o) nT3 e 6.8
" e b
AN MR o - TR R R -___.?"__.
b 6 6 2:/'3 e :

which has the correct limiting form (6.7) with -/\/3 = - &, as
required. Thus we can make specific the asymptotic values sought
for the numerical solutions.

The convergence of e:?\ ” -e\) given by (6.8) to the de Sitter
values may be slow, but that of the components of the stress-energy
tensor will be much more rapid. From the formulae (A2.21), (A2.22)
for the Ricci tensor and the curvature invariant, and the expansions

(6.8) for ejl 5 «e,v , we have, asymptotically (putting ® = 1):

S
T""L:‘T+ \) O 6.9
e 0 -0t

W=
A thorough search was made for solutions of the required form for

each of the values [3 s 3 1 and llji- For the two

\ |
TYRATE Y Yy
wa

largest values of ﬁ it was found that there seem to be values of U,

Didat
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for which the numerical solutions bear some quantitative resemblance
to the appropriate de Sitter form. However, it was also found that
this is true for any value of (3  exceeding the approximate value %g i
The closeness between the numerical and desired values is insufficient

to enable us to draw any positive conclusions; it is difficult to

know what to make of these results.

Case B

By a similar argument as for case A the asymptotic behaviour

sought is
— y 32
'@.7"=‘_]+% +-%7=“Lq +_!6§%.9—':‘L:L ;
¥ =] =8> 4 B0l .l B 6.10
b E T 6m3 L T
Voo 2 I l
T —ZJ’O(TFV\) + O(?e) )
. = =l ' | 6.11
To ==y +0 (=) *‘O(m\ )
B ) I |
Tu==3+ 0w + ( (L) -
No solutions corresponding to values of ﬁ given by 3 = ’T‘IQ'_‘ "‘lg .

%7 5 %%: or %%& were found with the asymptotic form (6.10), (6.11).

However, it was found that for values of (3 not exceeding the approxi-
mate value “{%Y’ there exist numerical solutions for a wide range of i,
such that T, , 15 and ~TE; approach the value '%Z' The rate of
convergence is dependent upon M, and, as we would expect, is
unobtainable for luzl_-syroo (since the solutions must approach the
limiting forms of space-times II and III). The convergence of ‘r:

is observed to be more rapid than that of _ri and ~rﬁ_ , which supports
the conjecture that the value of vt , previously taken to be greater

than 3, is in fact greater than 6. The convergence of -Gfx

-\)
A
however, was very slow and over the range considered these functions
were only qualitatively of the required form. Some such solutions

are indicated in Fig., 15.
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The numerical results described in this section are not in accord

with our expectations. We make the following suggestions:

(1) The possible values of fS are not given by a monotonically
increasing sequence as conjectured in section 4.3. This, however,
seems unlikely as experience with the series expansions indicates
that by working to higher orders increasingly positive values for @
must be obtained.

(ii) The series solutions for the specific values of F5 considered
do not correspond to solutions regular at Y = 0.

(iii) Those solutions that are regular at ¥ = 0 and also asymptotically
of constant space-time curvature do not possess series expansions which
include integral powers only of 1/~ . An investigation of more
general series expansions forms than those studied in section 4.3 is
required, (We note in this regard that space-time II has exponential

terms in its large-Y* expansion).

6.5 Conclusion

The numerical solutions obtained give some indication as to the
nature of the static, spherically symmetric solutions permitted by
Lanczos' equations, but are in no way as instructive as the exact
solutions. However, it has been seen, in section 6.4, how numerical
methods may be helpful in deciding the suitability of certain assumed

asymptotic forms for the solutions.




Numerical solutions of Lanczos' equations in the static, spherically
symmetric case, corresponding to the metric (2.8), under the imposition
of the boundary condition of regularity at the spatial origin. Fig. 14

consists of Fig. 14(i) and Fig. 14 (ii) and covers case A solutions:

V,, =-1€ - U, K= +2 .

A succession of solutions is shown for U, €& (-1, +1) and ﬁ;e (- 0.5,
200, Increasing values of W, and of F; are shown in successive
rows and columns respectively. For increasingly negative (positive)
values of W, , the behaviocur of the numerical solutions for all values
of Fi approaches that of the limit of the special case of space-
time II (space-time III). The de Sitter solution occurs when t\, =
Vo = - %;. The behaviour of solutions in all cases for values of ﬁ;
more negative than - 0.5 or more positive than 2.0 does not differ
substantially from the behaviour for the latter two values.

The range of integration was generally v & (0, 20), but it is
not necessary to depict this in full., A broken line indicates that
the curve is completed outside the vertical range shown.

Using subscripts to identify particular solutions, so that
Fig. 14(1)2)3 denotes the numerical solution for W, = -7%~,f5 = DBy
we make the following observations:

Examples of solutions with "T't,z»o everywhere are
Figs. 14(1)3{5 ’(i)a,m § (i)w,m.s (ii)avn (ol = 1,..,4); (ii)o‘)Lqr (o=
12,39 (iih’z’ , i) &
The region within which _T_:ZV 0 (or { 0) for each solution is
distinguished by a green (or red) line along that part of the hori-

zontal axis.
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Numerical solutions of Lanczos' equations in the static,
spherically symmetric case, corresponding to the metric (2.8), under
the imposition of the boundary condition of regularity at the spatial
origin, Fig. 15 consists of Fig. 15(i) and Fig. 15(ii) and covers

case B solutions:

A succession of solutions is shown for w.,e (-1, +1) and ge (-2.0, 0.5).
Increasing values of W, and of B are shown in successive rows
and columns respectively. For increasingly negative (positive) values
of W, , the behaviour of the numerical solutions for all values of p
approaches that of the limit of the special case of space-time II
(space-time III). The de Sitter solution occurs when W, = V, = %; ;
The behaviour of solutions in all cases for values of £ more
negative than -2.0 or more positive than 0.5 does not differ
substantially from the behaviour for the latter two values.

The range of integration was generally < €& (0, 20).

With similar notation as for Fig. 14, we make the following
observations:

Examples of solutions with j~i 7 0 everywhere are:
Figs. lS(ii)Z‘,,5 s (ii)z,w 5 (ii)3’3 A (ii)s’w s (A1)y,q » Q1))
The region within which Tri 7 0 (or & 0) is &istinguished as in
Fig. 14 by a green (or red) line along that part of the horizontal
axis.

Examples of solutions which are asymptotically of de Sitter form
are:
Figs. lS(i)u" 3 (ii)d,i » (Ai)e,2. » (ot = 1,...,4)

and are distinguished by a yellow line along the vertical axis.
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7. THE APPLICATION OF BUCHDAHL'S METHODS AND THE SET
OF "CLASS 2" SPHERICALLY SYMMETRIC SPACE-TIMES

7.1 Introduction

In order to consider the field equations under the imposition of

spherical symmetry we assumed in section 2.4 the usual, and conceptually

convenient, metric form (2.8). It has become clear that this form is
sometimes inappropriate and, in certain cases, completely inadequate
for the exhibition of certain spherically symmetric solutions of
Lanczos' equations., For example, we are not able to solve the
equations of the coordinateAtransformation that would enable us to
exhibit space-times VI and VII explicitly in the form (2.8), and there
is no transformation whatsoever that will take the metric forms of
space-times V, VIII and IX into (2.8). It may thus be advantageous
to consider the field equations obtained from a different spherically

symmetric metric form. !

The set of all spherically symmetric space-times is divisible

into’ two disjoint classes. Following Takeno,54 the line element of
any class 1 spherically symmetric space-time, 53‘ , may be written:

P A o3 e:\)("f") ()

ds” = -e dw? = 2 40> +su 20 dd)’*) + - alt™; N |

and that of any class 2 sphericallx symmetric space-time, 551
Al ) 2 =
dg* = —-¢ dr*~ B> (00%+5n?0 dqs“) +Qv(ﬁadt7‘) 7,2

where ES is a constant. Thus space-times I—>IV, VI and VII are

class 1 while V, VIII and IX are class 2.

Class 2 spherically symmetric space-times are sometimes disregarded.

"In establishing a generalised form of Birkhoff's theorem, Bonnor66

dismisses E&js as of no physical significance, at any rate for a

spherically symmetric field. This is because the surface area of a

et
5 T
R oot i3

s Woa ki by R s wdeh
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sphere in an Eg‘ is independent of the radial coordinate and has the
constant value 41vE”* | Bonnor's generalisation states: Every

physically significant spherically symmetric solution of the field

equations R =.J&‘9fn. may be rveduced, by a coordinate transformation,

to the static Einstein space (4.27). 1f ,'s are not regarded as
without physical significance then this generalisation does not hold,
since F1P0'= JAL.QPG_ admits a time-dependent solution distinct
from (4.27). Birkhoff's theorem in its original form38 (JAL = 0) is
still true, as there are no solutions of Fiﬁc-= 0 representing S&js.
To eliminate S%gs from discussion on the aforementioned basis
does not seem justifiable, since the geometrical properties of any
non-trivial space-time will, to some extent, be at variance with our
experience. It is noticeable that solutions of Lanczos' equations
arise in families, the members of which share certain properties. We
thus seek the completion of the set of static E& solutions of
Lanczos' equations containing space-times V, VIII and IX. In order
to do this, we must adopt a suitable form for the line element;
preferably one which may also lead to further static ES, solutions.
In seeking a suitable form for the line element we take into
account Buchdahl's examination6 of the field equations arising from
the Lagrangian F{% ; The metric which he employs and the field
equations obtained from the Lagrangian F{P6j2f6473F?" for such a
metric are given in section 7.3. In section 7.4 we achieve our
objective in obtaining the class of static E%L solutions of Lanczos'
equations. First we briefly describe, in section 7.2, the method
employed by Buchdahl to obtain the theorem (given in section 3.2)
concerning static, asymptotically flat solutions of the field equations
generated by the Lagrangian FfL , indicating the complications that

2.
arise when K is replaced by the combination ElFG-F{fO-%—FSF%} .

P S v e AL S SRR e S
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7.2 Buchdahl's Theorem

The method used by Buchdahl to demonstrate the non-existence of
static asymptotically flat solutions with R # 0 of the field equations
generated by the Lagrangian RZ is applied, as far as possible, to
the field equations (2.3) generated by R/OO_RPO"+ﬁ R* . we proceed
as follows:

An Einstein space I A9t°°' for which /\ = 0 is called a
special Einstein space \/,E and is distinguished by the subscript O
A (postulated) family of solutions of the equations (2.3) represents
spaces \/ﬁ neighbouring to VE , at least within some region )

The metric of any Vﬁ is
A e 4+ & LL ?
C\}F&r ?Po- IDU'

where E is a sufficiently small constant parameter which can tend
to zero and the "L(oo- (and their derivatives to a sufficiently high
order) are finite and continuous in iD : Retaining only terms linear

in & , we may write

RPC’”: EF(LC, ; R=¢&P 5.5

(P = gpod Pf,c- j Denoting throughout this section covariant
<]
derivation in \/F\ and \/E by a colon and a semicolon respectively,

the field equations (2.3) are

8P°’ va:om' " So(:r R-P‘T oy T Rc'co_:m_ Rof'o: ool

éang L
+_l2:. 9P°__Q. R _ZR¢PR'G 7.4

+)6(28P0_3°U‘,R:0W _R:Pcr _R:o-,o -\-LZ’QPO_RZ--‘ZRRPG-»‘: Q .

To the required order

Rloc'to(n’ sl Ppc“,ci’l‘ ’
75

P\:fm' = & P;f)o- 9
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so that, using (7.3) and (7.5), equations (7.4) reduce to

ol [Fdad A ol
SOFQ-P y o +9 PPO‘;:X.‘T —‘“P'O“BFDL-P"D:,Q'OL

v 7.6
+P(ZQP°_ SQUYPQOL'T "‘P',Fa"P;o-/o)zo ¢
Transvecting (7.6) with gf’@ and using
(¢]
we obtain, if @ # - =
8‘*’* P.}wr =} . 7.8

o]
Using (7.7) and (7.8) in (7.6), we obtain
T e oL
i =2 — A .9
9 f Pospm =P sou2pPpe=0 ’

FO‘ yxXer )

The set of equations (7.9) replaces the simpler set of Buchdahl:

PSPO‘ =0 . 7.10

We note that the first consequence, (7.8), of (7.6) contains very
much less information than (7.10).
Buchdahl now proceeds by differentiating (in VE: ) (7.10) and permuting

the last two indices to obtain

ol
Psfm—qa i P;P,To-”oz B.opcyq*P;ou
By relating the components of F:\O-LPO-W in the four-space VE to the
components R?'fwst in the x*constant hypersurface of \/E y it
is only necessary to apply straightforward tensor calculus to reach
the conclusion that P must be a constant. Since VH is to be
asymptotically flat, this constant must have the value zero. Under
the conditions of continuity and differentiability imposed earlier

upon the metric, any \/ is neighbouring to \/ in a certain region
P a g g E g

g
]
:
-1.
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so that the theorem follows.

We see that the manipulation of the set (7.9) is a very different
matter. It has not been possible to proceed with the analysis in a
similar fashion, and although F = constant is sufficient to satisfy
(7.8) (which holds only if (3 £ - Ly, it may not be necessary.

3
We cannot say that Buchdahl's theorem is also true for the equations b

of the Lagrangian RP"_ RF + F)R?'

7.3 The Field Equations in Buchdahl's Coordinates

The field equations arising from both Rz‘ and R Q-RPO:*"F;P\z”

(B¢ - L) have the first consequence that

3
80(_"!‘ R',o(,’\' = O J 2.7

In terms of the generic form of the general static spherically

symmetric metric

() - V)
ds*= =M dp - 47 (dOF + S0 dg¥)+e  dt* 7.11
considered by Buchdahl, (2.7) reads
1/
{wﬂ-%(v—?Q+M]R}=O, 7.12
(a dash denoting differentiation with respect to v ). Now one of

the functions A , /UL s P may be prescribed arbitrarily subject to
the condition that neither M nor YV must be taken as constant
(for taking t)t = constant restricts us to 87_"5 only and we do not
want an a priori distinguished time coordinate, which would follow

from WV = constant.) Buchdahl makes the choice

Pm_li(x—vﬁ, 7.13

so that (7.12) becomes

R'=0,
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whence
R= R+Bw, 7.14
where H and B are arbitrary constants. We follow Buchdahl in

the choice (7.13) so that the metric form now to be employed is

(A=)
c%l=-—éldwl~e# v(d@wsuﬁ9d¢94-évdﬁ', 7.15

in which A = A (), » =Y (v). We know in advance that every
solution must satisfy (7.14).

Writing x' = v~ , x* = 9,9(,?’?_(}3,1“

1

+ , the 9PG‘ 5
gfm— for the metric (7.15) are given in appendix A7.3 by (A7.1),
the Christoffel symbols of the second kind \—“:;- by the set (A7.2),
the components of the Ricci tensor wa and the curvature invariant
R by (A7.3), (A7.4) respectively.

As explained in section (2.4), the G/oo* given by the latter of

(2.3) must satisfy the identity (2.9):

GP 0,

Il

o3P
whether or not the field equations G"oo- = 0 are satisfied. In

consequence the following identity is obtained for the metric (7.15):

v o dRYGE o wndbl - gl dh b ody
(EL:?J &?JGZ' = 2.&_; G &= +CL S 7.16

In addition, if the field equations (2.3) are satisfied,

2
G=G+2Gy+ G=0. 7.17
From (7.16) and (7.17), excluding the two possibilities (i) A =7,
/
(ii) A = 37 , the field equations are satisfied if both G =0

(i.e. if R =A+B+ since, from 2.6), G = 200+ 31(5)9°(TR3°/¢)

and G-" = 0, We now deal with the cases (i) and (ii):
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(1) X o=y, In this case we must ensure that G'| = 0 and G‘z = 0.
/ A 2L &
(ii) A =3y, Inserting & = C € into (7.15) we arrive at

the metric form
ds*= = %™ dr? ~ CeP(df™+sin*0 Ad) +e dt, 7.18

Transforming the radial coordinate through
230
Ce =p* ,
the metric form (7.18) becomes

ds* = -%6 {L“l.W(P)}Z-“ 1((‘1921&— s> @ (_‘\(\77") A %}dtl ! 7.19

Now (7.19) is of the form (2.8) in which cl\)/ol.,o = 2/)0 ; as mentioned
in section 2.4 there are no solutions of Lanczos' equations of this

type.

We thus require the equations G—,, =0, G'zg_ = 0 for the metric
(7.15); these are given in appendix A7.3 by (A7.5), (A7.6) respectively.
The G'M_ = 0 equation, used for checking purposes, is redundant and
is not given. It should be noted that we have expressed the
coefficients of S (denoted 6[1 ) in (A7.5), (A7.6) in terms of A_ ,
YV , their derivatives up to second order only, the curvature invariant
R =A+Br and its first derivative. By examining the Gp it is
clear that Buchdahl's choice of coordinates does indeed formally
simplify the problem of the solution of the field equations generated

%
by R . Employing the substitution
A=3u+v -3Bz ,v=-u+v-Bz ,

where

A+B+ = Lye,Bz' (B+0) y

;
3
i
;
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in the Lagrangian F{? (it is equivalent, but more laborious, to
make the substitution directly into the field equations {%3 = 0),
Buchdahl reduces the problem to the solution of a single, second
order, non-linear differential equation, the appearance of which is
""deceptively simple'', Little overall simplification is obtained by
the use of a similar substitution in our field equations.

The field equations based on the metric (7.15) are thus no less
complicated than those based on (2.8). The metric (7.15) has the
disadvantage that it is unfamiliar: in these coordinates the limit
of spatial infinity corresponds to Y —5 0 and the Schwarzschild %
line element, as given by Buchdahl, is

o = bm>  (dO*+sin*G dld™) +<’:1m.roltl,
(] = _e:-'J.m-w)ﬁ-} (l = _e_—lm'w)l

(which is regular in 0 < & oo ). However, (7.15) has the
required property that it is valid for the representation of any

static E%L , as 1is easily demonstrated. An S&v is generally given

by (7.2). Coordinates X and E may always be introduced such
that (7.2) becomes66
W, E) , Y (7, E)
ds™= -2 a8 - E*(de™+sin*0di?) + ¢ dE7,

(the tilde over the % and ¥ coordinates is henceforth omitted).
Furthermore, as mentioned in section 4.5, satisfaction of Lanczos'
equations (2.3) by do* = Spc_obu"d'xfr ensures that they are also
satisfied by oL.8” = EldO‘?' for any constant = ; thus &£ may be
put equal to unity with no loss in generality. Then any static E%L

solution of Lanczos' equations may be cast into the form

() D)
ds*= -2 dv* = (d8*+ swn*6 ch)‘) +ch«~ db*. 7.20

We see that this is precisely the metric form (7.15) where A () =7 (v). Q
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Thus the form of the line element adopted by Buchdahl is suitable for

the determination of all static S;ﬂ solutions of Lanczos' equations,

7.4 The Set of 'Class 2'' Static, Spherically Symmetric Solutions

The metric form to be used is (7.15) with A = V , and, as
mentioned in the preceding section, we must ensure that both G’,, = 0
and G'm.= 0 are satisfied. Since R = A+ B+ for all solutions,
we may use this substitution freely.

When A =7 the curvature invariant, from (A7.4), is given by

R = A+Br = -v'c¢? 42

’

so that
e = (2-P) ~ By, 721

Putting A =V in the Gr” = 0 equation (A7.5) and substituting
from (7.21) for V" €Y ( and its first derivative), (7.5) reduces

to

ti +‘ (B + (2B - LB) + (H’u-nm} |+%@) £ . a2

By a similar procedure, the second field equation (A7.6) becomes

=L (8% +(2PR-hB)v + (A*~ i) (1+22) =0 . 7.23

It may be shown without difficulty that both (7.22) and (7.23) are
satisfied, and are consistent with (7.21) in the following three
cases only:

\ " =y

L B €~ WS 5102 -R] B,
2. Allvaluesof B : B =0, A =0, Ve =2,
3. All values of @ : B =0, R = 4, v'e™ = . 2.
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2
WEY m G < RBop . 2:21
We consider the two cases B $ 0, B =o0, separately.
(i) B # 0. The general solution of (7.21) in terms of known

functions appears to be unknown (see appendix A7.4). A particular

solution of (7.21) is

BN 2
=5'_B,_ Llenl =G> ,

corresponding to the SL solution of Lanczos' equations given, from

(7.20), by
ds* = ~3B de™ (@™ + sin* 6 A p*) + _38* dt* y Medf
- -Bv33 {2 R)- e

(R=RA+Bv ). We refer to (7.24) as Space-Time X. When the

arbitrary constant R in (7.24) is put equal to zero, space-time X
is conformal to the &, solution of Lanczos' equations for FS = "‘Z"
space-time IV,

(ii) B =o. Then (7.21) becomes

e =2~ 7.25

When 2 - R > 0 the following KR = constant = A solutions of

(7.25), (a), (b) and (c), exist:

(a) e = (Z%‘r-\ ; CF cosech 2 (¢ (=)

where C and D are additional arbitrary constants. This corres-

ponds to the SL solution of Lanczos' equations given by

ds™= -2, dv™ ~ (O + sW®0 d?) + _2c*dE™ 7.26
(2-B)snh™ (e -D) (2= R sinb® (Ll D)
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which will be referred to as Space-Time XI. We note that by putting

the arbitrary constant [ equal to zero, space-time XI becomes
conformal to the (@ -independent 51 solution of Lanczos' equations,

space-time II.

b) o NN :
(Z-R) (-—a)®

where O is an additional arbitrary constant. This corresponds to

the solution of Lanczos' equations, Space-Time XII:

ds* = _—2dw®  (ge* snPOdgP + 28T 7,27
. R ot

(2= A) (v =a)*>
Again, by putting A equal to zero, space-time XII becomes conformal

to the @-independent O, solution, space-time I,

(e) ev '—':-.___2’ C?‘ cosec ¢ ( C (o =D)
(2-A) : @
where C and D are additional arbitrary constants. This corresponds

to the S;,“ solution, Space-Time XIII:

d.Sz" = b ZCZ Cl"f“m - (\ke‘?—'*' g':l\’l.’_@ O\(Ibl-‘ 4+ 2 (“.z‘d t._"'?“- 7. 28
(2= 1) sun 2 (L v D) (2 s (oCe B

Putting A = 0, space-time XIITI becomes conformal to the F,-independent

8\ solution, space-time III.

When 2 - B < 0 the following R = constant =} solution of

(7.25) exists:

(d) ¢’ = 2 C* sech® (C (v -DY) )
A-2)
where C and D are additional arbitrary constants. This corresponds

to the SL solution, Space-Time XIV:

ols* = =205 (deP e w8 dgm 4207k 7.29
(r-2) cosh®(C(w-p) (R-2) cosh2(Cl+~D)

This cannot be conformal to an S, solution, since all S. solutions

with - g, = Yun have been found and comprise the set of space-times

gl o AL et B

4
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Feudy T,
When 2 - A = 0 the following R = constant = 2 solution of

j’
(7.25) exists: ;

v

2 = QCV +D

where C and D are arbitrary constants. This corresponds to the

‘31 solution, Space-Time XV:

Cr 4D

ds™ = — e dv™ = (AdO*+ stn O dd?) + &

o™ 7.30

Clearly the arbitrary constant D s superfluous as it may be
removed by a simple coordinate transformation.

The study of Case 1 is concluded.

Case 2. Solutions for all values of & . A =0, B=0, R=o,

‘\)”Q_\) 0 7.31

The solution of (7.31) is described by Case 1 (a), (b) and (c) in
which R is put equal to zero. Now all R = 0 solutions of
Lanczos' equations have been found so that (a)F\:O s (b) B0 and

(c) A =0 must reduce to three of the space-times obtained in section

4.4,

(a) A =0 The metric (7.26) becomes (writing lo in the place of 7 ):

da* e g (dE*-dp?) ~ (d&™+ sin>E dgp*) 7.32
Sw\,h"(CQf) ~D))

In the metric form (4.44h) representing space-time VIII, put

v =L daah Le(pe-m) ,
C

and set
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to obtain the form (7.32).

(b)ﬁ -0 The metric (7.27) becomes (writing F in the place of v ):

ds* = wel (dt”-ok(ol) - (d6*+sn20 cld>

=

In the metric form (4.44e), representing space-time V, put T = (O -

7.33

to obtain the form (7.33).

(CJH =0 The metric (7.28) becomes (writing ‘o in the place of ~« ):

de*=___C* (4t* —o\f:?—) ~ (0% + sin*0 ald?) . 7.34
SCV'L"‘(C(P ~DY)

In the metric form (4.44i), representing space-time IX, put

=_| 4am (c(p-
= (p-D)

(AL = G
3

to obtain the form (7.34).

and set

Thus the solutions covered by Case 2 are space-times V, VIII

and IX.

Case 3. Solutions for all /3 . A=4,B=0, R =4,
SEEr =il 7.35

As stated in section (4.3), the most general solution of Lanczos' 5
field equations satisfying R = K # 0 and independent of B is

given by the set of Einstein spaces RPO— = Aglgw ‘ For our choice

of metric (7.20) we must therefore expect the solution of (7.35) to

be the static S;_ solution of ‘R,Fc-= Aﬂf"' . That this is so is

effectively shown by Bonnor.67 The solution of (7.35) is

Q:) = C*sech? (C (v -D)) )
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where C and D are arbitrary constants., This corresponds to the
SZ. solution
2 A 2
ds* = =C o — (d9°‘+stm’9d¢?') + C™ dE*, 7 36

cosh=(Cr -D)) CoshE(Clr~D))

This @ -independent solution may, of course, be obtained from the

metric (7.29) by setting A = 4. We refer to (7.36) as Space-Time XVI,

although since it is a solution of R.Po-=_A_ gf"" it cannot be regarded

as a new solution of Lanczos' equations.

7.5 Summary

In this chapter we have combined an examination of Buchdahl's
methods, as applied to the field equations generated by the Lagrangian
Rq", with the search for the set of static class 2 spherically
symmetric solutions of Lanczos' equations. The complete set of such

solutions is given by space-times V, VIII and IX, together with:

)

Space-Time X ( F) = - -‘z

d® UZSE: . (™) (O™ + 526 dd?) . 7.37(a)
e R

(A more general metric is given by solution of the differential
equation (7.21).

)

Space-Time XI ()@ = - Ii

S s ivy (dt>=dr?) - (0> suPOd¢d),  7.37()
2—-A) st (C (D)

(2-B 5 0). When B =0, (7.37b) is a solution for all /B and

may be transformed into the metric form of space-time VIII,

Space-Time XII (p = - ‘z)

ds*=__ 2 (dEdor®) = (dO*+sutBdb D ,  1.37(c)
(Z2-RA) (v -a)*
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(2-R > 0). When R =0, (7.37¢) is a solution for all B and
may be transformed into the metric form of space-time V.

Space-Time XIIT (@8 = - ]T )

e 2,62‘ 7 SO [ S VRS 2 L‘/ 2_8_ 2
s TP e R dr®) —=(do*4sin*6ddy ,  7.37(d)

(2-H 7 0). When B =0, (7.37d) is a solution for all F’ and

may be transformed into the metric form of space-time IX.

Space-Time XIV (g3 = - % )

(H_zjcosh’z(c(w;b»(dt dev®) = ( Ut ¢4y (e)

(R-2 3> 0). when B = 4, (7.37e) is a solution for 311/8
satisfying Rlo(r =A9/:>o'~ and represents the metric form of space-

time XVI.

Space-Time XV (pm - é—_, )

ds* = €7 (db®* —dr) = (d6™ + 50 dd?) . 7.37(£)

Space-Time XVI

dgt = __C* (de™—drr®) ~(d&™+ stn*® dd)- 7,37¢4)
cosW* (Clr="DY)
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8. CONCLUDING REMARKS

3
X
3
2
i
3
1
i

It is possible, as mentioned in section 2.2, that the inclusion
in the action Lagrangian of the linear term F{ would yield a more
realistic model. By introducing an extra dimensioned parameter in
this way we break the gauge invariance of the theory, and thereby
open up the possibility of fixing the "sizes'" of the solutions, which
in the present theory allow arbitrary stretching or contraction,

Such a generalization, however, would considerably weaken the field
equations which, we have seen, allow a fairly large manifold of
solutions, at least in the spherically symmetric, static case. In
order to obtain some indication of the desirability of weakening the
field equations, a detailed study of the properties of the universes
corresponding to each of the exact solutions obtained in chapters 4
and 7 is imperative, We have already seen (in chapter 5) that Lanczos' :
equations do indeed permit physically interesting space-times; for ;
example space-time III, which corresponds to the superposition of an
electromagnetic field and a perfect fluid, and space-time V, which
represents a pure electromagnetic field, If further solutions are
physically satisfactory a weakening of the field equations would ,
although interesting, not seem necessary,.

The possibilities for further study are, of course, numerous.

We have mentioned that the properties of the universe corresponding
to each exact solution must be examined in detail. In addition, we
may ask what would happen if one space-time were to impinge in some
way upon another. Our discussion of space-time I indicates that the
constant of integration Q. may represent some central mass. The
geodesic equations of motion will tell us how a neutral test particle
will behave in a Schwarzschild field, or in space-time I, but they

cannot tell us, for example, how a Schwarzschild mass will behave in
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space-time I. A study of this behaviour, perhaps by examining the
equations of motion of the system in the weak field approximation,
could be very interesting.

Apart from the study of the universes already obtained, there is
the possibility of obtaining further solutions. One feels almost
certain that there exists a class of static, spherically symmetric
solutions with non-zero, constant curvature invariant, perhaps with
present as an arbitrary constant. The field equations in the form
based on the metric (7.15) have not been studied in any detail; it is
possible that since they have led to several R =k< £ 0 solutions
(space-times XI-—-3 XVI), the metric form (7.15) may well be more
appropriate for use in the derivation of additional solutions of
this nature.

Does there exist a form of Birkhoff's theorem for Lanczos'
equations? That is, suppose we remove the condition that the spheri-
cally symmetric field should be static. Then is it possible to show
that the time dependence of any sclution may be eliminated by reducing
that solution to one of the set of static solutions? Only one form
of symmetry has been considered in our present work. In examining,
for example, cylindrical symmetry it may again be profitable to look
for the set of P& = - -'g solutions, as these (at any rate in the
spherically symmetric, static case) may be obtained with little
difficulty. Then those solutions that satisfy the field equations
for other values of @ in addition to @ = - -1.5 may be obtained.

In seeking the families which contain the latter solutions, the
solution set may be built up.

In explaining how he arrived at the field equations

RPU’ F—li %FG_R. = "'}{TFO-« [
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Einstein said "Not for a moment, of course, did I doubt that this
formulation was merely a makeshift in order to give the general
principle of relativity a preliminary closed expression." The theory
of gravitation that has been presented is a tentative extension of a
tentative, but beautiful theory. Its fruitfulness must, as in many

theoretical studies, be subjective.
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A2

A2.3

Derivation of the Field Equations (2.3)

We consider the set of equations deduced from the action principle:

SI = O, A2.1
where

T ___jm RTEpRIFY o 322
Dy

under the assumptions that ',DL‘, is a bounded region in space-time with
boundary O » where 8/““’_;9}“"—\-69/\*" such that S?JPM’ and its first
derivatives vanish on O . Performing the variation, with 1 given

by (A2.2) we obtain:

81={ {49 (RwSR "+ RFBRps + 2pRER)
:Dj.*,

"'(Rfcr'RPO'l'fﬁRz) & JO"§ dMae ., A2.3

We define 81*‘“’ = 89]"‘” and X’m = - 881““).
Using 3PP gfm = 8;1 , we have:

)
f’“ s ',\\.'\I 7 o

Yo Q7 € ; A2.4

noting that the variations 89{,\\) form a tensor, but that the variat-
ional operator & and the operation of raising and lowering indices
do not commute. Since RPO' =gpf"\§]w R’f”’ the variations of the

contravariant form of the Ricci tensor and of the curvature invariant

are given by:

LR E)P/"‘ a”" R po R/m) (3!"/“69” + nﬂm’ 69!"/“‘)

it

97" 3”5 Ryo—g Rﬁv?(}w = B R™ ¥ s A
S ( CJM\) R/_m)) = 8/““) SR’/‘M) i X/u\\) R}»W '

SR
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Using the formulae (A2.5) the sum contained within the first round

brackets under the integral sign in (A2.3) is found to be:
R, (ZRM 28R gM) + Y (F2RH RV-2RR¥) . p2s6

OQur aim is to express the entire integrand in (A2.2) in the form

W

H}/\v E{r 3
where wa is a function of the 9/”“) and R«/w and their covariant

derivatives and contractions. With this in mind, we express the

contents of the second bracket in (A2.3) in this form, using

Sd-g = J"J_ ’““’5 4 A2.7

so that, substituting from (A2.6), 81 becomes
&1 =j{ 2.6R,., (RM +eRg™)

W_n v, v
A ""a)lu\u[(RomR "‘ﬁT\") -Lq\ LIRGEK R* ﬁRRM )U + A2.8
./\/~3 o .
It is now necessary to obtain SR}W\; in terms of 89})“) and their
derivatives. At any selected event P owe may choose coordinates

1ol
such that the Christoffel symbols rPcr vanish there (locally geodesic

coordinates). Thus, with the Ricci tensor defined by
R - - ol % I—\oL i l-—mL l——ﬁ[o _ l—-xfl ]_‘IQL
/\A\) ,.m),cc MQL>\) /u\la oW oL{: /Lu)
the variation of the Ricci tensor reduces at P to:
oL
SR/M e R e +8T;wﬂ, : A2.9
In such a coordinate system the first partial derivatives of the metric
tensor vanish, Then, since
ol oY * 2. .,
P»iz_}:g (69,,@- 4 O Qyer _ 629&&"))
/\,n), axocaxq) 312&59@'\ aocota,)d\
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and

ol
r;k&)v e é \‘)ajc/"\ (QVL'\ljé‘)

ol S
the quantities Sr;_m)& and aY}“\.‘,) required on the right hand side

of (A2.9) are given by

2
-t op T a 8 T dlSV'T - al. \
Bl = o0 (S 000 + G- S0

ol ™Y a’-zfﬂ Yy _ ¥ A2.10
z3 ( e MY i3 O D 7 3T )
SPLOL - (BL AY —

V= e (R 9 ) s Y )

where (A2.7) was employed in obtaining the latter of (A2.10). Thus,

at the point P

- oc/: o 3 E\ - a’lg
B - 123 e ax,«a:l T SR Be al?r)

- _\__sw( AT or é‘\J'T s éqg/ut\) >
2 st I DM AR A2.11
T v S
% bx" S~

Consider the terms on the right hand side of (A2.11). At P , the
terms in the second bracket are given by
- P
e = e T Y& (L) + g & (0D,
22 J
——a‘-,—& = Xvn"ot)\,\ ‘*‘Xfyr—é- (PJ;J +X'v’c a(/“ (ﬂ{:()!

i

X,m oy +va )m) * X}ﬁo o U:fﬂ-,
so that the second term on the right hand side of (A2.11) becomes
29 Yposer ~ L Y — L YTV
L) g e
b 7712, (TE) - éa- ]

L?ffw g* [g, U—‘F)‘ S ,fnt)] 3

which is equal, at P
| olT e X _. &
79 Spwjar 'ix'}*sw %;X‘vaot;w

3 XPPR(';“ Y §vp R
s 5"35 A2,12
2- § XM Y

3
%
2 .
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while the first term may be written

2 P
JZ” § G ¥ [:wavam/b\] " A2.13

D Y
Then, from (A2.11), using (A2.12), (A2.13) we obtain for SRW :
SRw»=%§m&www‘“%&N”"ix%»wv'5ﬁ*”N#
+_‘7~ XNR‘?" +%, X”"*R‘%# A2.14
_.._2: an' e ‘!7: Xe(:r wa/‘h :
Using the formula for changing the order of double covariant differ-

entiation in the third and fourth terms on the right hand side of

(A2.14) this reduces to:

Ry =1 Yporwer +4 Yspo - 28 T E Y e A2.15

Now (A2.15) is a tensor equation; hence it is true at the point P
in any coordinate system, and since P is arbitrary, (A2.15) is true
everywhere and in all coordinate systems.
Examining (A2.8), it is the quantity ZSR,M; ’P’W , where P’N = K
R /AR b : . g
9 is a symmetric tensor, that is of interest. Let us
consider the terms in the expression L8R, P/LW with S'R./W given,

quite generally, by (A2.15):

(1) Pwéw&wwn=4?W§m&ﬂwﬂ‘ﬁmﬂwbwﬂ“lﬁm&wdww“ ’

(2) P/““’Xil\x\) — (Pf‘“’x)sfw “2‘1)[»\\) ')1) X;}* -S}M) Fddadn‘gf-\f\) ’ N 16
(3) PM" X?;ASW" = (’qu Xotfr);%—xr‘\’ l;",’u 3"‘/*"}'3%‘(;\)3)*”(3«. —'F\'J’TSOLX’WSU ,

Yool - ol v LY iag A olT
(4) PM X'\”/Jd' —-(’PMITX ),fm, —&/“ ‘j.rw,rrv"‘Fffrf;/mx )oL"P'fq'J-d,X P

L]
Straightforward manipulation of each of the terms (1)— (4) in (A2.16),
(equivalently, by the properties of adjoint bilinear forms) yields

the result:

S(Z ngw ’wa - F,,\v Xfw)r\’t&-}— dtoe = Suwfact InteﬁmQ, p
D

i YL
S DEF G
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where
= N0 1 - oY o b o RO
T T R S T

The surface integral vanishes by virtue of the assumed conditions on
éSSP“’ and the first term under the integral sign in (A2.8) may thus

be replaced by
oY ol o " ) W T
{97 Prosar + Gy Flwr = PHpne = Py ila

and we have achieved our aim to express the integrand in (A2.2) in

the form ¥%P” Xﬁ”” , for (A2.8) then becomes:

Y e P
ol jX {(3 P)W;otrr +f],,wP°w your = Igof/w',voc ‘"P?L'u 5 sk
My L
+%~<3W(RMR +[5R2-\)—Z(Rd,,\ ey +/@RR/N)’5. A2.17
o -3 ol_%f)g §
which must vanish, by (A2.1), for any 88#“’ such that it and its

derivatives vanish on the boundary S . Then from (A2.17) we have:
our ol ol
g P/unjyirf T 8})\-\) P oty T Pc-(}/«;vo(_ —'P "M 3 pac

where A2.18

Pl”'v :R/M)A-[?,’Rﬂf'w .

(A2.18) may also be written in the form (2.3). This completes the

derivation of the field equationms.

A2.4

Formulae for Spherical Symmetry

The formulae (A2.19)——) (A2.22) corresponding to the metric

form (2.8) may be obtained from the general formulae for spherical

symmetry given by Synge.36 Note, however, that the conventions used
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here are in accordance with those specified in '"Notation"

Only
surviving components of the various quantities are listed
Components of the metric tensor:
= il = ~F O =errswn O = ~-G,v
In > Joa » Jaa > Ty
5% A2 .19
I 5 22, -y
9 = —-€ s o a»-_\_,a33——__-\__ )th}:__ﬁ .
e WSO

Christoffel symbols of the second kind:

[T =

o=, el = —sinb wo, A2..20
e

3 = cot O

! ) ’ V-
JL_)\ '——,7-2"“ "'T'e. 3 33'—‘-"‘?’5&.?\199':-&, ,—h‘-h -sze- 7L’

1]‘

%

Components of the Ricci tensor:
R\ X{_ 17

Lay* p Ly o A
kg +va>‘+‘1‘~“}

Ra= €M& (¥ -2 - TR

3

=, A2.21
3 " ol T

e 21

L.

~A
R A R T B

The curvature invariant:

R A %
= | / " \ {7
€ {'(_—-Z“l) Vo _2?11) )-{-

) ] N2 2 )
?(_zv 2N %.2}4 ., A2.22

Lanczos' Equations (in which ol = (1+2F3 ),X = (1+48)):
| —ZA
G =2

2 l:d' {81)'”'1)' S Lp.)”"n)’?'~ H»V"’"—W)'t"— SRSty U TN T
.‘_6.1)11)\;2._ 2.7)/3%/}
+ #—Uév”’g + M (143) + L3 -1bv Ny —16v'A"y
+l20" 1ty - léwlxtw%@}
¥ J,‘:Lilazv"g ~129/%- 8N (S+16p) —1 O (3r8) + 120* (3 +8/5)]
+‘T~3 Q—Szv'g}
L, {1605+ hgj]
..‘A ™~
+€ E&,&(Hspﬂ +[%‘;] = 0,




gk

Gy =
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-2 :
g [0(-[’61)“/ 4 fb’))m'\)'“‘Lp\)”"J'z'*‘ IZ'\)“:L“"})IlF_LL%'V'”)L/

N =2V VA = BEVI VI - Gy
FLBVIATN = [ N = Gt N 5 [P N ™
+ 20132 |

{6lw'”oa +38v"' (5+hp) - hy3y —8VIX(15+ -528)
= 89 A (5 +128) + hw'A* (15 +228) -8v1*X (3+29)
~16Xy + 5NNy ~ 24 N3]

il fi— ™ (14 8E) + 89N B+ L @) =1 63 + LA™ (1+2up)}
—L3§32‘x’ }
w {l6(2+ 10(%33

+€ % |+3,@] [d—]

+ L
Fyd

A2.24

ST (1 2 W =20 NE 4 2N)
h L
(B =N =>4 0%)

+ 4,
Fh (31w
+é‘7‘[l -—7&'):1
e do R gRe e 5

ERL-D %Wg%‘é% - LR~ 2.0 DR+ 2R))

A2.25
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A3

A3.2

Lemna
The value that may be taken by the constant ™ in the series
expansions (3.9') for the functions 61',€f) is restricted to unity.
The constant bo in the expansion for e’ may be set equal to
unity by a transformation of the time coordinate. It is clear from
the field equations that the constant O, in the expansion for et

must be unity. Then, from (3.9') we assume that -é?,-ev may be

expanded:
AR - - A
T e T 3
A3.1
o b, bg
e~\+;m+___rm+,“ ’
for some constants Q. , Qy , «.. , by , b, , ... and for some

positive number Wi such that at least one of a, , b‘ is non-
Zero. We shall see that, according to the field equations (2.13),
this assumption has validity only when m has the value unity.

The series expansions (A3.1) are to be subjected to the field
equations (2.13). In order to do this the necessary terms in the

i

expansions for the derivatives ) , A’ , v' , »? and for the

curvature invariant are obtained from (A3.1). These expressions
are then substituted into the determinate system of equations (2.14),
(A2.25) and the coefficients of successive powers of 1/~ are
equated to zero.

It is necessary to retain cauly a very few terms in the various
expansions. The notation ~~ is employed to indicate that higher

order, non-contributing terms have been omitted. Then, from (A3.1):

~
L %ﬁw s @7 e f %%M 3
=
x o~ e y sl Bl
A3.2
N~ oamime) G bo(m+D |
Nt 2 ML
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From (A2.22) the curvature invariant is given by:

b,y (| =) :
R~ R A3.3
Substituting from (A3.2) and (A3.3) into the expression on the left
hand side of (2.14) and equating the resulting coefficient of ~v "™+
to zero we obtain:
by (v +D(l—o)(m +N = O . 5.4

Since WM. is positive, (A3.4) allows the two possibilities: either
b. =0 or m = 1. Assuming now that wa % | and proceeding in a

similar manner for the equation (A2.25) we have:

a.!m—(h’\-"‘\‘):—o ]

which is a contradiction unless O = 0.
There is thus no positive value for wi , other than unity, such
that at least one of O , bl is non-zero. This is the required

result.

A3.3

Three Lemmas

For the sake of clarity and with no loss in generality the
constant de in (3.14) is throughout this section set equal to unity
corresponding to a transformation of the time coordinate.

The proceedure to be followed is the same in each lemma, and
follows that of the lemma of the preceding section, A3.2. The series
expansions assumed in each lemma are to be subjected to the field
equations (2.13). In order to do this the necessary terms in the

y § i ! ! I
expansions for the derivatives i A xY 5 A o 'R

and for the
curvature invariant are obtained from the assumed series expansions,

These expressions are then substituted into the determinate system of
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equations (2.14), (A2.25) and the coefficients of successive powers
of ¥ are equated to zero.
As before, the notation ~2 is employed to indicate that texms

in the expansions that will make no contribution have been omitted.

Lemma I

The values that may be taken by the constant A in the series
expansions (3.14) of the functions -éh 5 €’ are restricted to some
or all of the numbexs 0, 2, - 2,

For small v , Q} s e? may be expanded, from (3.14):

er=4+a,n +o, vt .,
A3.5

o’ = q~A (\+—c(r *'ng“%+"") )
for some constants A, a, , Qo 5 eoe s €y, Cq
We need only calculate the leading term in the expansion for R .

From (A2.22) this is found to be:
1. o 2,
Rl pb=AJ -

Substituting into the left hand side of (2.14), the condition on A

is obtained:

A(A+Z(A-2)=0 . A3.6

Then, from (A3.6), A can take only the values 0, 2, - 2.

Lemma II

The values that may be taken by the constant A in the series
expansions (3.14) of the functions éfL ,-e? are restricted to the
single value 0.

The cases A = 2, A = - 2, will be considered separately.
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Case (1) A = 2

From (3.14), with A = 2, ef“ and Qv are assumed to have

expansions:
A 2
0= A+ o FOurTELL .
_e:n) - ’Y“"'(‘\ + O+ C‘l"(‘"‘" - ,) N A3.7

for some constants Q, , Qg , 0. , Cy , Cop 4, ven .
A preliminary inﬁestigation indicates that the coefficients
Q,, ¢, in (A3.7) must vanish. In view of this the series

expansions (A3.7) are rewritten

ol an™ + o™ L A3.8
Q?=W1Vl+cnvw+'QM\WWH+~--\5
for some constants Q, , Oy s +++ » Cn s Cyay » --. 8nd for some
integer YU . It is assumed that there exists L such that at

least one of the leading pair of coefficients Qqs Cy, in (A3.8)
is non-vanishing. We shall see that the equations (2.14), (A2.25)
are inconsistent under this assumption.

Retaining only necessary terms in the expansions near -~ = 0,

we obtain, from (A3.8):

i P N T s @~ e (L™,
N~ o et y Ve & Q™! . % B
W~ a-Nage™® i -2, rrln-) ™
Then from (A2.22):
R~ _%‘% Py e {3(vx+’230m - v+ ?) cn_] ' A

Substituting from (A3.9), (A3.10) into the expression on the left
hand side of (2.14) and equating the resulting coefficient of o b

to zero (that of +~~% vanishes identically because A = 2):
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n{(~n§- n?%—én:+@)cn+~Vanlwl6hxn3 = 0. A3.11

Proceeding in a similar fashion for the equation (A2.25) and equating

the resulting coefficients of ’VFH', A £ zero we obtain,
respectively:
Fam-43/w0 ) A3.12
Cp (1P 4t~ 6n) + By (2> 16) = O, A3.13

where, in (A3.13), we have substituted for the value of f% from the
condition (A3.12).

Since ¥. cannot be zero, (A3.11) and (A3.13) are contradictory unless
Cw = 0 and either 3v* = 16 or O.n = 0. Since, by hypothesis, vL

is an integer,

Then there is no value of Y. for which at least one of Q.,, C, 1is
non-vanishing, which is the required result.
It should be noted that although the fact that all the o, and

Cw vanish suggests that

n
et =, &=
constitutes an exact solution, this is not the case. For it was

mentioned in section 2.4 that when dv/cl¢ = 2/, i.8., ~QP =

constant »x %> , it is not sufficient to solve the pair (2.13); the
pair (2.11) must be used and these inconsistent under the substitution
ow/dr= 2/7,

We may thus dismiss the value A = 2, as it is forbidden by the

field equations.
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Case (ii) A= - 2

From (3.14), with A = - 2, ©* and ¢’ are assumed to have
expansions:
'e,lz 1 + Q"Y\’ +" Ql’T‘L'l— LI a )
5 A3.14
e = %‘«;(i IO b i Sk § 5 2 ;
for some constants Qy , Q; ; <« 5 €& , Cy

We shall show that the equations (2.14), (A2.25) are inconsistent under
this assumption.
Retaining only necessary terms in the expansions near ¥ = 0, we

obtain from (A3.14)

et o, VRl + e,

N~ a, ) VN mL o+ ey ) A3.15
" Wi

N~ O : Y =, ,

Then, from (A2.22):

’F{ ~ O & 325?' + Constant A3.16
ol o s

Substituting from (A3,15), (A3.16) into the expression on the left
hand side of (2.14) and equating the coefficient of 1/73® to zero

we have

Then, from (A3.16),
t F{'\’ Constant . A3.17

Substituting from (A3.15) into the expression on the left hand side

of equation (A2.25) using (A3.17) the contradiction

...m:o
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is obtained. Then the field equations do not allow the value A = - 2.

The lemma is thus proved.

Lemma III
s % 3 A »
The series expansions for the unknown functions € , € of the
metric (2.8) for small values of the radial coordinate v include
only even powers of T

From (3.14), with A = 0,-8?‘

5 ¢” are assumed to have expansions
which may be written as the sum of an expansion in terms of even

powers of 7 and an expansion in terms of odd powers of

x e
L. = o ,T,?.m + T . PATVE
v?f:O s r:/;:.o e

25 A3.18
o) = 2m n Zm
e Z o Com T il o 2{;0 Wom T

o )
in which ¥L is an odd, positive integer, M takes all non-negative
integer values, Ogm » Uzm » Cam » Wayy » 8re constants with Qg =1
(according to (3.12)) and Cy = 1 (by a transformation of the time
coordinate). It is assumed that there exists vL such that at least
one of Wy , Wy is non-vanishing. Our aim is to show that this
assumption is contradicted, which will prove the result.

It is first shown that the only possible value of YL such that
the last mentioned assumption may not be contradicted is vL = 1.
We shall equate to zero the coefficient of the lowest odd power of v~
appearing on the left hand side of each of the equations (2.14),
(A2.25). Retaining only necessary terms in the expansions, we obtain,

from (A3.18):

A
€ N\-\-\LO’\"’“ 3 Q:QN\ -\*Wo’l‘m' 3

| n-\ | n-\
AN g T 5 A M T J A3.19

Weonla-Due™™™® V' nln-Dwer ™
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Then, from (A2.22):

R %1. +Yvnﬂl(n‘*‘0(2~uo‘nwo) 4+ Constant . A3,20

Substituting from (A3.19), (A3.20) into the expression on the left
-4
hand side of (2.14) and equating the resulting coefficient of e

to zero, we obtain:
(VL—QD(V\.*DLV\'\-D(‘:LV\O"WWQ =0 )
A3.21
and from (A2.25) we obtain similarly:

(M—D{n.bu.o—r Wo) + (’Luo—v\woj[(%—vh - LL@ (vx-v.ﬂ} =0. A3.22

From (A3.21), we must consider four cases, (i),...,(iv).

Cases (i), (ii) v =2, w = - 1,

These may be dismissed immediately as contrary to the assumed
nature of " .

Case (iii) Z Uy = VLWo .

Since Wi % - 1, the condition (A3.22) may be replaced by
(- U, + W) + (A g=nwe) (2~ —L}«[&Ln—lﬂ =0 ; A3.23
Substituting 2y = UWs into (A3.23) yields, since v # O -

Wo = We 5

which implies again that V. = 2, which we have already dismissed.

Case (iv) v = 1,

Substituting this value of v into (A3,23) gives:
Wo (3+8BR) + Wo 1=hp)=0 - A3.24

This case requires a more detailed examination., The expansions

(A3.19) are replaced by
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n~
el ugr et 2 W W,

/
N o~ LLO'F’P‘(ZAlzf'LLéq sy Vi~ we +‘T~(2~Vﬁl"vwbl>)

A3.25
I/
Then, from (A2.22)
R~ -‘,‘:,—(Lpuo—Zwo) A+ (6ul—6wl-6u:+%u°wo +%v~/o’~) . A3.26

Substituting into the left hand side of (2.14) from (A3.25), (A3.26)

and equating the coefficient of ¥ > to zero (that of 3 now

vanishes identically, of course) we obtain:
(Wo - L)(~2Ug+We) = O . A3.27

Using the equation (A2.25) likewise (though it should be noted that
for ease of manipulation the equivalent equation (A2.23) is to be

preferred):
“23U7 + bUswWo —Bwg + BB LUgwo = 2uH) =0 A3.28

(Equating the coefficient of > to zero gives (A3.24) again).

Equation (A3.27) yields the possibilities:

(a) Wo= Zu, ,

(b) Wo= Wo =

We consider these two cases separately.

Case (a). Substituting Wy = ZU, into (A3.24) we obtain

(D9 =0

Then W, also is equal to zero and we have the required contradiction.

Case (b). Substituting W, = Wy into (A3.24) we obtain:

u°(|+2/3§ =) A3.29
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while (A3.28) gives:
us(5+8p)=0 . A3.30

Clearly, (A3.29) and (A3.30) cannot hold simultaneously unless
UWe = 0(=Ws ). Again we have the required contradiction. The

expansions (A3.18) are thus in terms of even powers of v only.

Transformation of the Metric (2.8) from Pseudo-Polar Coordinates

to Pseudo-~Cartesian Coordinates

The transformation from pseudo-polar coordinates v , € , c)‘. e 2
to pseudo-Cartesian coordinates X'
by writing48

o i R -;Q(,m@ cos c\'a 3

s sl O T € i (l‘) )
B = s, —
'x"\' = t

Then ‘
L o b
= ade SE
A doct = v g 7

dot” dot® = drr +E (A O™ + s 6 C‘kc\‘)’”)

and (2.8) becomes

ds* = Yep ot doadf |
where
= s A ¢ G \j —-— a
3 Kt )_:_;ch;c_ By 4
%lM: = O 3

3

?hm:' ¢

A3.32

Then the determinant of the metric tensor, and the conjugate tensor

to S/““’ are

, Xt %, xM , is accomplished

PR R
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_ A+

=7 5

g¥= ({=e™)xtad - g4 |
Ml L

‘3 = Ny A3.33
2oy - ‘e:-")) .

A3.4

Lemma
There are no solutions of the field equations (2.13) that are
asymptotically of the form of the Einstein Universe.

The constant V, in the series expansions (3.18) is set equal

to unity, as usual, and the method employed is that of previous lemmas.

From (3.18), with Vg = 1, the necessary terms in the series

expansions of €~ , €’ and their derivatives are:

€T s ugrrrur &~ e Y
,Y-l
N =2 ) (w), We~av A3.34
8 1"’- Wo CLR ’
Ao~ 2 (Rwr), Ve 24
2 i 'V.?’ Wo ™3

Substituting into (A2.25) from (A3.34) and equating the coefficient

of the highest power of 7 (i.e.,, that of ~° ) to zero gives:
gl +?>[3,3=Q - A3.35

Since the value (5 = -—‘5 is excluded, from (A3.35) we have U = 0,
which proves our result.
Now, supposing that Weg= 0 but W, 0 in (3.18) we have, in

place of (A3.34):

e"“fww e &
Ay
5 v Phee =8

o ?

e
N A3.,36
‘}J/ __}T_: ; ,.\)H A~ ’2};—;%% : ’
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Substituting into (A2.22) from (A3.36) we obtain:
R ~ = B, A3.37
fYV

Then substituting into the left hand side of (2.14) from (A3.36) and
(A3.37) and equating the coefficient of the highest power of ' (that

of 73 ) to zero we have:
\/\- \ = O b

We thus arrive at the asymptotically Minkowskian form.

A3.S
Lemma,

The constant [, in the expression (3.20) for the curvature
invariant vanishes.

In order to obtain this result it is necessary to retain terms
which involve oy, by for L & 5 in the assumed series expansions
(3.19). However, manipulation is facilitated if we initially retain
terms which involve a; , by for U 4 3 in order to obtain
simplifying relationships on the coefficients.

From (3.19) the necessary terms in the series expansions of

—A ; : ;
2., _ev and their derivatives are

A % b b
& e bor¥ ik wbe w By

e "“—b—\-. 4 (Q_bm—b{") % (Zrns =3 b + b7 5

Y 'Y‘“L 'Y"?’ ,.{\JH
Ao 2 -2 =3(2ba b -y (Bby -y +by)
TEowd T H . s A3.38

s * Q. (0N Q
'~ o (\4-;; + 22 -\—?%5)3

W =L $20, =3 (=20, +a® -4 (-2a +Baa . ~-a)) |
T'Z D M PR
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Substituting from (A3.38) into the expression (A2.22) for R , we
obtain:
R~ b {-12 +L (2q, ~Ab)*L Wha,-6by-Bal +5ab +2)

o = o
A3.39
-3by ~Ba,a; +2a)b, +3a b+2a® -2a* i"l)*l[ ‘

Then the coefficient of interest, HS 3 %8
Aa= by (Taz—2b=Tam, +2ab, +3al, +2a8 ~Ladb,) . A3.40

The first and second derivatives of R are obtained from (A3.39) and,
together with the expression (3.21) for the combination (%%* -'7:"0—%_*'%),
substituted into the field equation (2.14). Equating the coefficients
of l/’Y"‘3 F W , and | B successively to zero, we obtain equations

(a), (b) and (¢):

(a) a,=3b =0,
(b)#c:mz_uélo;‘—-%.of +¢§-‘_<:\\b‘ -{'-..’-Lé:. B,

(<) 5

Substituting into the second field equation (AZ2.25) from (A3,38),
(A3.39) and equating the coefficients of |/~ , |[~e%, |[~vd

successively to zero, we obtain equations (d), (e) and (f):

@ (o, =2b)(I1 + 240 =0,
which is satisfied, by (a),
(¢) =IC(Ba,~12b,)+uda> +9b% —Lga b, ~Lo/b.

+/33 {“14 (30:=12k,) +9 (rtl{l—- G0 o =L 4= ] 3
which, on substitution from (b), yields

aF(1+3d) =0 .
Since (b#‘-——’g s Ay = lo, = 0. Then, from (b),

B = Bba =Rl » A3.41
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(£) 0=0 .
Now, with the simplification that &, = b, = 0, we repeat the
procedure retaining terms including @, and ‘o,+ . From (2.14),

equating the coefficient of |/v® to zero, we obtain
a g b?..“o‘?-)”—‘ o,
which, since 0—,_9‘= 0, and by (A3.41), gives
tig =2y & | floy - A3.42
From (A2.25), equating the coefficient of I/ﬂ(““‘ to zero:
(—hoy +3by )+ 3y =0,
so that, since {5:/: -l ,
by =kea, .

With the additional simplification (A3.42), retaining terms including

Qg and [55 » we obtain from (2.14):
16 (-5a5 +3bs) + Baz (03—b3)=0 A3.43
while (A2.25) gives:

(I+3@\ﬂ\o (-Bag +3bsg) + 230, (ag— b3)}=0 . A3.44

Since #’- -1/3 and a %= 0, (A3.44) and (A3.43) are consistent
7R

only if
O.S = bs .

Then, from (A3.40), B3 = 0 as required.
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A7

A7.3

Formulae for the Spherically Symmetric Metric (7.15)

The formulae (A7.1)——> (A7.4) corresponding to the metric form
(7.15) may be obtained from the general formulae for spherical
symmefry given by Synge.41 Observe, however, that the conventions
used here are in accordance with those specified in "Notation'.

Only surviving components of the various quantities are listed.

Components of the metric tensor:

L (A=) ST L P
gu - MQ’X 3 92.9_: 5 -e'L( bl g&‘b:me’ Slee) 9“”—“@ 2

o L ) A7.1
b 22 A=Y @ e Y
A I I

Christoffel symbols of the second kind:

| (% +})
o4 e o 3, e

r~1 ”ﬂ)f [_;25:”.3Lnf}<x£6-
rﬁ rﬁz y | 2ET odsl
[la= .

Components of the Ricci Tensor:

R =‘--'27k” —-—'87(1 +3v ’“ﬁl’v' ;

) A7.2

g
—Lv =L
S 3] pX, | ¢ | i
Rap ==l+e (2 =47,
§ o A7.3
iq%ﬁ = S G)Fall 3
V=2
Rq.u. = ("‘|7~\) ") .

The curvature invariant:

VoA
B M0 +—%7¢‘ *%v"‘ +J:r7\‘v')+ Jet E A7.4
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Lanczos' equations for the metric (7.15):

-A
Gi=% [~6>¢"X O G- PR SR F YR
|
FEN V=N N 420 N v‘ﬂil?u*v'l
{s
Iy Y L R LS LS N Ul iy IV T
2 8 A7.5

kb Lt N T
‘..
+e” -1}

R | p AR "_| =t i=_ | !
+B fL7L R < R* -R (X _A_}’ +%v _Z”MJ’)}

.

=
+e% o~

G, = eﬁ: K {—tn‘% BON 23N AT ISH T BN 2
* SNV 2NN+ BN OU " 422 W !
3 1’v'3—mw”~3_4wv/l+%w%' + A7.6
- |
* %j_?” i—iL’k” AN LAV 2V +v”’j
+ e?i'é. i_l]
B3 {—%’ =)ot % _) AoEge

PR
~2R[-1 + e.'i"f’“ (x'-v”)ﬂ
al) .

A7.4

Solution of the Differential Bquation (7.21):

V¥ = (Z—H\"‘Bw, (R4 0) .

Putting 2 = _;_ [2-Rr) -B+v], -e:ﬂjé: -—23/8, (7.21) becomes

‘jﬂu —\:]’2'+Dc_ =0 (/’E hfde) | A7.7



-164-

This has the particular solution NI
T a®
A= ‘§1
; = ;
Write Y = H‘ (e (o) and put &L = € in (A7.7) to obtain
VARSIV VAV f°> (v*=)) =0 , (/= d/ar) | A7.8

Now write V™ = =z and, since z # 1, substitute dz /dt = P to

reduce the order of the differential equation (A7.8):
o l = - e /E
PP =L ptp ~30-2 { “Eeafdz) , A7.9

Substituting %(z) = J2z/p into (A7.9) we obtain

+ Ezﬂ:@_ : A7.10
el 9
Making the change of variable = = @ -NEg , (A7.10) gives
45 w 5.8 (TR N s 4 A7.11
w v vrle T .
Write g/ (t) = - l/t‘ci/(é) and g = \/'Z—g to obtain from (A7.11):
Pl 3 o) = K712
e T ( )

One further substitution

wlg) = [,(@-\-%(;r , some b # 0,

" 2AZ/3
bt%)’ -

casts (A7.12) into the form

s + aw! + bs e = O ; (/EOUdS) ) A7.13

where

o= §=id | A7.14
3
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Now Kamke68 has discussed differential equations of the form (A7.13)
and makes the observation that when the constant & # 1 or 0 the
behaviour of the solution of this differential equation in the
neighbourhood of $ = 0 has been described using a series expansion.
Thus there appears to be no general solution of (A7.13) (and hence,
no general solution of (7.21)) in terms of known functions. We must
be content with the particular solution Y which leads to

& = [-m -ae]®
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