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ABSTRACT

This thesis reports a study of the quantization of generally 

covariant and nonlinear field theories.

It begins by reviewing some existing general theories in 

Chapter 2 and Chapter 3, Chapter 2 deals with general classical 

theories while Chapter 3 examines various quantization schemes.

The model field derived from the Lagrangian density

is proposed in Chapter 4 especially for the study of general 

covariance. It is demonstrated that for this field general covariance 

alone does not appear to bring in anything physically new, A 

discussion is given on the differences between general covariance and 

Lorentz covariance. In subsequent chapters a generally covariant and 

nonlinear model field, a 4-surface of stationary 4-volume embedded in 

a 5-dimensional Pseudo-Euelidean space, is investigated. Firstly a 

manifestly covariant quantization programme is carried out. The 

model field is then examined in a special coordinate frame for the 

study of its nonlinearity. Various treatments of the intrinsic 

nonlinearity are examined starting with conventional perturbation 

theory in Chapter 6, The usual divergence problem in quantum field 

theory appears, in particular in the self-energy calculation of a



one-particle state. A new variational method is proposed in 

Chapter 8 which is able to lead to finite results for one-particle 

states,

The thesis is concluded with a chapter discussing some general 

problems involved and a chapter containing suggestions for further 

work.
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CHAPTER I

1.1. Introduction

It is well known that Einstein, who himself played a pioneering

role in the development of quantum physics and who was a revolutionary

in modem physics, persistently criticized quantum theory. One of

the reasons for his attitude towards quantum theory is that he did

not see how quantum theory could be made compatible with his theory
A1of General Relativity. It did not seem possible to him to quantize 

the gravitational field in the curved space. If this is indeed the 

case, the conflict between General Relativity and quantum theory is 

serious. We shall give an example^^ which will suffice to show this. 

Consider a microscopic particle together with the gravitational field 

produced by the particle. If the gravitational field is essentially 

classical, then by measuring all components of the field simultaneously 

one can determine both, the position and velocity of the particle 

simultaneously with any accuracy, thus violating the uncertainty 

principle. Hence the gravitational field must not be classical in 

principle. There are other arguments in favour of quantizing the 

gravitational field. Some of them will be discussed in the next 

section.

Various attempts were made, mainly in the past twenty years, to 

establish a quantum theory of General Relativity. Systematic attempts 

started with a series of papers by Bergmann^^ and his Syracuse school.



There are many others^^ who have done a great deal of work in this 

field, notably Dirac^^, Anderson, Arnowitt, Dese^, Dewitt, Gupta, 

Komar, Misner, It was Dirac who formulated the Hamiltonian theory 

of General Relativity in its present form. He also put forward a 

systematic quantization scheme. However, due to the tremendous 

complexity of the problem both mathematical and physical, there is 

still no completely satisfactory quantum theory for General Relativity

1.2 Objectives

Einstein’s theory of gravitational fields is fundamentally 

different from other field theories such as electrodynamics. quite 

apart from the sheer mathematical complexity of Einstein's field 

equations, the theory presents the following three major problems 

when we try to quantize it.

(1) General Covariance,

Einstein's theory is invariant with respect to arbitrary coor­

dinate transformations. This gives rise to mathematical and physical 

problems. The mathematical difficulties in effecting quantization 

lie in the existence of constraints in the Hamiltonian formulation, 

i,e, not all the canonical variables are independent of one another 

for reasons which will be discussed in Chapters 2 and 3, Physically 

one has great difficulties in relating the results obtained in an 

arbitrary coordinate frame to the results of measurements made by 

physical observers in some special coordinate frames. There are as
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yet no generally accepted coordinate conditions for the determination 

of a set of special coordinate frames to be associated with physical 

observers on earth, say. Indeed there does not seem to be any way 

by which one can experimentally test the validity of various choices 

of coordinate conditions. Furthermore one wants to know whether 

general covariance of the field equations will necessarily bring in 

anything physically new in quantum theory.

(2) Intrinsic Nonlinearity.

In conventional field theories such as electrodynamics, one 

starts with linear field equations and non linearity of field equations 

appears only after one introduces interactions, these usually arising 

from nonlinear coupling with an external field. The separation of 

the resulting theory into a linear part which corresponds to free 

fields and a nonlinear part which represents interaction is 

unambiguous and unique. In Einstein's theory of gravitational fields, 

the field equations are nonlinear even without coupling to any other 

field. There is no unique way by which one can separate such fields 

into linear and nonlinear parts. One can see this clearly in our 

discussion of a model field theory in Chapters 6 and 7. Thus one 

is not absolutely sure that the concepts and methods developed in 

conventional field theories are meaningful in such a case.

It is customary in the theory of elementary particles to assume 

that due to the extraordinary weakness of the gravitational field, 

about 10 of the strength of the electromagnetic field, one may
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completely ignore the gravitational field in the microscopic world. 

Thus, while it is intellectually satisfying to have a quantum theory 

of gravitation, it will apparently not make any practical contribution 

to elementary particle theories. However one should not be so 

certain about this. It is known that in the theory of differential 

equations, there exist solutions in a nonlinear system that cannot 

be reached by linear approximations. Hence it is quite possible^^ 

that one should not use a perturbation treatment in the case of the 

intrinsically nonlinear gravitational fields. In a rigorous and 

fully nonlinear theory, there may be something fundamentally new 

appearing, corresponding to the physical situation that very close 

to an elementary particle, the gravitational field becomes so large 

that the nonlinearity may play an important role. Even qualitative 

changes may occur. Perhaps it is possible to combat the divergence 

problem in conventional quantum field theories by incorporating the 

nonlinear gravitational fields. One may even go one step further 

and try to formulate a theory of elementary particles using intrin­

sically nonlinear field equations in the hope that some of the major 

difficulties arising from essentially linear field theories may be 

solved in such a new theory,

(3) Conceptual Problems^^

The challenge is formidable on this score. The field variables 

g^^ of General Relativity play a dual role in the theory. To start 

with one may treat g^^ as field variables for the description of
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gravitationai fields in the same way as the electromagnetic field 

tensor is used for the description of electromagnetic fields. The 

situation at the outset then appears to be fine and one may try to 

carry out a programme of quantization. Trouble starts when it is 

remembered that the same variables g are used to determine the 

metric of the curved space-time. It is extremely difficult to see 

what is meant by a quantized space-time. There are also great 

difficulties in formulating a quantum theory of measurements in a 

quantized space-time. Some investigations on this even lead to 

contradictions,^^

Each of these three problems arising from the quantization of 

General Relativity is important on its own and is well worth studying. 

We shall adopt the attitude that one should tackle the problems of 

general covariance and of nonlinearity first to try to achieve a 

technically complete theory. Only after this can one possibly have 

a rigorous solution to those conceptual problems. Hence the present 

arguments and difficulties should not be regarded as final. There­

fore in this thesis, we shall confine our studies to the problems of 

general covariance and of nonlinearity. Although the ultimate goal 

of the whole exercise is to achieve a quantum theory of gravitation, 

we shall not examine the above problems directly for Einstein's theory 

Instead some comparatively simple model field theories will be studied 

Our present aim is to gain some qualitative understanding of the 

problems as well as some experience for treating such problems, while
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avoiding the sheer mathematical complexity of Einstein's theory.

In Chapter 4, a model field theory which is generally covariant and 

exactly soluble is set up for the studies of the effects of general 

covariance in quantum theory. Another model field theory which is 

generally covariant and intrinsically nonlinear is formulated in 

subsequent chapters. Various treatments of nonlinearity are 

discussed. There is scope for a tremendous amount of further work 

to be done on these problems. Some of these problems most directly 

related to our present work are suggested for further research in the 

concluding Chapter of this thesis.
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CHAPTER 2

A REVIEW OF GENERALLY COVARIANT FIELD THEORIES
CLASSICAL THEORIES

2.1 Space-Time and the Group of General Coordinate Transformations 

First of all we assume that space-time is locally Euclidean and 

that it is possible to assign space-time coordinates. In general the 

space-time is assumed to be Riemannian with a symmetric metric tensor 

whose signature is conventionally taken to be -2. An example of 

space-time is the Minkowski flat space with the metric tensor

Suv =3 0 - 1 0 0  
0 0 - 1 0  

0 0-1

pv V yv

where y,v = 0,1,2,3, One may use different procedures for the 

assignment of coordinates leading to different coordinates x^, x^ for 

the specification of the same space-time point. We shall only 

consider procedures which lead to different coordinates related in a 

one-one and bicontinuous manner. We may write

= X^(x) ; x^ - x^(x) , and J = ^ 0.
9x

Only transformations with J > 0 will be considered. It is an 

intricate problem to aim at complete mathematical rigour in studying 

the set of coordinates and the transformations among themselves.

Our subsequent discussion does not require complete mathematical 

rigour at this stage. Therefore we shall speak loosely and regard 

the set of such coordinate transformations as a connected continuous 

group to be called the group of general coordinate transformations.



-8-

We shall mainly concern ourselves with some necessary properties of 

the set in order to form such a group. That is why we can afford to 

speak loosely. Firstly by continuous connectivity it is meant that 

finite transformations may be built up by infinitesimal transform­

ations which may be written as

+ e^(x) ; x^ = x̂  - c^(x) ,

where e^(x) are called the descriptors of the transformation.

Now consider the effect of two successive infinitesimal transform­

ations in different order, i.e.

+ E^(x) ; = x^ + E%(x) = + G^^x) + E%(x) + G%(x) G,(x) ,

x^ - x^ + e^^x) ; x^ = x^ + e^(x) = x^ + g^(x ) + e^Cx) + c^^x) e^Cx)
f..........  /r

Then

The then the descriptors effecting the infinitesimal coordinate

transformation from x^ to x̂ „ A necessary condition for a set of 

infinitesimal coordinate transformations with descriptors of a 

particular type to form a group is that Cg so obtained for any pair 

 ̂ ^2 be descriptors of the same type, i.e. we require the

infinitesimal coordinate transformation from x^ to x^ to belong to 

the set. The proof is obvious. Let us adopt a symbolic notation 

for the infinitesimal coordinate transformations, e.g.



Then
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x = T ^ x ; x = T ^ x =  TgT^ x ,

x = T ^ x ; x = T ^ x =  T^Tg x

- -1 -I // //X = X = T 3 X ,

T3 = T^T^T-" T;' .

The infinitesimal coordinate transformations being a group implies T^ 

is again in the set by the closure property of the group.

In the case of a Lie group, this becomes the necessary and 

sufficient condition for the set of infinitesimal coordinate trans­

formations to be able to be integrated to obtain finite coordinate 

transformations independent of the path of integration. The group 

of general coordinate transformations is however not a Lie group.

2.2 Geometric Objects and the Realization of the group of general 
coordinate transfomations

Geometric objects are defined to be objects which constitute 

the basis of a realization of the group of general coordinate trans­

formations. The central requirement is that :

if a geometric object y is transformed to y as coordinatesx x (x)
/ // / //' / and y further goes to y if x ^ x(x) , then y will be transformed to

jt // /y by the coordinate transformation x ^ x(x(x)).

Suppose we have a geometric object y(x) defined at a point x^. On 

a transformation x ^ x we have
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y(x) ->■ y(x) = FCy(x) ; x(x)) .

For the identity transformation we require

F(y(x) ; x) “ y(x) o
/ //For a further transformation x x

/ // // / / H iy(x) > y(x) = F(y(x) ; x(x)) .

Then the above requirement on the transformation properties of y is 

equivalent to the demand that

F(y(x) ; x(x)) = F(y(x) ; %^x(x))) ,

If a geometric object has more than one component, we write it as y. .

One can verify that scalars, and tensors defined in the usual way are 

geometric objects satisfying the above requirement on transformation 

law. However a finite set of such objects defined over a finite 

points in space-time cannot form the basis of a faithful represent­

ation of the group of general coordinate transformations. We need 

to have a field of objects defined at each point in the space-time.

In what follows we consider only such fields which form faithful 

representations of the group of general coordinate transformations. 

Infinitesimal transformations take the form of the usual 5-variation

y^Cxj y^Cx) = y^Cx) + 6y^(x) , where x^ = x^ + and ôy [x]

depends both on y^(x) and 

Another variation 6 is often used and is defined to be

Gy^Cx) = y^^x) - y^^x) = yA(x^E) - y^^x) = y^Cx) - y^(x) - y^^x)

<5ŷ (x) - y^(x) , V y^(x) = y^jx) to first order
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This deals with variation at the same value of variable and has 

therefore many advantages. An example is that Ô and differentiation 

commute.

Hence for any function F(y^) - F(y^(x)) ,

6F . F W  - F(x) . (Sŷ Cx)],̂  ......
A A 5 ]i

/
One also notes that if y^(x) is related to y^(x) by an infinitesimal 

coordinate transformation then

«ly^Cx) = s^y^(x) ,

to the first order of the descriptors which cause the 6̂  variation. 

For field theory, it is more convenient to express group properties 

in terms of 6-variation, i.e. change of the field variable y^^x) at 

the same numerical values of the old and new coordinates. For y^(x) 

to constitute a realization of the group of general coordinate trans­

formations, the central requirement is again as before, i.e. for any
/ I)two successive coordinate transformations x ^ x ^ x we have

y^(x) y^(x) -> y^(x) , then we require y^(x) to transform to y^(x] as
//

X X directly. It is of particular interest to consider infinite­

simal coordinate transformations for field. Let e^, be three

descriptors related by equation (2.1-1) and 5^, 6^, 6^ be respectively 

the corresponding 6-variation in field.
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B2We show that

is a necessary condition for y^^x) to be geometric objects. We use 

the same notation as that used in obtaining equation (2.1-1). Let
f f /  f f! I l l
y^Cx) y^(x) as ■> x^ ^ x*̂ and that y^(x) + ÿ^(x) y.(x)
/ //

as x^ + x^ ^ x̂ . Then

y^^x) = 6^y^(x) + y^(x) ,

y^Cx) = S^yh) + y(x) = ^gCâ^y^^x)) + + S ^ y ^ W  + y^Cx)

Similarly

J!
y^Cx) = 3i(G^yA(x)) + d^y^Cx) + Sgy^^x) + y^(x)

"  II
= >  ÿ^(x) - y^Cx) = GiCSgy^Cx)) - " (2.2-1)

II _ f(It is now obvious that y^(x) - y^(x) must equal G^y^^x) if y (x) are to
be geometric objects-. To the second order of descriptors we have

~ This is seen by operating on the y^(x)
expression bearing in mind that a 6^ variation is already of 2nd

order. So the statement is established.

2.3 Covariant Field Theories in Lagrangian Formulation
B3We shall follow the treatment by Anderson in this section,

though the formulation in its present form was first studied by 
B4Bergmann



2.3,1 Covariance Properties of Physical Theories

In a physical theory, one tries to associate mathematical 

quantities of some kind with physical quantities. These mathematical 

quantities may take on a wide range of values and a set of possible 

values of these quantities is called a kinematically possible 

trajectory. Not all kinematically possible trajectories may be 

realized by the actual physical system, A kinematically possible 

trajectory which can in principle be realized by the physical system 

is called a dynamically possible trajectory. The set of dynamically 

possible trajectories is then a subset of the set of kinematically 

possible trajectories. Dynamical laws or equations of motion are 

conditions for the determination of this subset. A physical theory 

is said to be covariant with respect to a group of transformations 

if two conditions are satisfied. Firstly the kinematically possible 

trajectory must constitute the basis of a faithful realization of 

the group. Secondly we require the realization associates dynamically 

possible trajectory with dynamically possible trajectory. For field 

theory, kinematically possible trajectories are described by field 

variables y^(x). Then covariance with respect to a transformation 

group is equivalent to the requirements that y^(x) form a faithful 

realization of the group and that equations of motion for y^^x) are 

unchanged with respect to any transformation of the group. In 

practice, the first condition is satisfied by choosing y^^x) to be a 

field of geometric objects. We are left with only the second 

condition to examine. We shall mainly be concerned with the group 

of general coordinate transformations in what follows.
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2.3.2 Determination of Equations of Motion

Assume the equations of motion for field y.(x) are derivable

from a variational principle with a Lagrangian density which is

explicitly a function of y.(x) and y (x) £  y (x) only. TheA A,v A

action integral is

Our assumption is that I be at a stationary value with respect to 

arbitrary variation of field variables subject only to the condition 

that the variation vanishes on the boundary surface S of the region R, 

Consider such a variation ôy^(x) - y^(x) ~ y^(x).

ÔI - I(y+ôy) - I(y) ,

I(y+-5y) = J^L(y+6y, y,^ + Sy,^)d^x

( % '>'*.» • ( (%: *"*]!> ■ i fe],„
The first term vanishes on converting to a surface integral over S, 

Hence we get

61 = 0 < = >  —  = 0

y

on account of the arbitrary nature of 6ŷ ,
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So the equations of motion are

^  0 .

The next obvious question is under what condition the variational 

principle will ensure the invariance of these equations of motion 

with respect to the group of general coordinate transformations, A 

sufficient condition is that jL should transform as a scalar density 

of weight This implies the action integral I has the same value

before and after a coordinate transformation. Therefore a kinematically 

possible trajectory in one coordinate system that corresponds to a 

stationary value of I will be transformed to a new kinematically 

possible trajectory in another coordinate system which will again 

correspond to a stationary value of I, This implies dynamically 

possible trajectories will always be transformed to dynamically 

possible trajectories and hence equations of motion must remain 

unchanged. Notice that above condition is a sufficient one but not 

a necessary one. Furthermore as addition of a complete divergence

will not change the equations of motion, it is sufficient to require 

Î" to transform as a scalar density of weight +1, The freedom 

to add a perfect divergence may be used to simplify equations of motion,

2,3,3 The Nother Identity and the Blanchi Identities

Let us examine the effect of an infinitesimal coordinate trans­

formation on the Lagrangian density which is a scalar density of 

weight ^1, Let J be the Jacobian of the infinitesimal coordinate 

transformation. We have
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■' ■ I#;' * ' -
— > 61.(x) - <f-(x) - <H(x) - - jLê

ôil(x) -- 6X.(x) - “X,e^ »
ÿ\i

We can also calculate 6JLthrough the change in the field variable y

y

A

' N . . '

where 6y^ “ 6y^ ” ^A y change in field y^ due to the

infinitesimal coordinate transformation.

Thus 6t^ £ 6y g where 6t^  ̂ 6y ,
,y a/A A a/Agy &

This is an identity called the Nother identity.

We now want to show that not all field equations are independent of 

one another and certain identities, called Bianchi Identities, exist 

them.

Assume the field y^ transforms according to

where are functions of

y^ and are descriptors of the 

infinitesimal coordinate trans­

formations ,
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For the usual tensor field, oY is of the form ̂ Av

^Av  ̂^Av * wïth being numbers independent of

Substituting the expression for 6y. into the Nother identity we get

where ~

»

Integrate this over an arbitrary region in space^time. One can 

convert the left hand volume integral to a surface integral over the 

boundary of the space-time region. The arbitrary nature of 

allows us to choose such that they vanish on the boundary while

remaining arbitrary inside. So the surface integral vanishes and 

we obtain

E being arbitrary implies

fA « fA)  ̂% 0 g valid irrespective of field equations.

Since the region of integration is arbitrary we conclude that these 

identities hold everywhere. They are called the Bianchi identities 

One sees that indeed not all field equations are independent as one 

would expect for covariant field theories. There are four of these 

identities for a theory admitting the group of general coordinate 

transformations as a covariance group, ITiis means that the number
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of independent equations is four less than the number of variables y. .

As a result it is impossible to fix y^ from the field equations alone.

We can impose 4 further conditions on y^ in order to fix y^. These 

are called coordinate conditions as one physically assumes that y^ 

should satisfy some special equations in a particular type of coordinate 

system.

We can draw more conclusions from the Bianchi identities. Let the 

second order field equations be of the form

where and the terms denoted by dots depend on lower order

derivatives of y»,
2

One sees that — — — r-— which is symmetric with respect

to A,B 5 the reason being that

,A _ 3 ra.C- i\

,p

Substituting this into the Bianchi identities we get

y + terms containing lower order derivatives ofA  V  i5 jj p  o  y

Ya  ̂0 .

Recall that these identities are satisfied for any y^ even those not 

satisfying the field equations.
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This implies that all the derivatives of appearing in the identities

are arbitrary. Hence it is necessary that

 ̂q for each v „Av

Of particular interest are the following 4 identities

H 0 , where "

If we treat ^s a matrix, then these identities imply that

kABOO 4 null eigenvectors ĵ ABOO therefore a vanishing

determinant and no inverse. We cannot solve for y^ in terms of 

lower order derivatives from the field equations. As a result it is 

impossible to obtain unique solution to the usual initial value 

problem, that is, one cannot give sufficient initial data on any 3- 

dimensional hyper-surface x*̂ = constant for the complete determination 

of the field variables elsewhere. To see this one can try to 

determine the field variables in a neighbouring constant surface 

by a Taylor series. One then attempts to express the coefficients 

of the Taylor series in terms of the initial data y . and y _

on the initial data surface. With the help of the field equations 

one can usually express y^ in terms of y^, q . Higher deriv-

atives A may be obtained by differentiating the field equations

with respect to x®. One can demonstrate this procedure easily with 

the Klein-Gordon Scalar Meson field.
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However this procedure breaks down in our present case because 

cannot be expressed in terms of y^  ̂in the first place. So 

one just cannot get the Taylor series to obtain the field variables 

off the original hyper-surface. This result is of course expected. 

The Bianchi identities take on a special form when we have a field 

whose components are all scalars,

■ ^A,y *̂Av  ̂ ""~̂ A,y “

So we have

which again lead to

«A.y = °

2,4 Hamiltonian Formulation

We shall follow Dirac's approach.Bergmann and his school^^ 

at Syracuse University also made significant contributions to the 

formulation. The problems relating to constraints, .in particular those 

having a direct bearing on quantization, ’-;ere analysed in detail by

2.4.1 Hamiltonian Formulation I
A 1 B7Anderson.

Let us work in a particular type of coordinate system for which 

surfaces with x° = constant are all space-like, A vector A^ is called 

space-like if g^^A A < 0, It is called time-like if g^^A A > 0, ̂ U V  ̂ y V
The name light-like or null vector is used for A if g^^A A =0,

]X ^ \i V
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By a space-like surface one means a surface whose normal is everywhere 

time-like. As a result, the tangent to the surface at every point 

must be space-like,

primary Constraints 

Define the canonical momentum density by

A _ sjiL.TT =

One then hopes that the set of canonical variables y^, n̂  ̂will be 

independent and that y^  ̂may be written in terms of 7r̂ ,ŷ  and 

eliminated. If this were true, one could proceed to define a 

Hamiltonian density and everything would be the same as for field 

theory in special relativity. However this cannot be the case since 

it would lead to a well-behaved initial value problem for the solution 

of the canonical equations of motion.which is contrary to the results 

obtained from Lagrange theory. Therefore one may anticipate the fact 

that not all y^^n^ are independent and that y^  ̂may not all be 

expressed in terms of The reason is obvious. Firstly we

have

97t̂  _ 9^ iL — > déterminent 1 ~ ™
®^A,0 3^6,0

using the Bianchi identities

Thus y g Q cannot be expressed in terms of
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Secondly we can show the existence of 4 equations relating y^ and 

without Involving y^ Q . Such equations are called the primary 

constraints. Recall the four Bianchi identities

D° a 0 ,A,u

where K^^OO = _ 3 ^
®^A,0 ^^B,0 ®^A,0 ®^B,0

and y ~ ^Ay^^ Xg , with being numbers for usual

Hence we have D®   £ 0 .

tensor transformation law

A

These four equations may be integrated with respect to y^  ̂ and we 

immediately obtain the four primary constraints. For a scalar field, 

we have

£ ÈJL—  S 0 A,y

^A,j ^ = 0 and S 0 .

The first three are primary constraints already while the fourth one 

will lead to the fourth constraint.

2.4.1.2 The Hamiltonian and the Equations of Motion 

The Hamiltonian density is defined to be

it - F̂ yŷ  Q - , where summation over A is implied.
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The total Hamiltonian is

H - /d X J't o

AFor arbitrary variations of y^ tt , y^

A.j
6yA,j

This implies that is expressible as a function of y ., ir̂ only not

involiving y^ Q explicitly, since ôÜ = 0 for arbitrary ôy^  ̂keeping

TT , y^ fixed,

,3ÔH = Jd~x ôlï'~ id xfy^ q 6ïï -
A

] «y,

3 A Ad x(y^ g ÔTT - n  ̂6y^) , using the Lagrange field

equations.

AEquations of motion for y^, n are obtained by comparing this variation

in H with the variation got by considering H  as a function of y^ and
A ATT o However, not all tt , y^ are independent, so a method of Lagrange

multipliers is used. The equations of motion are then

_ 9 ^
^A.O

A

9ttA
+ U'

.'LjJj

rf-9

>

.an* .3it i
f J J'

, 0 - (%U • “T̂  - fcU} ■
where are the Lagrange multipliers and c})̂ - 0 are the primary con­

straints
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Using Poisson Bracket Notation, we may write

/& (§ )  = [ y ^ ( x 3 / d V  + fd^x U ^ ( x ) [ y ^ ( x ) ,  4 ^ ( x ) ] ,

If y(x) = [n*Cx)/d^x&(:6] + /d^x U^(x) [n*(x3, iji (x)]. ÿ ̂  ̂ y

Define a quantity

- fd^x , where = Ü+  Û (j>̂  , 

then the equations of motion may be written as

^A.O “ f^A* V  > ’',0 = H?] '

and for a general functional F of y^ and we have

provided certain rules are followed in calculating the Poisson Brackets, 

They are:

(1) (j)̂ - 0 may not be used before evaluating the Poisson 

Brackets, To emphasize this point, they are sometimes 

written as ^ 0 which are called weak equations while 

equations valid without making use of these weak equations 

are called strong equations,

(2) The rule [A,BC] - [A,B]C + B[A,C] is to be extended to 

include non-canonical variables such as U^, i.e.
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[y^^W .JdV Û (x5(f> (x)] = ^V{[y^(x),u‘̂(xh<l) (x) +U ' 'A 'y

U^(x5 [y^^x) ,4)^(6] }

d T  u'̂ (x) [y^(x) , (x) ] .

There is no need to consider the meaning of [y^(x),U^^)j

(3) y ^ , Ti^ are to be treated as if they are independent in 

evaluating these Poisson Brackets.

From now on we shall adopt these rules,

2.4.1.5 The Secondary Constraints

There are a number of consistency equations to be satisfied.

We must require those primary constraints be maintained weakly 

vanishing in the course of time. Therefore we want

Hj,] Ag 0 for each y . (2.4.1,3-1)

If these are true for arbitrary values of then the theory is 

already consistent and no further consistency equations are necessary 

Such will be the case if and only if

[*^(x) , OyCxj] = 0 ; , H] = 0 .

This is the simplest case.

In general we do not have the above. Then the consistency equations 

(2.4.1.3-1) may lead to
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(1) outright contradiction, 

or (2) a second set o£ equations of form

xCy^s 0 , not involving ,

These are called secondary constraints. In this case we have to start

all over again to examine consistency equations for these secondary 

constraints.

or (3) a set of equations involving y^, .

In the fields we are going to study, case (1) and case (3) do not

appear, so we will only consider the simplest case and case (2).

In such cases, the four quantities remain arbitrary. The appear­

ance of four arbitrary quantities in the Hamiltonian theory is 

expected and they correspond to the freedom of coordinate transform­

ations in the 4-Dimensional space-time,,

A constraint commuting with all the rest of the constraints is 

called first class, otherwise it is called second class. It can be 

shown that the number of independent arbitrary quantities U is equal' 

to the number of first class constraints. So for a covariant theory, 

there are at least four first class constraints corresponding to the 

four arbitrary

2.4.2 Hamiltonian Formulation IX - the Curved Surface Formulation of 
B8Dirac

The previous Hamiltonian Theory has one drawback for theoretical 

discussion in that it is awkward to study arbitrary coordinate trans­

formations as the formulation is explicitly coordinate-dependent.
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Let us consider an arbitrary space-like surface ̂  which extends to 

spatial infinity. Then in a more general theory, one should set 

oneself the following problem. Supposing we know the maximum 

compatible set of Information of a field on we want to establish 

a Hamiltonian theory which can tell us how the field varies as we go 

from jS' to another such space-like surface,

2.4.2.1 Geometry of a Curved Surface

To tackle the problem, the first thing is to describe such 

surface Any surface in space-time may be fixed by specifying the

coordinates of any point on the surface as functions of three 

parameters v^, i.e. it is fixed by four functions - y^(v), A 

surface is an invariant concept independent of the choice of x^, A 

coordinate transformation x^ x^ only means that in the new coor­

dinates, the same surface ̂  is specified by

æ y^(v) ŷ (v>) in general,

and the space-like nature of ̂  is preserved. The important point now 

is to note that one can always define a new surface jSf by x*̂ - y^(v), 

which is also space-like. This means that a theory covariant with 

respect to the group of general coordinate transformations must also 

be covariant with respect to arbitrary deformation of the surface ^  

provided the deformed surface S is again space-like and vice versa.

So it is sufficient for us to study surface deformation instead.

Each such space-like surface is to be labelled by a parameter t .
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So a surface is completely fixed by ( t , v  ) and we may write

x^ a y^(r,v^) ~ y^(r,v) .

The set of 4 parameters (i',v) may be used to specify points in space- 

time, A set of 3 linearly independent tangent vectors at a point on 

the surface will be

y ,r

Note that r,s were used as indices for the parameters to avoid 

confusion with the i,j used for x^,

Three unit tangents may be defined as

y r

so that ' b y
U

I (no summation over r),

(no summation over r)

The unit normal n is defined byy ^

n t^ = 0 , for each r and In n^| = 1 y r ' y

For a space-like surface we require

n^ n^ - 1 < = >  t^^ ty.̂  - -1 (no summation over r),

The parameters v form a system of coordinates on the surface. The 

surface metric is

Y = g y  ̂y  ̂ , rs ^yv ',r ^,s
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since

d^s S3 g dx^ dx^ = g y  ̂y Œ dv^ ,yv *y v  /  , r  ^ ,3.

Any vector located at a point on the surface 0  may be written as

A^ = A n^ + A* y  ̂ , 1 f /,r

since n^, y ^ are a set of four linearly independent vectors at the ,r
same point on 0 . The coefficients are

A = A^ n ,1 y

b s  : b s  = b v  *' b s  •

The scalar product of two vectors can now be expressed as

A*̂  B = A B + Y AÏ" B.®y 1 1  rs " Il

 ̂ ^>s ' '"here A^,^ = A® .

An arbitrary infinitesimal surface deformation may be described by 

specifying 6x^ on every point on 0^ i.e. 6x^ as functions of (t,v).

In particular we may write

5x^ - 6x n^ + 6x^ y  ̂ .1 »  ̂,r

The first term is seen to be due to deformation normal to 0  while the 

second term represents a tangential deformation.
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Before we leave this section, we want to express the four-volume

element d^x in terms of the parameters Cr,v), Our 0  being space-like 
2Implies that ds is negative. Hence the déterminent of is

2negative. Let it be -F with f positive. Then a surface element 

is given by

3r d^v .

A 4-volume element may be written as

4 3d X == ( P d v) « (an element normal to the surface)

- r d^v 6x^ ,

ÔX - 6x^ n ; 6x^ - dr ,X U 9t

Finally we obtain

d^X ~ r n d^v dx9t y

= r ÿ d^v dx , where y^ = ; ÿ = n1  ̂ 9x y y

2,4.2.2 Kami 1 ton!an Theory

To achieve a field theory based on such curved surfaces, we may
B9proceed in analogy with the so-called parameterized formulism in the 

special relativistic Hamiltonian formulation of particle mechanics.

In this theory, one uses the invariant proper time as independent 

variable while the time coordinate is promoted to the status of a
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canonical coordinate. This treatment enables us to treat space and 

time on an equal footing as is pertinent to the spirit of Special 

Relativity. What we can do for field theory is to use the parameters 

(t ,v) as independent variables for the specification of space-time 

points and treat - y^(t,v) as field variables in addition to the 

original field variables.

Let us consider the case in which there is only one scalar field 

variable C in a certain coordinate system The problem now is to

set up a theory based on states defined on arbitrary space-like surface 

Firstly examine the action integral

“a involves

The field variables are taken as S,y^ while , y  ̂ , n are

functions of C,y^ only. The velocity variables are and ç ~ „

We want to express in terms of field variables and velocity variables 

only. The only troublesome term is However we have

^1 "y * /̂/ ^,r ^yv '

r 0y ^ which are functions of field

variables.
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We now show that

Proof:

s = y  - (q t ç; y,; s,,) y  = q  b  * <  b :  b p  ÿ"

b  =  ̂ b r  b p

' b ' /
>

Hence

^ - s» y %
- F - ' b  ) %  • <  y,; .

which are functions of field variables and velocity variables.

Having obtained such a Lagrangian, we are in a position to proceed 

with the Hamiltonian theory.

Define the canonical momentum conjugate to ^ by

TT = M  n r .  ( 2 . 4 . 2 .2- 1), M
3Ç h

Define canonical momenta conjugate to y^ by

, w = ^  = t n  r  -  ir Ç, . ( 2 .4 .2 .2 -2 )F v> r

Since we have introduced redundant variables into the theory, we expect 

constraints to appear.
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split equation (2.4.2.2-2) into a normal and a tangential part.

=ir - It , (2.4.2.2-3)

"w = - ^ - (2,4.2.2-4)

Equations (2.4.2.2-4) are three primary constraints already, while 

equation (2.4.2.2-3) together with equation (2.4.2.2-1) may produce 

another primary constraint of the form

on eliminating the velocity variables on the right hand side of 

(2.4.2.2-3) with the help of equation (2.4,2.2-1). There may be 

cases where more than one primary constraint appear. However we 

are interested in the standard case as mentioned above.

The Hamiltonian density is defined in the usual way by

jt - n'4 + - jL-

= wcq b  + b p  y.r b )  + b   ̂b s  f ÿ  - t b  r 

= b t b  + " b  -Ir] + y^3 ^ •

Let (j)̂ - 0 denote the four primary constraints, then

J't ~ (f)
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The most striking feature is that H and vanish^ weakly independent 

of

In analogy with our previous Hamiltonian Formulation, we need to 

define a

= II* 4.̂ ,

= / j b  d’*'-

Since are arbitrary we can let - y^ . Hence

jq = - ^ f  d b  .

For simplicity, we only examine here a field which does not lead to 

secondary constraints. This means that all the four (j>̂ are first 

class and so is H^.

Development of any functional F of canonical variables along different 

space-like surfaces is given by

F - [F,H] .

In particular, if we try F = y^ , We immediately get

.

So we may write

Hj, = H = i dbcy'^ 4̂ ) = / dbcÿ-̂  ̂ <t’b
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The rules given in section (2,4.1.2) for treating <|) , in the

evaluation of Poisson Bracket must be obeyed.

Now the change in the functional F as we go from one surface ^  to a 

neighbouring one is

6F = F 6? = [F.H] 6t = [F, /  d b  ]

= [F, i db(6yj_ 4>j_ + fiŷ r̂ * (2.4,2.2-5)

where 6y^ are the change in y^ as one moves to the neighbouring surface, 

The first term in H may be regarded as corresponding to a perpendicular 

displacement of the surface 0^ while the second term corresponds to a 

tangential displacement. Again by letting F - y^ we have

6y>J = [ŷ ,. J d^v gyp <j. ] . (2.4.2,2-6)

In the sense of equations (2.4.2.2-5), (2.4.2.2-6), (j>̂ may be 

regarded as the generators of the infinitesimal transformation that 

changes the surface 0^ As mentioned before, a change of surface may 

be regarded as a change of coordinate system, so are essentially 

the generators for the infinitesimal canonical transformation which 

corresponds to a coordinate transformation.

2.4c2.3 The Problem of Covariance

The Hamiltonian theory discussed above is manifestly covariant 

with respect to arbitrary surface deformations which leave the surface 

space-like. Hence it is covariant to arbitrary coordinate trans­

formations as well. The generators for infinitesimal transformations 

are obtained.
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We know that our field variables are geometric objects which 

constitute faithful realizations of the group of general coordinate 

transformationso In this connection, we want to see whether equation

(2.2-1) would lead to any condition to be satisfied by the generators.

We have

> J d^v 6  ̂ <(|̂]

= [y^, where = f v 6 ŷ'̂  * ,

y*̂ ) “ [^1 y", Hj] “ [[y", H^]. ,

SiCSg y'") = [«2 y \  H^] = [[y^, H,], H j  ,

S^(§2 y") - «2^*1 y'') = ty"> Hg]] .

The Jacobi identity for Poisson Bracket was used.

So we require

[Ĥ , H^] /  d^v d V  5 ^  y ^  62 [4>pĈ ,v), < | ) ^ ( t , v ) ]  ,

be again generators.

Hence it is necessary that

[4̂ (̂r,v), cj)̂ (T>v)] , (2.4,2.3-1)

be weakly vanishing.

These are certainly satisfied in theories where only first class 

constraints appear^ However things are not so trivial in quantum 

theory.
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CHAPTER 3

A REVIEW OF GENERALLY COVARIANT FIELD THEORIES
QUANTUM THEORIES

3.1 Introduction

One of the main difficulties in effecting the quantization of a 

covariant theory lies in the existence of constraints which imply that 

not all the canonical variables are independent. Different procedures 

to tackle this problem lead to different quantization schemes. In 

what follows we shall only consider fields which involve first class 

primary constraints and which do not demand any other consistency 

conditions in the classical theory,

5.2 Quantization I

3,2,1 The Quantization Scheme

One would like to investigate the possibility of a manifestly

covariant quantization scheme. Therefore all the canonical variables

should be treated on an equal footing. The scheme for quantization 
Clis well known. The state is to be described by a vector of a 

certain linear vector space while the canonical variables are rep­

resented by operators in the linear vector space. We cannot achieve 

complete mathematical rigour because the precise mathematical nature 

of the linear vector space and the operators are not known at present. 

Nevertheless we can still proceed to build up the theory by making 

assumptions that appear reasonable and that are necessary.
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Following Dirac, who gave a thorough and systematic treatment of the
Clwhole problem in his monograph "Lectures on Quantum Field Theory" 

published in 1966, we assume the linear vector space is one endowed 

with non-negative metric. In analogy with the Hilbert space case, 

we also assume that it is possible to define Hermitian conjugates of a 

certain class of operators, Hermitian operators and unitary operators 

possessing the usual meaning and obeying the usual algebraic rules of 

manipulation, e.g. ~ ^2^1 This is

not as trivial as it seems. We shall see presently that Hermitian 

conjugates are not definable for a wide class of operators because of 

the treatment of constraints used.

Now canonical variables are assumed to be represented by Hermitian 

operators obeying the usual commutation relations. The constraint 

equations are taken as subsidiary conditions to be satisfied by vectors 

which describe the states of the system. The meaning of the last 

statement is as follows. Let ^ 0 denote the four first class

primary constraints. We then assume that vectors |0> exist such 

that

4" |Y> = 0 . (3.2.1-1)

C2Such vectors are called physical vectors. The statement above

implies only physical vectors can be used to describe the states of
C2the field. An operator Ü is called physical if on operating on any 

physical vector it gives another physical vector. The set of all
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physical vectors form a subspace and the physical operators operate 

in the subspace. The necessary and sufficient condition for Ü to  

be physical is that

|'K> = 0, for all physical vectors |T> ,

i.e. æ 0 .n

Recalling the fact that (j)̂ are the infinitesimal generators for the 

classical canonical transformations that correspond to infinitesimal 

coordinate transformations, one may anticipate the significance of 

the physical vectors and operators. As far as operations in the 

subspace are concerned, they are invariants with respect to coordinate 

transformations, a fact that will be explicitly demonstrated when we 

study model field theories later. Note that there are not just four 

subsidiary conditions on the physical vectors, but a four-fold infinity 

of conditions. Consider (3,2.1-1) as applied to a constant x® space­

like surface. The conditions will also imply

(|) (x5 (f) (x) |*> = 0 ,V - p -

4)^(x) l#> = 0 ,

hence

Classically, the first class nature of (j)̂ automatically ensures that
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the Poisson Brackets between themselves are first class constraints 

again, therefore no new condition arises. In quantum theory however, 

equations (3,2,1-1) do not automatically give equations (3,2.1-2), 

Failure to satisfy (3.2.1-2) would mean an inconsistency and we could 

not then quantize the field by this scheme. The conditions (3,2,1-2) 

for two different constant surfaces cannot be tested without 

solving the Heisenberg equations of motion first. Therefore we shall 

assume that they would be satisfied as well for a sensible model field 

theory once they are all right in the same constant x° surface. All 

these are assumed to be the case in what follows.

We now want to study some more properties of physical operators.

First of all we see that being physical implies

^2^3 hence fo be physical. In a sensible theory the

Hamiltonian H^ must be physical i.e,

[4̂ , I%> = 0 ,

since we only consider theories with first class primary constraints

alone. Therefore if is physical, so is Q = ^T^ , Thus a
i%

physical operator always remains physical. We now come to the problem 

of Hermiticity of operators. By now it is clear that we need only 

to work in the subspace of physical vectors for the study of a physical 

system. So only the properties of operators which are relevant when 

applying to physical vectors will be important to us. It is therefore
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sufficient to define many properties of operators by their action on
C2physical vectors only. A scheme by Dirac will be followed here.

We take the constraints to be Hermitian, or perhaps weakly 

Hermitian, because on operating on any physical vectors, they always 

give zero. We write ^ Let ü be any operator. We shall

again have weakly Hermitian, Suppose 0 is a non-physical 

Hermitian operator, then

n* = (a* ; [06 * 6 0a y

— >  06 ^ (|) U ,y y

This last weak equality cannot be true. This means that if we keep 

the usual algebraic rules for manipulating Hermitian operators as 

postulated, the Hermiticity of a non-physical operator is not 

definable in general. Only physical operators may be assumed to 

have Hemitian conjugates or to be Hermitian, Note that although 

itself may not be physical, a whole is physical and Hermitian

since

Therefore the total Hamiltonian H^ is Hermitian.

5,2,2 The Problem of Covariance

As we have shown , in classical theory, the c|)̂ are the infinitesimal

generators for canonical transformations which correspond to coordinate
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transformations. It has also been shown that equations (2.4,2*3-1) 
are necessary in order that the classical field variables constitute 

faithfull realizations of the group of general coordinate transform­
ations * The corresponding situation must exist in quantum theory 
and equations (3.2.1-2) are necessary if the canonical operators and 
the linear vector space are to form faithful realization of the 

group of general coordinate transformations. Therefore a theory

which is covariant classically does not possess a covariant quantum!
C3theory if equations (3.2.1-2) are not satisfied* Anderson has 

shown that equations (3.2.1-2) are not satisfied for Einstein’s 
equations in General Relativity. If this is correct, it would lead 

to the serious consequence that one may establish preferred coordinate 

systems from the set of inequivalent quantum theories obtained by 

using different coordinate conditions. The spirit of the principle 

of general covariance would be contradicted* This was emphatically 

pointed out by Anderson.

Although equations (3.2.1-2) are only necessary, one hopes that in a 

sensible theory, one would indeed obtain a realization of the group 

of general coordinate transformations. The explicit form of the 

quantum unitary transformations corresponding to classical coordinate 

transformations will be demonstrated when we consider model field 

theories.
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3.3 Quantization II

3.3.1 Introduction

Suppose for a particular theory Quantization I may be success­

fully carried out. Then we are in a position to do some more 

analysis of the quantum theory as applied to a particular type of 

coordinate system. The selection of coordinate system is carried out 

by imposing coordinate conditions. This does not spoil the covariant 

nature of the theory as quantities in different coordinate systems 

are related by unitary transformations. Although this step of 

selection of coordinate system appears to add nothing fundamental to 

the general theory of Quantization I, it is important and is a very 

difficult problem in its own right, both from a physical point of 

view and a technical point of view. A general theory dealing with 

coordinate conditions will be given below. However it should be 

pointed out that as far as this problem is concerned, any particular 

field theory will have its own individuality and should be treated 

separately.

5.3.2 The Dirac Bracket

Before going into the problem of coordinate conditions, let us 

consider the problem of second class constraints in quantum theory. 

Obviously they cannot be treated as subsidiary conditions on physical 

state vectors as this immediately leads to inconsistency because the 

Poisson Brackets between themselves do not vanish weakly. Dirac^^ 

proposed the following treatment. For definiteness, let us consider
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a theory of classical particle mechanics which leads to a set of first 

class constraints and a set of second class constraints

Xg)0; s=l,...N. Firstly we define C / by

Css' Xs"] = «ss"‘

C4This is possible as it may be shown that the determinant of the 

matrix x #] does not vanish. Secondly we define a new type of

Bracket to be called the Dirac Bracket between two quantities F,G by

[F,G]p = [F.G] - [F/Xg] Cgg, [Xg/,G] .

The Db’s may be shown to satisfy the usual properties of the Pb’s. 

Another two important properties of the Db’s are

(1) A second class constraint always has strongly vanishing Db 

' with any quantity,

(2) The equations of motion are valid for Db’s i.e.

G - [GpH^] - [G,H^]^ ,

• = [G,Hy] - [G,Xg] C^g/[Xg.H^]

and [Xg,H^] ^ 0 by consistency equations.

These properties of the Db’s imply two things. We may replace Pb’s 

by Db’s in equations of motion and % may be set to zero even before 

evaluating Db’s. Therefore we may treat x^Oas strong equations 

provided we replace Pb’s by Db’s. The introduction of the Db’s sheds
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a new light on the significance of the second class constraints.

They signify the existence of redundant variables which can be elim­

inated using the y. = 0 strong equations.

We can now pass over to quantum theory by taking the quantum 

commutation relations to correspond to the Db’s, The y^ = 0 are 

taken as strong operator equations while the treatment of the first 

class constraints remains as before. We can eliminate the redundant 

variables as in classical theory,

3,3,3 Coordinate Conditions

The general idea is to treat coordinate conditions as an 

additional set of four constraints. Since the purpose of coordinate 

conditions is to eliminate four redundant degrees of freedom, i,e, 

eight, canonical variables, the coordinate conditions should be such 

that they may be treated as secondary constraints and they also cause 

four of the original first class constraints to become second class. 

One then passes over to quantum theory using Db’s, We therefore have 

eight strong equations to eliminate 8 redundant variables,

3,4 Quantization III
C5There is another approach due to Bergmann and Komar, It is 

based on the concept of observable, a name borrowed from quantum 

terminology. Firstly we examine how physical states of a field may

be defined. Consider an infinite space-like surface We may

specify a complete set P of values of the field variables y^ and 

on ̂  and assume that this defines a physical state of the field on 0 .
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The set of values of field variables on a next such surface are 

obtainable from P by the solutions to the equations of motion for y. 

and For covariant theory, this set will not be unique as there

are arbitrary functions coming in the solutions of the equations of 

motion. Let P̂  be the totality of all these sets of values on 0 ^ u 

We must consider all the seemingly different members of P^ to corres­

pond to the same physical state on 0 ^  which evolves from the same 

sta.te^n In general, a physical state corresponds to many

different sets of values of field variables. Supposing there are 

quantities which may be predicted uniquely from the initial data on 0 ,  

it is obvious that these quantities must be intrinsic to the physical 

state of the system and there may be a one-one correspondence between 

a complete set of these quantities and the physical state of the 

field. Such quantities are called observables. An invariant is an 

obvious observable. One may then build up a mode of description of 

the field using purely observables. The formulation will be covariant 

as well as being free from the arbitrariness arising from coordinate 

transformations. Suppose we can find four scalars which may be used 

to specify points in space-time uniquely. We may formally regard 

these four scalars as a special set of coordinates. Any quantity 

expressed as a function of these special coordinates alone will be an 

observable and a theory may be conveniently formulated.



-47'

CHAPTER 4

MODEL FIELD THEORY I

4.1 Introduction

To begin with, one would like to have an exactly soluble model 

field in order to be able to carry through the theories outlined 

before and see what the quantum theory looks like. In particular 

one wants to study the effect of general covariance and examine 

whether general covariance by itself might bring in something 

physically new into quantum theory. An extreme example of a 

generally covariant theory consisting of four field variables A^ is 

taken. In such a theory the field equations will be empty in the 

sense that all the four A^ will remain arbitrary and unrestricted by 

the field equations. In our particular example, it is possible to 

introduce some more essentially redundant variables into the theory 

to enable it to look more "respectable",

4.2 Model Field 1

4.2.1 Lagrange Formalism

Consider a general four-dimensional space in which a metric is 

not defined but well-behaved coordinate systems may be defined.
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Let A be a covariant vector so that A « A is a covariant anti- W \>,M

symmetric tensor. Then

TKyX

is a scalar density of weight +1, where is the Levl-Civita

symbol which is a tensor density of weight +1. We may therefore use 

this as a Lagrangian density to obtain a variational principle which 

will lead to a set of covariant field equations.

Now consider the variational principle

6 /cC d"̂ x = 0, with X = 4 E^^U^CA « A )(A , - A, ) .

The field equations for A^ are the Euler-Lagrange equations which 

turn out to be

° • (4.2-1-1)

The left hand side is identically zero, a fact which could have been 

anticipated from the fact that X may be written as the divergence

The general "solutions" are then just four arbitrary functions. We 

have a field theory with no genuine field equations in the usual sense 

Still we shall formally carry on with the Hamiltonian formalism to see 

what sort of quantum theory turns out at the end.
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4.2.2 HàmiXtôniàri Formulism

Define the canonical momentum conjugate to by

pt̂ = . 2 A .

One immediately obtains four primary constraints (j) % 0 with

4° = P°,

= p) . 2 Am.n

The total Hamiltonian density is

T - * “e ■

where are arbitrary apart from possible restrictions arising from 

the consistency equations.

The constraints are all first class and there are no further 

constraints or consistency equations involving U^, The canonical 

equations of motion for A^ and give

A n ” G which are left to be arbitrary, and 

P^O = C2 .

Again there are no genuine equations of motion as expected
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We may go on formally to discuss physical states of the field.

Consider an infinite constant surface 0  in the four-dimensional

space. A specification of the set of values of A and on they
surface should define a physical state of the field on that surface. 

However as we move away from this initial surface, the values of Ay
become completely arbitrary. We must conclude, by an argument 

mentioned before, that all the different sets of A^,P^ on another 

constant x° surface 0 ^  correspond to the same physical state on that 

surface. We now have the situation that completely arbitrary A^ 

correspond to the same physical state on 0 i  By reversing the 

procedure, one can say that the same situation exists on the original 

surface 0^ Therefore we end up with a single physical state possible 

for such a model field theory.

4^. 5 Quan t i zat i on

This is straightforward. We assume the existence of a linear 

vector space such that A (x),P^[x) are operators in this space with 

commutation relations

[A (x),P^(xh = 5(x-x) ; [A (x) ,A (x)] = 0 ; [pU(x),P^(x)] = 01-1“ “ y — — y — v "  — “

Ihe state vectors | a r e  those vectors which satisfy the subsidiary 

conditions

4^(x) \'t> = 0 (4.2.3-1)

This procedure works since the first class nature of the constraints
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as operators is preserved in our case,
(I

One can solve the subsidiary conditions for in the Schrodinger 

Picture using the functional representation in which P^(x) goes to

and | T> becomes a functional of A^(x), The operator

operating on a functional F(A ) of A (x) is defined byF y

6F(A^) . / [ ^ / ^ F ( A ^ ) ]  6 A ^ x) d h
y “

Now equation (4.2.3-1) becomes

Ci«c^-+ 2 Ap^^) 1T> = 0 .

This gives

4/.°^'”’̂ A. A„ „ d^x
IY> =2 constant e ,

This is rather a surprising result showing that there is only one 

physical state, although it agrees with the previous analysis that 

only a single physical state should exist in classical theory.

The total Hamiltonian is

H^ - - y  d^x , the first term in being

zero on integration with the boundary condition that A . = 0 aty s 1
infinity. Hence

H^ )H'> - 0 ,
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which implies that |'i'> is a time-independent state vector corresponding 

to zero eigenvalue of the total Hamiltonian. All this is most 

reasonable since we actually started with an "empty" field. The 

transformation properties of the theory can be demonstrated without 

much trouble. Consider an infinitesimal coordinate transformation 

from to As a result A^(x), P^(x) go to A. (x), F^(x).

The corresponding transformation in the classical theory is given by 

the generating functional

G = /  d^x 6A (P'̂  - 2 A )

where 6A = A (x) - A (x) - 6A - Ay y y y y ,v

6A = &  (xj - A (x) = - Ay y y v ,y
At first sight it seems surprising that the generating functional 

should contain the velocity variables A which cannot be expressedy,o ^
in terms of the canonical variables. The involvement of A isy,o
unavoidable because the transformation law for A contains suchy
quantities explicitly. However there are in fact no real difficulties 

in calculations as the 6A^ are multiplied by the weakly vanishing 

constraints.

We have

ÔA. (x) - — — , the right hand side giving back GA. (x) as
ap*rxi Aexpected

while
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We see that

(P^ - a ) ̂  0 = >  S(P^ - 2e °̂ "“  a )*a 0m,Tî   ̂ m,n

which implies that the constraint equations are preserved as they 

should be.

In quantum theory, the corresponding infinitesimal unitary trans­

formation is effected by

if'
U = e" = (1 +

where G = X  d^x GA^(P^ - A^ , the variables occurring being
operators of course.

This generator G is Hermitian in the sense defined in the previous

chapter. Let # be a physical operator and |W> be a physical vector,

Then

|Y> = U|Y> |Y>

=2 + i  [G,Q] ^ Q

These confirm our previous anticipation that physical quantities so 

defined are invariants with respect to coordinate transformations. 

One may observe that this situation holds even for a Lorentz trans­

formation which is surprising since this is not true for the usual 

Lorentz invariant quantum field theory. We shall give a thorough 

examination on this later on.
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4.2.4 Coordinate condi11ons

Since the solutions of the field equations consist of four 

arbitrary functions, we are free to impose four conditions on the 

field variables. An example will be the requirements

T i.PO " ° ' C4.2.4.1)

DO _ f 1 0 0
0 - 1 0 0  
0 0 -1 0
0̂ 0 0 -1

These equations certainly limit the possible A^ considerably. The

common practice is to interpret such A^ as being the field viewed by

an observer in a particular type of coordinate system. In our case, 

we can actually manufacture all sorts of arbitrary conditions leading 

to totally different effective field equations for different observers 

A paradoxical situation appears. An observer with conditions 

(4.2.4-1).may treat the field as a vector meson field. He then 

solves his effective field equations (4,2,4-1). It will appear to 

him that different physical states exist defined by the various plane 

wave solutions. He may further formulate a quantum theory. All 

this contradicts our previous conclusion that only one single physical 

state is possible for the field. Let us examine how this particular 

observer arises at his different physical states. He will specify 

a set P of initial data on a constant x^ surface 0  and the field
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variables on another such surface 0 ^ are obtainable from the set P by 

solutions of (4,2,4«1)„ The values on 0^ may not be unique. Let 

P̂  be the totality of the different sets of values obtained from the 

set. P on With equations (4,2,4-1) it is possible for him to find

another set of initial data P on such that the corresponding set 

P on X  ts totally distinct from P , He may then proclaim that the

sets P and P̂  do represent different physical states because they 

lead to distinct subsequent motion. However imposition of conditions 

(4,2.4-1) merely reduces the completely arbitrary nature of the field 

variables. The fact that all the different field variables 

compatible with (4,2,4-1) still represent the same physical state 

cannot be changed. Therefore all these seemingly different solutions 

must correspond to the same physical state. Let us go a step further 

to see how exactly this must be the case and indeed to see exactly 

how the paradox arises in the first place. In a generally covariant 

theory, it is usually assumed that all coordinate systems are equiv­

alent for the description of the physical system concerned and that 

the equations of motion must be generally covariant. What may be 

usually forgotten is that the coordinate variables x^ appearing in 

the covariant equations of motion are not and cannot be meant to be 

the actual coordinates of any definite coordinate frame of a part­

icular observer. Given two different solutions of the covariant 

equations as functions of x^, e,g„ in our present case for equations 

(4.2*1-1) A^(x) = f^(x), A/(x) a F^(x) where f^,F^ are arbitrary
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functions* One cannot at once assert that they represent two 

different states for the physical system as seen by an observer in the 

coordinate system In order to relate the appearing in the

covariant equations to the actual coordinates of a particular observer, 

it is necessary to impose non-covariant coordinate conditions on the 

field variables. Furthermore the number of such conditions must be 

such that they exclude all but one coordinate system, that is, there 

is only one coordinate system in which the field variables satisfy 

all these coordinate conditions in addition to the equations of motion. 

Only after all this has been done can we identify as the actual 

coordinates of an observer. The observer can now proceed in the usual 

way to define physical states for the system concerned. Two distinct 

solutions to all those conditions and the field equations will now 

mean two distinct physical states. Now the coordinate conditions 

(4.2,4-1), though four in number, do not satisfy the above requirement. 

These conditions only restrict coordinate systems to a special set 

related by Lorentz transformations. Even at this stage it is still 

not permissible to identify the x^ appearing in (4.2,4-1) with the 

actual coordinates of a member of the set. Consider two solutions

in in k^x^
to (4.2.4-1): a e and a e where a , a"̂  areF F F F
constants and = 0 = ̂ ^^k^k^. We cannot claim that these

two represent two different physical states as viewed by an observer 

attached to a coordinate frame belonging to the set. In order to do



-57.

this, we have to impose further conditions which may take the form of 

initial data on - 0 surface in such a way as to exclude any Lorentz 

transformation. These initial data will then lead to a unique 

solution to (4,2,4-1). So finally we see that for a particular 

observer indeed there is only one unique set of values for the field 

variables leading to only a single physical state* The different 

solutions as given above are now seen to correspond to the same state 

as viewed by different observers! One must therefore be extremely 

careful in handling coordinate conditions and in the subsequent 

interpretations. It is not sufficient just to count the number of 

coordinate conditions.

A similar situation exists in quantum theory. One should not 

take (4,2,4-1) as field equations to carry out quantization and 

interpret the results in the usual manner. There is nothing to 

prevent one from blindly quantizing the theory with arbitrary 

coordinate conditions such as (4,2,4-1), but having done so one may 

have to identify physical states with subspaces rather than single 

vectors in the linear vector space* The vectors in the subspaces 

are related by unitary transformations as allowed by the coordinate 

conditions'^.
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4*3 General Covariance Versus Lorentz Covariance

From the■discussion in the previous section, a fundamental 

difference between a generally covariant theory and a Lorentz 

covariant theory emerges* In the latter case the equations of 

motion are Lorentz covariant* The important point now is that the 

coordinates appearing in the equations of motion in a Lorentz 

covariant theory are meant to be the actual coordinates of an inertial 

observer (measured on standard metre sticks and clocks at rest 

relative to himself)* As a result, two distinct solutions to the 

equations of motion imply two distinct physical states. In a 

Lorentz covariant theory this is not an arbitrary assumption and 

the above conclusion may be tested by physical measurements made by 

the observer*

It is well known that a Lorentz covariant theory may be extended

to become formally generally covariant by the introduction of more

variables such as the non-Minkowskian metric g * The best known 
D2example is the extension of Maxwell’s theory of electromagnetic 

field to a formally generally covariant theory. Let us examine the 

situation step by step in detail*

(1) The original Lorentz covariant theory of electromagnetic field: 

The space-time is assumed to be flat* We have a group of inertial 

frames of reference which are related by Lorentz transformations and 

in which the metric tensor

0 yv
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The electromagnetic field is described by the antisymmetric electro­

magnetic field tensor satisfying the field equations

. - 4  + “V  = 0 • (4.3-1)
^ 3x“  Sx'̂  3x^

The coordinates x are the actual coordinates of a particular inertial 

observer who can then count and determine different physical states of 

the field by means of distinct solutions to (4*3-1) in the usual way.

A Lorentz transformation form x^ to x^ will lead to another set of 

field equations with x^ as coordinate variables. The new equations 

will be identical with (4.3-1) in form* The new coordinate variables 

x^ are to be interpreted as the actual coordinates of another inertial 

observer who may count physical states in exactly the same way as the 

first observer does* It is in this sense we say that all inertial 

observers are physically equivalent*

(2) Extension to a "formally" generally covariant theory:

One can establish a new set of field equations which are generally

covariant and which reduces to (4*3-1) in an inertial frame. To do

this we introduce an arbitrary coordinate variable x^ in which the

metric tensor g  ̂H in general even though the flatness nature of yv vj yv
the space-time has not been changed. The electromagnetic field is 

again described by an antisymmetric tensor F^^(x) which satisfies the
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D2generally covariant equations

= 0;v

= 0, (4.3-2)

where g - Ig^^l, and the semi-colon denotes coVariant differentiation

In this extended theory, we have brought in 10 new variables 

which satisfy: - 20 equations expressing the flatness of the space­

time

where  ̂is the Riemann curvature tensor. Since we are given that 

the original Lorentz covariant theory is the correct one, the 

extension to a formally generally covariant theory leads to nothing 

physically new at all. There can be no ambiguity in fixing various 

physical states, as we can refer things back to ah inertial observer.

It should be clear from our previous analysis that the arbitrary 

coordinate variables x^ in (4.3-2) cannot be identified with the actual 

coordinates of a particular (non-inertial) observer for the purpose 

of state determination. In this extended theory, a whole set of 

different solutions to (4.3-2) may correspond to the same physical 

state.

(3) Reduction of the extended theory to the original Lorentz Covariant 

theory :

The reduction process is trivial. All we need to do is to impose the
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coordinate conditions

(4) A fundamental question:

Now consider a completely new situation. Suppose we do not know the 

original Lorentz covariant theoiy of electromagnetic field, and 

suppose we are given a theory formulated in terms of arbitrary 

coordinate variables in a generally covariant manner with the field 

being described by an antisymmetric tensor F^^(x) satisfying the 

field equations

f '̂ ’̂Cx) = 0,> V

where g - Iĝ l̂ and the metric tensor g satisfies the flatness 

conditions

Now how does one determine and count physical states?

The analysis given in the previous section tells us that there is no 

unique answer to this question as it stands. One can attempt to 

answer the question in one of the following two ways

(a) Although we are not given any preferred coordinate systems, 

we may still make the assumption that there are preferred 

reference frames defined by certain coordinate conditions.
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say

pv

Furthermore one assumes that we can identify the coordinate 

variables in the field equations after the imposition of 

the coordinate conditions with the actual coordinates of a 

particular observer who can then count physical states in 

the usual way. It is in this sense these coordinate frames 

are termed "preferred". It is not because that the field 

equations become simpler using them. An important obser­

vation must be emphatically pointed out here, that is, the 

above are new physical assumptions not contained in the 

original theory. These assumptions imply that the theory 

given is only formally generally covariant \àâ.cL. is extended 

from a Lorentz covariant theory.

(b) One considers the given theory as a "genuinely" generally 

covariant theory despite the fact that field equations 

become simpler in a certain set of coordinate frames.

There are therefore no preferred set of frames in which one 

can count physical states in the usual way. One has to 

impose sufficient numbers of coordinate conditions (e.g. 

more than g^^ to single out a unique coordinate

frame and only in such a unique frame can we start to 

distinguish physical states in the conventional way.
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Note that one is again making new physical assumptions here. 

We see clearly now that additional physical assumptions are necessary 

in order to answer the fundamental question raised. There is nothing 

in the given theory which tells us definitely which is the correct 

answer. The final test must lie in the actual physical experiments 

for the determination of states. By comparing experimental results 

with the predictions of (a) and (b) respectively we can find out which 

of them is the correct one.

More examples may be given. An extreme one would be to consider 

the relationship between our Model Field I and a Lorentz invariant 

vector meson field theory in which the field variables satisfy 

the equations

B - 0  for each y -J  W,PO

The above arguments may be repeated step by step. The final 

conclusions will of course be the same. In quantum theory,ais>Hilar 

situation exists. In a "genuinely" generally covariant theory, 

physical states are described only by physical vectors which are 

invariant with respect to arbitrary transformations of the coordinate 

variables x^, in particular Lorentz transformations. Vectors which 

are not Lorentz invariant cannot be used to describe states. It is 

therefore clear that two such vectors related by a Lorentz trans­

formation cannot be regarded as representing two physical states.

All this is fundamentally different from a Lorentz covariant quantum
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theory (or a "formally" generally covariant quantum theory). Another 

striking feature of a "genuinely" generally covariant quantum theory is 

that the physical system concerned seems to be."dead" in that the
II

state vectors in Schrodinger 'picture are "time"-independent. We 

shall go into this problem in greater detail later in Chapter 9. For 

the moment it suffices to say that all this does not really mean any­

thing just as in the classical theory a vanishing Hamiltonian does 

not imply zero energy of the system concerned.

4.4 Harmonic Coordinates in General Relativity
D3This is a subject of great arguments among people like Pock 

and J.L. Anderson^^. To begin with we recall that Fock^^ has 

suggested that the harmonic coordinate conditions

{/-g ~ 0y

together with certain conditions at infinity lead to a preferred set 

of coordinate systems. In particular he^^ has shown, though in a 

not very mathematically rigorous way, that in the case of an isolated 

system of masses the harmonic conditions together with suitable 

supplementary conditions determine the coordinate system uniquely 

apart from Lorentz transformations. We shall not go into the phil­

osophical argument as to what is meant by preferred coordinate systems 

Instead we set ourselves the following definite question. Is it 

possible to tell by physical means whether the theory of General 

Relativity is "genuinely" generally covariant or whether it is just
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"formally" generally covariant i-ankcli. is extended from a theory 

covariant to a more restricted set of coordinate transformations 

such as the set of harmonic coordinates? According to our previous 

analysis, the answer should be affirmative. In case of harmonic

coordinates we can do one of the two things. We can identify the

coordinate variables with the actual coordinates of an "harmonic" 

observer for the purposes of determining physical states as Pock 

apparently did. The results can then be put to physical test.

An experimental confirmation on one way or the other will answer 

our question which may not be conclusively solved by theoretical 

argument alone.

4.5 Some Remarks

As mentioned in section 4.1, we may modify our present Model 

Field I by introducing more variables. One choice is to consider 

the model theory derived from the Lagrangian density

where F^^ is an anti-symmetric tensor. The EuleT-Lagrange equations 

of motion are

F “ A - A ,TK K ,T

F , + F , + F, = 0TK,X k X, t Xt ,k

The general solutions are
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Af = ffCx) ,

F = f - £T K  K , T  T , K

ywhere f^(x) are four arbitrary functions of x 

In the Hamiltonian theory, there are 10 primary constraints plus 

secondary consistency equations. There are second class constraints 

appearing, so Dirac's treatment has to be carried out in full including 

the use of Dirac Brackets. The calculations are somewhat long- 

winded and will not be reproduced here. However the results are 

essentially the same. There is again only a single physical state.

An alternative approach to the Dirac’s one would be to eliminate those 

redundant variables F at the early stage in the Lagrange formulation. 

The results are of course the same.
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CHAPTER 5

MODEL FIELD II 

TREATMENT I

5,1 Introduction

In this chapter, we study a generally covariant and intrinsically 

non-linear model field theory.

Consider a 5-dimensional Pseudo-Euclidean space with coordinates 

and metric

1 0 0 0 0^
0 - 1 0 0 0  

Jab = { 0 0-1 0 0 
0 0 0 - 1 0  
0 0 0 0 -1

the indices A,B taking the values 0 to 4, Any 4-dimensional surface 

may be fixed by specifying the 5 coordinates - as functions of 4 

parameters x^. In general the 4-surface is a 4-dimensional 

Riemannian space with a metric

.ALet £  denotes a column vector with components ç and 

£  denotes a row vector with components "^AB 

Then we may write
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g a E E^ T K  — , T  — , K

The Christoffel symbols of the first kind and second kind may be 

shown to be

[tK'.X] = + 8 k X , T  " ®TK,X^ ° ^ , T K  ~  A t K  '

i  tk = ^  i,TK '

where E”  ̂ “ .y
Note that £ is a scalar with respect to arbitrary' coordinate trans^ 

formations in the 4-surface,

Covariant derivatives are defined in the usual way.

£.T ~ L  since E is a scalar.

E - E “ E— ; TK — ,TK — , X TK

= i,,, - i,x E' i,XK

= E — ; k t

The curvature tensors may be shown to be

R a F  g  ̂Y  £TKXy — ;Xt — ;yK — ;Xk — ;yr

= g ' '  \ k X u •

5.2 Definition of 3. 4-surface of Stationary 4-volume.

Consider these 4-surfaces whose metric satisfies the following 

conditions. The metric g^^ is nonsingular, i.e. g » ^ 0.
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Therefore the sign of g is the same throughout the surface and it is 

all invariant. The contravariant metric tensor g^^ exists such that

% v  =

We consider only surfaces with g < 0 so that the Pseudo-Euclidean 

flat surfaces are included as special cases.

The volume of a domain x^€ D of the 4-surface is

V = / / r j  d^x ,
D

which is an invariant.

A 4-surface of stationary volume is defined to be a surface whose 

volume V is at a stationary value with respect to small arbitrary 

deformation of the surface. The deformation is realized mathe­

matically by variation of the coordinates The variation is

to be taken as zero at the boundary of the domain D. For a 

variation

T K  ° T K

ÔV = T K
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Hence (/^  ̂ = 0, if 6V = 0 for arbitrary

So a 4-surface of stationary volume is defined by equations

(/^ ) =0, which are equivalent to, T ,K

g'"' (5.2-1)

The above equations are not all independent and certain identities, 

the Bianchi identities, exist among them. Rewriting (5.2-1) as

O  - = °»

we see that the Bianchi identities are

C. being the four linearly independent null eigenvectors ofP
(1 - Ç Let n^ be the unit vector normal to Ç. , that is," , A «  A , p

= ^BCDBP < 0  < 1  < 2  <3'

where is the 5-dimensional permutation symbol. Then the five

field equations (5,2-1) are equivalent to the single equation

e'' "A <XK =

5,3 A special set of coordinate conditions

A natural set of coordinate conditions would be

,v v'

that is, we just choose the first four of the original 5-dimensional 

pseudo-Euclidean coordinates as our coordinates in the four-surface.
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In this special coordinate system, we have

= r\ - Ç Ç , where Ç denotes with A = 4;P V p V  , p , V

s'"" = £ Ç „)/(! - 5 5 J;, p , ü

g = detlg^J = - (1 - nP° 5^^).

The field equation is

Ç = 0, which may be written as
, P  V

= 0. (S.3-1)

Our variational principle becomes

ÎI1 - 5 Ç d^x = 0
,p , 0

These coordinate conditions will be discussed in greater detail in 

the next chapter. Meanwhile we shall return to formulate the 

general Hamiltonian theory for the field Although we shall not

restrict ourselves to special coordinate systems, we shall only use 

coordinate systems in which x° = constant is always a space-like 

surface. We may now assume that the 4-surface extends to infinity 

by letting the coordinates x^ to take all values from -«> to +«.

The total Lagrangian will then diverge. This does not matter as 

the divergence may be eliminated by subtracting 1 from the integrand,
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5.4 The Classical Hamiltonian Formulation

In a physical theory we want the Lagrangian density to have the 

dimensions of energy density and that the Hamiltonian should be 

positive. Therefore we adopt the Lagrangian density

where Q is a positive number of dimension a-îd the minus sign

will lead to a positive Hamiltonian as will be seen in next chapter. 

Define canonical momenta ̂ conjugate to by

IT .B 03
A A " J ab ^,6 s 

.0

Define w by

Using the general theory one can obtain the primary constraints which 

may be easily seen to be

With (j)̂ = , where = g g°°

‘*’3 " ■’'a

% 1  % 2  % 3  
^21 ^22 ^23 
^31 ^32 ^33

The Hamiltonian density is

yt- - n.A . o
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X is a homogeneous function in of degree one, so 

1 = 0.
The total Hamiltonian density is therefore

ci'trj, = , where are arbitrary functions of

Equation of motion for any functional F of is

~ F  = [F, /d^x ] = / d ^ x  o'" [P,* ] .
3x" ^ V-

In particular

= U°2tt̂  + ;

•"A,o = Q" •
4

From the constraint equations we can also show that

A 3*00
n = 0 ; (5.4-1)

H  .> j

 ̂J  ^A,i ° • (5.4-2)

Another useful expression is

■ (5.4-3)
3Ç . ^

With the help of these, we can show that ^ 0 are all first class

and there are no further consistency equations necessary.
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5.5 quantization

We are in a position to attempt the scheme of Quantization I.

We assume the existence of a linear vector space for the description 

of the field. The are operators in this space satBs^i^the

usual equal-time commutation relations

[Ç^(x) , iTg(x)] - iiîcôg ô(x-x) .

The physical state vectors |ip> are those which satisfy the subsidiary 

conditions

(()̂ (x) 11|;> =s 0 o

The first thing is to check the consistency of these conditions on 

the same constant surface, that is, to see if

[i»,,(x), f,(x)] » 0 ,p  -  V  -

as operators acting on physical vectors. The somewhat lengthy 

calculations are given in the Appendix 5.1 at the end of this chapter. 

The results show that these consistency conditions are indeed 

satisfied. Therefore we may conclude that the scheme of 

Quantization I may be consistently carried out.

Let us examine the subsidiary conditions

5̂  TT |Y> = 0 ; (5.5-1)
f J ^

( t r \ ^  + Q*A°°) |Y> = 0  , (5.5-2)
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in greater detail. From the general theory given in Chapter 2, we 

may expect the constraints to be the generators for infinitesimal 

canonical transformations which correspond to arbitrary deformations 

of the constant surface. Three of them should be the generators 

for tangential surface deformation while the remaining one should be 

the generator for deformation normal to the surface. Suppose

are the three generators for tangential surface deformation,
J

Then the subsidiary conditions (5,5-1) express that |Ÿ> must be 

invariant under arbitrary tangential surface deformation. This is 

equivalent to the requirement that | b e  invariant under 3-dimensional 

coordinate transformations x^ x^ - function (x*,x^,x^). We now show 

explicitly that this is indeed the case. Consider an infinitesimal 

coordinate transformation

M 1 i f - ,   ̂oX** x*̂ + (x) ■ X - Xo

Then

and

9x

The change in |f(ç )> is

A.
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using (5*5-1) and the functional representation

ÏÏ» -ihc — Â .

In the next section, we shall discuss these transformation properties 

in a systematic way. Now that we know the significance of conditions 

(5,5-1)2 we can solve (5,5-1) for | w i t h o u t  too much trouble*

The solutions will be invariants in 3=dimensional tensor analysis*

An example is

Dwhere are arbitrary functions of E, and

JABC
,A A A

^2
B B

c ..C „C
S i S .g ̂ S 3

which are scalar density fields

of weight +1, and $ is an arbitrary function of the integral*

It may be readily verified that this |satisfies (5,5-1)* More 

complicated solutions may be constructed out of invariant 3n dimen-

, at n different

points X , Xg... n The last subsidiary condition (5*5-2) however 

presents difficulties* As will be explicitly shown in the next 

section, it essentially expresses the requirement that | b e  

invariant under arbitrary normal surface deformation* One needs to

sional integrals involving the fields y  y
—  1 —  2
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compare the values of |¥> at different constant surfaces, so to

obtain the solutions of (5*5-2) is at least as difficult as solving
Elthe equations of motion. Note that it is not just four simul­

taneous functional equations, but a 4-fold infinity of equations.

To get a better qualitative idea of the constraint equations we 

consider the much simpler case of a 2-surface of stationary volume 

embedded in a 3-dimensional Pseudo-Euclidean space. Everything is 

formally the same as before except we now have only one spatial 

dimension X and three field variables a = 0,1,2. There are 

only two constraints

*0 = = O'

Written out in full in quantum theory they become

{[(■nc)̂  )']-[.(KcV Q* C5^j']-[CKc)’ ^  +

Q' (ç\) ]> |V> = 0. (5,5-4)
$ -X-

Solutions of (5.5-3) may be readily found. Some examples are

lt>Oi = S “ ®^pjlîc  ̂  ̂%,x^^ '

or more generally
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Now let

(a) _ Ç „n , (no summation over a)(( , A a

^  [-(he)"' + Q^(C^ )]. (no summation over a)zy fX

It is obvious that are formally the same as the linear

momentum and Hamiltonian densities of a massless Klein-Gordon field* 

Hence the solution of (5*5-3), (5*5-4) is equivalent to the following 

problem:

Given 3 independent and real scalar meson field 

find the set of simultaneous null eigenvectors of

Let us denote the integrated momenta and energies J|^^^^(x)dx,

J (̂ )<̂  ̂by respectively* We have

(j) (x)|¥> =: 0 [P^O) + + p(2)]|Ÿ> = 0 )
^ roi ni (21 ( (5*5-5)4̂ (x)|T> = 0 J - Hr J]|Y> = 0 , J

=> the necessary (yet not sufficient) conditions for |Y> to satisfy

the constraint equations are that the states must have zero total

linear momentum and that the total energy of the field is equal

to the sum of the total energy of and
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Solutions of (5*5-5) are easily found in the usual Fock space 

representation of quantum field theory* Only a subset of these 

solutions could satisfy (5,5-3), (5*5-4), This subset may be found 

in the following way. Firstly we can express (x), (x) in

terms of creation and annihilation operators in the Fock space 
representation. We know that the set of known eigenvectors of

h CI)̂  %(2) a complete set. Hence we can express ) as

a linear combination of vectors in this complete set. Now substitute 

the expression into (5.5-3), (5,5-4) and equate the appropriate 

coefficients of the resulting expressions to zero, A set of recursion, 

relations may be found which serve to determine |Y>, The actual 

calculation involved is rather messy and will not be presented here.
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5,6 Transformation Properties

We now demonstrate explicitly the infinitesimal unitary trans­

formation which corresponds to an infinitesimal coordinate trans- 

formation. Firstly one wants to find the corresponding classical 

canonical transformation. The field are scalars and on a 

coordinate transformation where are the descriptors

of the coordinate transformation Ç is a covariant vector. We may 

decompose both Ç and into normal and tangential components to 

the constant x° surface on which the field is defined before the 

transformation. Any contravariant vector defined at a point on X  

and tangent to is proportional to

ty, = (0, dxh .

This implies that the unit normal is

"v " ' 0,0.0), hence = 0

also n n^ = 1 ,

A set of three linearly independent contravariant tangents is t^^ 

where tjj|̂ ■= (0,1,0,0); tjĵ  = (0,0,1,0); tĵ  ̂ (0,0,0,1), Any

vector T^ may be written as

We see that
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The decomposition of a covariant vector may be effected through its 

contravariant form.

Consider the scalar product of two vectors T^ P

T^ P - g T^ P^ y ^yv

= Ti ?! +

■  h  h  * ’'I "/) ' ■ i ,  ■ »; •

■’«’ ■ - 4 ?  - - k  s” )', ■ (**' - - w  i°*S E E

Srs P/? “ ^  = 4  -” Pf •

Hence

P = T P + P , y X I  // r

so we have

'  7 ^  ' = e? - -ly. £° g°’"
/g g

Therefore
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We now assert that the classical infinitesimal canonical transformation 

which corresponds to the above coordinate transformation is generated 

by the generating functional

"A “ 0 >

are essentially the primary first class constraints.

To justify this statement, we compute

A . - f ]  = / f X  + [p, 4 ]*^ +

U o

= / d ^ X  { e j A  

= - (̂ 1 s /  + e;;

= 6p.

This shows Ù  is indeed the required generating functional. This 

also shows the physical meaning of the constraints. (f)̂ is 

essentially the generator for deformation of the constant surface 

in the normal direction while ({ĵ are the generators for tangential
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surface deformation. It should be noted that the variations of 

field variables on a tangential surface deformation have no dynamic 

significance in that they are determined by the appropriate 

geometric transformation laws. It is the variations due to normal 

surface deformation which has to be determined by the Hamiltonian 

through the equations of motion. We have

“ [5^4 S d^X 0

Hence the canonical transformation may be written as 

where

■^ = - /  .

In quantum theory the corresponding infinitesimal unitary trans­

formation is effected by

u = '
3 owhere - / d x(e if.■+ is Hermitian.

So a covariant quantum theory for our Model Field II is established.

Ihe general features of generally covariant quantum theory again

manifest themselves explicitly. We see that physical vectors,are 

invariants and that they are x^-independent. In the next chapter we 

are going to study this Model Field II in greater detail using 

^  specific coordinate system
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5*7 Appendix 5*1 Consistency in Quantum Theory.

First of all we need to prove some auxiliary formulae

(1) *= 0 < = >  It A  « 0 . (AS, 1-1)J A  A  , Jf

This is obvious as C^(x) commutes with v^Cx)

(2) g“(x)h^(x) « 0ct -

-=> J(x,y) = fif 3(x-y))g“(x)h (y) - 6 (x-y)\ g“(y)h (x) % 0tx-^ " - a - tgyl - - / - a -

(Note: x°=y°) (AS, 1-2)

3: integrate J(x,y) with respect to d x for an arbitrary region

enclosing y.

 ̂ Cg^(y)h^Cy)) ^ 0 .

Similarly

ay] - *

/ d^y J « 0

Hence J ^ 0 on account of the arbitrary nature of the region of 

integration. Also we have

J(x,y) (-3 '5(ï-y)^g“ (î)\(y) - a(x-yj)g"(y)h^(x) « 0  .

(AS.1-3)
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00
(3) = 0 = >  0 ' (AS.1-4)

,J A  (3Ç .
> J

This is the same as our previous expression (AS,1-1)

IT* « 0 .

Its validity is ensured by (1).

We now consider the consistency conditions with the help of these 

auxiliary expressions.

Firstly

[*i(x),*j(x)] =

where g^(x)
d P

/ iA
-  -ci-h(s(x-x) j/ si 4  - 5(x-x)

Secondly

[*o(x),4j(x)] = [(tt̂ it* + Q^A°°),

where

®  = [ y i  4 y < ]  = [ y i

= -2ihc T[̂  TTg Ô (x-x) J = -2ihc rr̂  6 (x-x) y
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[A^°, 'iTg] may be evaluated using the representation  ̂ ;

iT̂ = " i'hc>

[A°°, tt'] = + c i f t ( Æ .
® H

( % - )  “ - &  A°°(x) «(x-x) = - r4g- A°°(x) êCx-x))? r  - - - 1 - - - ■
\ , J6 J

= ■ f̂ ) ^ •
, l '

Hence

,(x-x'5 , . ÿ ! .  A(x_x)\ .

= 2a°° sL' by (AS. 1-1)

B̂ . /3A°° il _ /<B 3A°° \ 'B 3A°° _ .,/oo /oo _ /oo
- i "  .i'

(^)- - ihQ^C2A°° 6CX"X) y + A°?/ 6(x-x)) .w./ ^ , j ,3 -

[4» (x),*.(x)] = - 2ih[iT.w^ + Q^A°°]6(x-x) J  - i-ÜQ^A®?/ Ô (x-x5 '^“ J “ ^ - - ,] ,] - -

= - 2 ih  ~ ~  [ ( tt. tt̂  + Q ^ A ° ° ) 6 ( x - x ) ]  + 2 ih  ô (x~x) ( tt. it̂ . /  + Q ^A °? /)  
3x*̂ ~ ^
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6(x-x)

21-K (* Cx')5(x-x')) + i'K 6(x-x)(2 tt,/, + a V ° )o - - - A. ,3 ,3

2itt (6(x-x)a (x)) *■ m  6 (x-x)$ .ĝ J - - o - - - 0,3

« 0 , using -^(6Cx-y)£Cx)) = (x-y)f (y)) .

Lastly

[4>q(x) ,4)̂ (x)] ~ ['ÎT̂TT̂ + TTglT̂ + Q^A°°]

= + [Q^A°° , TTgir®]

[A °° , 'iTg] =-ivc|-^7g— 5 ( x - x ) \ = - t - f e c 6 ( x - x )  /' ■ b ■ ■ '
[<l>oW.'l>oCx)] = <feQ^|l® 6(x-x)^^ + 4^ 5(x^x0^^j

«0, by (AS.1-1), (AS.1-2), (AS.1-3), (AS.1-4).

So we have shown that the consistency equations are all satisfied 

in quantum theory.



CHAPTER 6

MODEL FIELD THEORY II

TREATMENT II

6.1 Introduction

We continue to study the field introduced in the preceding 

Chapter. This time, we shall examine it from the point of view of 

a specific coordinate frame. The fundamental reason for working in 

a specific coordinate frame is a subject of great controversy. We 

shall not go into such a controversial subject here. The choice of 

a specific coordinate frame is somewhat arbitrary in general.

However some justification will be given to our particular choice.

The conventional perturbation theory is applied to our field in the 

weak field approximation case. As may be expected, divergent results 

are obtained.
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6.2 A Special Set of Coordinate Conditions and its Justification 

6.2.1 A Special set of Coordinate Conditions

Consider the special coordinate conditions mentioned in the 

preceding chapter, that is, . The variational principle

becomes

,P ,0

The corresponding Lagrange equation is given by equation (5.3-1) in 

section 5.3 of the preceding chapter. A Hamiltonian formulation is 

easily set up. To obtain a positive Hamiltonian density of the right 

dimensions, we shall take for the Lagrangian density

_  /
f -n  ̂ - (—g- — (V^)^) ,, p j 0 c

where Q = a positive number of the dimensions of energy density.

“ ct and g - ,5.9t

c ~ speed of light. 

Define the canonical momentum

as c  _ il + (VS)
ĉ

c- /l+fvs) => no constraint

The Hamiltonian density
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—  . ' -  ,̂-r—.
jL “ 7t4 - f .

The equation of motion of any functional F of Ç,n is given by

F = [ F . J d^x

In particular

[c, X c' ÎT /i+cyçv

1+qi It

A •- [lT,J d^xit] >= -Q V v ç / f è i '
1+CVÇ)

One may have noticed that both the total Lagrangian and the total 

Hamiltonian are divergent integrals because of the additive 1 inside 

the square roots. However this causes no trouble as the divergence 

may be eliminated by subtracting 1 from the integrand.

The corresponding Lagrange equation is

9xy
= 0 (6.2,1-13

p a /

A general solution to this highly nonlinear equation is not available 

However some exact particular solutions may be found. The most 

interesting ones in this latter class are those of the form

IK x^ -ii< x^
A e  ̂ + A*e ^
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where A,< are constants and the k satisfyII y

p c  ^n K K - 0 op 0

The metric tensors and the Christoffel Symbols [a3,A],

will then be

-g = det g ^ 1 ,y V

[a6,A] = - % K-„ Kg ,

< 6  = t“6,X] = - % ., Kg kF ,

Ik -IK
where (p - i(A e  ̂ - A*e  ̂ ) and ~ ,K a
One may now easily verify that the "straight" line defined by

-■ K^u , where u is some parameter, 

is a null geodesic in the above space-time. The solution Ç (x)
has the form of a wave propagating along this geodesic.

Slightly more general solutions may be obtained by superimposing 

all these waves travelling in the same direction, that is,

du B (u) (x) ,

where B(u) ~ constants
y . ylUK X -lUK X

and <p = A (u)e ^ + A*(u)e  ̂ ,iUK . K K
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is again an exact solution. However, superposition of waves 

travelling in exactly the opposite direction does not lead to another 

solution, nor does superposition of waves moving in different 
directions. The nonlinear interference effect starts to set in for 

these waves not propagating in the same direction, i.e., these with

One observes that

C - f(K^x^) , where - 0 and f is an arbitrary function,

is again an exact solution. One may construct "localized" solutions.

Some examples of these are

pÇ a cos K  X e ,
p

Ç oc cos K x̂  sech K x̂  , 
p p

other types of solutions which do not lead to constant may also 

be found. Some simple ones are

Ç - cos ex'® i- x̂  ) + £n cosx̂  - £n cosx̂  ,

or more generally

4 - F(x^+ x̂  ) + G(x̂  , x̂  ) ,

where F(x̂  + x̂  ) is an arbitrary function and G(x^, x̂  ) is any solution 

VGof V,(— ---- -) ” 0 in two dimensions. The equation for G is the
/i+(7Gr

same as the equation of minimal surfaces whose general solution is
, FIknown.
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i case of General Relativity will
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i 2
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Under such a total variation

SI = d^xC—  - — 3 + G(S ) - G(S 3i 3  axF

where

G(S 3 = d ' x ( ^  - T 6x^3 ;
,0

6** = + <i>̂ 8x^,y

,0 >0

F2The postulate that 61 be equal to the difference of the two surface 

integrals leads to the usual Eulet-Lagrange equations for the field 

variables. In the Hamiltonian formulation, the surface integral may 

be regarded as a generator of infinitesimal canonical transformations 

Now we may write

G “• d̂  - T^ôx^) , where tt 9JG

o
Consider the case of a pure translation of coordinates.

i.e. x^ = x^ + = constants

Then 6^^ = 0 and

G - - d" X  T E
J y
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One can see in this case that G serves as the generator for canonical 

transformations corresponding to a pure translation of coordinates. 

The property of G which concerns us here is that it has a fixed form. 

This may be utilized to identify the canonical conjugate variables. 

Now consider a scalar field theory formulated in a particular 

coordinate frame x^. In this frame the generator

G = [d*x(m60 - T 6x^) and T S 0.J y y '
To build up a theory for the field in an arbitrary coordinate frame, 

we can use Dirac’s curved surface formulation. In such formulation, 

x^ are treated as additional field variables while introducing a new 

set of variables v^ to specify points in space-time. Thus four more 

field variables plus their conjugate momenta appear. Let all the

field variables including the original <p and their momenta be

labelled respectively as  ̂ ir,, A - 0,1,2,3,4 with (j>̂ - ̂ . We

again obtain the generator G in such formulism to be

G y n . & y  - T Ôv’" A y

with == (i. .

A 9 d)̂where c{) - — and the barred quantities are those as

given by Dirac’s formulism described in section 2,4,2 in chapter 2

We showed then that 0 due to the constraint equations,
AWe now want to show ^ ^ 0 as well. From equations (2,4,2,2-2)

we obtain
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simply by multiplying (2.4.2.2-2) by „ Note that is equivalent 

to y^ used in chapter 2 and that

n x^ - 0 .y ,r

Now we have

= ° '

which imply

Hence

G = T t f  V  ir̂ 6(|)̂ .

Now consider the problem the other way around, that is, given this 

theory formulated on a general space-like surface, how we can get 

back to the theory in the original special coordinate frame. The 

answer is obvious. We can simply impose the coordinate conditions

/  = “ vF .

It may be readily seen that indeed the original theory is obtained 

and in particular the generator gets back to

G = - T 6x^3
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Returning to our %-field now, we regard our Hamiltonian formulation

before imposing coordination conditions as being essentially a

theory on the curved surface in the Dirac's sense. Our task is to

obtain the theory in the special coordinate frame (more than one

frame in general) from which we may in turn get back the curved
F3surface theory. This is an idea due to ADM although details of 

their treatment as applied to General Relativity are quite different 

from our present ones, Thus we see that this provides a mean of 

establishing a special coordinate frame. We will demonstrate this 

explicitly for our field.

For our %-field

G = Jd-*x , since T^ = ^ 0 -

So it is in the right form, and the coordinate conditions to impose 

are then

Recall the constraint equations

Using the coordinate conditions we have



'̂9 8'

Cir„F - 2 Cir.)"* + n' - A°° = it̂  (1+(VÇ)^ )
3=1 ^

q" A°°

O ” .00Since A - ®12 ®13
®21 ®22 &23
®31 ®32 ®33

we obtain

-q/C1+CVÇ)M C I

Therefore

SÇ = - T 5xF + .A y

where

r TT%^y ” ^y ” (Q/(1+[V€]*)(1+^) , iïÇj)

The generator becomes

G = 1 d̂ x(Tt6ç - T ôx^) ,J y
which is exactly the one obtained in the special frame we have 

chosen. Hence this procedure offers some justification for our 

choice,

6,2,2,2 Justification II

In order to be able to study the physical states in the usual 

way, it is necessary to impose sufficient coordinate conditions as to
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single out a unique coordinate system. Our present conditions 

4^ - satisfy this requirement. Furthermore we note that 4  ̂are 

four scalars as far as arbitrary coordinate transformations in the 

4-surface are concerned. Therefore the coordinate conditions are of

the Bergmann-Komar type. Consequently a theory using these

coordinate conditions will be covariant.
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6.3. Weak Field Approximation

Due to the highly nonlinear nature of the field equation, 

approximation methods appear to be inevitable. Different approxi­

mation treatments are employed to study the field. In this 

chapter we examine an everywhere-weak field approach. We assume

that the field is everywhere-weak, that is, 4 . and are of the
J, >3 Q

order of «  1 for all x . Note that these are dimensionless 

quantities. The exact numerical value of X is a physical assumption 

Having made this definite assumption, we may carry out a binomial 

expansion of the Hamiltonian density regarding

1 to be of the order of X°,

V4, —  to be of the order of X̂ ,

C ‘T1 ClT!’(V4) , (V4) —  , to be of the order of X and so on.

Therefore we have

+ (VS)' y / i +

16 I Q/

™ f (6,3-1)

where Si^ = Q + jtCVÇ)^ + ,
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■» - 2(vç)M~)M + + (“ J‘ -

cver-c^t - Cvs)M-^3’3

To the second order, we may take

iio 2"̂ CV4)̂  f ignoring the additive constant Q,

H-i ' - ftcver + (— r  - 2(vç) M ^ 3 M .

In the usual perturbation approach, is regarded as representing 

the free field while is considered as a small perturbation on the

otherwise free field. The free field derived is seen to resemble

the Klein-Gordon field for scalar mesons except that there is no 

mass term in our present case. We may call it the mass less real 

scalar meson field. The free field equation is

= 0, i.e. —  ti. - = 0.
,Po at'

The perturbed equations of motion are

e = ^ ( 1  + %[(V5)' - C^)M). (6.3-2)

rr - Q I  V, CVÇ[(-2i)=' -(VÇ)M)- (6.3-3)

Equation (6,3-2) also serves to define tt in terms of 4 One can
f P

solve for it to obtain

,r . S_ 5(1 + %fP°5 £ ).
Vj > P  # 0
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keeping ternis to the second order only.

The perturbed field equation is

- « f  6 , . « f  • “ •

which may be worked out from the corresponding Lagrangian density

f « ttC - it

Many exact solutions to the field equation (6.3-4) may be found.

Of particular interest is the set of exact solutions

iK x"
(j) (x) = constant.* e  ̂ ^K.

where the constants K satisfy rf̂  K K = 0, Solutions whichy J P (J
resemble interference effect between these plane wave solutions may 

be obtained by perturbation.
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6 .4. quant i z ation
The quantization of the field may be effected in the usual wayr 

The 4,IT are taken as operators in a linear vector space satisfying 

the standard equal-time commutation relations for bosons and the 

states of the field are represented by vectors In the linear vector 

space. The first problem we like to do is to find the eigenvalues 

of the Hamiltonian The usual time-independent perturbation method 

will be used., The problem of scattering will also be looked into 
by the S-matrix formulation.

tt
6.4,1, The Quantization in the Schrodinger Picture 

Decompose 4(x), n(x) by Fourier Integrals.

1 r , IK'% . r  iK,x
 ̂^  ̂ j  d" K q^ e ; TT W  = ^ ^  g/g j   ̂ ®

=>

1 C ^iK.x
<r X 5(x] e ; P,f ”  A j ÿ

-  (2w)

r  "ilCcX
df X IT (x) e

Define a^, a^ by

/ "hĉ  t X . t _ , . t
%  \/ 2Wĵ Q 7 2c* '

where - c^K*. Then the commutation relations for 4(x), t(x) 

imply that;
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[â , â /| = 0 ; [â , a^/] = 0 ; [â , a^/] = Ô(K-K^),

which are the standard commutation relations for boson creation and 

annihilation operators. Note that these relations are independent 

of the Hamiltonian. In the perturbation theory, our unperturbed 
Hamiltonian is

H Jd*x jt̂  , = |[CVÇ)* + ] .

=> H = fd*k «W„ a .̂o J K K K

We have ignored the infinite zero point term by a normal ordering of
tthe operators a^, a^. With this expression for the Hamiltonian 

of the free field, we can define and give particle interpretation to 
the various eigenstates of H^ in the usual way. Denote the vacuum 
state by |0>, then the various eigenstates representing different 
number of particles are

1 K > - a_ {0 > ------------ ----- —  one-particle state,

|K K > - IK K > - a^ a^ 10 > ---— - two-particle state,

and so on.

6.4,2, Time-Independent Perturbation Theory in the Schrodinger Picture 

The problem now is to calculate the perturbation energy of a 

one-particle state IK > due to the interaction Hamiltonian
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Hj . [d*x JCj . = - §[(vo" , 2(v ç)*C~3M.

The usual time-independent perturbation theory for a discrete eigen­

value spectrum needs to be modified in the case of a continuous 

spectrum. Details of the modifications together with the derivation 

are given in Appendix 6,1.

In order to compute various matrix elements in the perturbation

theory should be expressed in terms of creation and annihilation 
i*operators a defined by

iK,x

QRW„ , iK.x
II (xj =  I S k i    (a - ) e

(2r)3/^ J J  2c* Ç t

Note that in quantum theory is meant to be its normal product,
fnamely, creation operators are written to the left of annihilation

operators, contains terms involving fourth order products of
*f* and a_ - As will be seen later, only terms with factors

have nonvanishing contributation to the relevant matrix elements. 

Therefore only these need to be worked out explicitly. The result is

Hj. =. d’K d’K''d*(C d* k' [6 CK. Kt K*K) a^/ag
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4ôC-K+K^+K+K^)a^ a^/a- a^/] ^ irrelevant terms, (6,4.2-1) 

where B g/ = - — ^  /Ŵ ' W^,Wg Wg/ [1-(K?f .K°f°)MK?K°) (|°f )]
■ “ O ̂ ̂ A- (T Jf

/T----— ---— ---TT—  , , 0 7 0

32(2it)®Q k k k k

and K° = j|y , = c|K| = cK

Let us firstly consider the perturbation on the vacuum state |0 > 

which is non“degenerate. Appendix 6,1 gives

AE  ̂AE^^) 4- AE^^) 4----  ,
0 0 0 ^

in rn |< 0|H |n >|*
where A E a ,  < 0|HL|0 > , AE^ = S ------A------  .0 1 0 , -En^o n

fl)The first order term AB^ is zero. There is only one type of non
(2 )zero terms in AE coming from |n > = |K K K K >,
O  -jl -) -3 -4

< O lELlK K K K >
1 “ it "2 “ 3 “ 4

r
d*K d^xM^K d*ic' / p  p/6(K+K'fK+K/)  S 6(K-K )6(K-K ) x

- - - -  - - - -  pi234 ■■ ■ ■*
6(K-K )6(K-K )

“ “3 - -4

S Ô (K 4 K 4K +K ) ft J. „ ,
P1234 •* -* ■* L L - 3 - 4

where S is over all the permutations of K , K , K , K 
pl234 ■> ■*
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Hence

O
d* K d M  d* K d* K !< 0 1H, | K K K K >|

1' 2 5 A_________  1 — 2 ~3 -4

4i -fic(K +K +K +K )

fd*K d*K d*K d M  ^  K K K^ i 3 4 p l z 5 4  _ _ _ _ _    -) -S. ~ 3  -4
4! dic(K +K 4l< +K )1 12 3 4

(6,4.2-2)

This expression contains the square of a 6-function which appears

originally from H^. Hence it is not very meaningful as it stands.

However, as remarked in Appendix 6,1, this difficulty may be

bypassed. The usefulness of as given by (6,4.2-2) will be
f 21seen in connection with the expression for AÊ  ̂ presently.

Let us now consider the perturbation on a one-particle state 

|k >c The energy eigenvalue associated with [k > is degenerate,

e.g., \\J With k̂  ~ k̂  ̂- %k also belongs to the same eigenvalue-

Let |m > denote an eigenvector of H^ belonging to the eigenvalue 

hW 0 Then one can readily show that

< k|EL|m > = 0.- 1

Therefore the degeneracy does not present any difficulty in the 

perturbation calculation. From Appendix 6.1, we have

(i)a E^ ' 6(K^k) = < KlH^lk >1

/< K|H In > < niHJk > 
AE^^J 6(K-k) - S — —

n E, -Ek n



where 2 means a sum over all the eigenstates of H except the one- 

particle eigenstates and those eigenstates with - E^, The first 

order correction term

AE,"^ 0 V <  K|EL|k >  a 0.K - i -

('21The second order expression AE^  ̂ consists of two types of non-zero

terms

AE^^) 6(K-k) = A + B,

where

d^K d^K d^K <  K|HL|K K K >  <  K K K |H^|k >
I 2 3 1 -2 -3 -H — 2 -3 1 -

3! E^-E^ -E, -E^
Ï 2 3

d*K d* K K d*K d*K <  K|H^|K K K K K X K K K K K  |ELik  )
il 2_____ 3_____ 4 5 1 “ 1 - 2 - 3  -4 “ g_______ ~a "2 "3 “4 “ .5 1

5! E,̂ -Ê  -E^ -E^ -E^ -E^
1 2  3 4 5

Details of the calculations for A and B are given in Appendix 6,2 

The results are

rd* K d*K d* K (TkK K K )*6(K +K +K -k) 6(K-k)
A 1 2  3 - ” 1 -2 -.3 -1 —2 -3 -

3! hc[k-K -K -K ]
S 2 3

where
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Bi
d’K d*K d*K d M   ̂ ,!L. ”k K K K  ̂  ̂̂

2

1 2 3 4 pl254 -1 -2 -3 “ 4 6(K-k),
4! -iïc(K +K +K +K )1 2  3 4

*• ^ ^kK K K F
fd^K d^K d*K-----Pkl23— ---l -2 -3-- 5 (k+K +K +K ) 6 (K-k).

* J ’ * * -îîcCk+K +K +K ) - -1 -s -3
2 3

As pointed in Appendix 6.1 we should regard 

AE^Z) = AE^Z) _ AE^^) = A + B ,
K K O 2

as the true perturbed energy of the original one-particle state |k >. 

Hence terms involving the square of the S'-function arising from 

are cancelled out and cause no trouble. The real trouble comes 

from the actual structure of H^, The integral A is shown to diverge 

towards negative infinity at least like

- f d̂  K d̂  K K K .
J 1 2 1 2

B diverges similarly.
2

All this is expected from the forms of H^ which involves the

derivatives of the field variable. This type of interaction is
F5known to be nonrenormalizable. As one goes to a higher order in 

the perturbation calculation, one gets higher order products of the 

derivatives. Hence more divergent factors turn up in the 

numerators leading to a higher order divergence. Therefore the 

perturbation treatment of our present model field theory is again 

plagued by infinite quantities.
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6.4.3. The Problem of Scattering in the Interaction Picture

The usual S-matrix approach will be used and the Interaction 

picture will be employed throughout this section.

6.4.3.1. The First Order S-Matrix Processes

The first order S-matrix is given by
00

= If 1 «I

A number of processes can happen, notably the what we may call the 

"shower process", that is, an incoming particle is annihilated and 

three outgoing particles are created. However we shall consider a 

more conventional two-particle scattering process. The initial 

state will be |i > = |k, k^> with k  ̂k^. The transition to final 

states of the form |f > ~ |K, K^> will now be studied. Let us 

consider the simplest case in which k k^ - 0„ In other words we

have a head-on collision of two quanta. This is not such a

restricted case as it may appear because any two-particle collision 

would appear to be a head-on one in the centre-of-momentum frame of 

reference. The total scattering cross section is given in Appendix 

6.3 to be

^  j |T̂ . r*6(K+y)6(E^-Epd*K d*
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where k̂K̂ 'k̂ K̂   ̂ "-'

The integration may be explicitly worked out giving

7E‘
a = ---------- E, = die k ,

10ir('fic)‘‘Q*

To estimate a, we take Q to be of the order of the energy density of 

the universe which lies in the range 10“® to 10“® ergs cm“®, that is, 

we take

Q != 10“  ̂ ergs cm“® .

= >  a « 10?* E^ cm̂  ,

where E^ is to be expressed in the C.G.S, units. One can put in

some typical energies for gravitons to work out a. A typical

graviton associated with the gravitational wave which may conceivably
F6be generated in a laboratory as envisaged by Weber would have an 

energy of the order of 10“ ®̂ ergs. The total scattering cross 

section is then

o = 10“®® cm̂  .

This is very small. But it should be measurable since in some

experiments on neutrinos a cross section well below 10"*^ cm̂  is not 
F7unknown.

Let us now consider a typical graviton associated with inter-
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stellar gravitational radiation. According to J, Wheeler the density

of such gravitational radiation could be as high as 10® ergs cm“®
F8and that its wavelength X would be of the order of 10̂  cm. The 

energy associated with a graviton may then be taken as

« 10-'*“ ergs.
A

The corresponding scattering cross section is

a ^  10**^ cm̂  ,

which is far too small to be measurable,

6.4.5.2. The Second Order S-Matrix

The first order S-matrix elements are all finite. We may go on 

to examine the second order S-matrix elements. However the results 

are not rewarding. The calculation is very tedious leading to 

divergences. Therefore we shall not pursue it any further.
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6.5. Appendix 6.1 A Perturbation Theory in Quantum Field Theory 

Suppose a boson field is characterized by a Hamiltonian of the

form

H = H + a h ',

where H^ = the free boson field Hamiltonian and X «  1. The eigen­

vectors are H are therefore o

10 >, | K > = a î  |0>, | K K >  = | K K > = a ^ a ^  |0- “JL “2 ”2 “1 K K.

We shall not confine the field in a finite box. Hence H has a0
continuous eigenvalue spectrum, apart from the zero eigenvalue of 

|0 > which may be considered as a discrete eigenvalue especially for 

massive fields. The normalization conditions are

< 0 1 0 > = 1 ; < K K K . . . K  | k ' k ' . . . K ' ' >  = S 6 (K x
- 1 - 2 - 3  -n - 1-2 -n pi2..n

where S is over all the permutations of K^, ..K . These 
pl2..n

vectors are assumed to form a complete set. In other words we have

rd^K d^K
I = |0 > <  0| + d^K |K > < K |  + |K K > <  K K 1 +

-1 “2 . -1 -2

Any vector |Y > is expressible as

I Y > = < 0|Y >10 > + I d®K < K|Y >|K > +
d"K d"K

21
< K K l'y >1K K > +-1 “2 - Î -A
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This may be symbolically written as

T > = S c^|n >, where |n > stands for an eigenvector of H 
n °

Perturbation Theory Proper

The problem is to find approximation eigenvalues of H.

H In > = |n >, o n

HIT > = c|T >1 n n

Assume

|Y^> = In > + AI + Â  I + .... ,

e = E + AAE^l) + A^AE^^) + .... .n n n
==> H^ln > = E |n >,o n

H |().*'̂ >̂ + H In > = E |(j)*'̂ >̂ + AE^^) |n >,0 ^n 1 n ^n n '
+ AE^^^ + AE^^' In >,

(1) Perturbation on the Vacuum State

|T^> = |0 >  + A|(|)*-^V + Â  |c|)*-^V + . . .  ,

e = 0 + AAE^l) + A^AE^Z) + ... . o o

Following the usual procedure of the perturbation theory for discrete 
F0spectrum we obtain

AE(^) = <  0|/|0>, AE(2) . s < l | H Q .»^>5,.,n|HO,0> and so on.
° ° n -En
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(2) Perturbation on an One-Parti d e  State

|Y(k) > = |k > + XU(k)*'^^> + ... ,

e = E, + XAE, + . .. . k k

= >  H j k >  = E^lk>,

H^lk > + HQ|*(k)(l)> = AE^l^lk > + Eĵ | ij>(k) (A6.1-1)

H |*(k)(^^> + H'|*(k)(l)> = AE^^^Ik > + AE(^)|*(k)(l^> +O - K - K -

(A6.1-2)

Let |(j)(k) > = S c I A s s u m e  that we may impose the following
n " “

conditions on lT(k)>

In other words, we assume that there is no one-particle term in

|T(k) > apart from the unperturbed |k > in the zeroth order

approximation. These assumptions appear necessary in order that

one can proceed with the perturbation theory in analogy with the

discrete spectrum case. These conditions may also be compared with

the similar conditions imposed on the perturbed vector in the
F 9discrete spectrum case. Then (A6,l-1) gives

ni / T"|o6(K-k) = < KlHTlk >,
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(1 )  ;implying that AE^ is zero unless < K|H' |k > itself contains a

factor 6(K-k). If commutes with the total linear momentum, then
f

< K|H |k > must contain such a factor.

The second order expression AE^  ̂ is given by (A6.1-2) to be

6(K-k) = <  K|H'|*(k)(^) >.

(A6.1-1) = >

, ,<n|H^|k>
> = S ----------  In >.

The degeneracy of E^ should not cause trouble since in practice we

often have E^ = E^ => < n|H^|k> = 0. We shall confine ourselves

to such cases. The summation means a sum over all the eigen-
n

sectors of except the one-particle eigenstates and these eigen­

states with E = E,.n k
Finally we get

< K|H'"|n > < n|H'|k >
AE^Z) 6(K-k) = s'

" ^k'^n

Once again conservation of linear momentum implies that the right 

hand side should also contain the factor 6(K-k).

Some Remarks

(1) The essential difference between these formulae and those for

the case of discrete spectrum is the appearance of the 6-function
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The necessity of the 6-function is most clearly seen by considering 

a somewhat trivial example in which

H'' = H * . o

Our first order expression then leads to the exact result.

/ (21(2) In many practical cases, H' contains a 6-function. Then AE^

may involve the square of the 6-function as in our present
(21Ç-field theory. This means that the expression for AE^  ̂

itself is not a meaningful quantity as it stands. However this 

difficulty may be bypassed. Let us consider the present 

5-field theory. Firstly one can confine the field in a finite 

yet large box of volume V and perform the perturbation calculation. 

For a large V we obtain

»d’K d^K d^K d*K ' .L. K K K *5 )
AE(2) _ V I a 2 3 4 pi254 -1 -2 -3 -4
o J 41 -dfc(K +K +K +K )

1 2  3 4

Now if we regard the result given in equation (6.4.2-2) as the 

limiting case of large V, we may interpret 6̂  (K +K +K +K )
-1 ~'h “ 3 "4

appearing in (6.4.2-2) as the limiting case of 6(K +K +K +K )g  3 "i -2 -3 -4

This procedure therefore gives some meaning to (6.4.2-2), 

Secondly, as seen in the calculations given in Appendix 6.2, one 

observes that

AE^Z) = AE^Z) + AE^^^ ,O
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/(’21where AEĵ  does not involve the square of a 6-function. Hence
/rzi F(!we may consider AE^ as the genuine perturbed energy of the

original one-particle state. The difficulty caused by a

(6-function)^ therefore disappears at least as far as our 5-field

is concerned.



6.6. Appendix 6,2 Calculation of A and B

(1) Calculation of A

< KlHjK K K > = y y 6(K +K +K -K) ,
i “ 1 “2 “3 K N  K  h  -% -3 -

“ "3 1 " 2  - 3

where _ = -4 S 0»^ _ _ and 2 is over all theJlviV 1\ i\ Ivlx iv I\ X gp f?plZJ plZo

permutations of , K .

r<fK d^K d^K “̂KK K K ^kK K K ® ‘‘'-j’̂-3  ̂ ‘‘‘-s
A =

"â **3 ** ***ï *"21 2 3 " “ i "2 "3 — 1 -a “3 ___

■ Î
31 dic[k-CK +K +KJ]

d ^ K f K d ^ K  f JkK K K ) ' «  (5, +K +K, 4)
1 2 3 ""1 "2 "3

31 d!c[k-(K +K +K )]
1 2  3

"kK K KplziO --1 “2 “3

■̂ l-̂ kK K K

(2)
kK K K“"1 “2 “SkK K K

“ "1 “2 ~ i

kK K K "2 kK K K“ “ S. -3 -E kK K K
“ ”2 "3 “•

(2)
kK K K

“2 - 3 I “2 -3 *kK K K“ “3 “1 “2

\ k k k
“ “2 “3 “1

V-* .-i,
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Since K , K , K are dummy variables and the rest of the factors in
-I “2 "”3

the integrand are symmetric with respect to K , K , K , we may
“ 2 -3

substitute

K K ^kK^K K
“ “ Î “2 ”3 - “ 1 ~2 "3

K K ^KK K K ^kK^K K
“ “1 “ 2 "3 - “3 “ I “2 " “i "2 “3

in A.

fd’K d^K d̂  K l-̂ '-̂ kK K K  ̂ ^^kK K K ”kK K K
^  - I 1 2  3 ~2 “3 ~~1 ~2 “3 “ “3 “ 1 “2

J 3! dicCk-K -K -K )
i 2 3

=Id^K d^K K ^^kK K K^^kK^K K
a 2 - - 1 - 2 “ - ”1 -2

3! fic(k-K -K -k5
11 2

where K^= k-K -K - - -1 -2

2
*-”kK K *■ ^^kK K k' \ k^K K 

OKc) kK K K £
2 rn -\& r\t Î 2 kK K(32): (271)'’Q:

f. depends only on the relative orientations between k, K , KK K K - -1 ”1--J -2
and is equal to

£ „  „ = [l-Ck?K°+K°.K°3 + (k?K°) CK°.K°)] +KK K - -1 -2 “ - -% -2 -
-  “1 -2
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2[l-(k?K°+K°.K^°) + (k?K°)(K°.K°)][l-(k?/°+K°.K°) + Ck?K°) (K°.K°)] ,

where k° = k°-K^-K^. Not much simplification of this expression can 

be achieved.

We have

me)' '• kK K /A =    d' K d' K -- ------- £ „ „ „/
2(32)'(2Tr)®Q' J ‘ ' k-K -K -k' - - A -

Ï . 2

Now for fixed K and K ,
1 2

Let us consider the behaviour of the integrand of A for large values

of K and K . Then the integrand is negative and we have 
1 2

v ' k'. yJ  . K +K -kJÇ  min ____ min __ i ^
k-K -K -k' k-K -K -K̂  k-K -K - y!  -2(K +K )a 2 1 2  1 2  max i 2

2(K +K )
Î 2

The integral

fc^Kd'K K K  £ / ( - %  +  k----
J ' ' » ' ISÇ.KK 2(K+K)

1 2

clearly diverges in the upper limits as K , K tend to infinity. 

This implies A must diverge towards negative infinity at least like

dfK d*K K K .1 2 12
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(2) Calculation of B

< K|HL|K K K K K > = 2 0^ _ _ _ 0(K +K +K +K ) 6(K-K ),
i -1-2 -3 -4 “S ■^A'J’ZAZ K K K K "1 -2 -3 -4 " “5plZ045 —i ~2 -3 -4

< KlHylK K K K K >
1 -1 “2 ”3 “4 “S

S «y r . . 6 (K +K +K +K ) 6(K-K ) 
pl2345 -1 - 2 - 3 - 4  ■* -Ï -3 -4 - -5

S 0 6(K +K +K +K ) 6 (K-K ) + S X
pl234 !̂i !̂2 -3 -4 ■> ■' pS123 -.-2-3

5(K +K +K +K ) 6 (K-K ) +
-5 "1 “2 “3 - -4

S 0» _ . . 6(K +K +K +K ) 6 (K-K ) + S _ *
p4512 i>4-5-3-2 p3451 ^  ̂4 -1

6(K +K +K +K ) 6(K-K) + 
- 3  “4  “ s "a  -  - 2

2 a 6(K +K +K +K ) 6 (K-K )
p2345 ^  -* -4 ^

Let = 2 0- - - y 6(K +K +K +K }„ Then
0-2/1 K  K. K  K  “ 1 ” 2 -3  - 4plZo4 “1 “2 -3 “4

< K | H J K K K K K > =  2 o__. 6 (K-K),- I ^^3-4-5 1234 - -,

where 2 means a summation over all the cyclic permutations of 
C12345

K K K K K .
“"I > ~2 > “3 > •'4 > “S

< KlH^lK K K K K X K K K K K  |H,.|k >
i “ Î -2 - 3  -4 -S “Î — .2 ~3 ”4 - 5  i "
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= [ S 0 6(K-K )][ 2 fi 6(k-K )]
C12345 1234 - -, d 2 3 4 5  1234 - -,

[«1234 + «5123 « ( ^ 4 ) " «4512  ̂ + «3451 «(K-K,) +

«2345 «(K-K,)]*

[«1234 «(k-K ) + «5123 «(k'K ) + «4512 «(k-K,) + «3451 « ( ^ K  ) +

«2345 «(k-K )]

= (fi^234)'6(K-K ) 6 (k-K ) h- (n5i23)'6(K-K^)6(k-K ) + (O4512)'«(?-%,)*
6 (k-K )

- “3

+ («3451)'«(%-5,) «(k-K ) + («2345)'«(K-K,) «(k-K) + R.

where R are the 20 remaining cross terms.

=>

where

B = B + B ,I 2

fd'K d'K d'K d'K 
B = \  S 2---2--- i
‘ J 4!

(«1234)'«(K-k)
-Ac(K +K +K +K )

1 2  3 4

(A6.2-1)

B
d'K d'K d'K d'K d'K
 1 2 3 4 5 R

dîc(k-K -K -K -K -K )î 2 3 4 s

(21Compare B̂  with AE^ in (6.4,2-2) we see that the contribution to

Ab5^^ from B is just equal toK 1 o

Calculation shows that each of the twenty terms in R contributes
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equally to B . The final result is

( 2 K K )’
2° * d'K:d'K d'K -E---— — ------  6(k+K +K +K ) 6(K-k)

' ' ' -•RcCk+K +K +K ) ' ■' ■'1 2  3

It can be seen that this is a divergent integral which diverges in the 

same way as A.
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Fl^6.7. Appendix 6.3 Scattering Cross Section

Define  ̂| x f dt = < i l S ^ l f  >
V T

Hence = Lira , < i | s ‘-^^|f>= Limv-K. VT £i 'vr
X̂ oo x->oo

The transition probability per unit time per unit volume is

"*£1 ° f"̂ fî vT 'y-Kx)
X*>oo

I[s2 ^ ] v t ''where [W..] =    .
VT

Now

c^i) gg (2#) V Q rn . ]
VT _  ̂ r y y y K K K K K K K K K ^'m v  K K K K -î ~2 ”3 -4 "ï "2 ”3 "4 “i "2 “3 “4 -1 “2 “3 -4

where

K +K , K +K-i -2 -3 -4”1 *"2 “3 -4 -1

-t/2

K +K , K +K
“1 "3 "2 -1“ 1 “ 2 “ 3 ”4

~t/2
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 ̂ dt.

- t / 2

where E_ = E + E^^ E, ~ E, + E /,f K K 1 k k

T^i = G[Okk'Kx/+ ^kK'k's^'

=> , r  , I f  i(Ej^E.)t/% T
(2ir)‘ |T P lèk+k^ K+k'P ' J , ®[W,J  ^  - - - - _-x/2-----

t /2
 ̂ • '■ i(E.-E.)t/fiIf i(K„-K).x P  I f  i(E„-B,

C2.,‘ ,T,J. IJ- -'■* -''I I.J„-
V

2T_ ,
- (2n)'o a (K -K.) 6(E_-E.),~r “1 r 1

where = K+K^, K, = k+k^ .—t — — —i — —

The error introduced tends to zero as v, t ->- «». The reason for 

retaining a finite v will be seen presently.

Consider the scattering of ji > into a group of final states 

|KK^> with K in the range (K,K+dK) and in the range (K^K^+dK^) 

The number of these states is

  d®K d^k'
(2w)*
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The transition probability per unit time per unit volume into this 

group of final states is

, (2it)'* IT P
[Wf,   d*K d^k' =  6(K.-k.) 6(E.-E.) d»k d^k'.

Define the differential scattering cross section da to be the ratio 

between the transition probability over the space v per unit time and 

the incident flux J, then we have

(2w/|T P
da =  —  6(k.-k.) 6CE.-E.) d^k d®k'.

•KvJ -f -1 f ^

In the special case in which the initial state consists of two 

quanta head-on colliding, i.e.,

k = k+k'= 0,

the expression for J is

2cJ = —  , c being the speed of light.

(2%)* IT.. P ,
= >  da = ------ — —  6(k+k') 6CE--E.) d^k d^k\

2fic - ■ ^ 1

It is seen that this expression is independent of v and t which may 

now go to infinity. The total scattering cross section is

r(2ir)‘* iTg.
a = j -------------6CK+K') 6(E^~E^) d^K d^K\

24ÏC
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Note that in evaluating a, use must be made of the special condition 

k+k^= 0 in the expression for Tfi

where k* = -k, K*= -K.

=>

<j = ---1--- (%) fd^Kk’K̂  6 (K-k) [6 + 2 (k?K°)^]
64(2ttP  Q J

= —  (%)' k'
IOtt ^

7 E!

10ir(Rc)"Q'
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CHAPTER 7

MODEL FIELD II TREATMENT III

7,1 Introduction

In the previous chapter a weak field approximation, which is 

common in the treatment of Einstein*s equations of General Relativity 

was used. This approximation is a very restrictive one, A surface 

of the shape shown schematically below is then outside the scope of 

the approximation because may not be small everywhere.

1̂"

However such surface may still have an important property which we 

shall call the ’’everywhere-slowly-varying property”. By this we 

mean that the deviation of the surface from the tangent plane at a 

nearby point on the surface is always small compared with unity.

It is this property which corresponds to the local flatness in the 

Einstein*s theory of General Relativity, Efforts were made to 

devise an approximation scheme to accommodate this more realistic 

situation for our Model Field II, In this chapter, the same coor­

dinate conditions as those employed in the previous chapter will be
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used, and we shall assume that our field Ç(x) has the everywhere- 

slowly-varying property. In terms of canonical variables the latter

is equivalent to the assumption that be slowly varying functions

of x̂ .

7,2 The Idea

The central problem is to obtain an approximation expansion of

the Hamiltonian. Now divide the spatial space into cubic boxes.

The nth box is taken as the domain V which is defined byn

(n-%)L < X  < (n+%)L, where L is a numerical constant and
1 2  3 in = ( n , n , n ) ; n  = zero or integers

The size of the box specified by L is to be such that VÇ,iî vary very 

little over it. The assumption that VÇ and tt be slowly varying 

functions of the spatial coordinates means that L may be large (for 

a more precise analysis, see Appendix 7.4.) It is apparent that 

certain approximations can be made within each box. To explore 

this possibility, let us consider a general situation. Suppose 

0 (x) with a = 1, 2, . M are a set of N real functions which vary 

slowly with x over a region of dimension L. The problem posed is 

to obtain an approximation expression for the integral

I = 7^ F( e  (x)) .— CO g.

Let 1 = 2 1  , where I = /^d^x F (6 (x))
n - - Vn
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We can make a Fourier expansion of G^^x) within eacha

iK.x
®a = ^ ®aKn Z m  ^ ,K. —  L

where K = ^(K^, , K^) ; = zero or integers.
- L

Since 0 changes little over the box, we may considera

^®a^n " r  G^Cx) = ^  8aon 'n n L

as the average value of 0^ inside the box and

iK.x
< n  = Ga(x) - <8a>n = ^aKn p T i ’ = ^n'

Therefore we may develop a Taylor series expansion of F(0^) in by

F(6a) = F(<8a>n +
2

3FC8g) / + 1_ 2
= P(<®aV + =<9 > «5 ab^a^®b .- a a a a n

/ + an bn

K
' a = < 8 a > n  ■

’b=^®b^n

Hence

2

In P(®a) “ P('®aV \  ^   "aKn^bKn 'f L ± _ l  0* ,
VY®bl®a=<®a'n

S=<®b>n

and
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®b=<®b'n

We can apply this approximate expression to our Hamiltonian

H = / d^x Jt, where = Q J i l - ^  (VÇ) (1+ 'fr̂) ,
G

« S b̂ Jt̂  . % Z tc^ ) P^,qKnj+(&&)n 4niqKnj] '
n - n d7T n ,3 n -- -- 1 j - -- - -

K^O

where (T) the subscript n means that functions of are evaluated

at VÇ = <VS> ,

ÎT = <TT>̂  .

®  ^Kn* %Kn' ^Knj the coefficients of the Fourier Expansions

of w, C . respectively.
> J

p = /  m /  çSlÜ'-Kn -'V ,3/2 ' ‘̂Kn  ̂,3/2— — n L -- n L

y- ^-iK.X g .
^Knj “ / v  737̂  d X = iK  + / gn  ̂ L —  n

-IK.x , , ,
Ç e -•? dS. , 
,3/2 ^

where S is the surface of V n n

dS^ = dx^ dx^ ; dS^ ■■= dx^ dx^ ; dSg = dx^ dx .

*i* «It is tempting now to treat p^^ as canonical coordinates and

momenta to effect a quantization.
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There are difficulties. Awkward continuity conditions on the 

boundary surfaces between the boxes will inevitably appear and one 

has the difficulty of expressing purely in terms of q^^ because

of the term involving a surface integral.

Another treatment using the same basic idea while avoiding the 

above difficulties will be discussed in the remainder of this chapter, 

In this treatment a new complete orthonormal set of functions is 

used for the decomposition of VÇ, tt to preserve continuity.

( xl7.3 A Complete Orthonormal set of Functions

f xlDefine a set of functions  ̂ of a single variable x by

.. (x) 1 iKx sinn^L "

where: L is a numerical constant,

(2) K = ^  * (integers or zero),

(§ n =5 integers or zero.

Note that U_. is defined for all x from to +«>.Kn

The relevant properties of this set of functions are listed in

Appendix 7.1 at the end of this chapter. In particular, we note
( x)that are a complete orthonormal set of functions and |Û (̂ has

the absolute maximum at x = nL. |Û  | decreases as x moves awayn Kn ^
r nfrom x^ and becomes small compared with n | as |x-x^| »  L.
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7.4 An Approximation Procedure

We want to consider the same problem as studied in section 7.2 

again, that is, to obtain an approximate expression for the integral

I = dx FCe^Cx)) ,

where G^^x) are a set of slowly—varying real functions of x. For

the moment we consider only a single independent variable but

shall later extend the results to the case of three spatial variables
( xlX. To make use of the set of functions , we firstly adjust

fxlthe value of the L in to be such that G^^x) changes only

slightly over a dimension L. Again L may be large on account of 

the slowly-varying nature of G^^x) , We can write

®a " ! ®aKn ®aKn = L  ®a " L  'Kn

Define

/  U e dx 0

^ T~u dx "on L

'an = ®a(x) ' "®a'̂ n

By our assumption, we must have

0̂  = smallan

A more precise analysis of this statement may be found in Appendix 7.4
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<0^>n may be regarded as the average value of 0^ in a neighbourhood 

of X = nL of dimensions of the order of L,

Now we are in a position to state a

Theorem :

If Q^(x) is a set of slowly-varying real functions of x, then

I = 7^ dx F(0^(x))

- . * ( | ^ ) „  Î e-n, .
n a b K^O

2 2

(ae'ae.^n  ̂ *-30 39,^0 =<9 > ) ®aKn  ̂^ dx , anda b a b a  a n
Gb=<9b>n

summations over a,b are implied.

The proof together with an examination of the approximation involved 

is given in Appendix 7.2. Extension to 3-dimensional case is 

easily obtained by defining the complete orthonormal set of functions

. iKoX sirnrCr---- n*’)
e ■ ■ n ^-------

®  M . 2 . 3  ■

The Theorem takes exactly the same form with L in the first sum 

replaced by

In the following section our Model Field II will be examined using 

this approximation scheme.
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7.5 quantization 

Expand

Kn —  —  x\n —  —

where

^Kn = ^ > l C x )

We can now use the Theorem to evaluate the Hamiltonian of our Model 

Field II, As given in Appendix 7.3 the result is

oj
H = QL^ ^ !l !  C4n ^Kn'^B %n)Ti - Q - n,K%0 00 —  —  —

-j- ®n

2 ^  gCig®k

* 4  ̂  - T i  4 „  1 =  '!= • * #  ( 4 4  -
gOo j /  " n %  -

+ higher terms, where ĝ *̂  is the metric tensor for the 4-surface.

ĝ "̂  and may be expressed in terms of C » and tt as seen in
> 1

Appendix 7.3 and > Note that <€.>_, <%>_,n Ç, j "" j I* “ “,I ] n - -
IT = <n> . *'n

depend solely on and p^^ 

Now define
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'n *̂n "'n
Kn

rc-g„)

4ft C-g^)

\

'^4A^Cg°ig°4 gfg°°)Kj4j - - ’

w {<'Ç- 4'"'
Kn g.00n

where repeated indices imply a summation. 

Then

H = QL^ S a/(1+(V53„)(1+ ^  <u>h 
n 5 (T -

+ '̂"Kn 4 n  \ n  + hasher terms
”n

(7.5-1)

To quantize it, the canonical variables Ç,Tr are to be regarded as 

operators in a linear vector space with the standard equal-time 

commutation rules

[Ç(x),Tt(x)] = i-fi 5(x-x) ; [Ç(x),Ç(x)] = [x(x),n(x)] = o

These imply the commutation rules for q^^, p^^

t

The everywhere-slowly-varying nature of the field  ̂means that

may be taken as unquantized c-numbers (see Appendix 7.4 for 

details). As a result, ĝ *̂  may also be similarly treated as c-numbers
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•j*To this approximation, we see that a^^^ a^^ defined above obey the 

standard commutation rules for creation and annihilation operators, 

i.e.

’ ^*Kn'*Kn] ° ° °

Indeed with the above expression for the Hamiltonian, we can regard
4*

*Kn'^Kn ^^spectively as the annihilation and creation operators for 

the quantum of energy-hw^^.

Note that if we write

%Kn) = ''Kn/': and (k^^) _ = -rJ ,-  -I>'̂

where are the three components of K, (i = 1,2,3), then

This means that

(W^„/C , -K3 .

are the covariant components of a null vector with respect to the
 ̂ . TKmetric g^ .

Now the situation is that we have on the one hand the slowly-varying

classical field g^ and on the other hand the quantized field with the

Hamiltonian (7,5-1). The background metric ĝ *̂  depends on the

classical variables <Ç > and <-~yr> so that it will vary slowly with,] n Q n  ̂ ^

time as these variables develop in time according to the classical
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canonical equations generated by the Hamiltonian

QL^ SV[1+<VÇ4] [l+<^>2] . 
n - -

i"The quanta created by a^^ from the vacuum state are mainly in the
i i iregion n - L/2 < x < n + L/2, but there is some overlap with

neighbouring regions. The total number operator is

N = 2 ,
n

where N = S a^ a^ and [N ,N /] = 0 .n ^ Kn Kn  ̂n' n̂

It is seen that we have essentially a free field theory. To bring 

in interaction, one may proceed to higher order terms in the Taylor 

series. However the calculation becomes very lengthy and the usual 

divergent problem remains.
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7.6 Appendix 7.1 Properties of

(A) Fourier Transform

/2ïï
(x) -ikx T l " -iknL . ̂  ^ tt . , „  tt.. e = —  e 1L  dx e 2TT if K - T- < k < K  +

ék  l ~  if k = K ± ^

= 0 otherwise

(B) Orthogonality

(C) Completeness

= Ô(x-x)

(D) 3UKn m-n
9x u.^Kn * ? 'L(m-n) "Kmm^n

* *
& d x

Case I : K - K = 0

pnn
3__
4/L

if p = n = n

2 tt /h  (p-n)
if p = n  ̂n

(-1) 
2tt̂ /L

p+n+n
r (-l)P . C-D" + (-1)" -,
Cp-n) Cp-n) (n-pTfn-ri') (n-p)Xn-n)'^ ’

if p  ̂n  ̂n̂
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f 2 TTCase IX: K - K = ^

,2w/L 1 . .  fI / =   if p = n = n
P"" 8/L

= if p = n , /
4tt ÆCp-n) 4Tr/L(p-n)

= . Mil'"'" r (-l)P . + M ) "  + (-1)"' ,
4tt̂ /L Cp“n)(p-n) (n-p) (n-X) (n-p)

Case III:

p̂ni/ ”  ̂ ail other cases apart from those obtainable by
K— Kthe symmetry properties the expression I

K-KSymmetry Properties of 1̂ ^̂ / 

 ̂  ̂ pnn/ ~ pnn'

(b) The order of the indices pnn^ is irrelevant to the value of 

pnn'’

X-K _K-K  ̂ ,
Ipnn = V p  = ^npn ^"d so on,

Ipp^/ = ^4pp

Our present set of functions may have certain similarities with the

Block functions expressed in terms of the Wannier functions in solid 
G1state physics. But they are in fact quite different.
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7.7 Appendix 7.2 The Theorem

2
I . d. p w . w )  . 4  . t(|ê£jër) Î « L  » b J

n ̂  a D n K^O /

Proof :

Expanding the number 1 in terms of the complete orthonormal set 

we obtain

1 = Æ  s
n

so

I = / dx F(e (x))= Æ  S / d \  U F(e ) = s I a on a n

I = Æ  / dx u F(e ) m on  ̂a

We assume 0^ to be slowly varying functions of x so that the main

contribution to I comes from the values of 0 near x = nL in whichn a n
region 0^ = 0 (x) - <0 > «  1. ̂ an a a n

Let F(0^) =  ̂ ®an^’ then a Taylor expansion gives

4 V  = "f^«aV + (Ir) < n  ' 'an ̂ n  ' ......a n  \ a b^n

In = I' / " o n  ®an "on < n  < na n  ' a b/n
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Now our assumption that depends mainly on the values of 0^ near

= nL shall mean that the same applies to each integral over a

Taylor series term. Let 8^^(x) be of the order of, say A << 1,

for y near x = nL, then we can roughly estimate that / dx U 0̂  0/ 0^^ n " ^  ̂ on an bn cn
is smaller than / dx U . 0̂  0̂  by a factor A. In thison an bn
way we are able to establish a series approximation to Î .

Now the proof of the Theorem rests on a

Lemma: If f is a slowly varying real function of n, thenn /
/

^ ®an ®bn ®kn “bKnn n,K^O

Proof:

n p,n,n,
K,K'

The property (E) of as given in Appendix 7.1 is used to evaluate 

the right-hand expression which gives

R.H.S. = S Æ  + (2) + (D + (J)+©j,

where

^  ^ t ®kn ®bKn * W  ®aKn ®bK+ 2w n * s' ®aKn ®bK- 2ir n^ 'p=n=n —  —

® ■ „ î n w  '4% : %
bK+ 2n n̂  *  ̂ J -̂2 . ^. A   ̂ ®aKn ®bK- 2ir n^^ ’^ 4tt (n-n) 4ïï(n-n)



144.

2 . / .  I- 'kn »M- 2. „') •

Since f^ is slowly-varying with p we may make the assumption

s £ l:i-~.jj.f % £ s IzizM? = ̂  £ ;
p^n ^ (p-n)^ ” pî n (p-n)’ ”

S £ . £ Z M f ' "  = 0 .
p4n P P-" " p4n P-"

Hence the f̂ / in @  may be replaced by and

^  ~ ^ n̂l-4 ®kn ®bKn " 8 ®aKn ®bK+ 2u n ' 8 ®aKn ®bK- ^  '
L L

Similarly

^  ^  Cl-C-1) )(9aKn ®bKn^' 2 ®aKn ®bK+ Znr/ " T  ®aKn^

*bK- 2ir

Adding up we obtain finally
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^ "n A  "on ®a®b “ ^n ®kn ®bKnn ivii

Soiïiè remarks on the above approximation are worth mentioning. Let 

y(x) be a function of x, then we can readily show

n-n/
(A) L < ,

n

(B) L= < • 6 ■

. / y w u ^ d x
n -------------

Æ

Therefore our approximation used in proving the Lemma is equivalent 

to the approximation

< l ^ F ( x )  -  0 and < ^  F(x) -  0 .
o X

where , .
F(x) = S ) .

Now to apply the Lemma to prove the Theorem we have

/L S £ y d x  U ej = /L 2 £ (/u 9 6, dx - Æ  <0 > »n on an bn n on a b a nn n

<®b>n) ^^0 ^n ®kn ®bKn ' ^he Lemma,
n

Applying this result to

00I = / dx = S I ,-00 a nn

we immediately obtain the Theorem.
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7.8 Appendix 7« 3 Evaluation of the Hamiltonian

H = / d ^ x  K., where Jt= Q^/(l+(Vçf K1+ —
G"

Firstly approximation may be made for the derivatives of
/i 1/ . r -m

" Km "'"59 " A m "  L(4‘ -m> )

= 1  ^Kml .Km —  — -

4 / -m‘
'591 = « ‘<lKm  ̂ L '̂ K̂ 'm̂ m̂  .

Since is assumed to be slowly-varying with m̂  , the second

sum in the above expression is very small and may be neglected in 

order to be consistent with the approximations made in Appendix 1 ,2  

Now apply the Theorem to evaluate H„

n — Q — n a b n  K^O ~ —
(7.8-1)

w here 9^ = (€  Ç 2 " C g ,  c tt/Q )

may be expressed in terms of the metric tensors g_^ and ĝ *̂
a b

i!â = l i l Ç H r f  = ç l £ l  - a'

Oj
00 ^g
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%  ■ Æ  'P' -
1+(VS):

00g

H - s QL̂  ,/l+<?S>:,) (1+^ <T,>̂ ) + i  2 (ql iK^ p^„ - v L
nn" " _2 n'  ̂ ^ 00 ^Kn ^Kn K̂n'KM W ««» lis <rm uo «m ftst.ia <*y.^

'■" oj ok

* r ̂  " c  4 »  i ’e -
K^O
j ,k

. TK r TK,where g^ = [g = <^>
— n
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7.9. Appendix .7.4 The Approximately.Classical Nature of

Two assumptions are made in relation to the everywhere-slowly- 

varying nature of the field.

(1) = 8^*^ - <6 > << 8^*^ and << 1 in a neighbourhood ofan a a n a  an ^

X = nL of dimensions of the order L. Note that 6 stand for thea
dimensionless quantities Ç y  —  so that the above inequalities 

are independent of the units employed.

lie(2) L can be large, or more precisely, we require that —  «  1, where
QL"

he—  is a dimensionless quantity.
QL"

- 7 - 3In C.G.S, units with Q = 10” ei?g cm” « the mean energy density

of the universe, we get L >> ^ 10 ^'^cm.

Firstly these assumptions enable us to count the orders of smallness 

of a quantity (see Appendix 7.2.) Secondly they lead to the result
T K  ‘that g^ may be regarded as c-numbers. This result is seen in the

following analysis based on a finite difference method.

*̂'1  ̂ -^CïCx'+L, , x^) - S(x'-L, x“ , x^)) .

<S,l>n " rs7I^%n^ ' Son-)' n+ = (n'+l, n %  n̂  ) ; n- =
” 2 L - -

(n‘ -1, n̂  , n’ ).

A '  " ^ 7 7 2  Pon' •
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The commutator

«-> «-> •* — «  K-.

^ 0 as ÏS. -»• 0 .
QL*

cttSince <G > , <pr-> i also commute with all the other operators p J ^ X 5

appearing in the theory, we conclude that <ç can be

treated as c-numbers. The set of quantities depends solely on 
C tt<€ > , <-rr—> . Hence they may be similarly taken as c-numbers.

> 3 n X ^
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CHAPTER 8

MODEL FIELD II A VARIATIONAL TREATMENT

8.1 Introduction

The treatments given in Chapters 6 and 7 lead to divergences in 

the calculation for the energy eigenvalues of various states.

However it may be possible that the divergences obtained are a spurious 

result of the perturbation method used. It is therefore desirable to 

devise a non-perturbative approach for the treatment of the field.

In this chapter a variational approach is adopted for the calculation 

of energy eigenvalues.
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8.2 The Idea

The essential idea lies in the approximation of the continuum

field by a system of countable degrees of freedom. Once this is

done many of the usual techniques of quantum mechanics, in particular

the variational method for the calculation of eigenvalues, may

readily be employed to study the system. There are a number of ways

to achieve this. We shall adopt a method of approximation by finite 
HIdifferences.

To begin with, confine the field in a large yet finite cubic

box of side L with the usual periodic boundary conditions. Divide

this spatial box into M - (2N+1)^ small cubic cells, each of side

d =: L/(2N+1), N being a positive integer. The centre of the nth cell

is specified by x = x » (n., n_, n?)d, where -N < n, < N. Then we— ~n r 2 V 1
may make the following approximations for the quantities in the nth 

cell:

(1) the field variable Ç (x) » E - ^(x ), where x ~ (n , n , n_)d,n -n —n i 2 o
C2) VÇ(x)

2d(pn^+l, n^, " ^n^-1, n^ , n^+l, -

*2"^' n^+l ' n^, n̂ -l,

(3) the canonical momentum density tt(x ) p^/d^ , where p^ is the

momentum conjugate to

(4) the total Hamiltonian H S H , where H ^_ n' nn — „ — ______

Qd\/[l+CAS^r'][l+
iQd’
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(5) the total linear momentum P S P , where P ^ -"p L E—  — n — n ^n nn “ — — -
The quantization may be effected by the usual procedure with the 

explicit representation

" Sn ; Pn " ^  •- — — n

/"Pny
Note that [1+(AÇ Ÿ ]  commutes with [1+1 I ], Hence there is no

- *Qd̂  '

ambiguity in the expression for H^,

To illustrate the variational method to be used for the study of the

Hamiltonian H ~ 2 Qd^ [ 1 + ]  [1+|— ^  | ]> let us consider the

much simpler and well-defined case of the mass less real Klein-Gordon 

field. In the finite difference approximation, the Hamiltonian is

]3 . 2 2̂
%  S [ (AÇ —  ]

n - \Qd^ * a dn

The eigenfunctionals of H in the functional representation in the
H2continuum case are explicitly known. The exact eigenfunctions of 

H in our present discrete case may also be similarly established.

The vacuum state is

ik.(m-m)d
''o = * expt-0  ̂ S e - - - y ] ,

k,m,m _ —
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where (1) = ̂  ( ^ )  ;

(2) A - normalization constant;

(3) k = ”  ^2' ^3^ 8.nd -N < n^ < N;

(4) = ̂ jcsin iTd)^ + (sin kT)^ + (sin k~d)‘

One can verify that

Hf = E Y ; PY =0,O 0 0 - 0  '

where E = & 2 which is clearly seen to approach the well-known 
o k -

infinite zero point energy % 2 dike in the continuum case as d ^ o
k

and V = Md^ For d -+ o keeping the volume V = f̂ d̂  large but

finite we have
TT

E - h  2 ÜW, — —  ( rr à id y â z Jsin^ x+sin^ y+sin^ z +

-TT

0c5sx! ). ( t i - i )
S

The one-particle eigenstates are of the form

ik.md 
\  = B S e  - -

m -

noting that

. iko(n-n)d . in(k-k)
■■ " U  4 ; ^ ' "  =^k,k'-K  —  ii —  —
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We have

sin dk sin dk sin dk 
where = % S -Kŵ / + .fiŵ  ; |  = «(----------  g-^.---------g— ^ ) •

- k - -
These eigenvalues tend to the original continuum values as d approaches 

zero. All other many-particle eigenstates may be similarly obtained.

Now suppose we did not know the exact eigenfunctions. We can 

use the variational technique to estimate the eigenvalues now that we 

have a discrete system. Take the normalized trial wave function for 

the vacuum to be

$o ‘ I \n> "hers % n  " — T #n - (ïïo )
and is to be the

variational parameter.'*. The vacuum expectation value is then

4d' 2p'a'

where p Qd*
ch dimensionless. Hence the estimated zero point energy

is given by the minimum of (0 , H0 )

($ , H$ ) .o o min
IS  ̂ fS

V 8  d V8
^cV
7 (8.2-2)

Thus our variational method gives a factor 0.612 compared with

the true factor

IT

16

i T...............
—  j dx<^dx Jsin^ x+sin^y+sin^ z ^ 0.593+0.004
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The above integration was performed numerically, $ is seen to be a 

very good trial wave function as far as the most singular contribution 

to is concerned, i.e. the term proportional to V/d^ , The natural 

trial wave function for a one-particle state would be

ik.md

where /  is the normalization constant and o is the variational

parameter. Some properties of 0̂  are

V  “ ° ’ (*k' “ *k,k' ;

a($ , (—  + % -i— ) + if q L i —  + |C1-Z^)
5  5  ^ 4 d '  ' p 2 p 3  2  k

1where Z. = -̂ (cos 2dk +cos 2dk +cos 2dk ) and k 3 X  y z

k - — (n.̂ , n^, ng), -N < n ^ <  N.

Observe that

c*k' = (*o' " V  l ^ " ' V  j l

that

(0 , ) >> Cl( ~ —  + |’(1-Z.) SlA since Mo o tpSg, 2 k jsf

Furthermore one finds that
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- P

J.. 1 13

•+ dick as d -> Oo

Hence an exact eigenvalue spacing is obtained. The conventional 

variational procedure would be to minimize (0^, H0^) giving the 

eigenvalue spacing as

which has quite the wrong form, and indeed gives an infinite value

in the small d limit instead of the correct spacingd^ck. The reason
1 1is that for a fixed V, (0, , H0. ) . contains terms in — , ...k' k'min 4̂ d'

” 1 ” 1 ‘ while (0 , H0 ) . contains —  only. On subtraction the —  terms0 o min 4̂

cancel but we are left with ^  which divergeras d o. Since we

know that the correct one-partiele energy relative to the vacuum is

finite, viz., lick, we must conclude that more sophisticated trial

wave functions are needed to effect cancellation of the singular

terms. Such functions may readily be constructed for the massless

real Klein-Gordon field, but unfortunately these functions prove

impracticable in the nonlinear case. We shall therefore retain the

same simple forms for 0^ and 0. when we turn to the nonlinear field

and shall adopt the following rather questionable procedure. Instead

of estimating the eigenvalue spacing from (0, , H0. ) . - (0 , H0 ] . ̂ r &  ̂k k'min o o min
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we shall take [(0, , H0,) - (0 , H0 )] . . Since we are trying toK K 0 0 nun
estimate the finite differences between two indefinitely large 

energies it is not unreasonable to use the same parameter a in both 

0, and 0̂ 0 On minimizing this difference with respect to a we find 

complete cancellation of all the singular terms, both for the linear 

massless Klein-Gordon field above and also for the nonlinear case.

As we have already shown that this rather dubious procedure yields 

the correct answer dTck for the energy of a massless Klein-Gordon 

particle of momentum Hk, we hope it will also give reasonable results 

when applied to our nonlinear field in the following sections.
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8.5 The Hamiltonian in the Finite Difference Approximation

The Hamiltonian of our Model Field II is given in the previous 
section as

Inf /
H = S H ; H = Qf [1+ ( A £  J ]

n 5 5 V 5 V

where p -̂----------- . The exact meaning of the square root needs
5 as :n

to be ascertained. We shall define it through the Fourier transform 

of the wave functions. Observe the following expressions:

8x̂

 ̂̂ *ÎTcV x-af(— ) e - f(-k ) e , where f is a polynomial in 
9x̂

9x̂

Hence we may define

•si
“ 'y e^^* - J l + y ï ^  y  being a numerical constant

9x'

Since any wave function ij;(x,t) may be written as

4^x,t)
/ (2ji ) ^

1 levdk *(k,t) e^**

we can define
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00

4<x,t) 5 —  f dkJl-iVk* kk,t)
\! 9 x ^  / 2 tT J

An unambiguous meaning for H is therefore established for the subset 

of wave functions for which all relevant integrals of the above type 

exist„ We are in a position to attempt a variational treatment for 

this nonlinear H.
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8,4 The Vacuum State

In view of the similarity of our Model Field II and the mass less 

Klein-Gordon field as seen in the weak field treatment of Chapter 6, 

we again take
-s' /2a^

$ = 11 0 . where 0 =   r ,

as the trial wave function for the vacuum state. Since

-Wr) I in_£
—   I uii m u  c  I ^
/27

we have

»n "on ^  f “V "

The vacuum expectation value may be calculated exactly in terms of 

modified Bessel functions of the second kind K^(z). The result is

H# ) K Ce)[K (X)+K (X)], (8.4-1)
/2-n-cK 1 0  1

where g = ; X = ^  ; p =
0* Zc'-A

The minimization of (8,4-1) gives (Appendix 8,1)

TTd

This is a significant result. Comparing this with (8,2-1), (8,2-2)
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we see that the present zero point energy and the vacuum energy of 

the Klein-Gordon field diverge in exactly the same manner. In 

contrast the corresponding expression for the perturbation Hamiltonian 

of Chapter 6 has a much higher order of divergence. One might then 

expect a similar behaviour of the one-particle states. \
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8,5 One-Particle States

In general we talk about a one-particle state in a nonlinear 

theory only in the context of a perturbation approach. The 

situation is however different in the present case. Our nonlinear 

field equation admits individual plane wave solutions. Moreover 

the Hamiltonian and the linear momentum take on a linear form if we 

confine ourselves to a plane wave solution. Hence we may be able 

to formulate one-particle states in an exact manner. Indeed this 

can be dons as will be seen in section 10.2, Chapter 10. Therefore 

in our variational treatment it is reasonable to use the trial wave 

function

ik.md
"k =

hoping that it would at least give a qualitatively correct result. 

After some calculation, whose details are available in Appendix 8,^, 

the energy expectation value is found to be

($k,
Æ ir c î î

where A - K,^(6)[2K^a) - (K^(X)+K^(X))^] > 0,

B = 2gCl-%g[K^(g) - K^(B)][K^(X)+K^(X)] < 0,
i
-r̂ Ecos 2k d 'h cos 2k d + cos 2k dl .3 X  y  z

Let k
<H>' =
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For reasons specified in section 8.2 we shall take <H>". as ourmin
estimate for the energy of the one-particle state concerned.

Appendix 8.% gives

Observe that ^ 0.9 which, under the circumstances, may beV 3 tt k
regarded as a good approximation to unity. This means that 

is approximately the same as the corresponding value of the one- 

particle state in the massless Klein-Gordon field case. This result 

appears very reasonable. Since the theory ought to be Lorentz 

invariant one would expect that the energy of something which 

resembles a free and massless particle should be iick in order to give 

a Lorentz energy-momentum 4-vector with momentum iik.

In conclusion we note that if we attempt to estimate the one- 

particle energy by

‘■"k’ ""k^min ' ("o'

we again are faced with a divergent result. The same applies to 

the expression

%

where both expectation values are evaluated at the parameter value 

o = Og which optimizes (0̂ , H0^).
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8.6 Two-Parti d e  States

Considerable difficulties begin to emerge as we try to construct 

states resembling those two-particle states of linear theories. The 

inevitably approximate or even precarious nature of the idea of two- 

particle states in a nonlinear theory which allows strong interaction 

is obvious. In our present case however we expect, from the knowledge 

of plane wave solutions, that well-defined two-particle states may be 

formulated at least for two particles moving in the same direction. 

There should be no interaction between these particles. One 

formulation which leads to these results is given in section 10,2, 

Chapter 10. Interference effects begin to appear when we try to 

bring together particles travelling at an angle with one another.

Our task is to estimate the interaction energy with the present 

variational method,

8.6.1 Two Particles Moving in Opposite Directions

When two particles are travelling in the same direction, there 

is no interaction (see section 10,2, Chapter 10). Hence we only 

have to consider two particles moving at angle with each other, i.e. 

k. % posi tive constant » k« where k,,, k_ are the two k-vectors 

specifying the states of the two particles concerned. With such k., 

k_ we can always effect a Lorentz transformation to the centre-of- 

momentum frame of reference where the two vectors will be seen to be 

equal in magnitude but exactly opposite in direction. Therefore it
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is sufficient to investigate two-particle states with “ 0

without loss of generality, A trial wave function which readily 

comes into one^s mind is
i(n^“’n2).kd

0k „-k X "o*« i. *-= z

This function is orthogonal to 0 , 0̂  ̂ and is a null eigenvector of 

the linear momentum operator and it also gives the correct two- 

particle energy for the massless Klein-Gordon field. However this 

trial wave function is not satisfactory because it does not lead to 

any interaction between the two particles (see Appendix 8,3 for 

details). We have to attempt some other trial wave functions.

Since the state involved is of momentum zero it is not unreasonable 

to combine the two null momentum eigenvectors 0 and 0, , to form aO K , -K
new trial wave function

0 — a0 + b 0  ̂ 0 (8.6.1-1)

where a, b are constants to be regarded as two independent variational 

parameters in addition to the original o in 0^ and 0^ The

optimization of

E - (4), H.̂ )

with respect to a, b leads to

("o'

o' ka-k

a

b i
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where use has been made of the orthonormality property of $ and 

"k.-k-

[  ̂ )]±/L($k..kPk,.k)-("o'"Vr.+"i("o'%,-k)''
==> g  ss  ---;---                  :---... ...---------------------- -----

e" - B- = 4($k,-k.""k,-k)-("o'"V]' + '*'("o'»"k.-k)l' •

The corresponding trial wave functions 0^, ({>” are orthogonal to each 

other. We then regard E~ as an estimate for the vacuum energy and 

as an estimate of the energy of the two-particle state with linear 

momentum zero. Then

will serve as an estimate of the two-particle energy relative to the 

vacuum which may well bring in nonvanishing interaction energy.

There is still an unspecified parameter o to be determined. The 

obvious choice which is in harmony with the procedure adopted in 

section 8.2 is to employ the a which optimizes AE. Appendix 8.4 

gives

/2fic
%d

which diverges as d ^ Some other choices of a are tried without

avail in Appendix 8,4, However there is reason to believe that again

it is the trial wave function which is at fault. To see this we can
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apply the trial wave function (8,6.1-1) to the massless Klein-Gordon 

field. We find that the corresponding expression is (see Appendix 

8.4 for details)

KG ° ^KG ' ^KG ^

1leading to a spurious interaction energy which also diverges like -j, 

Under these circumstances we cannot reach any definite conclusion 

about the interaction between two particles.
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8.7 Some Remarks

The variational approach we studied so far has been able to lead 

to some positive results for one-particle states. The exact reason 

for its failure in the two-partiele case is an open question. Some 

variants of the two-particle trial wave functions and of the variational 

procedures have been studied without much success. It is quite 

possible that we have just not hit upon a sufficiently good trial

wave function. The appearance of a divergent spurious interaction
1energy of order ^  between two massless Klein-Gordon particles lends 

support to this view —  the trial wave functions are just not good 

enough to give complete cancellation of all the divergent terms.

In the linear case it is certainly true that a more sophisticated 

trial wave function will effect such cancellation and yield the 

correct result. However the situation may not be so simple in the 

nonlinear case. It may well be that there are no such things as 

two-particle states and we are quite wrong in attempting to simulate 

such a state by our choice of trial wave function. Further work is 

needed to resolve this problem. Although the variational method in 

its present form has only limited success for our Model Field II^ 

there is no reason why the method cannot be further developed into a 

general theory applicable for other field theories^ especially those 

of more conventional types. Obviously there is much scope for 

furthe r deve1opment.
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8.8 Appendix 8.1 The Vacuum Expectation Value

Cl) R

(2) A - = C$^. = ( " "om' I
m%n  ̂ - m^n

I  I  e® K^Ce),

(n) (n)
(3) (S„, 1„) = Qd' A^" R^"

= 2 Ü 1  K C@) [K CX)+K (X)].
/Iwcfi ^ ° ^

(4) Minimization of (# , H $ ) in the limit of vanishing d. ̂o n o ^
There are only 5 possibilities for the behaviour of the optimum 

X and 8 as d ot

X CO ̂ 8 ^ Og X ^ Og 8~^0s X~^Op 8 “̂ °°5

X finite and non-zero, 8 ^ o; X + o, 8 finite and non-zero.
H3Using the known asymptotic behaviour of the relevant Bessel functions

one can verify that a consistent minimization is possible only for

the case o, 8^^^ o. From numerical computation we also

know that ($ , 5^) possesses a minimum for small d. Hence we

conclude that as d ^ o, the minimum occurs with X . + o* 8 . ^ o ̂ opt opt
and we have

HÎ-) -Q'd’M ,2 2/2 In gyp) , ^o' oVin "-T --P P
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8.9 Appendix 8.2 One-Partiele States 

(n)
Cl) n r  = C5„ ^

,3

Cn) _______
(2) V  = C5^ /ÎTCÂ?;;)* y  V

do S6/27 ® [2B(K^(6)-K^(6))+7K^(e)]

6

/ Cn)
if m=m e S ,

Cn)
6/YF e t26(K^C6)-K^C3))+ K^CB)] if m,m'e P,

do
/57

0

e" K^CB)

Cn)
where is the following set

if m-m i  S

otherwise.

Cn)

(n^±l, ng)% (n̂ , Hgil, n^); (n̂ , n^, n^+l),

(n)
and is the following set of pairs

( n ^ + l p n g f n g ) ,  ( n ^ - l p n g p H g ) ;  ( n ^ - l , n 2 , n g ) ,  ( n ^ + l , n 2 , n g ) ;  ( n ^ i n ^ + l p n g ) ,

( n ^ , n 2 - l , n g ) .

C n ^^2^^pn̂ ) g C n ^ ^  C n ^  Cn^*^^^^3 * Cn^^n^gn^™!) #
( n ^ f n g / n g + l ) .
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(n) (n) (n)l' = Vm "ith m . Ŝ~
(n) (n)  ̂ Cn)
1̂± = Vm' ï'ü! "

Then
(n) Cn) j Ç, oJ

V   ̂V  = ”  ® = 2  \

 ̂ i(m-m).kd
C3) (\. H ^ V = ~  S e  H ^ y v

— — “  Mo ni p ”  — —

= ̂  [ " V l  + - I
=  V >  ^n V  (^+B) ,

where

A = K^C3) [2K^CX)  ~ CK^CX) + \ ( X ) )  Zj^] >  0 .

B = 2BC1-Z^)[Kjj(B) - K^(3)]tK^(X) + K^CX)] < 0.

C4) The minimization of 

k
<H>- = ($%, ,

in the limit of vanishing d may be carried out in the same way 

as for the case of the vacuum expectation value. A consistent 

minimization is possible only if <», ^opt Using

the known asymptotic properties of the relevant Bessel functions 

we obtain
k<H>" «  ^  Z k ^ o )  (A8.3-1)

p^o
k

rJL + 1 
/27 -2 3

=“> <H>”, iickmin ir,_
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8q10 Appendix 8.5 Two-Particle States I

^k,-k^

S e a  £ $ , H £ / £ / $ ) .
n Ssn, 2l ?2 ° 2 2'1 - 2 °

& t S 2

After lengthy calculation we get

Qd̂
('k._k/*k._k) = ("k' "*_k)-(*o' « V  + f

= 2($ H$ )-c* m J  + f,

where f stands for the rest of the terms and f does not contain H« 

As we enlarge the box V within which the field is confined^ M will 

tend to infinity irrespective of whether or not d approaches zero. 

It is therefore apparent that

Qd̂ f

may be igonored. We can pursue this a bit further. Let

<H>-’ - = (*k,-k,"*k.-k)'(*°'

= 2 [ c $ . ,  H# ) - ( $  , H$ ) ]  + ~ 2 £ _ ™  f .
2 2 ° °  (14-1)

k
We know that at <H>". . g * o and X . ̂  We can now showmin* opt opt

Q(fexplicitly that z- f may indeed be neglected.
CM-l)o"
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f consists of terms of the following form:

V 2 ± >

V 2’ V 2’ V l ’ \ i ± *  %2*1±’
(n) . Cn)

% ^ m m V  ('"here m e S+ ; m e ); (where•xscsaiMco

where

CD R2 = CS^$o. " W  w . ' o 2 - < v f y

^2 = Vnun with 5 = 3+' ;
Cn)
±
(n) . (n)

A With m e  S " , (m̂  m'',) e P." , m % m'^ m̂ ;̂2± mramm
Cn)

^3± = '"̂ ĥ (m, m' ) e P

Now all these terms may be expressed explicitly in terms of the 

modified Bessel functions of the second kind. Then using the 

asymptotic expansions of these relevant Bessel functions for

3 o ; X 00

we find that all those terms in f approach

of

where V - M<f . Comparing this with equation (AS,3-1) we see that
k a

indeed (A8.4-1) is smaller than <H>” by a vanishing factor ^  .
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8.11 Appendix 8.4 Two-Particle States IX 

The trial wave function

AE = - E- =

(1) The Nonlinear Field

(*k,_k."*k,.k) " ;

(. h 4 ) = Z ± L _  V i ) k  .
° ’ 2'-2 o'' o'

clearly

AE ^ 2 
N

k k
<H>’ + I ($ ,H4, , ) i' > 2  <H>- ̂o k,-k^

.  .  Gmin==> (AE)_._ > 2 /—  4\ck

To actually estimate (AE)^^^ let

k
f - <H>- + l(*o'H*k.-k)l

Y = 1-Z ^ <f k' +0(d* ] as d » ok 3

Now
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<H>- = ^  [6R^A^ + 6R^A^^ %k + - J  ° ' V o ]
o -

The rather tedious procedure of minimization of AE may be carried out 

as before. The only consistent minimization occurs when

V t  " ° : Bopt ^ ° as d - o.

The result is

(AE) . — --- -T, which diverges as d ^ o.'min ird* ^

Two other assignments of the value of AE are also considered. The

first alternative is to take AE calculated with the value of a which

minimizes E . Obviously this also leads to a divergent energy since

AE > (AE) . , The other alternative is to consider'min

AE = E^. - E . .min min

This again may readily be shown to be bigger than CAE)^^^, and hence 

divergent.

(2) The Massless Klein-Gordon Field

Let us apply the above trial wave function to the real massless 

Klein-Gordon field to estimate the corresponding two-particle energy. 

Then
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Calculation gives

and

^  /Me 
d *

which gives a spurious and divergent interaction energy. The other 

two choices of the value of a in AE only lead to values bigger than 

this one.
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CHAPTER 9

SOME REMARKS ON THE THREE QUANTIZATION SCHEMES AND A 

DISCUSSION OF THE TREATMENTS OF MODEL FIELD II

9.1 Introduction

In Chapter 3, three different quantization schemes were reviewed. 

These schemes were later applied to the two model field theories, in 

particular to the Model Field II. In addition, we also studied 

various special treatments of the Model Field II. In this chapter, 

some problems related to the three quantization schemes will be 

examined. A detailed analysis will also be made which enables us to 

unify the treatments of the Model Field II given in Chapters 6 and 7. 

We shall also compare the variational theory and the perturbative 

theories.
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9o2 Some General Problems Related to the Three Quantization Schemes.

The Quantization Scheme I given in Chapter 3 appears to be quite 

different from the schemes of Quantization II and III discussed in the 

same chapters. The apparent difference gives rise to some perplexing 

problems. Let us confine our attention to the Scheme I and Scheme II. 

In Quantization I the Hamiltonian which is formed by a linear combin­

ation of the constraints vanishes. In quantum theory, the constraints 

are taken as subsidiary conditions imposed on physical vectors. As 

a result, the state vectors in the Schrbdinger picture are "time- 

independent" in the sense that

|T> = 0, (9,2-1)
3x°

H|f> = 0. (9.2-2)

IISo things appear to be "dead" and changeless. However, working in 

a special coordinate frame in Quantization II, we surely have a''non­

vanishing Hamiltonian and time-dependent state vectors. All this is 

clearly seen in the treatments in Chapter 5 and 6 for the Model Field 

II. A dilemma therefore appears. The way out of this dilemma may 

be found with the help of an analysis similar to that given in sections 

4.2 and 4.3 in Chapter 4. In the generally covariant formulation, 

the coordinate variables x^ may not be identified with the actual 

(metre-stick and clock) coordinates of an individual observer.

This means that as far as an individual observer is concerned results 

obtained in the covariant theory cannot be interpreted literally.
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To illustrate the situation more vividly, let us consider the para-
12meterized or parametric formulation of classical mechanics. In 

such theory the time t is promoted to the status of an additional 

canonical variable q while another variable t is introduced to act 

as the independent variable. The original variational principle is

r
..q^)dt = 0, where q̂  ̂= •

In the parametric formulation, the variational principle becomes

Ô i L^dx - 0

where

Lf = L(q^,,. .q^,q^, qf q/ '

/q = and q = 0,1,2,..n.

One can define the canonical momentum conjugate to and establish

the Hamiltonian formulation in the usual way, being homogeneous

in the velocity variables q^ of degree one implies a vanishing

Hamiltonian for the system. There will certainly be one primary
13constraint due to the introduction of an additional variable. Let 

it be

° °^o* (9,2-3)

Let us further suppose that there are no more constraints nor consis­

tency equations. Then the total Hamiltonian is
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= U(j) « 0

where u is an arbitrary coefficient. With this Hamiltonian, 

equations of motion of various canonical variables may be obtained.

This parametric formulation is considered to be of the most advanced 

form.^^ Among other things, this formulation is highly valued for 

its consistency with the spirit of special relativity in that space 

coordinates and the time are treated on an equal footing. Instead 

of the variable t which is the actual time coordinate of an individual 

observer (measured by his clock), an unspecified variable t is intro­

duced to act as the independent variable of the theory. The t , 

being unspecified, cannot be identified with the actual time coordinate 

of an observer. Now one may go one step further to quantize the 

parametric theory using the method of Quantization I, The constraint 

(9.2-3) will become the subsidiary condition imposed on physical 

vectors. As a result, physical vectors in the Schrodinger picture 

are "time-independent" because

^  If) . 0 Hj,|¥> = 0, (9.2-4)

To illustrate the situation consider a concrete one-dimensional 

example of a particle in an external potential V. The Lagrangian is

In the parametric formulation we introduce 2 new variables q^ = t and r.
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- V C q p i q V1̂ 0 '

Po = 3 i r —  f(̂ ) -VCq^).

= >  the primary constraint in the classical theory

 ̂= Po + &  + V(qi) = 0-

The Hamiltonian is proportional to <j) and therefore vanishes. The 

equations of motion are obtained from the total Hamiltonian

H ^  =  U(j),

where u is an arbitrary function of q^, q^ 

To quantize we have

Po " Pq = 4 ;  ' Pi - Pi = 4 ^

The constraint equation now takes the form of 

(Pq 27 V(q^)3 |Y> = 0,

or M ^ n q ^ j . q ^ . T )  = ^  + V(q^)]TCqo.qi.t)
o 3q^

The Schrbdinger equation of motion is

1
3tM  |T> = H_|Y> - 0

‘Thus the wave function T(q^,q^,T) is actually independent of the 

parameter t while its q^-development is given by the standard
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Schrbdinger equation.

We have the apparent dilemma showing up clearly now. However in the 

present case we know with certainty that the physical system as 

viewed by an individual observer is not changeless —  the wave function 

does indeed depend on :his time coordinate q^. This example shows 

that expressions like (9.2-1), (9,2-4) cannot be interpreted literally 

and that they do not imply a changeless situation. In general x° 

and T in these expressions cannot be identified with clock readings 

of a physical observer, nor can H or H^ be interpreted as a physical 

energy. Perhaps it should be stressed that while the generally 

covariant formalism and the Quantization I have great theoretical 

advantages, we actually have to go into the theory formulated in a 

special frame in order to be able to see what is going on from the 

point of view of a particular observer.
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9.3 A Unified Treatment of The Model Field IX

We shall show that the treatments of the Model Field II given in 

Chapters 6 and 7 may be unified as a perturbation theory about an 

exact solution of the field equation,

9.3.1 A General Formulation of the Perturbation Theory

Let be an exact solution of the field equation (6.2.1-1),

The corresponding Langrangian density and the Hamiltonian density 

are

Co) Î 
Q

where tt = — , Now try a perturbation solution of the form

Cl) (2)where Ç is regarded as being a small quantity of first order, Ç

as small of second order and so on. Let

<i) = + .....

Then

The Lagrangian density and the Hamiltonian density are

£ = - q / Î Ÿ V ÿ J  ; I  = q/[i+(V£)'][!+(— ) ] ,

where H = ~
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9.3.1.1 General Theory

Consider a transformation

where ir are taken as known functions. This is a canonical

transformation in the sense that the form of canonical equations of 

motion are preserved* that is *

' _ pH ' pH
 ̂ ~ J Ï Ï IÎ

_ <===>
- JfHn

Poisson brackets between canonical variables are unchanged by the 

transformation. Hence we may consider ({)* rr as a pair of canonical 

variables for the description of the field in place of II. More 

explicitly we have now for the characterization of the field a pair 

of canonical variables cj)* tt with the Hamiltonian density

= q /[1+(VÇ^°^ + [ 1 + C ~  + (9.3.1-1)

The Lagrangian density is

£ = - It

In the following two sections we shall see that the perturbation



-185-

theories we had before may now be obtained by particular choices for 
g W .

9.3,2 Weak-Field Theory

The weak field approximation discussed in Chapter 6 is based on 

the binomial expansion (6.3-1) of the Hamiltonian density

p y  [l+(V()))̂  ] [1+ ('S1) ], Vc}), ^  being small.

Comparing with (9.3.1-1) we can see that this weak field theory is 

really a perturbation theory about an exact solution to the field 

equation

Co)E: = constant.

The weak field theory may be extended slightly by considering a 

perturbation about

= a /  ; = b.

where a^, b are constants. On substitution into (9.3,1.1-1) this 

leads to a Hamiltonian density

Q / [1+Z(a. + * .)'][l+(b+Tr)M
j J  S’ J

9.3.3 Theory of Everywhere-Slowly-Varying Field

Suppose is a solution which is everywhere-slowly-varying.

With V(j), being small we can effect an essentially binomial expansion
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of the Hamiltonian again. But in order to achieve greater similarity 

with the treatment in Chapter 7 we proceed in the following way.

Let

Note that we are not performing another transformation and fi are 

purely short-hand symbols. Rewrite the Hamiltonian in (9,3.1,1-1) 

in terms of fi. Then carry out a Taylor expansion of it about 

in the same way as in Appendix 7,2 in Chapter 7 we obtain

H “ J'd̂  X  + %  Jd^ 9̂  it \ (o)
9E .9% j

m  J  + (9.3.3-1)

where the superscript (o) refers to values at ^ ÎÎ = tt

We shall now make use of the functions introduced in Chapter 7 

and the slowly varying nature of which also implies the

same property of any function of appearing in (9,3,3-1),

3/2L  ̂ Z Q̂jjjCx) - 1, using the same notation as before, 
m -

= = >  H = f(fxit= S J  d" X  U (x) K
J m -

The following approximation may be made:

U^^(x) f(°^ U (x), (no summation over m)omi  ̂  ̂ m om
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where £ stands for any function of in (9,3,3-1) and f^^^ is>1 0
its average value around x = mL. f^ may be taken to be

fCo)
J

m

where ^ r d̂  X U =J orL-/- u ,J tl‘ L
This is justified since the slowly varying nature of E^?^, makes

f J
it immaterial how such average is precisely defined.

Then (9.3.3-1) becomes

1
3/2 1 ^ "om

(o)

H * L* 2
m m

L^/2 (o) [(Px u ÎP +
m 9̂ ÜV  m J - 191 . 94 ./

Co)
9Ç .9C 7mÿ ̂  )J ■*

3*X \(o)p ü L A
tana? / "om +

(9.3.3-2)

Comparing this with equation (7,8-1) and identifying with

(~^^ in (7.8-1) we can conclude that our present theory does indeed 

reduce to the treatment in Chapter 7. The form of (9 .3.3-1),

(9.3.3-2) is specially written for an easy comparison with equations 

(7.5-1), (7.5-8). Actually the present theory may be made neater 

by expressing (9.3.3-1), (9.3.3-2) in terms of the canonical variables 

(j), TT. Then the Hamiltonian becomes
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H » L® +
m “

 ̂ """ f d'x U _  * ;* , +2 m hû̂ 'm J °î hl .H 7m J °?- ,1 ,] -

& l j r j * ■■■ •

The quantization is effected by imposing the usual commutation rules 

on IT, while keeping classical.

9.3.4 Some Qualitative Features

The possibility of a unified treatment for the weak field and 

the slowly-varying field cases should hint at some common features 

in these two cases. They are

(1) In the lowest approximation, both treatments lead to a Klein- 

Gordon type field with the corresponding set of non-interacting 

particles.

(2) Higher order interaction terms are obtained essentially from a

binomial expansion of the square root expression for the

Hamiltonian density. As one goes to a higher order, one has a

higher order product of c{) ., tt leading to higher order divergence> J
in the quantum theory. The type of divergence in both treat­

ments is of the same nature.

There are also substantial differences in the two cases. They are

(1) Even in the lowest approximation, there are fundamental differences
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While the weak field treatment leads exactly to a mass less Klein-

Gordon field, the slowly-varying field theory gives a quantized

field which is superimposed on a classical background field

. This background field also contributes to the m m ^
energy eigenvalues of the quanta.

(2) The use of functions leads to quanta which are localized 

in domains of volume of the order of as shown in section 

7.5, Chapter 7.

The appearance of the classical background field is one of the most 

striking features in an intrinsically nonlinear field. We also 

have noted that the background field may vary slowly with time.

Hence the energy associated with each quantum will depend on time as 

well as the spatial position of the cell in which it is created.

These properties appear to be in accord with the very concept of 

curved space-time in which not all world points are equivalent as in 

the case of a flat space-time.
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9.4 Variational Treatment versus Perturbative Theories

The variational method used in Chapter 8 is certainly very 

different from those perturbative theories discussed in some previous 

chapters. The fact that some finite and reasonable results are 

obtained in the variational calculation could be significant. It 

might mean that in Chapters 6 and 7 the divergences, at least some 

of them like the one-particle self-energy, are spurious effects due 

to the particular perturbation theories employed rather than the 

inevitable consequence of the nonlinearity of the field concerned. 

Therefore it would be well worthwhile to effect further work along 

these lines. Some practical schemes are outlined in the next 

chapter.
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CHAPTER 10 

SUGGESTIONS FOR FURTHER WORK

10.1 Introduction

In this thesis, a study has been made on the quantization of 

some generally covariant model field theories. Certain results are 

obtained on the generally covariant aspects of the problem.

However a tremendous amount of work is still needed in order to 

obtain a totally satisfactory quantum theory of such nonlinear fields 

in a curved space-time. We shall not enter into discussion of any

such general problems. In this chapter we shall only suggest for

further research some definite problems directly related to our 

present work on the Model Field II. There is of course room for 

more work to be done in order to make the various present treatments 

of the Model Field II more complete and satisfactory. However in 

this chapter we shall confine ourselves to suggestions for further 

work along completely new lines.
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10.2 Attempt for a New Treatment of the Model Field II

10.2.1 Classical Theory

As shown in section 6.2.1, Chapter 6 our Model Field II possesses 

a set of plane wave solutions. Each such solution has the form of 

a free wave propagating along a straight line which happens to be a 

null geodesic in the space-time defined by the solution itself. No 

interaction effect exists as long as the field is built up by waves 

travelling in the same direction. Let us confine the field in a 

box V with the usual periodic boundary conditions. Let

'*'nk " /v

where ^  x integer; k^ = |k| = k; n = integer; k^k^ ~ rĵ k̂̂ kV 0
Then

Ç , = A + A*d) , (no summation over n)nk n n k  n^nk

is a real solution to our nonlinear equation (6.2.1-1). The general 

solution representing a wave travelling in the direction specified by 

a k is

S. = 2 S . (10.2-2)
n>o

=> Q Q (k
2

2
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,Cïï,̂ 2
i2= Q[l+(vy"] = Q + %[(vy"+ [-̂ ] ]. CIO.2-3)

We end up with a Hamiltonian which is linear in the sense that the 

energy contributions from different n-values are additive. Rewrite 

(10.2-2) as
rsi^nrfVÊàmsMa»

^ JlQiik ^̂ 'nk'̂ nk * ^nk*nk^ n>o^

Expressing the Hamiltonian and the momentum associated with the field

in terms of a. , a*, we obtain nk' nk

=  ̂ (10.2-4)
t= E + 2  H e nk a 1 a , , where E = QV +

° n>o "is °
k  2 lie nk'S

n>o

= 2 -K n k a\, a , + i 2 - A u k  (10.2-5)
- "k "Is n>o -

10.2.2 Quantization

We now postulate that each plane wave solution becomes in the 

quantum theory a quantized harmonic oscillator in the same way as in 

linear field theories, that is, a^^, a*^ are regarded as creation 

and annihilation operators with the usual boson commutation rules

= c4k'4k] =
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are now operators. We see that if we confine ourselves to 

the field excitation which is formed by plane wave travelling in the 

same direction, we can perform the quantization which leads to the 

exact solution of various problems about the particular field 

excitation. The procedure may be applied to any specific k .

Observe that the present results agree with the corresponding ones 

obtained by the variational method of Chapter 8. Indeed the two 

theories reinforce each other.

10.2.5 Some Ideas for Future Research

A general picture in the quantum theory begins to emerge after 

we carry out the above quantization procedure for all k values.

What one has now is that some special subspaces exist in the linear 

vector space of quantum states for the nonlinear field as depicted 

in the following figure.
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In such subspaces the field behaves like free field consisting of 

non-interacting particles moving along the same direction. The next 

step is to explore the "unknown” region outside those "known” sub­

spaces and this presents great difficulties. Firstly one would try 

to extend the above exact treatment. It is possible to obtain exact 

solutions other than plane wave ones to the field equations for our 

Model Field II. The problem is whether such knowledge could help to 

bring about the quantization of the corresponding field excitations. 

Secondly we should seek now approximation methods in the light of the 

above exact quantum theory of plane wave states. The most obvious 

thing to do is to examine two sets of plane waves travelling along 

almost parallel paths. It would be reasonable to expect that if the 

two sets of waves differ only slightly in their direction of propa­

gation then their interaction may be treated by a perturbation theory 

Further efforts are needed to develop the above ideas.
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10.3 Interaction with other Fields

So far our discussion has been confined to the Ç-field itself 

without any reference to its possible interaction with other things. 

One could study this problem in the usual way. Consider the simplest 

type of coupling determined by the total Hamiltonian

where

H

function.

The field equation becomes

 ̂ - J"d^x Q f(x,t)ç, and f(x,t) is a prescribed

9*^ S f(x,t)

f(x,t) may now be interpreted as the source for the Ç-field. The 

usual static point source may be incorporated here if we take

f « 2 acx - X ).
n -

This source then consists of point particles fixed spatially. These 

particles may be considered to possess a sort of "charge" which 

generates the 4-field.

For a more general theory of coupling 4-field to other fields
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defined on curved space-time one may follow the treatment adopted in
J1the theory of General Relativity. In General Relativity the field 

variables are the metric The coupling with other fields may be

formulated by taking a Lagrangian density of the form

where f^ is the original gravitational Lagrangian density. will

in general contain the metric g in addition to the new field

variable é and its derivatives. The derivatives of g should notpv
appear in Then the total Hamiltonian density takes the form

k-T = > (10.3-1)

where jAg is the original gravitational Hamiltonian density. The 

situation becomes more involved when this scheme is applied to our 

Model Field II whose field variables are 4̂ . The additional Lagrangian

JG would then contain the derivatives of 4̂ . This derivative type

of interaction is not unknown and the scheme could be carried through.
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10.4 The de-Sitter Universe

Consider the generally covariant field theory derived from the 

following Lagrangian density

f + Ü A B Ç D E f ^  , (10.4-1)
/d 3! 8(x“x‘ X*x’ )

where d is a numerical constant of dimension [(length)^];

A = 0, 1, 2, 3, 4 ; g^^ =

, B C D E
. = the Jacobi an determinant;
3 (x° x' x̂  x̂  )

^ABCDÊ~ 5-dimensional permutation symbol.

It is seen that

J JC d^x

is an invariant under coordinate transformations on the 4-dimensional 

space. In the special coordinate frame x^ = 4^, the Lagrangian 

density becomes

jC ~ -Q /l-rî  ^  4 . (10.4-2)
V J ,p ,0 ,^1

The field equation is

—  /   ̂ ^  . 0 CIO.4-3}

To relate all this to the de-Sitter universe of constant curvature we
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recall that the de-Sitter space can be embedded in a 5-dimensional 

Pseudo-Euclidean space and that a 4-surface defined by 4^4^ - r, 

where r = a numerical constant^is a de-Sitter space of constant
1 J2 
r °

Sitter space is given by

curvature — , In the special coordinate frame 4^ = the de

g: = n - r. CIO.4-4)

This expression satisfies equation (10.4-3), Therefore we conclude

that indeed the de-Sitter universe is derivable from the Lagrangian

density (10.4-1) if we identify d in (10,4-1) with the r in (10.4-4).

Comparing all this with our Model Field II, we appear to have the

surprising result that the Model Field II, which is a 4-surface of

stationary volume, seems to be a de-Sitter world of a constant 
1curvature - 0, This is no cause for alarm however. While the

flat space is a solution to our Model Field II, it has other non­

trivial solutions as well. Now one can set up the Hamiltonian theory 

for the new field and quantize it. It will be most interesting to

investigate the final results to see how they are related to the work 
J3of other people using mostly group theoretic methods. In passing

we note that the original flat metric has to be modified to 

achieve a constant positive curvature while maintaining a negative 

value of g, A choice is^^

/ 1 0 0 0 0
I 0 -1 0 0 0

n^g = 0 0 -1 0 0
0 0 0- 1 0

y  0 0 0 0 +1 /
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The treatment of curved space-time using such an embedding technique
J5may be extended to other Riemannian spaces. It is known that 

various Riemannian spaces commonly occurring in general relativity 

are immersible in pseudo-Euclidean spaces of appropriate dimension.

As an example consider those vacuum solutions in general relativity, 

that is, solutions which give a vanishing Ricci tensor R . We]iV
know that all vacuum solutions are immersible in a ten-dimensional 

flat space, while on the other hand, many vacuum solutions of 

physical significance are immersible in a six-dimensional flat space. 

All vacuum solutions immersible in a five-dimensional flat space are 

trivial, leading to Minkowskian space-times only [e.g. see L.P. 

Eisenhart, Riemannian Geometry (Princeton, 1949) p.200]. Therefore 

one can formulate theories for the above non-trivial space-times in 

a way similar to our treatment of the Model Field II. The results 

obtained in section 5.1, Chapter 5 may be easily extended to higher­

dimensional embedding spaces. The field equations will be

R^y - 0, (10.4-5)

where the Ricci tensor R^^ is expressed in terms of the coordinates 

4^ (A = 0,1,2,...,N; 6 < N < 10) and their derivatives of the 

particular embedding flat space concerned. One may then proceed to 

set up a Lagrangian formulation for the theory, bearing in mind that 

in the variational principle the variation is effected by 54^.

After this the Hamiltonian formulation may be established and various 

quantization schemes can then be attempted. In view of the complexity
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of the field equations (10,4-5), various technical difficulties may 

arise in actually carrying out the above programme. There is 

obviously room for much further work on this.
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10.5 New Field Theories

Some interesting new quantum field theories may be derived from 

the Model Field II by new interpretations of the Hamiltonian density 

in a similar way to that in which the Dirac equation was obtained. 

The classical Hamiltonian density for the Model Field II is

where we have taken Q = c ■- 1 for brevity. Now an example of a new 

interpretation of this expression would be to take

J[1+(V4)^ ] [l+TT̂  ] = 0 + £.V4 + + w.VÇiT, (10.5-1)

in the sense that both sides should be identical on squaring. The

quantities = (f̂ ,̂£); - (w^,ij) are constants to be determined

by the squaring procedure. It may be readily shown that squaring

leads to the following expressions for the determination of and

0) : y

{n ,0 } = 2a ; {w ,w } = 2a ; (10.5-2)u' V liV V TJV

{fî ,0) } + {fï “ 0, (10.5-3)y V v' p

where the brackets mean anticommutators, that is, m separately 

satisfy the Dirac algebra (10.5-2) while at the same time they are

related by (10.5-3). Obviously 0^, w are matrices. Lengthy

calculations show that at least an 8-dimensional matrix representation 

is needed. An explicit 8-dimensional representation for is
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L i  " o j  ’ - =  ( o  _«

where I = the 4x4 identity matrix and

a = ( , cr being the Pauli Matrices,
" U y "

Hence we obtain a field theory defined by the Hamiltonian (10,5-1),

The field may be quantized by imposing the usual Boson commutation 

rules on 4 and tt. Since it is a linear theory, we can readily 

calculate the exact energy eigenvalues and the corresponding multi- 

component eigenvectors. Many similar, yet different, interpretations 

of H, are possibly leading to similar theories. However this type 

of procedure leads only to linear quantum theories. It is hard to 

see how such linear quantum theories can possibly be related to the 

original nonlinear classical theory. Perhaps further investigation 

should be made to see if there is any other interpretation of the 

Hamiltonian density in quantum theory which will bring in nonlinear 

terms, hence bearing a closer relationship to the original classical 

theory.
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10,6 Further Remarks

A lot of work has been done on the quantization of the 

gravitational field. However in most cases people are unable to 

carry their schemes right through because of the sheer mathematical 

complexity of the gravitational field equations. The Model Field 

II studied in this thesis is much simpler in comparison while 

retaining many essential features of the gravitational theory. It 

would be well worthwhile to test out these schemes on the Model 

Field II instead of the frequently used electromagnetic field which 

is physically very different from the gravitational theory of curved 

space-time. In particular many of the conceptual problems arising 

from a curved space-time may be discussed through the Model Field II. 

There are also many people working on the quantization of nonlinear 

Lorentz covariant field theories. As far as the problem of non- 

linearity is concerned one may try to use their methods to treat 

the nonlinearity of the Model Field II. Of course many of these 

methods may not be applicable in our case, e.g. those valid only for 

massive fields.

One hopes that further investigation along these lines may help 

towards a better understanding of the quantum theory of fields 

obeying nonlinear differential equations in a curved space-time.
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