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ABSTRACT

This thesis reports a study of the quantization of generally
covariant and nonlinear field theories.

It begins by reviewing some existing general theories in
Chapter 2 and Chapter 3. Chapter 2 deals with general classical
theories while Chapter 3 examines various quantization schemes.,

The model field derived from the Lagrangian density

o 1 = TERA = .
L =2c¢ (A A ‘)(Au,k A

is proposed in Chapter 4 especially for the study of general
covariance, It is demonstrated that for this field general covariance
alone does not appear to bring in anything physically new. A
discussion is given on the differences between general covariance and
Lorentz covariance., In subsequent chapters a generally covariant and
nonlinear model field, a 4-surface of stationary 4-volume embedded in
a 5-dimensional Pseudo-Buclidean space, is investigated. Firstly a
manifestly covariant quantization programme is carried out. The
model field is then examined in a special coordinate frame for the
study of its nonlinearity. Various treatments of the intrinsic
nonlinearity are examined starting with conventional perturbation
theory in Chapter 6. The usual divergence problem in quantum field

theory appears, in particular in the self-energy calculation of a




one~-particle state. A new variational method is proposed in
Chapter 8 which is able to lead to finite results for one-particle
states.

The thesis is concluded with a chapter discussing some general

problems involved and a chapter containing suggestions for further

work .
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CHAPTER I

1.1. Introduction

It is well known that Einstein, who himself played a pioneering
role in the development of quantum physics and who was a revolutionary
in modern physics, persistently criticized quantum theory. One of
the reasons for his attitude towards quantum theory is that he did
not see how quantum theory could be made compatible with his theory
of General Relativity.A:1 It did not seem pos$ible to him to quantize
the gravitational field in the curved space. If this is indeed the
case, the conflict between General Relativity and quantum theory is
serious., We shall give an exampleA2 which will suffice to show this.
Consider a microscopic particle together with the gravitational field
produced -by the particle. If the gravitational field is essentially
classical, then by measuring all components of the field simultaneously
one can determine both. the position and velocity of the particle

simultaneously with any accuracy, thus violating the uncertainty

principle. Hence the gravitational field must not be classical in
principle. There are other arguments in favour of quantizing the
gravitational field. Some of them will be discussed in the next
section.

Various attempts were made, mainly in the past twenty years, to

establish a quantum theory of General Relativity. Systematic attempts

started with a series of papers by BergmannAS and his Syracuse school.A4
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There are many othersAS who have done a great deal of work in this
field, notably DiracAG, Anderson, Arnowitt, Desep, Dewitt, Gupta,
Komar, Misner, It was Dirac who formulated the Hamiltonian theory
of General Relativity in its present form. He also put forward a
systematic quantization scheme. However, due to the tremendous
complexity of the problem both mathematical and physical, there is

still no completely satisfactory quantum theory for General Relativity.

1.2 Objectives

Einstein's theory of gravitational fields is fundamentally
different from other field theories such as electrodynamics. Quite
apart from the sheer mathematical complexity of Einstein's field
equations, the theory presents the following three major problems
when we try to quantize it.

(1) General Covariance.

Einstein's theory is invariant with respect to arbitrary coor-
dinate transformations. This gives rise to mathematical and physical
problems.  The mathematical difficulties in effecting quantization
lie in the existence of constraints in the Hamiltonian formulation,
i.e. not all the canonical variables are independent of one another
for reasons which will be discussed in Chapters 2 and 3. Physically
one has great difficulties in relating the results obtained in an
arbitrary coordinate frame to the results of measurements made by

physical observers in some special coordinate frames. There are as
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yet no generally accepted coordinate conditions for the determination
of a set of special coordinate frames to be associated with physical
observers on earth, say. Indeed there does not seem to be any way
by which one can experimentally test the validity of various choices
of coordinate conditions. Furthermore one wants to know whether
general covariance of the field equations will necessarily bring in
anything physically new in quantum theory.

(2) Intrinsic Nonlinearity.

In conventional field theories such as electrodynamics, one
starts with linear field equations and nonlinearity of field equations
appears only after one introduces interactions, these usually arising
from nonlinear coupling with an external field. The separation of
the resulting theory into a linear part which corresponds to free
fields and a nonlinear part which represents interaction is
unambiguous and unique. In Einstein's theory of gravitational fields,
the field equations are nonlinear even without coupling to any other
field. There is no unique way by which one can separate such fields
into linear and nonlinear parts. One can see this clearly in our
discussion of a model field theory in Chapters 6 and 7. Thus one
is not absolutely sure that the concepts and methods developed in
conventional field theories are meaningful in such a case.

It is customary in the theory of elementary particles to assume
that due to the extraordinary weakness of the gravitational field,

about 10_40 of the strength of the electromagnetic field, one may
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completely ignore the gravitational field in the microscopic world.
Thus, while it is intellectually satisfying to have a quantum theory
of gravitation, it will apparently not make any practical contribution
to elementary particle theories. However one should not be so
certain about this. It is known that in the theory of differential
equations, there exist solutions in a nonlinear system that cannot
be reached by linear approximations. Hence it is quite possibleA7
that one should not use a perturbation treatment in the case of the
intrinsically nonlinear gravitational fields. In a rigorous and
fully nonlinear theory, there may be something fundamentally new
appearing, corresponding to the physical situation that very close
to an elementary particle, the gravitational field becomes so large
that the nonlinearity may play an important role. Even qualitative
changes may occur. Perhaps it is possible to combat the divergence
problem in conventional quantum field theories by incorporating the
nonlinear gravitational fields. One may even go one step further
and try to formulate a theory of elementary particles using intrin-
sically nonlinear field equations in the hope that some of the major
difficulties arising from essentially linear field theories may be
solved in such a new theory.
(3) Conceptual ProblemsA8

The challenge is formidable on this score. The field variables

g . of General Relativity play a dual role in the theory. To start

uv

with one may treat guv as field variables for the description of
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gravitational fields in the same way as the electromagnetic field
tensor is used for the description of electromagnetic fields. The
situation at the outset then appears to be fine and one may try to
carry out a programme of quantization. Trouble starts when it is
remembered that the same variables g, are used to determine the
metric of the curved space-time. It is extremely difficult to see
what is meant by a quantized space-time. There are also great
difficulties in formulating a quantum theory of measurements in a
quantized space-time. Some investigations on this even lead to
contradictionsqA9

Each of these three problems arising from the quantization of
General Relativity is important on its own and is well worth studying.
We shall adopt the attitude that one should tackle the problems of

general covariance and of nonlinearity first to try to achieve a

technically complete theory. Only after this can one possibly have
a rigorous solution to those conceptual problems. Hence the present
arguments and difficulties should not be regarded as final. There-

fore in this thesis, we shall confine our studies to the problems of
general covariance and of nonlinearity. Although the ultimate goal
of the whole exercise is to achieve a quantum theory of gravitation,

we shall not examine the above problems directly for Einstein's theory.
Instead some comparatively simple model field theories will be studied.
Our present aim is to gain some qualitative understanding of the

problems as well as some experience for treating such problems, while
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avoiding the sheer mathematical complexity of Einstein's theory.

In Chapter 4, a model field theory which is generally covariant and
exactly soluble is set up for the studies of the effects of general
covariance in quantum theory. Another model field theory which is

generally covariant and intrinsically nonlinear is formulated in

subsequent chapters. Various treatments of nonlinearity are
discussed.  There is scope for a tremendous amount of further work
to be done on these problems. Some of these problems most directly

related to our present work are suggested for further research in the

concluding Chapter of this thesis.




o, I

CHAPTER 2

A REVIEW OF GENERALLY COVARIANT FIELD THEORIES
CLASSICAL THEORIES

2.1 Space-Time and the Group of General Coordinate Transformations

First of all we assume that space-time is locally Euclidean and
that it is possible to assign space-time coordinates. In general the
space-time is assumed to be Riemannian with a symmetric metric tensor
whose signature is conventionally taken to be -2. An example of

space-time is the Minkowski flat space with the metric tensor

OO O =
oo O

' :
O~ OO
-0 OO

4
where u,v = 0,1,2,3. One may use different procedures for the
assignment of coordinates leading to different coordinates xu, M for
the specification of the same space-time point. We shall only

consider procedures which lead to different coordinates related in a

one-one and bicontinuous manner. We may write
£ u s 3x"
X" = X" 5 xM = xR, and I = 1250 £ 0.
9X
Only transformations with J > 0 will be considered. It is an

intricate problem to aim at complete mathematical rigour in studying
the set of coordinates and the transformations among themselves.

Our subsequent discussion does not require complete mathematical
rigour at this stage. Therefore we shall speak loosely and regard
the set of such coordinate transformations as a connected continuous

graoup to be called the group of general coordinate transformations.
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We shall mainly concern ourselves with some necessary properties of
the set in order to form such a group. That is why we can afford to
speak loosely. Firstly by continuous connectivity it is meant that
finite transformations may be built up by infinitesimal transform-

ations which may be written as

/ ¢ /7
e xt e el M-,
Q._

where e"(x) are called the descriptors of the transformation.
Now consider the effect of two successive infinitesimal transform-

ations in different order, i.e.

/ 7 / /
X = xt e el XM =X e b = 2

It
1]
i

+ el (x) + eh() + eh(x) e () ,

i

/ /
= Ll u ; SW_ o Uezy o oM u u it v
X x" o+ ez(x) $ X x" o+ el(x) x" + ez(x) + Ei(x) + 51£§) ez(x) .
Then
“ “
3| S L | P el 2¥ B -
X X el,v €, eZ,v 6’1 €z (2.1-1)

The eg are then the descriptors effecting the infinitesimal coordinate

" i
transformation from x" to x*. A necessary condition for a set of

infinitesimal coordinate transformations with descriptors of a

i

3
az " eg must be descriptors of the same type, i.e. we require the

particular type to form a group is that e, so obtained for any pair

u u

‘ " 4
infinitesimal coordinate transformation from X" to X~ to belong to

the set. The proof is obvious. Let us adopt a symbolic notation

for the infinitesimal coordinate transformations, e.g.




7 /" /

X = T1 Xz X . T2 X = T2T1 X oy

s % '

X = T2 X 3x = T1 X = T1T2 >, S
Then

e T g2 f e

& Sketg g g oLy

T, = T.T.T* 721 |

3 = TT,T T,

The infinitesimal coordinate transformations being a group implies T3
is again in the set by the closure property of the group.

In the case of a Lie group, this becomes the necessary and
sufficient condition for the set of infinitesimal coordinate trans-
formations to be able to be integrated to obtain finite coordinate
transformations independent of the path of integration. The group
of general coordinate transformations is however not a Lie group.

2.2 Geometric Objects and the Realization of the group of general
coordinate transformations

Geometric objectsB1 are defined to be objects which constitute
the basis of a realization of the group of general coordinate trans-
formations. The central requirement is that:
if a geometric object y is transformed to yl as coordinatesx - x/(x)
and y/ further goes to y" i£ £ -+ £k£), then y will be transformed to
y” by the coordinate transformation x - z(é(x)).

Suppose we have a geometric object y(x) defined at a point x".  on

. /
a transformation x - x we have
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. /
y(x) » y(x) = F(y(x) ; x(x))
For the identity transformation we require
Fiy(x) 5 x) = y(x)

a / Vs
For a further transformation x -+ X

z . "oy / / N f
y(x) »y(x) = F(y(x) ; x(x))
Then the above requirement on the transformation properties of y is

equivalent to the demand that

;7 7ot W1
Fiy(x) ; x(x)) = F(y(x) ; x(x(x))) .

If a geometric object has more than one component, we write it as Yp-
One can verify that scalars, and tensors defined in the usual way are
geometric objects satisfying the above requirement on transformation
law. However a finite set of such objects defined over a finite
points in space-time cannot form the basis of a faithful represent-
ation of the group of general coordinate transformations. We need
to have a field of objects defined at each point in the space-time.
In what follows we consider only such fields which form faithful
representations of the group of general coordinate transformations.
Infinitesimal transformations take the form of the usual §-variation

2o ;
yA(x) - yA(x) = yA(x) + GyA(x) s, Where Moe XM e¥ and 6yA(x)

depends both on yA(x) and £V,

Another variation § is often used and is defined to be

i

= _— i 5o A ‘o u
YA = yp(X) - ¥y (x) =y, (x-e) -y, (X) =y, (x) -y (x) -y, (X) e

3 Koo 5
= GyA(x) - yAEﬁ) gt | % yASﬁ) e¥ = yAgﬁ) e to first order.
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M and has

This deals with variation at the same value of variable x
therefore many advantages. An example is that § and differentiation
commute.

/ 3 ‘o
a0 = ¥ (%) - ¥, (x) = ;;E'(YA(X) -y, (¥)) = o Sy, (%)

Hence for any function F(yA) & F(yA(x)) ,

3F (x) 3F (x)

- ‘. _ -
5F = F(x) - F(x) = 7, () 8y, (xX) + 5§;E%3 (ayA(xiLu A

/
One also notes that if yA(x) is related to yA(x) by an infinitesimal

coordinate transformation then
S — /
1YA(X) oz 61yA(x) ’

to the first order of the descriptors eE which cause the 51 variation.
For field theory, it is more convenient to express group properties
in terms of §-variation, i.e. change of the field variable yA(x) at
the same numerical values of the old and new coordinates. For yA(x)
to constitute a realization of the group of general coordinate trans-
formations, the central requirement is again as before, i.e. for any
two successive coordinate transformations x - X - fvwe have

yA(x) - y;(x) . yZ(x), then we require yA(x) to transform to yl(x) as
X -* x”directly° It is of particular interest to consider infinite-
simal coordinate transformations for field. Let EE’ eg, a% be three

descriptors related by equation (2.1-1) and 51, 32, 33 be respectively

the corresponding §-variation in field.
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We showBz that

is a necessary condition for yA(x) to be geometric objects. We use

the same notation as that used in obtaining equation (2.1-1). Let

/ V4 / ” < 5
yA(x) -> ¥A(x)0+ yA(x) as x" -+ x* > %" and that yA(x) > yA(x) - yA(x)
as x" > x" + x*.  Then

fA(X) = 8,7, (x) +y,(x) ,

4 - ¥ 7/ = - -
YaA(X) = 8oy () + y(x) = 8,(8,y, (X)) + Sy, (x) + &y, (x) + y,(x).-

Similarly

"
Yot = 8, (8, (X)) + 8y, (x) + 8y, (x) + y,(x)

X
== Y 5 (X)

/s = -

i 17 _
It is now obvious that yA(x) - yA(x) must equal Gsyg(x) ¥ yA(x)awe to

be geometric objects, To the second order of descriptors we have
7 }I ™ . u N kS ”
GSyA(x) = GSyA(x). This is seen by operating 63 on the yA(x)

expression bearing in mind that a §, variation is already of 2nd

3

order. So the statement is established.

2.3 Covariant Field Theories in Lagrangian Formulation

We shall follow the treatment by AndersonBS in this section,

though the formulation in its present form was first studied by

B4
Bergmann .
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2.3,1 Covariance Properties of Physical Theories

In a physical theory, one tries to associate mathematical
quantities of some kind with physical quantities. These mathematical
quantities may take on a wide range of values and a set of possible
values of these quantities is called a kinematically possible
trajectory. Not all kinematically possible trajectories may be
realized by the actual physical system. A kinematically possible
trajectory which can in principle be realized by the physical system
is called a dynamically possible trajectory. The set of dynamically
possible trajectories is then a subset of the set of kinematically
possible trajectories. Dynamical laws or equations of motion are
conditions for the determination of this subset. A physical theory
is said to be covariant with respect to a group of transformations
if two conditions are satisfied. Firstly the kinematically possible
trajectory must constitute the basis of a faithful realization of
the group. Secondly we require the realization associates dynamically
possible trajectory with dynamically possible trajectory. For field
theory, kinematically possible trajectories are described by field
variables yA(x), Then covariance with respect to a transformation
group is equivalent to the requirements that yA(x) form a faithful
realization of the group and that equations of motion for yA(x) are
unchanged with respect to any transformation of the group. In
practice, the first condition is satisfied by éhoosing yA(x) to be a
field of geometric objects. We are left with only the second
condition to examine, We shall mainly be concerned with the group

of general coordinate transformations in what follows.




Y&

2,3.2 Determination of Equations of Motion

Assume the equations of motion for field yA(x) are derivable
from a variational principle with a Lagrangian density which is

.. 4 . - _0
explicitly a function of yA(x) and yAEﬁ) - T yA(x) only. The

action integral is
4
I = j;;L(YA: yA,u)d X .

Our assumption is that I be at a stationary value with respect to
arbitrary variation of field variables subject only to the condition
that the variation vanishes on the boundary surface S of the region R.

. /
Consider such a variation GyA(x) = yA(x) - yA(x)o

§I = I(y+8y) - I(y) ,

s Y - 4
I(y+8y) = J’R&(y*réy, i, Gy',u)d %

" Y ) G o, = 4
FAEIRLEE J’l;c;_,;; Sy * e Bry Mdx

A,u
1 4 -V ad < 4
6 d = 6 d_ - 6 d °
{ayA,p Tau O E{(E’VA,U yA],ux JRr["WA,u],U i Sala

The first term vanishes on converting to a surface integral over S.

Hence we get

=  F8& = 4, where == =z = . [ }
I = £~ N GyA d x 6yA ByA ayA,u w5
§I = 0 <=> LS
GyA

on account of the arbitrary nature of'SyA,
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So the equations of motion are

A8 Lo,
GyA

The next obvious question is under what condition the variational

principle will ensure the invariance of these equations of motion

with respect to the group of general coordinate transformations. A

sufficient condition is that §u should transform as a scalar density

of weight +1, This implies the action integral I has the same value

before and after a coordinate transformation. Therefore a kinematically

possible trajectory in one coordinate system that corresponds to a

stationary value of I will be transformed to a new kinematically

possible trajectory in another coordinate system which will again

correspond to a stationary value of I. This implies dynamically

possible trajectories will always be transformed to dynamically

possible trajectories and hence equations of motion must remain

unchanged. Notice that above condition is a sufficient one but not

a necessary one, Furthermore as addition of a complete divergence

Quu will not change the equations of motion, it is sufficient to require
5

&b QTu to transform as a scalar density of weight +1, The freedom

to add a perfect divergence may be used to simplify equations of motion.,

2,3.3 The Nother Identity and the Bianchi Identities

Let us examine the effect of an infinitesimal coordinate trans-
formation on the Lagrangian density which is a scalar density of
weight +1, Let J be the Jacobian of the infinitesimal coordinate

transformation, We have




<16

N
J:-:l.—a-)-c.,- :."]_,.g_u'

a4V ' sH
=> §L0x) =& - Lio = =Le“u ,
§Lx) =8l -L,ue¥ = -Let - foue?

0 M
= (J.\E: )9p °

We can also calculate gﬁ.through the change in the field variable Ya

. ;O 4 «
§hs 2= 3y, 4 1 Sy
Y« A BYAS,H Ayu
s 3 3l X
= g oY - dy g
yA A {BYAHJ A]su

o - i u " X i
where 6yA 6yA yA,u e" and éyA is the change in field Ya due to the
infinitesimal coordinate transformation,

Thus §t" = 8& §yA9 where §t¥ = L¢" m-i§1m~ §yA ;

PR 6}’A BYA,,U

This is an identity called the Nother identity.

We now want to show that not all field equations are independent of
one another and certain identities, called Bianchi Identities, exist
amongg. them,

Assume the field Yi trans forms according to

§yA(x) = Div e’ +E, "

u .

s Wwhere DA» ) EAu are functions of
Ya and e" are descriptors of the
infinitesimal coordinate trans-

formations.
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For the usual tensor field, DXv is of the form

i = F, My, with P

Bu .
Au o being numbers independent of

Av

%

Substituting the expression for §yA into the Nother identity we get

w U u A v " A b A v
(ot =DAVL 8)”p_{EA\JL = (DA\)L)QU}E P
where LA = gé:ro
6yA

Integrate this over an arbitrary region in space-time. One can
convert the left hand volume integral to a surface integral over the
boundary of the space-time region. The arbitrary nature of eV

u

allows us to choose & such that they vanish on the boundary while

remaining arbitrary inside. So the surface integral vanishes and

we obtain
4 A {0l A . -
Jﬁ p'e {EAv L = (DAV 5 )9u} et =0,
¥ being arbitrary implies
B 1 (D% LA) = 0 , valid irrespective of field equations, °
Av Av Ui - ’

Since the region of integration is arbitrary we conclude that these
identities hold everywhere., They are called the Bianchi identities.
One sees that indeed not all field equations are independent as one
would expect for covariant field theéries, There are four of these
identities for a theory admitting the group of general coordinate

transformations as a covariance group. This means that the number
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of independent equations is four less than the number of variables Ype
As a result it is impossible to fix Ya from the field equations alone.
We can impose 4 further conditions on Ya in order to fix Yae These

are called coordinate conditions as one physically assumes that yA
should satisfy some special equations in a particular type of coordinate
system,

We can draw more conclusions from the Bianchi identities. Let the

second order field equations be of the form

LA _ KABpG

6090 0an bl

B,po

ABuv

where K and the terms denoted by dots depend on lower order

derivatives of Ype
2
B . g "
One sees that KA P s £ which is symmetric with respect
oy ay
A9p A90 -~
\_/\ ) ‘3 ‘

-

to A,B , the reason being that

Ak . @b, & & d 04
| - =
W [ayApo],p A {fays o[ayA DY8,00 +

(35 S 3yA ])YB,p)k :
Substituting this into the Bianchi identities we get

DKVKABDG g + terms containing lower order derivatives of
»

Yo E O
Recall that these identities are satisfied for any Y, €ven those not

satisfying the field equations.
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This implies that all the derivatives of Y appearing in the identities

are arbitrary., Hence it is necessary that

p! gABeO -

for each v .
Av

Of particular interest are the following 4 identities

2
pp KP% = 0, where kAP0 . 2L :
Ya,0 9VB,0
ABOO " . % i ¢
If we treat K as a matrix, then these identities imply that
KABO0 has 4 null eigenvectors DRv’ KABOO has therefore a vanishing

determina@nt and no inverse. We cannot solve for yA,OO in terms of
lower order derivatives from the field equations. As a result it is
impossible to obtain unique solution to the usual initial value
problem, that is, one cannot give sufficient initial data on any 3-
dimensional hyper-surface x° = constant for the complete determination
of the field variables elsewhere. To see this one can try to
determine the field variables in a neighbouring constant x° surface

by a Taylor series., One then attempts to express the coefficients

n

of the Taylor series . yA_ in terms of the initial data YA and Ya 0
ax°™ '

on the initial data surface. With the help of the field equations

one can usually express YA 00 in terms of Yps yA 0* Higher deriv-
3 b

n
atives ° YA may be obtained by differentiating the field equations
on
90X

with respect to x°. One can demonstrate this procedure easily with

- the Klein-Gordon Scalar Meson field,
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lHowever this procedure breaks down in our present case because YA,00
cannot be expressed in terms of YA’ yA,O in the first place, So
one just cannot get the Taylor series to obtain the field variables
off the original hyper-surface., This result is of course expected.
The Bianchi identities take on a special form when we have a field

EA whose components are all scalars,

o

s = 1 H = o =
SEA EA,U €y 1a@y DAv 0 = EA,U gA’u é
So we have
A _
gA,u L™ 20 ,
which again lead to
KABOO e

EA:]J

2.4 Hamiltonian Formulation

We shall follow Dirac's approachnB5 Bergmann and his schoolB6
at Syracuse University also made significant contributions to the
formulation. 'The problems relating to constraints, in particular those
having a dircct bearing on quantization, were analysed in detail by

Anderson.
2,4,1 Hamiltonian Formulation I

Let us work in a particular type of coordinate system for which
surfaces with x° = constant are all space-like. A vector Au is called
space-like if g‘”Au A, < 0. Itis called time-like if gwAu A, > O,

The name light-like or null vector is used for Au i€ g“\’A]J Av % 0




Y

By a space-like surface one means a surface whose normal is everywhere
time=1like, As a result, the tangent to the surface at every point
must be space-like.

2,4,1,1 The primary Constraints

Define the canonical momentum density by

A _ 36
iig :a
)A,O

One then hopes that the set of canonical varjables yA,ﬂA will be
independent and that yA,O may be written in terms of wB,yC and
eliminated. If this were true, one could proceed to define a
Hamiltonian density and everything would be the same as for field
theory in special relativity. However this cannotlbe the case since
it would lead to a well-behaved initial value problem for the solution
of the canonical equations of motion.which is contrary to the results
obtained from Lagrange theory. Therefore one may anticipate the fact
that not all yA,ﬂA are independent and that YA,O may not.all be
expressed in terms of yA,ﬂAn The reason is obvious, Firstly we
have

SﬁA |

anA azﬁy ==> determinent |
N 9,0

%g,0 ¥a,0 ¥B,0

= 0

using the Bianchi identities,

Thus YB,O cannot be expressed in terms of nA,
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Secondly we can show the existence of 4 equations relating Y and nA
without involving YA 0 Such equations are called the primary

constraints. Recall the four Bianchi identities

KABOO

D°® =0,
A,u
2 B A
where gABOO _ g g ’ - gn = gn ’
Ya,0 °7B,0 YA,0 YB,0
and 5 54 = P B0 y with FBO being numbers for usual
A,u Au B Av
tensor transformation law.
BﬂA
Hence we have D? =0,
Au ayB 0

3

These four equations may be integrated with respect to YB 0 and we
3

immediately obtain the four primary constraints. For a scalar field,

we have

BﬂA = 0

f_' —_— =
A 9
sH &B’O
A

A om = 0

==> T =0 and EA,O 3Eg~g =
bl

o

A,

The first three are primary constraints already while the fourth one
will lead to the fourth constraint.

2.4.1.2 The Hamiltonian and the Equations of Motion

The Hamiltonian density'ﬂlis defined to be

K = ﬁAyA 0" I,, where summation over A is implied.
3
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The total Hamiltonian is

H = fda%x ).

For arbitrary variations of Ya 0° wA, yA ¥

A A & - O
S = 1" Sy + y §nm - —— 8y, -~ =— 8y - 8y, .
A,0 A,0Q ayA A ByA’O A,0 ByA,j A,j
A ad. af
=y 8§t - (== 08y, + =—— 8y, .) .
A,0 ayA A BYA,j A,j

This implies that ¢t is expressible as a function of Yao ﬂA only not
involving Ya.0 explicitly, since 6% = 0 for arbitrary SyA 0 keeping

3 2
A v o
Ty Yp fixed.

3 3 A Ak d&-
SH = Jd'x s&= Jd §m - - §
J fx(y‘\’o ' [3>’A [”A,J'LJ y‘;)
A

0 éyA) , using the Lagrange field

:_}gsx(yA,o GﬂA - w,

equations.

Equations of motion for Yps nA are obtained by comparing this variation
in H with the variation got by considering ¥ as a function of Yi and
nA, However, not all ﬂA, Y, are independent, so a method of Lagrange

multipliers is used. The equations of motion are then
d 3 d d
8,07 H»A_{ A} *Uu[q’u_[‘bu]],
2 aﬂ,j s) 3'ﬂ'A aw% .

3 3

9 9¢
- B, U )

where U" are the Lagrange multipliers and ¢u = 0 are the primary con-

K
3

A
0

straints.
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Using Poisson Bracket Notation, we may write

B

B = Iy, RG] + 10 0Ly, (0, 6, 001,

B

1000 = [N RED] + s ) e, ¢u(>f)].

Define a quantity

3
HT = fd wa , Where ﬁT

i+ U“¢u 5
then the equations of motion may be written as
A A
= » H 5 = B
yA,O [YA T] s '”,0 [ HT] >
and for a general functional F of Vi and nA we have

7= [P B o

3

provided certain rules are followed in calculating the Poisson Brackets.

They are:

(1) ¢u = 0 may not be used before evaluating the Poisson
Brackets. To emphasize this point, they are sometimes
written as ¢u ~ 0 which are called weak equations while ¢
equations valid without making use of these weak equations
are called strong equations.

(2) The rule [A,BC] = [A,B]C + B[A,C] is to be extended to

include non-canonical variables such as Uu, i.e.




A

/ /
1000 S8 068, 001 = oK1y, 00,00 (D16, 6
USTINSRNEE
/
- [ U“(£3[yA(x),¢u(x)]

4
There is no need to consider the meaning of [yA(x),U%h},
A ’ p <
(3) Yp» T are to be treated as if they are independent in
evaluating these Poisson Brackets.
From now on we shall adopt these rules.

2.4.1.3 The Secondary Constraints

There are a number of consistency equations to be satisfied.
We must require those primary constraints be maintained weakly

vanishing in the course of time. Therefore we want

[¢u, H] ~0 for each u . (2:4.1:3-1)

If these are true for arbitrary values of u", then the theory is
already consistent and no further consistency equations are necessary.

Such will be the case if and only if
/
[0, , o, (0] ~0; [¢ , H ~0.

This is the simplest case.
In general we do not have the above. Then the consistency equations

(2,4.1.3-1) may lead to
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(1) outright contradiction,

or (2) a second set of equations of form
A . u
x(y,» ™) ~ 0 , not involving U" .

These are called secondary constraints. In this case we have to start
all over again to examine consistency equations for these secondary
constraints.

or (3) a set of equations involving Yps nA, u,

In the fields we are going to study, case (1) and case (3) do not
appear, so we will only consider the simplest case and case (2).

In such cases, the four quantities U" remain arbitrary. The appear-
ance of four arbitrary quantities in the Hamiltonian theory is

expected and they correspond to the freedom of coordinate transform-
ations in the 4-Dimensional space-time.

A constraint commuting with all the rest of the constraints is
called first class, otherwise it is called second class. It can be
shown that the number of independent arbitrary quantities U is equal
to the number of first class constraints. So for a covariant theory,
there are at least four first class constraints corresponding to the
four arbitrary u*.

2.4.2 Hamiltonian Formulation II - the Curved Surface Formulation of

DiracB8

The previous Hamiltonian Theory has one drawback for theoretical
discussion in that it is awkward to study arbitrary coordinate trans-

formations as the formulation is explicitly coordinate-dependent.
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Let us consider an arbitrary space-like surface S which extends to
spatial infinity. Then in a more general theory, one should set
oneself the following problem. Supposing we know the maximum
compatible set of information of a field on S, we want to establish
a Hamiltonian theory which can tell us how the field varies as we go
from S to another such space-like surface.

2,4,2,1 Geometry of a Curved Surface

To tackle the problem, the first thing is to describe such
surface S. Any surface in space-time may be fixed by specifying the

coordinates xu of any point on the surface as functions of three

parameters vr, i.e. it is fixed by four functions X' = y‘u(\)J° A
surface is an invariant concept independent of the choice of x, A
M U

coordinate transformation x" - X~ only means that in the new coor-

dinates, the same surface S is specified by

" = yM ) # y*(v) in general,

and the space-like nature of S is preserved. The important point now
is to note that one can always define a new surface‘S'by x" = §u(v),
which is also space-like. This means that a theory covariant with
respect to the group of general coordinate transformations must also
be covariant with respect to arbitrary deformation of the surface S
provided the deformed surface S'is again space-like and vice versa.:
So it is sufficient for us to study surface deformation instead.

Each such space-like surface is to be labelled by a parameter T.
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So a surface is completely fixed by (T,Vr) and we may write
oo wPrr oy = B
X" o=y (r,vt) = oy (r,v) .

The set of 4 parameters (v,v) may be used to specify points in space-
time. A set of 3 linearly independent tangent vectors at a point on

the surface will be

£ aa T &
Note that r,s were used as indices for the parameters v~ to avoid

confusion with the i,j used for x7.

Three unit tangents may be defined as

u
g
h =

P

v %
t Vﬁgpv~y’r y’rl (no summation over r),
1

o
"t
t t

so that: | (no summation over r).

rp ¥ |

The unit normal nu is defined by

P

n t'=0 , for each r and |n n
T M

For a space-like surface we require

H

n n* =1 <> ¢t t = -1 (no summation over r).
U " s

The parameters v’ form a system of coordinates on the surface. The

surface metric is
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since

R o 1 QS S B8 8
d”s Ev dx" dx” = i y,r y"a dv™ dv” |

Any vector A" located at a point on the surface S may be written as

H r M
A =Ainu+A,,yr,

L]

U

since n", y i are a set of four linearly independent vectors at the
5

same point on S. The coefficients are

A =A"n",

L I

: SO ) » BV
b mY K, 3 B g Y s ¢

The scalar product of two vectors can now be expressed as

]

H T .5
A Bu AL BL e ¥ A, B”
AS
rs

i

A B + A .
L oL

s
i B” , where A.”r =y

An arbitrary infinitesimal surface deformation may be described by
specifying sx" on every point on §, i.e. 6x" as functions of (1,v).

In particular we may write

H M

5 ¥

(Sx;l = §X n
L 3

The first term is seen to be due to deformation normal to S while the

second term represents a tangential deformation.
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Before we leave this section, we want to express the four-volume
element d4x in terms of the parameters (t,v). Our S'being space-like
implies that d52 is negative. Hence the determinent of Yrs is
negative. Let it be »FZ with TI" positive. Then a surface element

is given by
i dsv :

A 4-volume element may be written as

4

d'x = (r’dsv) *» (an element normal to the surface)
: 3
=f‘d\)6xl,
i wo_ oyt
éx, = 6xM n o &xt = Lodr .,
1 u o1
Finally we obtain
4 Byp 3
dx =T 8'(‘nud\)dT
cr g, Fyde; e = yy an g
L 2 ’ ot ¥ Tl u ‘

2.,4,2,2 Hamiltonian Theory

To achieve a field theory based on such curved surfaces, we may
proceed in analogy with the so-called parameterized formulismB9 in the
special relativistic Hamiltonian formulation of particle mechanics.

In this theory, one uses the invariant proper time as independent

variable while the time coordinate is promoted to the status of a
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canonical coordinate. This treatment enables us to treat space and
time on an equal footing as is pertinent to the spirit of Special
Relativity. What we can do for field theory is to use the parameters
(r,v) as independent variables for the specification of space-time
points and treat xu = YU(T,U) as field variables in addition to the
original field variables.

Let us consider the case in which there is only one scalar field
variable £ in a certain coordinate system xu. The problem now is to
set up a theory based on states defined on arbitrary space-like surface.

Firstly examine the action integral
1= fieenak = Ed o,
L=Lepy 1.

. involves

H H
- 0§ Y BX u SX
8 tq=——,n , ¥ = . o
¥ Y u oT %
, 3 u ; _ 9% H
The field variables are taken as £,y" while g,r ek R nu are
3v ?

functions of g,y“ only. The velocity variables are 9” and g = %%-,

We want to express & in terms of field variables and velocity variables

only. The only troublesome term is E,P, However we have
r . %
g’f‘ = & nu by y,r guv 3

g: < E.p Y z = g,y which are functions of field

variables.
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We now show that

- 5 . . v . U
El g €” Y,r gvu Y
Yy
Proof
: ol o R L H
EmEpy =0 *E VY 8)F =E F *E V8, T
- - T v o |
,£¢ = § - €” Y’r gvu
- y‘--L
Hence

S . P
g (E Y, x B
Yy
which are functions of field variables and velocity variables.
Having obtained such a Lagrangian, we are in a position to proceed
with the Hamiltonian theory.

Define the canonical momentum conjugate to § by

s ah | '
"ESE e o T, (2.4.2.2-1)

9 B

Define canonical momenta conjugate to yu by

——

n =.E&—-= Kn r-n E»

. 2.4.2.2-2
ooyt U P ( )

Since we have introduced redundant variables into the theory, we expect

constraints to appear.
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Split equation (2.4.2.2-2) into a normal and a tangential part,
W =dl -ng , (2.4.2.2-3)

3 8 r
W" i Wt g” o (2o4u2e2-4)

Equations (2.4.2.2-4) are three primary constraints already, while
equation (2.4.2.2-3) together with equation (2.4.2.2-1) may produce

another primary constraint of the form

- H k
W_L ' f(}’ yEa XY 5

on eliminating the velocity variables on the right hand side of
(2.4.2.2-3) with the help of equation (2.4.2.2-1). There may be
cases where more than one primary constraint appear. However we
are interested in the standard case as mentioned above,

The Hamiltonian density is defined in the usual way by

i

wa+wu9“~L

%

. . Q r \) ou ¥ U rbs = a

=WE Pty B VP W T b W Ly T
2 3 - ﬂs r r

AR o PR ol U

Let ¢U = 0 denote the four primary constraints, then

K

2 1
-

o U - . o T
“IY ¢udv—f(y‘l¢¢+y”r¢)dva

fa
E
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The most striking feature is that H and # vanishi weakly independent

of y¥.

In analogy with our previous Hamiltonian Formulation, we need to

define a
W, =W
p= At
. ; 3
Hop, fJﬁTcw.
an n TRRRY
Since U" are arbitrary we can let U" = U” - y° .  Hence
oM . — u 3
J’&T—-U ¢U,HT--—fU ¢, dv .

For simplicity, we only examine here a field which does not lead to
secondary constraints. This means that all the four ¢u are first
class and so is HT"

Development of any functional F of canonical variables along different

space-1like surfaces is given by

F = [F,H]
In particular, if we try F = yu . We immediately get
9“ - M

So we may write

Hy = H = ]‘dsv(?u ¢u) = j'd3V(?l oL Yyr +)
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The rules given in section (2.4.1.2) for treating ¢u, UM = ?u in the
evaluation of Poisson Bracket must be obeyed.

Now the change in the functional F as we go from one surface S to a

neighbouring one.S, is

SE

B ot = [F,H] 6t = (8, [ &5 ap¥ 0,1

it

[F, fdsv(éy‘_L , * 6% %f)] : (2.4.2.2-5)

| T

where 6y‘u are the change in yu as one moves to the neighbouring surface.
The first term in H may be regarded as corresponding to a perpendicular
displacement of the surface Sl while the second term corresponds to a

tangential displacement.  Again by letting F = ypl we have
sy" = [Yur.!~d3v §y® ¢p] . (2.4.2.2-6)

In the sense of equations (2.4.2.2-5), (2.4.2.2-6), ¢u may be
regarded as the generators of the infinitesimal transformation that
changes the surface S. As mentioned before, a change of surface may
be regarded as a change of coordinate system, so ¢u are essentially
the generators for the infinitesimal canonical transformation which
corresponds to a coordinate transformation.

2.4.2,3 The Problem of Covariance

The Hamiltonian theory discussed above is manifestly covariant
with respect to arbitrary surface deformations which leave the surface
space-like. Hence it is covariant to arbitrary coordinate trans-
formations as well. The generators for infinitesimal transformations

are obtained.
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We know that our field variables are geometric objects which
constitute faithful realizations of the group of general coordinate
transformations. In this connection, we want to see whether equation
(2.2-1) would lead to any condition to be satisfied by the generators.

We have

(=)
=
~<
I

. . -
Vet s v e

1§

H 3, 5 M
, H. 1, where H, = J d°v § .
[y", H,1, where H, = fd Y0,

i

[[Yu» Hz]’ H2] 3

O
[\
~
O
<
=
o
]

x 0
- [61 Yy o Hz]

5,8, y") = [8, ¥, 01 = [y", B,], H1 ,

8,8, v

o O

!
Oz
N
~
Oz
[y
<

The Jacobi identity for Poisson Bracket was used.

So we require
M, H,] = F & & & v & v o (0.9, 601,01
1’ 2 1 2 u ) 3 v ] H

be again generators.

Hence it is necessary that

[¢, (39D, ¢v(r,6)] y (Z2.4.2. %0

be weakly vanishing.
These are certainly satisfied in theories where only first class
constraints appear. However things are not so trivial in quantum

theory.
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CHAPTER 3

A REVIEW OF GENERALLY COVARIANT FIELD THEORIES
QUANTUM THEORIES

3.1 Introduction

One of the main difficulties in effecting the quantization of a
covariant theory lies in the existence of constraints which imply that
not all the canonical variables are independent. Different procedures
to tackle this problem lead to different quantization schemes. In
what follows we shall only consider fields which involve first class
primary constraints and which do not demand any other consistency

conditions in the classical theory.

3.2 Quantization I

3.2,1 The Quantization Scheme

One would like to investigate the possibility of a manifestly
covariant quantization scheme. Therefore all the canonical variables
should be treated on an equal footing. The scheme for quantization
is well known.Cl The state is to be described by a vector of a
certain linear vector space while the canonical variables are rep-
resented by operators in the linear vector space. We cannot achieve
complete mathematical rigour because the precise mathematical nature
of the linear vector space and the operators are not known at present.
Nevertheless we can still proceed to build up the theory by making

assumptions that appear reasonable and that are necessary.
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Following Dirac, who gave a thorough and systematic treatment of the
whole problem in his monograph '"Lectures on Quantum Field Theory"Cl
published in 1966, we assume the linear vector space is one endowed
with non-negative metric. 1In analogy with the Hilbert space case,

we also assume that it is possible to define Hermitian conjugates of a
certain class of operators, Hermitian operators and unitary operators
possessing the usual meaning and obeying the usual algebraic rules of
manipulation, e.g. ('Q.lﬂz)Jr = Q;QI, (91 + QZ)T = QI + ﬂgﬂ This is

not as trivial as it seems. We shall see presently that Hermitian
conjugates are not definable for a wide class of operators because of
the treatment of constraints used.

Now canonical variables are assumed to be represented by Hermitian
operators obeying the usual commutation relétions. The constraint
equations are taken as subsidiary conditions to be satisfied by vectors
which describe the states of the system. The meaning of the last
statement is as follows. Let ¢u(x) ~ 0 denote the four first class

primary constraints. We then assume that vectors |& exist such

that
¢u(>c“) > =0 . (3.2, 013

Such vectors are called physical vectors.C2 The statement above
implies only physical vectors can be used to describe the states of
the field. An operator Q is called physicalcz if on operating on any

physical vector it gives another physical vector. The set of all
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physical vectors form a subspace and the physical operators operate
in the subspace. The necessary and sufficient condition for 9 to

be physical is that
[¢u(x“), Q] |¥> = 0, for all physical vectors |¥> ,
i.e. [¢u’ Q] = 0 .

Recalling the fact that ¢u are the infinitesimal generators for the
classical canonical transformations that correspond to infinitesimal
coordinate transformations, one may anticipate the significance of

the physical vectors and operators. As far as operations in the
subspace are concerned, they are invariants with respect to coordinate
transformations, a fact that will be explicitly demonstrated when we
study model field theories later. Note that there are not just four
subsidiary conditions on the physical vectors, but a four-fold infinity
of conditions. Consider (3.2.1-1) as applied to a constant x° space-

like surface. The conditions will also imply

0, ¢, (0 18> =0,
6,00 4,60 1> =0,
hence
£ > = ( 3 2
[qbu(:_c), ¢,(X)] 1¥> =10 . (3.2.1-2)

Classically, the first class nature of ¢p automatically ensures that
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the Poisson Brackets between themselves are first class constraints
again, therefore no new condition arises. In quantum theory however,
equations (3.2.1-1) do not automatically give equations (3.2.1-2).
Failure to satisfy (3.2.1-2) would mean an inconsistency and we could
not then quantize the field by this scheme. The conditions (3.2.1-2)
for two different constant x” surfaces cannot be tested without
solving the Heisenberg equations of motion first, Therefore we shall
assume that they would be satisfied as well for a sensible model field
theory once they are all right in the same constant Xx° surface. All
these are assumed to be the case in what follows.

We now want to study some more properties of physical operators.,

First of all we see that @ 92 being physical implies Q, +Q

1+ 2’ Q1Q2’
9291 hence [91,92] to be physical, In a sensible theory the

Hamiltonian HT must be physical i.e.

[¢U’ HT] [¥> = 0 )

since we only consider theories with first class primary constraints
" ! g o 3 [Q,HT]
alone. Therefore if Q@ is physical, so is Q = . Thus a
i
physical operator always remains physical. We now come to the problem
of Hermiticity of operators. By now it is clear that we need only
to work in the subspace of physical vectors for the study of a physical

system, S0 only the properties of operators which are relevant when

applying to physical vectors will be important to us, It is therefore
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sufficient to define many properties of operators by their action on
physical vectors only. A scheme by DiracC2 will be followed here.
We take the constraints ¢u to be Hermitian, or perhaps weakly
Hermitian, because on operating on any physical vectors, they always
give zero. We write ¢u ~ ¢:° Let @ be any operator. We shall

again have Q¢u weakly Hermitian. Suppose 2 is a non-physical

Hermitian operator, then
+ +
9] ~ (Q s Q ~ £
6, ~ (@) 5 @) ~ ¢

==> Q. ~ ¢ Q.
P ¢u

This last weak equality cannot be true. This means that if we keep
the usual algebraic rules for manipulating Hermitian operators as
postulated, the Hermiticity of a non-physical operator is not
definable in general. Only physical operators may be assumed to
have Hermitian conjugates or to be Hermitian. Note that although Q
itself may not be physical, (9¢u) as a whole is physical and Hermitian

since
) ) . ¥ oow o
[0, 500,71 = 16,81 ¢ + 2 [,6.1~0 .

Therefore the total Hamiltonian HT is Hermitian.

3.2.2 The Problem of Covariance

As we have shown in classical theory, the ¢u are the infinitesimal

generators for canonical transformations which correspond to coordinate
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transformations, it has also been shown that equations (2.4.2,3-1)
are necessary in order that the classical field varlables constitute
faithfull realizations of the group of general coordinate transform-
ations. The corresponding situation must exist in quantum theory
and equations (3.2.1-2) are necessary if the canonical operators and
the linear vector space are to formafaithful realization of the
group of general coordinate transformations. Therefore a theory
which is covariant classically does not possess a covariant quantum
theory if equations (3.2.1-2) are not satisfied. AndersonC3 has
shown that equations (3.2.1-2) are not satisfied for Einstein's
equations in General Relativity, If this is correct, it would lead
to the serious consequence that one may establish preferred coordinate
systems from the set of inequivalent quantum theories obtained by
using different coordinate conditions. The spirit of the principle
of general covariance would be contradicted. This was emphatically
pointed out by Anderson.

Although equations (3.2.1-2) are only necessary, one hopes that in a
sensible theoxry, one would indeed obtain a realization of the group
of general coordinate transformations. The explicit form of the
quantum unitary transformations corresponding to classical coordinate
transformations will be demonstrated when we consider model field

theories.
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3.3 Quantization II

3.3,1 Introduction

Suppose for a particular theory Quantization I may be success-
fully carried out. Then we are in a position to do some more
analysis of the quantum theory as applied to a particular type of
coordinate system. The selection of coordinate system is carried out
by imposing coordinate conditions. This does not spoil the covariant
nature of the theory as quantities in different coordinate systems
are related by unitary transformations. Although this step of
selection of coordinate system appears to add nothing fundamental to
the general theory of Quantization I, it is important and is a very
difficult problem in its own right, both from a physical point of
view and a technical point of view. A general theory dealing with
coordinate conditions will be given below. However it should be
pointed out that as far as this problem is concerned, any particular
field theory will have its own individuality and should be treated
separately.

3.3.2 The Dirac Bracket

Before going into the problem of coordinate conditions, let us
consider the problem of second class constraints in quantum theory.
Obviously they cannot be treated as subsidiary conditions on physical
state vectors as this immediately leads to inconsistency because the
Poisson Brackets between themselves do not vanish weakly. D:'LracC4

proposed the following treatment. For definiteness, let us consider
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a theory of classical particle mechanics which leads to a set of first
class constraints ¢ﬁw; m=1,...M and a set of second class constraints

X303 S04 5 N Firstly we define Css/by

/ [xsu Xsu] = & 1,

C
SS G}

This is possible as it may be shownC4 that the determinant of the
matrix [Xg’ xs”] does not vanish. Secondly we define a new type of

Bracket to be called the Dirac Bracket between two quantities F,G by

[FsG]D = [F,G] - [F’XS] CSSJ[X§6G] o

The Db's may be shown to satisfy the usual properties of the Pb's.
Another two important properties of the Db's are

(1) A second class constraint always has strongly vanishing Db
\ with any quantity,

(2) The equations of motion are valid for Db's i.e.

G = [G9HT] = [GDHT]D 3

° [G:HT]D = I.G»HT] b= [GQXS] CSSI [XS’HT]

and [XS,HT] ~ 0 by consistency equations.
These properties of the Db's imply two things. We may replace Pb's
by Db's in equations of motion and Xg may be set to zero even before

evaluating Db's. Therefore we may treat xgoas strong equations

provided we replace Pb's by Db's. The introduction of the Db's sheds
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a new light on the significance of the second class constraints.,
They signify the existence of redundant variables which can be elim-
inated using the Ky ® 0 as strong equations.

We can now pass over to quantum theory by taking the quantum
commutation relations to correspond to the Db's, The 0 are
taken as strong operator equations while the treatment of the first
class constraints remains as before, We can eliminate the redundant
variables as in classical theory.

3.3.3 Coordinate Conditions

The general idea is to treat coordinate conditions as an
additional set of four constraints. Since the purpose of coordinate
conditions is to eliminate four redundant degrees of freedom, i.e.
eight canonical variables, the coordinate conditions should be such
that they may be treated as secondary constraints and they also cause
four of the original first class constraints to become second class.
One then passes over to quantum theory using Db's, We therefore have

eight strong equations to eliminate 8 redundant variables.

3.4 Quantization IIX

There is another approach due to Bergmann and KomarqCS It ds
based on the concept of observable, a name borrowed from quantum
terminology. Firstly we examine how physical states of a field may
be defined. Consider an infinite space-like surface S. We may
specify a complete set P of values of the field variables Y and ﬂA

on S and assume that this defines a physical state of the field on S.
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The set of values of field variables on a next such surface SJ are
cbtainable from P by the solutions to the equations of motion for Y
and nA° For covariant theory, this set will not be unique as there
are arbitrary functions coming in the solutions of the equations of
motion., Let P/ be the totality of all these sets of values on‘S/°
We must consider all the seemingly different members of P/ to corres-
pond to the same physical state on Serhich evolves from the same
State_%n.sﬂ In general, a physical state corresponds to many
different sets of values of field variables. Supposing there are
quantities which may be predicted uniquely from the initial data on S,
it is obvious that these quantities must be intrinsic to the physical
state of the system and there may be a one-one correspondence between
a complete set of these quantities and the physical state of the
field. Such quantities are called observables. An invariant is an
obvious cbservable. One may then build up a mode of description of
the field using purely observables. The formulation will be covariant
as well as being free from the arbitrariness arising from coordinate
transformations. Suppose we can find four scalars which may be used
to specify points in space-time uniquely. We may formally regard
these four scalars as a special set of coordinates. Any quantity
expressed as a function of these special coordinates alone will be an

observable and a theory may be conveniently formulated.
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CHAPTER _4

‘MODEL _FIELD THEORY I

4.1 Introduction

To begin with, one would like to have an exactly soluble model
field in order to be able to carry through the theories outlined
before and see what the quantum theory looks like. In particular
one wants to study the effect of general covariance and examine
whether general covariance by itself might bring in something
physically new into quantum theory. An extreme example of a
generally covariant theory consisting of four field variables Au is
taken. In such a theory tﬁe field equations will be empty in the
sense that all the four Au will remain arbitrary and unrestricted by
the field equations. In our particular example, it is possible to
introduce some more essentially redundant variables into the theory

to enable it to look more ''respectable'.

4.2 Model Fieid 1

4,2.1 Lagrange Formalism

Consider a general four-dimensional space in which a metric is

not defined but well-behaved coordinate systems may be defined,

By
oS
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Let Au be a covariant vector so that Au -~ A v is a covariant anti-
L] H

symmetric tensor. Then

TKUA _
e (AK'”-' B AT:K) (AU:A AA,U)

is a scalar density of weight +1, whereeTKAp is the Levi-Civita
symbol which is a tensor density of weight +1. We may therefore use
this as a Lagranglan density to obtain a variational principle which
will lead to a set of covariant field equations.

Now consider the variational principle

4 ! o TKUA : .
§ Jr£ d'x =0, withl = ¢ ¢ (Ak - AT )(Au,A Ak,u) .

The field equations for Au are the BEuler-Lagrange equations which

turn out to be

gHBTE - A (4.2.1-1)

The left hand side is identically zero, a fact which could have been

anticipated from the fact that £ may be written as the divergence

TK AU .
A A ’
(e €, u),?\

The general "solutions' are then just four arbitrary functions. We
have a field theory with no genuine field equations in the usual sense.
Still we shall formally carry on with the Hamiltonian formalism to see

what sort of quantum theory turns out at the end.
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4.2.2 Hamiltonian Formaiism

Define the canonical momentumconjugate to Au by

¢ =P,

¢J - pJ ai F eogmn A
my,n

©

The total Hamiltonian density is

| S L N W |
"I‘ p9J 691 B¢ ‘
where UB are arbitrary apart from possible restrictions arising from
the consistency equations,
The constraints are all first class and there are no further

constraints or consistency equations involving U The canonical

B.
equations of motion for Au and PY give

= Uu which are left to be arbitrary, and

M OHpo
P = (2 e A x
,0 (2 e p,o‘O)

Again there are no genuine equations of motion as expected.
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We may go on formally to discuss physical states of the field.
Consider an infinite constant x° surface S in the four-dimensional
space, A specification of the set of values of Au and P¥ on the
surface should define a physical state of the field on that surface.
However as we move away from this initial surface, the values of A]J
become completely arbitrary. We must conclude, by an argument
mentioned before, that all the different sets of Au,Pu on another
constant x° surface SJ correspond to the same physical state on that
surface, We now have the situation that completely arbitrary Au
correspond to the same physical state on Sf By reversing the
procedure, one can say that the same situation exists on the original
surface S, Therefore we end up with a single physical state possible

for such a model field theory.

4,2,3 Quantization

This is straightforward. We assume the existence of a linear
vector space such that AU(X)DPV(X) are operators in this space with

commutation relations
o / /
LAu(f)st(SS] = 108 § (x-X) ;3 [A,(x).A (0] = 0 5 [PYe),P )] = 0,

The state vectors |¥> are those vectors which satisfy the subsidiary

conditions
o (x) I¥> = 0 (4.2.3-1)

This procedure works since the first class nature of the constraints
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as operators is preserved in our case,
"
One can solve the subsidiary conditions for j¥» in the Schrodinger

Picture using the functional representation in which P“(x) goes to

. g " "
HLHGEK;TjT and |¥Y> becomes a functional of Au(§), The operator

? : ; ; ls defi
7K:f27' operating on a functional F(Au) of Au(x) is defined by

- A 3
Now equation (4.2.3-1) becomes

(iﬁcgﬁm +2eMP9 4 Yy iy =0,
u

P T
This gives
ﬁ%!smm“ A AL a°x
{¥> = constant e J g .

This is rather a surprising result showing that there is only one
physical state, although it agrees with the previous analysis that
only a single physical state should exist in classical theory.

The total Hamiltonian is

HT = }rdsxlﬁT = de§x UB¢B , the first term inJ%T being

zero on integration with the boundary condition that Au 3 = 0 at
2

infinity. Hence

HT [¥> = 0
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which implies that |¥> is a time-independent state vector corresponding

to zero eigenvalue of the total Hamiltonian, All this is most
reasonable since we actually started with an "empty' field. The
transformation properties of the theory can be demonstrated without
much trouble, Consider an infinitesimal coordinate transformation
from x" to ¥'=w+t! As a result A, (x), Px(x) go to K}(x), '15'}\()()°

The corresponding transformation in the classical theory is given by

the generating functional

G = fd3x SAU(P“ i

m,n
where A = A (x) ~ A (x) = 8A - A eV
TR Y U TR (T
A =K (X) - A (X) =~ A ¢
y u( ) u( ) fd.?

At first sight it seems surprising that the generating functional

should contain the velocity variables A“ o which cannot be expressed
?

in terms of the canonical variables, The involvement of Au 5 is
9

unavoidable because the transformation law for A contains such

quantities explicitly, However there are in fact no real difficulties

in calculations as the §Ap are multiplied by the weakly vanishing

constraints.
We have
SAA(X) = §§KE;;-, the right hand side giving back SAx(x) as
expected
while
A 3G g OAmN




5%,

We see that

oAmn
£

(r - 2 AL Jm 0 => oY . M A YD
4

which implies that the constraint equations are preserved as they
should be.
In quantum theory, the corresponding infinitesimal unitary trans-

formation is effected by

32_]1-‘"

U=e = (1 + %G)

where G = ersx EAD(P“ - D ), the variables occurring being

m,n
operators of course.

This generator G is Hermitian in the sense defined in the previous
chapter. Let Q be a physical operator and |¥> be a physical vector.

Then

/
[¥> = U|y> = |¥>

9’=UQU*=Q+%

[G,0] ~ @

These confirm our previous anticipation that physical quantities so
defined are invariants with respect to coordinate transformations.
One may observe that this situation holds even for a Lorentz trans-
formation which is surprising since this is not true for the usual

Lorentz invariant quantum field theory. We shall give a thorough

examination on this later on.
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4.2,4 Coordinate conditions

Since the solutions of the field equations consist of four
arbitrary functions, we are free to impose four conditions on the

field variables. An example will be the requirements

po = 0 4.2,4-
7 8y =0 4240
where gpcg i &= oo EUPO\
0«12 0 O
0 0 -1 O
0 0 0 -1 R

These equations certainly limit the possible Au considerably, The
common practice is to interpret such Au as being the field viewed by
an observer in a particular type of coordinate system, In our case,
we can actually manufacture all sorts of arbitrary conditions leading
to totally different effective field equations for different observers.
A paradoxical situation appears. An observer with conditions
(4.2.4-1) . may treat the field as a vector meson field. He then
solves his effective field equations (4,2.4-1), It will appear to
hiﬁ that different physical states exist defined by the various plane
wave solutions. He may further formulate a quantum theory. All
this contradicts our previous conclusion that only one single physical
state is possible for the field, Let us examine how this particular
observer arises at his different physical states. He will specify

a set P of initial data on a constant xo surface S and the field
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variables on another such surface SJ are obtainable from the set P by
solutions of (4.2.4-1). The values on SV may not be unique. Let

P! be the totality of the different sets of values obtained from the
set P on §. With equations (4,2.4-1) it is possible for him to find
another set of initial data P on § such that the corresponding set
é'on‘sl is totally distinct from P/n He may then proclaim that the
sets P and P’ do represent different physical states because they

lead to distinct subsequent motion. However imposition of conditions
(4.2,4-1) merely reduces the completely arbitrary nature of the field
variables. The fact that all the different field variables
compatible with (4.2.4-1) still represent the same physical state
cannot be changed. Therefore all these seemingly different solutions
must correspond to the same physical state, Let us go a step further
to see how exactly this must be the case and indeed to see exactly
how the paradox arises in the first place. In a generally covariant
theory, it is usually assumed that all coordinate systems are equiv-
alent for the description of the physical system concerned and that
the equations of motion must be generally covariant. What may be

usually forgotten is that the coordinate variables x"

appearing in
the covariant equations of motion are not and cannot be meant to be
the actual coordinates of any definite coordinate frame of a part-
icular observer. Given two different solutions of the covariant
equations as functions of xu, e.g. in our present case for equations

(4.2.1-1) Au(x) = fu(x)9 A;(x) - Fu(x) where fu,Fu are arbitrary

5,
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functions, One cannot at once assert that they represent two
different states for the physical system as seen by an observer in the
coordinate system x*.  In order to relate the x" appearing in the
covariant equations to the actual coordinates of a particular observer,
it is necessary to impose non-covariant coordinate conditions on the
field variables. Furthermore the number of such conditions must be
such that they exclude all but one coordinate system, that is, there
is only one coordinate system in.which the field variables satisfy

all these coordinate conditions in addition to the equations of motion.
Only after all this has been done can we identify x" as the actual
coordinates of an observer. The observer can now proceed in the usual
way to define physical states for the system concerned. Two distinct
solutions to all those conditions and the field equations will now
mean two distinct physical states. Now the coordinate conditions
(4.2.4-1), though four in number, do not satisfy the above requirement.
These conditions only restrict coordinate systems to a special set
related by Lorentz transformations. Even at this stage it is still
not permissible to identify the xM appearing in (4.2.4-1) with the
actual coordinates of a member of the set. Consider two solutions

o B o, B
sk

k™x
to (4,2.4-1): a, e /

3 iSuB
and a’ e where au‘, ap are

constants and :]0L£3k<)°]<B

Z0.,/B A
= 0 = DaBk k™. We cannot claim that these
two represent two different physical states as viewed by an observer

attached to a coordinate frame belonging to the set. In order to do
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this, we have to impose further conditions which may take the form of
initial data on x° = 0 surface in such a way as to exclude any Lorentz
transformation. These initial data will then lead to a unique
solution to (4.2.4-1). So finally we see that for a particular
observer indeed there is only one unique set of values for the field
variables leading to only a single physical state. The different
solutions as given above are now seen to correspond to the same state
as viewed by different observers! One must therefore be extremely
careful in handling coordinate conditions and in the subsequent
interpretations. It is not sufficient just to count the number of
coordinate conditions.

A similar situation exists in quantum theory. One should not
take (4.2.4-1) as field equations to carry out quantization and
interpret the results in the usual manner. There is nothing to
prevent one from blindly quantizing the theory with arbitrary
coordinate conditions such as (4.2.4-1), but having done so one may
have to identify Physical states with subspaces rather than single
vectors in the linear vector space. The vectors in the subspaces

are related by unitary transformations as allowed by the coordinate

conditionle.




BB

4,3 General Covariance Versus Lorentz Covariance

From the discussion in the previous section, a fundamental
difference between a generally covariant theory and a Lorentz
covariant theory emerges. In the latter case the equations of
motion are Lorentz covariant. The important point now is that the

coordinates xV

appearing in the equations of motion in a Lorentz
covariant theory are meant to be the actual coordinates of an inertial
observer (measured on standard metre sticks and clocks at rest
relative to himself). As a result, two distinct solutions to the
equations of motion imply two distinct physical states. In a

Lorentz covariant theory this is not an arbitrary assumption and

the above conclusion may be tested by physical measurements made by
the observer.

It is well known that a Lorentz covariant theory may be extended
to become formally generally covariant by the introduction of more
variables such as the non-Minkowskian metric £y The best known
exampleD2 is the extension of Maxwell's theory of electromagnetic
field to a formally generally covariant theory. Let us examine the
situation step by step in detail.

(1) The original Lorentz covariant theory of electromagnetic field:
The space-time is assumed to be flat. We have a group of inertial
frames of reference which are related by Lorentz transformations and

in which the metric tensor

v =0uv ’




KO

The electromagnetic field is described by the antisymmetric electro-
magnetic field tensor an satisfying the field equations

0 uv . .
M =0,

9X

== B () + —9-8- FY%(x) + -—37 Py =0 . (4.3-1)

9X 9X oX

u

The coordinates x" are the actual coordinates of a particular inertial

observer who can then count and detexmine different physical states of
the field by means of distinct solutions to (4.3-1) in the usual way.

A Lorentz transformation form x* to £U

will lead to another set of
field equations with x" as coordinate variables. The new equations
will be identical with (4.3-1) in form. The new coordinate variables
P are to be interpreted as the actual coordinates of another inertial
observer who may count physical states in exactly the same way as the
first observer does. It is in this sense we say that all inertial
observers are physically equivalent.

(2) Extension to a "formally'" generally covariant theory:

One can establish a new set of field equations which are generally
covariant and which reduces to (4.3-1) in an inertial frame. To do

this we introduce an arbitrary coordinate variable xM

in which the
metric tensor guv %i)uv in general even though the flatness nature of
the space-time has not been changed. The electromagnetic field is

again described by an antisymmetric tensor F“v(x) which satisfies the
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generally covariant equationsD2

W -
F (x);v 0
PR Y e D (4.3-2)
aB’ ;8 ? °
where g = 'guvl’ and the semi-colon denotes covariant differentiation.

In this extended theory, we have brought in 10 new variables guv
which satisfgf» 20 equations expressing the flatness of the space-

time

RGBYG =0,

where RaBYG is the Riemann curvature tensor. Since we are given that
the original Lorentz covariant theory is the correct one, the
extension to a formally generally covariant theory leads to nothing
physically new at all. There can be no ambiguity in fixing various
physical states, as we can refer things back to an inertial observer.
It should be clear from our previous analysis thét the arbitrary

coordinate variables xM

in (4.3-2) cannot be identified with the actual
coordinates of a particular (non-inertial) observer for the purpose

of state determination. In this extended theory, a whole set of
different solutions to (4.3-2) may correspond to the same physical
state.

(3) Reduction of the extended theory to the original Lorentz Covariant

theory:

The reduction process is trivial. All we need to do is to impose the
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coordinate conditions

guv EOW :

(4) A fundamental question:
Now consider a completely new situation. Suppose we do not know the
original Lorentz covariant theory of electromagnetic field, and

suppose we are given a theory formulated in terms of arbitrary

u

coordinate variables x~ in a generally covariant manner with the field

being described by an antisymmetric tensor Fuv(x) satisfying the

field equations

S
Fu (x);\) = 0.,

aBys —— N T
where g = lguvl and the metric tensor A satisfies the flatness
conditions
RGBYé = .

Now how does one determine and count physical states?
The analysis given in the previous section tells us that there is no
unique answer to this question as it stands. One can attempt to
answer the question in one of the following two ways
(a) Although we are not given any preferred coordinate systems,
we may still make the assumption that there are preferred

reference frames defined by certain coordinate conditions,




(b)
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say,

S

Furthermore one assumes that we can identify the coordinate

variables x"

in the field equations after the imposition of
the coordinate conditions with the actual coordinates of a
particular observer who can then count physical states in
the usual way. It is in this sense these coordinate frames
are termed ''preferred". It is not because that the field
equations become simpler using them. An important obser-
vation must be emphatically pointed out here, that is, the
above are new physical assumptions not contained in the
original theory. These assumptions imply that the theory
given is only formally generally covariant uid. is extended
from a Lorentz covariant theory.

One considers the given theory as a 'genuinely' generally
covariant theory despite the fact that field equations
become simpler in a certain set of coordinate frames.

There are therefore no preferred set of frames in which one
can count physical states in the usual way. One has to
impose sufficient numbers of coordinate conditions (e.g.
more than guv =:)UV) to single out a unique coordinate

frame and only in such a unique frame can we start to

distinguish physical states in the conventional way.
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Note that one is again making new physical assumptions here.

We see clearly now that additional physical assumptions are necessary
in order to answer the fundamental question raised. There is nothing
in the given theory which tells us definitely which is the correct
answer, The final test must lie in the actual physical experiments
for the determination of states. By comparing experimental results
with the predictions of (a) and (b) respectively we can find out which
of them is the correct one.

More examples may be given. An extreme one would be to consider
the relationship between our Model Field I and a Lorentz invariant
vector meson field theory in which the field variables Bu satisfy

the equations
P9 B = 0 for each y .
W,00

The above arguments may be repeated step by step. The final
conclusions will of course be the sanme, In quantum theory- aisimMilar
situation exists. In a "genuinely'" generally covariant theory,
physical states are described only by physical vectors which are
invariant with respect to arbitrary transformations of the coordinate

variables x"

» in particular Lorentz transformations. Vectors which
are not Lorentz invariant cannot be used to describe states. It is
therefore clear that two such vectors related by a Lorentz trans-

formation cannot be regarded as representing two physical states.

All this is fundamentally different from a Lorentz covariant quantum
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theory (or a '"formally' generally covariant quantum theory). Another
striking feature of a '"'genuinely" generaﬂycovariant quantum theory is
that the physical system concerned seems to be .''dead" in that the
state vectors in Schrgdinger picture are ''time''-independent.  We
shall go into this problem in greater detail later in Chapter 9. For
the moment it suffices to say that all this does not really mean any-
thing just as in the classical theory a vanishing Hamiltonian does

not imply zero energy of the system concerned.

4.4 Harmonic Coordinates in General Relativity

This is a subject of great arguments among people.like FockD3

and J.L. AndersonD4. To begin with we recall that FockDS has

suggested that the harmonic coordinate conditions

{feg ) i 0

together with certain conditions at infinity lead to a preferred set
of coordinate systems. In particular heDs has shown, though in a
not very mathematically rigorous way, that in the case of an isolated
system of masses the harmonic conditions together with suitable
supplementary conditions determine the coordinate system uniquely

apart from Lorentz transformations. We shall not.go into the phil-

osophical argument as to what is meant by preferred coordinate systems.

Instead we set ourselves the following definite question. Is it
possible to tell by physical means whether the theory of General

Relativity is ''genuinely" generally covariant or whether it is just

P>
o TR
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"formally' generally covariant amcl. is extended from a theory
covariant to a more restricted set of coordinate transformations
such as the set of harmonic coordinates?  According to our previous
analysis, the answer should be affirmative. In case of harmonic
coordinates we can do one of the two things. We can identify the
coordinate variables with the actual coordinates of an "harmonic"
observer for the purposes of determining physical states as Fock
apparently did. The results can then be put to physical test.

An experimental confirmation on one way or the other will answer
our question which may not be conclusively solved by theoretical

argument alone.

4,5 Some Remarks

As mentioned in section 4.1, we may modify our present Model
Field I by introducing more variables. One choice is to consider

the model theory derived from the Lagrangian density

o CTKAM _ _
: ¥ & FTK(Au,A Ak,u ¥ FAH) ’

where FTK is an anti-symmetric tensor. The Euler-Lagrange equations

of motion are

The general solutions are
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where fr(x) are four arbitrary functions of %,

In the Hamiltonian theory, there are 10 primary constraints plus
secondary consistency equations. There are second class constraints
appearing, so Dirac's treatment has to be carried out in full including
the use of Dirac Brackets. The calculations are somewhat long-

winded and will not be reproduced here. However the results are
essentially the same. There is again only a single physical state.

An alternative approach to the Dirac's one would be to eliminate those
redundant variables FTK at the early stage in the Lagrange formulation.

The results are of course the same.

s
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CHAPTER 5

MODEL FIELD IT

TREATMENT 1

5.1 Introduction

In this chapter, we study a generally covariant and intrinsically
non-linear model field theory.
Consider a 5-dimensional Pseudo-Euclidean space with coordinates

gA and metric

1.0 0 0 0
0-1 0 0 0
UAB-:OO-iOO
0 0 0-1 0
0 0 0 0-1

the indices A,B taking the values 0 to 4. Any 4-dimensional surface
may be fixed by specifying the 5 coordinates~€A as functions of 4 é
parameters x".  In general the 4-surface is a 4-dimensional
Riemannian space with a metric
A B
» 98 & _ A. .B
2,50 =g T = ap g

9 ax’ N

Let £ denotesa column vector with components EA and

E:denotesa row vector with components EA =E]AB €B~

Then we may write
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B ™ §3T £3K .

The Christoffel symbols of the first kind and second kind may be

shown to be
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where E? = gMl é'u'

Note that £ is a scalar with respect to arbitrary coordinate trans~

formations in the 4-surface.

Covariant derivatives are defined in the usual way.

§JT = §_T, since £ is a scalar.
3 3
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éﬁTK §3TK gyl FTK
—A
= E,TK = éyk 3 §3TK
S 2t

The curvature tensors may be shown to be

erxu gﬁAT égun h égkk §1UT ;
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5.2 Definition of @ 4-surface of Stationary 4-volume.

Consider these 4-surfaces whose metric satisfies the following

conditions. The metric g0 is nonsingular, i.e. g = 1guv1 ¥ 0.
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Therefore the sign of g is the same throughout the surface and it is

an invariant. The contravariant metric tensor go‘B exists such that
uB o ol
g gB\) - 6\}

We consider only surfaces with g < 0 so that the Pseudo-Euclidean
flat surfaces are included as special cases.

The volume of a domain x"€ D of the 4-surface is

which is an invariant.

A 4-surface of stationary volume is defined to be a surface whose
volume V is at a stationary value with respect to small arbitrary
deformation of the surface. The deformation is realized mathe-
matically by variation of the coordinates EA, The variation 6£A is
to be taken as zero at the boundary of the domain D. For a.

variation GEA,
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Hence (/g g'~° "Ap E?T) . =0, if 8V = 0 for arbitrary sel,
3

So a 4-surface of stationary volume is defined by equations

(V/-g gTK EAT) o P 0, which are equivalent to
3 )

E. = 0. (Divd=l)

The above equations are not all independent and certain identities,

the Bianchi identities, exist among them. Rewriting (5.2-1) as

BXe TK _
(1 = E,AE ) g E,TK = 0’

we see that the Bianchi identities are

(Gg - gt g

gA:p ' M

A 5 being the four linearly independent null eigenvectors of
?

(1 - £ AEXJ. Let nA be the unit vector normal to EA 5 that is,
AT []

A_ s A A AB C .0 B _F
A=A/ IR, nT e T epopgp Bl 1 £2 Ba

where € BCDER is the 5-dimensional permutation symbol. Then the five

field equations (5.2~1) are equivalent to the single equation

5.3 A special set of coordinate conditions

A natural set of coordinate conditions would be
(I, | W oM
£ X > 5’\, SN

that is, we just choose the first four of the original 5-dimensional

pseudo-Buclidean coordinates as our coordinates in the four-surface,
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In this special coordinate system, we have

A . e s
guv = nuv 2 E,U E,v’ where £ denotes & with A = 4;
gV = ™o (M n\)6 £ 46 Y@ -a"%e & )
’ ) 3P s0
= d = - 1 = pa .
g etlgwl ( n F,,p E,o)

The field equation is

guv € o~ 0, which may be written as
P nuvg\)
d 64}— _— 1 = D (5.3-1)
axt \ A - P E &

sP 50

Qur variational principle becomes

. po 4
ijl—n E b, Ema.

These coordinate conditions will be discussed in greater detail in

the next chapter. Meanwhile we shall return to formulate the
general Hamiltonian theory for the field EA. Although we shall not
restrict ourselves to special coordinate systems, we shall only use
coordinate systems in which x° = constant is always a space-like

surface. We may now assume that the 4-surface extends to infinity

by letting the coordinates x"

to take all values from -« to +=,
The total Lagrangian will then diverge. This does not matter as

the divergence may be eliminated by subtracting 1 from the integrand.
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5.4 The Classical Hamiltonian Formulsation

In a physical theory we want the Lagrangian density to have the
dimensiont of energy density and that the Hamiltonian should be

positive. Therefore we adopt the Lagrangian density

£="Q‘/:g:

) - | - ' ener y :
where Q is a positive number of dimension [vaiaﬁgd and the minus sign

will lead to a positive Hamiltonian as will be seen in next chapter.

Define canonical momentww: conjugate to gA by

_of _ B oB
A _QAB£ g,s g °
9g

0

Define ' by

Using the general theory one can obtain the primary constraints which

may be easily seen to be

~ 0
¢u s
g _ A 2, 00 00 _ 00 _
With g = Tw, ¥ QA , Wwhere A" =g g = 11 812 83
A 21 %22 23|
b5 % &5 A 831 832 833
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. : x A .
£ is a homogeneous function in £ 5 of degree one, so
>
B o 0.

The total Hamiltonian density is therefore

i,

Equation of motion for any functional F of EA,nA is

= Uu¢u » Where ! are arbitrary functions of x*, j

?——G-F= [F,jdstu¢]=fd3x ut [P} -
9X H 8

In particular

A A j A
g’o = U9 + UJgj H
. 00
_ i 0 & dA
T, ™ 0 20T oy s
&1

From the constraint equations we can also show that

~ , 00
o aAA ~0 (5.4-1)
9
3
A A N
£y Ty 5= By Ty g ™00 (5.4-2)

Another useful expression is

20 00 .J
'y = 2A Gi = (5.4-3)

5,

A 24
I g

£

With the help of these, we can show that ¢u ~ 0 are all first class

and there are no further consistency equations necessary.
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5.5 Quantization

We are in a position to attempt the scheme of Quantization I.
We assume the existence of a linear vector space for the description
of the field. The EA,wA are operators in this space sat&fﬁzgthe

usual equal-time commutation relations
7 .
[EA(§), ﬂB(g)] = iﬁcég 6(§-g5

The physical state vectors |{y> are those which satisfy the subsidiary

conditions

¢u(x)lw> = 0 .

The first thing is to check the consistency of these conditions on

the same constant xo surface, that is, to see if
/
[¢u(§), $, (] ~ 0,

as operators acting on physical vectors. The somewhat lengthy
calculations are given in the Appendix 5.1 at the end of this chapter.
The results show that these consistency conditions are indeed
satisfied. Therefore we may conclude that the scheme of
Quantization I may be consistently carried out.

Let us examine the subsidiary conditions

A

%,i"a

l¥> = 0 ; | (5.5-1)

(wAnA + A% =0, (5.5-2)
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in greater detail. From the general theory given in Chapter 2, we
may expect the constraints to be the generators for infinitesimal
canonical transformations which correspond to arbitrary deformations
of the constant x° surface. Three of them should be the generators
for tangential surface deformation while the remaining one should be
the generator for deformation normal to the surface. Suppose

¢j = E?jﬂA are the three generators for tangential surface deformation.
Then the subsidiary conditions (5.5-1) express that |¥> must be

invariant under arbitrary tangential surface deformation. This is

equivalent to the requirement that |¥> be invariant under 3-dimensional

< o

s IO

coordinate transformations x = function (x',x*,x*). We now show

explicitly that this is indeed the case. Consider an infinitesimal

coordinate transformation

2 o » I

X’J i XJ & EJ (?S) s XO = Xo.,
Then

/ i ¢

e = feo = (- S 2 )ehod,

' 9’

and

- A4 A 7 A2 3 BEA(f)

SE(x) =& (X) - & (x) =~c¢ (x)—-—;,-j:——,

9X
; A, .
The change in [Y(& )> is
¢ - /
s1eE™> = 1w - 1vehy> =Jd3x’ 3R 0 jA( ; ¥ (g™
£ (X

- O\{dax'ej(g) €A~(X5 3 |W(EA)>
377 ¥ eh

-:O,
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using (5.5-1) and the functional representation

¥

w, > -THe —— ,

A XE,A
In the next section, we shall discuss these transformation properties
in a systematic way, Now that we know the significance of conditions
(5.5~1), we can solve (5.5-1) for |¥> without too much trouble.

The solutions will be invariants in 3-dimensional tensor analysis.

An example is

" ) D, ABC
e @(jd % By (0 )

where ¢ are arbitrary functions of gD and
ABC

A A A
£ £ g€
ABC % R B,
J B B B which are scalar density fields
£ € €
gl T .3
(& C .C
Epl &92 éss

of weight +1, and & is an arbitrary function of the integral.

It may be readily verified that this |¥» satisfies (5.5-1),

More

complicated solutions may be constructed out of invariant 3n dimen-

sional integrals involving the fields &£

points X o ¥geoo o

& A,

. ¢ E sese Gt N different
(x)" "(x5)

The last subsidiary condition (5.5-2) however

presents difficulties.

As will be explicitly shown in the next

section, it essentially expresses the requirement that |¥> be

invariant under arbitrary normal surface deformation.

One needs to
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compare the values of |¥» at different constant xo surfaces, so to
obtain the solutions of (5.5-2) is at least as difficult as solving
the equations of motion.E1 Note that it is not just four simul-
taneous functional equations, but a 4-fold infinity of equations,
To get a better qualitative idea of the constraint equations we
consider the much simpler case of a 2-surface of stationary volume
embedded in a 3-dimensional Pseudo~Euclidean space. Everything is
formally the same as before except we now have only one spatial
dimension X and three field variables ga, a=0,1,2, There are

only two constraints

¢ = Esxﬂa 0

_ .a a b
g ® P # Q2'Ja.b & xg,xﬁo'

9

Written out in full in quantum theory they become

0 ¥ Lt ¥ L2 Xy (5.5-3)

(B0 whw el Bl
e TR Y TR g
g - S 3 0 2 %2 . 1 .2 }52
{[@&)* g;"g;‘* Q (pr) ]-[~€ic)? g_;";;‘* Q (g,x) ]-[hc)? Yo +
@) 1) 1w =0, (5.5-4)

Solutions of (5.5-3) may be readily found. Some examples are

L iQ 0.1 S iQ ,0.1,2 )
|¥>4, = exPJ-ﬁ'é‘ 76 x5 [¥>g,p = exp J g EE7E dx

or more generally
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e .0 1 2, .a
v = o f o, (e%6%, e% a0,

Now let

a a ‘ 5
¢>( F o x"a? (no summation over aj
9

) A S YOS -3*5-«+ ¢ (6% 1.
¥e?

(no summation over a)

It is obvious that‘ﬁaicﬂ?)are formally the same as the linear

momentum and Hamiltonian densities of a massless Klein-Gordon field

Hence the solution of (5.5-3), (5.5-4) is equivalent to the following
problem:

Given 3 independent and real scalar meson field g(o),g(1)95(2)

find the set of simultaneous null eigenvectors of

(x) _ 4(0) (1) (2) (x) o) _ (1) (2)
¢0x N 'P(x) of;(x) ‘P and ¢ X J{ Jg

(x) x) - (X) x) °
Let us denote the integrated momenta and energies,[#(a)(x)dxs
k{}ﬁ(a)(x)dx by P(a)s u(2) respectively. We have
o) 1¥> = 0 @ 4 p@ b @y = o
: : . (5.5-5)
d)i (x)|¢> =0 [H(O) - H(i) - H(Z)]lq"" & 0

=> the necessary (yet not sufficient) conditions for |¥> to satisfy

the constraint equations are that the states must have zero total

linear momentum and that the total energy of the field g(o) is equal

to the sum of the total energy of 6(1) and 5(2).
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Solutions of (5.5-5) are easily found in the usual Fock space
representation of quantum field theory. Only a subset of these
solutions could satisfy (5.5-3), (5.5-4), This subset may be found
in the following way, Firstly we can express'Fia)(x)SJKFa)(x) in
terms of creatvion and annihilation operatovs in the Fock space
representation. We know that the set of known eigenvectors of

H(O), HU')9 H(ZJ forms a complete set, Hence we can express [¢> as

a linear combination of vectors in this complete set. Now substitute

the expression into (5.5-3), (5.5-4) and equate the appropriate

coefficients of the resulting expressions to zero. A set of recursion

relations may be found which serve to determine |¥>., The actual

calculation involved is rather messy and will not be presented here.
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5.6 Transformation Properties

We now demonstrate explicitly the infinitesimal unitary trans-
formation which corresponds to an infinitesimal coordinate trans-
formation., Firstly one wants to find the corresponding classical

canonical transformation. The field EA are scalars and on a

A 5

coordinate transformation EEA 2 - E e™ where ¢" are the descriptors

3
of the coordinate transformation gAp is a covariant vector. We may
2
A . ;
decompose both £ > and e¢" into normal and tangential components to
>
the constant x° surface on which the field is defined before the

transformation. Any contravariant vector defined at a point on S

and tangent to S is proportional to
th = (0, ax’) .

This implies that the unit normal is

ou . .
A e B % B om g B a fene, 0,0,0), hetice i £ = U
/gOO v VU /goo u

also nunu T

u

A set of three linearly independent contravariant tangents is tﬂr

M ; L s 4H
where Eyl = (0,1,0,0); t”2 = (0,0,1,0);: tN3 = (0,0,0,1). Any

vector T" may be written as

(U] M r _u
T =& F. % 18 ¢ .
L hix

We see that
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U - 1 o .
T_‘.—T nu"/gooT,
iy r 1 0 or
Tu“T‘ga‘sTg °

The decomposition of a covariant vector may be effected through its

contravariant form,
Consider the scalar product of two vectors T“, Pu

™ p a

"
T
p &y TF

- H \Y r .S
TP g, e Gys T P

P8 o W )
11" By Tﬁ RU * " ﬁgr 7

S _ .S 1 ,0 o0s _ ., su 1 ou _os _ . sk 1 ol os e
=P -t e g e g )R =@ -mpE B I
g g g
_ sl 1 ol os . b N
Ers (&8 - 500 £ 8 )P£ =0, Pp =Py .
Hence
™p 5T P sT P,
i & L o B
so we have
wA A T A
B T ESy P et
o A
with £, = /Eoo 2 glA = E,o . S 1 . gor
oo ’ 7} 00
# /g ' g
Therefore
o A T
08 = - (e.LEJ, + e"g,r) .
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We now assert that the classical infinitesimal canonjical transformation
which corresponds to the above coordinate transformation is generated

by the generating functional

Py 3 B
9 =T ‘/d x(e ¢, +e, ¢,

i AB 2, 00
where b = ——m—— mr o+ QA ) =0 ;
L 2$/-Q2Aoo GA&
A
¢r"£’rﬂA~0J

are essentially the primary first class constraints.

To justify this statement, we compute

[aA,gil .
A»F ."f3 A A A x r A
(e, Y] = J d'x {[E7, € 18, * e L8 9] + [€7, g lo, + 16, o]
Lo T ‘

b

Lo

i

3 A
S & e 1, o0 + F1h, o0

A r A
= ey B e, £
IR e
€ E:U
= e,
This shows Qis indeed the required generating functional. This
also shows the physical meaning of the constraints. ¢0 is

essentially the generator for deformation of the constant x° surface

in the normal direction while q)j are the generators for tangential
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surface deformation. It should be noted that the variations of
field variables on a tangential surface deformation have no dynamic
significance in that they are determined by the appropriate
geometric transformation laws. It is the variations due to normal
surface deformation which has to be determined by the Hamiltonian
through the equations of motion. We have

A
g

2

_ A R 3 ;

0"' {E ,HT] N [g ,fdx‘}err] ’
gt e = g, J & 12 I

>

Hence the canonical transformation may be written as

— A -
st = 10,

where
'gk = - frdzx(eojﬁT v g ¢j) s

In quantum theory the corresponding infinitesimal unitary trans-

formation is effected by

i :
1,
U = e‘ﬁj- (1 = i—g) 5
'f’_ 3 _..0 j . o
where éLm - S d7x(e JfT + € ¢j) is Hermitian.

So a covariant quantum theory for our Model Field II is established.
The general features of generally covariant quantum theory again
manifest themselves explicitly° We see that physical vectors.are
invariants and that they are xo—independent° In the next chapter we

are going to study this Model Field Il in greater detail using
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5.7 Appendix 5.1 Consistency in Quantum Theory.

First of all we need to prove some auxiliary formulae

A X A ;
| g, 0 <> ¢ s B . AS5.1-1

This is obvious as g?(g) comnutes with wA(§)a

(2) g"()h (x) ~
P
==> J(x,¥) = {—= 6(x-y))g (x)h W - = s(x-y))e (Y)h (x) ~
T (;x ') (;y )
(Nofe: xowyo) (A5.1-2)

P&oof: integrate J(g,z) with respect to d3x for an arbitrary region

enclosing vy.

Pﬁ( J

i

- [( o) o) + &) (;h )]

d (¢}
- (g (YR _(y)) '~
9y o

Similarly
f dSy J& .,

Hence J ~ 0 on account of the arbitrary nature of the region of
integration. Also we have
- d 3
Ty = (S sy et on, ) - (5 6(§-z))ga(x)ha(b_<) ~
X

2y’
(A5.1-3)
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(816

30°° A
. A 7~ 0, (A5.1-4)
(3) gm, 20 => BgAj

This is the same as our previous expression (A5.1-1)

00
1rA BAA ~ 0 ,
0E .
g,J

Its validity is ensured by (1).
We now consider the consistency conditions with the help of these

auxiliary expressions.

Firstly
Lo K _“B y ‘B J X
[4; (x3,0,00] = €15 5™ = &,5785 1"
/ /
where EB.,= —%T-gB(§)
s) %7
i / A/ /0 £A
= —cﬂ‘i(ﬁ()_c-)_()’j/ E’iTrA - 6()_5—)_()’15,j/ 'HA)
~0 .
Secondly
Vo A Z, 00, (B
[¢0(§)’¢j()—()] = [(TI'A'IT + Q A )’ g,j/'ﬁB]
=0+@ ,
where

‘B /

A 7
@)= [mym, E,j’“B] ¥

A /
[TTATT » g,j/]'ﬂ'B

1t

AB / / L rA 2
—Ziﬁti} Ty Ty 6(§—§),j/ = -2ihe My 7 6(3-5)’5v
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2.0 /B 2 /B /
@2 Q [A 03 3 jl""/B] o Q 3 =/[AOOJ ‘]rB]

2]
[Aoo, ug] may be evaluated using the representation gA = gA 3
m, = = iﬁc-—-én- .
A
e
00
(8%, w1 = wein (o).
#E°
00
. ¥ 1
(54 ) = % jrdsx’ Aoo(f) §(x-X) = - 1. A° (x) 6(x—x3 .
L T e BE>. j i
,'Q' ’2‘
/00 ‘00
= - aeB 8§ (x-x) - aeB §(x-x) ¢
3 o ag-, =~ o*
27,8 s
Hence
/00 /0
e 2 EtB QA / /B 5A"° /
@ = - ifiQ {e: oSG g+ EfE)  S)
,J ag / ? 3 ag
s ,2
/B n0° ‘o0 _j’ :
§ sf—m * 24 62, by (A5.1-1)
9J ag I}
5
4
g fHr°° 28 5A7° /B 5499 ‘00 oo _ /oo
gJ ,B {g j/ / _gj‘fz’_;.g— EZA j‘l HAj/ = j/
s 3 q ’ 3 3 s
ag,zf ’zl BE,,Q,, ,,Q,/ ag’g’,
/ /
@= - i1Q"(22° s(x-%) y/ + A % 8k %))
/ LA /
[¢0(>_<),¢j(>_c)] = - 2ifi[m, 7 4 Q2A°°]6(3_<-)_<) g = 11”1Q2 °°/ 8 (x- X)
= - 2ih ~—-[(ﬂ + Q2A°°)6(x x)] + 2iA § (x- X)(ﬁ ﬁAJ/ + Q2A°§ )
Bx
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/ /
5 iﬁqza°§/ § (x-X)

' 7 /
- 230 <2 (4 (X)6(x-%X)) + iR §(x-X) (2 ma, + G2r°9)
gl TR - - A", s)

It

o B / ; %
- 2ih ;ZE'(6(§-§)¢°(§)) ® S

~ 0, using S=(8(x-y)£(x)) = =6 (x-Y)£(Y)) .

Lastly
. o A 2 00 /B 2 oo
[6,(X) 56, ()] = [mm + Q"A™", mpm + Q°A7"]
/ ’ /i
= [ “A s Qzﬂoo] + [QZAOO y T nB]
A B
/00 00
" AUEE /
(2%, w1 = c%?éﬁ- 6(§—§j)=~ckc L 80 4.
Bi,l/ o 35’2
[« i ~24!B 3A°° / 34°° /B /
[45(X) 10, (X)]=ieQ (f = 8(x-x) o+ —p— m 5(5-5),2)
3 2,
27 A 54°° ! 2% A ’
AeQ (" g S0 4 S w800 2’}
3& 2 13 ’
22 2R

= 0, by (A5.1-1), (A5.1-2), (A5.1-3), (A5.1-4).

So we have shown that the consistency equations are all satisfied

in quantum theory.
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CHAPTER 6

MODEL FIELD THEORY II

TREATMENT II

6.1 Introduction

We continue to study the field introduced in the preceding
Chapter. This time,; we shall examine it from the point of view of
a specific coordinate frame. The fundamental reason for working in
a specific coordinate frame is a subject of great controversy. We
shall not go into such a controversial subject here. The choice of
a specific coordinate frame is somewhat arbitrary in general.
However some justification will be given to our particular choice.

The conventional perturbation theory is applied to our field in the

weak field approximation case. As may be expected, divergent results

are obtained.

H
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6.2 A Special Set of Coordinate Conditions and its Justification

6.2.1 A Special set of Coordinate Conditions

Consider the special coordinate conditions mentioned in the

preceding chapter, that is, £ = x". The variational principle

becomes

aj£d4x =0, with& = /1-n"% ¢ .
sPp »0

The corresponding Lagrange equation is given by equation (5.3-1) in
section 5.3 of the preceding chapter., A Hamiltonian formulation is
easily set up. To obtain a positive Hamiltonian density of the right

dimensions, we shall take for the Lagrangian density

e 22
£=- /™ £ = Qh-Gr - 07

where Q = a positive number of the dimensions of energy density,
2 )
x® = ct and €='a"%’
¢ = speed of light.

Define the canonical momentum

*

oL Q. :

2 =3
% 6 ﬂ-%wva)’
C

1]

i
V
e

i}

o
Lty ,n?.

2 = 2
%~TJ/E~L¥§l- => no constraint.
Q

The Hamiltonian density
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3 2
et -£ - Q/(fl-* (V&.'.)’)(i**gw’)
The equation of motion of any functional F of &,n is given by
z[ﬂjfx%]

In particular

USRS A5 R

¢t 1+ (VE)?
Q 2 !
1+£;ﬂ2

e
it
™~
Y
ey
Qs
P
=
e

Q
= [H,foée] = -Q V.| V¢ 1"”9“‘
o 1+(vE)E .

One may have noticed that both the total Lagrangian and the total
Hamiltonian are divergent integrals because of the additive 1 inside
the square roots. However this causes no trouble as the divergence
may be eliminated by subtracting 1 from the integrand.

The corresponding Lagrange equation is

uv
5 (N E’v

W
axX 4 PO
¥ 1-n EDEO

I
o

(6.2,1-1)

A general solution to this highly nonlinear equation is not available.
However some exact particular solutions may be found. The most

interesting ones in this latter class are those of the form

i xM ik xM

E=0(x)= Ae " +Are M,
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where A,Ku are constants and the Ku satisfy

The metric tensors guv’ guv and the Christoffel Symbols [aB,7A], Fz

B
will then be

- . 2

gpv nuv Ku 5 ¢K ?
v v v

gLl = nu * K'u K ¢2l< )

-g = det 8 © 1.,
= - X 53
[GB!)\] gKa KB K)\ q)K ]
B o HA o _ B3
T ® 8 [eB,A] = - % Kg Kg & 4,
ic xM -ik xM 5
where P = i(A e L - A*e L ) and M o= pHY

o

One may now easily verify that the "straight" line defined by

x* = «Mu , where u is some parameter,
is a null geodesic in the above space-time. The solution & = ¢K(x)
has the form of a wave propagating along this geodesic.

Slightly more general solutions may be obtained by superimposing

all these waves travelling in the same direction, that is,

g = j du B(U) (pUK(X) s

where B(u) = constants,

iux,x“ ~iumuxp
and“fpuK = AK(u)e L A;(u)e g
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is again an exact solution. However, superposition of waves
travelling in exactly the opposite direction does not lead to another
solution, nor does superposition of waves moving in different
directions. The nonlinear interference effect starts to set in for
these waves not propagating in the same direction, i.e., these with
Syt

One observes that

£ = f(x xp) , Wwhere n°° « =0 and £ is an arbitrar function,
M p o Y

is again an exact solution. One may construct '"localized" solutions.
Some examples of these are
5 “le 2
£ = cos pr e 5

P P

£ « COS pr sech pr 5

Other types of solutions which do not lead to constant Y-g may also

be found. Some simple ones are
£ = cos(x®+ x*) + £n cosx* - £n cosX ,
or more generally
£= FxX°+ x') + G(x*, X)),

where F(x’+ x') is an arbitrary function and G(x*, x*) is any solution

| of an—wjﬂi——a = 0 in two dimensions. The equation for G is the
/1+(VG)?
} same as the equation of minimal surfaces whose general solution is

i known.Fj
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of the Coordinate Conditions

- are not chosen completely

' Arnowith—Dese'r-MisnerF3 (ADM for

» case of General Relativity will

1 from a variational principle

i’A):O)

s M

n with boundary surface S*. Our
onstant is always a space-like
ty. Let the domain D be bounded

ne a total variation by allowing

- surfaces S , S ,
1 2

lary surfaces (5¢A = £A(X) - ¢A(X))»

S¢A inside D.

Lt L E -



il

Under such a total variation,

61 = Jd“x(aﬁA o 58 MA) 5o+ G(s ) - 68,
36 ax” 29 2 !

D 0!

where

G(S ) = Yd’x(é% s¢™ - T ox"y ;
4 o a(b Y
,0
6¢A = 3¢A + ¢Au8x“
/A A

= ¢ (x) - ¢ (x),

8 A 3 A
TON ;;K¢:O_£) 2 Tng;K(p:J

» O 20

The postulateF2 that 6I be equal to the difference of the two surface
integrals leads to the usual Euletr-Lagrange equations for the field

variables. In the Hamiltonian formulation, the surface integral may
be regarded as a generator of infinitesimal canonical transformations.

Now we may write
L
G = Yd3x(wA6¢A - Tuéx“) 4 where w, = g——-,
Consider the case of a pure translation of coordinates,

i A
o, %o at e gt e" = constants.
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One can see in this case that G serves as the generator for canonical
transformations corresponding to a pure translation of coordinates. ;

The property of G which concerns us here is that it has a fixed form.

o AR 1 1t

This may be utilized to identify the canonical conjugate variables.

Now consider a scalar field theory formulated in a particular A

coordinate frame x". In this frame the generator {$

. 3 s H
G m‘fd x(mé¢ Tpax ) and Tu X 0.

To build up a theory for the field in an arbitrary coordinate frame,

B o 1 VPR TR YO SRS S TS R S L

we can use Dirac's curved surface formulation. In such formulation,

x" are treated as additional field variables while introducing a new
set of variables v" to specify points in space-time. Thus four more ?
field variables plus their conjugate momenta appear. Let all the 3

field variables including the original ¢ and their momenta be

labelled respectively as ¢A, A= 0,1,2,3,4 with ¢4 ﬁtF“ We

m
AJ

again obtain the generator G in such formulism to be

I L o K w LAl
G-«Sd V[vnASq: Tu(SV' 3
with T o= @ w0
u > A T 3
A B¢A
where b = and the barred quantities are those as

oV

given by Dirac's formulism described in section 2.4.2 in chapter 2.

We showed then that [~ 0 due to the constraint equations.

We now want to show %A¢Ar ~ 0 as well. From equations (2.4.2.2-2)
3

we obtain
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ol “ % j
T X = - 7 ¢ X
B, 4 ST 7

u

simply by multiplying (2.4.2.2-2) by xur, Note that X" is equivalent

to y“ used in chapter 2 and that

n xp = 0
T,
Now we have
- LU =) -
ﬂux’r 44):11 » T 0 4
which imply
- A

Hence
G =Sd3v 'r-rAdq)A :

Now consider the problem the other way around, that is, given this
theory formulated on a general space-like surface, how we can get
back to the theory in the original special coordinate frame. The

answer is obvious. We can simply impose the coordinate conditions

It may be readily seen that indeed the original theory is obtained

and in particular the generator gets back to

G = fdf‘x(msqa . Tu6x“) .
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Returning to our ¢-field now, we regard our Hamiltonian formulation
before imposing coordination conditions as being essentially a
theory on the curved surface in the Dirac's sense. Our task is to
obtain the theory in the special coordinate frame (more than one
frame in general) from which we may in turn get back the curved
surféce theory. This is an idea due to ADMF3 although details of
their treatment as applied to General Relativity are quite different
from our present ones. Thus we see that this provides a mean of
establishing a special coordinate frame. We will demonstrate this
explicitly for our ¢-field.

For our &-field
(oL = oA . g e
G ~‘Yd X nAGE , Since Tp = (ﬁ;wA&,j) & o

So it is in the right form, and the coordinate conditions to impose

are ‘then




~G B

", .+ w, =0, where m = n ;
> J 4
- 3 o3 5 00 s 00
(no)2 = X (w))* ¢ 0 - QA = rt(1e(VE)E) - QAT .
=1’
Since A% = {811 B2 843] = -(1+(ve)*) ,
821 & 833
831 832 B33
we obtain
T s
(n) = -Q/?1+(V£)2)(1+27) , taking negative root.
) Q
Therefore
%A SgA w s sx" + msE
where

say o . 2 m :
Tp 5= ﬂu = (Q‘/(l""[Vg] )(1+62) ’ “gj)

The generator becomes
G m.Yd?x(nGg - By sx")

which is exactly the one obtained in the special frame we have
chosen. Hence this procedure offers some justification for our

choice.

6.2.2.2 Justification II

In order to be able to study the physical states in the usual

way, it is necessary to impose sufficient coordinate conditions as to
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single out a unique coordinate system. Our present conditions

= x" satisfy this requirement. Furthermore we note that t" are

ru
g
four scalars as far as arbitrary coordinate transformations in the
4-surface are concerned. Therefore the coordinate conditions are of

the Bergmann-Kemar type. Consequently a theory using these

coordinate conditions will be covariant.
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6.3, Weak Field Approximation

Due to the highly nonlinear nature of the field equation,
approximation methods appear to be inevitable. Different approxi-
mation treatments are employed to study the field. In this
chapter we examine an everywhere-weak field approach. We assume :
that the field is everywhere-weak, that is, g,j and gm are of the
order of A% <« 1 for all x". Note that these are dimensionless
quantities. The exact numerical value of A is a physical assumption.
Having made this definite assumption, we may carry out a binomial

expansion of the Hamiltonian density regarding

1 to be of the order of Ao,

VE, E%- to be of the order of A%,
5 2
(ve)?, (vg) E%-, (E%? to be of the order of A and so on.

Therefore we have

R

i

@A+ @WE)? VA ok

it

QL + %(V6)" - §V&)* + Tz(VE) + ...1[1 + B(5P? - F(SP*

Q

1. Clys

zg{“a' 5]
=0+ )XI , (6.3-1)

where MLO = Q + %{(VE)2 i (2%92] s
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I ¢ P e cn. CTiy 2 Q LT _
Roo-Joer » ' - 2000 P + e+ (P

(VE)? (%’-)“ - (V&) (-‘fg—)-" ]

To the second order, we may take

J&O = %[(Vg)2 ¢ (S%-z], ignoring the additive constant Q,

e =¥ . (& _ Chy2
Hy=-5l00" + - 2007 1.

In the usual perturbation approach, }to is regarded as representing
the free field while HLI is considered as a small perturbation on the
otherwise free field. The.free field derived is seen to resemble
the Klein-Gordon field for scalar mesons except that there is no

mass term in our present case. We may call it the massless real

scalar meson field. The free field equation is

%
P =0, i = ZE.ve=o.
] CZ atz

The perturbed equations of motion are

&

g = ST+ H[(VE) - (SRD), (6.3-2)
Q Q
r e Qv e FUElED - '], (6.3-3)
Equation (6.3-2) also serves to define = in terms of & o One can

solve for m to obtain

- 5 PO
™ c{z g(l % 26) g,pg,o)’
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keeping terms tc the seccond oxrder only,

The perturbed field equation 1s

W8 LB P9 £+ PPy (V9 1 =0, (6.3-4)
9 »0B » 0B 5P 40 50 207 sCH LB ;

which may be worked out from the corresponding Lagrangian density

L

B

ne - ¥,
—Q+%Q§°f;

H

3P »0O

1 g 2
05,0 T ROGE 8
Many exact solutions to the field equation (6.3-4) mdy be found.
Of particular interest is the set of exact solutions
ik x"
¢K(x) = constant.* e " »

where the constants 1(1J satisfy ifc Kch = 0, Solutions which

resemble interference effect between these plane wave solutions may

be obtained by perturbation.
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6.4, Quantization

The quantizartion of the field may be effected in the usual way.
The ¢,r are taken as operators in a linear vector space satisfying
the standard equai-time commutation relations for bosons and the

states of the field are represented by vectors in the linear vector

space. The first problem we like to do is to find the eigenvalues
of the Hamiltonian The usual time-independent perturbation method
will be used. The problem of scattering will also be looked into

by the S-matrix formulation.

1"
6.4.1. The Quantization in the Schrodinger Picture

Decompose £(x), w(x) by Fourier Integrals.

1 J’d3 iK.x ( 1 £ iK.x
£(x) = Kq, e P TX) & oy Kp, e 5
Y em : (202 J X

1 [\ 3 ,1§ X 1 5 'ig‘f

Q, = d’x £(x) e 3 Py = “(d,x (X)) e

K (2ﬂ)3/2 g (2n)3/2 d
Define ay s a% by ’

o i
_ [ At o g B t

q}s “\/ZWKQ (al_< ¥ a_}_() s PIS = & 2(:1 (alf = a_}f)’

where W = ¢’K*. Then the commutation relations for £(x), m(x)

K i
imply that
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5 T a % /
[aIS’ aK,j = > [als} aK/J = 0 s [aIS, aK’] g 6(5"15 )’

which are the standard commutation relations for boson creation and
annihilation operators. Note that these relations are independent
of the Hamiltonian. In the perturbation theory, our unperturbed
Hamiltonian is

ny = f@x L K- Hoes .

s Ho:fdakhw it g

+
S S

We have ignored the infinite zero point term by a normal ordering of
the operators ays a;r With this expression for the Hamiltonian

of the free fieid, ;e can define and give particle interpretation to
the various eigenstates of HO in the usual way. Denote the vacuum

state by (0>, then the various eigenstates representing different

number of particles are

K> = aK»IO P eememmem e one-particle state,

K K > = iKK> = a; ay f0 > mmemea two-particle state,
and soO on.

"
6.4.2. Time-Independent Perturbation Theory in the Schrodinger Picture

The problem now is to calculate the perturbation energy AEK of a

one-particle state |XK > due to the interaction Hamiltonian
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=],

o =[xl By - - Qoo (P 2007

Q

The usual time-independent perturbation theory for a discrete eigen-
value spectrum needs to be modified in the case of a continuous
spectrum, Details of the modifications together with the derivation
are given in Appendix 6.1.

In order to compute various matrix elements in the perturbation
theoxry H1 should be expressed in terms of creation and annihilation

operators a,, aT defined by
P ol

- -

x

i

1 F ﬁé : 3 ig -
£(X) = ————me | 'k / (ap +a ) e >
- 21)37% 2WQ K T UK

: & [QRW,, iK.x
n(x) = __23375- &k & (aK - aﬁK) e
(2r) . g 28 = -

Note that in quantum theory H, is meant to be its normal product,

: : i ; SEIE
namely, cxeation operators a, are written vo the left of annihilation

K
operators. H, contains terms involving fourth order products of
a; and ap - As will be seen later, only terms with factors
L = a, a,/ as ag/
W R W R

have nonvanishing contributation to the relevant matrix elements.

Therefore only these need to be worked out explicitly. The result is

[6(K+K§K+K)a ala

;[&K&ffkfk’n aul «

K K

INI

K’

1<t

K
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46(~I_<+I§"4—~1:<+I_'§/)aiz ay/ ag ags] + irrelevant texms,  (6.4.2-1)

A : 040, 070 BB it
where Qe Wi g/ = /WK WK’WK WK/ [1- (K K+KK™)+ (KK ™) (KZKT) ]
AR 32(2m°%Q -7
% el
R . MWW ey [(1-KK%) (1-R%K )] < 0.
32(21)°Q K -
o K
and K TR » WK«-cH_(I = cK

Let us firstly consider the perturbation on the vacuum state |0 >

which is non-degenerate. Appendix 6.1 gives

pE = AW 4 A, .
C (o] (o]

]

< OIHIIn b

where AE“I) < 0iH0 2> |, AECZ) = 2
0 I 0 -E
n#o n

The first order term AEgl) is zero. There is only one type of non-

E(Z) coming from |n > = |K K K K >,

o -1~y =z -4

zerc terms in A

< 0|H, |IK K XK K>

I =y =4 ~3 -4

az[d3K P @R SR @ /(KK +R4K/) = 8(K-K )8(KEK )x
=Rl -2

- - - =1

/
E & p1234

1Al
1451

8 (K-K JS(KfK )
= T3 - =4

2 Z  §(K +K +K +K ) @ 5
p1234 1 2. 5 =4 I'Si IS?, I_<3 154

where z is over all the permutations of K , K , K, K .
pl234 ot
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Herice

jﬂw<?K&KfK ]<OMNKKKK>P
» 2 E] A =3

2 ~2 =3 =4
o 4% “fic(K +K +K +K )
§ P 3 a
@00 1 ; 5 8(K +K +K +K )@ 1
&K &K Pk aK | 2 T oy =t KR KK
;j ; : 3 4 pl234 R T
41 “fAc(K +K +K +K )
. 2 3 4
(6.4.2-2)

This expression contains the square of a §-function which appears
originally from Hl’ Hence it is not very meaningful as it stands.
However, as remarked in Appendix 6.1, this difficulty may be
bypassed.  The usefulness of AEgz) as given by (6.4.2-2) will be

. N ; ; 2
seen in connection with the expression for AE& ) presently.

Let us now consider the perturbation on a one-particle state
lg 5 The energy eigenvalue associated with IE > is degenerate,
e.g-, |E’g”> with g': g” + ¥k also belongs to the same eigenvalue.
Let |m > denote an eigenvector of Ho belonging to the eigenvalue

‘KWK, Then one can readily show that

< k|H;Im > = 0.
Therefore the degeneracy does not present any difficulty in the
perturbation calculation. From Appendix 6.1, we have
(1) R4 i
AE, "7 8(K-k) = < KIH 1k >,

Y ;< KiH;[n > < n|H_lk >
pe?) s(k-k) - = 1 !
k = o
- n E. ~E
k ™

H
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/
where %Lmeans a sum over all the eigenstates of H0 except the one-
particle eigenstates and those eigenstates with En = Ek° The first

order correction term

ae ()

K = 0 . EIHIIK > = 0,
The second order expression AEﬁz) consists of two types of non-zero
terms,
pE®) s(k-Kk) = A+ B,
where

de‘K PK PK <KIH [KKX><KKK !H Ik >
5 i 2 3

A = “1 =2 ~3 “j.eq <3 ,
i s o e
3 By By ~By -By
1 2 3
Sd:"KdEKdaKdaKdaK <KIHIKKKKK><KKKKKIH [k >
B = S S SR SO =1 =2 =3 =4 =5 -y =3 =3 -4 =
i = s = . =
S Ex-By -Bx By Fg By
1 2 3 q 3

Details of the calculations for A and B are given in Appendix 6.2.

The results are

mt iy B

EKEK BK (3-kKKK)26(K +K +K k) 8 (K-k)
A“S i ¥ 3

31 He[k-K ~K =K ]
i 2 3

where JkK rp = 4 2 kK KK °
—=y -2 -3 pi23 <~ -3

where
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PR PR PR Ex L Z Qg g K K K K ]
. =J. y 2 3 4 pl234 -3 - -3 -3 ” §(K-Kk),
1 41 Ac(K +K +K +K ) T

1 =~ 2 3 4
2

20 5 ( pkuS "k K K )
B = ET:[d?K &# Kk £K 172 73 8 (k+K +K +K )S8(K-k).
: oot 3 Ac(k+K +K +K ) Bl L. e

“ i 2 3

As pointed in Appendix 6.1 we should regard

(2) _ ,p(2 (2)
AE,"7 = AB ") - AE

= A+ B,
0 2

as the true perturbed energy of the original one-particle state |k >.
Hence terms involving the square of the §-function arising from HI
are cancelled out and cause no trouble. The real trouble comes

from the actual structure of HI' The integral A is shown to diverge

towards negative infinity at least like
—J(daK @K KK.
i 2 i 12

B diverges similarly.
2

All this is expected from the forms of HI which involves the
derivatives of the field variable. This type of interaction is
known to be nonrenommalizable,FS As one goes to a higher order in
the perturbation calculation, one gets higher order products of the
derivatives. Hence more divergent factors WK turn up in the

numerators leading to a higher order divergence. Therefore the

perturbation treatment of our present model field theory is again

plagued by infinite quantities.
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6.4.3. The Problem of Scattering in the Interaction Picture

The usual S-matrix approach will be used and the Interaction

picture will be employed throughout this section.

6.4.3,1. The First Order S-Matrix Processes

The first order S-matrix is given by
(4 jH
S -E' Idt.,

A number of processes can happen, notably the what we may call the
'shower process', that is, an incoming particle is annihilated and
three outgoing particles are created. However we shall consider a
more conventional two-particle scattering process. The initial
state will be |i > = Ik, g/> with E ¥ E/u The transition to final
states of the form |f > = Ig, E'>~will now be studied. Let us
consider the simplest case in which k + E/ = 0, In other words we
have a head-on collision of two quanta. This is not such a
restricted case as it may appear because any two-particle collision
would appear to be a head-on one in the centre-of-momentum frame of
reference. The total scattering cross section is given in Appendix

6.3 to be

_ (2m)*
T 2c

f T, 12 8Kk )6 (BB ) K K,
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s £
where Tfi = 8{955155/ & QEEBIKI + QEEIE/E] and k* = -k.

The integration may be explicitly worked out giving

7E§(
C = ——— E. =Ac k.

107 (#c)* Q@ k

To estimate o, we take Q to be of the order of the energy density of

the universe which lies in the range 10”%® to 107° ergs oam™®, that is,

we take
Q = 1077 ergs cm™? .
s o~ 107? E‘i cm® ,
where Ek is to be expressed in the C.G.S. units. One can put in

some typical energies for gravitons to work out . A typical

graviton associated with the gravitational wave which may conceivably

F6
be generated in a laboratory as envisaged by Weber  would have an
energy of the order of 10™'® ergs. The total scattering cross

section is then
o = 107%% cm?.

This is very small. But it should be measurable since in some
experiments on neutrinos a cross section well below 10"*°® cm® is not

unknown.F7

Let us now consider a typical graviton associated with inter-

R P 2 sl 4
RET VRN, SR PIe-E % o SRS, S T

b
k
x

AR L A e
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stellar gravitational radiation. According to J. Wheeler the density

of such gravitational radiation could be as high as 10° ergs cm™®

and that its wavelength A would be of the order of 10** cm,F8 The

energy associated with a graviton may then be taken as

£ic

. 10°*° ergs.

The corresponding scattering cross section is
o~ 10160 o2,
which is far too small to be measurable.

6.4.3.2. The Second Order S-Matrix

The first order S-matrix elements are all finite. We may go on
to examine the second order S-matrix elements. However the results
are not rewarding. The calculation is very tedious leading to

divergences. Therefore we shall not pursue it any further.
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6.5. Appendix 6.1 A Perturbation Theory in Quantum Field Theory

form

where H, = the free boson field Hamiltonian and A << 1. The eigen-

vectors are Ho are therefore

§ A
> = i -
102 (K2 =y 102, B> = [EX> alsla,_%lo >0
We shall not confine the field in a finite box. Hence HO has a

continuous eigenvalue spectrum, apart from the zero eigenvalue of

|0 > which may be considered as a discrete eigenvalue especially for

massive fields. The normalization conditions are
C0xE L S RRE ok T s B B AN
=1.=2 “3 =11 "=y =2 -n 12 -1 =1
p oon ,
S(ISn_]Sn)’
where Z is over all the permutations of K/, K/q,,g/. These
pl2..n T
vectors are assumed to form a complete set. In other words we have
#K &Pk
I=1]0><0| +|dK |K><K]| +J———$—--—2- IKEZC R EL & :uu
- - 22 wi 2 R B |

Any vector |¥ > is expressible as

"#K PK
ly > =< 0]y >0 > + d3K<1<|ty>|1<>+J—--L——2-<KK ¥ >|K K> +..
E L 21 =g =g -1 -%
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This may be symbolically written as

¢ > =2 cnln >, where |n > stands for an eigenvector of Ho.
n

Perturbation Theory Proper

The problem is to find approximation eigenvalues of H.
H|n>=E_|n >,
0 n

HIY > & =¥ >
n n

Assume
- (1) 2 .(2)
|?ﬁ> = |n> + Al¢n >+ X I¢n = A
o B xaEY o 2ant® o4 L .
n n n
== Holn > = Enln -

H1eD> en in> =8 16> & sgW >,
o n i n n n

(2) 135 o (2) () ,, @ (2)
HO|¢n > H1|¢n p En|¢n > AE |¢n >+ AEn [n >,

- % & » = ¥r
* 2 v & & o

(1) Perturbation on the Vacuum State

IW&> [0 > + A|¢(1)> + A1|¢(2)> g

=0 + ME(l) + X‘AE(Z) oo
(o] (0]

m
1

Following the usual procedure of the perturbation theory for discrete

spectrumFe we obtain

) g <oifIn > < nin’jo >
(o}

n ~-E
n

AEgi) & < OIH/IO &y and so on.
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(2) Perturbation on an One-Particle State

>+ Al B> L,

¥(k) > =
€ = Ek + AAEéi) e g
— H Ik > = E, |k >,
11k >+ 11000 > = a8 1k > + B a0 B>, (A6.1-1)

H 1900 B> + 11900 > = P 1k > + AES) o) (> 4

B 000 P>, (r6.1-2)

Let |¢(E)(1)>'= p cnlmj>. Assume that we may impose the following
n 24
conditions on |¥(k)>

<kl ®> =0, <160 @> =0, ... so on.

In other words, we assume that there is no one-particle term in
IW(E) > apart from the unperturbed |k > in the zeroth order
approximation. These assumptions appear necessary in order that
one can proceed with the perturbation theory in analogy with the
discrete spectrum case. These conditions may also be compared with
the similar conditions imposed on the perturbed vector in the

discrete spectrum case,Fg Then (A6.1-1) gives

jo
e s = <xin1e >,

-
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)

is zero unless < giHEIE > itself contains a

implying that AEIE1
" /

factor 6(5—5). If H® commutes with the total linear momentum, then

< KIHIIk > must contain such a factor.

The second order expression AE&Z) is given by (A6.1-2) to be

AEﬁz) 8§ (K-k) =< §|H/|¢(§)(1) o,

(A6.1-1) =>

/
<n|H |k >
G S Bl iy

n Ek—-En

The degeneracy of Ek should not cause trouble since in practice we

often have En = Ek = < nIH/IE Zm 0, We shall confine ourselves

to such cases. The summation £’ means a sum over all the eigen-
n
sectors of Ho except the one-particle eigenstates and these eigen-
states with En = Ek'
Finally we get

<k |n><ne x>

AE&Z) §(K-k) = =/

- n Ek-—En

Once again conservation of linear momentum implies that the right

hand side should also contain the factor 6(15-15)o

Some Remarks

(1) The essential difference between these formulae and those for

the case of discrete spectrum is the appearance of the §-function.




(2)
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The necessity of the §-function is most clearly seen by considering

a somewhat trivial example in which

Our first order expression then leads to the exact result.

In many practical cases, H/ contains a §-function. Then AESZ)
may involve the square of the §-function as in our present
g-field theory. This means that the expression for AEéz)
itself is not a meaningful quantity as it stands. However this
difficulty may be bypassed. Let us consider the present
g-field theory. Firstly one can confine the field in a finite

yet large box of volume V and perform the perturbation calculation.

For a large V we obtain

Z Q [28(K +K +K +K )
PR PR PK PR K K K K +K +K +K
AE(Z) = vV 1 2 3 4 j1234 I_<.1 phitgein ot 1 2 3 4
° L 41 Hc(K +K +K +K )
i 2 3 4

Now if we regard the result given in equation (6.4.2-2) as the

limiting case of large V, we may interpret &* (K +K
=y =g

+K +K )
=3 =4
appearing in (6.4.2-2) as the limiting case of —Y;~6(K!+K +K3+K;).
8n B e
This procedure therefore gives some meaning to (6.4.2-2).

Secondly, as seen in the calculations given in Appendix 6.2, one

observes that

1

/
22?2 g 4 g2

......
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/|
where AEéz) does not involve the square of a §-functionm. Hence

. 1(2)

we may consider AEK

as the genuine perturbed energyF” of the

original one-particle state. The difficulty caused by a

(8§-function)® therefore disappears at least as far as our g-field

is concerned.
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6.6. Appendix 6.2 Calculation of A and B.

(1) Calculation of A

< KIH IKKXKK>¢ 3 0(K +K +K -K),

e KK K K -2 "3
T2 T8
where J = -4 T 9 and X2 is over all the
KK K K KK K K
- =g =3 p123 ——y oy =gy p123

permutations of Kl o Koy Ko
" N —3

&y e #r . Ywmrr Yk pp S L FOSIL SLAE 5k)
A =I 1 3 8 g oy ey g Wy
31 Ac[k-(K +K +K )]
1 2 3
fr ek @k Uk g g )8 K K DS (K-
" E‘ T =~ =gk
31 Aelk-(K +K +K )]
i 2 3
3 = h T &
K
151*(1 I-('z l-(s pl23 —-I-<1 l-<-:z ISa
= -8l e kU k® el
=12 =3 b, sy M= ) g T
i e (1) (2)
Uk kx 7 =gk k* Sk x k)
ml T —-1 b Y ) st M.

3 @)

i Z 2 2
ek ® Cexrdt Ot Ok
Sox Y <o = =-3 -1 -2 “ge8 5L
32 = 20 Q + 20 Q + 20
JeK K K KK K K KK K K KK K K KK K K KK K K
==1 -2 -3 iy s | bretlisst Ry o S Pt dhov | Ny T ey ]k
fK KK

s Vi Bad |
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Since Kl, 52, 55 are dummy variables and the rest of the factors in

the integrand are symmetric with respect to gl, 52, Es’ we may

substitute
2 (1)
S(QkK X K ) for JkK K X and
deh g B el T3
(2)
6k k &k k kT Yk kk
e W Wipe S B W) Coitor e T )
in A
=

[3(n 18(K +K +K -k) & (K-k)
-1 2 -3 = = -

N2
kK KK * %%k x x %K K X

==1 =2 -3 ==Y =23 ==3 -1 "2

XdaK B Pk
A = 1 2 3
31 Ac(k-K -K -K )

i ! 3

2
F K K 30y ¢ 1% gk /i’ x 18K-K)

2 bl i i e T o Sy S

il

31 fic(k-K -K -1)
i 2

2
ek k K0 2k x K/ %K'k K
=T ™ 2z Yaok: b e ST
4
ic) K K oo s
(32)2 (2'”)6 Qt ks e L)

ka K depends only on the relative orientations between Kk, Kl 5 5
i N =2

=g 3
and is equal to
£ = [1- k%%Kk°.K%) + «%°) (K°..Iz°)]i
kK K - =y =g = “TEy S Teg

o
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/ 7 b/
2[1-k2k%+k°%.k%) + %% (K°.1<'°)][1-(k?1<°+1<:’.1<:’) + (k%K% (KO,KS)],
= = 2 - = . ™ P e L - = =k

/
where Eo =k -K"- Not much simplification of this expression can
be achieved.

We have

{
. kK K K
A= Ge) Ifk&x —_— £

Fia
2(32)? (2m)° @ 12, k—Kl-Kz—K/ KERE

Now for fixed K1 and Kz,

/ /

(K )max. = k+K1+K2, (K )min, = Ik—Klezl.

Let us consider the behaviour of the integrand of A for large values

of K and K . Then the integrand is negative and we have
1 2 ;

gt K, k. K +K -k
& min & min _ 12 »
k-K -K -k’ k-K -K -k’ k-K -K -k’ -2(K +K )
i 2 1 2 i 2 max 1 2
i 32’ + k "
2(K +K )
1 2

The integral

k
j~d?K #K KK £ 1 (- % + ————— ),
i 2 12 IEISI 15215 2(](l +K )
2

clearly diverges in the upper limits as K , K2 tend to infinity.
i

This implies A must diverge towards negative infinity at least like

-Jdﬁ(d”K KE
1

2 1 2
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(2) Calculation of B
< KIH K KKK K>= Z R (K +K +K +K ) §(K-K ),
=i "2 =3 "4 ~§ P12345 ISI 152 IS3 ]54 ey =3 =g =g S Ly

< KIH[|K K K X K >

& Z Q S (K +K K +K K-K
pizses S 555 R RL AR B SR )

Z Q S(K +K +K +K ) 8(K-K ) + Z Q *
K K -
pl234 l-<x -2 =3 1-<4 A i p5123 15s 151 l-<z 153

S(K +K +K +K ) §(K-K ) +
-5 =1 =2 -3 - -4

T Q é(K +K +K +K ) S(K-K ) + X @ X
g1y S RE -5 =8 gmape R0 b

§(K +K +K +K ) S(K-K-) +
=3 "% 5 =i - 2

K KKK

T 9 §(K +K #K +K ) &§(K-K ).
p2345  Spm3ma e 0 2 R TS -

Let @ = Z §(K +K +K +K ). Then
1234 p1234 51525354 -~y my § 4

& KIH [IKKKKK?>-= Z Q s (K-K ),
=3 T2 T8TE 78 12345 1234 NS
where P means a summation over all the cyclic permutationSof
c12345

< K!H \K K K K K >< KKKKK IH Ik >

----- =i =2 =3 =4 =5

3
S
&
3
-5
p 3
at
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2 .., 6KK)I[ = .., 6(k=K)I
c12345 1234 70 s ggamgs 1234 77 s

§(K-K ) + @ S(K—K;) + 6(K-K3) + Q §(K-K ) +
- =g - - = - g

(94234 5123 4512 3451

Rogas SU-E I

[Q S(k-K ) + @ S(k-K ) + @ §(k-K ) + @ §(k-XK ) +
= = = g - -3 - =

1234 5123 4512 3451

345 S(k-K )]

= (Ry554)" S(K-K ) 8(k-K ) + (05,,5)" 6 (K-K I8(k-K ) + (R5,,)" §(K-K )

06K,

123 512

+ (R5450)" (KK ) §(K-K ) + (9y5,:)" 8(KK ) 8(k-K ) + R,

where R are the 20 remaining cross terms.

K &K £#K #K (@ )2 § (K-k)
B —g B S Bl leig = (A6.2-1)

2
41 fic(K +K +K +K )
1 2 3 4

. R
51 Ac(k-K -K -K -K -K )
i 2 3 4 5

jdf'l( K &K £K £K
1 2 3 4

Compare Bl with AEgz) in (6.4.2-2) we see that the contribution to

(2) (2)
AEy B,

from Bl is just equal to A

Calculation shows that each of the twenty terms in R contributes
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equally to B . The final result is
2

F 0 ?
20 gpk123 mEs ;
Bz=§rjf%&K&W —— 6&m+ﬁ+K)6W*)»
. e e

3 Ac(k+K +K +K )
i 2 3

It can be seen that this is a divergent integral which diverges in the

same way as A.
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6.7. Appendix 6.3 Scattering Cross SectionFlﬁ

Define  S'Y) = & g & x j at ¥, (s8] =< 11s® e >
I £i “wt VT
T

VT i :
v ;
Hence S(l) = Lim S(i) , = iIS(i)]f > = Lim [Sé?)] .
o e i v
7™ T->00

The transition probability per unit time per unit volume is

ey = Lim W1, .
Voo
T>0
1
[fsg 1, P
where [wfi]VT P N,
VT
Now
(1) (2m)° {
S RS z Q [p + P ]
v . K KKK K KKK KKKK?"?
i ifiv KKKK =j=3-3- -1 -2-3 ~4 =i =4 %3 =4
17273 ™4
where
- S\ r(if;(le+WK2-wKa-WK4)t
PRk ik = %8 8¢ 8y By OK 4K , B +K i dt,
-1 7273 74 =1 Tk =0 Y4 ' :
-t/2 é
, - g T/2 1(le +wK3 -wK2 -wK4 )t
e gy TpRp apwy O W bW dt.
~1"2"3 74 T =3 =z -4

-1/2
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P42 .
~ 3 . i(E.~E.)tA
[S(:]')] I €5 )b § T.. g\k+k/, Kk+x’ e fi dt,
fi vt Ky fiY¥-'-° - -
-t/2
— I — 4
where Ef EK + EK’ Ei Ek + Ekb

Ter ™ S k™ o 1 '
/2
= {.I i(Eg-E ) t/A ]’
VIR | YRR S B at
[W..] o ] - =7 - = -1/2
fi*vt £2 7 9 .
/2
i(Ke-K,).x ‘ l J 1(Bg-E, ) t/A ‘2
(2'“)6 iT I2 tj e d® x e dt

- 1 v -1/2

v 2 v T

|T

|2

- fi 10 g P
4 /
where Ke = K+K', K. = k+k' .

The error introduced tends to zero as v, T + «, The reason for
retaining a finite v will be seen presently.

Consider the scattering of [i > into a group of final states
1§§’> with K in the range (K,K+dK) and 5/ in the range (gﬂg’+d§’),

The number of these states is

V'Z

(2m)°

&k k!,
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The transition probability per unit time per unit volume into this
group of final states is

a 2
W (2m)" ITg, |

it — &k &k'=
ol i (2n)° - Av?

3 3 ./
(W G(Kf-gi) G(Ef Ei) d&'K dI'K .
Define the differential scattering cross section do to be the ratio
between the transition probability over the space v per unit time and

the incident flux J, then we have

(2m)* I T, I* g
do = §(K.-K.) 8(E.-E.) &K &«k’.
A -f -i £

vJ

In the special case in which the initial state consists of two

quanta head-on colliding, i.e.,

the expression for J is

J = Z%,, ¢ being the speed of light.
@2nt 1T P
—> do = B s’y s B) #x @K
2hc " .

It is seen that this expression is independent of v and t which may

now go to infinity. The total scattering cross section is

] =I(2ﬂ)4 leiP
2hc

s(xek') 8(B-E) &K @K',
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Note that in evaluating o, use must be made of the special condition

E+E'= 0 in the expression for L

4
C T e RAX R KK" K K

ey 0 R Tl ! Py SO

where g‘= -k, K'

= -IS.

2
G & —— 25 Jdax k*K* §(K-k) [6 + 2(k‘31<°)2]2
64(2m)? O o

i fic 3 6
——— =) K
107 Q

6
7 By

107 (fic)? @
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CHAPTER 7

" 'MODEL FIELD IT TREATMENT III

7.1 Introduction

In the previous chapter a weak field approximation, which is
common in the treatment of Einstein's equations of General Relativity,
was used., This approximation is a very restrictive one. A surface %
of the shape shown schematically below is then outside the scope of |

the approximation because ggu may not be small everywhere,

3

However such surface may still have an important property which we %
shall call the '"everywhere-slowly-varying property". By this we

mean that the deviation of the surface from the tangent plane at a

nearby point on the surface is always small compared with unity.

It is this property which corresponds to the local flatness in the é
Einstein's theory of General Relativity. Efforts were made to

devise an approximation scheme to accommodate this more realistic

situation for our Model Field II. In this chapter, the same coor-

dinate conditions as those employed in the previous chapter will be
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used, and we shall assume that our field £(x) has the everywhere-
slowly-varying property. In terms of canonical variables the latter
is equivalent to the assumption that V¢{,m be slowly varying functions

of xu.

7.2 The Idea

The central problem is to obtain an approximation expansion of
the Hamiltonian. Now divide the spatial space into cubic boxes.

The nth box is taken as the domain Vn which is defined by

(n-%¥)L < x < (n+¥)L, where L is a numerical constant and

B ok,

The size of the box specified by L is to be such that Vg,n vary very
little over it. The assumption that vg and 7 be slowly varying
functions of the spatial coordinates means that L may be large (for
a more precise analysis, see Appéndix V) It is apparent that
certain approximations can be made within each box. To explore
this possibility, let us consider a general situation. Suppose
93(5) with a=1, 2, ..., M are a set of N real functions which vary
slowly with X over a region of dimension L. The problem posed is

to obtain an approximation expression for the integral
3
1= J, dx F(o_(x))

Let I = X1, where I_ fdxp(e (x)).

(B}

n

3 i .
, I7); Nn° = zero or integers.

B
LU
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We can make a Fourier expansion of ea(>_c) within each Vn,

—

iK.x
[~ s
e A e pWINRE ¢ e,

a

R M

2

where K = —Ei(l(l, K™, KS) x k? = zero or integers.

Since 8., changes little over the box, we may consider

I

f d X 6 (x) / aon 5
as the average value of 6, inside the box and

1K.X
, - - = Sl - i
b n ea(J_C) <9 >— zZ 0 ]S_ 573 small in V_.

Therefore we may develop a Taylor series expansion of F(ea) in Vn by

@ /
F(ea) F(<ea>9 + eag)
2
3F (0 ) o L E [a F(ed)] :
= i | =
F(<ea>n) + Z( 55 )6 —<g > o0 2! aks aeaaeb <8a>n,
- a a a an -
eb=<eb>‘l"_l
A | :
%anbn :
Hence
3 BZF
1 =S, axBe) ~F(cop )V +xT 2 | ol o
n ab KqO\P6, 20, J8 =<0 >, "= "S-
=< 1
eb=<eb>g

and
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2
3 a F
I1 =21 =~ Z{LF(<6 > ) + % 2 E(—-—-—-——-—}d 8% 8 .
n - n( = ab K40 aeaaeb ea_<ea> akn"bkn

We can apply this approximate expression to our Hamiltonian

S
H= 7/ dsx J‘t, where 4 = Qﬁ1+(vg)2) (1+ E'Z' Ter >
. G

2 2 - 2
3 ) F 2 H + 2° K +
~T LK + % z[(.___ﬁ‘.ej P, P +(c—22) P, q, .+(==) g . Te
n B T L R B

where @ the subscript n means that functions of VE,n are evaluated
at V¢ = <Vg>n,

-

T o= <7> "

@ Plfl}’ ql_(x_}’ qKnj are the coefficients of the Fourier Expansions

of 1, &5 £ : respectively.

- n L oy n L
oo . o iK.x LT . J/‘ e o KX 4g
Knj MV, 7 1,372 kn 8y 377 J
where Sn is the surface of Vn

gs, = dx® dx> 3 as,, = d> dx as, = dxt dx®

It is tempting now to treat A, ? plin as canonical coordinates and

momenta to effect a quantization.
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There are difficulties. Awkward continuity conditions on the
boundary surfaces between the boxes will inevitably appear and one
has the difficulty of expressing U § purely in. terms of A because
of the term involving a surface integral.

Another treatment using the same basic idea while avoiding the
above difficulties will be discussed in the remainder of this chapter.

In this treatment a new complete orthonormal set of functions is

used for the decomposition of £, VE, m to preserve continuity.

7.3 A Complete Orthonormal set of Functions ngx)

Define a set of functions UKgx) of a single variable x by

X «n
ein sinﬂ{L )

(x) 1
U~ =2 X -
VL i = 1)
where: {1} L is a numerical constant,

%E *(integers or zero),

(

R
s
~
1]

H

integers or zero.

® n

Note that UKn is defined for all x from -« to +«,

The relevant properties of this set of functions are listed in

Appendix 7.1 at the end of this chapter. 1In particular; we note

that UKgx) are a complete orthonormal set of functions and iUKni has

the absolute maximum at x, = nL. iUKnl decreases as X moves away
from X, and becomes small compared with iUKéxn)( as Ix-xnl 35 L

B¢
b
%
2
z




-134-

7.4 An Approximation Procedure

We want to consider the same problem as studied in section 7.2

again, that is, to obtain an approximate expression for the integral
o]
I =7/, dx F(e (x)) ,

where ea(x) are a set of slowly-varying real functions of x. For
the moment we consider only a single independent variable yx, but
shall later extend the results to the case of three spatial variables
X, To make use of the set of functions UKéx), we firstly adjust

the value of the L in Ukéx) to be such that ea(x) changes only

slightly over a dimension L. Again L may be large on account of

the slowly-varying nature of ea(x), We can write

0= 2 Oy u ), where o =7 o uUr dx .
Define
J Uon ea dx eaon
<ea> ok Uon = = L% , and
e;n = ea(x) 5 %0 B o

By our assumption, we must have

'
ean small.

A more precise analysis of this statement may be found in Appendix 7.4.

2%
R $7 £
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<6 > ~may be regarded as the average value of ea in a neighbourhood
of X = nL of dimensions of the order of L.

Now we are in a position to state a

Theorem:

IE ea(x) is a set of slowly-varying real functions of x, then

= dx F(e,(x))

2

E<L Flel 2 ) * %(ae aeb) 40 ®aKkn ebK;) ,
2 2
5°F _ 3°P
where (35 56n © (35 5600 =<0_> » %akn = / % Ugn ¢* - 209
a b a b a an
%=<%"n

summations over a,b are implied.

The proof together with an examination of the approximation involved
is given in Appendix 7.2, Extension to 3-dimensional case is

easily obtained by defining the complete orthonormal set of functions

j

¢ g Y
i x) 1 e1§°§ 4 51nn(E- n’)
TR 3 =1,2,3 x) j
J 2% s "(L - n )

The Theorem takes exactly the same form with L in the first sum

replaced by LS/Z°

In the following section our Model Field II will be examined using

this approximation scheme,
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7.5 Quantization

~ Expand

where

We can now

Field II. As given in Appendix 7.3 the result is
. - oj
2 i .
H = QL3 z’AAQ+CVE) )(1+ Sem) + 5 = O e
n 2 'n Kn Kn " Xn
L = Q - n,K¥0 oo i o o
i H
2 gUJgOk
+ 3% %—- ¥ n % P; PK ‘g B R _ [ _ jk} s g
n —— K50 =% =% n,K%0 V=g \ 00 KX0
l gn J:E = I}

+ higher terms, where gT

TK

g = and /-g may be expressed in terms of &

Appendix 7.3 and g;K = [gTK]E

depend solely on P and Pon

Now define

(x)
E(x) = Z q U , m(x) =% P
kno=t R kn 2
_ x) _ T
ay =/ 0% 500y = ol
& 3 (x) _ of
PEE = jﬁd x T (x) U§B~ = ﬂlgg ;

u (X

use the Theorem to evaluate the Hamiltonian of our Model

2

. <E ,>
G- e

T = <7u> °
n

3 and ™ as seen in

r

X 1

K qanKn

Note that <g&.» >
ote tha EJ)Q, Py B

e is the metric tensor for the 4-surface,

K
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k_ 2%
(g 85~ £) 8y MK Q | (-5,) P
oy e = d Gn * 18)_ Pra,
Kn Kn Kn, =
-= 4ﬁ (-g,) ) - Q 2x2 ( 03 ok 1k oo)KJKk - ?
ok ik . . ;
{(ggjgn - g ggo)KJKk};E g3 :
Wgn 00 . i
i gn :
where repeated indices imply a summation.
Then j
- T |
= QL7 21+ (v8) ) (1+ S5 <m>0)
n 2 n
n S A
v y
+ Z ﬁwKn s ¥n * higher terms. (7.5-1)
o <2 T K
n

To quantize it, the canonical variables {,m are to be regarded as
operators in a linear vector space with the standard equal-time

commutation rules
[£(X),100] = i 6(x-X) ; [£(x),E@)] = [1(x),n(X)] =

These imply the commutation rules for 9n* Pkn

= . ( = =
[qKn’PK il = S Sl 5 Loyl = [Py Pl = O

The everywhere-slowly-varying nature of the field £ means that <£j>n,

o may be taken as unquantized c-numbers (see Appendix 7.4 for f

Q'n

details). As a result, g;K may also be similarly treated as c-numbers. :
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To this approximation, we see that yn? a;n defined above obey the

-

standard commutation rules for creation and annihilation operators,

i.e.

T - e ~ + + -
[agnaia] = SxlvOnd 3 [3gqoadf] = [agy il = 0

. Indeed with the above expression for the Hamiltonian, we can regard
By 8kn respectively as the annihilation and creation operators for

the quantum of energy'ﬁwKn.

Note that if we write

- o il
(k = wKn/C and (kKn). = -K”,

Kn)
~- 0

where K* are the three components of K, (i = 1,2,3), then

ggu[klff.}h [klsr_n]u =0

This means that
(wlSlg/c » "l_<) ]

are the covariant components of a null vector with respect to the

N K
metric g " .

Now the situation is that we have on the one hand the slowly-varying
classical field g;Kand on the other hand the quantized field with the

Hamiltonian (7.5-1). The background metric g;K depends on the

classical variables <g j>n and <<%>  so that it will vary slowly with
, -

Qn

time as these variables develop in time according to the classical
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canonical equations generated by the Hamiltonian

QL3 EA/11+<V5>§][1+<%£>§]_,

n

The quanta created by a;n from the vacuum state are mainly in the

region B L/2 < x* <nt o+ L/2, but there is some overlap with
neighbouring regions. The total number operator is
N=2XN_,
n
l’-l -
1.
= X =

where Nl_1 x alfr_l algr_x and [N‘_"NE/] 0
It is seen that we have essentially a free field theory. To bring

in interaction, one may proceed to higher order terms in the Taylor

series, However the calculation becomes very lengthy and the usual

divergend problem remains.
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7.6 Appendix 7.1 Properties of Ukn(x)

(A) Pourier Transform

U (k) = == F ax ul o —/Le"lk“L IEK-T<k <K+
or
& ﬂ]__‘ -iknL if K = K+
= otherwise

(B) Orthogonality

*(x) (x
R A A 5. {

(C) Completeness

z U, &) U(x) = §(x-X)

K,n Kn Kn
(D) 3U m-n
axKn = 1K Up, + £ ézl)ﬁj—‘ Y
mXn B CO
4 *
K"K = 0 /I
(E) Ipnﬁ = Lo o U0p Un Ykn

o . 3 o
pnrl © T ifp=n=n
1 P- n . /
= (1-(-1) ) ifp=nin
2n2/—'(p~n)2
’
_ PGP 1" o )
e ®-n) (- T-p) ) ¢ -p) (A-n)

ifpinkn

——

L
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f
Case II: K - K = 2L
/
Izn/} o sl ifp=n=n
pnt g/
p- - _ < r_ayP-n
- oz 1) , 5 2L i ifp=n% n’
4dn /ftp -n) 4n/ftp—n)
/
R 0" | SO
Ave /T E-m - " Tp) M) ¢ T-p) (m)” -
ifpk¥nk n’
Case III:
Iinﬁ-— 0 in all other cases apart from those obtainable by
the symmetry properties the expression IKn§
Symmetry Properties of I“ "
y 4 P pnn’
/ /
K-K _ ,.K-K .*
() Lo = Bl

v a ¢ L. ;
(b) The order of the indices pnn’ is irrelevant to the value of

’
IK-K "
pnn’ ? 2&iip
[4
Ig;E = Iﬁ&%p = L. - and so on,
/ /
I§;§( & IﬁfK and so on.

Our present set of functions may have certain similarities with the

Block functions expressed in terms of the Wannier functions in solid

G1

state physics. But they are in fact quite different.
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7.7 Appendix 7.2 The Theorem

2

36 a6 IR

1= 7, dxB(e (x) ~ (L F(<o> ) + %( 2 3
n

Proof:

Expanding the number 1 in terms of the complete orthonormal set U

we obtain

1=vL zu®
on

n

SO

3
I =/ dx F(ea(x))= I £ [ d°x Uon F(ea) 51

n

I, YL [ dx U F(ea)

We assume ea to be slowly varying functions of x so that

contribution to In comes from the values of ea near xn =

. /o ) ,
region ean = ea(x) <ea>n << 1.

~ . / 2 ;
Let F(ea) = F(<6a>n + ean), then a Taylor expansion gives

2
_ , oF ¢ Z 8 F / £
F(ea) - F(<e b ) e (aea)n ean . %(36 aeb) 6an ebn ¥

/ i52p ) ‘/’ /
In L F(<e 4 ) ¥ ~/onn ean dx + %/— ae 36 dx Uon ean bn

—‘-
%akn % Kn}

Kn

the main

nL in which

ooooooo

0.

4

83
A
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Now our assumption that Im depends mainly on the values of 6, near
X, = nL shall mean that the same applies to each integral over a

/
Taylor series term. Let ean(x) be of the order of, say A << 1,

for y near X, = nL, then we can roughly estimate that f dx Uo o/ o o

n “an “bn “cn
is smaller than f dx U_ 6! ! by a factor A. In this |
on an bn ¢

way we are able to establish a series approximation to In.
Now the proof of the Theorem rests on a
Lemma: If fn is a slowly varying real function of n, then

; f / - %
7L 2 fnwfuon ean ebn dx “ fn eaKn ebKn
n n,K%0

s * 4 * /
/L i fn on B eb ki pzn ” a fp eaLKn ebKn/[ Hax Uop UKn Uan
2 3 3

The property (E) of UKn as given in Appendix 7.1 is used to evaluate

the right-hand expression which gives
R.H.S. = I /E[@-y@+@+@+@),
K

where

3 1 1
(:) = B 2 g% = g% = p*
et fn[4 eaKn ebKn % g eaKn ebK+ 2rn © F Pakn %bx- 2« n] d

7
-0t 7 o

/ /
é ‘ LR i(-1)"™"
p=n¥n’ n zﬂz(n_ﬂ62 akn “bKn

2 /2 f ] S;‘.KHK
47" (n-n) 41 (n-n) .

K
i

/ -

9 / + [- }:ﬁ;}l?—n B iﬁill? n] 8% 0 /

bK+ 21 n akKn “bK- gﬁ_n s
L

4 (a-i)®  4m(n-A)
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/ s
o1, S n-
@ -3 £ (1_@__11 TINIUREE:
p=ﬂ%n 27 (n- n)z A H 4n2(n~n)f 4w (n-n)
{
1oy g gD )
6 g & [ B2bedl ™ AL Ty o

bK+ g%_n 4n’(n-{)2 A5 (31 ) akn bK 22 n
@ -3 ¢ (1-(-131“‘ gt \ [ RGP 1P

) nzﬁ%p P2 (p-n)? akn *bn 4n* (p-n)*  4u(p-n)
5 I~ LG | (C. i )

bK+ z%_n 4n2(p-n)’ 4w (p-n) akn bK 2{ n

Since fP is slowly-varying with p we may make the assumption

-(-1P™ -(-1)P™ 2
zog AT s oz LEDT LT g
pkn P (p-n)’ p¥n (p-n)?
SR p-n
% LT%A- . fn z L:%l = B
pkn PP pAn P
bt
Hence the fn/ in (3) may be replaced by fh and
N o~ ,:,L_ * - J‘_ * - .j_‘_
Gb i fn[4 6aKn ebKn 8 eaKn ebK+ 2rn 8 e;Kn ebK— 2n n]
L L
Similarly
@ > 3 ———-———-—fn (1-(- 'l)n n) (6* _ 1 o* ) ;
nkn' ﬂzcn_é)z akn bkn’~ 7 akn Pbk+ g%_n
- Zﬂ.“() ;
L

Adding up we obtain finally

n’

] eaKn

L]

X
eaKn

1 *
2 eaKn

A
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/I Z fnv/de Uop 850, = Z £, 8% 68, - ;
n Kn %
Somé remarks on the above approximation are worth mentioning. Let ;

y(x) be a function of x, then we can readily show"

; _
dy(x) . _ (A :
(A) L < 5% on i/ <y>n’(n-ﬁ) ) o
, f‘-:
(B) 12 L2, .. [ = 3-(:-9—“+-23— <y>.1 »
axz 1 n’ %n (n-if)? I 3
where JP U d i

<y> = y(X) on %

n

4n
Therefore our approximation used in proving the Lemma is equivalent
to the approximation
2

d = d o~
< §§'F(x) >n 0 and < e F(x) >n 0‘,

where

(x)
F(x) = 2 f U
n D og

Now to apply the Lemma to prove the Theorem we have

/ / .
t i fh Jﬁdx Uon ean ebn =1 i fhcfuon eaeb dx - /L <ea>n ¥

~~ *
<eb>n) ) fn eaKn ebKn , by the Lemma.
K0 ;
n

Applying this result to

«a

L]

1= F axree) =21
n

n

we immediately obtain the Theorem. f
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7.8 Appendix 7.3 Evaluation of the Hamiltonian

P

=.!“d3x }ﬁ, where HL= Q1+ (VEY?) (1+ E;-ﬂz) .

G

Firstly approximation may be made for the derivatives of £.

i

(x) (- 1) )
£, = 2 il KB e B 2] :
»1 Kit, 5 Km TEBN L(m art ) Km m’ i i
;
_ (x) :
=2 dgpg Vg
Km --

- —

/1
m -
1 (-1

o 'II
where qui = ikK et (ﬁ‘-m3) m )

Since At o is assumed to be slowly-varying with ﬁ‘, the second
sum in the above expression is very small and may be neglected in
order to be consistent with the approximations made in Appendix 7.2,

Now apply the Theorem to evaluate H.

iz 1/ (e )(1+~i<n> D rHE s

(3596 ®akn bxn
n - Q* n “"a”"b n Kx0 8 -
(7.8~1)
where ea = (5919 E,Z’ 5939 C‘H/Q).
2 :
.§_3£LW may be expressed in terms of the metric tensors g__  and glK.
aeaaeb T«

e /g e T
i " Q oo ’3mME, Q 7 2
(1+£_ 'ITZ)S/Z g J Ai"'(vg)z)(l*g—— 112)
G &
0j
g

00
g

4
o

&
Q

©
3




~147-

; j ok
E; Esk ) _Q (ng gOJgO )
0j
g -°C :
G omn? n T J . J
(1+ A <';r>§)+ % 3 e (ql_q} K p]_([‘ pL(I} iK q‘_(_f})
- °n
SU
j
b oj ok
¢ "8y + -1) By ¥ k F
* ¥ 5o pKnPKn+;52Q( )('oon gy ) 2 KK a ap,
- e n Vg n = et e
= K30 =
jsk
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7.9. Appendix 7.4 The Approximately .Classical Nature of g;K

e

Two assumptions are made in relation to the everywhere-slowly-

varying nature of the field,

(1

(2)

(x)

i ° AR 1 in a neighbourhood of

e;§X) - GQX) = WPy B

/
X and ea

x = nL of dimensions of the order L. Note that ea stand for the

cm
3" Q
are independent of the units employed.

dimensionless quantities & so that the above inequalities

L can be large, or more precisely, we require that ﬁ5-<< 1, where
QL

Ac . . . .

— 1s a dimensionless quantity.

Qu?
In C.G.S, units with Q = 10'7 erg cm"3 ~ the mean energy density

-2.5
cm

1
of the universe, we get L >> G%h“ ~ 10

Firstly these assumptions enable us to count the orders of smallness

of a quantity (see Appendix 7.2.) Secondly they lead to the result

that g;K may be regarded as c-numbers. This result is seen in the

following analysis based on a finite difference method,

E(X) & 'j':""(g(xl""L, x2’ xa) - g(xl "L, x2’ XB)) o
b | 2L
- 1 . _ 1 2 35, _
<E,1>E ;Zg7§{q02+ qogm)’ where n+ = (n +1, n°, n°); n- =

-1, nb, ).

Cm

c
<6_>§/ B 5237§'Pog,'
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cr HAc
[<g,1>29 <—Q-—>£l,] ~ gg —Q—-l-.:; (i 6134_9[ - 1 613_13/)
-+ 0 as tﬁi -0 .
qQu*

Since <& .> <
g i"n’

>

éﬂbn‘ also commute with all the other operators

appearing in the theory, we conclude that <¢ .> , <E£¢n; can be

»J nt Q

treated as c-numbers, The set of quantities g;K depends solely on

S

<C1T

Q

-

Hence they may be similarly taken as c-numbers.
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CHAPTER 8

MODEL FIELD II A VARIATIONAL TREATMENT

8.1 Introduction

The treatments given in Chapters 6 and 7 lead to divergences in
the calculation for the energy eigenvalues of various states.
However it may be possible that the divergences obtained are a spurious
result of the perturbation method used. It is therefore desirable to
devise a non-perturbative approach for the treatment of the field.
In this chapter a variational approach is adopted for the calculation

of energy eigenvalues.
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8.2 The Idea

The essential idea lies in the approximation of the continuum
field by a system of countable degrees of freedom. Once this is
done many of the usual techniques of quantum mechanics, in particular
the variational method for the calculation of eigenvalues, may
readily be employed to study the system. There are a number of ways
to achieve this. We shall adopt a method of approximation by finite
dif’ferences.,Hil

To begin with, confine the field in a large yet finite cubic
box of side L with the usual periodic boundary conditions. Divide
this spatial box into M = (2N+1)® small cubic cells, each of side
d = L/(2N+1), N being a positive integer. The centre of the nth cell
is specified by x = X, = (nl, Ny, ns)d, where -N < n, < N. Then we
may make the followiné approximations for the quantities in the nth

cell:

(1) the field variable £(x) = gn = £(§n), where X . (ni, N, n3)d,

(2) VE(x) ~ 8¢

2 B £
nz, n3 n1 1, n2, n3, ni, n2+1, n3 -

§
N
&

Y
=3
4
-
-

£

n~’n"1-9n E . 'g )9
. Eli 39 s Ny, Mgt N, n,, n,-l

(3) the canonical momen tum density w(x) ~ pn/ds, where P, is the

momentum conjugate to gn,

(4) the total Hamiltonian H = Z Hn’ where Hn &

a = CPn -
Qd3J[1+(A£n)’][1+(-;) 15
i Qd?

13
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-En’ where 313 ~ -Pr_l A gr}o

(5) the total linear momentum P ~ X
n

The quantization may be effected by the usual procedure with the

explicit representation
E > £ : P ->-..i-ﬁ_a._
n n’ "n %L

cp 2
n
Note that [1+(A£n)2] commutes with [1+-—i;) | 8 Hence there is no
- Qd

ambiguity in the expression for Hnn

To illustrate the variational method to be used for the study of the

Ccp 3
n
Hamiltonian H = £ QdU/[1+(A£n)”][1+-il) 1, let us consider the
n - Qd

much simpler and well-defined case of the massless real Klein-Gordon

field, In the finite difference approximation, the Hamiltonian is

Cp %
3 n
s e 2))
nooo- Qd’

s Qda b A 2 e & 32
= S £ - 1
G [(ey) (Qd3 ) )

The eigenfunctionals of H in the functional representation in the
continuum case are explicitly known,HZ The exact eigenfunctions of
H in our present discrete case may also be similarly established.
The vacuum state is

¥ = A exp[-0* Z
o
k,m,
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2 _ 1 Qd,.
where (1) o* = ZCM( c)’
{2) A = normalization constant;
_ 2m .
(3) k ---I:-(ni, n,, ns) and -N<n1<N,
- E_ s 2 3 2 - 2
@ w =3 J(51n kd® + (sin k ) + (sin k,d)*.

One can verify that

HWO = EOWO ; PY =0,

where Eo = % 2 i which is clearly seen to approach the well-known
k

infinite zero point energy % Z 4ikc in the continuum case as d - o
k

and V =Md&® + =, For d » o keeping the volume V = Md® large but

finite we have

m™
E, = % 2 fiw, L Bev 1 ng d;\tdjdz\,sin2 x+sin*y+sin®*z +
- kK = & 167
a o 1
“fic:V:5
=—). (8.2-1)
d*

The one-particle eigenstates are of the form

ik.md
‘Pk = B X e gm wo’
- Il] -
noting that
; / . i
1 ik. (n-n)d 1 in(k-k)
-2 e =z § . 3 -2 e T T = ) {
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We have

sin dk sin dk sin dk
% y z )
d ¢ d * d %

where E1_< = & i, ‘ﬁwlsf +Jﬁw1§ ;:ﬁ = A (

These eigenvalues tend to the original continuum values as d approaches

zero. All other many-particle eigenstates may be similarly obtained.
Now suppose we did not know the exact eigenfunctions. We can

use the variational technique to estimate the eigenvalues now that we

have a discrete system. Take the normalized trial wave function for

the vacuum to be
Z 2
£,/20

= = § s 2 3
(I)O l! ‘1’02, where @013 m and ¢° is to be the

variational parameter:.  The vacuum expectation value is then

3 2 2
(Q’H®)=QdM(30+ d 9
0 o 2
4d*  2p%c°

where p = Q%% = dimensionless. Hence the estimated zero point energy

is given by the minimum of (@o, H<1>0)°

_ 3 Mﬁc(“F; ficy ‘ .
g - 5 58

Thus our variational method gives a f‘actor\_}[:-gvN 0.612 compared with

the true factor

™

13 Sﬁ dxdydz [sinx+siny+sin’z ~ 0.593:0.004.
167" el

=1
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The above integration was performed numerically. @o is seen to be a :
very good trial wave function as far as the most singular contribution
to Eo is concerned, i.e. the term proportional to V/d'. The natural

trial wave function for a one-particle state would be

5 ik .md
@k = Jeme T e gm g%,
iz M02 El e

2 , 5 s g%
where |—— is the normalization constant and ¢* is the variational
J Mo?

parameter. Some properties of ¢ are

k

(B 2) = 05 (4, 1) = 8y W/

o ik,xn %
(¢ , & ®) = =— e = ; Po =wnd .
ot K fam ~ %2k

d3 3 2 y 2 2 2
(0> Ho) = ST ET v 5 S+ g Qf—+ 07 2,
o o 4d2 p202 pio.?. N d2

=~
1

where E{cos 2dk_+cos 2dk +cos 2dk ) and
k3 X y z

27
£ —— =N <
k L(ni’ n,, ns), N < n, < N.

Observe that
g 3 o?
(0, HO) = (o, HO) + JgdsQ(——;-m; r 2(1-2,) ———) and
- - : p o -

that

) d.2 3 02 P
(6 , HO ) »> %d“Q( w e ) —, since M + w,
o (o] pzaz 2 I,S d?;

Furthermore one finds that
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d? g
[(q)k: H(bk) 7 (q)O’ H¢o)]min =2 [;édaq(p?gﬂ + '2-(1'21() ?]m:’m

5~ 1 13
- —_—f=(1-
Q= )5t ZIS)

+Hck as d~ o.

Hence an exact eigenvalue spacing is obtained. The conventional
variational procedure would be to minimize (Qk, H@k) giving the

eigenvalue spacing as

3 Mic
(Qg’ Hég)min h (Qo’ HQo)min'+J;; d s
which has quite the wrong form, and indeed gives an infinite value

in the small d limit instead of the correct spacing fick. The reason

3 ; : 1 1
is that for a fixed V, (@k, HQk)min contains terms in —, T’

contains +— only. On subtraction the % terms
d‘l

cancel but we are left with %-which divergeyas d - o. Since we

while (@0, HQo)min

know that the correct one-particle energy relative to the vacuum is
finite, viz., fick, we must conclude that more sophisticated trial
wave functioné are needed to effect cancellation of the singular
terms. Such functions may readily be constructed for the massless
real Klein-Gordon field, but unfortunately these functions prove
impracticable in the nonlinear case. We shall therefore retain the
same simple forms for @0 and o when we turn to the nonlinear field

and shall adopt the following rather questionable procedure. Instead

of estimating the eigenvalue spacing from (@k, H@k)min

- -

" (Qo’ Héo)min
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)]

estimate the finite differences between two indefinitely large

we shall take [(@k, HQE) - (Qo, Ho

Suulé Since we are trying to
o’ “min
energies it is not unreasonable to use the same parameter ¢ in both

@k and @o, On minimizing this difference with respect to ¢ we find

—

complete cancellation of all the singular terms, both for the linear
massless Klein-Gordon field above and also for the nonlinear case.

As we have already shown that this rather dubious procedure yields
the correct answer Mick for the energy of a massless Klein-Gordon
particle of momentum fik, we hope it will also give reasonable results

when applied to our nonlinear field in the following sections.
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8.3 The Hamiltonian in the Finite Difference Approximation

The Hamiltonian of our Model Field II is given in the previous

section as

Py
H=2H ;H =Qd [[1+(a¢ )*][1+ —-5-) I,
32
where pn?‘ = -’ —— . The exact meaning of the square root needs
= aE 2
B
to be ascertained. We shall define it through the Fourier transform

of the wave functions. Observe the following expressions:

2 - o
) oikx K2 1kx’
ax”
2 s o
£(3—) o™X = £(-1*) ¥, where £ is a polynomial in
ax*
82
ox?

Hence we may define

~2 o o
‘1 °Y ""-: - elkx 5\, 1 *Yk2 elkx, )being a numerical constant.
X

Sincg any wave function Y(x,t) may be written as

1 2 ikx
P(x,t) = j dk ¢(k,t) e™ 7,
v(2n)

we can define
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N\ 92 i % ikx
}1 -)' p(x,t) = — ! ko1+Yk2 P(k,t) e,
N\ ax? V27

-C0

An unambiguous meaning for H is therefore established for the subset
of wave functions for which all relevant integrals of the above type

exist. We are in a position to attempt a variational treatment for

this nonlinear H.
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8.4 The Vacuum State

In view of the similarity of our Model Field II and the massless
Klein-Gordon field as seen in the weak field treatment of Chapter 6,

we again take

2 2
. EQ /20
@o =1 q)on’ where <I>cm = --—-;-—;L- )
n - - (mo®)
as the trial wave function for the vacuum state. Since
o
] 3‘ ( # ”13) Mo
¢ = — dn_\{oe ey
T VZm . (no? )™
we have
oo -%0? nn2 cﬁnn 2 lnr}gn
1 - 2 - e -
H & = — dn_ (ce ) Q& vVi+(AE ) 1+( ) —
2o ST 2 L Qd? (mo? )™

-0

The vacuum expectation value may be calculated exactly in terms of

modified Bessel functions of the second kind K\)(z),HS The result is
2 7
(o, Ho ) = LEM M8 031k ek, (], (8.4-1)
] o] Y 0 1
2nch
2 i A2 16 %
where B = — ; Azg-——q-—g——« =-—2—%;p=%a
& 2372 '

The minimization of (8.4-1) gives (Appendix 8.1)

o ey . o~ /B e _ /Eov
o’ o’ min T d nd®

(8.4-2)

This is a significant result. Comparing this with (8.2-1), (8.2-2)
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we see that the present zero point energy and the vacuum energy of
the Klein-Gordon field diverge in exactly the same manner. In
contrast the corresponding expression for the perturbation Hamiltonian
of Chapter 6 has a much higher order of divergence. One might then

expect a similar behaviour of the one-particle states.
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8.5 One-Particle States

In general we talk about a one-particle state in a nonlinear
theory only in the context of a perturbation approach. The
situation is however different in the present case. Our nonlinear
field equation admits individual plane wave solutions. Moreover
the Hamiltonian and the linear momentum take on a linear form if we
confine ourselves to a plane wave solution. Hence we may be able
to formulate one-particle states in an exact manner. Indeed this
can be done as will be seen in section 10.2, Chapter 10. Therefore
in our variational treatment it is reasonable to use the trial wave

function

X
hoping that it would at least give a qualitatively correct result.
After some calculation, whose details are available in Appendix 8.2,
the energy expectation value is found to be

QZ d"]

M8 (a+B),
Y2uch

(8 By = (2, Hoy) +

where A=K (B)[2K () - (K (DK ()] > 0,
B = 28(1-49[K0(B) - Kl(B)][KO{A)+K1(A)] <0,
@%a %{cos 2k d + cos 2kyd + cos 2k d].

Let i
<H>™ = (¢, Ho ) - (2, HO )
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k
For reasons specified in section 8.2 we shall take <H>-n-lin as our

estimate for the energy of the one-particle state concerned.
Appendix 8.2 gives

k

o wl.8
<H)min NEL fick.

[ —

Observe that\}’-g-ﬁ- ~ 0.9 which, under the circumstances, may be "
regarded as a good approximation to unity. " This means that <H>r;xi

is approximately the same as the corresponding value of the one-
particle state in the massless Klein-Gordon field case. This result
appears very reasonable. Since the theory ought to be Lorentz
invariant one would expect that the energy of something which
resembles a free and massless i)article should be ffick in order to give
a Lorentz energy-momentum 4-vector with momentum ‘53,

In conclusion we note that if we attempt to estimate the one-

particle energy by

k)m:’m - ((I)o’ HCI)o)min’

(¢, He
we again are faced with a divergent result. The same applies to
the expression

[(q)ga Hq)ls) By ((I)O, H(I)O)]O'o

where both expectation values are evaluated at the parameter value

g . which optimizes (@o, H<I>°) s
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8.6 jWowParticle States

Considerable difficulties begin to emerge as we try to construct
states resembling those two-particle states of linear theories. The
inevitably approximate or even precarious nature of the idea of two-
particle states in a nonlinear theory which allows strong interaction
is obvious. In our present case however we expect, from the knowledge
of plane wave solutions, that well-defined two-particle states may be
formulated at least for two particles moving in the same direction,
There should be no interaction between these particles. One
formulation which leads to these results is given in section 10,2,
Chapter 10, Interference effects begin to appear when we try to
bring together particles travelling at an angle with one another.

Our task is to estimate the interaction energy with the present

variational method,

'8.6.1 Two Particles Moving in Opposite Directions

When two particles are travelling in the same direction, there
is no interaction (see section 10.2, Chapter 10), Hence we only
have to consider two particles moving at angle with each other, i.e,
k, X positive constant xk, where k,, k, are the two k-vectors
specifying the states of the two particles concerned. With such g;,
k, we can always effect a Lorentz transformation to the centre-of-
momentum frame of reference where the two vectors will be seen to be

equal in magnitude but exactly opposite in direction. Therefore it
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is sufficient to investigate two-particle states with k +k, = 0
without loss of generality., A trial wave function which readily

comes into one's mind is

. i(glmgz).gd
® = et L@ E E B,

D R
M-2)o 91*92 =1 =2

iR
?
s

This function is orthogonal to @5 O and is a null eigenvector of

the linear momentum operator and it also gives the correct two-
particle energy for the massless Klein-Gordon field. ‘ However this
trial wave function is not satisfactory because it does not lead to
any interaction between the two particles (see Appendix 8,3 for
details). We have to attempt some other trial wave functions,
Since the state involved is of momentum zero it is not unreasonable

to combine the two null momentum eigenvectors @o and ¢k K to form a
9

new trial wave function

Kok * (8,6.1-1)

where a, b are constants to be regarded as two independent variational

parameters in addition to the original o in @o and ¢k K* The
=

- -

optimization of

(6, H)
B == 9 ®

with respect to a, b leads to

(¢, He ) (¢

K, -k’ a a

s en

09

(¢, H@Es“E)* (ka°kH¢E»‘E) b b

P =
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where use has been made of the orthonormality property of Qo and

2

E' -E = /[(¢§s~§9H¢§»~§)“(®0’H¢o)] + 41(@0,H¢E,_E)l2.

The corresponding trial wave functions ¢+, ¢ are orthogonal to each
other., We then regard E* as an estimate for the vacuum energy and E"
as an estimate of the energy of the two-particle state with linear

momentum zero, Then

+ -
AE = E° - E™ > (QE,—E,H@k,ﬁg)'(¢o’H¢o)’

will serve as an estimate of the two-particle energy relative to the
vacuum which may well bring in nonvanishing interaction energy.
There is still an unspecified parameter o to be determined. The
obvious choice which is in harmony with the procedure adopted in
section 8.2 is to employ the o which optimizes AE. Appendix 8.4

gives

(AE) ~ Ve
min rd 8

which diverges as d + «, Some other choices of ¢ are tried without
avail in Appendix 8.4, However there is reason to believe that again

it is the trial wave function which is at fault. To see this we can

s
3
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apply the trial wave function (8.6.1-1) to the massless Klein-Gordon
field, We find that the corresponding expression is (see Appendix

8.4 for details)

KBy 0 By m B 2%

KG KG KG "

Ho ),

% -k, k6%, -k P

& 3 o o o 3 3 1
leading to a spurious interaction energy which also diverges 1lke'g-
Under these circumstances we cannot reach any definite conclusion

about the interaction between two particles,

.<.~—.i."fj€‘3’
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'857  Some Rgmapks_

The variational approach we studied so far has been able to lead
to some positive results for one-particle states. The exact reason
for its failure in the two-particle case is an open question. Some
variants of the two-particle trial wave functions and of the variational
procedures have been studied without much success. It is quite
possible that we have just not hit upon a sufficiently good trial
wave function, The appearance of a divergent spurious interaction
energy of oxder %Tbetween two massless Klein-Gordon particles lends
support to this view — the trial wave functions are just not good
enough to give complete cancellation of all the divergent terms,

In the linear case it is certainly true that a more sophisticated
trial wave function will effect such cancellation and yield the
correct result, However the situation may not be so simple in the
nonlinear case. It may well be that there are no such things as
two-particle states and we are quite wrong in attempting to simulate
such a state by our choice of trial wave function. Further work is
needed to resolve this problem, Although the variational method in
its present form has only limited success for our Model Field II,
there is no reason why the method cannot be further developed into a
gene.al theory applicable for other field theories, especially those
of more conventional types. Obviously there is much scope for

further development.
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8.8 Appendix 8.1 The Vacuum Expectation Value

1§

(n) Ea? G
(1) R (® 1§ —] @ n) = e [KO(A)+K1CA)].

h el °%  2/7en
) ==-«‘;§/2cr22
T . B .
O o)™
(E) [T ThRE 2 e g G
(2) Ao = (¢o» 1+(AEn QO) = (I ®om? 1+(A€n I Qom)
- mkn - S
2 d B
=JG; g & K8
, @ ()
3) @,,H ®)=QdF A~ R
- S
= e ®) [X_(A)+K, (M)].
V2rch 3 9 g

(4) Minimization of (ib, H §o) in the limit of vanishing d.
There are only 5 possibilities for the behaviour of the optimum
Aand B as d + o:
Ao, B»o: X220, B8 %05 A>0, B

14

A » finite and non-zero, B >~ o; A + o, B -~ finite and non-zero.

Using the known asymptotic behaviour of the relevant Bessel functionsH3

one can verify that a consistent minimization is possible only for

the case A__. » o, B +> 0, From numerical computation we also
opt opt

know that (ioﬁlﬂli%) possesses a minimum for small d. Hence we

+ a, B + 0

conclude that as d -+ o, the minimum occurs with A
opt opt

and we have

@, uEy , ~LIM (2 2TEAR) , 5.
o} o'min g s 5

v laes
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]

5y o 1]

!

; 2
(& % YTFGED £4/9,)

[28(K,(8)-K, (8))+7K, (8)]

e® [28(K (B)-K (8))+ X, (B)]

where S,~ 1is the following set

(niil, n,, n3); (n19 n2119 ns); (n19 N, nsii),

and P,” 1is the following set of pairs

()
1£ g:@'e St
(n)

otherwise,

(n1+19n2 sns) ] Cnl:lsnz 91‘13) ; (n1=‘1 Dnz sns) b (n1+1 Dnz 9n3) ; (nj. Sn2+1 sns) 2

(n19n2”19n3)j

(n19n2+19n3) 9 (n.l snz"'i 9n3) 5 (nl 91'12 sn3+1) 2 (nl 9n2 9n3“1) 3 (ni 91'12 sn3“1) 9

(ni,nz,n3+1).
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(n) (n) _ (n)
Let Ai = AE»T with m € Si 5
(n) (n) _ ; (n)
Aii = AI)},I_]}’ with mym e Pi .
Then
(n) (n) 2
Ay +A1: _do_ ? Kl(B) '-"%' A
by /-2-:-”- 0
2 i (n'm) .kd
(3) (‘I)ks Hl’l q)k) = Mt :m' e (‘Em q)os Hn Em' (I)O)
T % o3 m, & - L
_2qd ' 7 2
= T [6R0A1 + 6R0A1i2§ + RiAo % 50 AORO]
3 17
& (o, 0t o 5+ 2% . P fan
o> n o - *
- VZnctM
where
A=K B2 () - (K0 + K D) 2] > 0,
B =

28(1-2,) [K_(8) - K, (81K (1) + K, ()] < 0.

(4) The minimization of

k
<H>" = (&, , Hfbk) - (tbo, Hdlo)

3

in the limit of vanishing d may be carried out in the same way
as for the case of the vacuum expectation value. A consistent
SO X : 5 : g ” .

minimization is possible only if Aopt . Bopt 0. Using

the known asymptotic propertiés of the relevant Bessel functions

we obtain

# e k20 (A8.3-1)

P
_ . 8
e <H>", =~f— fTHck
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8,10 Appendix 8,3 Two—Particle States I

o, O,
e
. if(n, -n,)-(n,-n,)].kd
& : z e (B B B0 HLESE 1T ],
M#M-1)0* n m, MY St
7yl
n, 4y

After lengthy calculation we get

d3
(o M, 3w B, HETe 08 . B Sl , BT % o &
ky-ka™k, -k LA e e R P
3
= 2(8,, Ho)- (0, HO ) + B &
B 5 (M-1)d*

where f stands for the rest of the terms and f does not contain M.
As we enlarge the box V within which the field is confined, M will
tend to infinity irrespective of whether or not d approaches zero.

It is therefore apparent that

Q.
(M-1)c*

may be igonored, We can pursue this a bit further, Let

k,=k

<H>" 7

1]

(%, HEy )= (0 HO)

]

He )] + L 3
(o} (n_ijon

2[(¢Es H®E)=(®os

k

We know that at <H> ., | B + 0 and A + «, We can now show
min® “opt opt

Qd?* .
—+———— f may indeed be neglected.

M-1)c*

explicitly that
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f consists of terms of the following form:

4 o 8 s o 5 i ) .
o AORO, o RoAii’ o RiAo’ o) RoZAo’ o] RoAi’ RoAZi’
RoBass Ry ARps 84Ri3 ReByys Rophyss Roplhys
@ (n)
ROA'.‘.“_‘.‘ 1_1“1'1_1_1' (where m ¢ 8,7 ; m e S, ); ROA@:}_IBZIE?,E}‘]_ (where Tﬁ’.‘.}z\*’f}ghﬂ s
where .
CPn 2 CPn 2
(1) R, = (¢, p+{—] &0), R, = (¢, [l+]— £20 );
2 no Qd® no 02 0 Qd® no
(2) A “ (E.E. b, VIEED? £ E. B J:
o b By "Wy 9 o Wz W, €
_ (n)
A2 = A?T@E with m e St ¥
(n) (n)
. - " - [}
By, =A_t# withmeS ™ , i n)eP ™ ,myn'gn’;
., ( (n)
Mgy = Bpmnml with (m, m') ¢ P, -

]

Now all these terms may be expressed explicitly in terms of the
modified Bessel functions of the second kind. Then using the

asymptotic expansions of these relevant Bessel functions for

B>+0 3 A+ o

we find that all those terms in f approach

g
d L]
3 3 3
- gL, T g i

(M-1)c*

where V = Md®, Comparing this with equation (A8.3-1) we see that
k

indeed (A8.4-1) is smaller than <H>" by a vanishing factor %=.
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8.11 Appendix 8.4 Two-Particle States II

The trial wave function

a @o + b ék,-k’

= BT = B0 HO )+(0 Ho )] ¢

/T (o He, _)-(8_,H8 )"+ 4](8_,Ho

k, -k, %%, k-0 )

AE = B - B = /[(® Ho

k,-k, ‘S"lf) (c1> ,Ho )]2 + 4|(<1> ,H®

(1) The Nonlinear Field

(Qlf’-lf,mlf,-lf) ~ 2(<I>1§,H<I>]S)—(®O,H<I>o);
12Qd*R A, . Z 12Qd°R A, Z
(¢ _,Ho ) = ! QdRoi—,ls_ = Q o 1+7k
L R o* o*
clearly
k k
~ Ko 2 &
AE ~ 2 I<H>" + |(<1>0 H(I)k k)| > 2 <H>

==> (AE)min > 2 f; HAck.

To actually estimate (AE)min let

k
<H>" + |(<I>0,Hc1>

Fh
it

15,-15”2;

-
3

1-2 +§—d2k3 +O(d") as d > o.

k

Now

K, k)l2
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k 3
L= - 2Qd A
e o [GRbAi e 6RoAlir ZE ¥ Rle 2 ° AoRo]
0,2
= : [(R1 - E-RO)AO - 6YkR A1+]

The rather tedious procedure of minimization of AE may be carried out

as before. The only consistent minimization occurs when

Aopt el s B Bopt -0 as d - o.

The result 1is

(AE)mi /Eﬁz’ which diverges as d -+ o,

Two other assignments of the value of AE are also considered. The
first alternative is to take AE calculated with the value of o which
minimizes E*. Obviously this also leads to a divergent energy since

AE > (AE)min° The other alternative is to consider

This again may readily be shown to be bigger than (AE)min, and hence

divergent.,

(2) The Massless Klein-Gordon Field

Let us apply the above trial wave function to the real massless
Klein-Gordon field to estimate the corresponding two-particle energy.

Then

AE, . = V(%

5 %
KG k, -k, K6k, k0 (8o kaBo) I +41 @ty I 1
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Calculation gives

and

(AE - v3 e /(1-215) T [21; T (1-215)2 1%

KG)min d

_ /Bhe
d 3

which gives a spurious and divergent interaction energy.

The other

two choices of the value of o in AE only lead to values bigger than

this one.
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CHAPTER 9

SOME REMARKS ON THE THREE QUANTIZATION SCHEMES AND A

DISCUSSION OF THE TREATMENTS OF MODEL FIELD II

9.1 Introduction

In Chapter 3, three different quantization schemes were reviewed.
These schemes were later applied to the two model field theories, in
particular to the Model Field II. In addition, we also studied
various special treatments of the Model Field II. 1In this chapter,
some problems related to the three quantization schemes will be
examined. A detailed analysis will also be made which enables us to
unify the treatments of the Model Field II given in Chapters 6 and 7.

We shall also compare the variational theory and the perturbative

theories.
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9.2 Some General Problems Related to the Three Quantization Schemes.

The Quantization Scheme I given in Chapter 3 appears to be quite
different from the schemes of Quantization II and III discussed in the
same chapters. The apparent difference gives rise to some perplexing
problems. Let us confine our attention to the Scheme I and Scheme II,
In Quantization I the Hamiltonian which is formed by a linear combin-
ation of the constraints vanishes. In quantum theory, the constraints
are taken as subsidiary conditions imposed on physical vectors. As
a result, the state vectors in the Schrodinger picture are 'time-

independent'" in the sense that

s l‘l’) = 0, (9.2-1)
H|¢> = 0. (9.2-2)

So things appear to be '"dead" and changelessoIl However, working in

a special coordinate frame in Quantization II, we surely have éfnon~
vanishing Hamiltonian and time-dependent state vectors. All this is
clearly seen in the treatments in Chapter 5 and 6 for the Model Field
II. A dilemma therefore appears. The way out of this di;emma may
be found with the help of an analysis similar to that given in sections
4,2 and 4.3 in Chapter 4. In the generally covariant formulation,

the coordinate variables x" may not be identified with the actual
(metre-stick and clock) coordinates of an individual observer.

This means that as far as an individual observer is concerned results

obtained in the covariant theory cannot be interpreted literally.
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To illustrate the situation more vividly, let us consider the para-
meterized or parametric for‘mulau:ion:[2 of classical mechanics. In
such theory the time t is promoted to the status of an additional

canonical variable d, while another variable T is introduced to act

as the independent variable. The original variational principle is

kg

6J~L(q1,,..qn,t,q1,...qn)dt = 0, where qi el

In the parametric formulation, the variational principle becomes

doleT = 0
where
/ /
94 9
= . ) LI T
Ly L(qi"°°qn’qo’ T T Jag s
) )
dq
q; = _7£§ and y = 0,1,2,..n.

One can define the canonical momentum conjugate to d, and establish
the Hamiltonian formulation in the usual way. L1 being homogeneous
in the velocity variables q; of degree one implies a vanishing
Hamiltonian for the system. There will certainly be one primary

13

constraint due to the introduction of an additional variable, Let

it be

$(Qys+-+Ays Pyse--Py) = 0. (9.2-3)

Let us further suppose that there are no more constraints nor consis-

tency equations. Then the total Hamiltonian is
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where u is an arbitrary coefficient. With this Hamiltonian,
equations of motion of various canonical variables may be obtained.
This parametric formulation is considered to be of the most advanced
form,,14 Among other things, this formulation is highly valued for
its consistency with the spirit of special relativity in that space
coordinates and the time are treated on an equal footing, Instead
of the variable t which is the actual time coordinate of an individual
observer (measured by his clock), an unspecified variable 1 is intro-
duced to act as the independent variable of the theory. The 1,

being unspecified, cannot be identified with the actual time coordinate
of an observer. Now one may go one step further to quantize the
parametric theory using the method of Quantization I. The constraint
(9.2-3) will become the subsidiary condition imposed on physical
vectors. As a result, physical vectors in the Schrodinger picture

are '"time-independent" because

3 A e -4
s 1> =0  Hplee = 0. (9.2-4)

To illustrate the situation consider a concrete one-dimensional

example of a particle in an external potential V. The Lagrangian is
& WoE T PP
L= 3¢ -Vig,).

In the parametric formulation we introduce 2 new variables q, = t and T.
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§ . 4

q!

m 1
L, 5 ag') (qi)]qo .
/ 2
P R
=3 "_!' - -—-’- , -s e aae — — —— - °
1 9qf aq i o aqg 2 g 1

==> the primary constraint in the classical theory

p2
¢ = B s V(q,) = 0
Po * Zm el :

The Hamiltonian is proportional to ¢ and therefore vanishes. The

equations of motion are obtained from the total Hamiltonian

Hy = ug,

where u is an arbitrary function of qys 94

To quantize we have

5w il abes o T AL
Po * By, = =M dq, Py 7Py = -if 8q,

The constraint equation now takes the form of

~
2

~

p
y 1 _
(P, * 3 *+ V(a)) ¥ =0,

ﬁz 2
2m

A 9 A
or ifi —-—-T(qosqi,T) = [~

qu G V(ql)]w(qo:qi,f),

8q1

The Schrodinger equation of motion is

y d _ e
iR = [¢> = HT|W> = 0,

Thus the wave function ?(qo,ql,w) is actually independent of the

parameter T while its qo-development is given by the standard

Aa;-i-'-té%
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Schrodinger equation.

We have the apparent dilemma showing up clearly now. However in the
present case we know with certainty that the physical system as

viewed by an individual observer is not changeless — the wave function
does indeed depend on :his time coordinate CI This example shows
that expressions like (9.2-1), (9.2-4) cannot be interpreted literally
and that they do not imply a changeless situation, In general x°

and 7 in these expressions cannot be identified with clock readings

of a physical observer, nor can H or HT be interpreted as a physical
energy. Perhaps it should be stressed that while the generally
covariant formalism and the Quantization I have great theoretical
advantages, we actually have to go into the theory formulated in a
special frame in order to be able to see what is going on from the

point of view of a particular observer,
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9.3 A Unified Treatment of The Model Field II

We shall show that the treatments of the Model Field II given in
Chapters 6 and 7 may be unified as a perturbation theory about an

exact solution of the field equation.

9,3.1 A General Formulation of the Perturbation Theory

Let 5(0) be an exact solution of the field equation (6.2.1-1).

The corresponding Langrangian density and the Hamiltonian density

are |
(0 Q\ngogfo) (o) .Y lo) _ QJ[1+(V€(°))2][1"(%(0))2] ,
(o) _ a£() “ :
where = ;Exsj-o Now try a perturbation solution of the form
£ = E(o) 5 5(13 + g(z) T i
where g(i) is regarded as being a small quantity of first order, g(ZJ
as small of second order and so on. Let
g g @
Then
=€ 4y,

The Lagrangian density and the Hamiltonian density are

)

o1 e s - o/ 1D T,

for)
it

oL

o

BE

it

where 11
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'9,3.1.1 General Theory

Consider a transformation

£ # = Lg-g'%)
1I b T = (H,,'n'(o))
& I}E= X‘é(o)ﬂ‘ + ﬁ(°)¢,
where E(O), n(o) are taken as known functions. This is a canonical

transformation in the sense that the form of canonical equations of

motion are preserved, that is,

. _ BH - H

€= a7 Rl
o Lz

> __ gH . _

I E"g W—W‘,

Poisson brackets between canonical variables are unchanged by the

transformation., Hence we may consider ¢, wm as a pair of canonical
variables for the description of the field in place of £, . More
explicitly we have now for the characterization of the field a pair

of canonical variables ¢, m with the Hamiltonian density

; . -
W - Q/ﬁi+(vs(°)-+'V¢)3][1+(E%”’* . 31« 890 4 3%, .3.1-1)
Y

The Lagrangian density is

N I R I AR IR A

In the following two sections we shall see that the perturbation
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theories we had before may now be obtained by particular choices for

E(O).

9.3.2 Weak-Field Theory

The weak field approximation discussed in Chapter 6 is based on

the binomial expansion (6.3-1) of the Hamiltonian density

Qq/[1+(V¢)2][1+(S%DZ], Vo, E%-being small,

Comparing with (9.3.1-1) we can see that this weak field theory is
really a perturbation theory about an exact solution to the field

equation

(0)

3 = constant.

The weak field theory may be extended slightly by considering a

perturbation about

where au, b are constants. On substitution into (9.3.1.1-1) this

leads to a Hamiltonian density

N2 2
Q‘/ [1+?(aj+d>’jJ T[1+(b+m)?].

9.3.3 Theory of. Everywhere-Slowly-Varying Field
(o)

Suppose £ is a solution which is everywhere-slowly-varying.

With V¢, E%-being small we can effect an essentially binomial expansion




~186-

of the Hamiltonian again. But in order to achieve greater similarity
with the treatment in Chapter 7 we proceed in the following way.

Let

(0) =/

E(o)-i_cb ; ﬁ = 7T +1 ; g = E—E(O) ; r[ = ﬁ"'ﬂ'(OJ::

£ =

Note that we are not performing another transformation and £, 0 are
purely short-hand symbols. Rewrite the Hamiltonian in (9.3.1.1-1)
in terms of £, 1. Then carry out a Taylor expansion of it about

E(0)

H=Ifxx@h%foN%_(wi#+F@£%&ab)g,g.+‘yx’ O
ik 5 BE . o175
o1 2.8
/

in the same way as in Appendix 7.2 in Chapter 7 we obtain

STBE
3

i

E j] ey (9.3.3-1)

where the superscript (o) refers to values at T=£ , I = ﬂ(o).

We shall now make use of the Ukn functions introduced in Chapter 7

and the slowly varying nature of Vgco), “(o) which also implies the

(0)’ (0

same property of any function of Vg appearing in (9.3.3-1),

3/2 5

L (x) = 1, wusing the same notation as before,

om " -

m
— H:Jd%;}{: 2 Ls/zjdsx U (x)}c
m o8-

The following approximation may be made:

Uom(§) f(EE?,n(O)) ~ fﬁo) Uom(§), (no summation over m)
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where f stands for any function of £(§), W(O) in (9.3.3-1) and féo) is
3

its average value around X = mL. fﬁ may be taken to be
COJ - f(O)(g(?), 7 (9 ,
i (0) _ (o),
S © ol m
L R
m

(o), . .1 3 (o), ., (0} 1 : . (0)
where <E,j >@ = L3/2 dx U0111 g,, 3 <m >Ill 3/2 d’ x U i R
This is justified since the slowly varying nature of g(o) n(O) makes
it immaterial how such average is precisely defined.

Then (9.3.3-1) becomes

He P s 0094
m 0

2 ) 2 A _
b z_z[ﬁ_if)“)jdﬂx v+ ""—__:E'-:—)(")fo O & 0 1B 0
po i o >+ sJ) N

2~ m WI*/m % ;9E Jm

2 A _/

"’ K ) (°) Exu T (E )+

anag = # L

oooooo v § (9.3.3-2)

Comparing this with equation (7.8-1) and identifying ———~£o) with

ol
U
(aﬂ”%lin (7.8-1) we can conclude that our present theory does indeed

reduce to the treatment in Chapter 7. The form of (9.3.3-1),
(9.3.3-2) is specially written for an easy comparison with equations
(7.5-1), (7.5-8). Actually the present theory may be made neater

by expressing (9.3.3-1), (9.3.3-2) in terms of the canonical variables

@ s Then the Hamiltonian becomes
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m m
3/2 2 2
EZ_ = [‘E:!-}(O)[dgx Uom o (a_.x—..—?(()) & x U #,4% 5 *
m it/ m - 92 .9 Jm g atsl
s - 21 ) -
(_____)B’X, (o)jdax U  wd .1 +
= om »3 e

The quantization is effected by imposing the usual commutation rules

on ¢, m, while keeping g(o)’ “(o) classical,

9.3.4 Some Qualitative Features

The possibility of a unified treatment for the weak field and
the slowly-varying field cases should hint at some common features
in these two cases. They are
(1) In the lowest approximation, both treatments lead to a Klein-

Gordon type field with the corresponding set of non-interacting

particles.

(2) Higher order interaction terms are obtained essentially from a
binomial expansion of the square root expression for the
Hamiltonian density. As one goes to a higher order, one has a
higher order product of ¢,j’ m leading to higher order divergence
in the quantum theory. The type of divergence in both treat-
ments is of the same nature.

There are also substantial differences in the two cases. They ave

(1) Even in the lowest approximation, there are fundamental differences.




~-189-

While the weak field treatment leads exactly to a massless Klein-
Gordon field, the slowly-varying field theory gives a quantized
field which is superimposed on a classical background field

o
51510)’ (o)

™ This background field also contributes to the

e;ergy ;igenvalues of the quanta.
(2) The use of UKn functions leads to quanta which are localized
in domains o%—volume of the order of L’ as shown in section
7.5, Chapter 7.
The appearance of the classical background field is one of the most
striking features in an intrinsically nonlinear field. We also
have noted that the background field may vary slowly with time.
Hence the energy associated with each quantum will depend on time as
well as the spatial position of the cell in which it is created,
These properties appear to be in accord with the very concept of

curved space-time in which not all world points are equivalent as in

the case of a flat space-time.
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9.4 Variational Treatment versus Perturbative Theories

The variational method used in Chapter 8 is certginly very
different from those perturbative theories discussed in some previous
chapters. The fact that some finite and reasonable results are
obtained in the variational calculation could be significant. It
might mean that in Chapters 6 and 7 the divergences, at least some
of them like the one-particle self-energy, are spurious effects due
to the particular perturbation theories employed rather than the
inevitable consequence of the nonlinearity of the field concerned.
Therefore it would be well worthwhile to effect further work along
these lines. Some practical schemes are outlined in the next

chapter.
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CHAPTER 10

SUGGESTIONS FOR FURTHER WORK

10.1 Introduction

In this thesis, a study has been made on the quantization of
some generally covariant model field theories. Certain results are
obtained on the generally covariant aspects of the problem.

However a tremendous amount of work is still needed in order to
obtain a totally satisfactory quantum theory of such nonlinear fields
in a curved space-time. We shall not enter into discussion of any
such general problems. In this chapter we shall only suggest for
further research some definite problems directly related to our
present work on the Model Field II. There is of course room for
more work to be done in order to make the various present treatments
of the Model Field II more complete and satisfactory. However in

this chapter we shall confine ourselves to suggestions for further

s

work along completely new lines.
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10.2 Attempt for a New Treatment of the Model Field II

10.2.1 Classical Theory

As shown in section 6.2.1, Chapter 6 our Model Field II possesses
a set of plane wave solutions. Each such solution has the form of
a free wave propagating along a straight line which happens to be a
null geodesic in the space-time defined by the solution itself. No
interaction effect exists as long as the field is built up by waves
travelling in the same direction. Let us confine the field in a

box V with the usual periodic boundary conditions. Let

1 S
¢ng = :EE exp (in kpxp),

where k. = gﬁ-x integer; k= |k| = k; n = integer; k kP = quk k=
j L o = ¢ TR
Then
= * % 5
gng An¢n§ + A.nd)n15 (no summation over n)
= % s * A L
An¢-n§+ Anzbn15 An?ng * A.n Ink? (10.2-1)
is a real solution to our nonlinear equation (6.2.1-1). The general

solution representing a wave travelling in the direction specified by

a g is
& = 2 €k (10.2-2)
- n>oQ -
; 2 2
s : "’15/ ¢ Q8 (k) )
'n'k = = C2 and """Q"" = (VEIS_)

0.
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QI+ (7,07 111+ (538"

I
lf

cm

k
Q1+(VE)*] = Q + H[(VE)*+ l-—-:] 1. (10.2-3)

H}

We end up with a Hamiltonian which is linear in the sense that the
energy contributions from different n-values are additive. Rewrite

(10.2-2) as

N fic
§ = % f 2qnk CCnkfnk * Atk -

- n>
Expressing the Hamiltonian and the momentum associated with the field

in te * we obtain
n terms of a3y a

H =fo _ (10.2-4)
; .
= +2 ficnka, a., where E_ = QV +
Eo A nk nk o
% X fc nk.
n>o
i 3
P]S —Sd X(—V&IEJW‘E
.f.
= Eﬁnlfankank+%52 A nk (10.2-5)
n>o - = n>o

10.2.2 Quantization

We now postulate that each plane wave solution becomes in the
quantum theory a quantized harmonic oscillator in the same way as in
linear field theories, that is, a k’ ank are regarded as creation

and annihilation operators with the usual boson commutation rules

[ank’ ] = [a k’a, ] =0; [a k’ nk] nn&’
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Hk’ Pk are now operators. We see that if we confine ourselves to
tﬁe field excitation which is formed by plane wave travelling in the
same direction, we can perform the quantization which leads to the
exact solution of various problems about the particular field
excitation. The procedure may be applied to any specific k.,
Observe that the present results agree with the corresponding ones

obtained by the variational method of Chapter 8. Indeed the two

theories reinforce each other.

10.2.3 Some Ideas for Future Research

A general picture in the quantum theory begins to emerge after
we carry out the above quantization procedure for all k values.
What one has now is that some special subspaces exist in the linear
vector space of quantum states for the nonlinear field as depicted

in the following figure.

urkonvin saglows - ba Doploned

TR et : p— o
f S—
o

- -
Msuﬁ?m ‘*&W }7 sedaltns Py
praedlig fo s dtalion of taa i)

l .
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In such subspaces the field behaves like free field consisting of
non-interacting particles moving along the same direction. The next
step is to explore the "unknown' region outside those ''known'" sub-
spaces and this presents great difficulties, Firstly one would try
to extend the above exact treatment. It is possible to obtain exact
solutions other than plane wave ones to the field equations for our
Model Field II. The problem is whether such knowledge could help to
bring about the quantization of the corresponding field excitations.
Secondly we should seek now approximation methods in the light of the
above exact quantum theory of plane wave states. The most obvious
thing to do is to examine two sets of plane waves travelling along
almost parallel paths. It would be reasonable to expect that if the
two sets of waves differ only slightly in their direction of propa-
gation then their interaction may be treated by a perturbation theory.

Further efforts are needed to develop the above ideas.

Lanl
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10.3 Interaction with other Fields

So far our discussion has been confined to the &-field itself
without any reference to its possible interaction with other things.
One could study this problem in the usual way. Consider the simplest

type of coupling determined by the total Hamiltonian

_ /
HT = HE + H,
where
N mpspoomr=y:
o = | @x frme & 1
g ~u[d?x Q £(x,t)¢, and £(x,t) is a prescribed
function.

The field equation becomes

e e Flx, 1),
po -
1+U E,Qg,c sV
f(x,t) may now be interpreted as the source for the £-field. The

usual static point source may be incorporated here if we take
fe 2 S(x+%).
> (x - x)

This source then consists of point particles fixed spatially. These
particles may be considered to possess a sort of "charge'" which
generates the g-field.

For a more general theory of coupling £-field to other fields
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defined on curved space-time one may follow the treatment adopted in
the theory of General Relativity,J1 In General Relativity the field
variables are the metric guv. The coupling with other fields may be

formulated by taking a Lagrangian density of the form

where £G is the original gravitational Lagrangian density. £¢ will
in general contain the metric guv in addition to the new field
variable ¢ and its derivatives. The derivatives of guv should not

appear in £ Then the total Hamiltonian density takes the form

6
L. =ch +J€$, (10.3-1)

wherelﬂc is the original gravitational Hamiltonian density. The
situation becomes more involved when this scheme is applied to our
Model Field II whose field variables are gA. The additional Lagrangian
£¢ would then contain the derivatives of gA, This derivative type

of interaction is not unknown and the scheme could be carried through.
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10.4 The de~Sitter Universe

Consider the generally covariant field theory derived from the

following Lagrangian density

A
Q e £ B_C.D.E
P ABCDE oCE E B £) , (10,4-1)

/d 31 3’ x' ¥ )

where d is a numerical constant of dimension [(length)®];

3 (£2£CEDely

3(x°x'x2%)

= the Jacobian determinant;

€ ABCDE" the 5-dimensional permutation symbol.

It is seen that
I £ i

is an invariant under coordinate transformations on the 4-dimensional

u

space. In the special coordinate frame x" = g

, the Lagrangian

density becomes

£ -Q\/i-gpog,pg,c - %%2 . (10.4-2)

The field equation is

e
b 8

l—. ST o % i..
f pa
@ 1-0 g,pg’c sV I/E

To relate all this to the de-Sitter universe of constant curvature we

= 0 (10.4-3)

AT
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recall that the de-Sitter space can be embedded in a 5-dimensional
Pseudo-Euclidean space and that a 4-surface defined by DAB gAgB = T,
where r = a numerical constantgis a de-Sitter space of constant

u

curvature %qu In the special coordinate frame gu = X, the de-

Sitter space is given by

2 _ v i
e Mg B r. (10.4-4)

This expression satisfies equation (10.4-3). Therefore we conclude
that indeed the de-Sitter universe is derivable from the Lagrangian
density (10.4-1) if we identify d in (10.4-1) with the r in (10.4-4).
Comparing all this with our Model Field II, we appear to have the
surprising result that the Model Field II, which is a 4-surface of
stationary volume, seems to be a de-Sitter world of a constant
curvature-% = 0. This is no cause for alarm however. While the
flat space is a solution to our Model Field II, it has other non-
trivial solutions as well. Now one can set up the Hamiltonian theory
for the new field and quantize it. It will be most interesting to
investigate the final results to see how they are related to the work
of other peopleJS using mostly group theoretic methods. In passing
we note that the original flat metric DAB has to be modified to

achieve a constant positive curvature while maintaining a negative

value of g. A choice isJ4
(4
1 0 0 0 O
0-1 0 0 O
£ o 4
0 0 0-1 0
0 0 0 0 +1 .




-200-

The treatment of curved space-time using such an embedding technique
may be extended to other Riemannian spaces. It is knowan that
various Riemannian spaces commonly occurring in general relativity
are immersible in pseudo-Euclidean spaces of appropriate dimension.
As an example consider those vacuum solutions in general relativity,
that is, solutions which give a vanishing Ricci tensor Ruv' We
know that all vacuum solutions are immersible in a ten-dimensional
flat space, while on the other hand, many vacuum solutions of
physical significance are immersible in a six-dimensional flat space.

All vacuum solutions immersible in a five-dimensional flat space are

trivial, leading to Minkowskian space-times only [e.g. see L.P.

Eisenhart, Riemannian Geometry (Princeton, 1949) p.200]. Therefore
one can fo;mulate theories for the above non-trivial space-times in
a way similar to our treatment of the Model Field II. The results
obtained in section 5.1, Chapter 5 may be easily extended to higher-

dimensional embedding spaces. The field equations will be

Ruv =0, (10.4-5)

where the Ricci tensor Ruv is expressed in terms of the coordinates
gA (A=0,1,2,...,N; 6 < N< 10) and their derivatives of the
particular embedding flat space concerned. One may then proceed to
set up a Lagrangian formulation for the theory, bearing in mind that
in the variational principle the variation is effected by SEA,

After this the Hamiltonian formulation may be established and various

quantization schemes can then be attempted. In view of the complexity
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of the field equations (10.4-5), various technical difficulties may
arise in actually carrying out the above programme. There is

obviously room for much further work on this.
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10.5 New Field Theories

Some interesting new quantum field theories may be derived from
the Model Field II by new interpretations of the Hamiltonian density
in a similar way to that in which the Dirac equation was obtained.

The classical Hamiltonian density for the Model Field II is

¥ =/l mar e,

where we have taken Q = ¢ = 1 for brevity. Now an example of a new

interpretation of this expression would be to take

V/[1+(V£)2][1+ﬂ2] AR R.VE + w T * w.VEm, (10.5-1)

in the sense that both sides should be identical on squa?ing, The
quantities ﬂu = (Qo,g); wu 2 (mo,gj are constants to be determined
by the squaring procedure. It may be readily shown that squaring
leads to the following expressions for the determination of ﬂu and

W s
i

{Qu’gv} = 26uv 3 {wu,wv} = 26pv; (10.5-2)

{Qu’wv} + {Qv’wu} = 0, (10.5-3)

where the brackets mean anticommutators, that is, Qu, wp separately
satisfy the Dirac algebra (10.5-2) while at the same time they are
related by (10.5-3). Obviously Ru’ mp are matrices. Lengthy
calculations show that at least an 8-dimensional matrix representation

is needed. An explicit 8-dimensional representation for Qu, W is
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D
|

_ [ o -1).
% £ &
- I O . - 0 «a
] w = =5 ’
9 g -3 o)

the 4x4 identity matrix and

[0
i

/-'—'-\.

o e

|

l2 o

\,/

€
!
|1

i

where 1

=(O g » 0 being the Pauli Matrices.
c O

Hence we obtain a field theory defined by the Hamiltonian (10.5-1).
The field may be quantized by imposing the usual Boson commutation
rules on £ and w. Since it is a linear theory, we can readily
calculate the exact energy eigenvalues and the corresponding multi-
component eigenvectors. Many similar, yet different, interpretations
of’k& are possibly leading to similar theories. However this type

of procedure leads only to linear quantum theories. It is hard to
see how such linear quantum theories can possibly be related to the
original nonlinear classical theory. Perhaps further investigation
should be made to see if there is any other interpretation of the
Hamiltonian density in quantum theory which will bring in nonlinear
terms, hence bearing a closer relationship to the original classical

theory.
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10.6 Further Remarks

A lot of work has been done on the quantization of the
gravitational field. However in most cases people are unable to
carry their schemes right through because of the sheer mathematical
complexity of the gravitational field equations. The Model Field
IT studied in this thesis is much simpler in comparison while
retaining many essential features of the gravitational theory. E
would be well worthwhile to test out these schemes on the Model
Field II instead of the frequently used electromagnetic field which
is physically very different from the gravitational theory of curved
space-time. In particular many of the conceptual problems arising
from a curved space-time may be discussed through the Model Field II.
There are also many people working on the quantization of nonlinear
Lorentz covariant field theories. As far as the problem of non-
linearity is concerned one may txy to use their methods to treat
the nonlinearity of the Model Field II. Of course many of these
methods may not be applicable in our case, e.g. those valid only for
massive fieldan6

One hopes that further investigation along these lines may help

towards a better understanding of the quantum theory of fields

obeying nonlinear differential equations in a curved space-time.
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