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In to  th is  Universe, and \/hy not knowing.

Nor Whencej, l ik e  Water w i l ly - n i l ly  flowing;

And out o f i t ,  as Wind along the Waste, 

I  know not Whither^ w i l ly - n i l ly  blowing.

Omar Khayyam



Abstract

The hypothesis adopted in  th is  work is  that any permissible 

m etric f ie ld  whatsoever must s a tis fy  the f ie ld  equations deduced from 

an action p rin c ip le  in which the Lagrangian is  quadratic in  the 

components of the Riemann curvature tensor. The adoption of such

a hypothesis is  motivated by the precariousness o f the general 

r e la t iv is t ic  in te rp re ta tio n  o f Mach's p r in c ip le , which is  often used 

to ju s t ify  a phenomenological approach to the theory. The quadratic  

action p rin c ip le  is  chosen to provide the fundamental equations of 

the g rav ita tio n a l f ie ld  because i t  is  lo g ic a lly  and aes th e tica lly  

appealing, and causes us to  lose nothing of the standard r e la t iv i ty  

theory based on E inste in 's  vacuum equations. The set of re la tio n ­

ships, R-pcr - “ -K . 1  pty > is  retained as a d e fin it io n  of

the m atter tensor .

A ttention is  concentrated on the solutions of the (generally  

fourth order) fundamental f ie ld  equations in  the s ta t ic ,  spherica lly  

symmetric case. Sets of exact, series and numerical solutions are 

obtained corresponding to certa in  boundary conditions, or with 

certa in  properties in common. Study o f the geom etrical, topological 

and physical properties o f several of the universes obtained as a 

re s u lt o f our hypothesis leads us to believe that our theory is not 

implausible. We conclude by considering the fu rth e r p o s s ib ilit ie s  

of the theory.
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INTRODUCTION

The theory of g rav ita tio n  that w i l l  be described is  not in any 

sense an a lte rn a tive  to  E in ste in 's  theory. Of a l l  modern physical 

theories, the la t t e r  must surely be the most b e a u tifu l, both in  terms 

of the underlying physical and philosophical ideas and in i ts  mathe­

m atical elegance. I t  is  suggested that what we describe be regarded 

as a ten ta tive  extension of the theory, in  which m atter is  represented 

in a more natura l way, aris in g  c lea rly  as an aspect o f geometry.

Let us consider the framework w ith in  which m atter is  represented 

in  standard r e la t iv i ty  theory. Space-time is a four dimensional 

Riemannian manifold of normal hyperbolic type. The Einstein g rav i­

ta tio n a l equations fo r  free  s p a c e , « 0 (in  which the components 

of the Ricci tensor R. t̂y are obtained from a d if fe re n t ia l  combination 

of the components of the m etric t e n s o r » describe the coupling of 

the g rav ita tio n a l f ie ld  to the space-tiAe geometry. These are 

generalised, in  order to express the idea that a l l  forms of energy f

also act g rav ita tio n  a l ly ,  to the form R-^o— = -K lp c , where the 

stress-energy (matter) tensor represents the contribution from 

a l l  force fie ld s  other than g ra v ita tio n . Thus, two fie ld s  — the 

matter f ie ld  and the m etric f ie ld  — together s a tis fy  E instein 's  

g ra v ita tio n a l f ie ld  equations fo r  non-empty space.

Mathem atically, since there are ten unknown gpo- and ten unknown 

the set o f ten f ie ld  equations is h ighly underdetermined for 

solution . The problem o f solving them becomes t r i v ia l  i f  i t  is  

assumed th at the metric tensor is  given a r b it r a r i ly ,  fo r then we have 

only to calculate the Rpo- from the and read o f f  the components of 

the m atter tensor l^cr. In  most cases the “I^q. obtained in  th is  manner 

w il l  be unphysical, hence th is  procedure cannot be ju s t if ie d  and is  

not used. An improvement on th is  approach is  to suppose that the
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metric and m atter tensors are in  some way of "equal s ign ificance", 

with the E instein  equations representing a set of constraints on the 

twenty unknown q u an tities . The la t te r  are fu rth e r re s tr ic te d  by the 

imposition o f conditions of signature and smoothness on the 0pcr and 

r e a l i ty  of eigenvalues and p o s it iv ity  o f energy density on the tensor 

"Ijocr. This is  not re a lly  sa tis fac to ry  as the equations are s t i l l  

indeterm inate. The most frequently adopted means o f dealing with the 

equations is  to remove th e ir  indeterminacy by forming a phenomenol­

ogical description o f m atter through the stress-energy tensor so th a t, 

with appropriate boundary conditions, the d if fe re n t ia l  equations may 

be solved to  determine the m etric f ie ld  corresponding to the p a rt ic u la r  

m atter d is trib u tio n . Of the d iffe re n t approaches to the f ie ld  

equations, the la s t one seems the most reasonable.

Viewed on i ts  own, however, th is  procedure is d isquieting . I t  

is  an ad hoc method, in  which m atter is  necessarily accorded an 

a 'pviovi p riv ileg e d  pos ition . Our conceptions of m atter are lim ited , 

and we must fu rth e r l im it  the m atter d is tribu tio ns we consider to 

those for which the solution of the d if fe re n t ia l  equations presents 

a trac tab le  problem. I f  experimental v e r ific a tio n  of the predictions  

of general r e la t iv i ty  theory is  required we need only turn to the 

solutions o f the vacuum equations; and as Einstein pointed out 

repeatedly in  la te r  years, i t  is  the theory o f the lim itin g  case of 

the pure g rav ita tio n a l f ie ld  and i ts  re la tio n  to the m etric structure  

o f space-time which can possibly make a claim to  f in a l  s ign ificance.

There are two obstacles in  the way of abandonment o f the phen­

omenological approach. F ir s t ly ,  i t  may be ju s t if ie d  by appeal to

the v a l id ity  o f Mach's p r in c ip le ; in  th is  way its  defects are 

camouflaged. Secondly, i t  is  convenient; a lte rn atives  generally  

require that the basic structure o f the theory be supplemented or 

modified and some complications are unavoidably introduced.
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The aim o f th is  work is  to overcome these two objections. Mach's 

p rin c ip le  is e lu s ive ly  vague; i ts  status w ith in  the confines of 

general r e la t iv i ty  is examined at the outset and seen to  be low. We 

s h a ll give p la u s ib i li ty  arguments fo r the introduction in to  the theory 

o f a sourceless set o f equations fo r the Qpo-̂  to be regarded as the 

fundamental equations o f the g ra v ita tio n a l f ie ld .  Complications âo 

aris e , but these are associated with the mathematical problem of 

solving d if fe re n t ia l  equations; the basic framework o f the theory is  

reta ined.

I t  is ,  o f course, essentia l th a t the choice of the equations to  

serve as the fundamental equations o f the f ie ld  does not involve the 

destruction of that which stands firm  in  the theory: the solutions

o f E in ste in 's  vacuum equations. These are retained i f  we take as our J

basic equations those deduced from an action p rin c ip le  in  which the 

Lagrangian is  quadratic in  the components o f the Riemann curvature 

tensor; as we sh a ll see in  chapter 2, th is  choice has a certa in  

ju s t if ic a t io n  on the grounds o f log ic  and of aesthetic appeal. The 

set o f r e l a t i o n s h i p s , cease to be regarded as 

f ie ld  equations, but rather as a d e fin itio n  of the m atter tensor'll©*.

We make the hypothesis that any permissible m etric f ie ld  whatsoever 

must s a tis fy  the f ie ld  equations o f the quadratic action p r in c ip le , 

and that the associated m atter d is trib u tio n  is determined from

th is  way, m atter is  represented in  the 

theory, though i t  would be naïve to expect to  obtain a r e a l is t ic  model 

of elementary p a rtic le s  therefrom.

There have been various in te re s tin g  attempts to obtain r e a l is t ic

descriptions o f m atter from purely f ie ld  th eo re tic  considerations,

without modifying Riemannian geometry. The Rainich-Misner-Wheeler
1 2"a lready-un ified" theory ' of the gravitational-e lectrom agnetic  

f ie ld  operates w ith equations which involve only the contracted 4
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Riemann tensorR^xr, and elim inates the s in g u la ritie s  o f the f ie ld  by
3

geometrical construction. Das and Coffman have worked with the

fu lly  determinate system of the combined Klein-Gordon-Maxwell-Einstein |
3

eîquàtiohspobtainè’d’by'Das as a resu lt o f introducing the complex 

scalar f ie ld  in to  general r e la t iv i t y  to replace the standard phen­

omenological approach. Lanczos^*^ has used the quadratic action  

p rin c ip le  in  general r e la t iv i ty  in  order to construct some s ta t ic ,  

non-singular models o f p a rtic le s  through the assumption th a t m ateria l 

p a rtic le s  represent only a weak superstructure on a very strong 

m etrica l substructure.

Our main in te re s t w i l l  be in  studying the solutions of the exact, 

non-linearised  f ie ld  equations obtained from the quadratic actipn  

p rin c ip le  in  i ts  most general form suggested by Lanczos. Due to the 

complexity o f these equations, an algebraic c la s s ific a tio n  o f admissible 

space-times by th e ir  Weyl tensor, or by the continuous groups of 

motions that they admit, though desirab le, seems out o f the question. 4

Instead we concentrate a tten tion  on the solutions in  the s ta t ic ,  

spherica lly  symmetric case fo r which the f ie ld  equations reduce to a 

p a ir  o f coupled d if fe re n t ia l  equations, one o f fourth and the other

o f th ird  order. Our method of approach is  to impose certa in  boundary

conditions at the outset and search fo r solutions with sp ec ific  

properties; these properties are, however, those th at would be expected 

of reasonable space-times. The results o f chapter 3 reduce the 

problem — and the order o f the d if fe re n t ia l  equations -r’ to  a consider­

able extent and sets o f series solutions exhausting the various 

p o s s ib ilit ie s  are obtained in  chapter 4. In add itio n , we obtain 

several exact so lutions, including the complete set of space-times 

Minkowskian at sp a tia l in f in i ty .  The geometrical, topological and 

physical properties o f some of the exact solutions are studied in  

chapter 5. The cases studied in  chapter 3 fo r which we have been

- • • A •••• . A A ■ •‘•a'" A* li- A- ■ : : •a-‘--_:--a!'--'-- ' '  - ‘'a • A A 1."  ̂ r - 1- - 'fA V i. Â - i • ■ ■ 1" ' a . " a  i.i 'a.Ua-jIi-a k;.. .1:  .i. & ----------
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unable to obtain exact solutions are dealt with num erically in  

chapter 6, the work being based on the series expansion results  o f 

chapter 4. Buchdahl^ has studied the f ie ld  equations generated by 

a quadratic Lagrangian that is  a component of the complete Lagrangian 

which we sha ll use. The app lication  o f his methods to the complete 

f ie ld  equations is  investigated in  chapter 7 and a fu rth e r set of 

exact solutions obtained. We conclude in  chapter 8 by considering 

the fu rth e r p o s s ib ilit ie s  o f the theory and by examining whether or 

not our objectives have been atta ined . F irs t ,  we provide the d eta ils  

o f the conventions to be followed and notation to be employed through­

out th is  thesis . Then we return  to the task o f m otivating th is  work 

by entering in to  a b r ie f  discussion o f Mach's p rin c ip le .
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NOTATION

The conventions and notation th a t w i l l  be employed throughout th is  

thesis are as follows :

Greek indices take the values Latin indices 1— >3 and the

summation convention is  followed.

Space-time, represented by a four-dimensional Riemannian manifold 

\ / ^  with m etric form

cLs^ =  C| ckoiS d n c f 

is  o f normal hyperbolic type w ith signature - 2.

The m etric tensor has determinant g = .

The f u l l  Riem ann-Christoffel (Riemann) curvature tensor is  given by:

E S , pH -

where ^  , {/2>ÿ} represent the C h ris to ffe l symbols o f f i r s t  and 

second kind resp ective ly , defined according to

The Ricci tensor is  defined in  terms o f the Riemann tensor: 

and the curvature in varian t (Riemann sca lar) is  given by:

R-= •

The p a r t ia l  and covariant derivatives o f a tensor component w i l l  be 

indicated by a comma and a semicolon subscript respective ly .

The fundamental a lte rn a tin g  tensor density in  is  denoted by

, which has the value + 1 when the indices form an even permu­

ta tio n  of the natura l order 1234, and - 1 when they form an odd 

permutation, and the value 0 i f  any two (or more) indices are the same,
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E inste in 's  constant of g ra v ita tio n , = 2.073 x 10 cm""* gm"' sec^

is  re la te d  to the Newtonian constant Gr = 6.667 x 10  ̂ dyne cm̂  gm"^

by

K  =. S-nfr 
c4

where G = 3.00 x 10*^ cm sec” ' is  the ve lo c ity  o f l ig h t  in  vacuo.

We sha ll generally use units such th at the constant c has the value 

un ity .

Appendices are lab e lled  according to the chapter to  which they 

re fe r . For example, appendix A2.3 re fers  to section 3 o f chapter 2.

%
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1. MACH'S PRINCIPLE: A DISCUSSION

7
Synge has re ferred  to Mach's p rin c ip le  and the Equivalence 

p rin c ip le  as "a p a ir  o f decaying and dangerous ru in s ."  Whether or 

not th is  is  an overstatement, the re lationship  of Mach's p rin c ip le  

to  general r e la t iv i ty  is" s t i l l  a subject fo r  debate. Although 

Einstein  was led towards his formulation of general r e la t iv i ty  as a 

resu lt o f Mach's ideas, his view was u ltim a te ly  quite d iffe re n t from 

that of Mach: that the world is  understandable e n tire ly  in  terms o f

geometry, which exists before any physical experiment is carried out.

He came to regard a l l  attempts to represent m atter in  the theory as 

unsatis factory and, in  order to  free  i t  from any p a r t ic u la r  choice o f 

m atter tensor, dealt eventually only with the g ra v ita tio n a l equations 

of free  space.^

I t  seems that Mach's p rin c ip le  in  the sense in  which i t  is  

usually understood is  i l lu s o ry ;  i t  has never found expression in  a 

sa tis fa c to ry  mathematical form, nor can i t  be v e r if ie d  experim entally, 

Mach's p rin c ip le  is not basic to the theory o f r e la t iv i ty ,  nor does 

that theory imply i t .  Let us review how th is  is  so.

Mach's p o s it iv is t ic  view was th at only experiments have a physical 

meaning and any theory should be concerned and b u i l t  up only with  

observable m aterial objects. He believed that the princ ip les  of 

science o ffe r  an economic description o f a great d iv e rs ity  o f sense 

observations and expressed the idea — Mach's p rin c ip le  — that the 

fa m ilia r  in e r t ia l  effec ts  observed te r r e s t ia l ly  are "reducible to the 

comportment of the earth w ith respect to  the remote heavenly bodies.

I f  we were to assert we know more o f moving objects than th is  th e ir  

la s t mentioned, experim entally-given comportment with respect to  the 

c e le s tia l bodies we should render ourselves culpable of a fa ls ity " .^  

This is  a rather vague, untestable statement that in e r t ia l  properties

... A,. ^ ’■ti S .'(• • .-V ■ ( - A,.- . .
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are determined by the actual contents o f the universe in  the large.

The mechanism by means of which the local behaviour is  influenced is

not made c lea r, but the p rin c ip le  implies that i t  is  not jus t

coincidence that bodies ro ta tin g  w ith respect to the stars experience

cen trifug al force, while others do not. Mach's p rin c ip le  usually

finds i ts  in te rp re ta tio n  in  general r e la t iv i ty  in  a form equivalent

to the statement that the geometry of space-time is not given a

10but is only determined by the m atter present.

The Einstein equations ( R ^ —̂ gpo-R ==-K'Tpc-) may be regarded as

expressing the dependence of the space-time geometry on the matter
11d is trib u tio n . E in ste in 's  in te rp re ta tio n  o f Mach's p rin c ip le  

required that the in e r t ia l  f ie ld  (defined by the geometrical quantities  

Qpcr) should be not merely dependent upon, but indeed be e n tire ly  

determined by the m atter present (represented by the . In order 

to ensure th is  the E instein  d if fe re n t ia l equations must be supple­

mented by boundary conditions to change the dependency o f the 9p<r 

on the T jo c r in to  the stronger re lationsh ip  of determinaoy. I t  was

demonstrated by E instein th at i t  is  impossible to choose boundary 

conditions so th a t the in e r t ia l  f ie ld  is  fu l ly  determined from the 

f ie ld  equations, since a neutral te s t p a r t ic le  in  the Schwarzschild 

f ie ld  w i l l  have in e r t ia l  properties as nearly Newtonian as required  

at in d e fin ite ly  large distances. I t  cannot be maintained th at these
12 Vare due to the central mass. In view of th is , E instein  introduced I

the cosmological term in to  the f ie ld  equations, fo r  in  th is  way a l l  

the d if f ic u lt ie s  at in f in i t y  were avoided.

Im p lic it  in  Mach's philosophy,is  the idea that a world without 

matter is  inconceivable. Accordingly, E instein required not only 

that the in e r t ia l  f ie ld  should be completely determined by the m atter 

present, but also th at i t  should be completely indeterminate in  the 

absence of m atter. However, the cosmological equations
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which he now assumed admit as a solution  

tliD de S it te r  space-time for which = 0 and the in e r t ia l

properties of neutral te s t p a rtic le s  are w ell-defined  (they accelerate  

away from an observer at the s p a tia l o r ig in ) . That is ,  although 

there is no matter in  the universe, the in e r t ia l  f ie ld  is  completely 

determined, Einstein could not reconcile th is  with his in te rp re ta tio n  

of Mach’ s p r in c ip le .

A fu rth e r n a il was put in  the Machian coffin  w ith the discovery
13of the Gddel solution in  1949. For even i f  we do not accept 

E in s te in ’ s postulate that the should be indeterminate whenTpcr = 0, 

from the point o f view o f almost any in te rp re ta tio n  of Mach's p rin c ip le  

we should expect th at the m atter o f the universe should im'tquely 

determine the geometry o f the universe. Gbdel's solution meant that 

there are two, ess en tia lly  d iffe re n t solutions o f E inste in 's  cosmo­

log ical equations in which"Ipcr represents an incoherent m atter d is t r i ­

bution: the Gddel cosmos and E inste in 's  s ta tic  universe. Furthermore,

according to Mach's p rin c ip le  i t  might be expected th at i f  the bulk 

m atter is  at re s t in  a p a r t ic u la r  coordinate system then the path o f  

a single tes t p a r t ic le  (given an i n i t i a l  ra d ia l ve lo c ity ) should not 

ro tate  re la tiv e  to i t ;  the system should be i n e r t i a l . B u t  th is  is  S

not the case fo r the Gddel universe. Given an in i t i a l  ra d ia l ve lo c ity  

in  the d irection  o f d istant m atter, a tes t p a r t ic le  w i l l  sp ira l out­

wards instead of tra v e llin g  in  the s tra ig h t lin e  th at one would expect 

on the basis o f Mach's p r in c ip le . The Gddel universe is  a consequence 

o f general r e la t iv i ty  but is  not consistent with Mach's p rin c ip le ;  

the la t te r  is  in  no way b u i l t  in to  general r e la t iv i ty .

Then i f  Mach's p rin c ip le  is  to have any rea l meaning in  the 

context of general r e la t iv i ty  i t  must be b u ilt  in  by the addition o f  

some su itable boundary condition. I t  was mentioned previously that
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l t  may be argued that the Schwarzschild universe is  non-Machian. As 

a resu lt the required boundary condition is  often taken to  be that 

only those solutions o f  E in s te in ’ s equations (the cosmological term 

having been removed) are allowed which are such that the sp a tia l

geometry is  closed and s in g u la r ity  fre e . Even so, problems a rise .
15 1:In 1951 Taub took the general r e la t iv is t ic  in te rp re ta tio n  of Mach's ■

p rin c ip le  to be the statement that the nature o f space-time is  deter­

mined by the m atter present. The la t te r  is  to be described by the

stress-energy tensorT p c r  or by s in g u la r it ie s  in  the J ) p < r *  Taub points  

out that on the basis o f th is  in te rp re ta tio n  one could conclude th a t, 

in  the absence of m atter (~lpcr= 0) and s in g u la r it ie s  in  the gpr> the 

f ie ld  equations ( K p < r =  0) should imply that space is  f la t  ( R j T p ( r v =  0 ).

He gives counter-examples in  the form of space-times adm itting tra n ­

s it iv e  three parameter groups o f motions which are not f la t  and for  

which the g pgr are f in i te  fo r a l l  f in i t e  values of the time. This 

would tend to imply that the above conclusion, a consequence o f Mach's 

p rin c ip le , is incorrec t. TaiA reminds us, however, th at the lack of 

a suitab le d e fin itio n  in  the theory o f a rea l s in g u la r ity  — corres­

ponding to m atter — means that the im plication cannot be firm ly  made.

More recently , M cVittie^^ has pointed out that although the objection  

has been made to Taub's solution th at i t  must contain a s in g u la r ity  

of the energy tensor, the physical system represented by the s in g u la r ity  

has not been ind icated. A corresponding objection to the solution  

of Ozsvath and Shucking^^ (s im ila r in  that = 0 ^  = 0) has

not been raised.

The Taub universe apparently s a tis fie s  the conditions th a t i t  

is  s p a tia lly  closed and s in g u la r ity  fre e . I t  is  also an example of 

a pure g rav ita tio n a l f ie ld .  Then, i f  Mach's p rin c ip le  is s t i l l  to  

have any meaning, i t  is  necessary to specify the d is trib u tio n  of 

g rav ita tio n a l rad ia tion  in  addition to the matter d is trib u tio n ,

-A k j5 . ' i A. 'i 'a'a • i 1 ..  A A 2 a! ' " .. A ' A ' A ' , f Ha ' .Hr 'a.-A ‘ £ À A .A A A ' A_AAA,A . A. . A ' \  ̂ • i 1 4 * iV L. « ' '• '•j • ' ..f t '. " ̂  ̂ ' A . - \ /  J- , ■ ■ ,S
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18This leads to the w ell known " c irc u la r ity "  argument , and i t  seems 

that th is  may be avoided only by formulating the p rin c ip le  precisely  

and putting  i t  in to  mathematical form.
19However, Mach's p rin c ip le  strongly res is ts  i ts  mathematization.

20In his work on the problem, Lynden-Bell has given a convincing 

argument (based on the fact th at the n u ll cones are fundamentally 

in va rian t structures o f space-time) that i f  the in e r t ia  of a body is  

a ttr ib u te d  to  the influence of d is tant m atter, then the local space­

time in  which the body is s itu ated  must be a ttr ib u te d  to the same 

cause. His mathematical formulation (in  which E in s te in ’ s equations 

are w ritten  as e x p lic i t ly  covariant in te g ra l equations involving  

retarded b i-ten so r Green's functions) leads to a scheme fo r determin­

ing which universes are Machian, but i t  seems that th is  may be re s tr ­

ic t iv e  and d i f f ic u l t  to  apply. Lynden-Bell's conclusion is  that any 

Machian universe must be such th at the influence of matter propagates 

out to make space and i t  is  th at space over which la te r  influences

propagate out to make the space at a la te r  tim e. In recent work,
21McCrea in terp re ts  th is  as saying th a t the model must be caused by 

the model. He comments " I t  is  hard to see what th is  could mean"; 

furthermore, he rea ffirm s " . . .  the discussion of Mach's p rin c ip le  in 

the context o f general r e la t iv i ty  is  given some significance only by 

re ta in in g  concepts o f pre-general r e la t iv i ty  physics. I  consider 

that Mach's p rin c ip le  has never been formulated s t r ic t ly  w ith in  the 

concepts o f general r e la t iv i ty ."

From the preceding discussion, i t  has become c lea r that we shall 

v io la te  l i t t l e  or nothing by not seeking to adhere to  Mach's p rin c ip le . |

With reference to McCrea's comment, i t  seems to  us th at perhaps one 

should not be surprised at drawing a meaningless conclusion from the 

meaningless premis that there exists a causal re lationship  between 

m atter and geometry, re lated  as in  E instein 's  theory. Schrodinger

I t
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22too has re jected  such a causal notion. Drawing a p a ra lle l with

Poisson*s equation in e le c tro s ta tic s , he te l ls  us not to regard the

set of relationships Rpcr"'x9lp°'^ = as f ie ld  equations, in  which

matter causes the geometrical quantity on the le f t  hand side to be

other than zero, but as a defin 'ttion  o f the matter tensorTpcr. I t  is  I

not an uncommon view th a t m atter is  in  some way a secondary phenomenon ï|

to  the underlying r e a l ity  o f space-time. This was Eddington’s
23opinion, fo r example. He regarded energy, stress and momentum as 

belonging to the world and not to some extraneous substance in  the 

world. But care must be taken th at one philosophically unsatis factory  

a ttitu d e  is not replaced by another, in  which we regard, consciously 

or unconsciously, m atter to be caused by geometry. I f  we are to take 

the view th at there is  one fundamental r e a lity  — space-time — and that 

what we fa m ilia r ly  c a ll m atter is  an aspect of i t  — the certain  quantity  

defined by E instein  — then we must fin d  a means w ithin  the concepts 

of general r e la t iv i ty  of deciding which space-time geometries are 

possible. Thus, we look fo r a sourceless set o f f ie ld  equations 

fo r  the 3 p<r.



- 14 -

2. THE FIELD EQUATIONS

2.1 Introduction

Einstein said, " I t  is my conviction that pure mathematical

construction enables us to discover the concepts and the laws connecting

them which gives us the key to the understanding of the phenomena of

n a t u r e " . I n  th is  s p i r i t ,  le t  us check what our construction  

25involves.

Geometry is  o f Riemannian type. The means of deciding which 

p a r t ic u la r  space-time geometries are permissible is  provided by a 

self-contained set o f f ie ld  equations fo r the m etric gensor - 

S atis faction  of these fundamental g rav ita tio n a l f ie ld  equations does 

not mean that the g ra v ita tio n a l f ie ld  is  necessarily "pure"; the 

matter d is trib u tio n  is  given by substitu tion  of the determined 0 pcr 

in to  E in s te in ’ s equations fo r non-empty space, ~  ,

which are now regarded as a d e fin it io n  of the m atter tensor. For 

consistency with standard r e la t iv i ty  theory, a l l  space-times which 

s a tis fy  E in s te in ’ s g rav ita tio n a l equations fo r free space,1^pcr = 0 

(equivalently,*Rpcr"-^gpo''K = 0) ,  must be solutions o f our f ie ld  

equations. In  view of the universal appearance o f action p rincip les  

in  a l l  branches o f th e o re tic a l physics, and in  p a r t ic u la r ,  since 

E inste in 's  g ra v ita tio n a l equations fo r free space are deducible from 

one, we expect an action p rin c ip le  to provide the f ie ld  equations 

that we require. Since Riemannian geometry is retained, the basic  

Lagrangian must be composed o f the components o f the Riemann-Christoffel 

tensor, and in  order that the f ie ld  laws be independent of the 

accidental choice of coordinate system to be used, the action in te g ra l 

must be in va rian t with respect to a rb itra ry  coordinate transformations. 

We now consider the choice o f Lagrangian, the f ie ld  equations derived 

from i t ,  and th e ir  f i r s t  consequences.
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2.2 The Action Lagrangian

I t  is  w ell known that the simplest n o n -tr iv ia l Lagrangian density 

th at can be formed a lg eb ra ica lly  from the Qpo- and the components of 

the Riemann-Christoffel tensor is  based on the Riemann sca la r R  ; 

and that the Hamiltonian derivative  6 (R 4 ^ ) /6 0 ^  of th is  Lagrangian 

density is  equal to the E instein  tensor density (Rpcr—

Since i t  is  necessary that the Lagrangian density o f the action  

p rin c ip le  is  a sca la r density in  order to make the action in te g ra l an 

in v a r ia n t, the next most simple Lagrangian density that can be formed 

w il l  be based on scalars which are quadratic in the components o f the 

curvature tensor. Due to an algebraic id e n tity , the set o f such 

scalars may be reduced to^^
xToin-

Now

L 3 R /"  ,
L ,  =  - i -  R  R

the Hamiltonian derivatives o f (L 2, - L j - h  L 3 and
27vanish id e n tic a lly  so that the only quadratic terms th at we sha ll

need to consider are L \ and L^.

Various m otivating factors have influenced the in ves tig a tio n ,

from time to tim e, of Lagrangians incorporating L i j •  ̂ Some
28times a term representing m atter is  included in  add ition . Weyl 

introduced such a Lagrangian when he proposed a generalisation of 

Riemannian geometry in  order to  embed in to  i t  the theory o f the

electromagnetic f ie ld .  This proposal was taken up p r in c ip a lly  by
29 30Pauli and Eddington. Lanczos, convinced o f the necessity fo r

the fundamental action in te g ra l of general r e la t iv i ty  to  be independent

me,'
4,5i . e . ,  gauge in v a r ia n t, has studied purely quadratic Lagrangians 

As mentioned in  the in troduction , he has used the f ie ld  equations 

derived therefrom in  order to construct some s ta t ic ,  non-singular

%

27 iof the a rb itra ry  units employed in  measuring lengths in  space-time, a

'1
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p a r t ic le  models, B u c h d a h l^ h a s  investigated the f ie ld  equations 

a ris in g  from quadratic Lagrangians, in  p a r t ic u la r , from L^, regarding

them as equations of the pure g ra v ita tio n a l f ie ld  to replace those

R 32Gregory has considered the

e ffe c t o f adding the Lagrangian 1—2. to R  insofar as the problem of

motion is concerned. A s im ila r  combination is employed by Pechlaner 
33and Sexl in  a phenomenological approach follow ing that o f standard

r e la t iv i ty  theory; they suggest th at such a theory would y ie ld

u n re a lis tic  resu lts .

Let us consider the choice o f our basic Lagrangian L_ , As

im plied previously, any quadratic Lagrangian in  is  such that the

action in te g ra l is  not only in v a r ian t under a rb itra ry  coordinate

transformations but also in va rian t under changes in  gauge. This is

because the four-dimensional element of volume, cUy = 4~S dSc  ̂ has the

dimensions o f the fourth power o f a length and the Ricci tensor Rpcr

(obtained from the second order, and f i r s t  order — second degree

derivatives o f the 0pcr ) has the dimensions o f the inverse of a

length squared. I f  the action in te g ra l is  other than gauge in v a r ia n t,

i t  can (form ally) be made a r b it r a r i ly  small by a su itab le choice of
27the units in  which lengths are measured. Lanczos contends that 

the minimising procedure is  consequently without meaning. Such an 

argument, however, loses v a lid ity  in  view o f the fact th at although 

the v a r ia tio n a l procedure ensures that the action is  s tatio n a ry , the 

action is  ra re ly  a true minimum. Thus, unlike Lanczos’ , our choice 

is not governed by any need fo r gauge invariance. Our Lagrangian 

could be composed of L \  , 1 2. the Riemann scalar R  , i . e . ,

I— = oc L \ + y6 Li, 4-y R
in  which the constants cL and jQ are pure numbers while the constant V  

must have the dimensions o f the inverse o f a length squared. In  th is

sir / / i l  - C 'z .  -v. -IC  A . ' '" - I  3" U ' ^

1
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way a fundamental u n it o f length would be introduced in to  the theory.

The view could be taken that at least one fundamental constant with  

the dimensions of a length should be present in  order to f ix  the size  

o f p a rtic le s  — Nature does not allow p a rtic les  o f a rb itra ry  r a d i i .

However, the presence of the ^ -te rm  would considerably weaken the 

f ie ld  equations. I ts  inclusion would mean th at there is  no a p r io r i  

reason fo r re jec tin g  an add itional "cosmological" type o f Lagrangian 

term,-A - , w ith the dimensions o f the inverse of a length to  the fourth  

power. I t  seems lo g ic a lly  persuasive that there should be as few 

terms as possible in  the Lagrangian. Consequently, in  the present 

work, we put ^  equal to zero, bearing in  mind th at inclusion o f the 

lin e a r  term may w ell y ie ld  a more r e a l is t ic  model. The pure number 

oR may be chosen to have the value un ity  (fo r the f ie ld  equations 

aris ing  when the Lagrangian is  present alone, i . e . ,  the case oL = 0, 

has been studied already by Buchdahl.^ ^We sh a ll consider the a p p li­

cation of his methods to our Lagrangian in  Chapter 9 ) . Accordingly 

we sh a ll henceforth consider the purely quadratic Lagrangian

1— L-\
2, 1

The Lagrangian (2 .1 ) is  s im ila r  to the Lagrangian introduced by 

Weyl in  his m odification of Riemannian geometry, mentioned e a r l ie r  

in  th is  section. I t  was essential fo r Weyl’ s theory that only the 

ra tio s  between the components o f the m etric tensor should be fu lly  .I

determined from the f ie ld  equations. This was because he hypothesised 

that not only is the transference of the d irection  o f a vector from 

one point to another path dependent, as in  Riemannian geometry, but

there is  also a corresponding path dependence fo r the transference
34o f length. Lanczos points out the s im ila r it ie s  and differences  

between a theory based on the Lagrangian (2 .1 ) and Weyl’ s theory;

E in s te in ’ s c r itic is m  of Weyl’ s theory on the grounds o f the indeter­

minacy of the 0p,o- is inapplicable to ours because in  our case the
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are fu l ly  determined. There is  a point of tangency^^ between the 

f ie ld  equations obtained from (2 .1 ) and those of Weyl; th is  fac t w i l l  

be very useful to us in  obtaining solutions o f the f ie ld  equations.

2.3 The F ie ld  Equations and th e ir  F irs t Consequences

Our hypothesis is  that any allowable m etric f ie ld  whatsoever 

must s a tis fy  the f ie ld  equations obtained from the vanishing o f the 

Hamiltonian derivatives o f L _ w h e r e  I— is given by (2 . 1) .  The 

action in teg ra l is

1 =
2 . 2

4-
and the f ie ld  equations obtained by se tting  the Hamiltonian derivatives  

35equal to zero are

G - ^  =  o  ,

where 2.3

G p cr g  ^  R  jocT  -b g  R ^ c r ;c ( .n ' — R .^  cr p  j  croLjp

+ ^ ( 2-g ^ ^ g *  R ;o (.t -  R  ;^<r -  R ; n y o R  - 2 ,R R p a )

Provided th at the m etric tensor s a tis fie s  (2 .3 ) we may in sert i t  in to  

E inste in 's  equations

to determine . The set o f a l l  solutions o f (2 .3 ) w i l l  thus 

ind icate what d is tribu tio ns o f energy-momentum-stress may be perm itted  

in  Nature, w ithin the lim ita tio n s  o f our hypothesis.

We now look fo r  the immediate consequences' o f (2 .3 ) .  At the 

beginning of th is  chapter i t  was specified  th at a l l  space-times which 

s a tis fy  E in s te in ’ s g ra v ita tio n a l equations fo r free space should be 

solutions o f our f ie ld  equations. I t  is  easy to see^^ that a f i r s t
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consequence of (2 .3 ) is  th at any Einstein space, given by

T\.^(T ~  - j / \_  g^cr 5 2,5

where is  an a rb itra ry  constant, s a tis fie s  (2 .3 ) fo r  a l l  values of 

the constant p, . In p a r t ic u la r , since may be chosen to have the 

value zero, there is no c o n flic t with any o f the standard r e la t iv i ty  

theory based on the vacuum equations, as required. A theory based on 

the f ie ld  equations obtained from the Lagrangian (2 ,1 ) thus includes 

the standard r e la t iv i ty  theory described by (2 .5 );  the set of solutions 

of (2 .3) augments those o f (2 .5 ) .

A second consequence is  obtained by transvection of (2 .3 ) with
per

g , This gives;

G- S  — % ( I oLT =• 0 3 2,6

so that any solution o f (2 .3 ) must s a tis fy

R jo in- =  0 2.7

unless |2) = ~ 3 in which case is  id e n tic a lly  zero and Lanczos'

equations are underdetermined for solution since an equation is lo s t,
31Now Buchdahl has shown that the f ie ld  equations generated by the

Lagrangian (2 ,1 ) in  which p  = - are s a tis f ie d  by a l l  spaces

conformai to an Einstein  space. This may be seen from the fa c t,

mentioned in the preceding sectidn, that there is a point of tangency

between the theory considered here and Weyl's thepry. This occurs
29when the Lagrangian of Weyl's theory is  that considered by Pauli 

and fo r  the sp ec ific  value = --3 . Now for a l l  values o f p  , 

a subset S, of the solution set S  of Lanczos' equations is  the set 

of Einstein spaces, given by (2 .5 ) .  When p  = , 5  is  the same

as the solution set o f Weyl's theory fo r which only the ratios of the 

determined, th a t is ,  a subset , (S^ d  5 %) ; of Q is  the
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set o f space-times a r b i t r a r i ly  conformai to spaces given by (2 .5 ) ,

2.4 Specialisation to the S ta tic , Spherically Symmetric Case

I t  does not seem possible to obtain read ily  fu rth e r consequences 

of the f ie ld  equations (2 .3 ) without the imposition o f symmetry 

requirements. In view o f the comparative s im p lic ity  o f spherical 

symmetry i t  is natu ral to consider th is  f i r s t  in  any d eta iled  examin­

ation of the d if fe re n t ia l equations th a t may arise in  general r e la t iv i ty .

There are many equivalent ways o f w ritin g  the m etric in  th is  case.
37Following Tolman the m etric form fo r a spherically symmetric space­

time may be w ritten :

cLŝ  =  — -b G cL(|)A +  Ç ^  ̂ 2,8

where the functions A. and v  are generally dependent upon the ra d ia l

coordinate t '  and the time coordinate t  ; (2 . 8) has the advantage of

being simple and conceptually convenient. I t  is  w ell known (B irkh o ff's  

38theorem ) that fo r E instein  spaces, given by (2 ,5 ) ,  the time dependence 4

::
o f the components o f the metric tensor in  the spherica lly symmetric 

case may be removed by a coordinate transform ation, but we cannot say 

that this is  true fo r  spherica lly symmetric space-times satis fy ing  

(2 ,3 ) , Thus we make the additional assumption that the f ie ld  is  

s ta tic ;  i .e .  that the Cj vanish and the remaining are inde­

pendent of the time coordinate "t , taking A  and V to be functions of "I

T  only,

A .=  A (T '') ) .

W riting oc' s f  , oC" =  Q, oc'̂  s. cj^pc^^-b  ̂ and with a dash denoting 

d iffe re n tia tio n  with respect to T  , the  ̂ fo r  the metric (2 . 8)

are given in appendix A2.4 by (A 2.19), the C h ris to ffe l symbols o f the 

second kind I per by the set (A2 . 20) ,  the components o f the Ricci
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te n s o r ( in  m ixed form ) R C c r  and the  c u rva tu re  in v a r ia n t  R. by (A2 . 21) ,  

(A2.22) r e s p e c t iv e ly .

One of the advantages of a v a r ia tio n a l formulation of a problem is  

that i t  allows inform ation about the symmetry of the s itu a tio n  under 

examination to be inserted  before carrying out the v a r ia tio n . Thus, 

we may form the Lagrangian density o f the action in te g ra l:

Qr .̂cT'^p 0  • 2,9

In consequence, fo r our m etric (2 ,8 ) ,  ) may be id e n tic a lly

expressed in  terms of Gr\ and :

=  & - Ï ,]  2.10

so th at there are only two independent f ie ld  equations as would be 

expected, and (2 . 10) serves as an add itional check on our accuracy in  

obtaining the from (2 .3 ) .  Since the calcu lation of the G^cr —-

fo r the m etric (2 . 8) and derive the f ie ld  equations d ire c tly  from the

action p rin c ip le . More laboriously, the various terms on the r ig h t

hand side of (2 .3 ) may be calculated from (A2.19)—>(A 2.22) and

combined to form the G^cr fo r the spherica lly symmetric, s ta tic  f ie ld .

Although these two methods are equivalent in  the present case, a

check on accuracy is  thereby provided which is  not only useful but %

also essential in  view o f the lengthy and tedious nature o f e ith e r
39calcu lation. Furthermore, i t  is  w e ll known that the Hamiltonian i

derivatives o f any in va rian t density that depends only on the and :|

th e ir  p a r t ia l derivatives with respect to the coordinates up to any 

f in i t e  order have an id e n tic a lly  vanishing divergence. This means f

th at whether or not the Qr̂ a- given by the la t te r  of (2 .3 ) vanish, 

they must s a tis fy  the id e n tity
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by e ith e r means — is  long but straightforw ard i t  is  omitted, as is 

the expression fo r Qr% since knowledge of i t  is not required as a 

resu lt of the id e n tity  (2 . 10) ,

The system to be solved is  thus (in  mixed form ):&; = 0 1 I
G - ; = o J  ^

and these two equations are given by (A2.23), (A2.24). Since Cr 

is  expressed in  terms o f G | and Gr^ according to (2 , 10) ,  the

in v a r ia n t  G- may be w r i t t e n  in  term s o f  G | and )+

&  = - r  & Ï ; ) + 4 6 ' ,

2.12

Then a system o f equations equivalent to (2.11) is

= 0 1  

(0- — 0  J j

unless d -uJ /d r = 2 /V  in  which case the vanishing o f G \ is  s u ff ic ie n t  

in  i t s e l f  to ensure the vanishing o f &  and i t  is  necessary to demand 

the additional vanishing o f G q . When th is case, cLv /olr = 2 /^  , 

is  investigated i t  is  found th at there is no solution as the p a ir  o f  

equations (2.11) are inconsistent. Thus i t  is  s u ff ic ie n t to solve

(2 .1 2 ), A fu rther reduction is  possib le, since G  is  given by (2 .6 ):

G =  2 - 11 )

so th a t, excluding consideration o f the special case , i t  is

s u ffic ie n t to solve the system

3

G: =  0 "

RioL-r -  0
(a) 

2.13
(b)

We shall consider the case at the end of th is  section.

The p a ir  (2.13) is  more convenient to use than (2.11) because
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(2.13b) is  a condition on the sca la r curvature which does not depend 

on the value o f the constant A . I t  reads

^  ( i  =  0  , 2-14

which has the f i r s t  in te g ra l

P - -1V ?L
e  ^  , 2.15

where C is an a rb itra ry  constant. E x p lic it ly  (2.13b) is  fourth  

order in  and th ird  order in  A  ; i t  is not necessary to w rite  i t  

out in  f u l l  as i t  may always be conveniently replaced by (2 ,1 4 ),

The d if fe re n t ia l equation (2.13a) is  th ird  order in  V  and second 

order in  X  ; i t  is  sometimes useful to  have i t  w ritten  in  terms of 

X  , V  , th e ir  derivatives up to second order only, the curvature 

inva riant 1^  and its  f i r s t  d eriva tiv e . In  th is  form, G', = 0 is

given by (A2.25). A l l  spherica lly symmetric, s ta t ic  solutions of 

Lanczos’ equations therefore s a tis fy  (A2.25) and the condition (2.14) 

the Riemann scalar being given by (A2.22).

From (2.15) — more generally, from (2 .7 ) — i t  can be expected 

th a t some solutions o f the f ie ld  equations w il l  be such that the 

Riemann scalar has a constant value, i .e .

2.16

( constant) , corresponding to C = 0 in  (2 .1 5 ). E x p lic it ly  th is

is  :

^ ^  -b ^  -  K  = 0  . 2.17

There is  no a p r io r i  reason to suppose that (2.16) is  not only a 

possible, but also a necessary consequence of the f ie ld  equations, as 

is  assumed fo r his purposes by L a n c z o s . W e  sh a ll fin d , however, |

in  the next chapter, that on the basis o f a " re g u la r ity  condition" \

. ./T v 2 'C: 'V.
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th is  w i l l  indeed be the case.

We now turn to the solution of the equations in  the underdetermined

case ^  the preceding section the resu lt was given that

a subset of the complete set o f solutions of Lanczos* equations when

p  = » b  is  the set of a l l  space-times conformai to an a rb itra ry
31Einstein space. Buchdahl has shown, by employing a simple 

coordinate transform ation, that when the space-time is  s ta t ic  and 

sp herica lly symmetric, solutions of th is  kind are the only solutions; 

th a t is ,  any member o f the set o f |2> = solutions must be reducible 

to the form:

  -  p''' (clG^4- sCvi"" G cUX)^_ (I - A  n'-Wbi 2 . 18
' "3'  ̂ J

where iu and are a rb itra ry  constants and P  is  an a rb itra ry  function  

of p  . This strong resu lt would be o f no fu rth e r in te re s t, as 

A -  is  a degenerate case, i f  i t  were not fo r the fac t that 

contained in  (2.18) is  a set o f w ell determined solutions o f Lanczos* 

equations; in  p a r t ic u la r ,  the set o f a l l  solutions Minkowskian at 

sp a tia l in f in i ty .  This la t te r  resu lt depends upon the theorem 

obtained in  section 2 of chapter 3; the set o f w ell determined 

solutions re ferred  to w i l l  be obtained in  section 5 o f chapter 4 .
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3. BOUNDARY CONDITIONS AND EXISTENCE THEOREMS 

FOR THE STATIC, SPHERICALLY SYMMETRIC CASE

3.1 Introduction

The f ie ld  equations to be solved, (2 ,1 3 ), are d if fe re n t ia l  

equations of high order, coupled and n on -linea r, and there is  no hope 

of obtaining the general solution with the f u l l  number o f a rb itra ry  

constants. Our method w i l l  be a simple one: to look fo r solutions

which have certain  p roperties , im ita tin g  in some respect the s ta t ic ,  

sp herica lly symmetric space-times th at arise in  standard r e la t iv i ty  

theory. Our in te re s t w i l l  be only in space-times which s a tis fy  the
I '

f ie ld  equations fo r  values o f jQ other than - g ; those that s a tis fy

the equations only when jô = -  w i l l  not be considered to be true

solutions. I t  w i l l  be useful to l i s t  those space-times that arise
42in  the spherica lly symmetric, s ta t ic  case in  standard theory.

a) The most re lia b le  v e r if ic a tio n  o f general r e la t iv i ty  is  based on 

the SchwarzschiId lin e  element;

 (c l6 ’' + Suv'XG cl(iA ( I " G i b ) d G  , 3.1
I —2-m-Ar ^

which s a tis f ie s  E in ste in 's  vacuum equations

-  0 ,

The g ra v ita tio n a l f ie ld  represented by (3 .1 ) is  regarded as generated 

by a point mass M  s itu ated  at the s p a tia l o rig in . The mass is  

re la te d  to the constant of in tegration  tvi by M = 8TTm/'K<Z.

b) A second important space-time is  the Riessner-Nordstrbm so lu tion , 

which corresponds to the g rav ita tio n a l f ie ld  due to the electromagnetic I  

f ie ld  energy o f a point charge at the s p a tia l o rig in :

 - (  cAGN-sGJG cl6'34- ( I - Im  3.2
T "  2-.

: f- . .. ...... ; ' . -•
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This s a tis fie s  E in ste in 's  equations

R/3CT -  3^^ =  -y C T p ,r  3.3

in  which the energy-momentum tensor ~~\~pcr is  due to  the e le c tr ic  f ie ld  

of the point charge. The constant o f in tegration  m. is  re lated  to  

the mass of the p a r t ic le  as in  the SchwarzschiId solution (case (a ) ) ,  

while the constant o f in teg ratio n  -C is the charge of the p a r t ic le .

Both the Schwarzschild solution (3 .1 ) and the Riessner-Nordstrdm 

solution (3 .2 ) are asym ptotically f l a t ,  i .e .  in  the l im it  as the 

sp a tia l coordinate r  increases without bound the m etric approaches 

the Minkowskian form:

oLs*” == cLG ~ 4-s '2'0 cic^)R +• c^dfc » 3.4

Neither (3 .1 ) nor (3 .2 ) is  regular at the s p a tia l o rig in . Three 

space-times which exh ib it regular behaviour are de S it te r  space-time, 

the " in te r io r"  Schwarzschild solution and the Einstein  universe.

c) De S it te r  space-time is  unique in  having constant space-time 

curvature everywhere. I t  has the m etric form:

cIjS.’" =- “  dvT"’" — ( clG)  ̂+- X  c , 3.5

which s a t is fie s  the f ie ld  equations (2 .5 ):

R.^<r “  g^cr '

d) I f ,  in  (3 .3 ) ,  the energy-momentum tensor is  taken to be that

of a perfect incompressible f lu id  with constant proper density , 

the " in te r io r"  SchwarzschiId solution is  obtained:

- r H dlDVsXbBclcj)3  +• ( + •  C c Z d t \  3.6 :
I -  Vg .

The constants o f in tegra tion  oC. and C  are re la ted  to  the physical ,i
'3

properties o f the f lu id  sphere. I
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e) The Einstein  universe,

cLŝ  =  — r  A d O ' ^ ' V - -{- j 3.7
i -T^ /'T o '"

is  a solution of the cosmological equations

+  A  9p.- =  -X -T p c r  • 3.8

The energy-momentum tensor is  th a t fo r an incompressible perfect

f lu id .  The constant of in teg ra tio n  , which must be real fo r a 

r e a l is t ic  model, is  re la ted  to the cosmological constant , the 

constant pressure jp and constant proper density o f the f lu id  

according to

_L =  -  iC t  =  XAAq. t -  -A -  *
I 3

When the pressure |p is  put equal to  zero the lin e  element (3 .7 ) 

represents the g rav ita tio n a l f ie ld  o f an incoherent m atter d is t r i -  4

bution. I

Of the most important sph erica lly symmetric, s ta t ic  space-times I

of standard r e la t iv i t y  theory, ( a ) ( e ) , only the SchwarzschiId |

solution and de S it te r  space-time are also solutions of our f ie ld  

equations (2 .1 3 ). The Riessner-Nordstrbm so lu tion , the " in te r io r"

Schwarzschild solution and the E instein  universe (which s a t is fie s  the 

f ie ld  equations only when p  = -  ^  ) are lo s t. We wish to know what 

solutions arise in  our theory to replace them.

Our inves tiga tions begin in  section 3.2 with the search fo r

solutions to replace the Riessner-Nordstrbm so lu tion , or extend the 

Schwarzschild so lu tion . Such space-times are f l a t  a t s p a tia l 

in f in i ty  and have corresponding m atter d is trib u tio n  of only f in i t e  

influence. We cannot be certa in  th a t i t  is  in  any way meaningful to  

ta lk  of " in f in ity "  but such solutions — especially the Schwarzschild 

solution — play a role in standard theory th a t is  important on
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h is to r ic a l and psychological grounds at the very le a s t . Thus, i t  is  

n a tu ra l th a t our a tten tion  is  turned f i r s t  in  th is  d irec tio n .

I t  is  d i f f ic u l t  to conceptualise " in f in ity "  but i t  is  eas ier to 

give i ts  meaning m athematically. On the other hand, we fe e l tha t we 

know what is  meant by " re g u la r ity "  but i t  is  d i f f ic u l t  to reach a 

sa tis facto ry  d e fin it io n  in  general r e la t iv i t y .  What we mean by

"regular" w i l l  be made precise in  section 3 .3 . We s h a ll look fo r

solutions which share th is  property w ith de S it te r  space-time, the 

" in te r io r"  Schwarzschild solution and the Einstein universe, and 

which replace the la t t e r  two space-times. I t  is  found in  section

3.4 tha t there is  no so lu tio n , regular or no t, which is  asym ptotically  

lik e  the Einstein universe. We cannot say, however, th a t de S it te r  

space-time is the unique solution with asym ptotically constant curva­

tu re ; solutions which have th is  property are examined in  section 3 .5 .

I t  was s ta ted e a r l ie r  th a t those solutions in  standard theory 

which are Minkowskian a t sp a tia l in f in i t y  are not regular a t the 

s p a tia l o rig in . I t  is also true tha t those solutions in  standard 

theory which are regular a t the sp a tia l o rig in  are not asym ptotically  

f la t .  I t  is  thus a question o f considerable in te re s t whether or not 

our f ie ld  equations permit a solution (other than, o f course, the 

t r iv ia l  Minkowski solution) which has both properties . In section

3,6 the resu lts  o f sections 3.2 and 3,3 are combined to provide the 

inform ation needed to  answer th is  question.

In  our inves tiga tions in  th is  chapter i t  is  necessary to assume 

tha t the unknown functions possess appropriate series expansions, 

but i t  is  recognised th a t in  using th is  technique certa in  solutions  

could be missed. For example, the function -j-loG) = exp( -  oc"'̂  ) is  

such tha t -j- and a l l  i ts  deriva tives a t X  = 0 vanish, and consequently 

•^(oO has no series expansion in  pos itive powers o f oc /. Our technique 

is ju s t if ie d ,  however, by the fac t th a t we are in terested  in  solutions
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w ith certa in  asymptotic properties . This is  not our exclusive  

in te re s t; i t  is  an essential lin e  of attack in  dealing w ith what 

could otherwise amount to an in trac tab le  problem. Solutions without 

the properties mentioned may ar ise ; th e ir  physical in te rp re ta tio n  may, 

however, be obscure,

5.2 The Non-Existence o f Asym ptotically F la t Space-Times with Non- 
Vanishing Curvature Invar iant

In a prelim inary in ves tiga tion  o f Lanczos' equations to look fo r  

spherica lly symmetric, s ta t ic ,  asym ptotically f la t  space-times the 

follow ing approach was taken. The unknown functions o f the

m etric form (2 . 8) were assumed to have series expansions in  terms of 

decreasing powers o f the ra d ia l coordinate T  with lead ing term un ity .

These were substituted in to  the f ie ld  equations (2 ,1 3 ), The 

coeffic ien ts  of successive powers o f l /Y  were then equated to zero 

and the equations solved in  order to find  expressions fo r the f i r s t  

few unknown coeffic ien ts  o f the negative powers of T  in  the series  

expansions o f A  , , I t  was found th a t the f i r s t  coe ffic ien ts

are algebra ic functions of only two unknown constants, and do not 

depend on the value o f j6  . This la t t e r  fact is h ighly suggestive.

For, i f  the series solutions are completely independent o f p  then 

they must simultaneously s a t is fy  the equations obtained from the 

separate vanishing o f the Ham iltonian deriva tives both o f the 

Lagrangian Rpg-RT and o f the Lagrangian R?" . Now Buchdahl^ has 

shown th a t the f ie ld  equations obtained from the vanishing o f the 

Ham iltonian deriva tives of the Lagrangian have no asym ptotically

f la t ,  spherically symmetric, s ta t ic  solutions such th a t the Riemann 

scalar R. Is  not zero everywhere. I t  is thus possible tha t Buchdahl's 

re s u lt is  true fo r the equations obtained from the complete quadratic  

Lagrangian Rpc-R" Rf . That th is  is  so is  demonstrated by the 

follow ing theorem: *

,  .J#
—V—, -, • V- - j  ^ ____■'ki'-uL. i
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Any spherically symmetric, s ta t ic  m etric th a t is  a solution of 

Lanczos' equations and tends towards the Minkowski form fo r large  

values o f the ra d ia l coordinate must be such th a t the curvature 

in var ian t vanishes everywhere.

For large nr we suppose tha t the unknown functions A , of 

the m etric form (2 . 8) may be expanded:

A ” =- i .  +  ^  -f- X x  4- . . , . 5
-T

V , , , 3.9
•R JL. 4 -M t 4— q- . . , . ^

Y“ i .

fo r some constants , ^ 2 , . . . ,  , b j , •

Then from the expression fo r the curvature in var ian t R. given by 

(A2.22) the highest power o f "T th a t can occur in  i ts  expansion is  

c le a rly  nr  ̂ . Thus :

R . (C o " ^  Gj 4- Co- +• . . ) Co 4  Û  i 3.10'Y'' ^

for some constants Cq , C i , Cz, »• • •> and fo r some in teger n- :

n, 3  . 3.11

Now since i t  is  required th a t the f ie ld  equations be s a t is f ie d , (2.14) 

(equ ivalently , (2 .1 5 )) is  tru e . With the expressions (3 .9 ) fo r

, and (3.10) fo r R , , we obtain from (2.14) the condition

on rL :

Co iru ( VO. -  0  =  0

which is  a contrad iction , from (3 .1 1 ),

Then, in  (3 .1 0 ), Co and a l l  successive coeffic ien ts  must vanish.

Thus R. = 0 to any order in  i / T  in  the region of s p a tia l in f in i ty .  

Hence R. = 0 everywhere.

I f  we suppose more generally th a t the expansions fo r A ,  are

6, ^  ^^o 4- 4“ Q- % 4" « « »  ̂ Cl Q 0  j

C 4- -b 4- . . . ) b>o*4 0  J

   '—• -
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then the proof follows in  id e n tic a l fash ion, with the condition (3,11) 

replaced by r\_^ 2. The add itional condition CX-o = 1 is  obtained; 

bç may be chosen to have the value un ity  by a transformation o f the 

time coordinate.

As a fu rth er gen eralisa tion , we may assume th a t the expansions 

fo r , A  are in  powers o f 1/ where nx is  not necessarily

an integer:

^  ~  CLQ *V~ 4— ÇSt.2.- 4r ' ' ' 5 0  ,W\— iwU-
Ÿ) , , , , 3 .9 ’

— b o  4 - hj-  -f- " • ♦ ) ho  ^  0  .
^  Vvu J-VY>~

I f  the f ie ld  equations are s a t is f ie d , i t  is  found th a t KVL must have 

the value un ity . This resu lt is  proved as a lemma in  the appendix 

to th is  section, A3.2. The theorem then follows as above.

The theorem tha t has been proved in  th is  section concerning the 

boundary condition o f asymptotic fla tness is  o f some in te re s t, despite 

the condition of spherical symmetry on the s ta t ic  f ie ld .  Buchdahl^ 

has shown tha t when the f ie ld  equations obtained from the Lagrangian 

?L are being considered, h is resu lt may be generalised by abandoning 

the condition of spherical symmetry; th a t is ,  there e x is t no s ta t ic  

(s u ff ic ie n t ly  often d iffe re n tia b le ) solutions o f the f ie ld  equations 

generated by which are asym ptotically f la t  but do not s a tis fy  

K , =s 0. His methods are discussed in  chapter 7; the generalised  

re s u lt may not re ad ily  be shown to hold for the f ie ld  equations 

generated by R^K -^4-|2>R. . Buchdahl's resu lt is  unfortuna tely o f

no great in te re s t since the f ie ld  equations generated by R- are very 

weak: they are s a t is fie d  by d l i  space-times with vanishing curvature

in var ian t. However, the f ie ld  equations generated by the complete 

quadratic Lagrangian are much stronger; only a f in i t e  subset o f space- 

times with R  = 0 w i l l  s a t is fy  them. In view of th is , our theorem 

is  extremely useful. As w i l l  be shown in  the next chapter i t  has 

the consequence tha t we are able to  obtain the complete exact solution
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in  the s ta t ic ,  spherica lly symmetric case under the imposition of the 

boundary condition of asymptotic fla tness .

3.3 The Non-Existence o f Regular Space-Times w ith Non-Constant 
Curvature Invariant

The problem o f s in g u la r it ie s  in  general r e la t iv i t y  is  a crucial

one and is  only p a r t ly  solved a t the present time. In  th is  section

we sh a ll see how i t  appears in the context o f Lanczos’ equations.

3 .3 .1  The S in g u lar ity  Problem in  General R e la t iv ity

The task of defin ing a re a l,  or physical s in g u la r ity  in  general

r e la t iv i t y  is made very d i f f ic u l t  as a resu lt of the general covariance

of the theory; an apparent s in g u la r ity  o f the space-time may not be 

physical but may ex is t merely as a resu lt o f an unfortunate choice of 

coordinate system used to  describe the space-time.

In tu it iv e  notions as to what should constitute a rea l s in g u la r ity  

f a i l  because we are not considering the behaviour o f certa in  quantities  

referred  to a background m etric , as in  other f ie ld  theories , but 

ra ther the background m etric i t s e l f .  Geroch^^ has examined the 

arguments which lead to a d e f in it io n  o f a physical s in g u la r ity  based 

on the idea of geodesic incompleteness, but he shows th a t no d e fin itio n
;

is  e n tire ly  sa tis fac to ry  due to the existence of geodesically complete |

space-times containing tim elike  curves w ith bounded acceleration and
44f in i t e  to ta l proper length. Hawking and Penrose have carried  

through a programme the aim o f which is  to fin d  conditions to pred ict 

whether a solution has s in g u la r it ie s , the nature o f any predicted  

s in g u la r it ie s  and the consequences of th e ir  existence for general 

r e la t iv i t y  theory. Tim elike or n u ll geodesic incompleteness is  taken 

as the in d ica tio n  o f the presence o f a s in g u la r ity  and i t  is  shown in  

a "coro llary" tha t any space-time sa tis fy in g  a set o f four conditions, 

together with E inste in 's  equations (3.3), cannot s a t is fy  causal geodesic |,|
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completeness. They say, "We may in te rp re t fa i lu re  of the causal 

geodesic completeness condition in  our coro llary as v ir tu a t ly  a s ta te ­

ment tha t any space-time sa tis fy in g  (these four conditions) 'possesses 

a s i n g u l a r i t y ' . . . (our i t a l i c s ) .

3 .3 .2  The S in g u lar ity  Problem and Lanczos' Equations

In order to apply the Hawking-Penrose corollary^^ to indica te  

the presence or otherwise o f s in g u la r it ie s  i t  is  necessary to know 

more about the space-time than the f ie ld  equations tha t i t  s a t is fie s .  

Thus, no d irec t app lica tion  may be made to our f ie ld  equations to t e l l  

us whether or not they admit non-singular solutions. Furthermore, 

the Hawking-Penrose re s u lt is  in  general inapplicable even with f u l l  

knowledge o f the m etric form and corresponding m atter d is trib u tio n .

This is  because one o f the four conditions required by the coro llary  

is  an "energy condition": the energy density must be nowhere less

than minus each p rin c ip a l pressure nor less than minus the sum o f the 

three p rin c ip a l pressures. This is  a completely reasonable condition  

in  view of the aim o f the authors o f the coro llary to re la te  th e ir  

resu lts  to the known universe in  order tha t these results  be experi­

mental ly  v e r i f ia b le . However, i t  is  also ra th er strong and re s tr ic t iv e ;  

the solutions o f our f ie ld  equations w i l l  not usually s a t is fy  such a 

condition.

Thus there is hope th a t Lanczos' equations may admit non-singular 

solutions, on the somewhat negative grounds th a t i f  the Hawking-Penrose 

energy conditions are not s a t is fie d  there is  very l i t t l e  tha t we can 

say about the presence or otherwise o f s in g u la r it ie s . More p o s itiv e ly , 

however, we know tha t these energy conditions are also v io la te d  by 

the C -f ie ld  o f Hoyle and N arlikar,^ ^  wh ile the presence o f the C -f ie ld  

in  the g ra v ita tio n a l equations o f standard theory can prevent, in  a 

very obvious way, s in g u la r it ie s  from occuring. I t  w i l l  be generally
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necessary' fo r us to consider the singular nature of each solution as 

i t  occurs, as fa r  as th is  is possible.

In looking fo r solutions o f our f ie ld  equations which are regu lar, 

we must use a very unsophisticated working d e fin itio n  of " re g u la r ity " . 

We sh a ll follow  B o n d i i n  saying tha t a space is  non-singular or

regular a t a point i f  a local Minkowski tangent space exists  a t th a t

po in t. I f  i t  does not then, a t  the point under consideration, the 4

space is  s ingu lar. We now examine what th is  means fo r our m etric ^

(2 . 8).

3.3 .3  The Regularity D e fin itio n

The point th a t is  problematic when using a pseudo-polar coordinate 

system 'M, 9 , (j) , ' t  , as in  (2 . 8) ,  is  the s p a tia l o r i g i n ,  "r = 0 .

This is  because the determinant of the m etric tensor

' ,xA :

is  e ith e r  undefined a t T  = 0 , since there is  no preferred  rad ia l 

d irec tio n , or zero there. In e ith e r  case, the tensor congruent to  I

Q pcr > i . e .  g^°" , does not have meaning and the f ie ld  equations

break down.

In terms o f the re g u la r ity  o f the space-times th a t s a t is fy  the 

equations (2 .1 3 ) ,  our in te re s t w i l l  thus be focussed on the sp a tia l s

o rig in . Since i t  is easy to detect when a space-time is  not w ell

behaved a t points other than V = 0 we choose to apply Bondi's 

d e fin it io n  of re g u la r ity  s p e c if ic a lly  to T  = 0. Then the condition 

fo r re g u la r ity  tha t we impose on any space-time whose m etric is  exh ib ited  

in  (2 . 8) is  tha t

± as T —> 0 , and:

-C is  continuous and bounded away from the o rig in
3.12

as r — > 0 .
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This condition, (3 .1 2 ) ,  is  not by i t s e l f  s u ffic ie n t to ensure tha t the 

determinant of the m etric tensor, a f te r  transformation to a set of 

coordinates meaningful a t the s p a tia l o rig in , does not vanish there. 

For, i f  a coordinate transformation is  applied to (2.8)  to put i t  in 

the form described by pseudo-Cartesian coordinates, which have v a l id ity  

at the s p a tia l o rig in , then 0 is  given in terms o f - A ,  f.' in  the new 

coordinates by

x + v
9  3.13

and i t  is  c lear th a t the condition (3.12) does not stop th is  from 

vanishing at = 0 .  (The formulae of transformation from pseudo- 

po lar coordinates to pseudo-Cartesian coordinates, together w ith the 

components o f the m etric tensor in  such coordinates are given in  the 

appendix to th is  section, A3.3, by equations (A 3.31), (A3.32),  (A3,33) .)

The fa c t tha t g may vanish in a p a r t ic u la r  coordinate system fo r  

some value o f the coordinates does not mean th a t there necessarily  

exists a rea l s in g u la r ity  at the point represented by the coordinates. 

For example, when a synchronous coordinate system ( = 0, = 1)

is used in  cosmological problems, g vanishes in e v ita b ly  fo r some 

f in i t e  value o f the time coordinate, whatever the m atter d is trib u tio n  

assumed. B e lin s k ii, Khalatnikov and L ifsh itz^^  have discussed th is  

m atter in  th e ir  analysis of the problem as to whether or not singu­

la r i t ie s  occur in  fu l ly  general solutions of E inste in 's  equations.

They show th a t in  th is  case the s in g u la r ity  is  f ic t i t io u s  — i t  

disappears in  other coordinate systems. Consequently, we need not 

be concerned tha t the d e fin it io n  allows the p o s s ib ility  th a t 0  might 

vanish in  some coordinate system.

We sha ll f in d , however, tha t 0  does not vanish in  pseudo- 

Cartesian coordinates a t the s p a tia l orig in  fo r  solutions o f (2.13)  

tha t are regular in  the sense of (3 .12).  In add ition , a l l  components
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of the m etric tensor g are w ell behaved. Then the components of 

the conjugate tensor are w e ll defined and well  behaved at the sp a tia l 

o rig in . Any space-time sa tis fy in g  (2.13) and (3.12) cannot have a 

physical s in g u la r ity  a t nr = o.

3 .3 .4  The Application of the Regularity Condition to  the F ie ld  

Equations

The aim of th is  section is  to demonstrate tha t there is  no 

solution o f the s t a t i c ,  sph erica lly symmetric f ie ld  equations sa tis fy in g  

the re g u la r ity  condition (3.12) th a t does not have constant curvature 

in var ian t everywhere.

I t  is  f i r s t  assumed th a t near the s p a tia l o rig in  A ”, possess 

series expansions in  terms o f r is in g  powers of T  , In  accordance 

with the condition fo r re g u la r ity  (3.12) these may be w ritten  

cX -  I t  a , A  4- o  ‘ ‘ j

p 3.14
( l  4- C ,T  4- 4_ (2^^  ̂ oLg, 9  ̂ 0

fo r some constants A, » CL 3 , . . .  , C, , , C3 , . . .  , cLq .

There are no constra ints on A to take non-negative or in teger values.

I t  is  now supposed th a t A ,  given by (3.14) s a t is fy  Lanczos* 

equations (2 .13),  The follow ing resu lts  are proved as lemmas I ,  I I  

and I I I  in  the appendix to th is  section , A3.3:

I .  The constant A may take only the values 2, -2 , 0.

I I .  The values A = 2, A = -2 are excluded.

I I I .  The expansions (3.14) are in  terms o f even, non-negative powers

of the ra d ia l coordinate only.

We may now sta te  and prove the theorem:

Any solution of the s ta t ic ,  spherica lly symmetric f ie ld  equations 

tha t is  regular in  the sense (3.12) must s a t is fy , fo r  some constant tC

R = K
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everywhere.

For small V  , ^ ^  may be expanded, according to  the results

^  ( 4- 4- Ciu 4- ,

of lemmas I ,  I I  and I I I :

.X . . . .   ...........
H'

3.15
.e.̂  =  d o  ( 1 + +- c „ T - ‘* , cLo 4 0 )

fo r some constants , . . . ,  do*

Then from the expression (A2.22) fo r the curvature in var ian t R . , with  

^  , £? given by (3.15) we must have

3.16

fo r some constants , . . . .  .

Now since i t  is  required th a t the f ie ld  equations be s a t is f ie d , (2.14)  

(equ ivalently , (2.15))  is  tru e . C learly , by (2 .14) ,  the successive 

coeffic ien ts  , . . .  in (3,16) must be equated to zero. Then

IK = constant = K to any order in  T  near the o rig in . Hence

everywhere.

I t  is  eas ily  seen, from the formulae (A3.32), (A3.33) fo r the
X n-)

m etric tensor in  pseudo-Cartesian coordinates, th a t , w ith <2, ,
per '

given by (3 .15) , (^p^  is  well-behaved, g non-zero and 0 ' w e ll-  

defined and well-behaved a t the s p a tia l o rig in . The invar iants tha t 

may be constructed from such quantities  cannot be s ingu lar. We can 

be sure th a t the imposition of the f a i r ly  weak re g u la r ity  condition

(3.12) on Lanczos' equations in  the spherically symmetric, s ta t ic  case 

resu lts  in  space-times th a t have no physical s in g u la r ity  at the s p a tia l 

o rig in .
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5.4 The Non-Existence o f Space-Times Asymptotically of the Form of the 

Einstein  Universe

I t  was mentioned in section 3.1 tha t the E instein  universe

s a t is fie s  Lanczos’ equations only when ^  and thus does not

constitute a true so lution . I t  is reasonable to enquire whether or

not there are any solutions tha t are asymptotic to the Einstein universe.

That is ,  do there e x is t solutions of the form

-cK ____1___ _̂__  ,
I -  3.17

,

42 —^ 1

as T —  ̂ 'To ? From purely formal considerations, may take

positive or negative values.

In order to fin d  i f  (3.17) is  a sensible form to  try  i t  is 

necessary to fin d  what formal solutions e x is t fo r  large nr of the type: " I

6  ~ 4 4 4 4- . ' . ) ULq ^  0  ;

V , 3.18
^  ~  Vo +  ^  4  -4 4 -  . . ,  ̂ V o  ^  0  ^

fo r  some constants u_o , , . . . ,  , V| , Nd > • » • •

I t  is found th a t there are no solutions of th is  type fo r cI q 0;

furthermore, there are none o f the type (3.18) w ith = 0 and  ̂ 0.

This resu lt is  proved as a lemma in  the appendix to th is  section,

A3.4. When and u ,  are both zero we arr ive  at the asym ptotically

Minkowskian form analysed in  section 3.2,

Then there are no solutions, regular or otherwise, tha t are

asym ptotically o f the form o f the E instein  universe.

3.5 The Non-Existence o f Space-Times Asymptotically o f Constant J
Curvature with Non-Constant Curvature In var iant

We know th a t there exists a t leas t one solution o f Lanczos’

equations th a t has asym ptotically constant space-time curvature.

This is  the complete solution o f the f ie ld  equations (2.5) in  the

sph erica lly symmetric case, being given by the m etric:

I
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ds^ = "•  , -  n4^(ol0’''4  oUf-) 4- ( i - ' l ^  - A 4"  ̂clt^.

There is no reason to believe th a t there are not others with asymp­

to t ic a l ly  constant space-time curvature; indeed, numerical results  

seem to ind ica te  there are. We show in  th is  section th a t solutions 

with th is  property must have constant curvature in var ian t.

For large T" we suppose th a t the unknown functions of

the m etric form (2 . 8) have the formal expansions 

-X
8  = 1 + 4 is i, 4- b.a +- • * A  3 b o , s/z 0W v̂v/X -p/'i I ^ J ^  !

( 1 4  a» 4- ÛA -4 As ) cx O jO Y  -(̂ 5. f  3 '
3.19

fo r some constants CLq , a , , a?, , . . . ,  , b, , b̂ .. , . . .  .

(The form assumed, (3.19) is  more general than th a t required to

represent a space-time w ith asym ptotically constant curvature, i . e . ,  

one which is  asymptotic to the de S it te r  form (3 .5 ) .  I t  transp ires , 

however, tha t an applica tion o f the f ie ld  equations reduces (3.19) to

the la t t e r ) .  The curvature in var ian t R. is  found from (A2 . 22) to

be given by

D  _ T .yvü 3.20
L = 0

and the combination ( " Z  +"§; ) is  given by

± c b i -  f  =  i i _ +  Y" 3.21
ZcLr ct-r r  r  d — ^

u-1
where, in  (3.20) and (3 .2 1 ), f \ \ ,  and B (. are constants such tha t é

flu " ( CL-j, bj ) ,  B ù = Bù C OLj * bj ) fo r J ~  4 and each L 0.

As usual, -6^  and , given by (3 .1 9 ), must s a t is fy  the d if fe re n t ia l  

equation (2 .1 4 ). Substitution in to  the la t te r  from (3 .2 0 ), (3.21)

y ie lds a succession of re la tio n sh ip s , the f i r s t  two o f which are the

equations A , = 0 and = 0. In  place o f an algebra ic equation fo r  

A ^  , however, an id e n tity  is  obtained. I t  is  c lear th a t Ay%_= 0 fo r
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a l l  iTL z' 3 i f  A 2) = 0, and to show tha t the la t t e r  is  true we must

employ in  add ition the second f ie ld  equation (A2.25). That A 3

vanishes is  proved as a lemma in  appendix A3.5. Then, as in  previous

sections, R- = R q = constant everywhere.

3.6 Conclusions

As stated in  section 3 .1 , i t  is  pertinent to ask i f  there are any 

solutions which are both asym ptotically f la t  and regu lar, apart from 

the Minkowski m etric. To answer th is  question, we may draw a 

coro llary from the theorems of sections 3 ,2 , 3.3:

Any spherica lly symmetric, s ta t ic ,  regular m etric tha t is a 

solution of Lanczos' equations and tends towards the Minkowski form 

fo r large values o f the ra d ia l coordinate must be such tha t the 

curvature in var ian t vanishes everywhere,

In chapter 4, section 5 we sh a ll find  the set o f solutions that 

s a t is fy  R. = 0 and see th a t there is  no such regu lar, asym ptotically %

Minkowskian so lu tion .

The fac t tha t in  the spherica lly symmetric, s ta t ic  case a l l  

regular solutions o f Lanczos' equations s a t is fy  R- = constant is  

in te res tin g  in  i t s e l f .  In add ition , i t  r a t i f ie s  (a t leas t under 

these symmetry conditions) Lanczos' claim tha t R, = constant is  not 

only a possible, but also a necessary consequence of the f ie ld  

e q u a t i o n s .E i n s t e i n 's  requirement tha t the g ra v ita tio n a l f ie ld  

equations should be q u a s i-lin e a r and of second order only in  the 

components o f the m etric tensor is  to some extent h e u ris tic . However, 

the condition of re g u la r ity  on the solutions o f the f ie ld  equations 

is  in  th is  case s u ff ic ie n t to  ensure th a t i t  is  completely f u l f i l l e d .

For the f ie ld  equation (2.13a) is  now given by (A2.25) with R  

replaced by the constant K. (we henceforth denote th is  equation

d
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(A2.25)^ ) ,  wh ile (2.13b) is  replaced by (2 .1 7 ), I t  is  c lear tha t 

the highest deriva tives ^  appear only lin e a r ly ; knowledge of

/L , %  and is  s u ff ic ie n t to  determine them uniquely. Any

objection to  Lanczos' equations as the fundamental g ra v ita tio n a l f ie ld  

equations on account of th e ir  high d if fe re n t ia l order is  thus 

diminished.

The system of f ie ld  equations to be solved when R  = K , 

consisting of (A2.25)^ and (2 .1 7 ), may be reduced to  a s ingle integro- 

d if fe r e n t ia l equation. Making the change o f var iab le

=2.

and w ritin g

(with a dash here denoting d iffe re n tia t io n  with respect to  Z. ) the ^

in te g ro -d if fe re n tia l equation is

-K e ^  L(l+2.ji)^ V  (5 +  16 (I + ij-fô+S/ï) +-X^ '(^ -z3 ]

+  +■ K e ^ ^ (l-K e " '^ /i+ l(^ 4 -l+ y (l +  zp') - 0
in  which

F

where C is  an a rb itra ry  constant and

(except when ^ = - 4. This case must be trea ted  separately but i t  

may be shown th a t there are no solutions o f th is  type).

The unknown quantities  -fK and are given by

■c’" = 1 / F { ^ )  ,
= exp [ j  ÿ  dx.] ■

A nalytic  solution o f (3 .2 2 ), however, presents an in trac tab le  problem, f|

though numerical solution by ite ra t iv e  techniques may be possible.
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4. SERIES SOLUTIONS AND EXACT SOLUTIONS

4.1 Introduction

Our aim is  now to develop series solutions, and, where possible, 

to obta in exact solutions, corresponding to each o f the boundary 

conditions studied in  chapter 3. The f i r s t  few terms o f a series  

solution s a tis fy in g  the re g u la r ity  condition (3.12) are given in  

section 4.2 and lead to two new exact solutions. Series solutions 

consistent with the boundary condition of asym ptotically constant 

space“time curvature are inves tiga ted in  section 4 .3 . In the 

follow ing section 4.4  a fam ily o f exact solutions is  obtained which 

includes those o f section 4 .2 . We then re tu rn , in  section 4 .5 , to 

consideration of perhaps the most in te re s tin g  boundary condition - 

th a t of asymptotic fla tness - and derive, amongst other solutions  

without the property o f asymptotic fla tn ess , a solution corresponding 

to  a lin e  element th a t contains the Schwarzschild m etric (3 .1 ) as a 

special case. The properties o f the universes obtained as solutions  

in  th is  chapter w i l l  be discussed in  chapter 5.

4.2 Series Solutions corresponding to Section 3.3 fo r Small Values 

of the Rad ial Coordinate

Regular solutions are such th a t and -C have expansions of

the form (3 .1 5 ), in  terms o f even, non-negative powers o f the ra d ia l

coordinate and s a t is fy  R  = K  . For small values of T  we expand;

^ — I 4  +- Vu,'4'*+ 4r V% -4 . , , . ;

“  do B 4  4 4 LA (,-4^4- , , , ^ 4.1

fo r  some constants Vi. , V4 , Vt» , . . . ,  do ,

and substitu te  these expressions together with those fo r the deriva tives  

of and 42̂  in to  the p a ir  o f equations (A2.25)j^ , (2 .1 7 ).
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Equating the co e ffic ien ts  o f successive powers of t ' to zero we 

obtain equations fo r the constants Vi+ , A  14̂ . , U(, which

may be solved and substituted in to  (4 .1 ) to give

+  R { - X \ a -ĵ  4 2 ' > x V i W - i A + ' 2 > A ( c i a 4 V ' ' J ) { 2 - U . j _ - V ^ ' - X +>■• )

4.2
-e*/cl.o -  1 4- 43|â(v^x4Vxÿl*F‘ *̂'

■ b  ( l A ^ — V à )  L L ^  —"ZSh V A q _ V 2. " *  l " î > V x . ) 4 - b ^  ( l A ' % 4  V ^ )  ( % 5  U - j "  I \  a )  4 % , ( 2 ) ^  ( U j + v C )  J 4  + • • • • )

1'3'5'^7
w ith

IR  — ~ 6>Cu2.4-N/x) . 4.3

In add ition to the parameter |2> , two a rb itra ry  constants, and

V-2_ , are present in  (4 .2 ) .  The two situa tions = ±  are o f

immediate in te re s t. F irs t ly  the case u^. = V%_ corresponds to

de S it te r  space-time, which we had expected. Secondly, when = 

" A  > K. = 0 and there is  no dependence upon ^  . The series 

expansions (4 .2 ) become:

\ 4J&.  ̂4  . . . . (a)
5 -  4 ,4

€?^/c(o- 1 4  A  0 . ^ 4 4  U J  r' 4  , . . .  (b)

Up to terms in  = olo , and the r ig h t hand side o f (4.4b)

is  the expansion of

“■ r T ^ o  or —^ , sAC- ( 4 )  . . r

A check shows tha t

^  = I  ----- ^ C L Y l c l  “  I  ---  ,04
do L StYvk C CrT J do  L sduC  C H  j

where C is  an a rb itra ry  constant, do indeed constitute two exact 

solutions o f the f ie ld  equations. Then, from (2 .8 ) ,  the metrics 

corresponding to these solutions are

.-,1 ' F, ’/'■ i'fjy .1 f.. s i  ■■ . F.j” . Y'U—% ' , ■ 1 i_ ...... t .,C -•
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cLç,̂ " ^  — C 'T ' d 'T ' — - VSufV' B cU 'R ) 4  b A —  cAt^  ̂ 4 , 7
SlvkXx̂  (CrO s vKLh? ( C r)

ds" -  %_Ĝ ZL cVf'^-''r^dG^4Si:v\"^dd.') 4 C'-'T'̂ . clb̂ ,
Sun.'*’ (cd  SwxHC-r)

4.8

That a second a rb itra ry  constant may be introduced in to  the metrics 

(4 .7 ) ,  (4 .8 ) w i l l  be demonstrated in  section 4.4 *

4 .3  Series Solutions corresponding to Section 3.5 fo r Large Values 

of the Radial Coordinate

I t  was shown in  section 3.5 th a t any spherically symmetric,

s ta t ic  solutions of the f ie ld  equations representing space-times

asym ptotically of constant curvature must have constant curvature

in var ian t. The formal series expansions, given by (3 .1 9 ), are to be ,
A

substituted in to  the p a ir  o f equations (A2.25)|^, (2 .17) in  order tha t |

rela tionships between the constants may be obtained by

equating to zero the co e ffic ien ts  of successive powers o f 1

We denote by the p a ir  o f coe ffic ien ts  which involve terms of

the form where each represents e ith e r  cx̂ .̂
^  P

or hrĉ . and , = /L . Equating -Si , . .  . ,  '65 to zero and ̂ u -  \
solving the resu ltant equations we obtain (as in  appendix A3.5):

= 0  )

\̂ 2_ — ~ 1 /  bo y

ks = As •

4.9

The set (4 .9 ) suggests the exact re la tionsh ip

_L -\- W 'rd  -  _bg_ {nr - i T )  4 .10
3 "2)0.0 d '4

I
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between and . I t  has not proved possible to  demonstrate

the general consistency or otherwise of the equations (A2.25) k and

(2,17) under the substitu tion  (4 .1 0 ); th a t the la t t e r  cannot hold in  

general fo r th is  type of solution is  shown by considering higher terms 

in  the expansions.

As each successive p a ir  €>\  ̂ is  equated to zero two p o s s ib ilit ie s  

are generally obtained. One is  th a t the constant ^  takes a 

sp e c ific  numerical value, the other th a t a p a ir  0.(̂  , h i  vanish but 

is unrestric ted . Considering values of vv & 10 the follow ing

series expansions o f the form (3.19) are obtained;

Case A; Special A values

For the p a r t ic u la r  values & -  -r4- ,-4 -  ,-b -  , -LI , i l_  ,I ' 4 b /L IJL 1%.
certa in  pa irs o f coe ffic ien ts  O-C » 'Oi vanish and higher coeffic ien ts

are given in terms of three a rb itra ry  constants. (To determine the

coeffic ien ts  , bc| and higher the expansion would have to be

taken to greater order than yu = 10) .

( i )  /3 = -  ^  : CLg = 0 ; , cu, , ciu a rb itra ry ,
bg = 0 .

St —  ( 3 4" 4  4  J+ CXu. ■_]_ ^ 0 ■ _L. — 19 -_L
CL; b

5
- JL. -Y -a ,,  I —  c i r  - C"! / y-' % Y" Y'"'̂

 ' ' . -  -  - _ .
A  -_LXI ^ ^ IFk

4  9 5 .  4  ■

( i i )  p

= d o T " - u 4 X (3 ) CXiv +• 0  .
'T'Kt

_  1
fo

CX^Ci u, ‘ 4  " _ L o
6

O (.p =: 0  ; , <

= kb = 0 .

= x "  ( 1 4- 4 Q l 4  §„ ga
T u 3

0.-̂ 0. s X- b^Y 4  1b<o
L'7) "Ŷ  % xn Y"M

= Clo'T'H i 4  . 4  o-a 4'yyjZ. r*v rfS
—

3
+

i-pS
0.q +• O

4  _9_ — <^xQs
'Y'-fe *̂ 4 'T’T

^  '  '  '  )  )

Q_ ~  Vi g^cxs 
T ** 3^

4- « < . »
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( i i i )  ^ = i l ’ f̂-v = C15 = *̂ -1 = 0 ; a x  » , c\^ a rb itra ry ,

b,x = b r  =s b-Y = O .

s  —  ( I + 92- 4- 9:2. 4-0 4 - X 0 — 9_4_5LL. +• bcY X biA x .. ,V
CXx 'T'̂  -y i yfo y 1 7-X "Y'" % y  yiO /

^  = 0-oX'^(l 4-9:  ̂ 4 9 3  4-0 4 9k xO_ _  ^  aq.CVb 4- Og X A.o . , \
y  I .  y . 2 .  y t i  Y'’ '”* \ \  y  % y

e

-V

(iv ) *

^4 = bg

“ C(

= b(,

-  ^8  

= bg

= 0  ; 

= 0  .

,  Q.-j a rb itra ry .

= / i 4 92--yZ, 4  93
y  3 4 O

3
0  X
y  B

bn 4
y  1 b_it> 4  ' A  \

Y"' 10

cy = 0.5-r d-a-q.'*Y" 1"
4-92

yX
4-0 4 -  9 2  

Y" 1
V- C/ 4" 

y % Of! 4- Q VO 4 ' ' 1 1'f-m ^

(V) ; Q^= 0.5 

K =  ^5

" db

= \o

=

= b-i

= 0  ; 

= 0  .

> ^  3 * dÿ a rb itra ry .

-X
( 1 4- £ i

yZ. 4  9â.
- r i

4 0 4 I .  9 l  4  
3 T%'

b f l
T

4 "  ̂n 4 ' ' "i

-  OoT^ (\ 4 -9 j-  4 4 O 4  9% 4  9£i 4- 4 , , ,1
T  ^  " f i  y  % y  3 y i o  /

Presumably in th is  case Ct^ and hĉ  w i l l  vanish, follow ing the 

pa ttern  in  ( i ) , ( i i ) ,  ( i i i ) , ( iv ) above. In a l l  cases the curvature 

in var ian t is given by

- R  ;

The above expansions ( i ) , . . . , ( v )  support the follow ing unproven 

conjecture: i f  assumes one of the p a r t ic u la r values ( i r u ^ x S r i ,

FI = 0,  1,  2 , . .  then the solution may be w ritten  in  terms of three 

a rb itra ry  constants ( 0.  ̂ = l /a ^ .  ) «

Case B: ^  unrestric ted

d».\ -  *^5 = ^ 6 = 9 1  = a  g = a.c] = 0  ,

^4  = = '̂ '7 = = 0  ,

~ ~ \ 4- Bz: 4- 4  O f  — I Va. y  F y  3 ^   ̂ 4  ‘ 41 /
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We speculate tha t e ith e r  the higher coeffic ien ts  .

vanish, or tha t they are fu n ctio n a lly  independent o f ^  . I f  the 

la t t e r  is  tru e , any solutions tha t e x is t fo r unrestric ted  ^  in  th is  

case are solutions which are independent o f p  . Such solutions  

must s a t is fy  the f ie ld  equations obtained from the vanishing of the 

Ham iltonian deriva tives of the Lagrangian R f' . Now the only 

R  = K   ̂ 0 solutions o f the la t t e r  f ie ld  equations must sa tis fy^

-  O' Thus the most general solution of Lanczos' 

equations sa tis fy in g  TK = K 0 and independent of |Q is  given by 

the set o f E instein spaces K,po- " . In view o f our choice

of the m etric form (2 . 8) ,  th is  means tha t the co e ffic ien ts  ,

bjo , . . . .  must vanish.

A numerical search fo r solutions which are regular and have the 

asymptotic form described under case A has been carried  out; th is  

work is discussed in  section 6 .4 . However, the series solutions 

th a t we have obtained in  th is  section do not enable us to obtain 

exact solutions and are not in s tru c tiv e ; they are of l i t t l e  more 

than formal in te re s t.

4.4 Space-Times I  - > IV

In section 4 .2 , as a re s u lt  o f seeking solutions regular at 

r  = 0, two exact solutions, (4 .6 ) ,  were obtained such tha t 

Making no assumptions about the constancy o f the curvature in var ian t

we now look fo r fu rth e r solutions o f the f ie ld  equations when

The f ie ld  equations to be s a t is fie d  are (2 .15) and (A2.25), with  

R  given by (A2.22). When , (2 .15) may be in tegra ted  to

give

A.
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R  =  B. -V p  ) 4.11
r

fo r some constants A and ]) . I t  is  convenient to make the change 

of variable

and to  define

P = P U )  ^  . 4.12

Then (4.11) is  replaced by

p  =. 4- J 4.13

and the expression (A2.22) fo r  R  by

B =: 4-A' -IZZ) 4  Z.  ̂ 4.14

V Tl.where we have subs tituted -ê  = -€X and denoted by a dash deriva tives  

w ith respect to  . Now employing (4.14) as the defining re la tio n  

fo r W'' , we obtain in  the place of the second f ie ld  equation (A2.25)

a f i r s t  order d if fe re n t ia l equation fo r , which is

( l + l p 4 P H P  +  8 P C ^ + P 'e -^ ( -a x '- r à l  4- S /3 ( P - P ' ) e ^  ■= o  , 4 . IS

where P is  regarded as a function of the independent var iable  , 

given by (4 .1 3 ). (4.15) is  now d iffe re n tia te d  with respect to

and substitu tion  made in to  th is  expression fo r in  terms o f P

and from (4.13) and fo r T v /' in  terms of R '  and P  from (4 .1 4 ).

We obtain

i Z - X ' )  p  P 'A '  4 -2 .P '7  + - U .B  (  P  -  P ' ) A  =  0  . 4.16
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Since no solution is  obtained from = 2, i .e .  c b X /d r  = 2/ t  , (4 .16) 

may be replaced by

4 k j ^ ( P - p A = 0  . 4.17

We now consider the case when P  ̂ 0 and p 4 " i.*  Equation (4.17) 

may be integra ted without d i f f ic u lty .  However, subs titu tion  of the 

resu ltin g  form fo r in to  (4.14) and (4.15) where P is  given by

(4.13) yields a contrad iction which may not be resolved by assigning 

sp e c ific  values to the a rb itra ry  constants o f the so lution . The 

cases P = 0 and are now considered.

( i )  P == 0 . The d if fe re n t ia l equation (4.15) is id e n tic a lly  

s a t is fie d . Any solution of (4.14) with the le f t  hand side zero 

au tom atically s a t is fie s  the f ie ld  equations. The complete set o f 

solutions o f th is  equation, i .e .  of

0  — 9. ( —'X/'’ — 2  ̂ 4  %

is  given (substitu ting  "V = 9 '“ ) by

4  =  ( \ , Ca)

=  \ --------- S z------------ 4 ,  4.18(b)
(_s uvqix- ( C (r—  '3')) J

c=_ J_____Cr'_____  1 fQ*)

where CL , 5  and C are a rb itra ry  constants. We note tha t the 

p a ir  of solutions (4 ,6 ) obtained in section 4,2 are special cases of 

(4 ,18b), (4 .18c). The solutions (4.18) correspond to

three space-times given, from (2 . 8) ,  by the metrics

4 cZ -  — ... r ' 4 (db^
(1+-a./r')4 (I XQ/rR  ̂ (^)

^  > 4 . 19(b)

a
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which we sha ll denote Space-Time I , Space-Time I I  and Space-Time I I I  

respectively.

( i i )  ^  . The d if fe re n t ia l equation (4.15) is  s a t is fie d

provided tha t P = P . Accordingly the constant 1) in (4.13) must 

vanish. Then any solution o f (4.14) with the le f t  hand side replaced 

by au tom atically s a t is fie s  the f ie ld  equations. I t  has been

possible to fin d  only a p a r t ic u la r solution of

P 4  X! -  9~T) 4  %. 4.20

which is ,  in  terms o f T  = :

_  3

This solution corresponds to Space-Time IV :

ds''" — -  y ( cl8 '- X S 4- I P  4.21

( 8  = - -Jr on ly). More generally, any solution o f (4.20) fo r -cK 

constitutes an -eK = solution o f Lanczos' equations. The fam ily

o f exact = -çy solutions obtained in th is  section consists of 

Space-Times I — ) IV .

4.5 A Set of Exact Solutions including the Extended Schwarzschild 

Solution

Our inves tiga tions in  th is  section are motivated by the boundary 

condition o f asymptotic fla tn ess . I t  was shown in  section 3.2 tha t 

any spherically symmetric, s ta t ic  solution o f Lanczos' equations 

sa tis fy in g  the boundary condition of asymptotic fla tness has zero 

curvature in var ian t. Now, regardless of any symmetry conditions, the 

f ie ld  equations generated by the Lagrangian are s a t is fie d  by a l l

space-times with R  = 0. Consequently, an R  = 0 solution w il l  

s a t is fy  the f ie ld , equations generated by fo r a l l
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values of j3 , and, in  p a r t ic u la r, when /3 = -  X  . But Buchdahl's 

31resu lt , given in section 2 .4 , is  tha t under s ta t ic ,  spherically  

symmetric conditions the ao'nptete set o f /3 = - ^  solutions of
i

Lanczos' equations is  the set o f space-times given by (2 .1 8 ): j

= 'PRp) f ——-Ë£----------  _ y  ( l - - Z o q . 18 A)
' L f  3 /  J' :

where m. and J\_ are a rb itra ry  constants and ^  is  a completely \

a rb itra ry  function of the ra d ia l coordinate ^  . Then, under our |

symmetry conditions, any R, = 0 solution must be reducible to the ]

form (2 .1 8 ), i . e .  the set of space-times (2.18) includes a l l  R = 0 1
I

solutions and, in  p a r t ic u la r , a l l  solutions tha t s a t is fy  the boundary j

condition of asymptotic fla tness. |

In order to generate the set of R  = 0 solutions of the spherica lly i)

symmetric, s ta t ic  f ie ld  equations, we need only fin d  the functional |

forms fo r R ( p )  which are such tha t the Riemann scalar of the m etric I

(2.18) vanishes. To do th is  we proceed as follows: -

For any m etric J
■]

the curvature in var ian t is  given by ■

— h Bl 4 — .Z ^

(a dash denoting d iffe re n tia t io n  w ith respect to  jô ) .  Using (4 .2 3 ), 

the curvature in var ian t R  of any m etric

ds^ — 1)^ d(T^ ; D  =-1) ) 4.24

is  re la ted  to the curvature invar iant o f cLcr^, where

dl(J^ ( cLG 4  sCnXG" t- eR d t
X.
;  4.25
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by

Y)) ■

Then the curvature in var ian t R  of the m etric (2.18) is  re la ted  to 

the curvature invar iant (= 47\. ) o f the E instein space

~  ( d 8^ 4  s X d  6  4  ( I -  -  A  pA oU::'̂  4.27
( l-% m  r  P 3 '

P 3 I ' '

by (4 .2 6 ), in  which •cR '' = , We seek

functional forms o f ] )  such tha t R  = 0 .  Thus, se tting  R  = 0 and

substitu ting  fo r , X ,  and V, , (4,26) yields the second order

lin e ar d i f fe re n t ia l equation fo r R  :

T>" ( 4  p'*- -  p"- + 2-mp) +  D ' ( F A  _ 2 p  +.5.W,,') + 2 ^ ] ) p '^  =  0 .  4.28

We consider the solution o f (4.28) in  the four separate cases 

( i ) , . . . ,  ( i v ) .

( i )  J \  = 0 , rvx = 0 . The solution o f (4.28) is

'P ==- A-p...ziP-  , 4.29

( 0  , cx a rb itra ry ) corresponding to a solution of Lanczos' equations 

given, from (2 .1 8 ), by the conformally f la t  metric

ols^= dp' - - qdt ' ' !  . 4.30

We examine two n o n -tr iv ia l cases of the metric (4 .3 0 ), (a) and (b) :

(a) R  ̂ 0 .  Then le t  R = 1 in  order tha t (4.30) may tend to the 

Minkowski m etric as p —̂  co . This may be done without loss in  

generality  since i f  Lanczos' equations are s a t is fie d  by cLcr^ =

0 p(Tdb)doV)L^ they are also s a t is f ie d ,fo r  any constant G , by 

cLs^ = (as a re s u lt  o f the gauge invariance of the action

p r in c ip le ). The m etric (4.30) becomes

i
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-  i p  ^  -  p R  c l  6 ^  4  cA cb ') 4 - c l  b  |j . 4.31

However, (4.31) is  simply the m etric of space-time I ,  given by (4 .19a ), 

a f te r  the ra d ia l coordinate has been transformed according to

T"' =- p  -  CL .

(b) R = 0 . The m etric (4.30) becomes (setting  x  -  1)

d . s ^ “  (  c l 0 ^  4  S ^  6" 4  ^  , 4.32

The co e ffic ien t of the angular term in  th is  m etric is  u n ity . (4,32) 

represents a "class 2" space-time to  be discussed fu rth e r in  chapter 

7, We shall re fe r  to (4.32) as Space-Time V .

( i i )  -Au = 0, FKL 0. The solution o f (4.28) is

4  =■ B + -B -L u  ( \ -  5 4.33

( A ,b  a rb i tra ry ), corresponding to a solution of Lanczos’ equations

given, from (2 .1 8 ), by the m etric

cLs^" — ^  R: 4  9  -bn. { \ ~~ 2Züï)''jJ^ ^  „.T-.dr/?— p  ^ ( dG ^ 4  S lv l^  R  d  cj)’̂

«■b ( 1 —
^ -p" 4.34

I
(4 .34) is  conformai to the Schwarzschild line  element (3 .1 ) .  As in

case ( i ) , there are two separate cases to examine, (a) and (b ) :

(a) R ^ 0 .  As before, R may be set equal to un ity  so tha t (4,34)

tends to the Minkowski form as p -4 oo , The m etric

cls^ -  f  1 4  B'Gvl ( 1 -  -  p'̂  (  cIG'^4  5 v\/p 0  oic|.lR
I  ' 4.35

A- (l “

w i l l  be re ferred  to as the Extended Schwarzschild Solution or Space 

Time V I .

(b) R =*0,  The metric (4.34) becomes (setting  B = l ) i
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dLs  ̂~ ( I "*• I  .... - p"^(dG'^4SLn"6 d(|)R 4 { \ - 2 } ^  ddj" ' 4,36

The properties of the space-time represented by (4.36) are very 

d iffe re n t from those o f space-time V I. We re fe r  to (4.36) as 

Space-Time V I I .

( i i i )  vn, = 0 , y \_  j  0. Two solutions of (4,28) are

]  , A>0)

2)]

%) —  ̂ C. f i  i~o^vvK ^ 4 - A . /3  P  4-
a/ A / 3  p

'P  I I L J a V B  p  4  A  

JA V B  P

( R , 6  a rb i tra ry ), corresponding to two solutions of Lanczos' equations

given, from (2 .1 8 ), by the metrics

cL s^  L b H-avX '-” ' d iiV / 3  p  4  5 a/ A / 3 l  I  n _ Ë A _  — p ^ ( c l< & ^ 4 s X . " ’-©■ d c A
A  p^ ^ 1(1 -  I

+  4  A p l  d .e ] , (a)

~ 3 - .  F  B F u a . 'a/a ' / ' Ï  p  +  B  — p '^ (d .6  ‘~ + S iV v ^ f id 4 )
A? ^  ' Cb)

4  ( \  4 j X  •

Again, there are two cases, (a) and (b ) , to examine.

(a) R ^ 0 .  Then R may be set equal to unity  and the metrics

(4 ,3 7 a ), (4.37b) become respectively
d s " -  r - W J L ~ L / A / K  p  4 W 7 V 3 ] M  -  ~ p '^ ( a 0 '^ 4 s A " - 0 'd c V R

r r  , 4.38
d s ^ = -  ^  T~.4 c lvC * a /7 \V 2 ) P 4  (S a Ia A ^ I  \ - p '^ ( d G ’‘‘ 4

However, we are not surprised to fin d  tha t the space-times represented 

by (4,38) are simply space-times I I  and I I I ,  given by (4 ,19b ), (4 ,1 9c ), 

in  a d iffe re n t guise. Transforming the ra d ia l coordinate in  the 

la t te r  metrics according to
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T- = (Cp') - e , (a)
4.39

= 1 . - L « - '  (Co^ -1- G (b)■y = ^  -rtx.A k

respectively, and setting

C ™ a /A  / 2) j (a)
4.40

c  = A T T , Cb)

the forms (4 .19b), (4.19c) become id en tic a l to (4 .38a ), (4 .38b).

Nothing new is  obtained by settin g  the constant 6  equal to zero.

(b) R -  0. The metrics (4.37) become (setting  B = 1):

6 s y ~  ~ -  (dP - -Y-(X Y-v (R rl ci' R 4  ( A  A  PA . (c\'>0 )>(a)
p H i - 4 p ^ )  r   ̂ 4.41

A<^ = - 4 ~ -  (d fe '-+ -su i'.p ri(j'B  +■ ( 1 a e \  (A'ko). rbi
pX l 4A 'jo0 pn-

The p a ir  of metrics (4 .4 1 ), l ik e  the metric (4 .3 2 ), represent "class 2" 

space-times, which we s h a ll meet again in  chapter 7. We re fe r  to  

(4 .41a ), (4.41b) as Space-Time V I I I  and Space-Time IX respectively.

( iv ) yvL 0, A V  ^ 0 .  I t  has not been possible to obtain any 

solutions o f the d if fe re n t ia l equation (4.28) in  th is  case. The 

la t t e r  may be reduced to the R icca ti form

A x  Z: A  4  X AV 4,42
pH- ^

through the substitu tion

'P '(p ) — 1_______ uCp) ,  4.43
"P (p) +r~-XrA.a

but the solution o f the R icca ti equation in  general requ ires in f in i te  

series closely connected w ith Bessel functions. From the metric form

(2 .1 8 ), such a solution c learly  could not be asym ptotically Minkowskian,

....F
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The complete solution in  the s ta t ic ,  spherically symmetric case 

under the imposition of the boundary condition of asymptotic fla tness  

is  represented by the two exact m etric forms (4.31) (space-time I )  

and (4,35) (space-time V I) .  In  section 3,1 we asked whether or not 

our f ie ld  equations permit a n o n -tr iv ia l solution which is  both 

asym ptotically f la t  and regu lar. N e ither space-time I  nor space­

time VI is regular. Thus there are no s ta t ic ,  spherica lly symmetric, 

regu lar, asym ptotically f la t  solutions of Lanczos' equations.

4 .6 Summary

I t  is  in te res tin g  and in s tru c tive  tha t the use of stra ightforw ard, 

and somewhat naïve, series expansion techniques has led , d ire c tly  or 

in d ire c tly , to each o f the exact solutions obtained in  th is  chapter.

In  add ition , we have seen in  section 4.5 how an apparently redundant 

resu lt concerning the set of "solutions" in  the underdetermined case 

may be employed to obtain w ell determined solutions of the f ie ld  

equations. I t  is  reasonable to suppose tha t the use o f such methods 

may be efficacious in  obtaining solutions o f Lanczos' equations under |

d iffe re n t symmetry conditions.

For future convenience we c o lle c t together a l l  the exact 

solutions found in  th is  chapter:

Space-Time I

" - A  -  T"- ( 4  sX X ©  cl()p4 4  . 4 .44(a)

space-Time I I

4- , 4.44(b)
C Cr -  a’)) SlwUP ( CC r -
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Space-Time III

cls'^=- -A L .Z I.A A I -  y"" ( rlO ^+A cvg0 cidx) 4  ,..G2Z,ld k l  , 4.44(C) 
SU4-^(cC ('-&')') Sv î^CCCr-GX)

Space-Time IV ( p = - -L o n ly ).

dS^ -  -  4 '*•( cl© “ 4  SLA'-L'6  clè ■) 4  GB'A'^clb^ , 4 . 44(d)
(2 -  (,2 -m A :

space“Time V

ds"'- -  d y ”̂ — y  cL©’̂ -4Slvy'̂ -© ri cjv) 4  rlb'^ *j . 4 .44(e)

Space-Time VI

d3 ' j^l4R (1 -   ̂( fA S n 'r- 4"- ( d© '̂  + S A ’ 0 dcĵ R 4 . 44( f )

4 (l cl fc'■■ »

Space-Time V II

cis ̂   ̂Xrv (l -   ̂ -  4  'A d©'^ -4 s L V -V   ̂0  ci c(‘) ̂ ') 4 . 44 (g)

Space-Time V I I I

— — cLf  ̂ — ( cl0 '^4  sùo40 cUh'R 4  C 1 "  ^  f  ^  db^ . 4 .44(h)
y  \ —-A-y  R l''F

Space-Time IX

A / \
rls^ = —cl4 '^  -  ( d©''" 4  SÙridO dc '̂L) 4 (1 4  y  R clb^ , 4 ,4 4 ( i)

y  "̂ (.1 4  A 'y 'R  y"^
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5. PROPERTIES OF THE EXACT SOLUTIONS

5.1 Introduction

Our o rig in a l hypothesis was tha t any reasonable m etric f ie ld  

whatsoever must s a t is fy  Lanczos' equations. Provided th a t the la t te r  

are s a t is fie d , the m etric tensor may be inserted in to  E inste in 's  

equations (2 .4 ):

to determine the stress-energy tensor ~T ŝr •

The problem o f in te rp re tin g  the stress-energy tensors obtained 

by the above procedure is  no t, however, a t r iv ia l  one. Making the 

assumption tha t the cosmological constant is  excessively large -

the reciprocal square of a length of subatomic dimensions - Lanczos^^ 

has performed a "p rac tic a l lin e ar isa tio n "  of his o rig in a l Lagrangian 

(2 . 1) .  Although the terms o f the new Lagrangian obtained in  th is  3

way include the standard cosmological and Maxwellian in var ian ts , the 

in te rp re ta tio n  of the add itional invariants is  obscure. Furthermore, 

the assumption concerning the cosmological constant has no ju s t if ic a t io n  

in  the present work.

Thus, in  general, the in te rp re ta tio n  of Ipg- in  the lig h t o f our 

present knowledge is uncerta in or incomplete. In  add ition the 

information contained in  the stress-energy tensor provides only a 

p a r t ia l description of a universe; some discussion of other properties  

is  required. In  order to avoid a re p e t it iv e  d e ta ilin g  of the 

properties fo r  each o f the universes obtained in  chapter 4 , we sha ll 

concentrate a tten tion  on four th a t seem to be o f p a r t ic u la r in te re s t.

These are space-times I  and V I, which are the only spherica lly  

symmetric, s ta t ic ,  asym ptotically f la t  space-times permitted by 

Lanczos' equations, and space-times I I  and I I I  which are regu lar.

■ l i .
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Space-time I  is  discussed in  some d e ta il and the major properties of 

space-times V I, I I  and I I I  are considered.

5.2 Properties o f Space-Time I

Space-time I  has the very simple metric form (4 ,44a):

C ol©^ +-s'A^ 0  +  ,■ ,

(l 4  0 4

which is  Minkowskian at sp a tia l in f in i ty .  I t  is  a non-empty universe,

w ith the "TJ  ̂ component of the stress-energy tensor non-negative

everywhere, but is  not eas ily  in terp reted  physically. In  standard

r e la t iv i ty  theory the physical s itu a tio n  is  known a p rio ri^  and

correspondingly the Newtonian g rav ita tio n a l p o te n tia l. Thus one can

id e n tify  the signs o f the constants of in te g ra tio n , as in  the

Schwarzschild case. The same is  not true in  our theory and we can

a t th is  point say nothing d e fin ite  about the sign of the constant o f

in tegra tion  Cu in  the m etric form (4 .44a). As we sh a ll see,

geodesic behaviour is  more in te res tin g  fo r (X *> 0  so the following

discussion o f the properties o f the universe are mainly concerned

with th is  case. I t  w i l l  be convenient to categorise properties as
3

geometrical, topological or physical, follow ing Das and Coffman.

5 .2 .1  Geometrical Properties

We consider f i r s t  a t  - constant hypersurface (fo r  (X>0 )

followed by a discussion of the universe . 

has the metric form

(, s A * ’© • 5.1
( 1 4

Then the square root of minus the determinant o f the m etric tensor 

in \ 4  is  everywhere pos itive fo r 0 Z y  ^ oo , 0 ^ 8  ^Tf 

Both the rad ia l distance (IKCx) and the volume XJi'P) are positive
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in  th is  range and approach th e ir  Euclidian values as r  4  ©o , being 

given respectively by

OK (A) -  4  -  X A\ ^

V  4  w -  4 x ^ 4  4 a X © ^  (  .
3  L Z  \ 4 4 A J

The length o f the circumference of a c irc le , and the area of a sphere,

at the ra d ia l distance OKCvr) have the usual Euclidian values. Both

the ra t io  o f the circumference o f a c irc le  at GKOv) to the rad ia l

length, and the so lid  angle subtended by a spherical surface at x  -  0 ,

are in f in i te  a t 4  = 0 and tend to the Euclidian values for these

quantities as 4  increases, being given respectively by

________%1T4

^ 4  -  (  I 4

and
Iq-TT-r^

[ 4 -

V 3 is a to ta lly  geodesic hypersurface of Vq, - th a t is  a l l  the 

geodesics of are also geodesics of - due to the general
51property tha t the g ra v ita tio n a l f ie ld  under consideration is s ta t ic .  

Lines of constant 0  and (|) ( 4 - lin e s ) form a subset o f the set of 

geodesics in  VLj and therefore are also geodesics in  . The

geodesic dev iation between two adjacent rad ia l geodesics has the uâual 

Euclidian value.

In V|^ , with the m etric given by (4 .4 4 a ),

(_ 0' '̂k s A 6 /  ( 4  4cC)'^X 0 In. O L r L ^ ^  0 ©O' ̂ TT ;
t

0

Lines o f constant 4  , 0 and A ( t - l in e s )  are not geodesics in  

Vq, , other than the one at s p a tia l in f in i ty .  The proper time 

along a ir - l in e  between two t-constant hypersurfaces f
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A b  )
( y  4- ex)

increases w ith the ra d ia l coordinate r' o f the t - l in e  and at sp a tia l 

in f in i ty  is  equal to the coordinate time. The slope c h r/d h  of the

ra d ia l n u ll curve is  everywhere ±  1 , discounting the singular hyper­

sphere 4  a 0. The non-vanishing components of the Riemann curvature

tensor are given by^^

R  ~  CL'Sux'^0 (Z t - '4  0l) j

^  c x C X y -F o ) /(4 + a " )

and those of the R icci tensor R--p iti mixed form, by

R ,  =  X '3aZ-
y  3 y  H*

R% -  R \  -X fx -  oX
y  % yH*

— F  •

3

5.2

5 .2 ,2  Topological Properties

C learly we cannot cast in to  a form which would s a t is fy  the

re g u la r ity  condition (3 .1 2 ). There is l i t t l e  doubt th a t the s in g u la r ity  

a t 4  = 0 is not a function of the observer, but of the physical 

space-time i t s e l f .  The s in g u la r ity  a t 4  = -  x  (supposing tha t the 

constant a. may take negative values) is ,  however, only of a coordinate

nature. This may be seen by obta ining the in var iant components o f the
D  52Riemann tensor by transforming to the Petrov canonical form.

Choosing u n it te trad  vectors along the coordinate axes and le tt in g  the

index pa irs obey the ru le :

23 - X  1, 31 ----- >2, 12 — 4 3, 14 —4 4, 2 4 ----->5, 34 ----  ̂ 6 ,
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the bitensor (symmetric 6 -tensor) R j- j -  C l,C T  -  1 , , . . , 6) is  obtained 

in  canonical form:

K107

oc 0
g

0
oL

/3
/3

5 .3

where

oL =  — ( 1 -r 4- CL) . A
t "+ '

_EL ( 4- Cl)
4

Whether (X is pos itive or negative the scalar invariants cL and ^  

of the Petrov canonical form diverge only as the value of the ra d ia l 

coordinate decreases to zero, ind ica ting  th a t the s in g u la r ity  at 

nY = -  CL is due to an improper choice o f coordinates fo r th a t hyper­

sphere. (We note tha t the structure of the b itensor (5 .3 ) is

id e n tic a l fo r each of the space-times I — ^ I I I  due to the existence 

o f certa in  algebra ic re la tio n s  between the components o f the Riemann 

ten so r).

When CL is pos itive  there is  no coordinate s in g u la r ity . Now

in  the case o f the m u ltip ly  connected Schwarzschild universe (3 .1 ) ,

i t  is ,  in  e f fe c t , the = 2m  ̂ coordinate s in g u la r ity  which prevents
53a breakdown in causality  v ia  the ’’p inch-off" e f fe c t ,  but there 

would be no such s im ila r circumstance to prevent causality  breakdown 

i f  the topology of (with cl pos itive) of space-time I  were to

be other than simply connected. Thus we seek a s ingle non-singular 

coordinate system by means of which we may embed X/g, (without 

s in g u la r ity ) in  four dimensional pseudo-Euclidian space . For

o f space-time I  the embedding is  given by

oLo-  ̂ =• d X ' ^ -

with
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^  ' 5 .4

“  J  ^  ('Y^+cO^ (X a -r  4 a^') •+-- U o.'-'j ■4-cC)' Ol"

Z v ^  -  T"SLn. 6  (.os T^SVYL0 SvXva ^  ^ ^  COS O' .

For <x '>0  the embedding (5 ,4 ) is re a l and non-singular in  the 

en tire  coordinate range. When <x X 0  a su itable  choice of units  

ensures tha t is  always real.^^  Formally, the 't- , 6  , cj) and

t  coordinates may be elim inated from (5 .4 ) ,  but since ~Z^ is a

monotonically increas ing function of may be reta ined as a

parameter. Then V|^ may be represented as the surface

j  7s" =- j ' L L 4(^)4-  (r4 -o )^  d-Tj

5.5

X *  “  Zcx ( %ocr -4-  0 7  - -h x ’VL* Jxcxr ^
I CL cx J

C 0 s c |l  J —  4 - " < V%L ë  Ĉ ) ^ ~  T - ' C O S © '

Through e lim ina tion  of the coordinate t ‘ , may be represented

as a hypersurface in  E  and is  topo log ically Euclid ian. When 

CL Z 0  , two coordinate patches are requ ired to cover Vj, , which, 

l ik e  the sp a tia l hypersurface of the Schwarzschild universe, is  not |

topo log ically Euclid ian.

C learly , Vq, cannot be embedded in  a f iv e  dimensional pseudo-

E 5 45 ; Takeno has given the conditions necessary 

fo r a spher ically symmetric Vq, to  be embedded in  a f iv e  dimensional 

space o f constant curvature ^  , and space-time I  does not s a t is fy

these whether or not I t  = 0. I t  i s ,  however, possible to embed 

space-time I  in  a pseudo-Euclidian E ^  ; th is  may be done by follow ing  

Fronsdal’ s method^^ fo r obta ining the ana lytic  extension o f the 

Schwarzschild m anifold. The embedding of in  E   ̂ is  given by
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The transla tion  and ro ta tio n  properties of the surface (5 .5 ) are 

s im ilar to  those of the an a lytic  extension of the Schwarzschild mani­

fo ld . I t  is  in te re s tin g  to note th a t the embedding o f space-time I 

in  th is  way requires the employment of four space-like and two tim e­

lik e  coordinates, while the Schwarzschild embedding is  o f signature 

( ”4) „

5 .2 .5  Physical Properties

In the preceding section we stated tha t there is  l i t t l e  doubt 

tha t the = 0 s in g u la r ity  is  of a physical nature. Any lingering  

doubt is d ispelled  by consideration o f the a c c e s s ib ility  o f th is  region 

of space-time. For, as emphasised by Geroch^^, we would not wish to 

c a ll  a space-time singular i f  an a ffin e  parameter on every tim e -like  

half-geodesic (geodesic curve which has one endpoint and which has 

been extended as fa r  as possible in  some d irection  from th a t endpoint) 

a tta ined  a r b i t r a r i ly  large values. As Geroch suggests, in  a non­

singular space-time, observers who follow  "reasonable" (in  some sense) 

world lines should have an in f in i te  to ta l proper tim e. Let us consider

then an idealised  observer who fa lls  fre e ly  from i" = . His

path must be an x' - l in e ,  and T - l in e s  are geodesics in  . The

geodesic equations may be in tegra ted  to  give the expression fo r the 

proper time taken in  tra v e llin g  from T  = T", to = 0:

r  t  d'-r

where is  a p o s itive  constant re la ted  to the energy/unit mass of our 

observer. C lea rly , fo r  su itab le  values of (and, in  add ition , fo r  

suitable values of "X i f  a  L 0  ) ,  the integrand in  (5 ,6 ) is  an 7̂
t

ess en tia lly  f in i t e  quantity . This means th a t T  = 0 is  an accessible ,i
1

region of space-time, and since a rad ia l geodesic would not seem to be i
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O ther than a "reasonable" p a th , we can conclude th a t space-time I  has

a physical s in g u la r ity  at T"= 0 .

Perhaps the most v iv id  description of space-time I  is  provided by 

57its  geodesics. P iran i has studied the approximate perihe lion

motion corresponding to the m etric (4 .44a). This was in  connection 

5 8with Littlew ood’ s suggestion tha t E in s te in ’ s vacuum equations should 

be replaced by the single equation = 0 together with the assumption 

tha t space-time is  conformally f la t .  In Littlew ood’ s theory, space­

time I  (obtained in  the form (4 .3 1 )) would replace the Schwarzschild 

solution as the fundamental vacuum solution . In te rp re tin g  the constant 

of in tegra tion  cl as a Schwarzschi Id-type mass, P iran i found the 

approximate perihelion  advance to be one sixth  of the value obtained 

from the Schwarzschild solution and in  the opposite d irec tio n . Since 

th is  was a re s u lt  in  d is tin c t contrad iction to  observation, Littlew ood’ s 

theory was re jected . In our theory, however, space-time I  does not

represent a vacuum solution and there is no a reason to in te rp re t

the constant cx as a central mass. We now discuss the geodesic 

behaviour more fu l ly .

For any s ta t ic ,  spherica lly symmetric m etric

For tim elike geodesics, which represent the motion o f neutral te s t  

p a r t ic le s , the constant 6  takes the value 4* 1 , wh ile fo r n u ll 

geodesics, representing the path o f l ig h t  rays, 6  is  zero. The 

var iab le  l l  employed in  (5 .8 ) is  the inverse of T" . For p a r t ic le

the Euler-Lagrange equations lead to the d if fe re n t ia l equation of the 4

geodesics :
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geodesics the constants k, and represent, per u n it mass o f the

p a r t ic le ,  the angular momentum about the o rig in  and the energy 

respective ly, being given by

k  =  ^  ,
dCs

In deriv ing the equation (5. 8)  the 0 = 0  axis was chosen so th a t a t 

some point on the geodesic 0  = ^  and 6  = 0 ,  The Euler-Lagrange 

equations then imply th a t 0 = 0  and a l l  h igher deriva tives o f Ô 

vanish, so th a t geodesic motion lie s  e n tire ly  w ith in  the plane 0  = ^ . 

P a r t ic le  geodesics are now discussed, followed by a description of 

the n u ll geodesics.

For space-time I ,  w ith metric form (4 .4 4a ), the d if fe re n t ia l  

equation of p a r t ic le  geodesics is  given, from (5 .7 ) and (5 .8 ) ,  by

5.9

We sh a ll consider in  any d e ta i l  only those orbits which possess 

p e r ih e lia . These are of the type normally associated with an a ttra c tiv e  

force and arise only when the constant (X is  p o s itiv e . The condition  

tha t there should be rea l motion between the two real roots o f

c 7 -  Vl^  i- X cx -C li 4- 14.  ̂-  ^ -  0 5,10

reduces to a conditional re la tionsh ip  between the energy and the 

angular momentum of the p a r t ic le ,  fo r i t  is  given by

i 4 A R

where

=  4 ^ '

5.11

5.12



-67 -

(The only behaviour ava ilab le  to a tes t p a r t ic le  fo r po s itive  X  

other than p é rih é lie  motion occurs when > -Z  and is  to f a l l  in  

to the o r ig in ). The orb its  described by (5 .9 ) w ith the condition  

(5,11) f a l l  in to  the expected categories. Denoting the (re a l) roots 

of (5.10) by and , with x ,  ^ Ua, > the motion may be

illu s tra te d  by the follow ing schematic graphs of ( cLv.c /  cLc|) )^ :

/K /oU/v\^

E l l ip t ic  type ( tt, >  0 , <  1) . Hyperbolic type ( U..L. 0, 1)

(Motion takes place w ith in  the hatched regions)

In  add ition , the usual special cases o f c irc u la r motion ( x ,  =

J, ^  1) and parabolic motion ( = 0 , = 1) are obtained.

The d if fe re n t ia l equation (5 .9 ) is  eas ily  in tegra ted , using

Vl <du_

5.13

k
+ CX.-'

t 3.rL VL — X
( H - o i i a )  \l V~ (c l'^  +  W-) ~  V&

to obtain the equation which describes a l l  geodesic orb its  with 

p e rih e lia :

-yv =. X  I   ̂ 4- A'D COG A cj)̂ l  
B L Ï — 1) cos {4 1 4  cjî') J 5.14

where

%) =  ■V'l} 4  1 /  R ') -  1 /  B
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(pu tting T  = 1/LL ) .  The s im ila r it ie s  between (5.14) and the 

class ical o rb it equation are immediately apparent. The periodic  

recession is independent o f the energy o f the p a r t ic le  and is  equal 

to

ZtT — \ /  aI 1 + B j
5.15

per o rb it. Some q u a s i-e l lip t ic a l orbits o f space-time I  fo r  d iffe re n t

values of t  and B are shown in  Figs. 1- I t  should be

observed tha t c la s s ic a lly  values of ^  much less than un ity  would 

correspond to the motion of p a r t ic le s  in the v ic in ity  o f very massive 

objects.

In order to compare p a r t ic le  motion in  space-time I  with tha t 

expected c la s s ic a lly  we d iffe re n tia te  (5 ,9 ) w ith respect to <j) to  

obtain

u . =. cx 4  ( 6 X ^ - 0

. 5.16
\ I \

Now the c lass ica l B inet equation fo r the motion of a p a r t ic le  with

p o ten tia l energy per u n it mass is

à h x  4  UL =  1 f  5.17
IT ’" lA?"

where H = = constant.

For slowly moving bodies in  weak f ie ld s  we may take H — kc and 

compare (5.16) w ith (5 .1 7 ), In  add ition to a term representing an

inverse square force (a ttra c tiv e  or repulsive as a  (2 - 1) >  0

or 7  0) there are terms present in  (5.16) representing forces of

higher orders.

The discussion of the geodesics seems to ind ica te  th a t the

constant Cl  is p o s itiv e . In the case tha t Cl is  negative,
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there is  never any stable per iod ic  motion, but hyperbolic o rb its  of 

the type normally associated w ith a repuls ive force may be executed 

fo r  a l l  values o f outside the coordinate s in g u la r ity  at = -  O -

For  ̂ , a te s t p a r t ic le  which s tarts  its  existence a t any

value of T" less than -C L  w i l l  terminate its  motion by fa ll in g  in  

to the o rig in . No rea l p a r t ic le  can cross the "boundary" a t ' V  = - c l . 

The d if fe re n t ia l equation governing the n u ll geodesics representing  

l ig h t  rays in  space-time I  is  given by (5 .8 ) where 6  takes the value 

zero and x   ̂ ^  and ÿ  are obtained by comparison of the general 

m etric form (5 .7 ) with th a t fo r space-time I ,  (4 .4 4a ). This may be 

integra ted to give

T* -  i i .  1— 4  <b I .
t  I  J

For pos itive (X , rea l motion is  possible only i f  cx C ^  , and the 

l ig h t ray u ltim a te ly  resumes i ts  o rig in a l course a f te r  moving towards 

the sp a tia l o rig in . When c l  is  negative any lig h t  ray o r ig in a lly  

outside the coordinate s in g u la r ity  has a path which remains outside, 

while i f  i t  is  inside 4  = -  CL , i t  is  trapped and never emerges.

Some typ ica l n u ll geodesics in  space-time I  are shown in  Figs, 12 and 

13.

The g rav ita tio n a l s h i f t  of spectral lines in  spacertime I  is  

given, fo r large X ' , by

-  Jl )
-r, Y i ' >

where V© is the ch a ra c te ris tic  frequency of a spectral lin e  and

are the coordinate frequencies a t respectively.

This resu lt is id e n tic a l to  the Schwarzschild formula i f  cx is  

replaced by the constant \rvt ; the s h if t  is  thus in  the same d irection  

as the Schwarzschild s h if t
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I t  was emphasised in  section 5,1 tha t the problem o f the in te r ­

p reta tion  o f the stress-energy tensor is  fa r  from t r i v i a l .  With the 

components of the R icci tensor given by (5 ,2 ) ,  the non-vanishing 

components of the stress-energy tensor are given from the d e fin itio n  

(2 .4 ) by

t ; =  ^  '

T t  -  T g  = 4 * - )  ’

TT , =
 ̂ ' ' ' ' 5.18

I t  is  tempting to s p l i t  the stress-energy tensor (5 .18) in to  a m a terial 

and an e le c tro s ta t ic  p a r t , in which the usual algebra ic re la tio n s  fo r  

the spherically symmetric case hold, with the fa m il ia r  expression fo r  

the energy density due to the electromagnetic f ie ld  created by a 

charged p a r t ic le  a t the sp a tia l o rig in . Then

with

n ,  -  r i )  = M l  = 4  d )  )

l i t  = 0  .

The problem of the in te rp re ta tio n  o f the m a terial stress tensor MCcr , 

however, remains ; i t  is  c le a rly  not due to any of the more frequently  

studied physical s itu a tio n s .

The stress-energy tensor represents a l l  f ie ld s  other than g rav i- 4

ta t io n . In  a general Riemannian space we can therefore expect tha t 

only some combination of Tp<r and represents a conserved

quantity . There is  no uniqueness about the choice o f such a combin- I
1

a tio n , and although the various expressions give consistent resu lts , f
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they are in tr in s ic a lly  non-covariant. Furthermore, the concept of 

to ta l energy is i l l -d e f in e d  unless the coordinate system employed is  

Lorenzian at the sp a tia l in f in i t y  o f each coordinate. However, we 

may represent space-time I  by a coordinate system of th is  type. 

Transforming the spherical polars p  , 6  and <j) o f the metric  

(4 .31) in to  Cartesian coordinates:

x . “  |OSuo-0CO£ c|> J y  =. SuvL 5 ^  COS© j

we obtain

4 -d t© )  . 5.19

We may conveniently use the expression obtained by A dler, Bazin and 

Schiffer^^ fo r the to ta l "energy" of stny f in i t e  V3 bounded

by surface S fo r a m etric tensor which is  time-independent, diagonal 

and s p a t ia lly  iso tro p ic  :

a a  0

where n j  is  the u n it outward normal to ctS . Then in  order to

obtain the to ta l energy in  space-time I ,  exhibited in  the metric  

(5 .1 9 ), we may perform the in teg ra tio n  in  (5.20) over a sphere of 

radius R. and le t  R . tend to in f in i ty .  We obtain

D   — cxc%.
)4 4L

The Schwarzschild re s u lt is  = f-wLC^/'vC . Thus i t  is  clear

th a t , despite some s u p e rfic ia l s im ila r it ie s  between the Schwarzschild 

universe and space-time I ,  they are fundamentally of a very d iffe re n t  

na ture.

5 .3  Properties of Space-Time VI

Space-time VI (the extended Schwarzschild solution) is ,  l ik e

■ V k:"-. ■ ■ ■ -  - ' . ■'___-V  ' ~ -  ■' ■' A c w '.'
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space-time I ,  Minkowskian at s p a tia l in f in i ty .  I t  is  represented 

by the m etric (4 .4 4 f):  

djg)- =  n  -• 4-ll - 2;^ ) clb^ j

which reduces to the Schwarzschild m etric (3 .1 ) when B is  zero.

We wish to know how the properties o f the Schwarzschild universe are 

modified by the presence in  the m etric (4 .4 4 f) o f the non-vanishing 

constant of in tegra tion  B

I t  is  o f immediate in te re s t to  determine whether or not the 

T  = Zm, s in g u la r ity  is  s t i l l  of a coordinate nature. This w i l l  be 

indicated by the behaviour o f the scalar invariants o f the Petrov 

canonical form; to obta in these the components o f the Riemann tensor 

are f i r s t  required;

-  ^ 6 -D] ,

- %T> j  ,

where

1) ^  I +- B-Cv U .

For future use, we also give the components o f the R icci tensor in

mixed form;

R-i “  - 2  (S yv l-X 't')] ,
^3 -Xm)D^ L m15 J

R - V - 4 d B "  •
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Choosing u n it te trad  vectors along the coordinate axes the bitensor 

( X  > T  = 1, . . . , 6) is  obtained in  canonical form

where
cL — r J _  — -  ZB

L]):L D &

& ~ 5 _L 4- 213 ( m .- xQ
I ' r ^ l y -  (X ~ 2m X P ^  (y-~2wv')'3)^

n  ■

8  ~  —  A  4" k m B  Ç ( w L - v )  — 2 m B 7 ,

' T '3 l'f_X .yv:)L  D ^ J

For B = 0 the Petrov scalars oC , yg> , ^ and S are f in i t e  at

= 2 m. and the s in g u la r ity  in  the m etric (4 .4 4 f) is  o f a coordinate

nature only. However fo r B  ̂ 0 the scalars diverge as nr— > 2rYi .

This indicates th a t the s in g u lar ity  is  a property o f the space-time

i t s e l f  and not of the coordinate system used to describe i t .  In

th is  respect at le a s t , space-time VI d iffe rs  ra d ic a lly  from the

Schwarzschild universe.

The s p a tia l hypersurface V 3 o f the Schwarzschild universe is

not topo log ically Euclid ian: i t  cannot be covered w ithout s in g u la r ity

by a s ingle non-singular coordinate system. I t  is  not surprising

to find  tha t there is  no value of the constant B) fo r which th is  is

possible fo r the V 3 o f space-time V I. The Schwarzschild \/^  can

be embedded in  a pseudo-Euclidian E ^  as shown o r ig in a lly  by Kasner^^
55and la te r ,  amongst others, by Fronsdal , but th is  does not seem 

possible fo r space-time V I. Following Fronsdal's method (as for 

space-time I )  we look fo r an embedding fo r which the m etric is

ds*- =  a z . ' ’ ' -  az.*-*" -  -a z . 'R ^  -  a z . '^ ’’ - a z & ^

with^G
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Z '  -  ZT>(I '

T J - -  2 3  ( I  - 1 = ) ' ^  c o s k  ( - ^ )  ,

z" = 0M ,
2.^ ~ T̂ S'-W©' CoS c|) 5

Z ® =  T ' î s w v a  SLy  

7 ^  ~  x lD  COsB , 

where 0  (y© is  determined from

/ H n f  — 4  f)  —2 6 3  ( x ^ 4  |4Y- -  M?) .
\"cCv/  ̂  ̂ l) 3 ^ *—

This is  a su itable embedding i f  i t  is  re a l and exists w ith in  the 

e n tire  coordinate range. Th is , however, is not the case since fo r  

values of x  close to un ity  ~Z7 ceases to  be a rea l coordinate 

as cLg/ d-f' becomes imaginary (unless, o f course, 6 = 0  when the 

embedding exists in  the whole in te rv a l 0 2 . x ' ^  oo ) .

Comparing the general s ta t ic ,  spherically symmetric m etric form

(5 .7 ) with (4 ,4 4 f) and substitu ting  in to  (5 .8 ) we obtain the d i f f e r -  7

e n tia l equation of the geodesics in  space-time VI :

I 4- uC" ( I ""Z rv\ = —-6 : (l “ 2vYiU.)(i4 6 -(vcCS — . 5,22

in  which cl = 1/ x  and

Vl =  ^
dLS

L  =  . -

D iffe re n tia t in g  (5.22) we obtain

d N ^  — 4  CL
d  cj?'̂

— ^ (\4 2 6 ) 4 6 (l-Im .u .')^  4  6  J0VL 11 — , 5.23

Comparing (5 .23) with the c lass ica l B inet equation (5 .1 7 ), the 

class ica l inverse square force upon a p a r t ic le  fo r large T  is



-75 -

raodified by the facto r ( l + Z B ) *  For orb its  which possess p e rih e lia  

the approximate perihe lion  advance is  also modified by th is  fac to r. 

For large v  we may w rite  in  place o f (5.22) (putting 6 = 1 ) :

i V l̂  k .^
>

5.24

where we have re ta ined only terms of order un ity  in  ( w iu ) , which 

would be reasonable for planetary o r b i t s . W e  suppose tha t (di^/dlc|) 

has three rea l roots u.  ̂ , such tha t are small

in comparison with U-j and are positive ( i . e .  considering orbits of 

q u a s i-e llip t ic a l type on ly). Periodic motion takes place ( i .e .  d v i /

is  re a l) between and :

> LL

We may w rite

—  Z v v L  I  L l -  U ^ ( u  -  A -  ,

oLcj)/

where, by comparison o f (5.25) w ith (5 .2 4 ):

5.25

LL, -L U .2 _ + -L A ^
Zm_

Then

2mU'2_

5.26

5.27

The angle between successive apsides is given, from (5 .2 5 ), by

cLu.

a.,
fJ{̂ VW\Xô  (vA-LL'^(U2.~LL')(i
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Using (5 .2 6 ), (5.27) and the approximation tha t during the motion 

ll/ u-o, is small the expression fo r  A  (j) becomes

A . — I (  t 4- AL (uL\ 4 4-vC) j -  0  cLu.

TT 4" 2m. I LA, -f  ̂ .

The perihelion  advance is  thus

Z A  4> “  Ztt —  B/vuTT I A.-t- 5.28

Again, by comparison of (5 .25) with (5 .2 4 ), the sum of the products 

(taken pa irw ise) of the roots is  given by

“V Lv-̂ u, ~  ll ibZA) ' 5.29
k*-

M ultip ly ing  (5 .29) by 2 m and using (5.26) and (5 .27) we obtain to the 

required order

U ., -t- w, =

SO th a t , from (5 .2 8 ), the Schwarzschild perihelion  advance is  modified 

by the factor (1 4-28 ) .  The behaviour o f the n u ll geodesics in  space­

time VI is id en tic a l to  the Schwarzschild behaviour, as is  obvious 

from putting  è  = 0 in the geodesic equation (5 .2 2 ).

From (5 .2 1 ), the non-vanishing components of the stress-energy 

tensor are given, from the d e fin it io n  (2 .4 ) ,  by

T |  = ■ 1 -3  "  A  - 2 ^ ) ]  ,

T :  =  T :  =  1 ’ ^  > 5.30

I 4. ^  12, j

~T . is  pos itive only in  the region where 'T", depends
4

on B  according to the re la tio n

^  1 4 - 1 / 6 )  5
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which approaches 2 wl as B  > 0 from the r ig h t. The in te rp re ta tio n

of the matter tensor (5.30) poses considerable problems fo r i t  does 

not seem to  represent r e a l is t ic a l ly  any simple physical s itu a tio n .

We must leave discussion o f th is  problem open.

In order to calcula te  the to ta l "energy" in space-time VI

we cast the m etric (4 .4 4 f) in to  the s p a t ia lly  iso tro p ic  form

d A )  4- (j c l tH  j 5.31
L V  (I 4 -m V - J

where

( I -  § )3)(p) -  1 4- Z B  2yL

"  " V j

through the usual transformations fo r  the Schwarzschild universe:

nr — p {I 4-
f

X  = CCS J  y =  ^ s i v i  B- Sda dp  ̂%, — ^cosB .

The coordinate system employed in  (5.31) is Lorenzian a t the spa tia l 

in f in i ty  of each coordinate and we may proceed in  calcula ting  Pq. 

exactly as for space-time I .  I t  transpires tha t the to ta l energy in  

space-time VI is given by

p  =

SO tha t the Schwarzschild resu lt is  in  th is  case modified b y  the facto r  

(1 - 2 (3 ) .

5.4 Properties of Space-Time I I

Space-time I I  is  represented by the m etric (4.44b):

*2 LAoJk C C  ("T  -  s  C C.

As demonstrated in section 4 .5 , (4.44b) may be recast in  a form 

conformai to the closed de S i t te r  model by setting
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T  “ -A -bovdk ' C c ^  + B

so tha t the m etric becomes

ds"- -  Fw i> - '(C 0 )  5.32

Retaining the meaning of p  as some sort of ra d ia l coordinate, the 

extension of the physical space in the space-time exhibited in  (5.32) 

is

0 ^ p < i /C  ) 0  ^  G ^ TT 5 Z t t  "

Thus, since (1 /C  )-hAvvVu"' iC p  ) ^  0, the m etric (4.44b) is meaningful |

in

B  Z oo J 0  40 4w 0  4; 4  Z t t  .

Now when B = 0 the m etric (4.44b) is  regular at nr = 0 , from the 

re g u la r ity  condition (3 .1 2 ), but when 13  ̂ 0 i t  contains an apparent 

s in g u la r ity  at T  = B . The scalar invariants oC and A  of the 

Petrov canonical form (5 .3 ) are

rX = - L  [-1 4-  scva.k^CcC'^"-B))] ^
I  J

For B ^ O ,  a t T  = B joC  and 3̂ have the values

confirming th a t the s in g u la r ity  is  only of a coordinate nature. As 

T —  ̂ 00 , oL and p, become in f in i te ,  but we should not wish to  

c a ll th is  circumstance a s in g u lar ity .^ ^  We note the components of 

the Riemann and Ricci tensors:
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R „ „  -  ,

"  PxH-iH. = Ra,3 i /s A ’-e -  = - U  C r cotk. (C(-'-'-Rl),

p  _ r , _ C'-T^*' 1
I W 4  s u n ^ U - ^  ( C  ( ■ > T ' - ~ ^  L  2 u v L k . ^  ( C ( - "" *■ J

^  —  cs::4--------  ^

R_\ -  3  C C C r~-  „  _ ]_  — Z  Sovo.6̂ . (CC r- l3 ,)lcosk  Ccc T'-G))
T''^

|R._ ~  R,"^ •=- — Sovoik-^ (. C ( 4  ̂-  k)) 4- [_
Ĉ .yv4. ir

R t  ==■ -  S L v L W -lC (v " - (3 %  -  I 4-  Z  s u v ^ k  (c C r -Ü Î)c o s U C c C r -G ') )  .

Can we embed the s p a tia l hypersurface V3 of space-time I I  in

a pseudo-Euclidian . ? A su itable embedding may be given by

-  cVX'^ -  -  cAX^z 5

X ' =  fO  -  ____^ ______ d  d ^ ,  s .34
J Sv/vk,̂  CC C r —gS)

— 'T^SCvvO Co2'( |) j “  Y^Sla-l© s k x  J X ^  =5. f c o s G  .

When B 4= 0 the embedding (5.34) is  real and non-singular so tha t

\ / 4, tiay be represented as a hypersurface in  E . a n d  is  topo log ically

Euclidian ( lik e  space-time I  but unlike space-time V I ) .  When B  >  0,

X * is not rea l everywhere w ith in  the coordinate range and a second

coordinate patch is required; in  th is  case V 3 is  not topo log ically

Euclidian. As fo r space-time I  i t  is  easy to show, using Takeno's

conditions'^ th a t cannot be embedded in  a f iv e  dimensional space

of constant curvature nor in  a pseudo-Euclidian . However,Vi^

can be embedded in  an . This may be demonstrated using Fronsdal's
55method which we employed fo r  the embedding of space-time I .  A ^

d iffe re n t embedding exists which depends upon the fact th a t the m etric |

of space-time I I  may be w ritten  in  the form (5 .3 2 ), conformai to the 1

closed de S it te r  model. The la t te r  is  represented by the metric 1

d-6''^ ~  -  d B '^  +- d c j) ^  4r C (-  CkoAclb^ , J
(,1 - c y ^ )  I ' ,
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io ^  P ^  1 / C  , 0  6  e  é= TT  ,  0 é :  (j) 6  2 i t ) .

62Following Tolman we introduce the new (re a l) coordinates - r  and t :  

by
T" =- p  { \  ~  j

t  -  t  T-J_ Aî (|-C>4 ;
2 0  '

which leads to the expression

AbC \  ^

cLcr  ̂ ~  -•€ - 4-Y ’̂̂ Cd.O’̂ ^-sOn/^-OoU|)^) 4 - db^"  ̂ 5.35

(0 4=l X  LX3) .

As is  w ell known, the m etric (5.35) may be cast in to  conformally 

Minkowskian form by the introduction of the new var iab le

-Cfc

Then the de S it te r  m etric (5 ,35) becomes

dcr^ ==•—L _  clG^ 4- - f-d n '’̂
( C l '?  ^

Thus employing a s im ilar sequence of transformations, space-time I I ,  

given by (5 ,3 2 ), is  represented by the m etric form

=-  -L B C ]^  + d ^ 4  , 5
I  J

With the f in a l transformation of coordinates

0© -  f  co%© suA cj) J — 'T^scw©' sbn,c|? J =  r^coS Ô  , oc "Y j

the m etric (5.36) o f space-time I I  (suspending the summation 

convention) is
k

ds"  ̂ -=- A ^ c ^ (o U c A ')  j 

where C, = a = -1 , = +1 and



:
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kj;- -  IV o k k " ' 4-x^'^ -p G c]
C  (oO '^ •V'OC’-'̂

Now Eisenhart^^ has given the re s u lt th a t any \ A  conformai to an

lAay be embedded in an E  and described the embedding. In  

our case i t  w i l l  be

6
Z L  c *  , 5.37
14 = 1 ’

where C, = C-2_ = a C(  ̂ = - 1 , = +1 and

■= dL  ̂ 5 ^  ^ 1 ) * ” * 3 k  >

5.38Z® = 4 ( ^ 1  C^bL<»f -  j ; ' )  ,

Then Vy. may be embedded in  Efc, as given by (5 .37) with (5,38) 

and is  a hypersurface of the hypercone

Z  1% T  =  0  ,
14=1

with the fundamental form (5 .3 7 ), We note th a t we could have 

embedded space-time I  by th is  method since i t  may be w ritten  in  the 

conformally f la t  form (4 .3 1 ).

We now consider some of the physical properties of space-time I I ,  

A neutral te s t p a r t ic le  w i l l  have a tim elike  geodesic as world lin e ;

d lV ^  + k ,  421^ ^  = 0  . 5.39
olS^ ^ cLS o(S

I f  the p a r t ic le  is i n i t ia l l y  a t rest ( d x ‘̂ /d s  = 0 ) , the in i t ia l  

acceleration is  given, fo r our s ta t ic ,  spherically symmetric m etric

(2 . 8) by

ols'
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1— , CL

From the formulae fo r the C h ris to ffe l symbols (A 2.20), the only I
ra ' —X

is  1 = 2. so th a t , i n i t ia l l y ,

^  4 - =  0  ,
Z  \ d s l

and since ( c k - ^ / d t )  = 0 i n i t ia l l y ,  th is gives

GÜT -  O  , 5.40
d t ^  Z

Now fo r the m etric (4 .44b ),

e  = -e. =- s tA V ^ c c c r- ii)

7lSubstituting fo r G = -G in to  the geodesic equation (5.40) we 

find  th a t i f  B  ̂ 0 , ( ddv /  db^ A  -  & in f in i te .  Thus i t  is  

meaningless to suppose tha t at observer may be situa ted  at T  = B  ̂ 0 , 

However, when B = 0 , (5 .40) gives, fo r small T  ,

d V  ^  J _  c  V "  
db*^ 8

so tha t the ra d ia l accelera tion at T  = 0 is zero and there is  no 

contrad iction im p lic it  in  considering an observer s ta tionary at tha t 

po in t. Now suppose th a t a spectral lin e  emanating from a d is tant 

source at rest has frequency "Vs . For an atom a t 'Y' = 'Y', the 

coordinate frequency is  given by "V* = "Vg (  ̂-r = and fo r an

id e n tic a l atom a t T  = 0, = V s  ( ^ ) ^ _ q . Then an observer

a t i r  = 0 w i l l  observe a g rav ita tio n a l s h i f t  to the blue or red end 

of the spectrum according as

( a| 0  H'

( ^ 9 H  ̂ 0

is greater or less than u n ity . Putting B  = 0 , fo r space-time I I

q  =   C j A  ,
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so tha t the spectral lines emanating from d istant sources at res t w il l  

appear to the observer a t the o rig in  to be displaced towards the red 

end of the spectrum.

F in a lly  we consider the stress-energy tensor. From (5.33) and 

the d e fin itio n  (2 .4 ) the non-vanishing components o f "T (c - are given

~  -i. f  — 3 5 urda ( C ( f  -  G'f) I 4-  Z  C CC-r-\S)) cosk
X  I  J

-  -1 [  4- _J_ — _ z _  s V - k  ( C.CT-G1) cosk (C ('T -6 )i '

For B jo,  a t T = , "T| = T (= l/B ^' ) ,  which are the

usual algebra ic re la tio n s  in  the spherically symmetric case fo r a 

purely electromagnetic f ie ld .  I t  is thus tempting to try  to in te rp re t  

the stress-energy tensor (5.41) in  terms of the superposition o f the 

f ie ld  o f a perfect f lu id  and an electromagnetic f ie ld ,  sa tis fy ing  

Maxwell's equations. Under such an in te rp re ta tio n  the m atter density  

and iso tro p ic  pressure would take values A  0 throughout the en tire  

coordinate range. For B = 0 , a t T  = 0 , T ', = %% = “ T )
and such an in te rp re ta tio n  must c le arly  f a i l .  I t  has not been 

possible to fin d  a r e a l is t ic  in te rp re ta tio n  of (5.41) in  terms o f any 

simple superposition of f ie ld s .

5.5 Properties of Space-Time I I I

Space-time I I I  is  represented by the m etric (4 .44c):

?ds^ ~ d-X d6"^ 4-sû/d0 cL<|Z) + ------- FTT ^
S Lw'*" ( CCY" -  B))  ̂L'W C ”B) )

( B 4-B , 0 6  B 4TT , 0 6 (j) 6 2TT).

As demonstrated in  section 4 ,5 , (4.44c) may be recast in to  a form 

conformai to  the open de S it te r  model by setting

%

-Ll..!.-. • £,•»
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X = A  ■I'cw'C* C c p )  4~ 6

so th a t the metric becomes

cLs  ̂ -  l iW C ' C cA  4- -  d./D^ -  +-Scvi^0  d (|)4  _

U 4- c y  r  5.42

4~ (l 4 -C ’̂ pVdt'^'^ 5

(0 &  CO ) ,

For the metric (4.44c) the non-zero components of the Riemann tensor 

are given by

R  -  n Y '- ^ s W O f - l  4-
AOÀ.Ù i  J

R |x ,x  = Rxu,ai|. =  =  "^31,34 r. -  1 +- c-r rot- ( C Cr - B»,

~  s k c c C r^ -â S ) I  s u A T c ô F Z b -))  )

and those of the R icci tensor by

R ' — 3  s u y v C c C r -  bS) -  \ -  % slV  ( C Cf - G)) CoS (C ( f-B '))
 ̂ C  ̂ C"T̂

R - % -  A  ■

R ‘'- = -sLvv^CcC-r-e.')) _J_ sCn (C fs '-B D cosC c f-r-e )) .
H- c^'T4- cr'^

The scalar invariants o f the Petrov canonical form (5 .3 ) are

oL - A .  f - |  4- S L w ^ ( C ( - f - - 0 ) )  1
I J

Q  =. s,A ^ ( ,CC..r  3 g i ) _ p |  (2f cat- ( C C - r - B ) ) !  ,
I ^ " 3 ,   ̂ J

so tha t the s in g u lar ity  at T  = B  is o f a coordinate nature only.

The sp a tia l hypersurface of the m etric (4,44c) can be

covered w ithout s in g u la r ity  by a s ingle non-singular re a l coordinate 

system which embeds i t  in to  a four dimensional pseudo-Euclidian space

EiL- :
els'- -  -  I

X' = [ I — GJT:"  ̂  ̂ i
J ls u n .^ C c C r-G i) J 5 .44 |

X̂= T'SiAO.Ù Cos (|) J (|) x̂*̂—ŶtoS© , J
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The coordinate may be elim inated from (5.44) and may be

represented as a hypersurface in Eq, ; thus i t  is  topo log ically  

Euclidian. Vq, cannot be embedded in  a f ive  dimensional space of 

constant curvature nor can i t  be embedded in  an E   ̂ by e ith e r of 

the two methods described fo r the other space-times studied in  th is  

chapter. I t  can, however, be embedded in  an . The embedding

is eas ily  obtained and is  given by

d s "  — -  dX* ^  — cLX^ — d X ^ ^  -  cbX^ ^ 4-cVX^ -  d X ^  4- d X ^  ^

where X  , X  , and X  ' are the coordinates defined above in

(5.44) and

X  -     c o s k  )
SvYO.CCCr-G')')

-= zC n r  .
(_c ( IT -  fiX

Retaining T' as a parameter, V|.|. may be represented as the surface 

in  E-y :

J L SUVL̂CC.(Y" - 6)) J

We now consider b r ie f ly  the main physical properties o f space-time 

I I I .  To discuss the behaviour of neutral te s t p a r t ic le s  in  we

use an id en tic a l argument to th a t employed fo r space-time I I .  This 

again shows tha t in  order to examine how the universe appears to some 

cen tra lly  situa ted observer the constant B must be put equal to  zero. 

Then from the equation (5,40) the ra d ia l geodesic equation governing 

the behaviour of a small te s t p a r t ic le  is ,  fo r small ,

€1^4" —  ( A  ^  y

d t ^  3
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where we have used, in  (5 .4 0 ):

sLvo.'^ C C r)

Then, as fo r space-time I I ,  the ra d ia l acceleration and force at the 

orig in  of th is  spherica lly symmetric universe is  zero. Unlike space­

time I I ,  however, tes t p a r t ic le s  near f  = 0 w i l l  move in  to = 0, 

since (cAr /  d d  )^^^ Z  0 , and spectral lines emanating from d istant 

sources w i l l  appear to the observer a t the o rig in  to be displaced 

towards the blue end o f the spectrum.

The feature tha t distinguishes space-time I I I  from those examined 

e a r l ie r  is tha t we Qon fin d  a r e a l is t ic  in te rp re ta tio n  fo r i ts  stress- 

energy tensor. From (5 .43)  and the d e fin itio n  ( 2 , 4 ) , ' T C ct has non­

vanishing components

T'i = ■  -L{  -Zs'vAKcC-f'-B'F) (r -&i)cos (Ct'T-g))] ,
X  1 Ct*^ J

=• =  _L c sCw'»-Ccc-^-ia) _  _ i
-K I  c A 't -  T'^ ' ’

5.45

T ; ,  =  1  ( (CC-T-Bi)cos Cc Ct-.S'))

Now the stress-energy tensor corresponding to the superposition of the 

f ie ld  o f a perfect f lu id  and an electromagnetic f ie ld  is

k  ( P ) 5.45

where ^  , yO and u X  are respectively the pressure, m atter density 

and four ve lo city  of the f lu id  (U°^Uç^ p 1) and YAp  is  the e le c tro ­

magnetic f ie ld  tensor sa tis fy in g  Maxwell’ s equations

p Y . p  =

-4>y3)Ot )

where c|)o6 is  the four p o ten tia l and J is  the current density  

four-vector. Under our symmetry conditions, the surv iv ing components
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of (5,46) are (since = 0 , = i )  ;

T l  , (a)

" T t -  + ■ ^ ^ “*1=4, , 5.48(b)

T t - / 0 - F p . a p , ^ ^  • CO

Comparing (5,48) with (5 ,4 5 ), we must have

b  — _L  Ç ^ C G ( " f  — — .... ! s u n ,  ( C  ('■<— CO'S C CC-r  ̂ .  ( ^ )
! ”K L i\-

f) =. 3 ^ ) ,  5.49(b)

—  —  Z s 'ufc^ ( C C - Y ^ ~ B 1 )  _ J _  „  J _  s Cvl  C C ( - T - B ^ ) c o S ( C (Y -B )X c )
%TT Cr^

I t  is  now necessary to check tha t |p >  0 and th a t ^  0 so th a t

the ra d ia l e le c tr ic  f ie ld  is  re a l. C learly, from (5 ,4 9a ), p

is  non-negative only i f

4-cun, C C (cr -  s i) >7 Cy" . 5,50

However, th is  in eq u a lity  is  always v io la ted  w ith in  the coordinate 

range B ^  ^ B a -r r /Z C  unless B = 0 , in  which case (5,50) holds

everywhere. We henceforth take B = 0 (although i t  should be noted

that even when B 5̂ 0 the negative pressure range is  bounded below 

and could be ascribed to the necessity fo r the presence of a constant 

of the "cosmological" v a r ie ty  in  the d e fin itio n  of~T"fcr), To show 

tha t is  everywhere 6: 0 we must show, from (5,49c) with

B = 0 , tha t

-Z S Û v lS c  'V- OC St-no(- COS9C ^ 0  J 5,51

where we have w r itten  cc =  CY" . Employing series expansions fo r  

(Z x )  and Cos (2oc), i t  may be shown without d i f f ic u lty  that 

(5.51) is  true everywhere w ith in  the stated range. Then, from (5.49) ,
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the pressure, matter density and ra d ia l e le c tr ic  f ie ld  are given by 

h  = _ L  sU l (C -F  C -  C-r* COS ( C r i l  ,
' K  1 J '

(the equation of s ta te  fo r pure ra d ia t io n ),

hfq, -  /3 Ë  —F  , n  4- _L sùy\. (CF) CoS CCi-4 -  z  si.vi ̂ (C F)1
\ l  SuvV^TCy-) [_ C-r C V ^  J

We give the follow ing lim itin g  values of |D , ^  and Fiq. :

( i ) T  = 0 : P = = 0 .

BD T . J  ,p ■ /¥ '^ Y -F }

I t  should be noted th a t i f  we do not demand s t r ic t  adherence to 

the concept tha t the var iab le  p  in the metric form (5.42) should 

represent a rad ia l coordinate and allow its  range to be — oo 4_p /L oa  ̂

the range of T* in  (4,44c) is extended to cover A 6 -T ^  4 -6  

In th is  case our previous comments concerning the topology o f space- 

time I I I  are unaffected, as are the statements concerning the non­

negative character of and , We addend the values of

, p  and a t = n / C :

( i i i )  T* = ^  : j p = 0 ,  p = 0 ,  F|^ = oO ,

5,6 Conclusion

Only four o f the space-times ar is ing  as solutions of Lanczos’ 

equations have been examined in  th is  chapter. A deta iled  study o f 

the properties o f a l l  the universes obtained could w ell prove in te r ­

esting, For example, the "class 2" space-time V, given by (4,44e) ,  

is  a known solution o f the Maxwell-E instein equations, found by 

R o b i n s o n . S p a c e - t i m e  V represents, in  the w eak-fie ld  approximation, 

a constant e le c tr ic  f ie ld ,  or a constant magnetic f ie ld ,  or a super­

position of the two. The inves tiga tions o f th is  chapter lead us to 

expect th a t our theory may w ell prove f r u i t fu l  in  pred icting  space- 

times which are of physical in te re s t.
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F igSo 1---- »9

Timelike geodesics in  space-time I  aris ing  when a  > 0.

The scale is in  units o £ 0- / R  and two successive orbits  are shown 

in  each case.

F igs. 10 and 11

As fo r fig s . 1—  ̂ 9, but showing sets o f tim elike  geodesics 

fo r d iffe re n t p a r t ic le  angular momentum values corresponding to 

fixed  energies. One o rb it is  shown for each p a ir  of values )

considered.
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1.0

F ig. 1 Tim elike geodesics in  space-time I  

gf" = 0.80,  = 0.30
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Fig » 2 Timelike geodesics in  space-time I
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2.0

Fig . 3 T im elike  g e o d e s ic s  in  sp ace-t im e  I

<£? = 0 .8 0 ,  A = 0 .8 0
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4 1.0

F ig. 4 Tim elike geodesics in  space-time I

= 0 .50 , A = 1.05
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F ig. 5 Timelike geodesics in  space-time I 

C  = 0 .50 , fl = 1.20

• ' ‘ - — C:  . ...4 . . -i->



F ig. 6 Tim elike geodesics in  space-time I

0 .50 , F) 1.50



-9 6 -

1.0

Fig . 7 Time l ik e  g e o d ç s ic s  in  sp ace -t im e  I

!t̂  = 0 .2 0 ,  A = 4 .01
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1.0

Fig . 8 T im elike  g e o d e s ic s  in  sp ace -t im e  I

f  ;= 0 .2 0 ,  A = 4 .1 0

I ' /  . f  •
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F ig . 9 T im elike  g e o d e s ic s  in  sp ace-t im e  I

= 0 .2 0 ,  R = 4 .60

’t ': U'-T.
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'V

'-N

1.0

F ig , 10 Tim elike geodesics in  space-time I

^  = 0 .20 . ft = 4 .01 , 4 .10 , 4 .40 , 4.90

/..r A’. ; .
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A = 9.90
4

9.10

1.0

Fig . 11 T im elike  g e o d e s ic s  in  sp ace -t im e  I

-  0 .1 0 .  = 9 .0 1 ,  9 .1 0 ,  9 .4 0 ,  9 .9 0
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F ig s ,  12 and 13

N ull geodesics in  space-time I  aris ing  when <X >/ 0 , CL 4  o

respectively. The oc-scale is  in units  o f k / t  and the y  -scale

is  indica ted in  eadi case.
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gj: = 0.500.95

y

1.0

qX  = 0 
Vl

F ig. 12 N u ll geodesics in  space-time I ,  a >  0 
Cy-scale) = (x -sca le ) / 8

^  = 0, 0 .20 , 0 .50 , 0.95
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F ig . 13 Null geodesics in  space-time I  
(y -scale) = (x -s c a le )/3

-a

= 3.0
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6 . NUMERICAL SOLUTIONS

6.1 Introduction

In  chapter 3 we considered the imposition o f several boundary 

conditions on the sph erica lly  symmetric, s ta t ic  f ie ld .  The various 

boundary conditions, chosen according to certa in  reasonable requ ire ­

ments discussed in  section 3 .1 , are the follow ing:

( i )  Space-time is  asym ptotically f la t ,

( i i )  Space-time is  reg u lar,

( i i i )  Space-time is  regular and asym ptotically f l a t ,

( iv ) Space-time is asym ptotically of the form o f the Einstein

universe,

(v) Space-time is  asym ptotically o f constant curvature.

The resu lts  th a t we have obtained concerning the com pa tib ility  

of the conditions ( i ) , ( i i i )  and ( iv ) w ith the f ie ld  equations are 

conclusive. We have now to inves tiga te  the complete form of the 

solutions which are regu lar (condition ( i i ) )  and determine whether 

or not there are regu lar space-times tha t also s a t is fy  condition (v) — 

th a t they have asym ptotically constant curvature. To do th is  we 

sh a ll use numerical methods.

I t  was shown in  section 3.3 th a t any regular solution of the 

s ta t ic ,  sph erica lly symmetric f ie ld  equations has constant curvature 

in var ian t. As a consequence, the f ie ld  equations based on the m etric

(2 . 8) become q u a s i-lin e a r and o f second order in  the components of 

the m etric tensor (section (3 .6 ) ) .  The problem may then be reduced 

to find ing  the solution of a s ingle in te g ro -d if fe re n tia l equation 

w hidi, however, we have not been able to accomplish. Consequently, 

in  section 4.2 we inves tiga ted the form o f regular solutions near the

  .......................   i  t " .  - . f ."  ' 1 . .
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sp a tia l o rig in  by obta ining the f i r s t  few coe ffic ien ts  o f the r is in g  

powers o f i'' in  the assumed series expansions of the unknown 

functions . These series expansions w i l l  be used as the

basis fo r our numerical work.

6 .2  The Numerical Method

Our aim is  the numerical in tegra tion  of the p a ir  o f coupled 

second-order d if fe r e n t ia l equations (2 .1 7 ), (A2.25)i<, j w ith given 

i n i t ia l  values. From section 4 .5 , i t  is known tha t no n o n -tr iv ia l  

s ta t ic ,  spherica lly symmetric, regular solution is asym ptotically

a t  r  -  O )
6 . 1

as every regular solution must s a t is fy  (6 .1 ) . From the series  

expansions (4 ,2 ) ,  however, we know th a t , fo r given p  , regular 

solutions depend upon two a rb itra ry  constants, and . In

order to ensure uniqueness we must f i r s t  assign and

Then, from (4 .2 ) ,  we choose i n i t ia l  values fo r and

th e ir  f i r s t  deriva tives a t some point T  = k  :

Minkowski an; thus we may expect th a t the behaviour o f , -Ct' w i l l  1

show considerable dev iations from Minkowski form. I t  is therefore i

very important th a t a numerical in tegra tion  procedure is  adopted tha t 

is  esp ecially stable. Such a procedure is Hamming's modified 

pred ic to r-co rrec to r method fo r  the solution o f general i n i t ia l  value 

problems, which is conveniently incorporated in an IBM subroutine.

The i n i t ia l  values tha t we provide must be s u ff ic ie n t to ensure 

the uniqueness o f the corresponding numerical solution . Thus, i t  is  

not s u ff ic ie n t to give the i n i t i a l  values
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together with corresponding formulae fo r th e ir  f i r s t  d eriva tives.

(We have transformed the time coordinate in the usual way to make 

= 1 at the o r ig in ) . The value of k  must be chosen such tha t 

the v a l id ity  o f the series expansions (4 .2 ) in  representing the 

functions ^  extends to the point t" = H, . in practice

th is  is  no problem due to the presence in  the IBM subroutine of 

devices to inform the user of any choice of inappropriate in i t ia l  

values.

So fa r , i t  has appeared necessary to assign numerical values 

independently to and V%_ , so tha t the numerical solution set

N( /3 , ^ 7- ,  ) is  t r ip ly  in f in i te .  However, the essen tia l

solution set (which contains a l l  the information required) is  only 

doubly in f in i te .  For a consequence o f the gauge invariance of the 

action p rin c ip le  is th a t i f  the s ta t ic ,  spherica lly symmetric f ie ld  

equations based on the m etric (2 .8 ) are s a t is fie d  by •€?" = ( T  ) ,

= 6^ ("T ) ,  then they are also s a t is fie d  by (D-r^), ('P'^) fo r

any non-zero constant J) . Without losing any inform ation about 

the form or the properties o f the solutions of the equations, we have 

thus the free choice o f one of the constants * V%_ > though we 

must c le arly  take in to  account the two p o s s ib ilit ie s  as to the sign 

of these q u an tities . We sh a ll f in d  i t  convenient fo r the purposes 

of comparison of the numerical solutions i f  the choice is  made such
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tha t the constant value of the curvature in v a r ia n t, K = “ 6  (a^-v-VZ), 

is  absolute. Since the case when K vanishes has already been 

dealt with in  section 4 .2 , our in te re s t lie s  in  the study of the 

follow ing two cases, A and B:

Case A

Case B

■̂2. =■ " t  - ,
K = •!■ Z  .

6.3 (a)

Ik — Z  • 6 .3 (b )

Then the essential solution set is  the union of N ( j6  » )

and N ( , Cl2, > — U-2. ) # where and vary over a l l  negative

and pos itive rea l values. The i n i t i a l  values of and -0  ̂ are

given by (6 .2 ) where is determined by (6 .3 a ), (6.3b) fo r cases

A, B respectively; the formulae fo r the in i t ia l  values of the deriva tives  

dcZ / cL̂ r" , /  drr" are obtained s im ila rly .

The task of se tting  up the in teg ra tio n  procedure was s im p lified  

by the fact tha t the de S it te r  solution occurs when (= ,

fo r the two cases), so th a t comparison could be made between the 

numerical values obtained as a re s u lt  o f numerical in tegra tion  and 

those obtained from the exact so lution . The de S it te r  solution was 

thus used as a monitor, whereby the e fficacy  of the input parameters 

(step s ize , e rro r bounds, e tc .)  in  producing accurate and non-spurious 

resu lts  could be optimised. The high accuracy obtained fo r the de 

S it te r  solution enables us to place confidence in  the numerical 

solutions obtained.

6 .3  Properties o f the Numerical Solutions

Numerical solutions were obtained fo r a wide range of values of
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and ; a representative selection is shown schematically in  Figs. 14 

and 15, which correspond to cases A, B respectively. To c lass ify  

the solutions according to the values of and ^  would be some­

what a r t i f i c ia l ,  as in general the boundaries between classes are to 

some extent a rb itra ry  and we cannot attach any significance to the 

resu lts . I t  is  more in s tru c tive  to attempt to describe the properties  

of the corresponding universes. Our in te re s t lie s  p r in c ip a lly  in  

" re a l is t ic "  models: those fo r which the energy density is

nowhere negative, but we sh a ll not re s t r ic t  the values of the pressures 

given by T |  and (= ) .  During the follow ing discussion

o f the solutions included in  cases A and B i t  w i l l  be h e lp fu l i f  

reference is made to the figu res.

Case A

U n oo I  S on?- 't )
(space-time I I I ) .

We are especially in terested  in  solutions such th a t ^  0

everywhere. From the d e fin it io n  of the stress-energy tensor (2 .4 ) ,  

using the formulae (A 2.21), (A2.22) fo r the Ricci tensor and the

3

These numerical solutions include the closed de S it te r  model

4 - ckt ^)  -H ( I -  zZr )  ,
(—rV b  ^

For increas ingly negative (p o s itive ) values o f , the behaviour 

o f the numerical solutions approaches tha t o f the l im it  of the special 

case of space-time I I  (space-time I I I ) :

) (space-time I I ) , 4
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curvature in v a r ia n t,

Then is  dependent upon -e^ only and is  non-negative i f  and

only i f

'T' 4- ^  ~ r) >/ 0 . 6.5
clT

Using the f i r s t  of the series expansions (4 .2 ) fo r  i t  is  eas ily

shown tha t (6 .5 ) is  true near = 0 only i f  ( i )  or ( i i )  is true:

( i . e .  V ,  <  0) ,

/(4
( i '- )  ^  ( i . e .  0) .

Then fo r a numerical solution to be r e a l is t ic  i t  must s a t is fy  e ith e r

( i )  or ( i i )  in  order th a t is  positive near T" = 0. C learly ,

from (6 .4 ) ,  the energy density decreases monotonically throughout any 

region in  which d e k  /  drr  4 0. I t  seems th a t fo r  case A space-times 

which have '> 0 everywhere, <2.^  diverges to in f in i t y  a t some

f in i te  point . The ra te  o f divergence enables us to make the

conjecture that the ra d ia l length

T'

and the volume
'-r

ly  (o"*) "  ^  cl'T'

both o f which are monotonically inreas ing functions of , have

f in i t e  lim itin g  values as 'T -4 is  closed). Then both the

ra t io  of the circumference o f a c irc le  a t (R  (T  ) to  the ra d ia l length, 

and the so lid  angle subtended by a spherical surface at = 0 have

th e ir  Euclidian values at "4̂  = 0 and decrease monotonically to non­

zero lim itin g  values at being given by



— — -T

110-

Z t t ' t  ,

respectively.

In , 4 ~ d  ^  0 in  0 4 4  ̂ 4  'f̂ o . The proper time

along a t - l i n e  between two t:-constant hypersurfaces is  given by

= e ' " A t

Now the i n i t i a l  behaviour o f is  determined by the given i n i t i a l

conditions; i ts  behaviour fo r  values of 'T' Z 0 is  apparently as 

follows (fo r  a l l  case A so lutions):

4 0 decreases monotonically to zero.

U- 0 decreases monotonically to zero i f  ^  ,

increases monotonically i f  ^  4  - .

U2.Z 0 ^  i n i t ia l l y  increases but fo r small values of

and fo r some values of |2> reaches a maximum and 

decreases again.

The proper time along a t - l i n e  thus depends upon T ' in  a s im ilar way.

The ra d ia l n u ll geodesics s a t is fy  the equation

0  = -  A  .

The slope o f the n u ll curve is  d r / d t ^  ( ed /e ^  )^  . Near 'T' = 0,

d v / d t  < 1 fo r a l l  case A solutions; fo r physical solutions

lim  (d -r '/d b ) = 0. This im p lies , as for the closed de S it te r  model, 
r-^n
tha t an in f in i te  amount o f time as measured by an observer a t "T = 0 

would be required fo r l ig h t  to tra v e l between ■v = 0 and T  = 'Ao 

For the observer a t o" = 0, the universe has a horizon a t nr = To
I

Spectral lines emanating from d istant sources a t rest w i l l  appear
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to the observer a t t  = 0 to be displaced to the blue end or the red 

end of the spectrum according as

Q î h-

0

is  greater or less than un ity . Then the apparent displacement of 

spectral lines is determined by the behaviour of -Q. , which has

already been examined. The displacement may be always to the b lue, 

always to the red, or sometimes blue and sometimes red, fo r a l l  the 

universes (physical or n o t ) . When both red and blue s h ifts  are 

present the lines from less d is tant sources appear to be displaced to 

the b lue, while those from more d is tant sources appear to be displaced 

towards the red. The reverse s itu a tio n  does not, apparently, ar ise .

The i n i t i a l  acceleration of te s t p a r tic les  i n i t ia l l y  a t rest is  

given fo r  our m etric by (5 .4 0 ):

AV 4- J _ - v ' =0

Since ( c k ^ /d r )  vanishes a t t  = 0, the acceleration and force at 

the o rig in  of the universe is  zero. I f  d jc^ /dT  is  negative fo r  

T  >  0 , te s t p a r t ic le s  accelerate away from the observer at T  = 0 ,

as in  de S it te r  space-time. Then te s t p a r t ic le s  accelerate away 

from nr = 0 only i f  ^ 2. 4. 0 or 0 and >  - -k . An observer

a t T  = 0 may see both a local contraction and a large scale expansion 

present in his universe, but i t  seems tha t he w i l l  not observe the 

reverse.

Case B

2̂_ ~ ” ^̂ 7- ) Ks "  ~~2~> •

These numerical solutions include the open de S it te r  model
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^  ,  T ' ,  = n  - T i  - n  -  - ^ 1  •■

d s ’'=  -d .T '^  -■v"’-( d.6-^+ -s d i ’-S +- ( I +-21’ -') d t '
(T T W fa )  ^

The lim itin g  behaviour o f the solution set as u^-4 - oo (+oo) is  the 

same as fo r case A. Again i t  seems tha t a l l  the case B solutions 

which have 'T'^ ^  0 everywhere are such th a t diverges to

in f in i ty  at some point (but in th is  case, diverges less rap id ly

than ) .  I t  has not been possible to conclude e ith e r th a t these

universes are closed or tha t they are open.

In the proper time along a tr - lin e  between two tr-constant

hypersurfaces is  given, as before, by

V/z.
A " T  =  -e A t  .

The behaviour of is  apparently as follows (fo r  a l l  case B

solutions)

1^4 0 >£ i n i t ia l l y  decreases but may reach a non-zero

minimum and increase again.

0 -e^decreases monotonically to zero i f  /3 '> - and

increases monotonically i f  A " “

0 -6  ̂ increases monotonically.

The slope of the n u ll curve, d r r / d t  = ( -e ^ /-e ^ ) 't  , is  >  1 near 

= 0 fo r a l l  case B solutions but th is  is  not necessarily the case 

for a l l  T-") 0 .

For solutions such tha t >  0, the displacement of spectral

lines appears to be always to the blue end of the spectrum (fo r , as
-4mentioned e a r l ie r  i t  is  necessary tha t V% 0 fo r  "Tn. ^  0 near

"T = 0, and th is  in  turn im plies, fo r case B solutions, th a t ”3 ) • ^

A te s t p a r t ic le  i n i t ia l l y  a t res t in  such a universe w i l l  move in to
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the sp a tia l orig in  (a t which the acceleration and force is  zero, as 

b e fo re ).

6 .4  Regular Solutions Asym ptotically of Constant Curvature

In section 4.3 we inves tiga ted the existence o f series solutions 

fo r large values of the ra d ia l coordinate consistent w ith the boundary 

condition of asym ptotically constant space-time curvature. The 

formal series expansions (3.19) were substituted in to  the f ie ld  

equations in  order to obtain rela tionships between the constants 

ClL , . We made the conjecture tha t the only solution of th is

form fo r unrestric ted  is  the Einstein space (4.27) .  In  add ition , 

we obtained the resu lt th a t such solutions may ex is t fo r  certa in  

discrete values o f ^ ( p = ^  ^  , . . . ) ,  each

solution having the form

6 . 6

where irl is  an in teger and at leas t one p a ir  , bp ( ^ '  ̂ 3)

is  non-zero, higher coe ffic ien ts  being expressed in  terms of a 2. , 0.3 

and Clp . For a l l  such solutions the curvature in var ian t is  a constant 

( R  = - 12/Qj^ ) ; th is  fa c t is  not inconsistent w ith th e ir  form a t 

the o rig in  being regu lar. We thus search among the numerical 

solutions (the deriva tion  and properties o f which have been examined 

e a r l ie r  in  the chapter) fo r any which are asym ptotically o f de S it te r  

form. The de S it te r  form is  given by (3 .5 ) (putting  G = 1):

cLs  ̂ •= — 6.7
\ — 3,

We now deal w ith cases A and B separately.
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Case A

Numerical solutions are based on the series expansions (4 .2 ) fo r  

small T ’ , fo r which the de S it te r  solution is  2 ^  = / clq = \ ,

where LA = V%_ = - /12 . We have s e t , fo r reasons given prev iously,

do = 1 and, fo r case A solutions, Rs = 2 . Then = -A -/3  = -  .

Now any regular case A solution tha t is  asym ptotically of constant 

space-time curvature tends to the form (6 .7 ) with - j \ / 3  = - .  This 

is  so because fo r the large T* expansions of section 4 .3 , R. = -  12/Q 2 . 

Setting th is  equal to Z  we obtain = - 6 . Now since the de S it te r  

solution i t s e l f  (with i n i t i a l  values ^  -  1) must arise as a

member o f the numerical solution s e t, we obtain from (6 . 6) tha t do =

1/ . Then the asymptotic form (6 . 6) becomes

I -  d l’' 4- +. J . y  _ °-
6 6 4- 6 Syi 'Y'l y\_— 3

6 . 8

which has the correct lim itin g  form (6.7)  with -_A. / 3 = - ,  as 

requ ired. Thus we can make sp e c ific  the asymptotic values sought 

fo r the numerical solutions.

The convergence o f C, ^  given by (6 . 8) to the de S it te r

values may be slow, but th a t o f the components of the stress-energy 

tensor w i l l  be much more rap id . From the formulae (A 2.21), (A2.22) 

fo r the R icci tensor and the curvature in v a r ia n t, and the expansions

(6 . 8) fo r -6 ^  , , we have, asym ptotically (putting  “K = 1) :

T ' ,  ■=- -L 4- 0 ( A )  0 ( A )  ’

T i -  0 (A)  ̂ 0 (vQ ’
T |+  =  -L  4- Q ( A )  ■*“  û  ( A )  ■

A thorough search was made fo r solutions of the required form fo r

each of the values P> = -.A- , _L J_ IL  and IZL . For the two
^  U A  6 ' Z  i z  IX

larges t values of ^  i t  was found th a t there seem to be values o f u^.
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£or which the numerical solutions bear some qu an tita tive  resemblance 

to the appropriate de S it te r  form. However, i t  was also found tha t 

th is  is  true fo r any value o f exceeding the approximate value ^  .

The closeness between the numerical and desired values is  in s u ffic ie n t  

to enable us to draw any pos itive conclusions; i t  is  d i f f ic u l t  to  

know what to make of these re s u lts .

Case B

By a s im ilar argument as fo r case A the asymptotic behaviour 

sought is

1 "  ÿ ' \
'T'

Qvx

A i -hXA 4- 23.
b  6

■ 1 
T* ryvn-̂ L. )

6.10

t ! = A  0(A11 4- 0(+i) )

A - A  0 (4Q1 +- 0 (F l )
6.11

-t*M-
1 u ~ ^  4- 0  (ipFi) ^ 0 (;.■)

No solutions corresponding to values of jS given by I2> ~ ,

-y , “  or were found with the asymptotic form (6 . 10) ,  (6 . 11) .

However, i t  was found th a t fo r values o f not exceeding the approxi­

mate value - - j^  , there e x is t numerical solutions fo r a wide range of u^. 

such tha t nrj , ~T\ and approach the value - . The ra te  o f

convergence is  dependent upon u^. and, as we would expect, is  

unobtainable for ( la I— y  oo (since the solutions must approach the 

lim itin g  forms o f space-times I I  and I I I ) .  The convergence of 'T \ 

is  observed to be more rap id  than th a t of and , which supports

the conjecture tha t the value of rL , prev iously taken to be greater 

than 3, is  in  fac t grea ter than 6 , The convergence of -6 ^  ,

however, was very slow and over the range considered these functions 

were only q u a lita t iv e ly  o f the required form. Some such solutions  

are indica ted in  Fig. 15.
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The numerical results  described in  th is  section are not in accord 

with our expectations. We make the follow ing suggestions:

( i )  The possible values of ^  are not given by a monotonically 

increas ing sequence as conjectured in  section 4 .3 . Th is , however, 4

seems u n lik e ly  as experience with the series expansions indicates  

tha t by working to higher orders increas ingly pos itive values for ^  

must be obtained.

( i i )  The series solutions fo r  the specific  values of jÔ considered 

do not correspond to solutions regular a t T' = 0 .

( i i i )  Those solutions tha t are regular a t ^  = 0 and also asym ptotically  

of constant space-time curvature do not possess series expansions which 

include in te g ra l powers only o f 1 /T  . An inves tiga tion  of more 

general series expansions forms than those studied in  section 4.3 is  

required. (We note in  th is  regard tha t space-time I I  has exponential 

terms in  i ts  large-T" expansion).

6.5 Conclusion

The numerical solutions obtained give some ind ica tion  as to the 

nature o f the s ta t ic ,  sph erica lly symmetric solutions perm itted by 

Lanczos’ equations, but are in  no way as in s tru c tive  as the exact 

solutions. However, i t  has been seen, in section 6. 4 ,  how numerical 

methods may be h e lp fu l in  deciding the s u ita b i l i ty  of certa in  assumed 

asymptotic forms fo r  the solutions.
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F ig . 14

Numerical solutions o f Lanczos' equations in  the s ta t ic ,  spherica lly  

symmetric case, corresponding to the m etric ( 2 . 8) ,  under the imposition 

of the boundary condition of re g u la r ity  at the sp a tia l o rig in . F ig. 14 

consists of F ig. 1 4 (i) and Fig. 14 ( i i )  and covers case A solutions;

j  K  =  + z  .

A succession of solutions is  shown fo r ( -1 , +1) and A e (- 0 .5 ,

2 .0 ) . Increas ing values o f and of & are shown in  successive

rows and columns respective ly. For increas ingly negative (positive) A

values of U_2. , the behaviour o f the numerical solutions fo r  a l l  values 

of p  approaches th a t o f the l im it  o f the special case of space­

time I I  (space-time I I I ) .  The de S it te r  solution occurs when =

The behaviour o f solutions in  a l l  cases for values o f j3> 

more negative than - 0.5 or more pos itive than 2.0 does not d if fe r  

sub stantia lly  from the behaviour fo r the la t te r  two values.

The range o f in tegra tion  was generally T  6  (0, 20), but i t  is  

not necessary to depict th is  in  f u l l .  A broken lin e  indicates tha t 

the curve is  completed outside the v e r t ic a l range shown.

Using subscripts to id e n tify  p a r t ic u la r solutions, so tha t 

Fig. 14(1)^  ̂ denotes the numerical solution fo r U.2_- ~ 0 .5 ,

we make the follow ing observations:

Examples of solutions with 0 everywhere are

F igs. 1 4 (i)s %  , ( 1)3 ^̂  ; , ( iiX X )i (oL = (CL =

1 ,2 ,3 );  ( i i ) , ^  , ( i i ) i ^  .

The region w ith in  which 0 (or A 0) fo r each solution is

distinguished by a green (or red) lin e  along tha t p art of the h o r i­

zontal ax is .

IV A ‘■ ' . I ' A - ‘ •'
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jS = 0.0 2 .0

T'
2 .0

- 2 ‘ ^2T 6

1.0

T

1.0 1.0 1.0

-T'0 0 0

1.0

= 0

1.0

3.0 0 3.0

1.0

2.0 0 2 . 0

(de S it te r  space-time) ^ 2.= " " 6

1.0 1,0 1. 0 1 .

"T' nr
0 2. 0  0 2 .0  0 2 .0

F ig .  1 4 ( i )

■-Ü
J
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P  = 0.0

.0

T

0.5

i
3

(6 =  2 . 0

3.0

.0

.0

0 2 . 0

1.0

iasïMîïisTïre

1.0  -

3.0 0 2.0

1,0

^  2 . 0  0 T  3.0 0

1,0

3.0 0 2.0

,0

= 1 jV, = "

1.0

2 .0  0

Fig. U C ii)

1,0

3 .0 2 .0
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f ig -  .15

Numerical solutions o f Lanczos' equations in the s ta t ic ,  

spherica lly symmetric case, corresponding to the m etric (2 . 8) ,  under 

the imposition o f the boundary condition of re g u la r ity  a t the sp a tia l 

o rig in . Fig. 15 consists o f Fig. 15( i )  and Fig. 15( i i )  and covers 

case B solutions:

A succession o f solutions is shown fo r uL^e ( -1 ,  +1) and p e  ( -2 .0 , 0 .5 ) .  

Increasing values of and of A are shown in  successive rows

and columns respective ly. For increas ingly negative (positive) values 

of , the behaviour o f the numerical solutions fo r a l l  values of A

approaches th a t of the lim it  of the special case of space-time I I  

(space-time I I I ) .  The de S it te r  solution occurs when ,

The behaviour of solutions in  a l l  cases fo r values of 3̂ more 

negative than -2 .0  or more po s itive  than 0.5 does not d i f fe r  

su b stan tia lly  from the behaviour fo r the la t te r  two values.

The range of in teg ra tio n  was generally Y  & (0 , 20).

With s im ilar nota tion as fo r Fig. 14, we make the follow ing

observations :

T H'
^  0 everywhere are:

Figs. 15(ii)^^^ , ( i i)^ ^ ^  , (ii)^^^ , (ii)% ^^ , (ii)|^^^ , (ii)j^^ j^

The region w ith in  which >/ 0 (or 4  0) is  distinguished as in

Fig. 14 by a green (or red) lin e  along tha t part o f the horizontal 

ax is.

Examples of solutions which are asym ptotically o f de S it te r  form

are :

Figs. 15(i)^^ , , (ii)o(,^| , ( i i )o i ,z  » = I , . . . A )

and are d istinguished by a yellow lin e  along the v e r t ic a l ax is.
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8 = -0 .5 =  0 . 0

OL^- - 1 , Vi. =

1/.01. 1.

0 .5

1.

0

1 .

0 2

1, 1.

1.

2. 002 . 0  0

1.

1 .

2. 0 2

1.

-r

1 . 1.

2.0

1 .

2 .0

0

2 . 0  0 2.0

Fig. 15(1)
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7. THE APPLICATION OF BUCHDAHL'S METHODS AND THE SET 

OF "CLASS 2" SPHERICALLY SYMMETRIC SPACE-TIMES

7.1 Introduction

In  order to consider the f ie ld  equations under the imposition of 

spherical symmetry we assumed in  section 2.4 the usual, and conceptually 

convenient, m etric form (2 .8 ) .  I t  has become c lear th a t th is form is  

sometimes inappropriate and, in  certa in  cases, completely inadequate 

fo r the exh ib ition  of certa in  spherically symmetric solutions of 

Lanczos* equations. For example, we are not able to solve the 

equations o f the coordinate transformation tha t would enable us to 

exh ib it space-times VI and V II  e x p lic it ly  in the form (2 .8 ) ,  and there 

is  no transformation whatsoever th a t w i l l  take the m etric forms of 

space-times V, V I I I  and IX in to  (2 .8 ) .  I t  may thus be advantageous 

to consider the f ie ld  equations obtained from a d iffe re n t spherically  

symmetric m etric form. '

The set o f a l l  sph er ica lly symmetric space-times is d iv is ib le  

in to 'tw o  d is jo in t classes. Following Takeno,^^ the lin e  element of 

any class 1 sph er ica lly symmetric space-time, S\  , may be w ritten :

‘S.. “■ 7.1

and tha t of any class 2 spher ically symmetric space-time, 5^  ̂ :

where H  is  a constant. Thus space-times I  >IV, VI and V II  are

class 1 wh ile V, V I I I  and IX are class 2.

Class 2 sph er ica lly symmetric space-times are sometimes disregarded. 

In establish ing a generalised form o f B irkho ff's  theorem, Bonnor^^ 

dismisses of no physical s ign ificance, a t any ra te  fo r a

spher ically symmetric f ie ld .  This is because the surface area of a
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sphere in  an 5^, is  independent of the ra d ia l coordinate and has the 

constant value . Bonnor's generalisa tion sta tes: Every

■phys'taally s'ign'ifCaant spherioa tty symmetrio sotut'Con o f  the f te td  

équations R-^cr = -A. may he reduaed^ by a coordinate transformation^ 

to the s ta t ic  E ins te in  space (4 ,2 7 ). I f  Sg '̂s are not regarded as 

w ithout physical s ign ificance then th is  generalisa tion does not hold, 

since Rpo- = d V  g admits a time-dependent solution d is tin c t

from (4 ,2 7 ). B irkh o ff's  theorem in  i ts  o rig in a l form^^ (Y d  = 0) is  

s t i l l  tru e , as there are no solutions of -  0 representing s .

To elim ina te  S^'s from discussion on the aforementioned basis 

does not seem ju s t if ia b le ,  since the geometrical properties o f any 

n o n -tr iv ia l space-time w i l l ,  to some extent, be at variance w ith our 

experience. I t  is noticeable tha t solutions o f Lanczos' equations 

arise in fa m ilie s , the members o f which share certa in  properties. We 

thus seek the completion of the set of s ta t ic  solutions o f

Lanczos' equations containing space-times V, V I I I  and IX. In order 

to do th is , we must adopt a su itable  form fo r the lin e  element; 

preferab ly one which may also lead to fu rth er s ta t ic  S ,  solutions.

In seeking a su itab le  form fo r  the line  element we take in to  

account Buchdahl's examination^ o f the f ie ld  equations ar is ing  from 

the Lagrangian . The m etric which he employs and the f ie ld

equations obtained from the Lagrangian R f f o r  such a

m etric are given in section 7 .3 . In section 7.4 we achieve our 

objective in  obta ining the class of s ta t ic  solutions of Lanczos'

equations. F irs t  we b r ie f ly  describe, in section 7 .2 , the method 

employed by Buchdahl to obtain the theorem (given in  section 3.2) 

concerning s ta t ic ,  asym ptotically f la t  solutions of the f ie ld  equations 

generated by the Lagrangian , ind ica ting  the complications that

arise when R  is replaced by the combination 4- R?"
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7.2 Buchdahl's Theorem

The method used by Buchdahl to demonstrate the non-existence of 

s ta t ic  asym ptotically f la t  solutions with R  ̂ 0 of the f ie ld  equations 

generated by the Lagrangian R,^ is  applied, as fa r  as possib le, to 

the f ie ld  equations (2 .3 ) generated by 4-^ RY . We proceed

as follows :

An Einstein space = A  fo r which A  = 0 is  called a

sp ed o t E instein space Vg and is  distinguished by the subscript 0 . 

A (postulated) fam ily o f solutions of the equations (2 .3 ) represents 

spaces neighbouring to Vg , at leas t w ith in  some region

The m etric o f any is

where £ is  a s u ff ic ie n t ly  small constant parameter which can tend 

to zero and the (and th e ir  deriva tives to a s u ff ic ie n t ly  high

order) are f in i t e  and continuous in 3) . Retaining only terms lin e ar  

in  £ , we may w rite

Rpo- = , R =  eP 7.3

( P  = Ppcr ) •  Denoting throughout th is  section covariant
O *

deriva tion  in  and by a colon and a semicolon respectively,

the f ie ld  equations (2 .3 ) are

R  : cxrr +  R^cr : oC-'y "  cr :px ~ /> t crod

7.4

^9^0- 9 R “  R î^cr R ; OyO 9po-R Ry^cr) 0  •

To the required order

R|Ocr ^  ;

P*.|Ocr — £ P j jocr
7.5



7.6

- 1 2 6 -

so th a t , using (7 .3 ) and (7 .5 ) ,  equations (7 .4 ) reduce to  

q . 1- 0 °^^?  - P ° ^  - P ° ^J per ) (k/1 y  per j oC.'T * o" p  j croc

- i-p  ( ^ 9  pa- 9 *̂ "' P ~  P'jpo- ~ P)Oÿo) =  0  '

Transvecting (7 .6 ) w ith and using
o

(  P )  ; p r  =  0  ;  7 . 7

we obta in , i f  |3  ̂ ^  ,

P-,0i-T =  0  . 7 . 8
o

Using (7 .7 ) and (7 .8 ) in  (7 .6 ) ,  we obtain

The set o f equations (7 .9 ) replaces the simpler set o f Buchdahl:

P j p o -  = 0  . 7 . 1 0

We note tha t the f i r s t  consequence, (7 .8 ) ,  o f (7 .6 ) contains very- 

much less inform ation than (7 ,1 0 ).

Buchdahl now proceeds by d iffe re n tia t in g  (in  Vg. ) (7 ,10) and permuting 

the la s t  two indices to obtain

By re la t in g  the components of R  • pcrT in  the four-space to the

components R  . in  the cons tant hypersurface of , i t

is  only necessary to apply stra ightforw ard tensor calculus to reach 

the conclusion tha t P  must be a constant. Since is  to be !

asym ptotically f l a t ,  th is  constant must have the value zero. Under 

the conditions of con tinu ity  and d if fe r e n t ia b i l i ty  imposed e a r l ie r  

upon the m etric , any \lp  ̂ is  neighbouring to in  a certa in  region ^

. •I--./-'... V .
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so th a t the theorem follow s.

We see tha t the manipulation o f the set (7 .9 ) is  a very d iffe re n t  

m atter. I t  has not been possible to proceed with the analysis in a 

s im ilar fash ion, and although P -  constant is  s u ff ic ie n t to  s a t is fy  

(7 .8 ) (which holds only i f  |S ) ,  i t  may not be necessary.

We cannot say th a t Buchdahl's theorem is  also true fo r  the equations 

of the Lagrangian

7.5 The F ie ld  Equations in  Buchdahl's Coordinates

The f ie ld  equations ar is in g  from both and Rpo- ^

( f  ) have the f i r s t  consequence tha t

R jotT  =- 0  . 2.7

In terms o f the generic form of the general s ta t ic  spherically  

symmetric m etric

t" s'unYÔ -f" cLt:  ̂ 7.11

considered by Buchdahl, (2 .7 ) reads

W  -X )- irp Q  0  J 7.12

(a dash denoting d iffe re n tia t io n  with respect to t " ) .  Now one o f

the functions X  , yoc , may be prescribed a r b i t r a r i ly  subject to

the condition th a t n e ith er jJ<- nor V  must be taken as constant

(fo r taking ^  = constant re s tr ic ts  us to S^'s only and we do not

want an a p r io r i  d istinguished time coordinate, which would follow  

from 1) = constant.) Buchdahl makes the choice

7.13

so tha t (7.12) becomes

R" = 0 ,
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when ce

R  =  R 5 7.14

where R and B are a rb itra ry  constants. We follow  Buchdahl in  

the choice (7.13) so th a t the m etric form now to be employed is

~ —-6  ̂ ( d- - A  d t^“ ; 7.15

in  which X  = A. (T  ) ,  l )  = \> (-r ) .  We know in  advance tha t every 

solu tion must s a t is fy  (7 .1 4 ).

W riting x ' h t" , = G , xY  = c|) , = t  , the 2p(r »

g fo r the metric (7.15) are given in appendix A7.3 by (A 7.1), 

the C h ris to ffe l symbols of the second kind by the set (A 7.2),

the components o f the R icci tensor and the curvature invar iant

R by (A 7.3 ), (A7.4) respective ly.

As explained in  section (2 .4 ) ,  the Gpcr given by the la t te r  o f 

(2 .3 ) must s a t is fy  the id e n tity  (2 .9 ):

0  )

whether or not the f ie ld  equations Gjb<r = 0 are s a t is fie d . In  

consequence the follow ing id e n tity  is  obtained fo r  the m etric (7 .1 5 ):

~  ë )  ^  ^  • 7-16

In add ition , i f  the f ie ld  equations (2 .3 ) are s a t is fie d ,

G- G-| 4- Z  -h = 0  , 7.17

From (7.16) and (7 .1 7 ), excluding the two p o s s ib ilit ie s  ( i )  ~ ,

( i i )  X  = 3'V'^ , the f ie ld  equations are s a t is fie d  i f  both G* = 0

( i .e .  i f  R=R + 12rr since, from (2 . 6) ,  G* = 2 (1 4- 3 ^  ) R ) 

and Qr\ = 0 .  We now deal w ith the cases ( i )  and ( i i )  :

...L
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( i )  X  = . In th is  case we must ensure tha t 6 *\ = 0 and  ̂ 0 ,

( i i )  X  = 3V^ , Inserting  €, = in to  (7.15) we arr ive  a t

the m etric form

d s ^ =  -i-42ydk^. 7 , 1g

Transforming the ra d ia l coordinate through

the m etric form (7.18) becomes

ds^ ~  £ d .T " (p )y ‘"“ ^ ^ C c lô X -s X Y O c i c p R  A  d . t "  « 7.19

Now (7.19) is  o f the form (2 . 8) in  which d i^ /o lp  = 2 /p  ; as mentioned 

in  section 2.4 there are no solutions o f Lanczos' equations o f th is  

type.

We thus require the equations Q , = 0 ,  G2.2- = 0 fo r the m etric  

(7 .1 5 ); these are given in  appendix A7.3 by (A 7.5), (A7.6) respectively, 

The = 0 equation, used fo r checking purposes, is  redundant and

is not given. I t  should be noted th a t we have expressed the 

co e ffic ien ts  of ^  (denoted -6>̂  ) in  (A 7.5), (A7.6) in  terms o f X  ,

"V , th e ir  deriva tives up to second order only, the curvature invar iant 

R  = R ■+■ B v and i ts  f i r s t  d e riva tiv e . By examining the Gp, i t  is  

clear tha t Buchdahl's choice o f coordinates does indeed form ally  

sim p lify  the problem of the solution o f the f ie ld  equations generated 

by R  . Employing the sub stitu tion

X  =  2)U. 4- AT -  3  B x  J ~  —LL 4-AY -  Bzv J

where

Bzu
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in  the Lagrangian IRA ( i t  is  equivalent, but more laborious, to 

make the substitu tion  d ire c tly  in to  the f ie ld  equations = 0 ) ,

Buchdahl reduces the problem to the solution of a s in g le , second 

order, non -linear d i f fe re n t ia l equation, the appearance of which is  

"deceptively simple". L i t t le  o vera ll s im p lifica tio n  is obtained by 

the use of a s im ilar sub s titu tion  in  our f ie ld  equations.

The f ie ld  equations based on the m etric (7 .15) are thus no less 

complicated than those based on (2 .8 ) .  The m etric (7.15) has the 

disadvantage tha t i t  is un fam iliar: in  these coordinates the l im it

o f s p a tia l in f in i ty  corresponds to  X  —> 0 and the Schwarzschild 

lin e  element, as given by Buchdahl, is

~  i 6  -eT ( dl0*"+ olk^ .

(which is  regular in  0 Cnr £ oo ) .  However, (7 .15) has the 

required property th a t i t  is v a l id  fo r the representation of any 

s ta t ic  5%. , as is eas ily  demonstrated. An is  generally given

by (7 .2 ) .  Coordinates nr and -b may always be introduced such 

tha t (7 .2 ) becomes^^

(the t i ld e  over the and b  coordinates is  henceforth om itted). 

Furthermore, as mentioned in  section 4 .5 , sa tis fa c tio n  of Lanczos' 

equations (2 .3 ) by cLcr  ̂ = ensures th a t they are also

s a t is fie d  by cLs^ = E  dcT^ fo r any constant E  ; thus E  may be 

put equal to un ity  with no loss in  gen era lity . Then any s ta t ic  

solution of Lanczos' equations may be cast in to  the form

'VC'd) V

cLs^ =  s'uA"^6d(|)4 -f-G. d k  . 7.20

We see tha t th is  is  prec ise ly  the m etric form (7.15) where X ( t ' )  = ’V  (n r ).

j_>L:— Li..."2 1 1" i-'—• j: I'ii .-V'.-.-s't‘ r- k
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Thus the form o f the lin e  element adopted by Buchdahl is  su itable fo r  

the determination of a l l  s ta t ic  5?^ solutions o f Lanczos’ equations.

7.4  The Set of "Class 2" S ta t ic , Spherically Symmetric Solutions 

The metric form to be used is  (7.15) with X  = , and, as

mentioned in  the preceding section, we must ensure th a t both Gi, = 0 

and Gz% = 0 are s a t is fie d . Since R = R 4- B'r" fo r  a l l  solutions, 

we may use th is  substitu tion  fre e ly .

When X  = \ )  the curvature in v a r ia n t, from (A 7 .4 ), is given by

R- - R t" b T' t  z. ;

so tha t

7.21

Putting X  = "V in  the G |i = 0  equation (A7.5) and substitu ting  

from (7.21) fo r -C  ̂ ( and i ts  f i r s t  d e r iv a t iv e ), (7 .5 ) reduces

to

4- (ZiAB +• ( (i 4-2^) =  0  , 7.22

By a s im ila r procedure, the second f ie ld  equation (A7.6) becomes

■X- ( 4- il-H')) (  ̂4-2^3 0  . 7.23
4-

I t  may be shown without d i f f ic u lty  tha t both (7 .22) and (7 .23) are 

s a t is f ie d , and are consistent with (7 .21) in  the follow ing three 

cases only:

1. P ~ ~ 2̂  = (2 - B ) - Bt^ ,

2 . A ll  values o f p : B = 0 , A = 0 , "V = 2 ,

3. A ll  values o f | 0> : B = O ,  A  = 4 , = - 2 .

A



-132-

Case 1 » p} — — -X ,

l )  '0̂  “ (2.— B ')—B'Y". 7.21

We consider the two cases B /  0 , B = 0 , separately.

( i )  B f 0 . The general solution of (7.21) in  terms of known

functions appears to be unknown (see appendix A 7 .4 ). A p a r t ic u la r

solution of (7.21) is

=_L  ̂ (%- ,

corresponding to the solution of Lanczos' equations given, from

(7 .2 0 ), by

dls^ — .-T-A?'... Ax   cl.(|X) b __ BG_______ 7.24

( R  = R + Bb' ) .  We re fe r  to (7 .24) as Space-Time X. When the 

a rb itra ry  constant R in  (7.24) is  put equal to zero, space-time X 

is  conformai to the S\ solution of Lanczos ' equations fo r |2> -  - ,

space-time IV.

( i i )  B = 0 . Then (7 .21) becomes

=--z . . - f t  . 7.25

When 2 - B >  0 the follow ing R  = constant -  A solutions of

(7 .2 5 ), (a ), (b) and ( c ) , e x is t:

(^) cose,cB^ (  C  ( b - D ) )  5
(X -B )

where C and %) are add itional a rb itra ry  constants. This corres­

ponds to the solution of Lanczos ' equations given by

-  Cde^ + S 7.26
( 2-- B) s LaVd Lc Cy" -D)) (t.- B) stXM' C.C (y" -1 ))
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which w il l  be re ferred  to as Space-Time X I . We note tha t by putting  

the a rb itra ry  constant R  equal to zero, space-time XI becomes 

conformai to the j6  -independent 5 , solution of Lanczos* equations, 

space-time I I .

(b) ^  Z  , _J_____
(Zr“ Fl)

where c\_ is  an add itional a rb itra ry  constant. This corresponds to 

the solution of Lanczos' equations. Space-Time X I I :

sdv»-0 d d /' f- , 2 .J ' ^ _____. 7.27
(q_— 14) a  ) (%.— A'- — (A

Again, by putting  R equal to zero, space-time X II becomes conformai 1

to  the |0-independent S \ so lu tion , space-time I .

co\cc ^ I  C R '  -Jj')) ^
[Xr- A) '

where C  and are add itional a rb itra ry  constants. This corresponds

to the 5>, so lu tion . Space-Time X I I I ;

dLs^ =  _ b ________________ 7.28
l% - CC ( r  Dl) m s D A

Putting R = 0 , space-time X I I I  becomes conformai to  the |0 -independent

S) so lu tion , space-time I I I .

When 2 - B < 0 the follow ing R = constant = R solution o f

(7 .25) ex ists:

(d) (A _ 2 _. _ CC ( i— 1))1 .

where C  and J> are add itional a rb itra ry  constants. This corresponds

to  the so lu tion , Space-Time XIV ;

-b 7.29
( B -2A Cosk^ (CCf"- 1̂1) CoSk^CcCr-D))

This cannot be conformai to an S,  solu tion , since a l l  solutions

with - 0,1 = 0 ,̂̂  ̂ have been found and comprise the set o f space-times

- _ b ' . y Y  V f * ; . X y *
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I  > IV .

V/hen 2 - R = 0 the follow ing R = constant = 2 solution of

(7.25) ex is ts :

where C  and T) are a rb itra ry  constants. This corresponds to the 

so lu tion . Space-Time XV:

d r r ^ -  Cd0^+ sdL’-edL4>ft 4- . 7 .30

C learly the a rb itra ry  constant "P is  superfluous as i t  may be 

removed by a simple coordinate transformation.

The study o f Case 1 is  concluded.

Case 2 . Solutions fo r a l l  values of j3 . B = 0, B -  0 , R, = 0 , 1

•v"-e‘ ‘̂ = Z  . 7.31

The solution of (7.31) is described by Case 1 (a ) ,  (b) and (c) in  

which R is  put equal to zero. Now a l l  R= 0 solutions of

Lanczos* equations have been found so th a t (a) _ _ , (b) ^ _ andM n "0
(c) ^ must reduce to  three of the space-times obtained in  section  

4.4.

(3̂ ) p, m etric (7 .26) becomes (w riting  p  in  the place o f T  ) :

=• _ £ ± _ _ _ _ _ _ _ _  C o L f - -  dp^) -  I  4 - s C r , ' ^ »  d J ) ’ - )  7.32
SLn,k^CcCp-T))) '

In the m etric form (4.44h) representing space-time V I I I ,  put

T" ~ _L 4-cxwla. tc(p~'P)) ;
C ’

' " ...t. . . . . .  1 • ’
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to obtain the form (7 .3 2 ).

(b)^ _Q The m etric (7 .27) becomes (w riting  p  in  the place of y" ) :

~ ( — ( cL k^ -c lp R  — C d S ^ b  sm .^0 c(cj)b . y  gg

In the m etric form (4 .4 4e ), representing space-time V, put A" = p> - a. 

to  obtain the form (7 .3 3 ).

(c)p _Q The m etric (7 .28) becomes (w ritin g  p  in  the place of -r  ) :

d & ^ = -----------   (cLb-^-do^ - ( d 6 ’'- ' -S w “-0 oUb4 . 7.34
sU-îCcCfO-T») '

In  the m etric form (4 .4 4 i) ,  representing space-time IX , put

n r ^ -—L + G u ri. ( c C p - D ) )

and set

'a : = c
3

to obta in the form (7 .3 4 ).

Thus the solutions covered by Case 2 are space-times V, V I I I  

and IX .

Case 3. Solutions fo r  a l l  ^  . A = 4 , B=0,  R  = 4 ,

=  -%  . 7.35

As stated in  section (4 .3 ) ,  the most general solution of Lanczos’ 

f ie ld  equations sa tis fy in g  R  = K  0  and independent o f p  is  

given by the set of E instein  spaces Rpo* = j / \ .  gao- . For our choice 

of metric (7.20) we must therefore expect the solution o f (7 .35) to 

be the s ta t ic  solution o f Rpcr = ' That th is  is  so is

e ffe c tiv e ly  shown by Bonnor.^^ The solution of (7.35) is

™  Cc -D)') J
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where C and 'P  are a rb itra ry  constants. This corresponds to the 

solution

• 7.36

This p  -independent solution may, o f  course, be obtained from the 

m etric (7.29) by se tting  R = 4. We re fe r to (7.36) as Space-Time XVI, 

although since i t  is  a solution of Rp^-= -A_ i t  cannot be regarded 

as a new solution of Lanczos' equations.

7.5 Summary

In th is  chapter we have combined an exam ination o f Buchdahl's 

methods, as applied to  the f ie ld  equations generated by the Lagrangian 

R  > with the search fo r  the set o f s ta t ic  class 2 spher ically  

symmetric solutions of Lanczos' equations. The complete set o f such 

solutions is  given by space-times V, V I I I  and IX , together w ith:

Space-Time X ( p  = -  X  )

--------------   (cLk^-'-clb'R — sLnYG . 7 .37(a)
y lZ —B) — B b j*

(A more general m etric is  given by solution of the d if fe re n t ia l  

equation (7 .2 1 ).

Space-Time XI ( j3  -  -  ~ )

“  -----—   (dt'^-dT'R  -  (oL6V-Suri?6-d , 7 . 37 (b)
sW i,^(c(rr-{D)) ^

(2 - B X 0 ). When B = 0 , (7.37b) is  a solution fo r a l l  p  and 

may be transformed in to  the m etric form of space-time V I I I .

Space-Time X II (p  = -  X )

 -------& --------- (. cLtX- — ( d6^ b  sXBG' R  . 7 .37(c)
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(2 - R > 0 ). When IR = 0, (7.37c) is  a solution fo r  a l l  j3 and

may be transformed in to  the m etric form o f space-time V.

Space-Time X I I I  ( ^  = - ^  )

;  7.37(d)

(2 -  R >  0) .  When R = 0, (7,37d) is  a solution fo r a l l  A and

may be transformed in to  the m etric form of space-time IX .

Space-Time XIV ( p  = — ^  )

-- 7 .37(e)( n “ Z) coskR Cc C-r -T>T)

(B - 2 '> 0) .  When R = 4, (7.37e) is a solution fo r all^g

sa tis fy in g  R^cr = and represents the m etric form o f space­

time XVI.

Space-Time XV ( |3 = -  X  )

(isf- ^  -- c l^ /9  ' 7 .3 7 (f)

Space-Time XVI

(d L b ^ -c l^ 4  -  (  cUS^-h 7 . 37(g)
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8 . CONCLUDING REMARKS

I t  is possible, as mentioned in  section 2 .2 , tha t the inclusion  

in  the action Lagrangian of the lin e a r term R, would y ie ld  a more 

r e a l is t ic  model. By introducing an extra dimensioned parameter in  

th is  way we break the gauge invariance of the theory, and thereby 

open up the p o s s ib ility  o f fix in g  the "s izes” of the solutions, which 

in  the present theory allow a rb itra ry  stretching or contraction.

Such a gen era liza tio n , however, would considerably weaken the f ie ld  

equations which, we have seen, allow a f a i r ly  large manifold of 

solutions, a t leas t in  the spherica lly symmetric, s ta t ic  case. In  

order to obtain some ind ica tion  o f the d e s ira b i l ity  o f weakening the 

f ie ld  equations, a de ta iled  study of the properties o f the universes 

corresponding to each o f the exact solutions obtained in  chapters 4 

and 7 is  im perative. We have already seen (in  chapter S) that Lanczos' 

equations do indeed perm it physically in te res tin g  space-times; fo r  

example space-time I I I ,  which corresponds to the superposition of an 

electromagnetic f ie ld  and a p erfect f lu id ,  and space-time V, which 

represents a pure electromagnetic f ie ld .  I f  fu rth e r solutions are 

physically sa tis fa c to ry  a weakening of the f ie ld  equations would , 

although in te re s tin g , not seem necessary.

The p o s s ib ilit ie s  fo r fu rth e r study are, of course, numerous.

We have mentioned th a t the properties of the universe corresponding 

to each exact solution must be examined in  d e ta i l .  In  add ition , we 

may ask what would happen i f  one space-time were to impinge in  some 4

way upon another. Our discussion of space-time I  indicates tha t the 

constant of in teg ra tio n  CL may represent some central mass. The 

geodesic equations o f motion w i l l  t e l l  us how a neutral te s t p a r t ic le  

w il l  behave in  a Schwarzschild f ie ld ,  or in  space-time I ,  but they 

cannot t e l l  us, fo r  example, how a Schwarzschild mass w i l l  behave in
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space-time I .  A study o f th is  behaviour, perhaps by examining the 

equations o f motion o f the system in  the weak f ie ld  approximation, 

could be very in te re s tin g .

Apart from the study o f the universes already obta ined, there is  

the p o s s ib ility  o f obta ining fu rth e r solutions. One feels almost 

certa in  tha t there exists a class of s ta t ic ,  spherica lly symmetric 

solutions with non-zero, constant curvature in v a r ia n t, perhaps w ith A 

present as an a rb itra ry  constant. The f ie ld  equations in  the form 

based on the m etric (7.15) have not been studied in  any d e ta il;  i t  is  

possible tha t since they have led to  several R . = K  0 solutions

(space-times X I  ̂ X V I) , the m etric form (7.15) may w e ll be more

appropriate fo r  use in  the deriva tion  o f add itional solutions of 

th is  nature.

Does there ex is t a form o f B irkh o ff’ s theorem fo r Lanczos' 

equations? That is ,  suppose we remove the condition th a t the spheri­

c a lly  symmetric f ie ld  should be s ta t ic . Then is  i t  possible to show 

th a t the time dependence o f any solution may be elim ina ted by reducing 

tha t solution to one of the set of s ta t ic  solutions? Only one form 

o f symmetry has been considered in  our present work. In examining, 

fo r  example, c y lin d ric a l symmetry i t  may again be p ro fita b le  to look 

fo r  the set o f p» = -  so lu tions, as these (a t any ra te  in  the 

spherically symmetric, s ta t ic  case) may be obtained w ith l i t t l e  

d if f ic u lty .  Then those solutions tha t s a t is fy  the f ie ld  equations 

fo r other values of j3 in  add ition to {3 = - -^  may be obtained.

In seeking the fam ilies  which contain the la t t e r  so lutions, the 

solution set may be b u i l t  up.

In  expla in ing how he arr ived  at the f ie ld  equations



-140-

E instein  sa id "Not fo r a moment, o f course, did I  doubt tha t th is  

formulation was merely a makeshift in  order to give the general 

p r in c ip le  o f r e la t iv i ty  a prelim inary closed expression." The theory 

of g rav ita tio n  tha t has been presented is  a ten ta tive  extension of a 

te n ta tiv e , but b e a u tifu l theory. I ts  fru itfu ln e ss  must, as in  many 

th eo re tica l s tudies, be subjective.
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A2

A2.3

Deriva tion of the F ie ld  Equations (2 .3 )

We consider the set of equations deduced from the action p rin c ip le

§ 1  =  0 .  A2.1

where

oLSc 3 A2.2
%

under the assumptions tha t is a bounded region in space-time with

boundary S , where 0 ^ ^ . ^ 0 j u r u > s u c h  tha t and its  f i r s t

deriva tives vanish on S . Performing the v a r ia t io n , with X given

by (A2.2) we obtain:

S X 5 RT% Rpo- + 2 pR 6 R)
%

d" ( R p tr R i ■ |3 R 0  \/ r) I  o l ̂ 'OC . A2 . 3

We define and

Using , we have:

, A2.4

noting tha t the var ia tion s  form a tensor, but th a t the v a r ia t ­

ional operator 8  and the operation of ra is in g  and lowering indices 

do not commute. Since RT = 9 ^ 9 ° ^  the var ia tions of the

contravariant form of the Ricci tensor and o f the curvature in var ian t 

are given by:

SRP"= gf’A' g”" +- R^v

=  9 ^ "  V  -  9 ° ^  V  ) A2.5

8R = S ( •

'-Y'r % A '< ;
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Using the formulae (A2.5) the sum contained w ith in  the f i r s t  round 

brackets under the in teg ra l sign in (A2.3) is  found to be:

Our aim is  to express the en tire  integrand in  (A2.2) in  the form

where Hyuv is  a function of the and Ry^v and th e ir  covariant

deriva tives and contractions. With th is  in  mind, we express the 

contents of the second bracket in  (A2.3) in th is  form, using

S a R 3 ' = ^ a F 0 ~ , A2.7

so th a t , substitu ting  from (A 2 .6 ), 6 1  becomes

c l^ x  .

I t  is  now necessary to obta in in  terms of and th e ir

deriva tives. At any selected event P  we may choose coordinates 

such tha t the C h ris to ffe l symbols f vanish there ( lo c a lly  geodesic 

coordinates). Thus, with the Ricci tensor defined by

R  :z -  I „u I + I----I--------_ I------------fp ]---I p o ^ jo c  I I I ocU I o ip  I pv.V

the var ia tio n  of the R icci tensor reduces a t P  to:

t- . A2.9

In such a coordinate system the f i r s t  p a r t ia l deriva tives of the m etric  

tensor vanish. Then, since

% J /



  - • .— :

- 1 4 3 -

and

the quantities S <̂x and 6 required on the r ig h t hand side

of (A2.9) are given by

+ 4 - 9 '̂ '" ( _ .Üà^àüLV A2.10
^  àlO ’’ ciOCŜ  GlLM- Ô7t'=̂  A?(RI

=  â Æ r  (tX) '
where (A2.7) was employed in  obta ining the la t te r  of (A2.10). Thus, 

a t the point P  ,

S R m j = i  f  °Xp(r(  \

-  l_cP^( - ^ 2im . -I- -   ...
^ d'xŜ èoĈ  090^3 91/  ̂ éx̂ '^ôx'"*'/ A 2 . 1 1

Consider the terms on the r ig h t hand side o f (A2.11). At P , the 

terms in  the second bracket are given by

â x » fc .  =  5 ( R S .) )

+ Xr &  ^  (% ) '

SO th a t  the second term on the r ig h t hand side o f (A2.11) becomes 

3 X/-W )OL'T “ ^  X 'z

■'t'f A 2 . 1 2

ï-àl? ^  ]

9 '̂ '̂  L ^ >  (R Q  " p . ,  iT fQ I

which is  equal, a t P  , to :

-_ L y ' _______
Z ̂ 6x/̂  ôoc"̂  ̂ J

'■'*-• • '■-'■■ ■ "-■ -< .......  ' V . ... . .. ■  ' ■■   -' Ç . - »■■ , .. .v.-.-;_
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wh ile the f i r s t  term may be w ritten

T  • A2.13

Then, from (A 2.11), using (A 2.12), (A2.13) we obtain fo r :

P  Jl^cc'R-tv A2.14

p  R-vk^/a

Using the formula fo r changing the order o f double covariant d i f f e r ­

en tia tio n  in  the th ird  and fourth terms on the r ig h t hand side o f 

CA2.14) th is reduces to:

Now (A2.15) is  a tensor equation; hence i t  is  true a t the point P %

in any coordinate system, and since P is  a rb itra ry , (A2.15) is  true  

everywhere and in  a l l  coordinate systems.

Examining (A 2.8 ), i t  is  the quantity , where = 0

is  a symmetric tensor, th a t is  o f in te re s t. Let us 

consider the terms in  the expression 2 8 R ^  with given,

quite generally, by (A2.15):

( 1) =  ( p P i S p j o c r  -  jy^ .^  , •?

(2) ^ iV^5yA - y '  , ^2.16

Stra ightforw ard manipulation o f each o f the terms (1 ) > (4 ) in  (A 2.16), ,|

(equ ivalently , by the properties o f adjoint b il in e a r  forms) y ields  

the re s u lt:

cLV =. Sû rfxco. In.teg«Ai ,
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where

PjuLV "  0  ^  30^9* "  ^  . ^ jV o C  ■" j^ ' V  jyULoC

The surface in te g ra l vanishes by v ir tu e  of the assumed conditions on

and the f i r s t  term under the in te g ra l sign in  (A2.8) may thus 

be replaced by

and we have achieved our aim to express the integrand in  (A2.2) in

the form H^v.v ^ > fo r (A2.8) then becomes:

[ 9 °^ If’/Avjoio- “ I’ V ' ' * *  “ P'Rj/Aot

« a |  -Q  c l ‘ 0 C  ,

which must vanish, by (A 2 .1 ), fo r  any such th a t i t  and its

deriva tives vanish on the boundary S . Then from (A2.17) we have:

9 "P 0yAV ]p J<R'9' P j-VoC « -p

where A2.18

(A2.18) may also be w ritten  in  the form (2 .3 ) . This completes the 

deriva tion  of the f ie ld  equations.

A2.4

Formulae fo r Spherical Symmetry

The formulae (A2.19)-----^ (A2.22) corresponding to the m etric

form (2 . 8) may be obtained from the general formulae fo r spherical 

symmetry given by S y n g e . N o t e ,  however, th a t the conventions used
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here are in  accordance with those specified  in "Notation". Only-

surv iv ing components o f the various quantities are lis te d .

Components o f the m etric tensor:

3n

II
e

C h ris to ffe l symbols o f the second kind:

H i  -  ) r %2 =- I ^3 ~ r^lv =

1 * 7 ^ =  J ^  COS6  5

r 7 : = 4 r ,  n
s

2% c o t

Components o f the R icci tensor:

• t=  -e,

R | = -  R  _ ,

R t =

y-X.

The curvature in var ian t:

R =  €  | ( - ^ - v ' X v " +  4- Y ^ ' )  +  X ( _  x v ' +  z x ] 4- .

Lanczos’ Equations (in  which oL =  (l+2p  ) ,  V =  (1 + 4 ^ )) :
■zx

16

A2 19

A2.20

A2.21

A2.22

c6 f 8v'"v' + l+vv*-- Sv'X'X

+ IZ v 'X '’-jj’ -  I6 t j ' ’-X '('+ '4s)]

+  L  -IX'^J-’ - S v a '  (5+l6;&l-l6X"(2)'*-S^')4- IXY'^(3+8p)j

r j j

= 0 .
" '[t a

A2.23
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G
M-

16

= 0

oi( I6v"' + l6 -v '" 'v '-l+v"v '^+  lZ v ''^ -v '* '‘-i4 .8v '"X ' 

-32-v"X" -36V"V'1' -Sv'X.'"

+ Z8v'A"X' - IXV'X'̂  - 8v'"-X" +

+ 1 |  6A.v"'oc +8 iJ ''-u '(5+/+.^')-f+V'®ÿ - 8 v "X'(|5+3Z^)

-  8d 'X" (5+IX^') + lv'V'X'’-(i3+Z'â ')-8-V'̂ X'(3+'2̂ ') 
-16% "^ + 5 6 \ " X ÿ  -  

t  0 1 . V  I l  +  8 | â )  + •  S  V ' X  1 3 + i 4 . p )  - 1 b x y  + 4 X ' '  ( ' I + 2 n . / a ) ]

oC
yti-

A2.24

G: = r ± . G '^ + Z v ' X " - Z v ' X ' ^  + v '^ A ' )
i v  h - f *  \

+ X  ( w "  -  -  V  '’■4-X'A

+  -& [ ^ 3  (

4 - | 3 | - ( v ' + - ^ ï f -  ^ G ' + ± - ) R é : V

'Ŷ 'X

I C T''

=: 0  »

A2.25
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A3

A3.2

Lemma

The value tha t may be taken by the constant m in  the series  

expansions (3 .9 ’ ) fo r  the functions  ̂ is  re s tr ic te d  to  un ity .

The constant in  the expansion fo r may be set equal to

un ity  by a transformation of the time coordinate. I t  is  c lear from 

the f ie ld  equations th a t the constant CLg, in  the expansion for  

must be un ity . Then, from (3 .9 ')  we assume tha t may be

expanded;

J X .  I m  . n  r.= 1 -1- ^  +■

i -k k l  4- ^
wv y.. "Xm

A3.1

fo r  some constants CL\ , , . . .  , , b .̂ , . . .  and for some

pos itive  number /vc such th a t at leas t one o f o.̂  , is  non­

zero. We sh a ll see th a t , according to  the f ie ld  equations (2 .1 3 ), 

th is assumption has v a l id ity  only when wu has the value un ity .

The series expansions (A3.1) are to be subjected to the f ie ld  

equations (2 .1 3 ). In order to do th is  the necessary terms in  the 

expansions fo r the deriva tives 7 8  , and fo r the

curvature in var ian t are obtained from (A 3.1). These expressions 

are then substituted in to  the determinate system o f equations (2 .1 4 ),  

(A2.25) and the co e ffic ien ts  of successive powers o f i/'y^ are 

equated to  zero.

I t  is necessary to re ta in  rn ly  a very few terms in  the various 

expansions. The nota tion is  employed to ind ica te  tha t higher

order, non-contributing terms have been omitted. Then, from (A3.1);

-  H -

7^ ^  ^  , -v)' ^  -b tw v'y ZTvwt-V )
-a// / a , , .  A3.2A. Imrhl) b,irw(vvL4-\) ,

,ys, wt+x"""' M.4-1L
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From (A2.22) the curvature in var ian t is  given by:

-Z O  . A3.3

Substituting from (A3.2) and (A3.3) in to  the expression on the le f t  

hand side o f (2.14) and equating the resu lting  c o e ffic ie n t of 

to  zero we obtain:

A3.4

Since YVL is  p o s itiv e , [A3.4) allows the two p o s s ib ilit ie s :  e ith e r

p  “ 0 or m, = 1. Assuming now th a t vvl ) and proceeding in  a 

s im ilar manner fo r the equation (A2.25) we have :

OLj m- 0  =-0  5

which is  a contrad iction unless Ol̂  = 0 .

There is  thus no po s itive  value for m. , other than u n ity , such 

tha t at leas t one o f 0,̂  , bj is  non-zero. This is  the required  

re s u lt.

A3.. 3

Three Lemmas

For the sake o f c la r i ty  and w ith no loss in  gen erality  the 

constant cLq in  (3 .14) is  throughout th is  section set equal to un ity  

corresponding to a transformation of the time coordinate.

The proceedure to be followed is  the same in  each lemma, and 

follows tha t o f the lemma o f the preceding section, A3.2. The series  

expansions assumed in  each lemma are to be subjected to the f ie ld  

equations (2 .1 3 ). In order to do th is  the necessary terms in  the 

expansions fo r  the deriva tives ^  , 18  ̂ , and fo r  the

curvature in var ian t are obtained from the assumed series expansions. 

These expressions are then substituted in to  the determinate system o f
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equations (2 .1 4 ), (A2.25) and the coe ffic ien ts  o f successive powers 

o f T  are equated to zero.

As before, the nota tion is  employed to ind ica te  tha t terms

in  the expansions tha t w i l l  make no contribution have been omitted, |

Lemma I

The values tha t may be taken by the constant A in  the series  

expansions (3.14) o f the functions eP , Ô8  are re s tr ic te d  to some 

or a l l  of the numbers 0 , 2 , -  2 .

For small T" , may be expanded, from (3 .1 4 ):

= 1 . . .  ^

fo r some constants A, , . . .  , , . . .  .

We need only calcula te  the lead ing term in  the expansion fo r R, 

From (A2.22) th is  is  found to be:

Substituting in to  the le f t  hand side o f (2 .1 4 ), the condition on A 

is  obtained:

A ( A - b Z ) ( A - Z )  = -0  * A3.6

Then, from (A3.6 ) ,  A can take only the values 0, 2, - 2.

Lemma I I

The values th a t may be taken by the constant A in  the series  

expansions (3 .14) o f the functions -cA , ^  are re s tr ic te d  to the 

single value 0 .

The cases A = 2, A = -  2, w i l l  be considered separa tely.
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Case ( i )  A = 2

From (3 .1 4 ), w ith A = 2, and -A are assumed to  have 

expansions :

-e^ ~ 1 4- CL\T' 4- . . . .  ^

-gP = ( \  ■+■ C^T' Hr C-x' '̂  ̂ 4- ' . 0  ) A3. 7

fo r some constants ci% , a.%̂  , . . .  , C\ ,........... ................. ............

A prelim inary in ves tiga tion  indica tes tha t the coe ffic ien ts  

, Cj in  (A3.7) must vanish. In  view of th is  the series  

expansions (A3.7) are rew r itten

^ = .1 4 -  4- . . .  j g

fo r  some constants , cx l̂+ i  ̂ > Cn-n > •••  and fo r some

integer TL . I t  is  assumed th a t there exists r l  such tha t at 

leas t one o f the lead ing p a ir  o f coe ffic ien ts  a^x, in  (A3.8)

is  non-vanishing. We s h a ll see tha t the equations (2 .1 4 ), (A2.25) 

are inconsistent under th is  assumption.

Reta ining only necessary terms in  the expansions near 't̂ ' = 0, 

we obta in , from (A3.8):

^  /A, I 4-  ̂ ^  +. ^

r-J VL.(yi-'0   ̂ KL(\A.. -T) 7

Then from (A2.22):

^ |^^(vi4-2r)ayv -  VL(vL4"'b) CyTj • A3.10

Substituting from (A 3 .9 ), (A3.10) in to  the expression on the le f t  

hand side o f (2.14) and equating the resu ltin g  co e ffic ie n t o f 

to  zero (th a t of vanishes id e n tic a lly  because A = 2 ):

- - - ' - - '    ■..•.■■■ . .-y.,-. ■   . ■ . 2'. ;_.J -J>. \ -Ji .
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1

A3.11

Proceeding in  a s im ilar fashion fo r the equation (A2.25) and equating 

the resu lting  co e ffic ien ts  o f T' ^ , T ' t o  zero we obta in , 

resp e c tive ly :

^  Si — 13 /  IA- 0  3

Cn 4- 6 b) 4‘ CL/̂L k - I 6)  — 0

A3.12 

A3.13

where, in  (A3.13), we have subs tituted fo r the value of p> from the 

condition (A3,12).

Since Rt cannot be zero, (A3.11) and (A3.13) are contrad ictory unless 

Cmu = 0 and e ith e r  3 riA = 16 or CLrc = 0. Since, by hypothesis, RL 

is  an in teg er,

CL ft — 0 — c •

Then there is  no value of TU fo r  which at leas t one o f CLŷ , C is  

non-vanishing, which is  the required re s u lt.

I t  should be noted tha t although the fa c t th a t a l l  the CL,x and 

On, vanish suggests th a t

constitutes an exact so lu tio n , th is  is  not the case. For i t  was 

mentioned in  section 2 ,4  th a t when cli.^/cir = 2/ t  , i . e . ,  =

constant , i t  is  not s u ff ic ie n t to solve the p a ir  (2 ,1 3 ); the

p a ir  (2 . 11) must be used and these inconsistent under the substitu tion  

oL'U/d'C = 2/X ' .

We may thus dismiss the value A = 2, as i t  is  forbidden by the 

f ie ld  equations.
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Case ( i l )  A = - 2

From (3 .1 4 ), w ith A = - 2, -(A and gP are assumed to  have 

expansions :

— 1 + O.gT' +- " ̂  -I- p . . ^

^ A3.14

fo r  some constants d^ , a^, > ••• » d, , , . . .  .

We s h a ll show th a t the equations (2 .1 4 ), (A2.25) are inconsistent under 

th is  assumption.

Retaining only necessary terms in  the expansions near T' = 0, we 

obtain from (A3.14)

i -b 'U r ( I  4- c, r )  )

gpiX 5

Then, from (A2.22):

R Constant • A3.16

Substitu ting  from (A 3.15), (A3.16) in to  the expression on the le f t  

hand side of (2.14) and equating the c o e ffic ie n t o f 1 /T ^  to zero 

we have

CL \ ~ 0  '

Then, from (A 3.16),

 ̂ Constant . A3.17

S ubstituting from (A3.15) in to  the expression on the le f t  hand side 

of equation (A2.25) using (A3.17) the contrad iction

= o

-!- ■ vr '. I f , . .  . ...
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is  obtained. Then the f ie ld  equations do not allow the value A = - 2, 

The lemma is thus proved.

Lemma I I I

The series expansions fo r the unknown functions of the

m etric (2 . 8) fo r small values of the rad ia l coordinate T'’ include 

only even powers of T  .

From (3 .1 4 ), with A = 0, -cA , A  are assumed to have expansions 

which may be w ritte n  as the sum of an expansion in  terms of even 

powers of T  and an expansion in  terms o f odd powers of T  :

A3.18

^  y - -  ,
in  which LL is  an odd, pos itive  in teg er, yvu takes a l l  non-negative 

in teger values, constants with = 1

(according to (3 .1 2 )) and = 1 (by a transformation of the time 

coordinate). I t  is assumed th a t there exists KL such tha t at leas t 

one of , Wo is  non-vanishing. Our aim is  to show th a t th is  

assumption is  contrad icted, which w i l l  prove the re s u lt.

I t  is f i r s t  shown th a t the only possible value of such tha t 

the la s t  mentioned assumption may not be contrad icted is ru = 1 .

We sh a ll equate to zero the c o e ffic ie n t o f the lowest odd power of T" 

appearing on the le f t  hand side o f each of the equations (2 .1 4 ), 

(A2.25). Retaining only necessary terms in the expansions, we obta in , 

from (A3,18):

rv W o T -'^ - ' , A3.19

y  n,(v i-f) UoT'"”̂ } - o " ^  yi-(vx-\) W(iT^"4

 ■■■ . •   -.......   -• - - ' ' • V ' ,  ̂ ^
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Then, from (A2.22):

R '^  4- T' ^ ( l<L4-1̂ )(,%.uo -  K Wo) 4- Constant A3.20

A3.21

Substituting from (A 3.19), (A3.20) in to  the expression on the le f t  

hand side o f (2 .14) and equating the resu lting  c o e ffic ie n t of 

to zero, we obta in:

(yx-2Z)lvC-r)l\<L4- T) = 0 ;

and from (A2.25) we obta in s im ila r ly :

Ll (~ u .q4.-Wn) 4~ (. Z.u Q -vvva ô)R IZ ~ v'\) “  Ih  =  0  . A3.22

From (A 3.21), we must consider four cases, ( i ) , , . . , ( i v ) .

Cases ( i ) , ( i i )  yt = 2, yy -  - 1.

These may be dismissed immediately as contrary to the assumed

nature o f XL .

Case ( i i i ) X u o  = vlWq .

Since vx, ^  -  1, the condition (A3.22) may be replaced by

LL(-uio4-W()) 4- 0 . A3.23

Substitu ting  Z.U.Q = vlWo in to  (A3.23) y ie ld s , since YL 0  ,

CLq Wo 5

which implies again tha t VL = 2, which we have already dismissed.

Case ( iv ) v l = 1.

Subs tituting th is  value of in to  (A3,23) gives:

A3.24

This case requ ires a more deta iled  exam ination. The expansions 

(A3.19) are replaced by

■iiirnirr "" iï-. , XX:. J
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4Z. 1 H - u iç j 'T  +  ^ - ç y l 4 -  W g ^ - r  4 -  W % ,n r ^  ^

T '  Z u ^ -U o *"  ) y ' ' ~  Z w ^ - w „ ^

Then, from (A2.22)

R ^  : ^ ( 4"Cl 0 — 2  Wo) 4- ( 6 u ^ - 6 v\^-  6 u ^ 4-â  lÂ Wy) 4-& ' A3.26

Substitu ting  in to  the l e f t  hand side o f (2 .14) from (A 3.25), (A3.26)

and equating the c o e ffic ie n t of T' ^ to zero (th a t of now

vanishes id e n tic a lly , o f course) we obta in:

 ̂60q — LLo)(— LAq 4* Wg) ~ 0 '  A3.27

Using the equation (A2.25) likew ise (though i t  should be noted tha t 

fo r ease o f manipulation the equivalent equation (A2.23) is  to be 

preferred) :

- Z Z  LL^ 4- 6 Uo Wo -%  4  Wo -  Z'UoR -  0 A3.28

(Equating the c o e ffic ie n t of to zero gives (A3.24) aga in).

Equation (A3.27) yie lds the p o s s ib ilit ie s :

(a)Wç,= ZUo J

(b) Wq= U q ».

We consider these two cases separa tely.

Case (a ) . Subs titu ting  Wq = Z-u.© in to  (A3.24) we obtain

LLo “  0 .

Then Wo also is  equal to zero and we have the required contrad iction. 

Case (b ) . Subs titu ting  Wq = U q in to  (A3.24) we obta in:

Uo ( 1 4Zyi) ■= 0 , A3.29

‘ -‘■q" J.
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wh ile (A3.28) gives:

U o ^ ( 5 4  8 p ) = 0  V A3.30

C learly , (A3.29) and (A3.30) cannot hold simultaneously unless 

U-Û = 0(= Wo ) .  Again we have the required contrad iction. The 

expansions (A3.18) are thus in  terms of even powers of T" only.

Transformation o f the M etric  (2 . 8) from Pseudo-Polar Coordinates

to Pseudo-Cartesian Coordinates

The transformation from pseudo-polar coordinates "T , 6  , cj'. , t

to pseudo-Cartesian coordinates % ' , , o(.  ̂ , "x'' , is  accomplished

by w riting^^

OC' T-' •sCvv © COS. ^

OC? — 'T' COS 6  ; A3. 31

t: .

Then

where

'J X'

q.. -
A3. 32

1

r: X ' ckX j  t

cioP d id  =  ( dO'^” 4  cU R ) I

and (2 , 8) becomes

Then the determinant o f the m etric tensor, and the conjugate tensor 

to  are

■
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9 ; ^  ,

= ( 1 —-er^)'x4oçj — g 41
d -  i - z

A3.33

A3. 4

Lemma

There are no solutions o f the f ie ld  equations (2 .13) tha t are 

asym ptotically o f the form of the Einstein Universe.

The constant Vo in  the series expansions (3 .18) is  set equal 

to u n ity , as usual, and the method employed is  tha t o f previous lemmas,

From (3 .1 8 ), with Vo = 1, the necessary terms in  the series 

expansions o f and th e ir  deriva tives are:

-Ç. ^  4  LA y'T' J -€?* ^  \ 4* V' y

“ 2 i  4  -L f A3.34
T  \ LV-o j

2:± 4 - _L Z.V\
4 ^  t '’3 \ uLo j

Substituting in to  (A2-.25) from (A3.34) and equating the co e ffic ien t 

o f the highest power o f X  ( i . e . ,  tha t of ) to zero gives:

LLo U 4  3 |ÿ ) - O  ' A3.35

Since the value jS = - is  excluded, from (A3.35) we have U,q = 0 , 

which proves our re s u lt.

Now, supposing tha t u© = 0 but (X̂  ^  0 in  (3.18) we have, in

place o f (A3.34):
t

5 1 *r
V -T- %. )

) x )"  ^ z v ,  .
X  ̂

A3.36

J
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Subs t itu t in g  in to  (A2.22) from (A3.36) we obtain:

R  rx, -  . A3.37

Then substitu ting  in to  the le f t  hand side of (2.14) from (A3.36) and

(A3.37) and equating the c o e ffic ien t o f the highest power of x  (tha t 
-'hof X  ) to zero we have:

uv \ =  O »

We thus arr iv e  a t the asym ptotically Minkowskian form.

A3.5 

Lemma

The constant P\t> the expression (3.20) fo r the curvature 

in var ian t vanishes.

In order to obta in th is  resu lt i t  is  necessary to re ta in  terms 

which involve Q_L , b^ fo r L A. 5 in  the assumed series expansions 

(3 .1 9 ). However, manipulation is  fa c il i ta te d  i f  we i n i t ia l l y  re ta in  

terms which involve fo r Ù &  3 in  order to obtain

sim plify ing  re la tionships on the co e ffic ien ts .

From (3.19) the necessary terms in  the series expansions of 

CL ^  and th e ir  deriva tives are

y z  +- (Zb-X -  b d ) 4-. - S b t b t  x h r )  ^
f- 4 ^  4% 4  4-

X" X  - X l  -Z (Zb^-b,g -  |Ly(-3ib,̂ -3b|b-,
T""- 4Z. 4 4  , A3.38

q )  Z  -  y g- ( — X C L  4- O  r )  4  (— 3  tA T, *i~ Z o  \C\ Q  A  .
T’ X^  ' 4  4 ^

*4) r o  -  Z  4  '2.cx\ — 3  — Jx ( -  3  4 - 3  A  ' .1, -  Q 13  ,
4 Z  -p-q 4  g
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Subs tituting from (A3.38) in to  the expression (A2.22) fo r R. , we 

obtain:

A3.39
,a + Z a ' t 3 a b ,  ■+■ X a -  Z a  i.,,) | .

Then the c o e ffic ie n t of in te re s t, , is

R-2)~ 00 *̂ 3 ~ T ' U , + X a y b - ^  -v-3a^bj 4-2r\p —XapbE) • A3.40

The f i r s t  and second deriva tives of R. are obtained from (A3.39) and, 

together w ith the expression (3.21) fo r the combination (A 4% " A ^  "^^) ; 

substituted in to  the f ie ld  equation (2 .1 4 ). Equating the coeffic ien ts  

o f \ j x ^  , \ , and \ successively to zero, we obtain equations

(a ), (b) and (c) :

(a) CL\ —3b \ =  0  5

(b ) Ip Cl — 6 — S ex 4 . \ b , "h-X. =z
Z bo

Cc) 0  -  0  .

Substituting in to  the second f ie ld  equation (A2.25) from (A3.38),

(A3.39) and equating the co e ffic ien ts  of \ l x  , \ ( x ' - , \ j . xù  

successively to zero, we obtain equations (d ) , (e) and ( f ) :

( 4  ( a ^ - Z b i y i l  + ' 21-1̂ ') = 0  ,

which is  s a t is fie d , by ( a ) ,

(e) - 1C (S a ^  — lXb)^3 + - - I qg a , b, -L io /b ,,

+ ^ [ - x l4 . ( '? a j_ - i z b . : )  +  q 6 u,’ - - q t o , o ,  - H I / .  ' = 0  j
which, on sub stitu tion  from (b ) , yields

rvA  0  =- ^  '

Since ^  ^  ~  "3 , = b| = 0 .  Then, from (b ) ,

= - a / b „  , A3.41

'-WiGP



-161-

( f )  0  -  O  ,

Now, with the s im p lific a tio n  tha t O) = lo, = 0, we repeat the 

procedure re ta in ing  terms including a 4 and . From (2 .1 4 ),

equating the c o e ffic ie n t of \ l x ^  to zero, we obtain

O. = 0  )

which, since 0, and by (A3.41), gives

0-2. =0%  =  I /b o  > A3.42

From (A2.25), equating the co e ffic ien t o f t t o  zero:

( —Ip a i4  4 -3 lD q ,)0 + 3/ )  ~  O  ^

so th a t , since >

3 ^'+ ■

With the add itional s im p lific a tio n  (A3.42), re ta in ing  terms including  

CX.Q and 05 , we obtain from (2 .1 4 ):

10 ( - 5 ^ 5  d Z b s l  'b =^0 A3.43

while (A2.25) gives:

(1+3 |8 ')^ I0  ( - 5 a 5  4- =  O - A3.44

Since —l /Z and ^  0, (A3.44) and (A3.43) are consistent

only i f

Then, from (A3.40), = 0 as requ ired.
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A7

A7.5

Formulae for the Spherically Symmetric M etric (7.15)

The formulae (A 7.1)------^ (A7.4) corresponding to the m etric form

(7.15) may be obtained from the general formulae fo r spherical 

symmetry given by S y n g e , O b s e r v e ,  however, th a t the conventions 

used here are in  accordance with those specified in  "Notation” .

Only surv iv ing components of the various quantities  are l is te d .

Components of the m etric tensor:

9

2- 2-
-e' HH- )

A7.1
_V

e  .

C h ris to ffe l symbols o f the second kind:

' ' — "  ■ /  I— i lA
2- 2,

n -  sLaA- CCS&

I I—
>7) I t 2  ^ I 7. a”  c e t

-T4

A7.2

&

Components o f the R icci Tensor:

RgS = sLn/(5 F>%L ;
A7.3

R-W =- '<2̂  ^ ( “ A v 'O  .

The curvature in var ian t

K — (—X! 4- ^
Ù 0 Lj,

A7.4

I

i-'" . •• ? •• "‘■'V •••' I'Tfr.Li>
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Lanczos’ equations fo r the m etric (7 .1 5 ):

=•- ^  ( - 6 X " X '  + - 6 X 'X '^ + - B V ^ - 5  - Z X "  V "
16 I  8

+6XV*--ti-Z"Vv' +ZX'v"' - 4 Z'v'
i~V

4 - 2 2 - v ' 4 j  
2  J

-h-a^  l - O

"H -)-A 4- 'V ^

w4- -0 %. 2

t  6  (X “  v O e  ^ ^  -  I Fl^

““ Z R l j - l  t- £. ^ ^  (A '-V '^ )|

= 0 .

A7.4

A7.5

”3"̂  "  ̂ ,

G-„ =■ e  ^  ^  -l22 '''+Z 0Z "a '-25X "Z '4 l5A "4 j5X '*(--.zZ "'v ' 
l b ~  L 2

-XX'^V"-2Z"X'v' + 5X"v' - 6X'v'" +zxx'v"v '

X  — , 3i l XX' ' '  + M - V A 7 . 6
X/ 2

Solution o f the D if fe re n tia l Equation (7 .2 1 ) :

% > " — ( z —  ̂ (&  9̂  0 ] .

Putting X - = : ' [ ( 2 - H )  - E)T" ] , -e -^  = -2y  /  B > (7 .21) becomes

y  y " —y ' ^ + - 0 2  ~ 0   ̂ (  ̂ -  ot/doc) . A7.7
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This has the p a r t ic u la r solution y , :

I—  Z

t"
W rite y = y ,  (o c )x v (o c ) and put X  = -e in  (A7.7) to obtain

VV -vv  -  V ' —0 J ^ o l / d t )  , A7.8

Now w rite  V = z. and, since z  /  1, substitute d z /d t"  = to 

reduce the order o f the d if fe re n t ia l equation (A7.8):

1̂ 1=' = 2  |3^+  jp - - 3 0 “ ^  , ( ' = d / d £ ) .  A7.9

Substitu ting  cy ( z  ) = x/2 z / p  in to  (A7.9) we obtain

V  =" zE r- 4- q .̂  . A7.10

Making the change o f var iable  % = e  , (A7.10) gives

W rite % C t )  = - l/trc j^ (§ ) and ^ = \/2~ ^ to obta in from (A7.11):

One fu rth e r substitu tion

u(s) = , some y  ̂ 0 ,
\3  b t% ./

casts (A 7.12) in to  the form

Six*' -h CLUL̂  4- b s  — 0 3 ( / s  ol/cLs)  ̂ A7.13

where

CL ==- 1 — X '/Z *  , A7.14
3

' L k- - ---I ••' "7̂ ' >’5
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Now Kamke^  ̂ has discussed d if fe re n t ia l equations o f the form (A7.13) 

and makes the observation tha t when the constant cl i  or 0 the 

behaviour of the solution o f th is  d if fe re n t ia l equation in  the 

neighbourhood o f S = 0 has been described using a series expansion. 

Thus there appears to be no general solution of (A7.13) (and hence, 

no general solution of (7.21))  in  terms of known functions. We must

be content w ith the p a r t ic u la r  solution , which leads to

\ r  , . _ 3
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