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Abstract

This work assesses the importance of nonlinearity in the stability of flows
over compliant and rigid walls, and comprises three main parts. The first
part considers inviscid flow with a free surface over a flexible boundary. The
dispersion relation is obtained, and the conditions for linear instability investi-
gated. The linear dispersion relation is then used to show that the conditions
for nonlinear three-wave resonance are often met. In some circumstances, the
resonance may be of ‘explosive’ sort, involving waves of opposite energy sign;
but non-explosive resonant configurations are most common. Next, the wave-
amplitude evolution equations for three-wave resonance are derived, firstly by
a ‘direct’ approach, and then via a variational (averaged Lagrangian) method.
Results agree with those of Case & Chiu (1977) for capillary-gravity waves,
and Craik & Adam (1979), for three-layer fluid flow, on taking the appropriate
limits. We also consider a nonlinear model for the flexible boundary.

In the second part, stability of Blasius flow over a compliant surface is
studied. This extension of rigid-wall work of Craik (1971) and Hendriks (ap-
pendix to Usher & Craik 1975) determines the quadratic interaction coefficients
of three-wave resonance, and complements the linear analysis of Carpenter &
Garrad (1985, 1986) and others. First, the linear eigenvalue spectrum is in-
vestigated for various values of the wall parameters. Then, resonant triads are
located and the quadratic interaction coefficients determined numerically. By

way of introduction some rigid-wall results are also presented, extending those

of Hendriks.
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Nomenclature

Roman

phase speed

damping coefficent

mean fluid depth (Chapter 2), step size (Chapters 3 and 4)
wavenumber vector (Chapter 2)

wall mass per unit span

Reynolds number

wall restoring force

N o oy 3 O > A e

wall tension

(5

time co-ordinate

U, fluid flow speed

x streamwise co-ordinate
y transverse co-ordinate

z vertical co-ordinate

Greek

streamwise wavenumber
transverse wavenumber

surface tension (Chapter 2), oblique wavenumber (Chapter 3)

> 2 ™ R

boundary layer thickness

m

ordering parameter
free-surface displacement
wall displacement
density
kinematic viscosity

7] velocity potential
, @ stream function

adjoint stream function

€ & & ®» ¥ ®» 3

frequency
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Subscripts
0 reference value
00 value in free stream
i imaginary part of complex quantity
m value pertaining to wall material
X real part of complex quantity
w value at wall
Abbreviations
(. complex conjugates
n.Lt. nonlinear terms
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Chapter 1 Introduction




1.1 Motivation

An understanding of flows over flexible boundaries is of technological and
scientific importance, mainly because of the potential benefits of drag and noise
reduction for marine craft. Since a fully nonlinear analysis of such problems
is presently impossible, previous studies have concentrated on the linear sta-
bility of such flows. The present resurgence of interest in this area is largely
due to encouraging experimental results by Gaster (unpublished) and Gad-el-
Hak (1986). Recent studies by Carpenter (1985), Carpenter & Garrad (1985,
1986) and Yeo (1987) survey the earlier literature at length and present new
theoretical and computational results based on linear stability theory.

However, little systematic theoretical work has yet been done on nonlinear
aspects of such problems, despite the well-developed state of weakly-nonlinear
stability theory, both for fluid flows between rigid boundaries and for interacting
interfacial waves (see for example Craik 1986a). In Chapters 2, 3 and 4 of this
work we focus on simple weakly-nonlinear models that yield insight into the role
of nonlinearity in such flow configurations, and in particular into the potential
importance of resonant interactions.

There are several reasons why three-wave resonance can be of importance.
Firstly, this weakly-nonlinear interaction occurs at quadratic order in wave
amplitude, and therefore can be expected to often be of more significance than
the cubic-order interaction studied by Stuart (1960) and Watson (1960). This

is particularly likely to be so at smaller wave amplitudes.

Secondly, three-wave resonance provides a mechanism for the development .

of three- dimensionality in the transition to turbulence of shear flows: the work
of Craik (1971) and others has shown that certain forms of resonant triad in
viscous shear flows exhibit remarkably large quadratic interaction coefficients,
these being O(R) for sufficiently large Reynolds number R. This mechanism has
received qualitative support from the experimental investigations of Kachanov

& Levchenko (1984), Saric & Thomas (1984) and others.

1.2 The Navier-Stokes equations and the linear approximation

The starting point for all that follows is the incompressible Navier-Stokes

:
£




equations

% +(uV)ju=F - —,I;Vp +vV?u, (1.1a)

V=0, (1.1b)

where u is the total fluid velocity, and F is a body force. At rigid boundaries
the flow muét be exactly zero (no tangential slip, and no normal velocity). The
no-slip condition does not obtain for inviscid flows. For flows with deformable
boundaries the exact boundary conditions are (i) all velocity components must
be continuous, and (ii) shear stress and normal stress must both be continuous
across any boundary.

For inviscid, irrotational low we can define a velocity potential ® by u =

V®; then (1.1b) becomes Laplace’s equation
Ve =0 (1.2)

and (1.1a) can be re-expressed as the unsteady Bernoulli equation

0 1 P
i -2-V<I>.V<I’ + gz + o= f(t), (1.3)

on taking F = —gzk. If we assume that some basic flow U satisfying (1.1)
is perturbed by infinitesimal travelling waves of the form exp{ik(z — ct)}, the
problem becomes an eigensystem: solutions for ® at a given wavenumber k
will only exist for certain values of the phase speed ¢ = ¢, + i¢;. Evaluation of
(1.3) at boundaries (where we impose conditions on the pressure) yields a linear
dispersion relation for the problem. This can be obtained explicitly for many
inviscid flow problems. Several distinct solutions for ¢ will in general exist at a
given k: these represent different wave modes. For example, in many situations
pairs of upstream and downstream propagating waves will be supportable on
any deformable boundaries that are present (such as free surfaces or compliant

walls).

The dispersion relation can be written generically as

D(w, k) = 0. (1.4)

3
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In simple cases the degree of this equation is equal to the number of wave-modes
that the system supports. The dispersion relation (1.4) can often be written in

terms of two or more smaller systems that are coupled to some extent:
D(w,k) = D, (w,k)D;(w, k) — A?(w, k). (1.5)

Here A? provides a direct measure of the strength of the coupling; in the limit

A — 0 the systems are completely uncoupled, and we may write
D1 (wl,k) = Dg (Wg,k) = 0, (1.6)

In practice A is negligible except when w; and w, are almost equal: w, =
wy + 6, |§] < 1. Cairns (1979) has examined mode coupling using the concept
of wave energy; he has shown that, for conservative (non-dissipative) systems,

the energy W of a given wave may be expressed as

4 aw,-

4P, (L)
where A is the wave amplitude. Of course, D has to be suitably defined in some
frame of reference in order to be meaningful. The frequency w will normally be

real for non-dissipative systems.

If we suppose that w = w, + A, |A| < 1, then

Dl(wl + A,k)Dg(Wg -+ A '—'5,k) = A2 = 0,

oD, oD,

—— A — A%y
=>Aaw1 (A 6)3% A’ ~0,
-1
=A% — A§ — a0, 81, A% =0,
3(.01 sz
giving
1 8D, 8D, \ !
A== |6+4/62 2 - Seeknl. . ;
2 \/M (2220 L)

It is clear, on remembering that all quantities in the discriminant of (1.8) are

real, that if %%f and 3—3: are both positive then the roots w; and w, will remain

real and distinct. If, however, the product %}3—3:— is sufficiently negative then

w; and w, will form a complex-conjugate pair. In other words, the two roots
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coalesce, one of them becoming unstable whilst the other evanesces. The range
of wavenumbers over which the instability extends is of course dependent upon
the nature of the dispersion curves w versus k for the two parcipitating wave-
modes: the interaction can only occur where these curves are sufficiently near
to each other.

The wave energy W = %w,-gTDJAI’ can be negative, in an appropriately
chosen frame of reference: the creation of such a wave results in a reduc-
tion of the total energy of the system. For example, an otherwise upstream-
propagating wave that is forced to travel downstream by a sufficiently strong
basic flow U will possess negative energy. It is clear from the above simple
model that interaction of two waves of opposite energy sign will result in insta-
bility (due to the negative discriminant), whereas waves of like sign will not: in
fact, in the latter case the waves will exchange identities. Both possibilities are
well illustrated in Chapter 2 below.

Negative-energy waves have the important property of being driven unsta-
ble by dissipative processes, such as viscosity, or damping in a flexible wall. This
phenomenon was the subject of a fine theoretical study by Benjamin (1963): he
was able to place the possible wave-modes for this combined fluid-solid problem
into three classes, according to their behaviour as damping is introduced into
the system. Class A consisted of negative-energy waves, and orthodox positive-
energy waves were defined as belonging to Class B. The third category, Class C,
was reserved for those modes that are not significantly affected by dissipation.
Benjamin was able to show that the well-known Tollmien-Schlichting instability
waves are in fact Class A. The classical Kelvin-Helmholtz instability is Class
C, and modes on flexible walls can also be of this type, although they mainly

belong to Class B (see below).

It should be noted that for dissipative systems, such as viscous shear flows,
the validity of Cairns’ simple interaction model is (as he admits) rather dubious.
The presence of a critical layer (that is, the neighbourhood of a point z, where
#(z.) — ¢. = 0) would unquestionably be of importance, and there is also a
difficulty in defining wave energy for non-neutral modes— which are, of course,

the norm in such systems. One can nevertheless make tentative deductions,
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g e o al,

at least for modes that are in some sense ‘near-neutral’. If we allow § to be
complex, then clearly the solutions for A will not comprise a conjugate pair,
whatever the value of Re{37*302}. Hence we do not in general expect to

observe modal coalescence in dissipative systems: instead, some form of near-

coalescence is likely. This is indeed found to be the case (see Chapter 4 below).

1.3 Nonlinear theories

There are basically two kinds of nonlinear theory. In the first kind, which
is the most general, one considers arbitrarily large disturbances in the context
of the full, unapproximated Navier-Stokes equations. Integral inequalities are
used to provide bounds on various flow properties, for example disturbance
energies, and in this way one obtains stability criteria. These take the form of
necessary or sufficient conditions for growth or decay with time. The principal
advantage, of course, of this approach is the lack of é.ssmnptions about the
nature of the disturbance. However, for many flow problems, such as shear
flows, the stability criteria thus obtained are much too imprecise to provide
useful information.

A second type of theory is a rational extension of the fact that linear theory
is valid for disturbances which are in some sense sufficiently small; but strictly
speaking for any non-zero wave amplitude linear results are nevertheless only
an approximation. A sequence of successive approximations is obtained by ex-
panding in powers of a dimensionless wave amplitude. This kind of approach is
termed ‘weakly-nonlinear’, and has proved very fruitful in illuminating underly-
ing physical processes. Not all weakly-nonlinear theories have been developed
with full regard to mathematical rigour, but very often this comes later as
the fundamental physics becomes more clear. We shall be considering weakly
nonlinear theory in chapters 2, 3 and 4 of this work.

Nonlinear interactions may involve one mode only, or several. The former
case is known as ‘self-interaction’, and was the subject of important studies
by Stuart (1960) and Watson (1960), using amplitude-expansion techniques.
Watson decomposed an initial disturbance into Fourier components— in other
words, into a fundamental mode and an infinite series of associated harmonics.

This yielded a sequence of ordered equations, which could be then solved suc-

6




cessively.

Most of the work presented below is concerned with resonant triad inter-
actions. A resonant triad exists if there are three wave-modes of frequencies
w,; and wavenumbers k; for which Z?zl w; =0, Z_‘?:l k; = 0. The principal
importance of the resonant triad interaction is that it is an O(A?) phenomenon,
where A is wave amplitude— other nonlinear effects, such as self-interaction or
mean-flow modification, typically occur at O(A®) or higher, and so only become
important at higher amplitude levels. For this reason it has been suggested that
the resonant triad interaction can play a major réle in the transition of flows
from the laminar to turbulent regimes.

The interaction equations may be written in their most general form as

a i
(Et‘ +V’-.V) A,‘ +0'jAj = A,‘A;_'_xA;_'_z, 1=12,3 (1.9)

on truncating at O(A®). Indices are evaluated modulo three in (1.9), and * rep-
resents complex conjugation. The group velocity of the jth wave is represented
by v, and linear growth or decay by the factors o;. These equations are only
valid for a finite range of A; at sufficiently large amplitudes, higher-order terms
must be retained. Thus in terms of an evolving time ¢, some time t, may arrive
at which (1.9) no longer have validity: indeed, A; may become infinite at some
time, in which case we have ‘breakdown’.

In seeking ever greater accuracy and validity of solutions, increasing use
has been made of the computational facilities that are now available and which
indeed continue to be enhanced. The Navier-Stokes equations have been tack-
led directly by several research groups, following the pioneering work of Fasel
(1976). Others have looked to extend the tried and tested weakly-nonlinear
theories to ever-higher orders of wave amplitude: indeed, extrapolations to in-
finite order have been accomplished, with some success; the work of Sen and
co-workers (Sen & Venkateswarlu 1983; Sen, Venkateswarlu & Maji 1985, etc.)
is a good example. Computational fluid dynamics is now viewed by many as
comprising a virtually self-contained subject in its own right, and many of the
most exciting current developments are occurring in this area, but more tra-

ditional approaches will surely always have a place, as it is never easy to gain

7




understanding from numerical data alone. We believe that the work presented
below represents an appropriate blend of theoretical analysis and, where neces-

sary, numerical investigation.

1.4 Solutions of the resonant-triad interaction equations

Since this work is in large measure concerned with resonant triad interac-
tions, it is appropriate to present here a brief summary of the known solutions
to the three-wave resonant interaction (3WRI) equations, for later reference. A
much fuller account is given in the monograph of Craik (1986a). The equations

may be written in the form (1.9).

1.4.1 Conservative systems

Firstly we shall consider conservative systems, for which the quadratic
interaction coefficients A; can all be taken as real quantities. We shall also
take the linear damping/amplification factors o; to be all zero, and so (1.9) is
simplified to

E " ,
(a +v,-.v) Ay =NAS A §=1,2,8 (1.9)’

Exact solutions for the A;(t) are then known in terms of Jacobi elliptic functions
if there is no spatial variation. If the signs of A; differ, then the known solutions
are mostly periodic, but there are non-periodic limiting cases (see for example
Bretherton 1964). If the signs of ); are all the same then a singularity may
develop at a finite time ¢ = ¢,; this is often referred to as ‘explosive’ breakdown.
The total energy of the system is conserved, however, and breakdown will in fact
only occur if the wave actions E; /w; have the same sign. Numerous examples of
this have been found in plasma physics— see Weiland & Wilhelmsson (1977).
Craik & Adam (1979) studied three-layer Kelvin-Helmholtz flow, and found
that this scenario supported both periodic and explosive sorts of triad, even
in linearly stable cases. Ma (1984) studied a simpler Kelvin-Helmholtz flow
problem, and found that triads only existed for linearly unstable flows. In
Chapter 2 below we present similar findings for inviscid flow over flexible walls.

For near-resonance, we have Y >_ k; = 0 as before but e B = Aty

=179

This yields interaction equations similar to (1.9)' but with exponential factors
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exp(—iAwt) on the right-hand-sides. These too have solutions expressible in
terms of elliptic functions, but the total energy is no longer a constant.
An important special case is when one of the waves, say A,, has a much

larger amplitude than the others. Then we have in the linearised approximation

dA dA .
= =0, T2 = Mg A4, (1.10)
or equivalently
d’ A
A, = A” (constant), -Tt;ﬁ = A4 P 4, 5. (1.11)

If A, and A3 have opposite signs then periodic solutions for A, and A exist with
frequency |A'")|. Otherwise, there are solutions with exponential growth/decay
rates :}:|A§°) |. For waves in fluid at rest, each A; has the same sign as the corre-
sponding w;; and A;, A; remain much smaller than A, except when the latter
has the largest frequency |w|. In this case, A, is unstable to A, and As; plasma
physicists call 4; a ‘pump-wave’ when it is able to boost the amplitudes of the
other two waves, and the instability of these others is known as ‘parametric
resonance’. If the A; all have the same sign then the growth of A; and A,
is limited by depletion of A; at larger amplitudes, and periodic modulations
ensue.

The pump-wave approximation can also be applied to three waves varying
in both time and space, with one wave dominant (Craik & Adam 1978). This
of course breaks down when the waves become of comparible magnitude, unless
the pump-wave is artificially maintained at constant amplitude. In this latter

case the governing equations reduce to the Klein-Gordon equation

3’ A 0% A 9’A ‘
55 %5 -bay2 —-dA =0, (1.12)

which is easily solvable.

The conservative SWRI equations (1.9)' for undamped waves may be solved
by the method of inverse scattering; solutions are known in two, three and four
dimensions. The reader is referred to the review articles of Kaup, Reiman &

Bers (1979) and Kaup (1981) for details on the inverse-scattering method. The

9
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two-dimensional solutions comprise (i) closed form n-solitons, which only exist
if the A; have differing signs, and (ii) a continuous spectrum, whose contribution
is not time-decaying (because the conservative 3WRI are non-dispersive in the
linear limit) and therefore is of equal importance to the soliton solutions.

In three or four dimensions there are ‘n-lump’ solutions rather like the
n-solitons, which however do not arise from discrete bound-state eigenvalues.
The one-lump solution is ‘phase-locked’. A set of solutions are said to be phase-
locked when their collective existence requires that certain quantities, such as
linear frequencies, or perhaps the arguments of complex nonlinear interaction

coefficients, must be related to each other by some (often simple) condition.

1.4.2 Linearly damped conservative systems

If one or more of the waves is linearly damped or amplified, then the
inverse-scattering method cannot be applied and indeed few analytic solutions
are known to equation (1.9). If the growth/damping rates are all equal and
there is no spatial dependence then (1.9) can be reduced to the undamped
system (1.9)' by a transformation; but if only one wave has non-zero damping
then other solutions exist which resemble those for a nonlinear, damped, simple
pendulum.

Wersinger, Finn & Ott (1980a,b) examined the 3WRI equations for near-
resonant triads with frequency mismatch Aw for which the wave of greatest
frequency is linearly amplified and the others are linearly damped. Temporal
evolution only was studied. A remarkably rich solution set was found, compris-
ing periodic orbits that bifurcate through period-doubling to ever more complex
forms, and also other solutions exhibiting the chaotic behaviour of a ‘strange

attractor’.

1.4.3 Non-conservative systems

Craik (1971) gave some particular solutions to the non-conservative SWRI
equations (1.9). If all three waves are linearly damped or linearly amplified then
there are periodic solutions, the wave phases being inter-dependent. Further
solutions exist if the oblique growth/damping factors o, and o, are equal, for

which any two of the wave phases are arbitrary; moreover, if o; and o, are not
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too large then sigularities in finite times are possible. Recently some solutions
for the case of temporal and spatial variation have been discovered (Craik 1986b,
1987). These have some similarities with the conservative ‘one-lump’ solutions,
and like them are phase-locked. Here again the wave-amplitudes may exhibit

finite-time explosion.

1.4.4 Higher-order effects

A more accurate approximation to three-wave resonant-triad interactions
is gained by retaining third-order terms: instead of (1.9), we then have

dA I
dtl +0,A; =c343 A, —i4, ZdwlAkP,
k=1

dA IR
—dt'z' + 0'2142 = 013A3A1 e lAg ; dgk IAk |2 3 (1.133., b,C)
dA .

dts + 0'3-43 = CIzAl Ag = iA3 E dSkIAk |2.

k=1
It will be seen that there are nine cubic-order interaction coefficients d;;: the

real parts of these give rise to amplitude-dependent frequency shifts, whereas
the imaginary parts yield additional growth or damping terms. For conservative
cases, 0; = 0 and the ¢;; and d;; are purely real, and there are no unbounded
solutions. Cases which are explosive in the absence of third-order terms typi-
cally exhibit ‘repeated stabilised explosions’ when such terms are included. For
non-conservative systems, if ¢;; # 0 then only approximate analytic solutions
are known, though numerical solution is not unduly difficult. Usher & Craik
(1975) examined cubic-order three-wave interactions, both resonant and non-
resonant, in shear flows, using asymptotic (large Reynolds number) estimates.
It was found that the third-order interaction coefficients could be large, and
like their second-order counterparts (studied in Chapters 3 and 4 below) could

influence the growth of oblique modes in Craik-type triads.

1.5 Review of experimental work on flows over compliant walls

Previous work on stability of flows over flexible walls is reviewed here and
in the following section. Several excellent and more detailed reviews are already
extant in the literature, and those by Carpenter & Garrad (1985), Riley, Gad-
el-Hak & Metcalfe (1988) and Carpenter (1989) are particularly recommended.

11
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The possiblity of compliant-wall induced drag reduction was first experi-
mentally investigated by Kramer (1957, 1960); the stimulus for his work was
provided by the idea that the surprising speed capability of the dolphin was due
to the particular structure of its skin, which enabled it to maintain laminar flow
over its body. Kramer conducted a series of experments (Kramer 1960, 1962,
1965) in open water, towing an axisymmetric body with a flushly-fitting com-
pliant coating. The coatings he used consisted of an array of stubs surrounded
by highly viscous damping fluid and enclosed within seamless rubber hose. He
claimed to have achieved significant drag reduction for certain of the coatings,
and put this down to their supposed property of ‘distributed damping’.

Kramer’s pioneering work naturally spurred others to take interest in com-
pliant surfaces; however, over the next two decades his results were not validated
by subsequent experiments and came to be regarded with considerable scepti-
cism. Puryear (1962) conducted experiments in a towing tank using prolate
spheroids partially covered with coatings resembling those of Kramer. Unfor-
tunately his coatings exhibited an increase in drag of 2-6% compared with rigid
ones; this was thought by Puryear to be the result of an insufficiently smooth
join between the body nose and the coating, since cavitation and separation
were wont to occur at the join. Carpenter & Garrad (1985) also infer that none
of Puryear’s coatings was equivalent to Kramer’s best one.

Nisewanger (1964) used bodies of revolution with blunt noses, the first me-
tre of which were covered with compliant coatings. These bodies were released
from the bottom of a lake, being propelled to the surface by their own buoy-
ancy. Once again, the compliant coatings showed increased drag compared with
a rigid surface, this time about 6-11% more.

Ritter & Messum (1964) employed square flat-plate models for their exper-
iments; they obtained at best only minimal drag reduction. Ritter & Porteous
(1965) used a cylindrical body with an ellipsoidal nose, which was immersed
in a water tunnel. The compliant coating was situated immediately aft of the
nose, and a slot at the join enabled the removal of the boundary layer by
suction, thereby ensuring laminar flow at the front of the coated region. Car-

penter & Garrad (1985) claim that the coating used was probably comparable
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to Kramer’s softest coating, which would help to explain why no significant
drag reduction was observed. The background turbulence level in the tunnel
may also have been a factor.

Grosskreutz (1971, 1975) used flat-plate models with silicone-rubber coat-
ings similar to those of Kramer, except that the stubs were inclined at 45° into
the flow direction. A reduction in momentum thickness of 3.6% was obtained
for a speed of 1.5 ms™?, but adverse results were obtained for higher speeds.

In recent years their have been a number of experimental studies of the
transition process. Gad-el-Hak et al. (1984) carried out a comprehensive inves-
tigation into laminar, transitional and turbulent flows over compliant surfaces.
The apparatus consisted of a flat plate having a working section which could
be filled with a soft PVC plastisol. Sophisticated flow-visualisation and mea-
surement techniques were employed. Coatings of various thicknesses and shear
moduli of rigidity were used, for various flow speeds %, . Large-amplitude
‘static-divergence’ waves appeared on the compliant surfaces in turbulent flow
regimes, but not in laminar or transitional ones. Such waves are slow-moving,
with speeds no more than 5% of #.,, and have amplitudes of the order of the
coating thickness. For the thicker coatings, the amplitudes were 20-40% of the
undisturbed boundary-layer thickness, which was increased by the presence of
the waves by up to 100%. The static-divergence waves only appeared if i, ex-
ceeded a certain onset value, which was larger for thinner coatings; they never
appeared under a laminar boundary layer, even for flow speeds of twice the onset
values for turbulent regimes. Thus they cannot trip laminar flows into turbulent
states. As %, was increased, so the static-divergence waves exhibited increasing
thee-dimensionality, developing significant amplitude modulations along their
crests. This resulted in the creation of extra waves with shorter spans.

Gad-el Hak et al. conclude that static-divergence waves must be eliminated
or at least mitigated in order to reduce drag on the surface. They refer to
work of Ash at NASA, wherein the static-divergence waves were suppressed by
coverihg the compliant coating with a thin and tightly stretched layer of Mylar.
However, an additional and somewhat detrimental side-effect was a lessening

of the dynamic response of the surface. The authors note that in the work of
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Hanson & Hunston (1983) on flows over a rotating disc static-divergence waves
were observed in laminar flows, provided that the rotational velocity was at
least 1.6 times the corresponding onset speed for turbulent regimes.

M. Gaster and G. J. K. Willis have recently conducted a very important
series of experiments using a towing tank at British Maritime Technology Ltd.
(see Willis 1986). These experiments were conducted in tandem with a nu-
merical investigation based on linear stability theory. The compliant surfaces
consisted of silicone rubber or silicone oil compounds over which were stretched
a thin latex rubber skin. The skin was an important feature, for it seems that
it reduced the magnitude of tangential surface motion whilst permitting rela-
tively free normal motions. (As described below, many theoretical models omit
tangential surface motions). The coating was situated in a rectangular well
on a flat plate. Flow disturbances were introduced in a controlled manner up-
stream of the plate and were of harmonic two-dimensional or point-source type.
Disturbance growth and decay rates were measured downstream by hot-film
probes. Particularly noteworthy of these experiments is the extreme care that
was taken at every stage, be it measurement of the surface properties, keeping
ambient turbulence levels very low or achieving a smooth coating surface and
leading-edge joint.

Tests using a rigid surface gave results agreeing well with theory, particular
for the variation of amplication factor with flow speed at given forcing frequen-
cies. For the compliant surface tests, parameters were selected according to
theoretical predictions of supression of Tollmien-Schlichting (TS) instabilities.
Results were very encouraging, indicating substantial reductions in amplifica-
tion factors relative to the rigid-wall case; indeed, for some conditions TS wave
growth was reduced by an order of magnitude, leading to virtual elimination
of this particular form of instability. Strong instabilities were restricted by the
presence of a compliant surface to flow-speed regimes so much higher that they

tended to take the form of travelling-wave flutter.

1.6 Review of theoretical work on flows over compliant walls

The early experimental works naturally inspired theorists to turn their at-

tention to the analysis of compliant wall boundary-layer stability. The most
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important of the pioneering theoretical contributions are those of Benjamin
(1960, 1963) and Landahl (1962). Benjamin had previously considered the sta-
bility of flows over wavy boundaries (Benjamin 1959), expanding upon the work
of Miles on wind-generated water waves (Miles 1957, 1959a,b). In his seminal
work of 1960, Benjamin set out some of the fundamental aspects of compliant
wall stability theory. He reasoned that the presence of a compliant boundary
would certainly affect the thin friction layer adjacent to the wall, thereby in-
fluencing the generation there of Tollmien-Schlichting waves (termed Class A
waves by Benjamin). Other possible mode-classes were also described (which
could also exist in inviscid flows). Class B waves were a surface-resonance phe-
nomenon, travelling at speeds close to the free-wave speed ¢, of the boundary.
Class C waves were of Kelvin-Helmholtz type, and included instabilities arising

from the coalescence of modes.

Benjamin considered wall models having negligible tangential motion, and
introduced a response coefficient Z, characterising the effect of a fluid pressure
wave on the wall motion. He expanded upon the linear stability theory of
Tollmien (1929), Schlichting (1933) and Lin (1945) and was able to demonstrate
that a flexible, non-dissipative wall could stabilise TS waves having velocities
lower than ¢,. For Z, > 0, the neutral curves are shifted to lower wavenumbers
o and higher Reynolds numbers R. Dissipative flexible walls were shown to
destabilise TS waves through internal damping (this was also found by Betchov
1960).

Benjamin’s analysis suggested that boundary-layer stabilisation could be
effected using two very different types of flexible walls, which may be called
‘resonant’ and ‘compliant’ surfaces. ‘Resonant’ surfaces would have ¢, close to
the phase speed of the most rapidly growing Class A instability. Hence Class A
and Class B waves would have similar phase speeds and any interaction might
have a favourable effect on the wall friction layer. It was believed that Kramer’s
coating was of this type. The present author regards such surfaces as being
most unsuitable for transition delay, as linear modal interactions have a strong
tendency to produce very severe instability (see Chapter 4 below). ‘Compliant’

surfaces would be sufficiently flexible to have a large negative value of Z,, yet
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would also have negligible internal damping. Such a surface could stabilise
Class A instabilities, but ¢, would have to be large enough to avoid Class B
instabilities.

Landahl (1962) utilised the concept of admittance (an acoustical concept)

as a characterisation of surface response; he defined it as

wall pressure (14)

S (normal wall velocity)

One advantage of Landahl’s formulation is that it is relatively simple to
determine whether or not a particular change in wall parameters will be sta-
bilising. He considered an approximate model of the Kramer coating, and was
able to confirm Benjamin’s conclusions on the effect of internal damping on
TS waves. In addition, he reasoned that since the theoretical critical Reynolds
number was only marginally increased by a flexible wall, it was improbable that
Kramer’s drag reductions were due to transition delay. This opinion was held
to be corroborated by the fact that Kramer obtained his best results using a
highly viscous damping fluid. A disadvantage of Landahl’s approach is that
when the Reynolds number was varied, the non-dimensional wall parameters
were held constant, which meant that he was in fact considering a different
membrane for each Reynolds number.

Gyorgyfalvy (1967) used Landahl’s methods in a comprehensive inves-
tigation of stability and transition of boundary layers for internally-damped
spring-backed membranes. The ¢° method of Smith & Gamberoni (1956) was
used to calculate the transitional Reynolds number, and it was found that any
favourable effects on transition were due to a reduction in amplification rates
rather than an increase in critical Reynolds number. Gyorgyfalvy estimated
that as much as 90% drag reduction was possible for water flows, albeit only
for a limited range of Reynolds numbers. However, it appeared that Kramer’s
coatings were unsuitable for transition delay.

Landahl & Kaplan (1965) studied a model wherein the wall boundary con-
ditions allowed for a non-zero streamwise component of surface velocity. This
was accomplished by introducing a second surface admittance for the stream-

wise motion. Compliant surfaces composed of non-dissipative elastic media
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and viscoelastic media (Voigt bodies) were studied in addition to spring-backed
membranes. The importance of pressure-gradient effects was also investigated,
as well as secondary instability for flexible walls. It was found that any reduc-
tion in secondary instability was non-trivial but small, hence confirming the
conclusion Benjamin (1964) had reached using a simpler model. The results
of Gyorgyfalvy for spring-backed membranes given above were also confirmed.
Landahl & Kaplan reasoned that a light and highly flexible wall would have op-
timal effect in delaying transition. However, Carpenter & Garrad (1985) place
doubt on their results for spring-backed surfaces, though agreeing with their

general conclusions.

Among other work on flexible surfaces, Nonweiler (1961) studied flows over
non-dissipative elastic walls. Korotkin (1965) presented an alternative formula-
tion of the problem which catered for both normal and tangential compliance,
but as pointed out by Carpenter & Garrad (1985) the no-slip condition was
incorrect. Korotkin looked at the effect of a streamwise pressure gradient. Am-
filokhiev, Droblenkov & Zavordkhina (1972) used Korotkin’s method to calcu-
late transitional Reynolds numbers and amplification factors. They obtained

reasonable agreement with Gyorgyfalvy (1967).

Some of the most important theoretical work on transition delay for flexible
boundaries has been undertaken by Carpenter (1985) and Carpenter & Garrad
(1985, 1986), work which has already been referred to several times in this text.
Carpenter & Garrad (1985) argue that Kramer’s coatings are best modelled
by spring-backed plates with finite bending stiffness, and the results of their
analysis based on linear stability theory would appear to substantiate this. They
also examine the possibilities and effects of coalescence between the various
mode-classes. A detailed evaluation of the values to be assigned to the various
parameters in order to comply with Kramer’s experiments is given. The surface
mode classes are studied in Carpenter & Garrad (1986); they are referred to as
‘Flow-Induced Surface Instabilities’ (FISI), and are investigated using potential
flow theory with an energy analysis of the waves (after Landahl 1962). Their
results are compared with those of the causal theory evinced by Brazier-Smith

& Scott (1984). The main overall conclusions that they reach are:
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(i) There are four main instability modes of practical importance, namely
Tollmien-Schlichting Instability (TSI, Class A), FISI (travelling-wave flutter,
Class B), a coalescence of these two mode-classes (probably Class C) and a
slow-moving Kelvin-Helmoltz-like instability which they call ‘static divergence’
(also probably Class C).

(i) Any damping will in most cases stabilise FISI and destabilise TSI

(iii) Modal interaction, and even coalescence are permitted by viscous
damping, but not by viscoelastic damping.

(iv) Kramer-type coatings can in theory postpone transition, in the absence
of modal interaction.

(v) There may be an optimum value of substrate viscosity, because of (ii).

Yeo (1986, 1988) investigated the linear stability of spatia:l disturbances in
flows over multi-layered compliant surfaces; his work incorporates oblique flow
and anisotropic walls. He also studied inviscid flow over passive compliant walls,
and extended the classical theorems concerning the range of allowed values of
the complex temporal eigenvalue (the phase speed ¢)— see Yeo & Dowling
(1987). For isotropic viscoelastic surfaces, he found the effects of compliance
and damping to be consistent with those determined in previous work; he also
discovered a long-wave spatial instability which exists even at very low Reynolds
numbers, and may be related to similar phenomena reported by Landahl (1962).
It has small spatial growth rates, and is considered by Yeo to be irrelevant as
far as transition is concerned. Yeo found that wall modes could be significantly
stabilised by a two-layer surface, the outer layer being stiffer than the inner
and preferably embedded just beneath its surface. Such an arrangement has
a small destabilising influence on TSI, but this is outweighed by the much
stronger effect on the FISI, or CIFI (compliance-induced flow instabilities) as
Yeo calls them. A four-layer wall having a stiff top layer and progressively
softer ones underneath, with moderate substrate damping was found to reduce
the maximum spatial amplification rate by up to 70%.

For anisotropic walls Yeo finds that the orientation angle of the fibres and
the elastic Young’s modulus in that direction (related to the concentration of

fibres) are important parameters. Large fibre concentration tends to stabilise
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the CIFI but destabilise the TSI, and these effects decrease with increasing
anisotropy. Yeo finds best results usually for angles of about 45°. The other
wall parameters are still critically important for beneficial results, and any such

results in general only obtain for a rather narrow speed range.

Three-dimensional instabilities are found by Yeo to be extremely impor-
tant for flow over isotropic surfaces. This is because oblique modes perceive
a stiffer wall, which destabilises TSI (although suppressing CIFI). Hence both
the minimum critical Reynolds number and the maximum amplification factor
may belong to such modes. However, Yeo makes the reasonable point that for
sufficiently compliant surfaces the maximum growth rate may well be less than

for the rigid wall, given that such a surface would tend to stabilise TSI
Sen & Arora (1988) approached the probem from a completely different

angle, gaining some valuable new insight. Instead of defining various wall-
parameter values, they assigned the eigenfunction a particular value at the wall
(relative to its normalisation), and back-calculated the wall-parameter values.
In this way they were able to determine parameter values that would be likely to
inhibit the development of instabilities. The argument of the eigenfunction at
the wall, ¢, , was varied through 360° or more at a fixed modulus and the change
in the eigenvalue plotted. The periodicities observed enabled the identification
of not only Tollmien-Schlichting and Kelvin-Helmoltz mode-classes, but vari-
ous ‘resonant’ and ‘transitional’ mode-classes too. Those classes for which the
eigenvalue traces out a closed loop in one 360° cycle are termed ‘regular’ by Sen
and Arora. Three such classes were identified, namely TS, ‘Kelvin-Helmholtz’
(KH) and ‘low-speed stable’. The latter occurs at low values of ¢, and high
values of |¢, |, and is relatively uninteresting due to its inherent stability. The
KH mode-class exists for low values of |¢y |, but the limit |¢,| — O does not
correspond to the rigid wall, thereby distinguishing the KH and TS classes. Sen
and Arora note that this limit represents a neutrally-stable stationary periodic
ripple, but their use of the appellation ‘Kelvin-Helmholtz’ is rather unfortunate
and likely to cause confusion. The classical Kelvin-Helmholtz instability occurs
when there is a velocity discontinuity at the interface between two fluids, the

more dense being below the less dense; a fundamental characteristic of this in-
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stability is the existence of complex conjugate eigenvalue pairs, but such pairs
are nowhere in evidence in the study of Sen and Arora.

Another important mode-class identified by Sen & Arora is the ‘resonant’
(R) class. Modes in this class are periodic over four cycles of arg ¢,,, generally
exhibit large ¢; (> 0.7), and exist only for large values of |¢,|. Bifurcation
to regular R modes occurs via various transitional modes, periodic over two or
three cycles of arg ¢, . These modes may exhibit characteristics of the regular
modes over parts of their cycles. The TS to R bifurcation appears to occur via a
singularity, and Sen & Arora conjecture that the concepts of ‘modal coalescence’
and ‘static divergence’ (see Carpenter & Garrad 1985) may be related to the
behaviour of modes near to this singularity. The appropriateness of the term
‘resonant’ is manifested by back-calculation of the free-wave speed on the wall,
which as Sen & Arora demonstrate is mimicked closely by ¢,. The authors
conclude, in something of a departure from previous workers, that the TS and
R modes should both be avoided rather than any attempt made to stabilise
them. They suggest that small values of free-wave speed and damping offer the

best prospect (by way of compromise) for flow stabilisation.

In recent years many researchers have investigated fluid dynamical prob-
lems by direct numerical integration of the Navier-Stokes equations, rather than
considering the Orr-Sommerfeld equation for example. Such an approach has
been made possible by the continued increase in computing power, although
such large-scale approaches of course incur additional difficulties. Interest has
also increased in ‘active’ walls: as the name suggests, these walls do not just
move as a result of pressure perturbations in the fluid above, but are given
external forcing of some sort in the hope of favourably influencing the overall
fluid-wall motion. A similar but perhaps more subtle approach is the use of
so-called ‘smart’ walls. The idea is that the wall response to flow perturbations
is coupled back into the flow field, and the wall is designed or modelled in such
a way that its response is tailored to nullify these perturbations. Among the
works to have been performed on flows over flexible walls using some of these
methods are those of Kleiser & Laurien (1985), Lekoudis & Sengupta (1986),
Metcalfe et al. (1986) and Domaradzki & Metcalfe (1987). Biringen (1984) con-
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sidered periodic suction/blowing, with wall forcing applied at a single time-step.
A reduction by half of TS wave amplitudes in a single time-step was attained.
No significant transients were generated, but at later times the residual wave
was found to grow at the same rate as before the application of forcing. Hence
there was only qualified success.

Kleiser & Laurien (1985) considered a system having suction and blowing
at the wall with mass forcing and direct manipulation of the Fourier modes.
They found that out-of-phase forcing was successful in damping out unstable
two-dimensional linear modes, but that if two-dimensional modes exceeded a
critical amplitude they became very unstable to three-dimensional disturbances.

Domaradzki & Metcalfe (1987) used direct numerical simulation to study
flow over a membrane. The membrane parameters were kept constant in di-
mensional units, so that variation in Reynolds number did not mean that one
was considering different physical membranes. Reynolds number variation was
taken to correspond to a variation in boundary layer thickness, and hence in
streamwise location. These authors located membrane parameters that doubled
the critical Reynolds number over its rigid-wall value, but found that this was
offset by a significant increase in growth rates in the unstable region. They also
studied the kinetic energy balance equation.

Hall (1988) examined the effect of surface response on TS growth rates
using a turbulent wall pressure model, and considering three compliant surfaces:
soft PVC, stiffer PVC and a two-layer surface consisting of a thick layer of
soft PVC covered with a thin layer of neoprene. The Navier-Stokes equations
were solved using a pseudospectral technique, and this was coupled to a finite-
element calculation for the compliant wall. The response of each of these walls
to an imposed Tollmien-Schlichting wave was calculated, at a displacement
thickness Reynolds number of 1000: the soft PVC developed large perturbation
amplitudes after a period of time; so did the two-layer surface, though the
magnitude of the perturbations was less. The stiffer PVC surface attained a
steady state. Unfortunately no comparison was attempted with other work,
and the number of calculations performed would appear to be insufficient for

any firm conclusions to be drawn.
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In summary, then, it may be said that a considerable level of understanding
of the linear stability of flows over flexible walls has been reached, both through
ever more meticulous experimental work, and through the joint application of
analytic and computational methods by an increasing number of theoreticians.
The stage is therefore well set for some exploratory forays into the weakly-
nonlinear regime, where many topics of great interest await those willing to
tackle the formidable difficulties that are entailed. In this work we make such

a foray, following the programme summarised below.

1.7 Outline of study topics

In Chapter 2, we study a configuration consisting of an inviscid, constant-
velocity, free-surface flow over a simple flexible wall. Linear modal interactions
are examined in detail, and resonant triads are located. The possibility of ‘ex-
plosive’ resonance, wherein several interacting wave-modes can grow simultane-
ously, is revealed. Although no experimental evidence of this phenomenon is yet
available for flows over compliant surfaces, such resonance is well-known to play
a prominent rdle in boundary-layer stability (see for example Craik 1986a), and
so may confidently be expected also to influence the evolution of disturbances
in compliant-boundary flows when appropriate conditions are satisfied.

In Chapter 3 we proceed to study resonant-triad interactions in Blasius
flow over rigid walls. Numerous triads are located, and their quadratic inter-
action coefficients calculated. This work agrees with, and considerably extends
existing numerical results, thereby providing further evidence for the potential
importance of three-wave resonance in shear flows.

Chapter 4 concerns the analogous but coniderably more complex problem
of the nonlinear resonant instability of boundary-layer flow over flexible walls.
Firstly, linear interactions between Tollmien-Schlichting modes and wall modes
are investigated in some detail, complementing the findings of other authors. It
is then shown that resonant triads can be formed from various combinations of
these modes, and may also comprise higher-order fluid modes. The quadratic
interaction coefficients are calculated, and comparisons made with data for
the rigid-wall case. In order to highlight the principal phenomena, attention

is restricted throughout to relatively simple (but nevertheless realistic) wall
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Chapter 2 Inviscid free-surface flows over flexible boundaries
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2.1 Introduction

The problem studied here concerns uniform inviscid free-surface flows over
flexible boundaries: a deliberate simplification that permits analytic treatment
and precise physical insights. In some senses, this problem may be viewed as a
simple analogue of the more important boundary-layer flows, in which Tollmien-
Schlichting waves interact with a compliant boundary. The study of flows of
the latter kind follows in the next chapter. The author hopes that these studies
may provide a spur to future experimental work on nonlinear resonances. This
work has been published elsewhere (Thomas & Craik 1988).

We consider the following: inviscid irrotational fluid of constant density p

" and mean depth h flows with constant velocity U = (U.,U,,0) over a flexible

boundary, the fluid having a free upper surface. The mean position of the lower
boundary is z = 0, and that of the free surface is z = h. A model dispersion
relation incorporates the properties of the lower boundary, and allows for the
possibility of some form of substrate material. We consider a s;11all irrotational
perturbation u' = V', where the complex velocity potential is ¢ = U.x + ¢,
which induces waves on the free surface and flexible boundary with normal
displacements h and 2 respectively (see Figure 2.1). For this problem there are
four boundary conditions, comprising a kinematic and a pressure condition at

each interface. At the upper, air-water interface, these are
e+ [Ve.Vnl,_hies (2.1)

1
[sog + EVsO-Vsc’] +g(h+¢)+ % =1, (2.2)

z=h+g¢
where 7 is the coefficient of surface tension, « is the mean surface curvature and

g is gravitational acceleration. Without loss, « is henceforth represented by the
approximation & & —V?¢, which is correct to second order in wave slope.
At the lower boundary of the fluid, where it meets the flexible material,

the normal stress N may be represented by a linear model
N:mgu +d§g—FV2§+S§', (2.3)

such as was used by Benjamin (1963). The parameters may be assigned particu-

lar physical identities, for example those characteristic of a stretched membrane:
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m would then be the effective membrane mass per unit area, d a damping co-
efficient due to viscous or frictional effects, F' the tension per unit span of the
membrane and S its effective spring stiffness.

In practice, the compliant material may be of complex construction. For in-
stance, the ‘Kramer surfaces’ discussed by Carpenter & Garrad (1985) consisted
of a layer of pliable rubber-like material supported on a rigid base by an array
of closely-spaced flexible stubs, with viscous fluid in the gap between them.
Since detailed mathematical analysis of such composite materials is impractica-
ble, they are best represented by judicious choice of parameters in models like
that just introduced. Usually, however, the effective mass, stiffness and so on
will not be constants, but will depend on the length-scale of the disturbance.
Accordingly, it is best to replace (2.3) by a corresponding representation of the
stress N (k) associated with each individual Fourier mode ¢(k), proportional
to exp(ik.x — iwt), with real wavenumber k and (perhaps complex) frequency
w(k); namely

N(k) = [-mw?® —idw + R}¢, (2.4)

where R is the restoring force (typically given, as in most of the following, by
Fk* + S) and m, d (and perhaps S) are permitted to be prescribed functions
of k = |k| rather than just constants. Of course, with k-dependent parameters,
the total stress N is no longer simply given by (2.3), but by Fourier inversion
of N(k).

For example, a simple interface with surface tension F and deep inviscid
substrate fluid of density p, yields m = p, /k, d = 0, R = Fk? + p,g: clearly,
the ‘effective mass’ per unit area then varies inversely with k. Similarly, a
thin stretched membrane under tension T' and with mass m, per unit area,
that lies over a deep inviscid substrate fluid of density p, would have m(k) =
mq + p. [k, where m, is the density of the membrane times its thickness. The
model considered here is taken to have constant m, and so may be regarded as
acting like a thin membrane supported by springs, without a substrate fluid; i.e.
m = p, b where p,, is the equivalent membrane density and b is its thickness.
One could also incorporate the effect of bending stiffness due to a term b‘”‘f

az
added to (2.3) (where b is proportional to Young’s modulus) by choosing the
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‘effective stiffness’ to be S(k) = p,g + bk*. Likewise, various types of damping
may be accommodated by suitable choice of d(k).

It should be noted that the representation (2.4) is designed to model the
entire dynamics of the compliant material, and so differs from the formulation of
Carpenter & Garrad (1985), who treat the substrate pressure fluctuations sep-
arately. There are no procedural difficulties associated with using k-dependent
parameters m, d, F', S in (2.3); but particular choices must be made in order
to display quantitative results. Here, detailed results are presented for cases
with constant m, F and with d = Imk, | constant; the last k-dependence being
in line with expectations that damping is weaker for long waves than for short.
Our main purpose is to establish the conditions for resonantly-interacting wave
triads, to derive the corresponding resonance equations and to provide details
of specific illustrative cases. Accurate results for particular compliant materials
would entail precise k-dependent estimates for the various parameters used in
(2.4): but use of a more elaborate model, such as that of Carpenter & Garrad
(1985) for a ‘Kramer coating’, seems premature in the absence of guidelines for
simpler models.

Despite our concern with a nonlinear problem, the stress representations
(2.3) or (2.4) are linear ones in the wave elavation z or its individual Fourier
components. Later, in section 6, we consider how this representation may
be altered by additional nonlinear terms. Since the normal stress N is equal
to minus the fluid pressure at the interface, the appropriate lower boundary

conditions for the fluid are

[7: +Vo.Vnl,_, = [ps],-, » (2.5)

1 1
[‘Pt +- EV@.V(p] +gz— ;(mﬂu +dn, — FV”? + Sﬂ) = 0. (2'6)
z=n

if (2.3) is used. Corresponding results hold for the various Fourier modes when
the more general model (2.4) is employed; but only those nonlinear terms of

appropriate periodicity are then retained.

2.2 Linear Theory
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First, assume that @, n and ¢ have the following single-mode forms:

p=Ux+ %e[{A cosh(kz) + Bsinh(kz)} exp{i(k.x —wt)} +c.c.], (2.7)

- -;-e[a exp{i(k.x — wt)} + c.cl, (2.8)
h %e[b exp{i(k:x — wt)} +c.c, (2.9)

correct to O(¢€), where € is a small dimensionless ordering parameter character-
istic of wave slope, c.c. denotes complex conjugation and the scaled amplitudes

a, b, A, B are O(1). The linearised boundary conditions are then

G¢+uvVe=I[p],_,, (2.10)

e +u.Vy'),_, +gh— %V’g =0, (2.11)
ne+uVn=[p],_,, (2.12)

(v} +u.Vp'], _, - %{mm: +dn, — FV?n + (S — pg)n} = 0. (2.13)

Equations (2.10) and (2.11) give the following relation , on elimination of

the wave amplitude a:

Atanh(kh) + B
— 2 -
(w—UK)? =gk (A . Btanh(kh)) : (2.14)
Likewise, elimination of b from (2.12) and (2.13) yields
d
A~ 08P =B - a8 5120 ~Els -l (2.15)
p m P
We also have from (2.10) and (2.12) the following amplitude relations:
Asinh(kk) + B cosh(kh) = —ik™* (w — U.k)a, (2.16)
B = —ik™'(w — U.k)b. (2.17)
From (2.14) and (2.15) the dispersion relation is easily obtained as
DiD; =A%, (2.18)

where

D, = [(w— UK)? — (gk + ) tanh(kh),
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D, = [”'Tk(w — 3k + i%w) —p7 (S — pg)k + (w — U k)” tanh(kh)], (2.19)

2 2 ’Yks 2
A? = (w—Uk)*(gk + 7)5ech (kh),

and ¢2 = F/m.

The quantity A? is exponentially small for large values of kh, and in this
limit (2.18) has two pairs of roots for w: those given by D, = 0 are just deep
water capillary-gravity waves, and will be referred to as w, and w,; the others
correspond to waves on the flexible boundary, and will be called ws and w,. As
kh is decreased, coupling occurs between the free surface and lower boundary
modes, and is particularly important whenever the roots are nearly equal.

Illustrative numerical solutions of (2.18) were obtained and depicted graph-
ically for the case of U = Ui. Initially, S was set equal to pg, and d to zero. A
rather large value of m/p = 5.0 metres was chosen both to improve the clarity
of the graphical displays and to provide, by analogy, some provisional insight
into the behaviour of airflow over compliant boundaries. Of course, large values
of m/p are not possible for liquid flows over an actual membrane, the thickness
of which must be small compared with the disturbance wavelength; but such
values may be appropriate in models of more complex compliant materials.

It was found that instability of waves on the flexible boundary can occur
even in the absence of coupling between these waves and those on the free
surface (i.e. when kh — 0). This instability occurs provided U is not too
small, and is confined to a small region of (w,k) space near k¥ = 0 (but such
that kh is still large). This is just a slow-moving Kelvin-Helmholtz instability
of the lower boundary. With kh large, two mode crossings are seen in Figure
2.2a: one with w > 0 involving w, and w;, and another with w < 0, at smaller
wavenumber, involving w, and w,. Since surface tension causes w, to become
negative again for k sufficiently large, there are in fact two more mode crossings
not shown in Figure 2.2a. Figure 2.2b shows the growth rates of the long-
wave Kelvin-Helmholtz instability. At smaller h, further regions of instability
appear near the erstwhile w;~ws crossing points. Only one of these is shown
in Figure 2.3, the other being at much larger k. In contrast the w, and w,

modes exchange identities near where they previously crossed, no instability
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appearing (see Figures 2.3 and 2.4). This is in agreement with expectations,
since at the w;~w, crossing (but not at the w;—w, crossing) w, has negative
energy (measured in a stationary frame of reference) and w; has positive energy.
In simple terms, a wave has positive energy if its creation results in an increase
in the total energy of the sysyem, and negative energy if the energy of the
system is decreased. It is known that coalescence of modes of like energy sign
always results in an exchange of identities, and coalescence of modes of opposite
energy sign always results in linear instability— see e.g. Cairns (1979). When h
was decreased yet further, the two regions of instability coalesced into a single,
larger region of instability (see Figure 2.5).

The case of S> pg was also studied: it was discovered that the effect of
a greater effective spring stiffness was to displace any regions of instability to
larger wavenumbers (see Figure 2.6).

Inclusion of damping (i.e. allowing a non-zero value of @) has the interesting
effect of driving any negative-energy waves unstable. This is demonstrated in
Figures 2.7 and 2.8 for two separate cases, where d = Imk. The modes shown
are neutrally stable for [ = 0 (Figures 2.7a, 2.8a); damping produces instability
of the w, mode, which has negative energy (Figures 2.7b,c, 2.8¢; see Ball 1964,
Landahl 1962). However, this instability is very weak since the w, mode is
centred on the upper interface and so experiences little damping. Also, it is
seen in Figure 2.7a and 2.7b that modes w;,; and w; exchange identities near

k = 300m™*.

2.3 Three-Wave Resonance

The possibility of finding three-wave resonance in cases of no linear insta-

bility and no damping is now investigated. The requisite criteria are
k]_ + kg + k3 = 0, (2.20)

Re{wl + Wo + W3} = 0. (2-21)

It is particularly noteworthy that resonant triads can give rise to explosive
instability, wherein all three waves grow simultaneously, provided that the wave

of greatest absolute frequency has energy of opposite sign to the other two. But
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even when this criterion is not met, resonant interactions remain of interest (see
e.g. Craik & Adam 1979).

A graphical technique may be employed to find the approximate locations
of resonant triads (Figure 2.9; see e.g. Ball 1964, Craik & Adam 1979). The
procedure is as follows: firstly the dispersion curves and axes are copied onto
a transparency; then the origin on the transparency is moved along one of the
curves on the original graph, the orientation of the axes being maintained. If at
any point a curve on the transparency intersects a curve on the original graph,
-a resonant triad has been located, approximately. The exact position can then
be computed numerically.

The procedure outlined above was carried out for the dispersion relation
(2.18), taking various physically realistic values of the parameters m, ¢,, U, S
and restricting wavenumbers to the two-dimensional form k = (k,0). Examples
of explosive three-wave resonance were found, but only when linear instability
was also present at other wavenumbers. When U is so small that there is no
linear instability, the model yields numerous examples of non-explosive resonant
triads but no explosive ones.

Accordingly, to get two-dimensional explosive instability in the present
context one must either accept that linear instability is also present or let one
or more of the parameters previously held constant vary with wavenumber in
some suitable manner. The latter possibility is illustrated in Figure 2.10 , where
co decreases like k~1/2 as k increases. (It should be noted that in the former
case linear instability is confined to a narrow range of wavenumbers, while the
nonlinear instability due to resonance covers a much larger range). We now
therefore consider a model with a spring stiffness S that is k-dependent, i.e.

may be expanded in powers of k:
S= So +Slk+32k2 +-..

(where S; merely supplements the tension term F'). Terms of higher order in
k are considered to be negligible. If we also put S; = F = 0, we have a total
restoring force R = S, + S, k. Although the previous model yielded no explosive

instabilities, this new restoring force does yield examples of such phenomena.
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Numerical results for this case are given in Figure 2.11.

The present investigation of the possible existence of explosive three-wave
resonance is in accord with the findings of Craik & Adam (1979) for three-layer
fluid flows. Indeed, their lower or upper interface may be represented by a
suitable stress model (2.3) and their results viewed as further illustrations of
the present analysis. Both in their and the present work, resonant triads are
ubiquitous; but explosively-unstable configurations are not always present.

The analysis that follows applies equally to resonance of the explosive and
non-explosive sorts. We calculate nonlinear evolution equations for resonant
triads, involving wave modes on both boundaries. This is accomplished in
two ways. Firstly a direct attack is made on the governing equations and the
amplitude-evolution equations derived for purely temporal variations. Then, a
Lagrangian method similar to those of Whitham (1974) and Simmons (1969) is

used to derive the evolution equations for both temporal and spatial variations.

2.4 Derivation by ‘direct’ method

To proceed, we perform Taylor expansions of equations (2.1), (2.2), (2.3),
(2.5) and (2.6) to second order about the mean levels z = h and z = 0 of each
boundary. This yields

¢ +uVe—{p,],_, =¢[0ul,n — VoV, 0 (2.22)

o +u.V ], _, — %V“§+g§

i (2.23)
= - [s“p.e + ¢u.Vop, + EVsO-VsO] ’
z=h
me+u.Vn—[p.], o = 1Pl — V.V, (2.24)
m d
[o: +u.V o], _, — ';(ﬂu + —m — g V?n) — p7* (S — pg)n
(2.25)

1
= - [ntp.g +nu.Vp, + §V¢.V¢] ;

=0
where ¢ is the ¢’ of previous sections, O(¢®) terms have been neglected, and
linear terms have been placed on the left-hand sides of the above equations.

Now, on neglecting O(¢?) second-harmonic and mean-flow terms which do not

32




contribute to our analysis, ¢, ¢ and n may be taken in the form

1 [v 2 :
e [Z{(A, + €A;) cosh(k;2) + (B; + €B;) sinh(k2)}
i=1 (2.26)
x exp{i(k;.x — w;t)} + c.c.] = ep; + €3,

1 [ ;
g e {Z(a,- + eé;) exp{i(k;.x — w;t)} + c.c.] =€t + € ¢, (2.27)

§e=1
1 [ R
= o [Z(b,. + eb;) exp{i(k; . x — w;t)} + c.c.] = en, + €n,. (2.28)
J=1
Here, it is supposed that the chosen wavenumbers do not admit quadratic
second-harmonic resonance (i.e. 2k, # ks, 2w; # w;). The latter case is
straightforward but would require separate treatment. Setting the right-hand
sides of equations (2.22)-(2.25) equal to zero would recover the results of sec-
tion 2. Now in the weakly nonlinear regime, the amplitudes are assumed to
be slowly varying in time in such a way that the derivative of an O(1) quan-
tity is O(e), etc. To obtain the evolution equations for the problem, equations
(2.14)—(2.17) and their derivatives are used to reduce equations (2.22)-(2.25)
(at O(€?)) to just two equations, viz.
—((w — UK))"2A)2 cosh(k;h)a; + Db,

_ , ‘ (2.29)
= k;[PY) (w; — Uk,;) 2D q,,, + Q¥ sech(k, k)],

D(lf)&,.—(w,- - U.kj)-i!sech(k,-h)l;j = —i(w; — U-k,-)'lD{l") -
2.30
X[R;(w; — U.k,-)"Di’) cosh(k;h)a; . + SU].

Here j = 1,2,3, (),, denotes %! where 7 = ¢~t, and P\, Q(), RY), §()
are as given in Appendix A, equations (A1)-(A4). Note from (2.29) and (2.30)
that if one sets the right-hand sides equal to zero the O(e?) amplitudes satisfy
the linear dispersion relation, as required. Now (2.29) and (2.30) must be
compatible, i.e. must yield a unique solution for each ‘—ifj—, and application of
this compatibility condition gives the following evolution equations:

g K
S
T P
(2.31)

" (k,-(w,- —U.k,;)2QU) —iAl)2 cosh? (k,;h) S )
iA()2 cosh® (k;R) R — kj (w; — U k;)? PL)
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where Q), S9) are quadratic functions of the a;, A; etc. and 7 = 1, 2, 3.
These can be re-expressed, using (2.14)—(2.17), as

da;
lU T»—)\GJ+1 20 (2.32)

on invoking the linear relationships (2.14)-(2.17) and evaluating subscripts 1+1
and j+1 with modulo 3. Complex conjugation is denoted by *, and v;, A are as
given in Appendix A, equations (A5) and (A6). Equation (2.32) can be shown
to reduce to the results of Case & Chiu (1977) on taking the limits U — 0,
h — o0, DY) — 0 (with DY) # 0). It also agrees with the work of Craik &
Adam (1979) on three-layer flow with two interfaces if their p, — 0, d — oo.

2.5 Derivation by method of averaged Lagrangian

This problem is now tackled from a Lagrangian formulation, and amplitude
modulations are allowed to depend on z as well as ¢{. In what follows, the
coefficient of damping, d, has been set to zero. This is because the incorporation
of terms involving d prevents construction of an appropriate Lagrangian (but
see Jimenez & Whitham 1976); for systems with d 5 O are non-conservative. In
the following, as before, we shall assume the symmetric resonance conditions,

(2.20) and (2.21). A suitable Lagrangian for the problem is

t htg 1
L= / / / (/ (p: +u.Vo+ EVgo.Vgo + gz)dz
to n

All z,y
+ 1[\/1 ¥ VeVe—1]

1 - (2.33)
e ._[._“

S
(n? —c3Vn.Vn) — ;r) ]) dz dy dt

/ / /Ld:z:dydt

All =,y

This is a modification of the Lagrangians given by Luke (1967) and Simmons
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(1969); it can be transformed to the following (see Miles 1986):

t 1 1
b= / / / sP(ps — V.Vp) — o6 — «pu-Vs‘] + 59(h +¢)?
to 2 g=h+¢ 2

Allz,y

1
- [Ep(so. ~Vn.Vo —pn, — pu. Vn] z-[x/ 1+Vn.Vn-—-1]

htg
—-—/ f// Vipdxdydzdt
to

All=z,y
htg L
/ / o(U. + 5.)dz dy dt
it e dz=~o00
t) (-] [ h+¢ 1 1
+/ / (U, + -, )dz dz dt
to z=-—00 L =0 2
- y=-—00
t:
B
/// pdzdzdy
All z,y e t=t,

(2.34)
The last three integrals in the above are evaluated at temporal or spatial end-

points, and so make no contribution to variation of the Lagrangian.

At O(€?) the Lagrangian density L simplifies to

1 1
L= [5&% P1s — P11t — 90111-VS'1} + 595‘12

z=h
1 1
- [EPx iz —P1Me — $01u-v'l1] + Eﬂ_l’YvS'x‘VSH (2.35)
1

m S
=& [7(71?, —¢c3Vn . .Vn,) — (-; -g) nf]

z=0

where ¢, satisfies Laplace’s equation V2, = 0, and ¢, ¢, 7, are as defined
in (2.26)—(2.28). This is now averaged over horizontal distances large com-

pared with the fundamental wavelengths 27 /k; and periods 27 /|w;|, but short

35

TR N TR T




compared with the modulation length- and time-scales. This gives

3
.i = Z[';‘k, (A, cosh k,h = B,' sinh k,h)(.A; sinhk,h Lom B; cosh k,h)

i=1

1
- %i(w,- — U.k;)a,(A; coshk;h — B} sinhk;h) — §lc,oA,-B,‘.

1 18 o (2.36)
- zi(w,- —Uk;)b; A} +ec.c|+ v Z(g + ;k,"-‘)a,-a;
i=1
1o~ m S .
i Z[;(wz - cokj) — (; — 9)]b;6;.
i=1
The Euler-Lagrange equations, at O(e?) are simply
oL
i 0, (2.37)

where ¢ represents any of the amplitudes 4;, B;, a;, b;. These result in equa-
tions exactly equivalent to (2.14)-(2.17), and give the dispersion relation (2.18)
similarly.

At next order, the Lagrangian is supplemented by the additional O(e®)

terms

1 1 1
L' = [§§1 (0, + ©101::) + '2'(‘P1 ©2x + P1202) — *z-solvﬁ-Vsol
—61eP2 — $2eP1 — G1eP1 — P16 (G +0VEG) — pau Vg

1 1
—-puVe] _, +ga6k — [th (01, +P1015:) + 5(&0190'“ + ©1202)

1
“§‘P1 V.V, — 0102 — 12:01 — M1:01 — 101 (11 +0.Vy)
—pou.Vn, —u.Vn,| _, + :;‘(Vﬁ-vfz T V§1-6§1)

= [%(ﬂuﬂzc + N1y — chm-Vnz e cﬁvmﬁm) = (i:" 2 g) ’71’72] )

(2.38)
where V2, = 0 and p,, ¢, 7, are as in (2.26)-(2.28). The operator V rep-
resents (9/8(ex),3/8(ey),d/d(ez)) and yields the slow spatial variations of ¢
and 7;. Averaging the above Lagrangian as before results in a long expression
involving the amplitudes, their temporal and spatial derivatives, and complex
conjugates (see Appendix A, equation (A7)).Since we have the amplitude rela-
tionships given by (2.14)—(2.17), the averaged Lagrangian may be re-expressed
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in terms of just a;, fi,-, ﬁ’,-, a; and 5,- (plus derivatives and complex conju-
gates). When this is done all terms involving &, and b; are eliminated, and the
coefficients of A; and B, vanish on application of the dispersion relation (2.18).

The resultant averaged Lagrangian has the form

=_.Z[Aa,( +UV)a + (8,U + C;k;).Va; 39

+ -S-Aala.,as +c.c.,

where the A;, B;, C; are as defined in Appendix A, equations (A8)—(A10) and
A is as defined in Appendix A, equation (A6), but with / now taken to be zero;
and all summations are modulo 3. The evolution equations for a; are then

found from the appropriate Euler-Lagrange equations, i.e.

8L’ o a8l 8 oL

da,  0t0a;, | O Ba;..’ (A40)
which yield:
i A,-(-a‘%— +u.V)(8,U + C;k;).V | q; = %,\a;“a;”. (2.41)
Now if we define DY) as
DY) = k7 (w; — Uk,)" D (DY) DY) — A9)?) cosh? (k;h) (2.42)
then A, is just ”D . Hence we obtain, after a little rewriting,
B; C; =
an [—— {(1- Z,—)U + ﬂ—jk,-}.V]a,- AaJ+l tin (2.43)

where j = 1, 2, 3 and all subscripts are evaluated modulo 3. In fact, the left
hand side of (2.43) is just 1‘”’ )( += +¢€..V)a; where ¢, denotes the group
velocity of each wave.

This result can be reproduced by the following heuristic analysis. In the

linear regime, we have the dispersion relation

D(w,k) = 0. (2.44)
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As we move into the weakly nonlinear regime, this is modified to

oD o aD

Dl +i2-k ~ i¥)a; mi[ 20 220 Flo; =nlt, (245

a 3
where the right-hand side denotes nonlinear terms and ia%, —-iv may be iden-
tified with small changes éw, 6k in frequency and wavenumber. From (2.44)

these are related by the dispersion condition

aD aD
60.’"8:; + Sk*a—k- =0, (2.46)

which gives

dw oD\~ ' aD
ok (aw) ok o (2:47)

Thus we obtain the generic evolution equation
aD( . = ¢e-V)a; =n.lt., (2.48)

and so (2.43) may finally be written as

8D( P
i3 (— + ¢ V)a; = —Aa,H Y. (2.49)
J
where
(5) =(1_§_)U+£k. (2.50)
C, i Yt A

As a check, ¢, was calculated explicitly using (2.47), and the form (2.50) was
thereby confirmed. Result (2.50) agrees precisely with (2.32) when ! = 0 in the
latter. Note that in both this section and the previous one S has been assumed
to be constant; if it is allowed to vary with k the only change is an extra term
in the group velocity (2.50), given below:

oD\
( Ow;

) P~k (w; — UX;)~*D? cosh® (k,-h)%?k,-. (2.51)
¥

2.6 Nonlinear Model of Flexible Boundary

In all the foregoing, we assumed a linear model for the flexible boundary,
given by equation (2.3) or (2.4), and hence the only nonlinearity occuring due
to the membrane results from Taylor expansion about the mean position z = 0.

A possible nonlinear model for a conservative normal reaction N is as follows:
3
N =m(n,, — 2Vip[1 - §|V17|2]) + Kin+ Kon® + Kan® +... (2.52)
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All terms of higher than quadratic order in  may be omitted without loss,
since they only give rise to terms of O(e*) in £L. We now replace (2.3) by (2.52)
in our Lagrangian formulation.

There are no extra terms resulting at O(e?), and so the linear dispersion
relation is unaffected (except of course that S is everywhere replaced by K, ).
At O(e®), however, the Lagrangian has the additional term }p~* K0}, which

on averaging becomes -:-p‘ 1K, (b, 6305 + c.c.), or equivalently

-;-p-lx, (H{(w,. ~Uk;)~2 D cosh(k,.h)}) (a1aza5 +c.c.). (2.53)

F=1

It is then straightforward to show that this is precisely the term to be added

to the interaction coefficient A in (2.49).

2.7 Conclusions

We have derived the linear dispersion relation for flow with a free surface
over a flexible boundary, and studied the linear stability of such a flow, with
and without damping. We have shown that three-wave resonance can be of
importance in free-surface flows over certain types of flexible boundary, and
have derived the wave-amplitude evolution equations for both temporal and
spatial variation. These equations have considerable mathematical interest in
their own right and have been studied by several authors (e.g. Kaup, Reiman
& Bers 1979, Craik 1986a, 1986b, 1987). The nature of solutions is therefore
well known. Indeed, it is known that under certain circumstances ‘bursting’
may occur, i.e. the wave amplitudes may become infinite in a finite time.

The model adopted here is perhaps unrealistically simple in that the fluid
flow is uniform and inviscid. However, this simplicity has permitted analytical
rather than numerical solution of the problem and so establishes a firm base for
future studies of other, more compex flows. In particular, we now proceed to
study viscous shear flow over flexible surfaces (in effect, replacing the waves on
the free surface with Tollmien-Schlichting waves). Carpenter & Garrad (1985,
1986) and others have considered the linear theory for such configurations,
but the corresponding nonlinear problems have not previously been confronted.

Firstly, though, we study the problem of Blasius flow over a rigid wall.
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Chapter 3 Boundary-layer flow over rigid walls
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3.1 Introduction

Boundary-layer flow over a flat plate has long been the subject of research in
hydrodynamic stability theory, and the theory is well-developed both for linear
and weakly- nonlinear regimes. The linear eigenvalue spectrum has been exten-
sively studied, by Jordinson (1970, 1971), Mack (1976) and Grosch & Salwen
(1978) among others. The nonlinear theories studied by Craik (1971), Usher
& Craik (1974, 1975), Herbert (1983a,b, 1984, 1988) and other work provide
some understanding of the processes causing the onset of three-dimensionality
in laminar-turbulent transition through a consideration of subharmonic and res-
onant modes. Asymptotic, high-Reynolds number triple-deck theory has been
used by Smith (1979) to examine the growth of disturbances in a boundary
layer and also by Smith & Stewart (1987) for resonant interactions. The exper-
imental work of Klebanoff, Tidstrom & Sargent (1962) was the inspiration for
much of the earlier theoretical work, and more recently the studies of Kachanov
& Levchenko (1984) have helped to give renewed impetus to the subject. Hen-
driks (appendix to Usher & Craik 1975) computed some resonant triads and
interaction coefficients using the formulation of Craik (1971); he showed that
oblique modes experience a remarkably strong resonant interaction at quadratic
order, as predicted by Craik (1971). Volodin & Zel’man (1979) considered an
analogous formulation for spatially growing disturbances, and had analogous
results to those of Hendriks. We shall present an extension of the results of

Hendriks (see §3.5).

Smith & Stewart (1987) applied triple-deck theory to resonant-triad inter-
actions in high Reynolds number Blasius flow. They considered high-frequency
disturbances asymptotically close to the lower branch of the neutral curve (that
is the locus of points in the (a, R)-plane for which disturbances are neutrally
stable); both temporal and spatial wave-modes were allowed for. The distur-
bance frequency 3 was assumed to be less than RY. In the high Reynolds
number regime the oblique constituents of Craik-type triads as defined in (3.9)
below have oblique-mode propagation angles 8 of exactly 60°. This value is in

fair agreement with the experimental data of Kachanov & Levchenko (1984)—
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those authors cite values for 8 of 56-63°. The interaction coefficients derived by
Smith & Stewart have quadratic terms which are of like sign and are also purely
imaginary: such forms preclude any finite-time bursting of the solutions— see
Chapter 1, §1.4 above.

In this chapter we consider Blasius flow over a rigid wall. The problem for-
mulation is given in full, for completeness, although it has been given elsewhere
(Craik 1971). Temporal eigenvalues of the Orr-Sommerfeld equation, resonant
triads and interaction coefficients are found by numerical integration. Parallel
flow is assumed throughout, although the Blasius solution is in fact only ‘nearly
parallel’. Previous work (for example Smith 1979) has shown that parallel and
non-parallel theories give broadly similar results, the major discrepancy being
an extension to the tip of the neutral curve, which gives improved agreement
with experiment. Temporal modes are investigated in preference to spatial ones
chiefly because they present a slightly more tractable numerical task. For the
temporal problem, a real wavenumber a is specified together with a Reynolds
number R, and the complex eigenvalue to be found is the phase speed ¢. The
spatial problem requires the specification of R and a real frequency w, and
the eigenvalue is the complex wavenumber . The two mode types are equiva-
lent only on the curve of neutral stability, but Gaster (1962, 1965) has shown
that they can also be related for small spatial and temporal amplification (or

damping) rates, by applying the Cauchy-Riemann equations.

3.2 Linear theory

Here we shall consider two-dimensional disturbances only. All physical
quantities are non-dimensionalised using appropriate combinations of U, , p.
and the boundary-layer thickness § = 5/vz/U, . Non-dimensionalisation in-

troduces the Reynolds number R as a flow parameter— here it is defined as

R=1U,$6 /v. The basic flow &# = U(2)/U,, is assumed to be quasi-parallel,

satisfying the Blasius equation
fm b ff” s 0, (3.1)

where f'(x) = #(2) and x = :/5;2; primes denote differentiation of f with
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respect to x. Boundary conditions are
f(0)=f'(0) =0, f'(x) =1 as x— oo, (3.2a,b,¢)

corresponding to the physical requirements that the flow should be stationary
at the wall and reach some constant value at a certain distance from the wall, A
stream function @ is defined by u = 3—‘:, w= —-%{4. We consider arbitrary small
disturbances of the form ®, = e¢(2) exp(iaz — iact), € < 1, and substitute for

the total stream function @ = [ #dz + ®, into the vorticity equation

avi® 9P aVi®d 9BOVIE 1,
o e i - zVie=o. (3.3)

On neglecting O(€e?) quantities, this yields the Orr-Sommerfeld equation, the

governing equation of the fluid flow in the linear regime:

Lig] =ie((@ — ¢)(¢" — a’¢) — u"9)
— _;'2_(430::: - 2a2¢n 58 a4¢) =0. (3_4)
Primes here and elsewhere denote differentiation with respect to the dependent

variable, in this case z (vertical distance from the wall).The boundary conditions

for (3.4) are, in terms of the perturbation velocities:
u(0) =w(0)=0; w,w—0 as z-oc0. (3.5a,b,c,d)

These correspond to requirements of no slip at the wall, and zero perturbation
velocities far outside the boundary layer. Rewriting these in terms of ¢, we

have:
$(0) = ¢'(0) = 0. (3.6, b)

The free-stream boundary conditions in terms of ¢ are

#(2),¢'(2) =0 as z— oo. (3.7a,b)

Equation (3.4) together with the boundary conditions (3.6) and (3.7) constitute

an eigenvalue problem for ¢ = ¢(a, R).

3.3 Nonlinear theory: triad resonance
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For the nonlinear analysis we consider a triad of waves defined by
o =) (e"qu." ()4 (t)) E;, j=1,2,3, (3.8)
=1
where
g «,
E, = el"l’ﬁ(;‘n +8y— ECt)},
g o,
E, = exp{1(~2~x - By — ECt)}’ (3.9)
E; = exp{i(az — act)}.

These shall henceforth be termed the ‘l1-wave’, ‘2-wave’ and ‘3-wave’. Exact
resonance requires that ¢, = ¢,. Figure 3.1 illustrates the resonant-triad config-
uration. An ordering parameter € has been introduced, so that all perturbation
quantities are O(e) with o(€) corrections. The amplitudes are assumed to be

slowly varying on an stretched time scale 7 = et. It is convenient to write (cf.

Craik 1968)

A

Uy o = E"a,z - ;vx,av
A (47
V1,2 = i%‘h.z + 5‘;”1,2, (3-10)

a2
= —_— 2_
% \/ 5 + B

The velocities 1,2, 9;,, are defined in the directions %, ;, §; 2, which are re-

spectively perpendicular and parallel to the crests of the relevant oblique wave:

4 a
Li,2 = oy s E‘y,
'}, d . (3.11)
e = :F:Y_z + Ejy‘y-
From the definitions (3.8) and (3.9) it follows that
o =) [€47 ()47 (1) Es,
) (3.12)

wy ., = —iy Z[E‘ ¢_$") (z)Aﬁ-") (7)1 Ey,2.
i=1

The linearised vorticity equation for the 3-wave gives the Orr-Sommerfeld equa-

tion

Ls[bs] = ial(@ — ¢) (¢! — o3 ¢s) — ")

(3.13)
— R7H(¢5" — 2075 + a'¢s) = 0,
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where ¢3 = ¢§1) . We now define an oblique Reynolds number R by
aR

R 2

(3.14)

giving for the 1-wave and 2-wave equations equivalent to (3.13), namely

Ll.ﬁ [4’1.3] = i”[(ﬁ = E)(¢‘1’,2 5 72451,2) = ﬁ"¢1,2]

1 (3.15)
= 'Rﬁ‘( 1e — 27412 + 7 ¢12) =0,
where ¢,, = §‘; (3.10) and (3.14) constitute a Squire transform (Squire
1933). The linearised momentum equations in the §, , directions yield
o', — [V +ivR(E - §)]6,,, = LiBRT. (3.16)

The velocity components ¥, , arise because of the distorting influence of the
basic shear flow on oblique wavemodes. The boundary conditions for (3.13)
and (3.15) are just (3.6) and (3.7) with appropriate quantities subscripted by
1, 2 or 3. The two boundary conditions for equation (3.16) are

6,,2(0) =0, (8.17)

01,2(2) 20 as z— oo. (3.18)

The first of these results from the requirement that tangential velocity be zero
at the wall, and the second follows on remembering that all disturbances must
tend to zero outside the boundary layer. As was found by Craik (1971), at

O(€?) the nonlinear vorticity equations are

- dA
As () Lo [fs] = ~— (45 — o) + Fo =10,
- dA, , (3.19)
Alﬂ (t)L1.2[¢1,2l = —Tt'-( '1"2 - 72431‘2) + F1.2 = r(l.z)’

where q—S,- = ¢§.2) ,1=1,2,3,and F;, F,, F; are as follows:

1, * o? - wt
F, = -4-10:113,42 exp(acit)(’—y; ~2)ds (85" — 4 3')
o? " * * "
- (:y“; ~3)¢5 (42" — 7" ¢3) — 243 (65 — 0‘2¢9) (3.20a)
*1 n 7 2aﬂ Axl b A% A%
— ¥y (¢3 = a2¢8) St ’YQ (¢3”2 + ¢3”2' + ’72 ¢302
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1 . * a2 U * I *1
F, = ZlaAS A] exP(acit)(,Y_g = 2)¢3 (¢1 s o )

2
+ (7~ 981"~ 7"91) ~ 261 (4} — a¢) (3.20b)
— 41 (4 — 0P¢) — 2—;‘;‘5( S0 + B0 + 7 s 0y)

Fyo= %iaA,A, exp{a(e. —¢)t}(3 — s;)fﬁ'x (67 —*¢1)

0B = PH)+ 5 (a8~ P )+ 419)

28 (3.20¢)
~ (85" — @) + 22 (10, + 2919+ 618%)
2
In the last equation above we have used the facts that ¢, = ¢, and 9, = —9, for

reasons of symmetry. These expressions for F;, F,, F,, identical to Craik’s, were
re-derived independently by the present author. In the remainder of this section
the index 5 takes the values 1, 2, 3, corresponding to the three constituents of
the triad. The wall boundary conditions for (3.19) are similar to those for the
O(e) equation (3.2), that is

$;(0) =4,(0) =0, j=1,2,3 (3.21a,b)
and
$i(2),9:(2) =0 as z— oo. (3.22a,b)
In order to solve equations (3.19), we now consider the linear system adjoint
to (3.13) and (3.15), viz.
Li[#;] = ik; [(5 = ¢;)9s]" — ik; [k (& — ;) + @" oy
~ B - Y + K%)=,

(see e.g. Ince 1956, §9.31), where k13 =, ks = o, R, = R, R; = R and

(3.23)

¢1,2 = €, ¢s = ¢. The expressions L;[¢,] and L:. (4] are related by the Lagrange

identity
d
¥ Li[bs] — ¢; LY;] = P (¢,%) (3.24)
where P;(¢,) is the bilinear concomitant. For an ordinary differential equation
of form
¢ dlg d¢
Po + P st T +Pn~1£ + Pt =0,

45

2R B 2 R e

3
5
!
3
b
!

#




with adjoint equation

dr—? d
~1)" e (pi¥) + o~ = (Pae1¥) +Pa¥ =0,

(-1 )"

the bilinear concomitant is given by

P(¢,y) = Z[Z( 1y~ ( = ,)(dz, l(pn—r'b))]

r=1"%=1

Thus for our system we have

Pi($,9) = —o- [0 (81" — K24) — 6, (8" — K200) + 858 — K39)

— (8] — K} 8;) +ik; By (T — ¢;) (859 — ¥;8;) + ik; R; &' ;5]
(3.25)

Integration across the range of the independent variable yields Green’s formula

[ witile) - 6:Lllw ez = (B (3.20)

The right-hand side of (3.26) contains the boundary conditions both for ¢, and

for 1;. It may be written as eight bilinear terms in ¢; and v, , four terms being

evaluated at each of the flow boundaries:

[P (¢, 9)] Z uPvid, (3.27)

where

U = ¢,(0),

Ul = ¢,(0),

Uy = ¢,(c0),

Ul = ¢(c0),

UY) = ¢(0) — (k2 — ik, Rye;)¢;(0),

U = ¢7'(0) — (k} — ik; Ryc;)4;(0) + ik, R, @' (0, (0),
Uy = ¢ (00) — (K] +ik; Ry (1 — ¢;))4;(o0),

U = ¢ (00) — (K% + ik; R; (1 — ¢;))#;(o0);

(3.28)
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and 1

Vl(.i) = ___E;'/)’_ (OO),

v = Ri,.'/’;'(oo)’

Vs(") = 'I'lz;'bi(o)s

‘/‘(f) = _El_¢; (0),

" 1’ (3.29)

V" = —g (] (00) ~ iy (os)),
Ve(}) = '1—;"(1#;"(00) A k?¢,; (OO)),
VP = 2 (8(0) - K5 0),
V) = - (0) - K9 0)-

Thus the O(€?) boundary conditions for ¢; may be re-expressed simply in terms
of U, U, UY and UY:

U =o,
v =o,
) (3.30a,b,c,d)
Ui =0,
g =0,

The general theory of differential systems (Ince 1956, §9.34) then attests that

the boundary conditions for the homogeneous adjoint system must be
v =0, i=14. (3.31)

Furthermore, in order for the principal system given by (3.19), (3.21) and (3.22)

to have a solution the following relation must obtain:
/ ;rdz =0, (3.32)
0

After a little re-arranging of (3.32), we arrive at the evolution equations

dA;

ar =as A, Az,
(3.33a., b)
dA; » o
a0 =a,24; , As,
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where

foco Fs‘d)s dz
A A, fom ¥s (¢Q’ - a’¢3) dz

a; =

and -
fo F1,2¢1,2 dz

= A3A;'1 foon '/’1.2( '1',2 = '724’1,2)112.

Q1.2

3.4 Numerical method

3.4.1 Discussion of numerical schemes

There are various computational techniques applicable to equations of Orr-
Sommerfeld type, indeed this particular equation has been the principal reason
for the development of some of these techniques. There are two main difficul-
ties in its numerical solution: (i) the eigenfunctions and their derivatives vary
very rapidly in the vicinity of the critical point 2., given by #(2.) = ¢; and (ii)
the two ‘physical’ solutions, that decay exponentially in the free stream, tend
to become contaminated with the unphysical, rapidly growing viscous solution.
The Orr-Sommerfeld equation is therefore an example of what is known as a
‘stiff’ equation. Among the more frequently-used methods are orthonormali-
sation (a ‘shooting’ method), compound matrices and finite differences. The
first of these utilises the fact that contamination cannot occur if the solution
vectors are made orthogonal to each other at each stage of ‘shooting’ across the
region of integration. One disadvantage of this scheme is that reconstruction of
the eigenfunctions subsequent to the integration is a rather awkward process.
The method of compound matrices has been used with success by Ng & Reid
(1979) and Davey (1980) among others. Its principal disadvantage is that the
compound matrix increases vastly in size with the order of the differential equa-
tion. Thus it is unsuitable for fully three-dimensional problems for instance,
although practicable for Orr-Sommerfeld calculations.

The methods of orthonormalisation and compound matrices have been
compared by the present author (Thomas 1988) for boundary layer flows over
both heated and unheated flat plates. Fourth- and sixth-order mathematical
models were employed. The compound matrix method was found to require
four times as many grid-points across the boundary layer to achieve the same

accuracy as the orthonormalisation method, and also generally needed a much
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more accurate initial guess in order to successfully converge.

The Chebyshev polynomial collocation method was first used by Davey &
Nguyen (1971) for pipe flow and by Orszag (1971) for plane Poiseuille flow.
Orszag recommended the method on the basis that the truncation error de-
creases rapidly with the number of polynomials used. This method is more
complicated to program than finite differences for example, but of course stan-

dard packages are available in program libraries (such as the NAG library).

3.4.2 The finite-difference scheme

The method of finite differences is relatively easy to program, and recon-
struction of the eigenfunctions is straightforwward. Accuracy is determined
by the choice of finite-difference scheme, by step size and by the number of
significant figures of the floating-point arithmetic used. An extension of the
finite-difference method of Thomas (1953) was used for the boundary-layer com-
putations presented below. This method utilises a Noumerov auxiliary function
to increase the accuracy of the differencing. The principal advantage of finite-
difference methods is often said to be their inherent numerical stability, which
may be considered more important than the superior speed and accuracy of
more sophisticated integration techniques.

The five-point finite difference scheme will now be described. The equa-
tions to be solved for the resonant-triad problem are: firstly the Orr-Sommerfeld
equation (3.13); then its adjoint, from (3.23); then the oblique Orr-Sommerfeld
equation for the 1-wave from (3.15), followed by its adjoint from (3.23); and
finally the cross-flow equation for the 1-wave, from (3.16). For the linear prob-
lem we only solve (3.13). Let x represent any of ¢;, ¥;, § = 1,2,3. We define

an auxiliary function g by

1 1
g R R A (3.34)
where h is the step size, and x may be given in terms of g by the Noumerov
transform
1 1

where 6 is the centred difference operator. The coefficients of (3.35) are se-

lected so that the approximations to the derivatives giving O(h*) accuracy are
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simplified (see Thomas 1953). The function and derivative approximations can

be shown to be

1
Xi = 355(9i-2 +569;-1 +246g; + 569,11 + g;42) + O(R°),
1
hx; = '2‘(—9:'-1 +g5+2) + O(RY),
1
R x; = E(g,‘-z +8g;-1 — 189, + 8g;41 + gi+2) + O(R°), (.36)
1
R} = 5(-—9;-2 +2g;_1 ~ 29541 +g542) + O(R*),
h‘X;'m =g;—2 —49;-1 +69; —49;41 + Gj42 + O(hs)-
Differencing of the relevant governing equation over n intervals of equal width h
yields n+-1 equations for g, , ..., g, + 1, but four fictitious points g_ ; ,g0 ,0n+2:9n+3
are also created; these are dealt with as follows. The four boundary conditions,
two at each end of the integration domain, are finite-differenced at the stations

7 =1and j = n+1 as appropriate. This yields four algebraic equations for

the unknown quantities g_;,90,89n+2,9n+3- Hence these unknowns can be re-
expressed in terms of the ‘known’ quantities g; near to the two end-points of

the domain.

The general equation at the jth station is
gj— gA(j, 1) +g.1'— 1 A(Ja 2) +91A(j9 3) +g;‘+ 1 A(J! 4) +gJ'+2 A(j’ 5) = P(j), (3°37)

for some A(j,%), { = 1-5 and some P(j). Consider now the first station: we

have

-1 A(1,1) + o A(1,2) + g, A(1,3) + g, A(1,4) +gs A(1,5) = P(1), (3.38)

and from the wall boundary conditions we have equations of the form

g-1 = X101 + Xog, + Xs9s + X,
(3.39)
go =Y19, + Y20, + Yags + Y,

for some X, Y;, 5 = 1,2,3 and some X, Y,. Using these we may rewrite (3.38)

as
Aygr +As2ge + Assgs = py, (3'40)
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where
Ay, = A(L,3) + A(L,1) X, + A(L,2)Y,,

A = A(1,4) + A(L,1)X, + A(L,2)Ys,
(3.41)
A13 E A(l, 5) + A(l, 1)X3 + A(l, 2)Y3 y

p = P(1) - A(1,1) X, — A(1,2)Y,.

Similar relations may be obtained for the second and third stations, and thereby
all the terms involving ¢_, and g, are absorbed into terms involving non-
fictitious points. A similar procedure may also be enacted at the (n + 1)th
station. It follows that the complete system can be re-expressed as a matrix
equation of the form

(4] =P (3.42)
where [A;;] is an (n + 1) X (n + 1) pentadiagonal band matrix and g and p are
column vectors of dimension (n + 1). The matrix [4;;] is forward-diagonalised
into an upper-triangular matrix by Gaussian elimination. For equations (3.13),
(3.15) and (3.23) p is the null vector, and a normalisation condition is required
for g, which is taken as g,,, = 1. Thus the eigenvalue relation E(a, R,¢c) =0
is just A, ;.43 = 0. The Orr-Sommerfeld equation and its adjoint must
share the same eigenvalues, by the theory of differential systems, and hence no
iteration is required for the solution of (3.23). Solution of (3.16) by a three-
point scheme is also straightforward since this equation does not have its own
eigenvalue, being inhomegeneous.

It is impractical to employ the exact outer boundary conditions (3.7) and
(3.18) in any numerical method: clearly we must impose some approximations
to these, at some selected finite value z; of z. At sufficiently large 2z, the
two physically relevant solutions of the Orr-Sommerfeld equation are those

which decay exponentially at the respective rates (—az) and (—pz), where

p = y/o? +iaR(1 — ¢), the root with positive real part being taken. The
general solution at large z is then simply a linear combination of these two

solutions so that
¢ ~ Ae”** + Be P*,

where A, B are constants. The simplest differential operator which will an-

nihilate the right-hand side above is (D + a)(D + p) so the most appropriate
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numerical forms of the outer boundary conditions (3.7a,b) to be used at z = 2,
say, are

¢" + (e +p)¢' + app =0,

¢ln + (a +P)¢" + apqS' = 0
The above numerical idea is due to A. E. Gill, and was first published in Gill &

(3.43a,b)

Davey (1969). For the cross-flow velocity 9, , we approximate (3.18) by 9 (z,) =

\[72 B i'yfi(l — €) 9, (2, ), the root with negative real part being selected.
The integrals appearing in the expressions for the quadratic interaction
coefficients a;, 7 = 1,2,3 (equations (3.33) above) are evaluated using Boole’s

rule:

4h 2h
/ f(r)dr =~ Zg(7uo + 32u; + 12u; + 32us + Tuy).
0

This is a five-point rule, and so for successive applications over n intervals n
must be a multiple of four (herein we use 1001 grid points, that is 1000 intervals).
Boole’s rule has good accuracy, the estimated error being ~ —g—’;%{ e (6) —
f©®)(a)} for an integration range [a, ] (Buckingham 1957).

The program used by the author was developed from one supplied by Pro-
fessor P. K. Sen, that computes eigenvalues and eigenfunctions for the linear,
two-dimensional problem. In the author’s program, eigenvalues are located
by a combination of Newton-Raphson and regula falsi convergence schemes.
The transverse wavenumber f for resonance is determined using the bisection
method within the calculation of the eigenvalue ¢ subject to the condition that
¢: = ¢.. The iterative scheme in general requires a reasonably good initial
estimate for the eigenvalue in order to converge, but for modes other than
Tollmien-Schlichting modes this tended not to be available. Hence the author
developed an alternative scheme based on the Principle of the Argument, fol-
lowing the work of Yeo (1986). A closed contour is traced out anticlockwise in
the complex phase-speed plane, and the accumulated change in arg{det[4;;|}
is 2nw if n eigenvalues are enclosed in the contour (assuming there are no sin-
gularities). On finding that an eigenvalue is enclosed, the algorithm causes the
procedure to be repeated continually using a reduced contour enclosing half the
area of the original until at a prescribed limit the iteration procedure is invoked.

This method is reliable, but very costly in CPU time since the step-length along
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the contour must be sufficiently small to avoid bypassing any loops. Hence the
PA scheme was only used in the event of failure of the original initial-guess it-
eration routine. Yeo (1986) suggests that the step-by-step phase-change should
not be permitted to be more than 7 /4, but the present author found this gen-
erally to be an unnecessarily severe constraint given the large number of modes
that had to be located. Problems did however occur in the region of ¢, = 1 due
to the presence of the temporal continuous spectrum there.

All calculations were performed on a VAX 11/785 computer at the Uni-
versity of St. Andrews using double precision arithmetic (64-bit word length
for real quantities), which gives a nominal accuracy of about sixteen signifi-
cant figures. The eigenvalues and discretised eigenfunctions obtained have an
estimated accuracy of about five significant figures, which is adequate for most

purposes.

3.5 Results and discussion

Linear eigenvalues are compared with the data of Mack (1976) and Gaster
(1977) in Table 3.1. The agreement is clearly satisfactory. Differences in the
authors’ choices of length scales make algebraic transformations of wavenum-
ber and Reynolds number necessary in order to make comparisons, and this
accounts for the occasional very small discrepancy between the two sets of
data.

Resonant triads for Blasius flow over a rigid wall, encompassing a wide
range of wavenumbers « and Reynolds numbers R, are presented in Tables
3.2, 3.3 and 3.4. Here, and below, the domain of integration extended 2.5
boundary-layer thicknesses out from the wall, and 1000 grid-points were used.
Table 3.2 presents the present results together with those of Hendriks (appendix
to Usher & Craik 1975). Agreement is very good both for the linear data
(that is, eigenvalues), and for the nonlinear data (that is, quadratic interaction
coefficients), which confirms the soundness of both authors’ numerical methods.
Plots of the eigenfunctions ¢;, ¢,, their respective adjoints 15, ¥; and the
cross-flow velocity 9, are presented in Figure 3.2 for the case of R = 2562.8 and
o = 0.6, and are also consistent with equivalent figures of Hendriks.

Considering the linear eigenvalue ¢ (representing a Tollmien-Schlichting
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disturbance), the real part ¢, at first increases with wavenumber but eventually
begins to decrease; ¢; for the streamwise mode has a peak, unstable value. For
the oblique modes, ¢; clearly reaches its peak value at a wavenumber larger
than is considered here. Note that the propagation angles @ of these modes
are determined by the requirement that resonant triads be formed, and so are
different in each case.

It will be seen from Tables 3.3 and 3.4 that the quadratic interaction coeffi-
cient a3 for the streamwise modes always remains O(1) in magnitude, in marked
contrast to its oblique counterpart a;, the modulus of which increases very sub-
stantially with both wavenumber and Reynolds number. These results have
similarities with those of Volodin & Zel’'man (1979) for spatial wave-modes. It
would appear from the a = 1.0 cases that a, decreases for sufficiently large R,
although the evidence is only provided by a single data point. Note that by
symmetry a;, = a,, and the a; are all complex.

It is interesting to note the behaviour of the phases of a; and a, as a and R
change. It is clear from Tables 3.3 and 3.4 that arg e, decreases with both o and
R (with the exception of the very last entry in Table 3.4(e)), but in contrast
argas is quite erratic and no general trend can be deduced. The spanwise
wavenumber £ of the oblique constituents of the triads generally increases with
increasing o but decreases with increasing R. The propagation angle 8 of these
waves decreases with both wavenumber and Reynolds number, as will be shown
later.

Comparison of the present results with those of Smith & Stewart (1987)
is not straightforward. This is because the latter results assume that the res-
onating wave-modes lie asymptotically close to the lower-branch neutral curve,
which is certainly not in general the case for the triads that are given in Tables
3.2-3.4. However, it must be said that both works are certainly valid in their
appropriate contexts.

Since the interaction coefficients a,, a; which are presented in Tables 3.2-
3.4 are complex, not real, quantities it follows that finite-time bursting is pos-
sible, this being an important difference from the scenario studied by Smith

& Stewart. Also, the propagation angles § = cos™*(;-) for the oblique-mode
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triad constituents are never very close to the inviscid value of 60°: they are

always less than this, and indeed decrease with increasing a or R.

3.6 Conclusions

In this chapter we have located numerically a large number of resonant tri-
ads for Blasius flow, thereby considerably extending the work of Hendriks (ap-
pendix to Usher & Craik 1975). The results clearly demonstrate that three-wave
resonance can strongly influence participating oblique wave-modes, the stream-
wise mode being much less affected. The strength of the interaction increases
very markedly with both increasing wavenumber and increasing Reynolds num-
ber. Thus resonant-triad interactions can be assumed to be extremely relevant
in transitional flow regimes, as has indeed been shown experimentally to be the

case (in the studies of Kachanov & Levchenko 1984, for example).
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Chapter 4 Boundary-layer flow over flexible walls

:
4
;
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4.1 Introduction

The possible importance of nonlinear effects in flows over flexible surfaces
has hitherto not been considered in theoretical analyses. However, many of the
experiments (e.g. those of Gad-el-Hak, Blackwelder & Riley 1984) strongly in-
dicate that three-dimensionality (and hence perhaps nonlinearity) is even more
prominent than for rigid-wall flows. Also, the multiplicity of modes in flexible-
wall flows suggests that nonlinear modal interaction (in the form of resonant
triads, for example) may often be of importance, especially when there is no
linear mode-coupling. In this chapter we consider Blasius flow over a simple
model wall, similar to that used above in Chapter 2. Temporal eigenvalues of
the Orr-Sommerfeld equation, resonant triads and interaction coefficients are
found by numerical integration. As in the previous chapter, parallel flow is as-
sumed throughout, although the Blasius solution is in fact only ‘nearly parallel’.
Much of the following theoretical formulation is the same as for the rigid-wall
problem studied in Chapter 3, but we will permit a degree of repetition in the
interests of presentational clarity.

We consider a simple wall model, that could for instance be representative

of a membrane supported by springs:

o . Oy "
N—-mat2 +d6t FVinp+ Sy, (4.1)

The vertical displacement of the wall from its undisturbed position is measured
by 1, and m, d, F and S are all as defined in (2.3) above. As previously, it
is assumed that lateral motion of particles in the surface is zero or negligible.
For present purposes it is advantageous to restrict the number of independent
wall parameters while retaining a reasonable degree of realism. More complex
models may be examined by similar methods, if required.

All quantities, including those pertaining to oblique modes, are non-dim-
ensionalised using appropriate combinations of U, , p. and the boundary-layer
thickness 8, which we define to be § = 5\/%. The Reynolds number R
is defined with respect to 6, i.e. R = in. The wall parameters are non-
dimensionalised in the following way:

d, S.6

m. ¢
e LI , 8= =
p.UZ

m= —,k ¢c. =
Pcs, ? Uooz, Pero

(4.2)
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where ¢z = m™'F and . denotes dimensional quantities. This scheme is akin
to that of Domaradzki & Metcalfe (1987). R can be taken to vary with &, U,
or v: here we assume that %, and v are fixed, and R varies only as 6 changes,
that is, with z. If allowance is not made for this, different walls will be modelled
at different Reynolds numbers. Thus we define reference values m(®) of m and

S() of S at some Reynolds number R,, and m and S vary according to

m®) R, s r
m = $ S = i
R R,

(4.3)

Note that R may alternatively be taken to be a function of @, rather than of

8, in which case a different scheme is required.

4.2 Linear theory
Here we shall consider two-dimensional disturbances only. The basic flow

%@ = U(2)/U,, is assumed to be parallel, satisfying the Blasius equation
f"+ff"=0 (4.4)

where f'(x) = @(2) and x = -j-;z; primes here denote differentiation with

respect to x. Boundary conditions are
fO =0 =0, ()1 as x— oo, (4.58,b,)

corresponding to the physical requirements that the flow should be stationary

at the wall and reach some constant value at a certain distance from the wall. A

stream function ® is defined by u = %‘f—, w= —%. We consider arbitrary small

disturbances of the form ®, = e¢(z) exp(iaz — iact), € < 1, and substitute for

the total stream function ® = [ @dz + &, into the vorticity equation

avVi® 0B AVI® 9B AVIE 1_,
% g 9 3y -zVe=o. (4.6)

On neglecting O(€?) quantities, this yields the Orr-Sommerfeld equation, the

governing equation of the fluid flow in the linear regime:

L[] = ia[(z — ¢)(¢" — o’ ¢) — #" ¢ — %2-(45"" —20°¢" +a'd)=0. (4.7)
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The boundary conditions for (4.7) are, in terms of the perturbation velocities:

u(n) =0, w(n)= (% + u.V) n; u,w—0 as z—o0. (4.8a,b,c,d)

These correspond to requirements of no slip at the wall, and zero perturbation
velocities far outside the boundary layer. Performing Taylor expansions of the

first two about the undisturbed wall position yields at first order
#'(0) + n#@'(0) =0, (4.9)

#(0) —en = 0. (4.10)
Elimination of n gives the homogeneous condition

' (0)

$(0) + 2 $(0) = 0. (4.11)

We require one other boundary condition at the wall, and this is obtained from

a consideration of the normal stress:

o U __z] = N(n). (4.12)

From the z-momentum equation,

du _ 0p  1_,
5t +uVu= pet RV u, (4.13)

and using (4.11) we have

p(0) = =(6"(0) ~ o*$(0)). (4.14)

The quantity N(n) is as given in (4.1), with appropriate notational changes.
From (4.1), (4.10), (4.12) and (4.14) we obtain

¢m (0) e 3a2¢l (0) e B¢(O) =0 (4.15)

where

= iaRcImaz (¢ —¢Z) + iaed — S]. (4.16)

The free-stream boundary conditions in terms of ¢ are

#(2), ¢'(2) =0 as z-- oo. (4.17a,b)
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Equation (4.7) together with the boundary conditions (4.11), (4.15) and (4.17)

constitute an eigenvalue problem for ¢(a, R).

4.3 Nonlinear theory: triad resonance

The formulation of the resonant-triad problem for flow over a flexible
boundary is a reasonably straightforward extension of that for rigid walls given
in the preceding chapter: however, care must be taken in deriving the wall
boundary conditions for the adjoint system, since these cannot be obtained
from any physical considerations. Hence the analysis will be given in detail.

We consider a triad of waves defined by
®; =) ¢4 ()4 B)B;,  §=1,2,3, (4.18)
=1

where

E, = exp{i(Gz+ By - 5)},

E;, = exp{i(-g:c - By — gét)}, (4.19)

E; = exp{i{az — act)}.

These shall henceforth be termed the ‘l-wave’, ‘2-wave’ and ‘3-wave’. Exact
resonance requires that ¢, = ¢,. Figure 3.1 illustrates the resonant-triad config-
uration. An ordering parameter ¢ has been introduced, so that all perturbation
quantities are O(e) with o(e) corrections. The amplitudes are assumed to be

slowly varying on a stretched time scale r = et. It is convenient to write (cf.

Craik 1968)

~ a ~ A~
Uy = 2_"'1.2 F —V1,2,
8l

5 8. a .,

V2 = i:y‘ul,z + '27”1,2, (4-20)
o3
—la 2
G 1 + B

The velocities 1, , #; ; are defined in the directions %, ,, §; 2, which are re-

spectively perpendicular and parallel to the crests of the relevant oblique wave:

v B

«
212 =~z E -y,

ﬂ" 2 (4.21)
Via= :F;;x'f' ﬂy-
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From the definitions (4.18) and (4.19) it follows that
Uy, = Z[fi‘ﬁ?) (z)A‘(,'i)(t)]El.z’
i=1

wys = —iv Y 1€ 60 (2) AP ()]s .

i=1

(4.22)

The linearised vorticity equation for the 3-wave gives the Orr-Sommerfeld equa-

tion

Ls[¢s] = ia[(@ — c) (¢ — a’¢s) — 0" ¢s]

1 4.23
— (8 — 2076y + a*45) =0, ()
where ¢ = gl) . We now define an oblique Reynolds number R by
~  aR
= —— 4.2
k=gt (4:24)
giving for the 1-wave and 2-wave equations equivalent to (4.23), namely
L1.2[¢1.2] =iv(a — E)(¢’1‘,2 - ’124’1,2) s '-7'"4’1.2]
(4.25)

1
w E( ,1','; = 2'72 ¢’1',2 5 '74¢1.2) =0,

where ¢, , = ¢§13 The linearised momentum equations in the §; , directions
yield

o, — [ +i7R(T — §)]d,,, = LiPRU' ¢y 5. (4.26)
The velocity components 9; , arise because of the distorting influence of the
basic shear flow on oblique wavemodes. The boundary conditions for (4.23)
are just (4.11), (4.15) and (4.17) with appropriate quantities subscripted by 3.
For equation (4.25), however, the wall boundary conditions depend critically
on the type of wall being modelled. In this work we shall consider an idealised
anisotropic wall: the effective wall tension experienced by obliquely-propagating
wall modes is assumed to be F cosé (that is, 2—“1—F) rather than just F; 8 is the
angle between the directions of propagation of the oblique wave and the basic
flow. More complicated anisotropic models are of course possible, and indeed
have been investigated elsewhere in the context of the linear stability problem
(for example Yeo 1986), but we feel that our simple model is adequate for this

exploratory study. At O(e) we have for the 1-wave
! o =t
A (0) = ‘"2;“' (0)7111 (4~27)
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$.(0) = %b)l, (4.28)

which gives

$,(0) + 7 (0)4:(0) =0. (4.20)
The normal stress is
2 awl o=
[*-pl ¢ _R?“é—;},:" = Ny (n), (4.30)

and the z-momentum equation

ou _ 0p  1_, '
o UV kb (4.31)
yields
1 1"t U
P (0) = £ 2 (6'0) ~ 74, 0). (4:32)

Thus we obtain the second wall boundary condition as

¢7'(0) — 39" ¢} (0) — B1¢:(0) =0, (4.33)
where
_ 2R me? ., a 5  .af,
B; = P [——4 (¢ —é—’;co)-{-l 2 d S]. (4.34)

Note that in (4.30)—(4.34) the Reynolds number is the original one, not that
defined by (4.24). This can be verified by re-deriving the boundary condition
in dimensional units, and then non-dimensionalising according to the scheme

given above. The two boundary conditions for equation (4.26) are

~

91,2(0) = igﬁ' (0)n1,2, (4.35)

01,2(2) 20 as z— oo. (4.36)

The first of these results from the requirement that tangential velocity be zero at
the wall, and the second follows on observing that & = 1 outside the boundary

layer. As was found by Craik (1971), at O(e?) the nonlinear vorticity equations

are
- dA
Ay (t)Ls[¢s] = ——d—rg'(qsg' —P¢s) + Fy =13,
. dA, (4.37)
A2 ()L a[1] = _T( t2 —Vb12) + Fip =112
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where ¢; = ¢§.2), 7 =1,2,3, and F,, F,, F, bilinear in the first-order dis-
turbance quantities, are exactly as given in Chapter 3, equation (3.20). The
expressions for F,, F,, F;, identical to Craik’s, were re-derived independently
by the present author. In the remainder of this section the index j takes the
values 1, 2, 3, corresponding to the three constituents of the triad. The wall
boundary conditions for (4.37) are found after a considerable amount of alge-

braic manipulation to be

%0 + 2,00 = u?,

3;'(0) — 3k38;(0) — B;4,(0) = 5",

(4.38a,b)

where the O(¢?) nonlinear terms u; are as given in Appendix B, equations (B1)-
(B4) and ky , =, ks = a; ¢, = &, ¢3 = ¢. The three pairs of free-stream

boundary conditions are the same as for the linear problem, i.e.
$;(2), $;(2) >0 as z—o00, j=1,2,3. (4.39a,b)

In order to solve equations (4.37), we now consider the linear system adjoint

to (4.23) and (4.25), viz.

Li[;] = ik; [(5 — e;)9; )" — ks [k} (@ — ¢;) + 0" |9

1 1 " 4.40
— o~ 2K + k) =0, e
]

(see e.g. Ince 1956, §9.31), where R, , = R and R; = R. The expressions
L;[¢;] and L:. [#;] are related by the Lagrange identity

d
WiLslé] — 85 L] = [P (4, 9)] (4.41)
where P;(¢,1) is the bilinear concomitant, defined by

Pi(8,9) = o W87 K3 8) — 6 (05" — K395) + 8,45 — K2oy)
~ i (7 — K 8;) +ik; R; (@ — ¢;) (b9 — 9, 8;) + ik, R; @' ¢;;].

(4.42)

Integration across the range of the independent variable yields Green’s formula

/0°° (s Lila) — 85 LL1s1) d2 = [P (6, 0I5 - (4.43)
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Note that the range of integration is 0 to co. This is because we have eliminated
the O(e?) wall displacement n; from the second-order wall boundary conditions
(4.38), writing the left-hand-sides in terms of ¢; only, and evaluating at the
undisturbed wall position 2 = 0. In order to solve the linear flow equations
numerically we of course have to impose outer boundary conditions at some
finite value of 2, but it is inappropriate to introduce these approximations at
this stage (the formulation of the outer boundary conditions for numerical pur-
poses was discussed above, in §3.4; there is no difference between the rigid- and

flexible-wall cases).

We now rewrite the right-hand side of (4.43) as

P (6. 9)5 =Y UV, i

where

U = 45(0) + 2%, 0),

Uy = ¢'(0) — 3k24;(0) — B;4;(0),

U;j) = ¢; (°°)’

Uy = ¢ (co),

U = ¢,(0),

U = (0) ~ (2K} ~ ks Rye;) ¢,(0),

U;J-} = ¢;l(°°) . kf¢.1 (OO),

U = 67 (0) - K4 (o) -
and

: 1
VJ(” = "Ef'pi(oo)a
¢

Vg(j) = E};‘p;(oc),
Y 1.
Va( ) = __.R-;»:[)J.(O),
7 1 "m u'(0 7 k?ﬁ, 0
V= _E;WJJ' (0) + %ltb,- (0) + ('—;J_'(‘l — B;)¢;(0)],
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v = _%[,/,;f (00) — kZ4p; (00) — ik; R, (1 — ¢;)%;(00)],

VN = Ly (oo) — K2 (00) — ks By (1 — )45 (o)),

V'l(j) = i}""py (0)’
Vi = () + (K2 + ik, Ryc; )18 (0) (4.46)

These particular forms for the U‘.(") and V;m are only one particular choice:
others are also possible. Thus there is some freedom in selecting Us(j )—Uéj b
and since it is these which determine the adjoint boundary conditions V'.(j) =0,
1 = 1-4, it follows that there is not a unique adjoint for this problem.

Thus the O(e?) boundary conditions for ¢; may be re-expressed in terms

of U1, g, gl snd UL

U =y,
Gl g8
il (4.47)
U=,
U s

The general theory of differential systems (Ince 1956, §9.34) then attests that

the boundary conditions for the homogeneous adjoint system must be
v =0, i=1-4. (4.48)

Furthermore, in order for the principal system given by (4.37), (4.38) and (4.39)

to have a solution the following relation must obtain:

/ brdz = 'V + )V, (4.49)

0

After some re-arrangement of (4.49), we arrive at the evolution equations

dA
O3 d: = ¢ A; A,
(4.50a,b)
dAl,2 *
01,2 = & = ¢1.2 Ag,I As.

The quantities o; and ¢; are somewhat lengthy and hence are given in Appendix
B, equations (B5)-(B8). We define the quadratic interaction coefficients a,; by
a; = S','/Uj, J=12,3.
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4.4 Numerical method

The numerical scheme for the compliant-wall problem is very similar to that
for the rigid-wall problem described above in Chapter 3; the finite-differencing
of the boundary conditions is not in itself appreciably more difficult than for
the earlier case. A seven-point scheme (supplied by Professor P. K. Sen) was
implemented, with the aim of increasing computational accuracy. However,
serious difficulties were experienced with this seven-point scheme in attempt-
ing to integrate the cross-flow equation (4.26). It was found that a form of
numerical instability occured in the region adjacent to the wall, manifesting
itself as oscillations in the values of ¥} and ¢} on the scale of the step-size h.
The problem persisted with different choices of step-size. The author surmised
(after some discussions) that the problem was due to the seven-point scheme,

for the following reasons.

Any seven-point scheme requires six boundary conditions, three at each
extremity, since there are three fictitious points beyond each integration limit.
The second-order cross-flow equation (4.26) has only one boundary condition
at each end, however, namely (4.35) and (4.36); hence an extra wall condition
and an extra free-stream condition must both be decided upon. Such arti-
ficial conditions may be obtained by for instance using finite-differencing of
lower-order accuracy (giving a reduced equation), or by differentiating the field
equation. Note that two extra boundary conditions are also required for the
Orr-Sommerfeld equations (4.23) and (4.25) and their respective adjoint equa-
tions; no numerical problems were encountered regarding these equations. For
equation (4.26), the two additional wall equations were chosen as (4.26) itself,

evaluated at the wall, and its derivative, again evaluated at the wall.

For the original five-point scheme described in Chapter 3 above, only
one extra wall boundary condition is required; this was taken to be the wall-
derivative of (4.26). The numerical instability appeared once again, however.
Finally, a three-point scheme was implemented, for the cross-flow equation
(4.26) only; this gives O(h?) accuracy. No artificial conditions are here required,
(4.35) and (4.36) sufficing. This scheme was found to produce numerically

stable results. The seven-point scheme was abandoned, the Orr-Sommerfeld
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equations and adjoints being solved via the five-point scheme of Chapter 3. All
calculations were performed on a VAX 11/785 computer at the University of St.
Andrews using double precision arithmetic (64-bit word length for real quanti-
ties), which gives a nominal accuracy of about sixteen significant figures. The
eigenvalues and discretised eigenfunctions actually obtained had an estimated

accuracy of about five significant figures, which is adequate for most purposes.

4.5 Results for the linear problem

4.5.1 Walls without damping

Eigenvalues for various values of «, R and the wall parameters m(®), ¢o, S(°)
are presented in Tables 4.1-4.6. Here streamwise modes only are considered,
and there is no wall damping (d = 0). As explained above, the quantities
m(® and S(°) are the values of mass per unit area and wall restoring force
at a reference value R, of R (taken, arbitrarily, to be 2562.8 throughout).
Three classes of wave-mode were found, namely Tollmien-Schlichting (TS), wall
flutter-modes (which will be labelled F modes, and correspond to free waves on
the flexible wall) and a class of slow-moving wall mode typically propagating
upstream and having weak rates of amplification or damping (S modes). This
latter class corresponds to the ‘Kelvin-Helmholtz’ (KH) mode-class of Sen &
Arora (1988). Examples of the three mode classes are shown in Figure 4.1 and
in Tables 4.1 and 4.2.

In the absence of modal interactions, TS mode eigenvalues are typically
very similar to their rigid-wall counterparts, having ¢, values between about
0.25 and 0.5 for the Reynolds numbers and wavenumbers considered herein.
Since this work is principally concerned with resonant interactions, ¢, and S
were mainly chosen to give wall modes having similar ¢, to those for Tollmien-
Schlichting (T'S) modes. This was in order to allow the possibility of resonant
triads formed from a mixture of mode types. Such values of ¢, and S have a
tendency to produce strong linear interactions and ensuing very severe linear
instability, as is evidenced in Figure 4.1, where ¢, = 0.1 and S = 0.15, and
also in Tables 4.1-4.3. This is because TS and F modes have opposite energy
signs in an appropriate choice of reference frame. As was explained in Chapter

1, if modes of differing energy signs of two uncoupled systems are close to each
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other in some parameter space, then on coupling the systems they will interact
and produce linear instability.

For the F mode of Figure 4.1, ¢, decreases rapidly with wavenumber a. It is
in fact easy to show that for the wall model (4.16) the behaviour of streamwise

modes in the absence of wall damping is as follows:

S
mo?’

c~tqfc2 + (4.51)

Thus for small values of ¢, as we have in Figure 4.1, as a increases so ¢,
decreases as the inverse square of «; this is what is here observed. For the
TS mode, ¢, at first increases, but abruptly starts to decrease on reaching a
certain closeness to the F mode eigenvalue curve. After this point, the TS mode
curve mimics the F mode curve. These two modes are in fact interacting, as is
demonstrated by the curves for ¢;. There is a huge ‘bubble’ of instability, the
F mode being unstable and the TS mode stable, which commences at about
the same value of a as the sudden change in the slope of ¢, for the TS mode;
the instability extends beyond the upper limit of the investigated wavenumbers
. The F and TS modes are analogous to the complex-conjugate pairs of the
classical Kelvin-Helmholtz instability, with the important difference that the
¢, values for the two modes remain distinct rather than coalescing. The non-
coalescence of the modes is due to the dissipative influence of viscosity— see
Chapter 1 above.

A stiffer wall (¢, = 0.8 and S = 0.15) produces a general increase in ¢, for
the F mode whilst not affecting the corresponding TS value very much (Figure
4.2, Table 4.1; see also Table 4.3(a)). Thus the TS and F modes do not come
as close to each other as for the previous case, and the ¢, for the TS wave has
no abrupt changes of slope. The interaction is weaker than for the less stiff
wall of Figure 4.1, certainly for the range of wavenumbers considered: ¢; for
the F mode has a smaller maximum value. Another consequence of the weaker
interaction is that the T'S mode is less damped (¢; ~ —0.05 rather than —0.15).

The linear modal interactions behave rather like the modal coalescence of
Carpenter & Garrad (1986), and that illustrated in Chapter 2 above, except

that the values of ¢, for the two interacting modes remain distinct rather than
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merging as is the case for true coalescence. The dispersion curves for ¢; form
upper and lower branches of a ‘bubble’, just like true coalescence, these typically
being unstable and damped respectively (Figures 4.1 and 4.2, Tables 4.1-4.3).
The lack of proper coalescence may perhaps be due in part to the particular
choices of parameter values used here (for example, the wall being relatively
less or more flexible than those considered by Carpenter & Garrad (1986),
although it is not very meaningful to make such comparisons since the models
are markedly different) or to the basic wall model itself, which is much simpler
than that of the earlier authors. However, the main reason that coalescence
does not occur is that the system studied herein is dissipative, that is, viscous;
the results of Carpenter & Garrad (1986) are for potential flow over a compliant
wall— a conservative system.

The eigenfunctions of the TS, F and S classes have distinctive shapes, as
can be seen from Figures 4.3-4.7. Here and elsewhere all eigenfunctions ¢ and
adjoints 1 are normalised to unity at z = 1.7208, that is at five displacement
thicknesses from the wall; this normalisation was used by Hendriks (appendix
to Usher & Craik 1975). There is much similarity between ¢ for Tollmien-
Schlichting waves over rigid walls and for those over flexible walls as can be
seen on comparing Figure 4.3 with Figure 3.2. For the two examples compared
here, there is however a noticeable difference in the slopes of ¢, outside the
boundary layer (that is, for z > 1). The adjoint functions are very similar also.

The F mode eigenfunction is completely different in shape to that of the TS
mode, as can been seen from Figure 4.4. The normal velocity (of which ¢ is a
measure) has its maximum at the wall and decreases rapidly with increasing z.
This is of course expected for wall modes. The large value of ¢,, is a consequence
of normalisation being imposed in the free-stream rather than at the wall. The
F mode adjoint eigenfunction also has a characteristic shape (Figure 4.4), with
an extremely small imaginary part.

The S-class mode eigenfunction, illustrated in Figure 4.5, has a real part
which bears some resemblance to ¢, for TS modes, although there is a ‘kink’
near the wall. The shape of the S-class eigenfunction is in fact just like that

of the KH mode class eigenfunction given in Sen & Arora (1988), and we may
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therefore state with confidence that these classes are equivalent. Note that the
S-mode adjoint eigenfunction bears no resemblance to that for the TS mode.
Figures 4.6 and 4.7 depict an F mode and a TS mode at a wavenumber of
o = 0.6, larger than that for Figures 4.3 and 4.4. Here the TS and F modes are
interacting linearly. The most remarkable feature is that ¢, for the F mode has
changed drastically in shape from that of Figure 4.4, and now is indistinguish-
able from a TS mode. The imaginary part ¢; has retained its profile, albeit
reflected about the z-axis and considerably increased in magnitude. Compari-
son of Figures 4.7 and 4.3 reveals much less dramatic changes for the TS mode—
the main one being an increase in the size of ¢;. The dramatic change in char-
acter of the F-mode eigenfunction is solely due to its linear interaction with the
TS mode. Here we do not have the straightforward phenomena of exchange of
identities or Kelvin-Helmholtz instability that were so well illustrated in Chap-
ter 2: viscosity has a greatly complicating influence. The principal physical
effect of this behaviour is that the wall mode extends its influence (as measured

by its normal velocity) much further out into the fluid.

4.5.2 Walls with damping

Introduction of linear damping d to the wall model can have a significant
effect on these modal interactions, as we shall now see. In Figures 4.8 and 4.9 ¢,
has a value of 0.6, less than Figure 4.2 but more than Figure 4.1; the restoring-
force parameter S = 0.15 is however the same as for the previous cases. Thus
the instability due to modal interaction has a strength intermediate to those
earlier examples. The plots of ¢, and ¢; for the TS and F modes in Figure 4.8,
where d = 0.05, are similar to that for Figure 4.1, except that the TS mode
is now less damped than the F mode for wavenumbers « less than about 0.6.
The F mode again forms the upper branch of the ‘bubble’ which is however
displaced to wavenumbers a little higher than that shown in Figure 4.1. The
maximum value of ¢; for the F mode is about 0.08— indicating a moderately
strong instability.

A larger damping factor d = 0.1 radically alters the characteristics of the
dispersion curves, as is demonstrated by Figure 4.9. The ¢, curves for the TS

and F modes now cross one another, at o ~ 1.0, and the region of instability

70

Lo NS

f
i
|
!
i




extends to smaller wavenumbers. It is now the TS mode which is unstable— it
has exchanged roles with the F mode, which is now damped. This reversal of the
modal stability characteristics is due to the fundamentally different effects of
damping on the TS and F modes: the former are Class A and hence destabilised
by damping, whilst the latter being Class B are stabilised. These energy classes
were postulated by Benjamin (1962) and Landahl (1962), and are discussed in
Chapter 1. Note that the maximum value of ¢; (for the range of wavenumbers
considered) is reduced from ~ 0.07 to ~ 0.05 by the increase in damping;
but this beneficial effect must be weighed against the increase in the range of
wavenumbers for which there are unstable eigenmodes.

The S mode-class waves are rendered less stable by wall damping, sug-
gesting that they are Class A, (and hence probably upstream-propagating TS
waves): however, the eigenvalues for these waves are more sensitive to changes
in the wall parameters than is expected for fluid modes, to such an extent that
the author was unable to keep track of them or to find rigid-wall analogues
(hence fewer S modes were located than TS and F modes). This indicates that
they might be upstream-propagating wall modes (which we however expect to
be stabilised by wall damping). Sen & Arora (1988) clearly hold the latter
view, since they regard their KH modes as ‘stationary periodic ripples’ in the
limit of |¢| — 0. There has been very little work done on upstream-propagating
TS waves for any Orr-Sommerfeld problem, other than the derivation of formal
bounds for the eigenvalues (Joseph 1968, 1969), although Mack (1984) does
briefly mention them in the context of the spatial stability problem. Thus the

true nature of these modes must be considered to be uncertain at present.

4.5.3 Other fluid modes

In addition to the three mode types already described, there also exist
higher-order fluid modes (see for example Mack 1976, where these are discussed
for the rigid-wall configuration) and oblique Squire modes of 4. The former
category falls into two distinct groups, comprising discrete and continuous parts
of the eigenvalue spectrum. These are in general heavily damped and hence
often considered to be of little practical interest, although as a or R increases

they migrate towards ¢ = 0 in the (complex) phase-speed plane (that is, they
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become less damped). It has been suggested that the continuous spectrum
plays a role in the transfer of energy between the boundary layer and the free
stream (Corner, Houston & Ross 1976), because the associated perturbation
velocities can remain significant at the edge of the boundary layer and beyond.
An example of a higher-order (HO) mode belonging to the discrete part of the
spectrum is depicted in Figure 4.10, where a damping level d = 0.2 applies;
see also Table 4.6(c). The HO eigenfunction and adjoint and those of the F
mode are shown in Figures 4.11 and 4.12 respectively, for a wavenumber of
0.6. The TS and F eigenmodes (real parts) cross at a ~ 0.86, as do the F
and HO eigenmodes at a = 0.65, just larger than the value at which we have
sample plots of the eigenfunctions. The TS mode is unstable, with ¢; having a
maximum value of ~ 0.05. The F mode is strongly damped due to the presence
of wall damping, with ¢; & —0.1; and the HO is rather more heavily damped,
having ¢; &~ —0.2. The F mode strongly resembles a typical TS mode, as was
the case in Figure 4.6. The HO mode also has some similarity with TS modes,
but there are distinctive ‘wobbles’ in the profile of ¢,. The peaks in ¢; for
the two modes are located at the critical point, where ¢, = #. Examination
of the adjoints reveals remarkable similarities between them (and considerable
differences from any previously considered). It seems that these modes are
interacting in some way, although there is no evidence of this in the behaviour
of ¢; for these modes in Figure 4.10. We are in no doubt that the F mode
has been correctly identified— an examination of Figure 4.13, where there is no
wall damping, reveals that for d = 0 the dispersion curves are qualitatively very
similar, in both real and imaginary parts, to those cases already considered in
Figures 4.1 and 4.2.

Squire modes are solutions to the homogeneous version of (4.26), that is
Ve 4t i”‘é(ﬁ = €4q)}sq = 0. (4.52)

The outer boundary condition is the same as for the cross-flow velocities 9, ,,
that is (4.36), but at the wall we have the simple condition #,,(0) = 0. This is
because Squire modes have no vertical velocity component, and hence cannot

induce any displacement of the wall from its undisturbed position. Thus in the
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linear limit there is no difference between Squire modes over flexible walls and
their rigid-wall counterparts, at the same values of @ and R. The Squire-mode
problem is an eigensystem in its own right, with a spectrum of eigenvalues
Csq- It is known that these are all damped (see Davey & Reid 1977, where the
mathematically equivalent problem of temperature modes in a stratified fluid
is studied; and also Murdock & Stewartson 1977, where the plane Poiseuille
problem is investigated via a model equation). However, they may resonate lin-
early or nonlinearly with the eigenvalues of the Orr-Sommerfeld system, either
exactly or approximately, and therefore should not be overlooked.

Solutions to the Squire-mode equation are somewhat similar to the two
viscous solutions of the Orr-Sommerfeld equation. There is a continuous spec-
trum of damped modes with ¢, = 1, together with a set of discrete modes having
smaller ¢,. Interactions between TS and Squire modes in boundary-layer flow
have been examined for the case of spatial disturbances by Nayfeh (1985): he
found that the interactions could be strong, hence suggesting that they rep-
resent an additional means of amplifying three-dimensional effects. Herbert
(1983a,b) has studied forms of secondary instability in rigid-wall flows (that is,
three-dimensional effects that follow the Tollmien-Schlichting instability); he
found that near-resonant triads can be formed between a TS wave and a pair
of (highly damped) Squire modes.

The present author experienced difficulty in locating Squire modes: in the
absence of initial guesses, the iterative convergence scheme was unsuccessful,
and the Principle of the Argument (PA) method proved inadequate; this is
because, as for the Orr-Sommerfeld S-modes, the eigenvalues are located in very
narrow troughs of the eigenvalue function E(ec,.,¢;; e, R). Hence a substantial
amount of cpu time is required for the PA algorithm to reduce the initial contour

in the (c;,¢;)-plane to a size comparable to the diameter of the trough.

4.8 Results for the resonant-triad problem

4.6.1 Resonant triads of three TS waves

Resonant triads comprising three TS waves were located mainly for one
set of wall parameters, but considering a wide range of wavenumbers a and

Reynolds numbers R, and are presented in Tables 4.7 and 4.8. The wall pa-
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rameters were selected to emulate a wall that is stiff enough to preclude linear
modal interactions. The real part of phase speed, ¢,, is generally higher than
for the equivalent rigid-wall case. It is difficult to make any firm observations
on the effect of surface compliance on linear stability from these results, except
to say that in the main both the streamwise and oblique modes are a little
more amplified (or less damped) than their rigid-wall analogues; this indicates
that the wall parameters selected here are not beneficial in promoting transition

delay.

Quadratic interaction coefficient moduli are plotted against wavenumber
at constant R in Figure 4.14a, along with the corresponding rigid-wall values.
It will be seen that the difference between the two cases in terms of these
coefficients is only small, although the compliant-wall values are usually larger.
A comparison of the propagation angles # of the oblique constituents of the
triads for the two configurations (Figure 4.14b) reveals that the obliquity is
consistently greater for compliant wall flow than for rigid wall flow. The phases
of a; and a, are given in Table 4.7: as for the rigid-wall case (Table 3.3),
arga, exhibits a general decrease with increasing «, whilst arg as is much more
erratic. Quadratic interaction coefficient moduli and propagation angles are
plotted against Reynolds number for (fixed) o = 0.29056 in Figure 4.15, and for
a = 1.0 in Figure 4.16. Here differences between the rigid and compliant cases
are a little more apparent, although they remain broadly similar. For a = 1.0,
the oblique coefficients at first increase in magnitude with R, but eventually
begin to decrease; the behaviour of their respective arguments (Table 4.8) is
similar to the previous case (Table 4.7). The propagation angles 6 decrease

with R as they do with o, but more markedly.

A few results are also given for a slightly stiffer wall in Table 4.7. Once
again, there is no consistent trend in the linear stability data, although ¢; is
smaller than for the less stiff wall and larger than for the rigid wall (which is as
expected, since the rigid wall corresponds to the limit of infinite stiffness).The
quadratic interaction coefficients are however clearly always a little smaller in
magnitude than for the less stiff wall; this indicates that wall flexibility has a

reinforcing effect on the strength of resonant triad interactions, even though no
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wall modes are participating.

4.6.2 Mixed-mode resonant triads

It was envisaged at the outset that resonant triads comprising a mixture
of TS and other modes would be of particular interest. However, as has already
been mentioned, location of such triads was hampered by the presence of modal
coalescence or nedr-coalescence. Indeed, the author was unable to locate any
clear example of this sort of resonant triad. This does not imply that such
triads do not exist, because an exhaustive search of wall parameter space would
require to be undertaken before such an assertion could be made, and would
be a daunting task. However, it is undoubtedly true that the existence of such
triads is crucially dependent on the particular wall model considered.

It is quite difﬁcult to locate any triads with oblique wall (F) mode con-
stituents: this is because the the eigenvalue ¢ for such modes (the free-wave

speed on the wall) varies with a according to

& o 4S5
¢~ =+ -2-;7-cg + g

(4.53)

in the absence of wall damping. Note the differences between (4.53) and (4.51):
the factor - is due to the particular form of tension we have selected; but the
extra 4 in the restoring-force term arises from the particular form of periodicity
exp{i( oz + By — ;act)} that is required for Craik-type resonance. The effect
is generally to make é much larger than ¢, which obviously is detrimental to the
location of resonant triads.

Triads comprising three wall modes have nevertheless been located, and
two examples are given in Table 4.9. The oblique interaction coefficients |a, |
are large, being O(100) whilst the streamwise coefficient |a3| remains O(1).
(Note that in each case there is some linear instability, and for the second wall-
mode triad presented ¢; and ¢, are both rather large at O(10~2). A TS-mode
triad at the same values of &, R and wall parameters as one of the wall triads
is also given, and it will be observed that a, for the TS triad is substantially
less than for the wall-mode triad (note also the comparative smallness of the
propagation angles # for the oblique modes in both cases). The eigenfunctions,

their adjoints and the cross-flow velocity are presented in Figure 4.17.
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Triads formed of a streamwise TS wave and a pair of oblique higher-order
modes have been located at a Reynolds number of 15000, and are presented in
Table 4.9 for both rigid-wall and compliant-wall configurations. The oblique
modes are significantly damped in the linear regime (¢; &~ 0.1) but nevertheless
have remarkably large oblique quadratic interaction coefficients a,, these being
0O(8000) in modulus for the compliant wall and O(6000) for the rigid wall; the
a; remain O(1) in magnitude. These particular triads could be written off as
of no practical significance because of their rather strong linear damping, but

examples exhibiting less severe damping may well be possible.

4.6.3 Mixed-mode resonant triads with wall damping

The presence of linear modal interaction has a strong influence on the
nature of resonant triad interactions. Figure 4.18 shows dispersion curves for
three modes, namely a TS, an F and a higher-order fluid mode. A damping
coefficient d = 0.2 applies here. The TS and F mode phase speeds (real parts)
cross at a = 0.86, and strong linear interaction is indicated by the presence of
a ‘bubble’ in Figure 4.10b (¢; versus a). This particular scenario admits a wide
variety of resonant triad configurations, involving all three of the different mode-
types here present. Triads have been located at the various points marked on the
curves. Points A, B, C, D, E indicate the eigenvalues of streamwise constituents
of resonant triads, where all three participating modes are of TS type. In each
case the streamwise mode is undergoing a strong linear interaction with the
streamwise F-mode (the interaction occurs over a wide range of wavenumbers
a, as can be seen from Figure 4.10b). It is the TS mode which is driven
unstable (¢; ~ 0.05 at most), but the wall damping mitigates the severity of the
instability (cf. Figure 4.13, where ¢; ~ 0.088 at most for the F mode). Points
X, Y, Z correspond to a streamwise wall mode interacting resonantly with a
pair of oblique TS modes. All the triads located are tabulated in Table 4.10.
The various points A-E, X-Z just represent particular examples of the triads
that may be constructed: there are in fact two continua of points representing
triads, each of which extends some distance along the TS and F mode dispersion
curves (we have not determined these distances).

The quadratic interaction coefficients for the heterogeneous TS triads are
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highly interesting as can be seen from Figure 4.19: |a, | has a sharp spike cen-
tred at about a = 1.0, with maximum magnitude of approximately 2000. The
streamwise coefficient a; behaves much less spectacularly, being O(10) in mag-
nitude and having its maximum in the region a = 0.8-0.9. Note however that
|as| is an order of magnitude larger than has hitherto been normal for TS tri-
ads. It is clear from Table 4.10 that the phases arga,, arga, of the interaction
coefficients are markedly different from earlier cases: arga, is typically ~ 30°
rather than roughly 90°; and the smallness of arga; indicates that a; is al-
most a pure real number. The propagation angles # are somewhat larger than
previously, decreasing with o from ~ 69° to about 57°.

The eigenfunctions, their associated adjoints and the cross-flow velocity are
presented in Figure 4.20: the cross-flow velocity and its derivatives are large in
magnitude relative to other triads, and it is these functions which give rise to
the unusually large value of |e,|. It was considered a possibility that the large
values of ¥ are due to resonance or near-resonance with Squire modes; but a
search for Squire modes with appropriate values of ¢, (that is, close to 0.5012)
proved unsuccessful.

The interactions at points X, Y, Z are no less interesting (Table 4.10, Fig-
ure 4.18): at point X, the streamwise triad component experiences a stronger
resonant interaction than its oblique counterparts (|als > |a],), though as &
increases this interaction weakens rapidly unlike the oblique ones. The phases
argag, arga; and the oblique-wave propagation angle ¢ also change substan-
tially as « increases from 0.8 to 1.0,

Points 1-4 of Figure 4.18 and Table 4.10 designate the linear eigenvalues
of the streamwise constituents of four different resonant triads that have been
located for a streamwise wavenumber e = 1.2. For points 1 and 2 the streamwise
mode is a higher-order fluid mode, whereas for points 3 and 4 the streamwise
mode is a TS mode. The two oblique constituents of these four triads are of the
following mode-classes: for point 1, wall (F); for point 2, TS; for point 3, TS;
for point 4, wall (F). For each of the triads the oblique modes experience strong
resonant interaction, as indicated by the values of |a,|, which are all O(100).

The triad at point 3, comprising three T'S waves, has the largest value of |a,]|,
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but by contrast also has the smallest value of the streamwise coefficient |as |.It
will be seen from Table 4.10 that the phases arga; are again small, indicating
that ay is almost pure real; no trend can be discerned in the values of arga,.

Dispersion curves of ¢ versus the transverse wavenumber £, at fixed values
0.9, 1.0 and 1.2 of a are given in Figures 4.21, 4.22 and 4.23 respectively.
Both oblique TS and oblique F mode eigenvalues are shown, and the locations
of computed resonant triads are shown. A linear interaction is taking place
between the TS and F modes, which increases with increasing a. The mode-
crossing phenomenon that is a feature of linear interactions in the presence of
wall damping is observed to occur at @ = 1.2 (Figure 4.23), but not at the
smaller values of o (Figures 4.21, 4.22). One may speculate that this linear
interaction is in some way responsible for the curious spike in |e,| described
earlier, although the nature of the underlying mechanism is at present unclear.
Eigenfunctions, adjoints and cross-flow velocities for the triads at points 1-4
are given in Figures 4.24-4.27.

In Figure 4.24, we see that ¢; has the distinctive profile of higher-order
fluid modes; and ¢3; has a strong peak, which is in fact located at the critical
point 2.. The oblique F mode ¢; looks like a TS mode, but the maximum
value is in fact at the wall. The cross-flow velocity ¢, is very much like those of
Figures 3.2 and 4.20, and is like them almost entirely located within the third
quadrant of the complex plane.

From Figure 4.25 we see that the oblique TS mode ¢, has the profile
expected, with its maximum amplitude well away from the wall; but the imag-
inary part resembles an F mode. (Note that points 1 and two share a common
streamwise mode, as do points 3 and 4). The cross-flow velocity is noticably
bigger than that for point 1, though of very similar shape.

At point 3 we have a triad composed of three T'S waves. The eigenfunction
profiles are as expected, with maxima away from the wall (Figure 4.26). The
cross-flow velocity has similar magnitude to that for point 1.

From Figure 4.27 we see that the oblique F mode eigenfunction ¢,, has
maximum amplitude both at the wall and at a certain distance from it. The

cross-flow velocity ¥, resembles that for point 2 in magnitude, but the definite
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‘kink’ at z ~ 0.8 is similar to that occuring in 9, for point 1 (and also evident
in Figure 4.20).

When considering the relative magnitudes of quadratic interaction coeffi-
cients as, a, for different resonant triads, and even within the same triad, it
must be remembered that these magnitudes are dependent on the normalisa-
tions employed for ¢; and ¢,. This is particularly important when comparing
wall modes (F or S) with fluid modes (TS or HO). The obvious normalisation
to employ for wall modes is to set ¢, equal to some constant, say unity, but
this is not very suitable for fluid modes, especially when one is also considering
the rigid-wall problem. We have imposed normalisation at a point away from

the wall because this permits investigation of both basic scenarios.

4.7 Conclusions

4.7.1 The linear regime

We have found and examined four distinct classes of wave-mode for the
problem of Blasius flow over flexible walls, which we labelled TS, HO, F and
S. The Tollmien-Schlichting (TS) class has very similar properties to its rigid-
wall counterpart, as does the HO class of discrete higher-order wave-modes.
The class of wall modes which we have termed F modes is identifiable with the
FISI of Carpenter & Garrad (1986), and the CIFI of Yeo (1986); the S class
corresponds to that of Sen & Arora (1988).

The stability of TS modes is determined in the absence of modal interaction
principally by the values of wavenumber « and Reynolds number R, being much
less dependent on wall parameter-values. The F modes, being fundamentally
inviscid in character, are typically very close to a state of neutral stability, again
provided they are not participating in modal interaction. The S modes that have
been located for various walls have a tendency to be very slow-moving (¢; ~ 0),
usually in the upstream direction, and have small to moderate (—0.05 < ¢; < 0)
rates of linear damping. We believe these to be wall modes, although this
has not been definitely established. The HO modes tend not to be especially
interesting, at least in the linear regime, as they are strongly damped except
for large values of @ and/or R.

Modal interaction between TS waves (Class A) and F waves (Class B) al-
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most invariably produces strong instability of one or other of the participating
modes. Such interactions have some similarity to the classical Kelvin-Helmholtz
instability— the ¢; versus « curves for the two modes have the familiar ‘bub-
ble’ shape, the extent of this bubble indicating the range of wavenumbers over
which linear interaction is occurring. There are important differences, how-
ever: the ¢, values of the modes do not coincide during the interaction but
remain distinct, that is there is no coalescence; and the phenomena of quasi-
Kelvin-Helmholtz instability and modal exchange of identities are not mutually
exclusive, unlike non-dissipative cases such as that studied earlier in Chapter 2.
F-mode eigenfunctions are often transformed by modal interaction into forms
indistinguishable from TS-mode eigenfunctions, but the converse has not been
observed.

Clearly such instabilities are most undesirable, and they are best avoided
by choosing walls which have sufficient stiffness to render ¢, for the F modes
appreciably larger than ¢, for TS modes at all relevant values of o and R.

[In this work we have not investigated the linear instability of oblique
wave-modes for preselected propagation angles f, being principally interested
in nonlinear resonant interactions. Such problems have been admirably studied

elsewhere, for example in the work of Yeo (1986).]

4.7.2 Resonant triad interactions

We have searched for and located numerous examples of Craik-type reso-
nant triads (Craik 1971}, for various values of e, R and of the wall parameters
m, ¢o, d, S. The located triads comprise a variety of combinations of TS, F and
HO modes. Triads composed of three TS waves show nontrivial but small differ-
ences from rigid-wall analogues regarding both the magnitudes of the quadratic
interaction coefficients a; and @, and their respective variations with « and R.
It has been demonstrated that triads of three wall modes (that is, F modes)
are possible for our spring-backed tensioned membrane wall model. These tri-
ads are not found at such low values of a as TS triads, because of differences
in the a-variation of ¢, and é,. Constructive comparison of quadratic interac-
tion coefficients for wall-mode triads with those for TS triads is difficult due to

the difficulty in defining a mutually satisfactory normalisation of the respective
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eigenfunctions.

Triads comprising a streamwise TS mode and two oblique (strongly lin-
early damped) HO modes have been found for both rigid and compliant wall
cases. These are notable principally for the remarkably large magnitudes of
the quadratic interaction coefficients : |a,| ~ O(1000). The streamwise, rea-
sonably near-neutral TS mode has a less exceptional interaction coefficient,
though: |as| ~ O(1). It is known (Mack 1976) that for HO modes ¢; and ¢,
both approach zero with increasing a or R, implying that such resonant-triad
interactions may well be of physical significance at large wavenumbers. Large
values of R are unlikely to be practically important however, as they tend to
imply turbulent flow regimes.

A particular situation involving linear modal interactions in the presence of
wall damping was found to support an abundance of resonant triads of varying
composition. There are a number of curious aspects to the data obtained for
these triads, most notably the spike in the graph of oblique interaction coeffi-
cient modulus |a, ;| versus a for the case of triads composed of three TS waves.
It is most unlikely that normalisation has much to do with this particular ef-
fect, which is related to the a-variation of the cross-flow velocities v; ;. Linear
resonance with Squire modes may be responsible, but we did not manage to
prove this.

In conclusion, then, it is clear that flexible walls greatly enrich the possi-
bilities for the formation of resonant triads, but linear instabilities in the form
of modal interactions tend often to be present for the required parameter val-
ues. The strength of these often vigorous instabilities can be reduced by the
introduction of judicious amounts of wall damping, but this tends to further
complicate the phenomenology of the interactions.

We believe that our understanding of this very complex problem would be
significantly enhanced by a re-examination of it from the standpoint of nonlin-
ear, high Reynolds number triple-deck theory, in tandem with further, carefully

selected numerical investigations.
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5 Overall conclusions

In this work we have made what is to our knowledge the first investigation
of resonant interactions in flows over flexible walls. This being so, it was en-
deavoured to restrict attention to relatively simple problems using simple wall
models. Firstly, in Chapter 2 free-surface inviscid flow over a flexible wall was
studied: this could be described as a model problem, a preliminary foray into
this area of hydronamic stability theory. The phenomenology of linear modal
interactions was examined in detail, giving valuable insight and complementing
the work of other authors for different (but in some sense analogous) flow con-
figurations. The amplitude evolution equations for resonant triad interactions
were derived both by a multiple scales approach and by an averaged Lagrangian
technique, the forms of the interaction coefficients being given explicitly.

Chapter 3 was concerned with Blasius flow over a rigid wall. Our main
aim was to extend the work of Hendriks (appendix to Usher & Craik 1975)
on resonant-triad interactions. The original formulation of Craik (1971) was
re-derived, and a considerable number of resonant triads together with their
associated quadratic interaction coefficients was computed. The coefficients
were found to increase substantially both with increasing wavenumber and with
increasing Reynolds number, as broadly predicted by Craik (1971).

In Chapter 4 we proceeded to study the topical subject of Blasius flow over
flexible walls. Some illustrative linear results were given, showing the severe and
generally detrimental effects of linear modal interactions. Three-dimensional
resonant triads were then sought and located, and the quadratic interaction
coefficients determined numerically. As had been anticipated, the multiplicity of
mode-types was shown to give rise to many interesting phenomena; these can be
expected to be of importance in selecting and designing compliant surfaces with
optimal transition-delaying properties, although it is recognised that further
work is necessary to explain all the characteristics of the resonant interactions

reported herein.
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a R (¢, ¢ [Gaster] (ency
0.87169 1452. (0.39768, =0.00093) (0.39768, -0.00093)
0.58113 4358.4  (0.31561, 0.01578) (0.31562, 0.01578)
0.43584 8716. (0.26813, 0.01854) (0.26813, 0.01854)

o R (¢, ¢ [Mack] epc)

0.895 2900.0  (0.3641, 0.0080) (0.3641, 0.0080)
0.895 5000.0  (0.3383, 0.0048) (0.3383, 0.0048)
0.895 10000. (0.3089,-0.0166) (0.3089, -0.0166)

TABLE 3.1 Rigid wall, linear eigenvalues: (a) first column, data of Gaster (1977); (b) first

column, data of Mack (1976); second column in both cases, data of present author.

o B Y R Ct Cij Ci |a sl la 1l
0.29056 0.1792 0.2307 1613.7 0.2860 .0461 -0.0888 0.825 0.949(a)
0.58113 0.3512 0.4558 1633.7 0.3394 .0041 -0.0295 0.242 3.82
0.73803 0.4303 0.5669 1668.2 0.3569 L0101 -0.0122 0.452 6.02
0.87169 0.4955 0.6599 1692.7 0.3685 .0083 -0.0034 0.536 8.72
1.1623 0.6069 0.8403 1772.4 0.3847 .0108 0.0035 0.642 19.13
1.4528 0.5560 0.9148 2035.0 0.3835 .0446 0.0048 0.977 30.22
0.29056 0.1793 0.2307 1613.7 0.2859 .0461 -0.0888 0.824 0.890 (b)
0.58113 0.3513 0.4559 1633.4 0.3394 .0041 -0.0294 0.247 3.92
0.73803 0.4300 0.5666 1669.1 0.3570 .0102 -0.0122 0.455 612
0.87169 0.4954 0.6598 1692.9 0.3685 ,0083 ~0.0033 0.537 8.83
1.1623 0.6096 0.8422 1768.4 0.3846 .0107 0.0035 0.642 19.24
1,4528 0.5553 0.9143 2036.1 0.3834 .0444 0.0047 0.971 30.20

TABLE 3.2 Rigid wall, resonant triads, R = 2562.8: (a) present author, (b) Hendriks.

|a 11, |a g| are given (in this table only) in the nondimensional form used by Hendriks.




~

a B Yy R c ?i ¢ lagl laql argag argaq

0.29056 0.1792 0.2307 1613.7 0.2860 -0.0461 50.97 0,439 0.802 -47.54 156.33(a)
-0.08881

0.4 0.2543 0.3235 1584.2 0.311%1 -0,0197 51.81 0.392 2,213 9,8 134.72
-0,06111

0.5 0.3085 0.3979 1610.3 0.3282 -0.0038 51.08 0.155 4.24% 93.21 119.36
-0.04191

0.58113 0.3512 0.4558 1633.7 0.3394 0.0041 50.40 0,251 6.46
-0.02951

0.6 0.3608 0.4692 1638.5 0,3418 0.0055 50.25 0,294 7.065 -~168.87 108.19
~0.02691

0.7 0.4113 0.5401 1660.9 0.3531 0.0096 49,61 0.502 11.01 =143.01 99.9%¢6
-0,0157i

0.73803 0,4303 0.5669 1668.2 0.3569 0.0101 49.39 0.571 12.91
-0.01224

0.8 0.4610 0.6104 1679.5 0,3626 0,0099 49.06 0.672 16.62 -130.92 93.58
~0.00761

0.87169 0.4955 0.6599 1692.7 0.3685 0.0083 48.66 0.777 22.10
-0,00341

1.0 0.5524 0.7451 1719.8 0.3772 0.0021 47.85 0.%41 36.12 -122.37 84.26
+0.00131i

1.1623 0,6069 0.8403 1772.4 0,3847 =-0.0108 46.24 1.13 64.61
+0.00351

1.2 0.6147 0.8590 1790.1 0.3858 ~-0.0145 45.69 1.183 73.22 -131.52 78.41
+0.00371

1.4528 0.5560 0.9148 2035.0 0.3835 -0.0446 37.43 1.64 127.6
+0.00481

0.29056 00,1836 0.2341 2482.1 0,2712 -0.0649 51.64 0,360 1,054 ~22,01 148,02 (b)
~0.02731

0.4 0.2473 0.3181 2515.2 0.2937 -0.,0394 51.04 0.137 2.704 56.97 126.52
-0.00321

0.5 0.2989 0.3897 2566,1 0.3090 -0.0217 50.09 0.208 4.926 ~-171.80 112.86
+0.00931

0.6 0.3512 0.4619 2598.2 0.3216 -0.0084 49.50 0.401 8.140 -143.93 103.17
+0.01501

0.7 0.4043 0,5347 2618.2 10,3323 0.0008 49,11 0.557 12.96 -131.94 95.81
+0,01591

1.0 0.5479 0.7417 2696.4 0.3548 0.0110 47,61 0.987 47,59 -127.80 81.20
-0.0020i

TABLE 3.3 Rigid wall, resonant triads. (a) R = 2562.8, (b) R = 4000




~
R B y R c ¢ ¢ lagl layl argag arga
2562.8 0.1792 0.2307 1613.7 0.2860 =-0.0888 50.97 0.439 0.802 (a)
-0.04614
‘4000  0.1836 0.2341 2482.1 0.2712 =-0.0649 51.64 0.360 1.054  -22.01 148.02
-0.02731
5000  0.1831 0.2337 3108.0 0.2636 -0.0548 51.56 0.291 1.197 -8.21 143.73
~0.01904
10000 0.1749 0.2274 6389.3 0.2395 =-0.0291 50.29 0.063 1.651 54.36 131.14
+0.00174
15000 0.1692 0.2230 9771.1 0.2254 ~-0.0169 49.35 0.059 1.892  173.70 124.77
+0.01034
20000 0.1662 0.2207 13164.8 0.2156 =0.0093 48.83 0.093 2.057 ~-161.58  120.65
+0.01481
4350  0.2641 0.3424 2768.3 0,2961 ~-0.0290 50.47 0,104 3.514  144.26 119.74(b)
+0.00451
8716.9 0.2527 0.3337 5692.3 0.2681 ~-0.0046 49.23 0.236 4.367 -149,14 110.36
+0.01854
13050 0.2512 0.3326 8551.7 0.2528  0.0061 49.07 0.275 5.017 -138.94 105.57
+0.02254
4358.4 0.3398 0.4471 2832.3 0.3156 -0.0075 49.47 0.382 7.646 -144.23 103.85(c)
+0.01584
2500  0.5048 0.6746 1923.7 0.3641  0.0016 48.44 0,811 25.68 =-124.17  B87.79(d)
+0.00804
5000  0.5043 0.6742 3318.6 0.3383  0.0137 48.41 0.855 35.46 -126.06  83.43
+0.,0048i1
10000 0.5150 0.6822 6559.3 0.3089  0.0180 49.01 1.507 65.40  -144.97  77.59
-0.01664
2562.8 0.5524 0.7451 1719.8 0.3772  0.0013 47.85 0.941 36.12  -122.37  84.26(e)
#0.00214
4000  0.5479 0.7417 2696.4 0.3548  0.0110 47.61 0.987 47.59  -127.80  81.20
-0.00204
6000  0.5446 0.7393 4057.9 0.3354  0.0152 47.44 1.23 65.39  -140.26  78.42
-0.01291
10000 0.3967 0.6382 7834.1 0.2971  0.0196 38.42 1.85 63.99 144,09  86.15
-0.04601

TABLE 3.4 Rigid wall, resonant triads. (a) a = 0.29056, (b) a = 0.43584,

(©) @ = 058113, (d) @ = 0.895, (6) & = 1.0

e




R

CF

cs

0.2 (0.4071,-0.0198) (1.1914, 0.0009)
0.4 -0.0220) (-0.1506, -0.0342)
0.5 -0.0572) (0.7902, 0.0220) (-0.0955, -0.0450)
0.6 -0.1166) (0.6846, 0.0856) (-0.1122,~0.0413)
0.7 -0.1251) (0.6435, 0.1226)
0.8 -0.1226) (0.6191, 0.1364) (-0.0830,-0.0481)
0.2 -0.0492) (1.5065, 0.0009)
0.2 ~-0.0207) (1.2736, 0.0007)
0.4 -0.0097) (1.1000, 0.0004)
0.6 -0.0147) (0.9265, 0.0008)
0.7 -0.0214) (0.8784, 0.0033)
0.8 0296) (0.8454, 0.0058)
0.9 0387) (0.8227, 0.0079)
1.2 0675) (0.7872, 0.0111)
0446) (1.429, 0.0012) (-0.0896,-0.0446)
0210) (1.133, 0.001) (-0.0492, -0.0535)
0277) (-0.0399, -0.0544)
0598) (0.8263, 0.0165) (~0.0359,~0.0541)
1415) (0.7254, 0.0779)
1697) (0.6909, 0.1255)
-0.0572) (0.6688, 0.1578) (-0.0327,-0.0523)
~0.1647) (0.6178, 0.2132) (-0.0324,-0.0501)
(0.3747, -0.1549) (0.5804, 0.2330) (-0.0333,-0.0478)

(a) cg = 0.5, (b) ¢g = 0.8, (c) cg = 0.1

TABLE 4.1 Compliant wall. R = Ry = 2562.8, m(®) = 1.1, d=0, S (0) =0.15:




A AR

o €T1s CF Cs

0.4 (0.3855,-0.0076) (1.2210, 0.0003) (a)
0.6 (0.4348,-0.0154)

0.7 (0.8142, 0.0108)

0.8 (0.4499,-0.0647) (0.7311, 0.0316)

0.29056 (0.3411,-0.0276) (1.2877, 0.0005) (b)
0.4 (0.3818,-0.0078)

0.5 (0.4085,-0.0050)

0.6 (0.4282,-0.0132) (0.7574, 0.0136)

0.7 (0.4398,-0.0310) (0.6745, 0.0324)

0.8 (0.4376,-0.0532) (0.6232, 0.0554)

0.29056 (0.3870, -0.0203) (1.2554, 0.0008) (-0.1217,-0.0441) (c)
0.29056 (0.5263, -0.0443)

0.29056 (0.7384, 0.2171)

0.87169 (0.5506, 0.2122) (-0.0709,-0.0401) (d)

TABLE 4.2 Compliant wall. R = Ry = 2562.8, d = 0:
(a) m© = 1.1, cg = 0.5, S(0) =0.3; (b) as (a) but m(® = 2; (c) m(® = 1.1, ¢g= 0.1,

S10) 0.2, 0.1, 0.05; (d) as (b) but $(0) =0.2




a CTs Cg

0.4 (0.3823,-0.0197)

0.5 (0.4299, -0.0545)

0.6 (0.4600,-0.0614)

0.7 (0.4731,-0.0737) (0.7900, 0.0137)
0.8 (0.4782,-0.0895) (0.7506, 0.0222)
0.9 (0.4804,-0.1075) (0.7252, 0.0292)
0.4 {(0.4228,-0.0430)

0.5 (0.4963,~0.0641)

0.55 (0.5205,-0.0834)

0.6 (0.5342, -0.1154)

0.65 (0.5356, ~0.1547) )

0.7 (0.5446,-0.1781) (0.6606, 0.0911)
0.8 (0.5379,-0.1900) (0.6351, 0.1096)
0.9 (0.6189, 0.1156)
1.0 (0.6077, 0.1155)
1.2 (0.5939, 0.1066)
1.4 (0.5864, 0.0935)

(a) cg = 0.7, (b) cg = 0.55

TABLE 4.3 Compliant wall. R = Ry = 10000, m(%) = 1.1,d=0, S(0) =0.15:




CTs

CF

(0.3932,-0.0535)
(0.4448,-0.0377)
(0.4749,-0.0506)
(0.4733,-0.0686)
(0.4637,-0.0743)
(0.4550, -0.0752)
(0.4477,-0.0747)

(0.8919,
(0.6926,
(0.5897,
(0.5483,
(0.5317,
(0.5238,
(0.5200,

0.0029)
0.0238)
0.0556)
0.0832)
0.0925)
0.0934)
0.0904)

(a)

(0.3921,~0.0456)
(0.4469,-0.0227)
(0.4994, -0.0341)
(0.4912,-0.0720)
(0.4755,-0.0796)
(0.4636,-0.0805)
(0.4543, -0.0796)

(0.8910,
(0.6870,
(0.5615,
(0.5273,
(0.5172,
(0.5129,
(0.5116,

-0.0272)
-0.0127)
0.0192)
0.0685)
0.0814)
0.0838)
0.0817)

(b)

(0.3895,-0.0379)
(0.4436,-0.0072)
(0.4916, 0.0198)
(0.5035, 0.0594)
(0.5019, 0.0726)
(0.5016, 0.0754)
(0.5028, 0.0738)
(0.5049, 0.0700)

(0.8921,
(0.6875,
(0.5663,
(0.5122,
(0.4886,
(0.4730,
(0.4615,

-0.0576)
-0.0503)
~-0.0551)
-0.0814)
~-0.0875)
-0.0873)
-0.0855)

(c)

(a)d=0, (b) d=0.05, (c) d= 0.1

TABLE 4.4 Compliant wall. R = 1500, Ry = 2562.8, m(%) = 2, ¢g = 0.5, §(0) =0.3:




o CTs Cf

0.2 (0.3354,-0.0418) (a)
0.29056 (0.3935,-0.0097)

0.4 (0.4377, 0.0005)

0.5 (0.4640,-0.0045)

0.6 (0.4826,-0.0195)

0.7 (0.4925,-0.0471) (0.7227,-0.0268)
0.8 (0.4159,-0.1226) (0.6733,-0.0003)
0.9 (0.5620,-0.1554) (0.6525, 0.0218)
1.0 (0.5594 -0.1565) (0.6437, 0.0330)
0.2 (0.3325,-0.0362) (b)
0.29056 (0.3904, 0.0005)

0.4 (0.4357, 0.0155)

0.5 (0.4635, 0.0155)

0.6 (0.4851, 0.0075)

0.7 (0.5052,-0.0081) (0.7305, -0.0965)
0.8 (0.5355, -0.0364) (0.6613, ~-0.0928)
0.9 (0.5963,-0.1253) (0.6004,-0.0201)
1.0 (0.5827,~-0.1445) (0.6101, 0.0036)
1.1 (0.6147, 0.0135)
1.2 (0.6181, 0.0180)
1:3 (0.6211, 0.0197)

TABLE 4.5 Compliant wall. R = Ry = 2562.8, m(0) = 1.1, ¢g = 0.65, S (0) =0.15:

(a) d=0.05, (b) d= 0.1




o CTs Cf co
0.29056 (0.3636,-0.0374) (a)
0.4 (0.4086,-0.0178)
0.5 (0.4383,-0.0168) (0.7246, 0.0180)
0.55 (0.4499,-0.0219)
0.6 (0.4582, -0.0309) (0.6329, 0.0419)
0.7 (0.4594, -0.0526) (0.5843, 0.0688)
0.8 (0.4488, -0.0657) (0.5625, 0.0831)
0.9 (0.4374,~0.0721) (0.5511, 0.0878)
1.0 (0.4272, ~0.0756) (0.5446, 0.0873)
1.1 (0.4180,~-0.0779) (0.5407, 0.0842)
0.29056 (0.3608,~-0.0285) (b)
0.4 (0.4068,~-0.0024)
0.5 (0.4399, 0.0069) (0.7201, -0.0519)
0.6 (0.4728, 0.0072) (0.6130, ~0.0413)
0.7 (0.5238, 0.0284)
0.75 (0.5260, 0.0465)
0.8 (0.5257, 0.0562)
0.9 (0.5246, 0.0648)
1.0 (0.5243, 0.0664)
1.1 (0.5248, 0.0647)
0.29056  (0.3558,-0.0205) (c)
0.4 (0.3996, 0.0111)
0.5 (0.429%4, 0.0268)
0.6 (0.4531, 0.0362) (0.6316,-0.1197) (0.6044, -0.2638)
0.7 (0.4719, 0.0432) (0.5589, -0.1144) (0.5933,-0.2463)
0.8 (0.4853, 0.0484) (0.5115,-0.1087) (0.5810, —-0.2345)
0.9 (0.4944, 0.0508) (0.4803,-0,1046) (0.5689,-0.2237)
1.0 (0.5012, 0.0504) (0.4579,-0.1012) (0.5581, -0.2135)
1.1 (0.5069, 0.0481) (0.4405,-0.0985) (0.5489,-0.2039)
1.2 (0.5117, 0.0446) (0.4262, -0.0964) (0.5412, -0.1951)
TABLE 4.6 Compliant wall. R = 2000, Ry = 2562.8, m(0) = 2, ¢5 = 0.5, S(0) =0.3;

(a)d=0,(b) d=0.1,(c) d= 0.2




~

N

a B & R Cr Ci c; lagl laql argag argaq
0.29056 0.2139 55,82 1439,9 0.3016 -0.0399 -0.0847 0.631 1.095 -26.88 84.40(a)
0.4 0.3082 57.02 1395.2 0.3322 -0.0135 -0.0548 0.573 2.70 54.98 79.06
0.5 0.3841 56.94 1398.0 0.3532 -0.0003 -0.034%9 0.514 4.59 149.1 73.52
0.6 0.4573 56.73 1405.8 0.3697 0.0048 -0.0208 0.805 7.25 -154.0 72.36
0.7 0.5281 b56.46 1415.8 0.3829 0.0042 -0.0115 1.13 11.39 ~126.5 72.59
0.8 0.5942 56,05 1431.2 0,3%934 ~0.0008 -0.0060 1.41 17.97 -110.8 72.85
1.0 0.6889 54.03 1505.4 0,4063 -0,0210 -0.0026 1.50 43,2 -105.1 73.33
1.2 0,.6237 46.11 1776.8 0.4035 -0.0508 -0.0012 1.03 78.1 -174.2 78.58
0.29056 0,2052 54.70 2311.5 0.2813 -~0.0230 -~0.0616 0.439 1.14 -4.18 108,3 (b)
0.4 0.2825 54.70 2311.3 0.3073 0.0004 -0,0346 0.234 2.76 102.6 94.74
0.5 0.3499 54.45 2325.4 0.3255 0.0106 -0.0166 0.399 4.91 -167.0  88.49
0.6 0.4186 54,37 2330,1 0.3403 0.0132 -0.0043 0.641 8.26 =-135.5 84.74
0.7 0.4869 54.29 2334.8 0.3525 0.0103 0.0032 0.851 13.71 -119.1 81.83
0.8 0.5513 54.04 2349.0 0.3623 0.0029 0.0068 1.02 22.6 =110.4 79,25
1.2 0.4326 35.79 3244.6 0.3597 -0.0610 0.0098 1.29 66.4 147.7 86.15
0.29056 0.1956 53.41 3577.3 0.2640 =-0.0010 =-0.0448 0.252 1.32 20.09 116.4 (c)
0.4 0.2635 52.80 3627.6 0.2867 0.0100 -0.0196 0.180 3.08 167.9%9 102.3
0.5 0.3279 52.67 3637.7 0.3030 0.0173 -0.0033 0.388 5.59 -145.5 94.56
0.6 0.3955 52.82 3626.3 0.3167 0.0174 0.0070 0.569 9.77 -127.2  88.99
0.7 0.4629 52,91 3618.5 0,3283 0.0119 0.0125 0.729 16.9 -117.6 84,38
0.8 0.5263 52.77 3630.4 0.3377 0.0016 0.0142 0.884 29.05 -115.9 80.43
1.0 0.5801 49.24 3917.2 0.3456 -0.0361 0.0121 1.66 73.8 -169.5 78.40
0.29056 0.1914 52.80 3023.4 0.2676 -0.0173 -0.0534 0.313 1.180 =0.10 129.2 (d)
0.29056 0.1885 52.38 3662.9 0.2607 -0.0114 -0.0461 0.240 1.298 11.59 128.7 (e)
0.6 0.,3710 51.04 3772.7 0.3104 0.0187 0.0058 0.498 9.600 -131.0 93.88
0.8 0.4923 50.90 3783.4 0.3306 0.0066 0.0148 0.796 27.26 =-120.7 83.12

TABLE 4.7 Compliant wall, resonant triads comprising three TS modes. Rq = 2562.8,

m(0) = 2.0, ¢y = 0.5, d=0, S(0) =1.0: (a) R = 2562.8, (b) R = 4000, (c) R = 6000,

(d) R = 5000, S(0) = 2,0, () R = 6000, S(0) = 2.0




~/

~o
R B Y R c Ci ¢ lagl laq| argag arga,
2562,8 0,2139 0.2586 1439.9 0.3016 ~-0.0847 55.82 0.631 1.085 {a)
-0.0399i1
4000.0 0.2052 0,2514 2311.5 0.2813 -0.,0616 54.70 0.439 1.14
-0.02301
6000.,0 0.1956 0.2437 3577.3 0.2640 -0.0448 53.41 0.252 1.32
-0.00101
10000 0.1833 0.2339 6211.7 0.2434 -0.0274 ©51.60 0.076 1.62 74.96 119,22
+0,00321
15000 0.1750 0.2275 9580.7 0.2254 -0.0169 50.31 0.072 1.87 171.41 117.98
+0.01031
20000 0.1707 0,2242 12962.5 0.2175 -0.0084 49.61 0.107 2,04 -162.84 116.13
+0.01541
4350 0.3018 00,3722 2546.7 0,3097 -0.0243 54.16 0.247 3.51 158.69 94,04 (b)
+0,00711
8716.9 0,2733 0.3495 5434.4 0,2749 -0.0020 51.43 0.282 4,35 -148.19 101.15
+0.01911
13050 0.2658 0.3437 8274.2 0.2574 0.0076 50.65 0.301 5.05 =~-137.32 100.51
+0,02251
4358.4 0.3998 0.4942 2562.4 0.3325 -0.0035 53,99 0.580 7.74 -137.10 86.78 (c)
+0.01451
2900 0.6347 0,7766 1671.0 0,3918 0.,0002 54.81 1.40 29.53 -104.14 74.68(d)
-0.00791
5000 0,5871 0.7382 3031.0 0.35520.0113 52,68 1.05 41,72 -118.34 17.72
; -0,00971
10000 0.5298 0.6935 6452,6 0,3142 0.,0162 49,81 2.4¢6 70.42 -179.93 79.19
~0,03571
2562.8 0.6889 0,8512 1505.,4 0,4063 -0.0026 54.03 1.50 43.2 -105.08 73.33(e)
-0.02104
5000 0.6127 0.7908 3161.4 0.3587 0.0101 50.78 1.32 66.7 ~148.06 77.01
-0.02891
6000 0.5801 0.7658 3917.2 0.3456 0.0121 49.24 1,66 73.8 -169.48 78.40
-0.03611
10000 0.2442 0.5564 8985.,5 0,2884 0.0208 26,02 1.07 29.2 131.54 93.66
-0.05431

TABLE 4.8 Compliant wall, resonant triads comprising three TS modes. Ry = 2562.8,

m(0) = 2.0, ¢g=05,d=0, S(0) =1.0: « = (a) 0.29056, (b) 0.43584, (c) 0.58113,

(d) 0.895, () 1.0




a B ¥ & R c c; lagl laql argag argaq

0.8 0.3310 0.5192 39.61 1974.4 0.3824 -0,0068 0.31 15,55 -128.92 86.09 (a)
+0,00391

0.8 0.2508 0.4721 32.08 2171.3 1.1577 0.0001 2,39 89.48 45,27 54.09
-0.00021

1.2 0.8729 1.0592 55.50 1451.7 0.7872 0.0128 1.39 130.45 48.32 ~-132.04 (b)
+0.1111

1.0 0.5317 0.7299 46.76 10276.0 0.3525 ~-0.1125 0.60 6373. 135.47 157.55 (c)
~0,03901

1.0 0.8101 0.9520 58.32 7878.4 0.3635 ~0.0904 4.22 8544, -52.54 152.95
-0.04181

TABLE 4.9 Compliant wall, resonant triads. Ry = 2562.8. (a) R = 2562.8, m(0) = 2,0,
co=1.2,d=0, S0 =0.1: first row is a triad of three TS modes, second row is a triad of
three F modes; (b) R = 2562.8, m(0) = 1.1, ¢5 = 0.8, d= 0, S(0) =0.15: triad of three F

modes; (c) R = 15000, first row is rigid wall, for second row m(® = 2.0, cg= 0.5, d = 0,

S(9)=1.0: in both cases triad comprises a streamwise TS mode and two oblique HO modes.

Oblique-wave propagation angle 6 in degrees.




~
@ B y R c ¢, & lagl layl argag argaq

A 0,6 0.7829 0.8384 715,6 0.4531 -0,0279 69,03 10,00 29.05 (a)
+0.03621

B 0.8 1,.0668 1.1392 702,2 0.4853 -0,0275 69.44 24.8 92.1
+0,04841

c 0,9 1.1386 1.2243 735.1 0.4944 -0.,0309 68.43 25.2 218.6 -4.71 29.9
+0.05081

- 0.95 1,1407 1,2356 768.9 0,4980 ~0.0323 67.39 21,98 429.5 -2.05 31.11
+0.05091

- 0.975 1.1284 1,2292 793.2 0,4996 -0.0325 66.63 19.46 732.4 ~-1.80 32.27
+0.05081

D 1.0 1.1041 1.2120 825.1 0.5012 -0.0323 65.64 16.4 2020.0 -2.,30 36.90
+0,05041

- 1,05 1.0093 1.1376 923.0 0.5041 -0.0291 62,52 9.62 997.2
+0,04951

E: &l 0.8582 1.0193 1079.2 0.5068 -0,0208 57,34 4.18 477.8 -8.04 -161.3
+0.04811

X 0.8 1.4693 1.5228 525.4 0.5115 -0,0482 74.77 72.32 50.63 -11.4 15.4 (b)
~0.10871

Y 0.9 0.9286 1.0318 872.2 0.4803 -0.0203 64,14 4,00 85.15 5.18 76.8
-0,10461

Z 1.0 0.4571 0.6774 1476.1 0.4579 =0.0015 42,43 0.4 76.1 46.59 -100.9
~0,10121

1. 1.2 0.5698 0.8274 1450.3 0.5412 -0,0576 43,52 2,59 205.1 3.05 =59.62(c)
~0.19511

2 152 1.0075 1.1726 1023.4 0.5412 0,0112 59,22 7.23 107.9 8.80 -162.0
-0.19511

3 X2 0.5704 0.8278 1449.6 0.5117 0,0011 43.55 0,41 338,1 -2,20 175.9
+0.04461

4 1.2 0.8752 1.0611 1130.9 0.5117 -0.0754 55.57 4,87 266,1 3.91 -88.05
+0.04461

TABLE 4.10 Compliant wall, resonant triads. R = 2000, Ry = 2562.8, m(0) = 2.0, ¢q =

0.5, d= 0.2, S(0) =0.3: (a) TS resonant triads, (b) triads formed of one streamwise wall

mode and two oblique TS waves, (c) case 1: HO wave and two oblique wall waves; case 2:

HO wave and two oblique TS waves; case 3: three TS waves; case 4: TS wave and two

oblique wall waves.
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Figure 2.8 An example of damping producing instability of a negative energy wave in an
otherwise linearly stable system. U= 0.5 ms™!, p-1m = 5.0 metres, ¢ g = 0.5 ms1,

h=0.1m,p(pg-p)=1.0: (a) @ for /=0: o; = 0 (no instability); (b) o for /= 10.0

ms"1 (membrane modes are damped almost to zero); (c) o for | = 10.0 ms-! (this is the
only mode that has a positive growth rate).
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Figure 2.9 A graphical technique for finding the approximate location of resonant triads: here
ka+kg=kg, op+ 0g=ac.




Figure 2.10 An example of explosive three-wave resonance. U= 0.268 ms™!, p-'m=5.0
metres, o =k-12ms?, I=0ms 1, h=025m, p-1(p¢ - p)=1.0.

P

s AMAY RS




400 600

K I

Figure 2.11 Wavenumbers ky and kp permitting exposive three-wave resonance, with ky + kp

=-k3, @1 + @3 = -w3. Computed with U =0.27, 0.268, 0.265 ms"! for outer, middle and
inner loops respectively. Other parameters:
co=0ms", p-1m=5.0 metres, I=0ms1, Sg=2pg, Sy = m, h=0.25 metres.
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Figure 3.1 The model: resonant triad configuration.
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Figure 3.2 Rigid wall: & = 0.6, R =2562.8 (see Table 3.1).
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Figure 4.1 m=1.1,¢6=0.1,d=0,8 =0.15: R = Ay =2562.8 (see Table 4.1).
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Figure 4.3 (contd.) Adjoint eigenfunction.
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Figure 4.14 Quadratic interaction coefficients |a 1}, |a 3| and oblique wave propagation angle

8 (in degrees) versus wavenumber a: m=2,¢6=0.5,d =0, 8 =1, R = Ry =2562.8.
Triads comprise three TS modes. —— , rigid wall; — — —, flexible wall.
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Figure 4.15 Quadratic interaction coefficients |a 1], |a 3| and oblique wave propagation angle

6 (in degrees) versus Reynolds number R : & =0.29056, Ry = 2562.8; wall parameters as
Figure 4.14. Triads comprise three TS modes. —— , rigid wall; — — — , flexible wall.
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Figure 4.16 Quadratic interaction coefficients |a 4|, |a 3l and oblique wave propagation angle

@ (in degrees) versus Reynolds number R : o = 1.0; other parameters as Figure 4.15. Triads
comprise three TS modes. —— , rigid wall; — — —, flexible wall.
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Figure 4.24 (contd.) Oblique eigenfunction.
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Figure 4.26 (contd.) Cross-flow velocity.
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PROGRAM OSCR53

THIS PROGRAM USES NEWTON-RAPHSON ON FIRST EIGENVALUE ESTIMATE,

AND REGULA FALSI FOR SUBSEQUENT ITERATIONS (SUBROUTINE EIGEN) .
PRINCIPLE OF ARGUMENT ALSO AVAILABLE (SUBROUTINE EIGIT). BISECTION
IS USED ON BETA (TRANSVERSE WAVENUMBER) . RESONANT TRIAD INTERACTION
COEFFICIENTS ARE CALCULATED. FINDS EIGENVALUE, THEN

THREE EIGENFUNCTIONS, THEN THREE ADJOINTS, THEN ONE TRANSVERSE
VELOCITY, AND FINALLY F1,F3., FIVE-/THREE-POINT CENTRAL

DIFFERENCE TECHNIQUES USED.

IMPLICIT COMPLEX*16(A,G,H,S,X),REAL*8 (B~F,0~R, T-W, Y, 2)
DIMENSION UL(3201),ULP(3201),ULD(3201),ADS(3201,2),ADP (3201,2)
1 ,ADD(3201,2),XVS(3201),XVvP(3201),XVD(3201),XVT(3201)
1,XJs(3201,2),XJP(3201,2),XJD(3201,2),XJT(3201,2),%X3Q(3201,2)
COMMON/RR/R, R0, R1,R2, RF, RL/MVL/UL, ULP, ULD
COMMON/PP1/P1,P2,P3,P4,P5,P6,P7,P8/XFL/XVS, XVP, XVD, XVT
COMMON/NNW/N, NM1,NP1, W, W2, W3, W4/ADJ/ADS, ADP, ADD

COMMON/VV/VL, VL2,VL3,VL4,PR,PI/PHI/XJS, XJP, XJD, XJT, XJQ
COMMON/COQ/AZ,AIQ,ARL, ARL3, ACO,AC/IND/NKL, LLEV, NLEV, IPN
COMMON/TF/AFF, RFF/RTD/BL, IBL, ITM/YMAX/YL/GAMM/ XVL, XVL0
COMMON/PAR/VLO0, VL02, RR0, EPS, EPS1,DCR,DCI/XX/XB3, XB1
COMMON/PROP/EM, C0,D, SS, ULPO/DET/DARG, DDARG, JR, JI, NARG, FCR, FCI
1/PP2/RFV,P1V,P2V,P3V, P4V

YL-IS WIDTH OF Y-DOMAIN

N-IS NO. OF STEPS

IPN=0,1,2,---ORDER OF PRINT STATEMENTS

PROGRAM EXECUTION BEGINS

WRITE (6,67)

FORMAT (1X//10X, 'Program OSCRT'//1X, 'Locates resonant triads
1 in Blasius flow'///1X, "INC=0,1~--linear,nonlinear problem;
1 NLEV=0,1---rigid,compliant wall'//
11X, ‘Enter: N, YL, INC,NLEV,IPN,ISET,LLEV,ITM'//)

READ (S5, *)N, YL, INC,NLEV, IPN, ISET, LLEV, ITM

ISQ=0

IF(LLEV.EQ.3) ISQ=1l

IF (LLEV.NE.1) GOTO 42

WRITE(6,*) 'Adjoint iteration selected'

WRITE (6, *)

IF(LLEV.EQ.3) WRITE(6,*) 'Squire mode problem selected'

WRITE (6, 44)

FORMAT (1X/1X, 'Enter: EPS,EPS1;DCR,DCI (triad,eigenvalue search
ltolerances; '/1X, 'eigenvalue increments) ;NARG,JR,JI,FCR,FCI'/)

READ (5, *) EPS,EPS1,DCR,DCI,NARG,JR,JI,FCR,FCI

W=YL/N

WRITE (6,10)YL,N, W

FORMAT (/, 10X, *YL=',F8.5,10X, '"N="',I4,10X, 'h="',F11.8/)

NM1=N-1

NP1=N+1

R0=0.0D0

R1=1.0D0

R2=2.0D0

NK1=0

LLEV=0

BLASIUS SOLN/MEAN-VEL CALCULATIONS BEGIN



C
23

aQa

(oo ol O N0

21
23

24
25
26

28
29

30

35

ETAL=5.0*YL/SQRT (2.0)

WB=ETAL/N

ETA=0.0D0

F=0.0D0

P=0.0D0

Q=0.4695999904740314D0

TR=0.0D0

KB=1

IF (IPN.NE.2)GO TO 23
OPEN(3,FILE="'MFLOW.DAT', STATUS="NEW')
WRITE (3,21)

FORMAT (4X, 'Y',8X, 'F',8X, '"F* ', 8%, 'F* "', 6X,'"F * ' ")
UI(KB)=F* (SQRT(2.0)/5.0)

UL (KB) =P

ULP (KB)=0* {5.0/SQRT(2.0))

ULD (KB)=TR*12.5

IF(IPN.NE.2)GO TO 26

YY=(KB~-1) *YL/N

WRITE(3,24)YY,F,P,Q, TR

FORMAT (2X,F4.2,2X,F8.5,2X,F8.5,2X,F8.5,2X,F8.5)
FORMAT (2X,F4.2,2X,F8.5,2X,F8.5,2X,F8.5)
DELF1=WB*P

DELP1=WB*Q

DELQ1=WB* (-F*Q)

DELE'2=WB* (P+DELP1/2.0)

DELP2=WB* (Q+DELQ1/2.0)

DELQ2=WB* (- (F4+DELF1/2.0) * (Q+DELQ1/2.0))
DELF3=WB* (P+DELP2/2.0)

DELP3=WB* (Q+DELQ2/2.0)

DELQ3=WB* (- (F+DELF2/2.0) * (Q+DELQ2/2.0)})
DELF4=WB* (P+DELP3)

DELP4=WB* (Q+DELQ3) -
DELQ4=WB* (- (F+DELF3) * (Q+DELQ3) )

F=F+ (DELF1+2.0*DELF2+2.0*DELF3+DELF4) /6.0
P=P+(DELP1+2,0*DELP2+2.0*DELP3+DELP4) /6.0
Q=Q+(DELQ1+2,0*DELQ2+2 . 0*DELQ3+DELQ4) /6.0
TR=~ (F*Q)

ETA=ETA+WB

KB=KB+1

IF(KB.LE.NP1)GO TO 23

IF(IPN.NE.2)GO TQ 35

WRITE (3,28)

FORMAT (/, 4X,'Y',7X, 'UL', 8X, 'ULP', 8X, 'ULD', /)
FORMAT (/,4X,'Y',7X,'UT', 8%, 'UL', 8X, 'ULP', /)
DO 30 J=1,NP1

YY=(J-1) * (YL/N)
WRITE(3,25)YY,UL(J),ULP (J) ,ULD (J)
CONTINUE

CLOSE (3)

BLASIUS SOLN/MEAN-VEIL CALCULATIONS END

DATA GENERATION

CONTINUE

VL--IS REAL ALPHA

R—--IS REYNOLDS NUMBER

CR==~IS REAL PART OF C (TRIAL VALUE)
CI--IS IMAGINARY PART OF C (TRIAL VALUE)

ULPO=ULP (1)

o 1




Qa0

91
93

912

922

AZ=DCMPLX (R0, R0O)

AIO=DCMPLX(R0O,R1)

W~IS STEP SIZE

W=YL/N

W2=W*W

W3=W2*W

WA=W3*W

RF=R1/360.0

P1=R1/ (R2*W)

P2=R1/(12.0%*W2)

P3=R1/ (R2*W3)

P4=R1/W4

P5=R1/(120.0*W)

P6=R1/(15.0*W2)

P7=R0

P8=R2*W/45.0D0

RFV=R1/6.0

P1V=R1/ (R2*W)

P2V=R1/W2

P3V=R1/ (R2*W3)

P4V=R1/W4

DCR=0,1D-05

DCI=0.1D-05

EPS=0.1D-06

OPEN(4,FILE='RTRES.DAT', STATUS='NEW')
WRITE (4,10) YL,N,W

DCRR=DCR

DCII=DCI

DO 400 IAS=1,ISET

DCR=DCRR

DCI=DCII

IF (IPN.EQ.0) GOTO 91

IF (LLEV.LT.2) THEN
OPEN(7,FILE='EIGF.DAT', STATUS='NEW')
OPEN(8,FILE='ADJ.DAT', STATUS='NEW')
ENDIF

IF (INC.EQ.1.0R.LLEV.EQ.3) OPEN(9,FILE='XFLOW.DAT', STATUS='NEW"')
WRITE (6, 93)

FORMAT (1X/1X, 'Enter: RO,Alpha,R,Cr,Ci,Cli,Beta,dBeta'//)
READ (5, *) RREF,VL,R,CCR,CCI,Cl1lI,BL0O,DBL
IF (NLEV.NE.1) GOTO 95

WRITE (6, *) 'IOPT=0 for R=R(x);IOPT=1 for R=R(U)'
WRITE (6, *) 'Enter IOPT,mass,c0,d,S*
READ (5, *) IOPT,EM,C0,D,SS

IF (R.NE.RREF .AND.IOPT.EQ.0) THEN

WRITE (4, 912) RREF,EM, SS

FORMAT (1X, 'R=R(x) '//2X, 'R0=",F8.1, 4X, 'm0="',F8. 4, 4X,
1'S0=",2E11.4/)

EM=EM*RREF /R

SS=SS*R/RREF

ELSEIF (R.NE.RREF) THEN

WRITE (4, 922) RREF,CO0,D,SS

FORMAT (1X, 'R=R(U) '//2X, 'RO=",F8.1,2X, 'c0(0)=",F8.4, 2X,
1'd0=',F8.4,2X, 'S0=",2E11.4/)

CO=CO*RREF /R

D=D*RREF /R

SS=SS*RREF*RREF/ (R*R)

ENDIF




c
WRITE (4,94) EM,CO,D,SS
94 FORMAT (5X, 'm',7X, 'c0"', 6X, 'd’, 13X, 'S"
1 //1X,3(F8.4),1X,2E11.4/)
95 CONTINUE
VLO=VL
VLO2=VL*VL
RRO=R
ITR=0
ITN=0
THET=R0
BL=R0
IBL=1
IF (INC.EQ.2) THEN
BL=BL0
IBL=2
ENDIF
KK2=0
CALL EIGEN (CCR,CCI)
CRO=CCR
CI0=CCI
AC0=DCMPLX ({CR0,CI0)
WRITE (6,1200) VLO,BL,RR0,CR0O,CI0,RFF
WRITE (4,1200) VLO,BL,RR0,CR0,CIO,RFF
o IF (IPN.EQ.0)GOTO 1513
NK1=1
CALL MATSOL(CRO,CIO)
IF (LLEV.EQ.3) GOTO 330
IF (LLEV.EQ.0) THEN
LLEV=1
ELSE
LLEV=0
ENDIF
ZADJ=FF (CCR, CCI)
C CALL MATSOL (CR0,CIO)
IF (LLEV.EQ.1) THEN
WRITE (6,333) VLO,BL,RRO,CCR,CCI, ZADJ
WRITE (4,333) VLO,BL,RR0,CCR,CCI,ZADJ
333  FORMAT(1X, 'Adjoint:'/1X,F7.5,D17.10,F8.1
1,3(1X,D15.8) /)
LLEV=0
ELSE
WRITE (6,335) VLO,BL,RR0,CCR,CCI,ZADJ
WRITE (4,335) VLO0,BL,RR0,CCR,CCI,ZADJ
335 FORMAT(1X, 'Phi:'/1X,F7.5,D17.10,F8.1,3(1X,D15.8)/)
LLEV=1
ENDIF
330  NK1=0
IF (INC.NE.1) GOTO 420
IBL=2
1513 ITR=0
c CCI=ClI
1515 BL=BLO+ITR*DBL
CCI=C1I
CALL EIGEN(CCR,CCI)
THET=CCR-CR0
THMD=ABS (THET)
IF (THMD.LT.EPS)GOTO 1535
WRITE (6,1400) VLO,BL,RR0,CCR,CCI, THET




WRITE (4,1400) VLO,BL,RR0,CCR,CCI,THET
1400 FORMAT(1X,F7.5,E17.10,F8.1,2(1X,E15.8),1X,E15.8)
IF (ITR.EQ.0.AND.THET.GT.R0) THEN
BLO=BL0-0.2D-1
DBL=0.1D-1
CCR=CRO
CCI=ClI
GOTO 1515
ELSEIF (ITR.EQ.0) THEN
GOTC 1526
ENDIF
IF (ITR.EQ.0) GOTO 1526
IF ( (THET*THETL) .LT.R0)GOTO 1529
1526 THETL=THET

BLL=BL

ITR=ITR+1

IF (ITR.GT.ITM)GOTO 400

CCR=CRO

GOTO 1515
1529 BLR=BL
1530 BL=(BLL+BLR)/2.0D0

CALL EIGEN (CCR,CCI)

THET=CCR-CRO

THMD=ABS (THET)

IF (THMD.LT.EPS)GOTO 1535

WRITE (6,1400) VLO,BL,RR0O,CCR,CCI, THET

WRITE (4,1400) VLO,BL,RRO,CCR,CCI,THET

IF ( (THET*THETL) .GT.R0) GOTO 1533

BLR=BL

GOTO 1534
1533 BLL=BL

THETL=THET
1534 KK2=KK2+1

IF (KK2.GT.100)GOTO 400

GOTO 1530
1535 WRITE (6, *)

WRITE (6, *) 'RESONANT TRIAD LOCATED:'

WRITE (6,1200) VLO,BL,RR0,CCR,CCI, THET

WRITE (4,1200) VLO,BL,RR0,CCR,CCI, THET
1200 FORMAT(1X/1X,F7.5,D17.10,F8.1,3(1X,D15.8)/)
1210 FORMAT (1X/1X, 'GAMMA=',F11.8,5X, '"RPRIME=",F9.1//1X, 'P=",

1 2F12.6,5X, 'P0=",2F12.6/)

(e NoNoNoNeNe e NSNS

c IF (IPN.EQ.0)GOTO 400
PR=CCR
PI=CCI
NK1=1

Cc IBL=2

CALL MATSOL (CCR,CCI)
WRITE(6,1210) VL,R,XVL, XVL0
WRITE(4,1210) VL,R,XVL, XVLO

C IF (BL.GT.R0) THEN
IF(LLEV.EQ.0) THEN
LLEV=1
ELSE
LLEV=0
ENDIF
ZADJ=FF (CCR, CCI)

C CALL MATSOL (CCR,CCI)

IF (LLEV.EQ.1) THEN
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WRITE (6,423) VLO,BL,RR0,CCR,CCI, ZADJ

WRITE (4, 423) VLO,BL,RR0,CCR,CCI,ZADJ
FORMAT (1X, 'Adjoint (oblique):'/1X,F7.5,D17.10

1,F8.1,3(1X,D15.8)/)

ELSE

WRITE (6,425) VLO,BL,RR0,CCR,CCI, ZADJ

WRITE (4,425) VLO,BL,RR0,CCR,CCI,ZADJ
FORMAT (1X, 'Phi (oblique):'/1X,F7.5,D17.10,F8.1

1,3(1X,D15.8)/)

ENDIF

LLEV=2

CALL MATSOL(CCR,CCI)

LLEV=(

NK1=0

CALL COEFF

ENDIF

IF (IPN.EQ.0) GOTO 400

IF (ISQ.EQ.1) GOTO 773

IPQ=1

IPR=1

IF (INC.GT.0) IPR=2

IF (INC.EQ.2) IPQ=2

DO 773 I=IPQ,IPR

DO 776 J=1,NP1,4

IF(J.LT.51.0R.J.GT. (NP1-51) ) THEN

WRITE(7,770) XJS(J,I),XJP(J,I),XJID(J,I),XJIT(J,I),XIQ(J,I)
WRITE (8,772) ADS(J,I),ADP(J,I),ADD(J,I)
ENDIF

CONTINUE

WRITE (7, *)

WRITE (8, *)

CONTINUE

IF (INC.EQ.1.0R.ISQ.EQ.1) THEN

DO 753 J=1,NP1,4
IF(J.LT.51.0R.J.GT. (NP1-51) )WRITE(9,771) XVS(J),XVP(J),XVD(J),
XVT (J)

WRITE(9,771) XVS(J),XVP(J),XVD(J),XVT(J)
CONTINUE

FORMAT (8E10.3)

CLOSE (9)

ENDIF

FORMAT (10E10.3)

FORMAT (6E12.5)

IF(ISQ.EQ.1l) GOTO 400

CLOSE (8)

CLOSE (7)

CONTINUE

CLOSE (4)

STOP

END

SUBROUTINE EIGIT (TR, TI,NGAM)

TRACES CLOSED CONTOUR IN (CR,CI)=-PLANE. EIGENVALUES LOCATED BY
PRINCIPLE OF ARGUMENT.

IMPLICIT COMPLEX*16(A,G,H,S,X),REAL*8 (B~F,0-R, T~W,Y,2)
COMMON/RR/R, R0, R1,R2,RF,RL/COQ/AZ, ATIO, ARL, ARL3, ACO, AC




180

40
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220

COMMON/PAR/VL0, VL02,RR0,EPS, EPS1,DCR,DCI/TF/AFF, RFF

COMMON/DET/DARG, DDARG, JR, JI, NARG, FCR, FCI
COMMON/VV/VL, VL2, VL3, VL4, PR, PI/RTD/BL, IBL, ITM
PI=3.141592654D0

WRITE (4,180) VLO,BL,RR0

FORMAT (1X/1X,F7.5,E17.10,F8.1/)

NIT=0

JIMX=2* (JR+JT)

JIR=JR+JI

JIR2=JI+2*JR

CALL MATSOL (TR, TI)

IF (RFF.LT.EPS1) GOTO 1000

RMIN=RFF

CRMIN=TR

CIMIN=TI

NGAM=0

DARG1=DARG

WRITE (6,200) TR,TI,RFF,DARG

IF (NIT.NE.0) GOTO 220

WRITE (4,200) TR,TI,RFF,DARG

FORMAT (1X/1X,2(E15.8,1X), 2 (E13.6,1X))
TRO=TR

TIO=TI

DO 100 J=1, JMX

IF(J.LE.JR) THEN
TR=TR+DCR

NWR=1

ELSEIF (J.LE.JIR) THEN
TI=TI+DCI

NWR=2

ELSEIF (J.LE.JIR2) THEN
TR=TR~DCR

NWR=1

ELSE

TI=TI-DCI

NWR=2

ENDIF

CALL MATSOL (TR, TI)

IF (RFF.LT.EPS1) GOTO 1000
IF (RFF.LT.RMIN) THEN
RMIN=RFF

CRMIN=TR

CIMIN=TI

ENDIF

DDARG=DARG-DARG1

IF (DDARG.GE.PI) THEN

NGAM=NGAM-1

ELSEIF (DDARG.LE. (-PI)) THEN
NGAM=NGAM+1

ELSEIF (ABS (DDARG) .GT.1.5D0) THEN
WRITE (6,*) 'STEP SIZE MAY BE TOO LARGE:'

WRITE (6,300) TR,TI,RFF,DARG,DDARG

WRITE (4,300) TR,TI,RFF,DARG,DDARG
GOTO 95

IF (NWR.EQ.1) THEN

DCR=DCR/R2
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JR=JR*R2

ELSE

DCI=DCI/R2

JI=JI*R2

ENDIF

IERR=IERR+1

TR=TRO

TI=TIO

IF(JR.LT.80.AND.JI.LT.80) GOTO 40

WRITE(6,*) 'TOO MANY POINTS; TERMINATING EXECUTION'
WRITE (4,*) 'EXECUTION TERMINATED- TOC MANY POINTS'
GOTO 1000

ENDIF

IF{J.EQ.JR.OR.J.EQ.JIR,OR.J.EQ.JIR2.0R.J.EQ.JMX) THEN
WRITE(6,300) TR,TI,RFF,DARG,DDARG

WRITE (4,300) TR,TI,RFF,DARG,DDARG

ENDIF

FORMAT (1X,2 (E15.8,1X),2(E13.6,1X),E12.5)
DARG1=DARG

CONTINUE

IF (NGAM.LT.0) NGAM=-NGAM

WRITE(6,400) NGAM

WRITE (4,400) NGAM

FORMAT (1X/6X,I4,' EIGENVALUE(S) '/)

IF (NGAM.NE.0) THEN
WRITE (6, 650) CRMIN,CIMIN, RMIN
WRITE (4, 650) CRMIN,CIMIN,RMIN
FORMAT (1X/1X, 'CMIN=(',E12.5,',',E12.5,') RMIN=',6E12.5/)
ENDIF
IF ( (DCR.LT.0.1D-3,AND.DCI.LT.0.1D-3) .AND.NGAM.NE.0) THEN
IF (RFF.LT.0.2D-5.AND .NGAM.NE.0) THEN
IF (NGAM.NE.0) THEN
DELCR=DCR*JR
DELCI=DCI*JI
IF ( (ABS (TR) .GT.0.2D0.AND.DELCR.LT.0.1D-1.AND.DELCI.LE.
1 0.1D-1) .OR. (DELCR.LE.0.1D-3.AND.DELCI.LE.0.1D~3)) THEN
IF (DELCR.LT.FCR.AND.DELCI.LT.FCI) THEN
DCR=0.1D~5
DCI=0.1D~5
GOTO 1000
ENDIF
ENDIF

GOTO (500, 600) ,NIT

IF (NGAM.EQ.0.AND.NIT.EQ.0) GOTO 1000
IF (NGAM.EQ.0) TI=TI+JI*DCI
DCR=DCR/R2

NIT=2

GOTO 50

IF (NGAM.EQ.0) TR=TR+JR*DCR
DCI=DCI/R2

NIT=1

GOTO 50

CONTINUE

RETURN

END



SUBROUTINE EIGEN{(CR,CI)

EIGENVALUE LOCATION BY NEWTON-RAPHSON/REGULA FALSI.

QOO0

IMPLICIT COMPLEX*16(A,G,H,S,X),REAL*8 (B-F,0~-R, T~W, Y, 2)
COMMON/RR/R,R0,R1,R2,RF,RL/VV/VL, VL2, VL3, VL4, PR, PI
COMMON/RTD/BL, IBL, ITM/C0OQ/AZ, AIQ, ARL, ARL3,AC0, AC
COMMON/PAR/VL0,VL02,RR0,EPS,EPS1,DCR,DCI/TF/AFF, RFF
COMMON/DET/DARG, DDARG, JR, JI, NARG, FCR, FCI
C EPS1=0.1D-09
IF (BL.EQ.R0)GOTO 1010
BLS=BL*BL
RGAM=SQRT (BLS+VL02/4.0D0)
R=(VL0/ {(2.0D0*RGAM) ) *RR0
VL=RGAM
1010 VL2=VL*VL
VL3=VL2*VL
VL5L4=VL2*VL2
RL=R*VL
ARL=RL*AIC
ARL3=VL2*ARL
IF (NARG.NE.(O) THEN
NG=0
CALL EIGIT(CR,CI,NG)
IF (NG.EQ.0.OR.RFF.LT.EPS1) GOTO 930
ENDIF
Z1=FF (CR,CI)
AC1=DCMPLX (CR,CI)
AF1=AFF
6 IF (Z1.LT.EPS1)GOTO 930
WRITE (6,275) VL0,BL,RR0,CR,CI,Z1
VCR=DCR
VCI=DCI
C1=CR+VCR
C2=CI+VCI
22=FF (C1,CI)
23=FF (CR,C2)
ECR=(22-21) /VCR
ECI=(23-21) /VCI
DEN=ECR*ECR+ECI*ECI
BCR=-Z1*ECR/DEN
BCI=-Z1*ECI/DEN
CR=CR+BCR
CI=CI+BCI
ZZPR=FF (CR, CI)
AC2=DCMPLX (CR, CI)
AF2=AFF
IF (2ZPR.LT.EPS1)GOTO 930
WRITE(6,275) VLO,BL,RR0,CR,CI,ZZPR
ITC=0
900 AC3=(AC1l*AF2~-AC2*AF1l)/(AF2-AF1l)
CR=DREAL (AC3)
CI=DIMAG (AC3)
FF3=FF (CR,CI)
IF (FF3.LT.EPS1)GOTO 930
WRITE(6,275) VLO,BL,RR0O,CR,CI,FF3
275 FORMAT (1X,F7.5,E17.10,F8.1,3(1X,E15.8))
AC1=AC2



930

100

AF1=AF2

AC2=AC3

AF2=AFF

ITC=ITC+1

IF(ITC.LT.ITM)GOTO 900

WRITE(6,*) ‘EIGENVALUE SEARCH NOT CONVERGING'
CONTINUE

RETURN

END

FUNCTION FF (VR,VI)

IMPLICIT COMPLEX*16(A,G,H,S,X),REAL*8 (B-F,0~R, T~W,¥, %)
COMMON/TF/AFF, REF

CALL MATSOL (VR,VI)

FF=RFF

RETURN

END

SUBROUTINE MATSOL (CR,CI)

IMPLICIT COMPLEX*16(A,G,H,S,X),REAL*S (B~F,0-R, T-W,Y,2)
DIMENSION A(3201,5),HP (3201)

COMMON/ IND/NK1, LLEV, NLEV, IPN/RTD/BL, IBL, ITM
COMMON/MAT/A, HP/TF/AFF, RFF
COMMON/NNW/N,NM1,NP1,W, W2, W3, W4
COMMON/RR/R,R0,R1,R2,RF,RL
COMMON/VV/VL,VL2,VL3,VL4,PR,PI
COMMON/COQ/AZ,AIC, ARL, ARL3, AC0, AC
AC=DCMPLX (CR, CI)

CALL MATRIX

CALL DIAG

AFF=A (NP1, 3)

IF (LLEV.EQ.3) AFF=A(NP1,2)

RFF=ABS (AFF)

IF (NK1.EQ.0)GO TO 100

CALL SOLN

CONTINUE

RETURN

END

SUBROUTINE MATRIX

IMPLICIT COMPLEX*16 (A,G,H,S,X),REAL*8 (B-F,0-R,T-W,Y, Z)
DIMENSION A(3201,5),UL(3201),ULP(3201),ULD(3201)
1,HP(3201),XJs(3201,2),XJP (3201,2),XJD(3201,2),XJT{(3201,2),
1 XJQ(3201,2)
COMMON/RR/R,R0,R1,R2,RF,RL/EE/HF1,HF2, HF3, HG1, HG2, HG3
COMMON/PP1/P%,P2,P3,P4,P5,P6,P7,P8/VBC/XBB, XCC
COMMON/NNW/N, NM1,NP1, W, W2, W3, W4/PROP/EM, C0,D, SS, ULPO
COMMON/VV/VL, VL2, VL3,VL4, PR, PI/XX/XB3, XB1l
COMMON/C0Q/AZ,AIO, ARL, ARL3; AC0,AC/PAR/VLO,VL02,RRO,
1EPS,EPS1,DCR,DCI/RTD/BL, IBL, ITM/PHI/XJS, XJP, XJD, XJT, XJQ
COMMON/IND/NK1, LLEV,NLEV, IPN/BCS/HBWA, HBWB, HBWC, HCWA,
1 HCWB, HCWC/GP/GP0/GAMM/XVL, XVL0

COMMON/MAT/A, HP /MVL/UL, ULP, ULD/PP2/RFV, P1V,P2V,P3V, P4V
IF (NLEV.EQ.1.AND.IBL.EQ.1) THEN

XB=(ARL* (EM*VL02* (AC*¥AC-C0*C0) +ATO*VL0O*D~SS) ) /AC

XB3=XB

W
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ELSEIF (NLEV.EQ.1.AND,IBL.EQ.2) THEN

XB= (AIO*R2*VL2*RR0/ (VLO*AC) ) * (EM* (VL.02/4.0) * (AC*AC— (VLO*CO0

1 *C0)/ (R2*VL) )+ (AIO*VLO*AC*D/R2) -SS)
XB1=XB
ENDIF
Al=AZ
IF (LLEV.LT.2) THEN
A0=-VL4/ARL+VL2*AC
A2=R2*VL2/ARL-AC
A4=-R1/ARL
AQ00=RF*AQ
A22=P2*A2
A4=P4*n4
ELSE
AQ0=-RFV* (VL2~ (ARL*AC) )
A2=DCMPLX (P2V,R0)
A4=AZ
ENDIF
DO 50 J=1,NP1
A0=A00~-RF*VL2*UL (J)
IF (LLEV.EQ.0) AQ0=A0~RF*ULD (J)
IF (LLEV.GE.2) A0=A00- (RFV*ARL*UL(J))
IF (LLEV.EQ.1) Al=P1*R2*ULP (J)
IF (LLEV.LT.2) THEN
A2=A22+4P2*UL (J)
A(J,1)=A0+A2+A4
A(J,2)=A0%56.0+A2*8,0-A4*4,0-Al
A(J,3)=A0*%246.0-A2*18,.0+A4*6.0
A(J,4)=A(J,2)+R2*Al
A(J,5)=A(J,1)
HP (J) =AZ
ELSE
A(J,1)=A2+A0
A(J,2)=-R2*A2+4.0*A0
A(J,3)=A(J,1)
HP (J) =AZ
IF (LLEV.EQ.2) HP (J)=AIO*ULP (J) *BL*RR0O*XJS (J, 2)
ENDIF
CONTINUE
GP0=AZ
GP1=AZ
GP2=AZ
WALL B.C.-S
IF(LLEV.LT.2.AND.NLEV.EQ.0) THEN
HBWA=AZ
HBWB=R1
HBWC=AZ
HCWA=-246.0D0
HCWB=~112.0D0
HCWC=-R1
ELSEIF (NLEV.EQ.0) THEN
AVO0=ARL*AC-VL2
HFV=AV0*P1
HFV1=P3+HFV
GD1=18.0*HFV1-6.0*P3~40.0*HFV
HBD=56.0*GD1-7.0* (9.0*HFV1+15,0*P3-157.0*HFV)
HBWA=-(114.0*GD1+392.0*HFV1) /HBD
HBWB=7.0*({9.0*HFV1+157.0*HFV~15.0*P3)~8.0*GD1) /HBD
HBWC=7.0*{(18.0*HFV1+6.0%P3+40.0*HFV-GD1) /HBD
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HBWD=14.0*HFV1/HBD
HCWA=-114.0/7.0-8.0*HBWA
HCWB=-8.0* (R1+HBWB)
HCWC=- (R1+8 . 0*HBWC)
HCWD=-8 , 0 *HBWD
HDWA=56.0-18.0*HCWA~9.0*HBWA
HDWB=—-9.0~18.0*HCWB~-9.0*HBWB
HDWC=-18.0-18.0*HCWC-9 .0 *HBWC
HDWD=-R1-18.0*HCWD-9 . 0*HBWD
HBWA=-11.0/R2

HBWB=-R1

HBWC=AZ

HCWA=62.0D0

HCWB=AZ

HCWC=-R1

HBWA=-4.0D0

HBWB=-R1

GPO=AZ

ENDIF

IF (NLEV.EQ.1.AND.LLEV.EQ.0) THEN
HD1=ULPO*RF/AC

HD2=3,0*VL2*pP1

HD3=XB*RF

HCA=P3+HD3

HBD=HCA* (56 .0*HD1~P1) +HD1* (R2*P3+HD2-56 . 0*HD3)

HBWA=HD1*246.0%* (HD3-HCA) /HBD

HBWB= (HD1* (R2*P3+HD2+56 . 0*HD3) ~HCA* (56 . 0*HD1+P1) ) /HBD

HBWC=HD1* (HD3-P3~HCA) /HBD
HCX=P1-56.0*HD1
HCWA=(~-246.0*HD1+HCX*HBWA) /HD1
HCWB= (HCX*HBWB- (56 . 0*HD1+P1)) /HD1
HCWC= (HCX*HBWC-HD1) /ED1
ELSEIF (NLEV.EQ.1.AND.LLEV.EQ.1) THEN
HD1=ULPO*P2/AC
HD2=RF* ( (ULP0*VL2/AC) -XB)
HBWA=AZ
HBWB=R1
HBWC=AZ
HCD=P3-HD1-HD2
HCWA= (246 .0*HD2-18.0*HD1) /HCD
HCWB=(16.0*HD1+112.0*HD2) /HCD
HCWC=(P3+HD1+HD2) /HCD
ELSEIF (NLEV.EQ.1l) THEN
AV0=ARL*AC-VL2
AV1=-ARL*ULP0
HPO=R2*BL*ULP0*XJS (1, 2) / (VLO*AC*RF)
GPO=R2*BL*ULP0*XJS (1,2) / (VLO*AC*RFV)
HBWA=-4.0D0
HBWB=-~R1
ENDIF
IF (LLEV.GE.2) THEN
A(l,2)=A(1,2)+HBWA*A(1,1)
A{l1l,3)=A(1,3)+HBWB*A(1,1)
HP (1) =HP (1) -GPO*A (1, 1)
ELSE
A(1,3)=A(1,3)+HBWA*A(1,2) +HCWA*A (1, 1)
A(1,4)=A(1,4)+HBWB*A (1, 2) +HCWB*A(1,1)
A(1,5)=A(1,5)+HBWC*A(1,2) +HCWC*A (1, 1)
A(2,2)=A(2,2) +HBWA*A (2, 1)
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A(2,3)=A(2,3)+HBWB*A(2,1)

A(2,4)=A(2,4) +HBWC*A (2, 1)

ENDIF

END OF WALL B.C.-S

VARIABLES REQD. FOR OUTER B.C.-S

IF (LLEV.LT.2) THEN

XVL2=VL2+ARL* (R1-AC)

XVL=CDSQRT (XVL2)

IF (IBL.EQ.1) XVLO=XVL

XVL=VL

XVL2=VL2

XBF1=P1l/ (XVL*RF)

XBF2=-P2/ (XVL2*RF')
XCFM=(56.0+8.0*XBF2) / (R1+XBF2)
XCF=(246.0-18,0*XBF2) / (R1+XBF2)
XBB=-(56.0~XBF1-XCFM) / (56 . 0+XBF1-XCFM)
XCC=~(246.0-XCF) / (56 .0+XBF1-XCFM)

XDD=—( (56.0-XBF1)+ (56.0+XBF1) *XBB)

XEE=- (246.0+(56.0+XBF1) *XCC)

XBB=EXP (-R2*VL*W)

XCC=XBB*XBB

XAl= (XVL+VL) *P1

XA2=XVL*VL*RF

XA3= (XVL+VL) *P2

XA4=XVL*VL*P1

XC1=XA2+P2

XC2=XA3+P3

HED=XC1* (B,0*XA3~R2*P3+XA4)~XC2* (8.0*P2+XA1+56.0*XA2)
HF1=(XC2* (XA2+P2) -XC1* (XA3-P3)) /HFD
HF2=(XC2* (8.0*P2-XA1+56.0*XA2) -XC1* (R2*P3+8.0*XA3-XA4)) /
1 HFD

HF3=(XC2* (246 .0*XA2-18.0*P2)+XC1*18.0*XA3) /HFD
HGC=- (8.0*P2+XA1+56.0%*XA2) /XC1
HG1==-R1+HGC*HF1

HG2=(XAl1-8.0*P2~56.0*XA2) /XC1+HGC*HF2
HG3=(18.0*P2-246.0*XA2) /XC1+HGC*HF3

OUTER B.C.'S
A(NP1,1)=A(NP1,1)+HF1*A (NP1, 4) +HG1*A (NP1,5)
A(NP1,2)=A(NP1,2)+HF2*A (NP1, 4) +HG2*A (NP1, 5)
A(NP1,3)=A(NP1, 3)+HF3*A (NP1, 4) +HG3*A (NP1, 5)
A(N,2)=A(N,2)+HF1*A (N, 5)

A(N, 3)=A(N, 3) +HF2*A (N, 5)

A (N, 4)=A(N, 4) +HF3*A (N, 5)
A(NP1,1)=A(NP1l, 1) +XCC*A (NP1, 5)
A(NP1,2)=A(NP1,2) +XBB*A (NP1, 4)

A (N, 3)=A(N, 3) +XBB*A (N, 5)
A(NP1,1)=A(NP1,1)-A(NP1,5)
A(NP1,2)=A(NP1,2)+A (NP1, 4) *XBB+A (NP1, 5) *XDD
A (NP1, 3)=A(NP1,3)+A (NP1, 4) *XCC+A (NP1, 5) *XEE
A(N,3)=A(N, 3)+A (N, 5) *XBB

A(N, 4)=A(N,4)+A (N, 5) *XCC

ELSE

XVL2=VL2+ARL* (R1-AC)

XVIL=CDSQRT (XVL2)

SNN=XVL*REV

XBB= (P1V~-SNN) / (P1V+SNN)

XCC=~4,0*SNN/ (SNN+P1V)
A(NP1,1)=A(NP1,1)+XBB*A (NP1, 3)
A(NP1,2)=A (NP1, 2)+XCC*A (NP1, 3)



ENDIF

o} END OF OUTER B.C.-S
RETURN
END
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SUBROUTINE DIAG

DIAGONALISATION OF MATRIX OF EQUATION.

QOO0

IMPLICIT COMPLEX*16(A,G,H,S,X),REAL*8 (B~F,0~R, T-W,Y,2)
DIMENSION A(3201,5),HP(3201)
COMMON/IND/NK1, LLEV,NLEV, IPN
COMMON/NNW/N,NM1,NP1,W, W2, W3, W4
COMMON/VV/VL,VL2,VL3, VL4,PR,PI
COMMON/MAT/A, HP /DET/DARG, DDARG, JR, JI, NARG, FCR, FCI
IF (LLEV.LT.2) THEN
DO 40 J=1,NP1
ZA=ABS (A(J,1))
DO 37 K=2,5
ZAl=ABS (A (J,K))
37 1IF(2A.LT.ZAl)ZA=2Al
(o} IF (LLEV.GT.1l) HP(J)=HP(J)/2A
DO 40 K=1,5
A(J,K)=A(J,K)/2A
40 CONTINUE
c WRITE(6,%*) A(1,4)
DO 45 J=2,N
XA=A(J,2)/A(J-1,3)
XAl=A(J+1,1) /A(J-1,3)
IF (LLEV.GT.1) THEN
HP (J)=HP (J) =HP (J-1) *XA
HP (J+1) =HP (J+1) =HP (J~1) *XA1l
ENDIF
DO 45 K=4,5
A(J,K-1)=A(J,K-1)-A(J-1,K) *XA
A(J+1,K-2)=A(J+1,K-2)-A(J-1,K) *XAal
45 CONTINUE
XA=A (NP1,2) /A(N, 3)
A(NP1,3)=A(NP1, 3)-A(N, 4) *XA
C IF(LLEV.GT.1) HP(NP1)=HP (NP1)~HP (N)*XA
ELSE
DO 140 J=1,NP1
ZA=ABS (A(J,1))
DO 137 K=2,3
ZAl1=ABS (A (J,K))
137 IF (ZA.LT.ZAl) ZA=ZAl
IF (LLEV.EQ.2) HP (J)=HP (J)/ZA
DO 140 K=1,3
A{(J,K)=A(J,K)/2A
140 CONTINUE
DO 145 J=2,NP1
XA=A(J,1)/A(J-1,2)
IF (LLEV.EQ.2) HP(J)=HP (J)~-HP(J-1)*XA
c DO 145 K=4,5
K=3
A(J,K-1)=A(J,K-1)-A(J-1,K) *XA
145 CONTINUE
C XA=A (NP1, 2) /A (N, 3)

Qa0
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A(NP1,3)=A(NP1,3)~A(N, 4) *XA
HP (NP1) =HP (NP1) ~HP {N) *XA
ENDIF
IF (NARG.NE.0) THEN
JG=3
IF (LLEV.GE.2) JG=2
GDET=A (1, JG)
GDET=GDET /CDABS (A (1, JG))
DO 80 J=2,NP1l
GDET= (A (J, JG) /CDABS (A (J, JG) ) ) *GDET
CONTINUE
DETX=DREAL (GDET)
DETY=DIMAG (GDET)
DARG=ATAN2 (DETY, DETX)
ENDIF
RETURN
END

SUBROUTINE SOLN
CONSTRUCTION OF SOLUTION VECTOR.

IMPLICIT COMPLEX*16(A,G,H,S,X),REAL*8 (B-F,0-R,T-W, Y, Z)
DIMENSION A{(3201,5),G(3207),HP(3201),XJS(3201,2),XJP(3201,2)
1,XJD(3201,2),XJT(3201,2),XJQ(3201,2) ,ADS(3201,2),ADP(3201,2)
1 ,ADD(3201,2),XVS(3201),XVP (3201),XvD(3201),XVT(3201)
1,XS(3201),XP(3201),XD(3201),XT(3201),XQ(3201),

1 RAL{2),RAL3(2),UL(3201),ULP(3201),ULD(3201)
COMMON/PHI/XJS, XJP, XJD, XJT, XJQ/ADJ/ADS, ADP, ADD/XFL/XVS, XVP,
1 XVD,XVT/PROP/EM,C0,D,SS,ULP0/PAR/VL0,VL02,RR0O, EPS,EPS1,DCR,

1 DCI/MVL/UL,ULP,ULD/VBC/XBB,XCC

COMMON/ IND/NK1, LLEV, NLEV, IPN/RTD/BL, IBL, ITM
COMMON/NNW/N, NM1, NP1, W, W2,W3,W4/EE/HF1, HF2, HF 3, HG1, HG2, HG3
COMMON/VV/VL,VL2,VL3,VL4,PR,PI/PP2/RFV,P1V,P2V,P3V, P4V
COMMON/RR/R, R0, R1,R2,RF,RL
COMMON/PP1/P1,P2,P3,P4,P5,P6,P7,P8
COMMON/COQ/AZ, AIO, ARL, ARL3,AC0, AC/BCS/HBWA, HBWB, HBWC,
1 HCWA, HCWB, HCWC

COMMON/MAT/A, HP /YMAX/YL/GP/GP0

DO 127 I=1,N+7

G(I)=AZ

G(NP1+3)=DCMPLX (R1,R0)

IF (LLEV.GE.2) THEN

IF (LLEV.EQ.2) G{NP1+3)=HP (NP1)/A(NP1,2)
G(NP1+2)=(HP (N)~-A(N, 3) *G(NP1+3) ) /A (N, 2)

G (NP1+1)=(HP (NM1)-A (NM1, 3) *G{(NP1+2)) /A (NML, 2)

G (NP1+4) =XBB*G (NP1+2) +XCC*G (NP1+3)

G (NP1+5)=A%

G{NP1l+6)=2Z

AN=RFV* (G(NP1+1) +G(NP1+5) +56.0* (G (NP1+2) +G{NP1+4))+246,.0%*
1G (NP1+3))

AN=AN/EXP (VL* (1.7208-YL))

SUM=G (NP1+1) +G (NP1+2) +G (NP1+4) +G (NP1+5)

AN1=AN/SUM

CA=ABS (AN1)

IF(CA.GT.0.1D-09) G(NP143)=-(G(NP1+1)+56.0% (G{NP1+2)+
1G(NP1+4) ) +G(NP1+5)) /246.0

G (N+4)=G (N+4) /AN



c G (N+3)=(HP (N) A (N, 4) *G (N+4) ) /A (N, 3)
DO 450 J=1,N
M=NP1-J
G (M+3) = (HP (M) =A (M, 3) *G (M+4) ) /A (M, 2)
450 CONTINUE

[0 G (N+5)=G (N+3) *XBB+G (N+4) *XCC

Cc G(N+6) ==G (N+2) +G (N+3) *XDD+G (N+4) *XEE
G(3) =HBWA*G {4) +HBWB*G (5) +GP0

C G (2) =HCWA*G (4) +HCWB*G (5) +HCWC*G (6) +GP1

C WRITE (4, *) G(2),G(3)
DO 280 JJ=1,NP1
J=J3J+3

c IF(JJ.LE.8.0R.JJ.GE. (N-6)) WRITE(4,*) G(J)

XVS (JJ) =RFV* (G (J-1) +G (J+1) +4.0*G(J))

XVP (JJ)=P1V* (G (J+1) -G (J~1))

XVD (JJ)=P2V* (G(J-1) +G (J+1) -R2*G (J) )

XVT (JJ) =ATIO*BL*RRO* (ULP (JJ) *XJP (JJ, 2) +ULD (JJ) *XJS (JJ,2) ) +
1 ARL*ULP (JJ) *XVS (JJ) + (VL2+ARL* (UL (JJ) -~AC) } *XVP (JJ)

Cc XVT (JJ) =P3V* (G(J+2) -G (J-2) ~R2* (G({J+1) -G (J-1)))
280 CONTINUE
c WRITE (4, *) G(N+5),G(N+6)
c WRITE (4, *)
ELSE

G(NP1+2)=(HP (N) -A (N, 4) *G(NP1+3) ) /A (N, 3)
G(NP1+1)=(HP (NM1) -A (NM1, 4) *G (NP1+2) -A (NM1, 5) *G (NP1+3))
1/A(NM1,3)
G(NP1+4)=XBB*G (NP1+2)
G (NP1+5)=XCC*G (NP1+1)
G (NP1+4) =G (NP1+2) *XBB+G (NP1+3) *XCC
G(NP1+45) ==G (NP1+1) +G (NP1+2) *XDD+G (NP1+3) *XEE
G(NP1+4) =HF1*G (NP1+1) +HF2*G (NP1+2) +HF3*G (NP1+3)
G{NP1+5) =HG1*G (NP1+1) +HG2*G (NP1+2) +HG3*G (NP1+3)
AN=RF* (G (NP1+1) 4G (NP1+5) +56.0%* (G (NP1+2) +G (NP1+4) ) +
1 246.0*G(NP143))
AN=AN/EXP ( (1.7208-YL) *VL)
c IF(LLEV.EQ.2) GOTO 50
G (N+4) =G (N+4) /AN
50 CONTINUE
G (N+5) =AZ
G (N+6)=AZ
DO 250 J=2,NP1l
JJI=NP1-J+4
K=NP1-J+1
G(JJ)=(HP (K)-A (K, 5) *G(JJ+2) -A (K, 4) *G (JJ+1) ) /A (K, 3)
250 CONTINUE
G (N+5) =XBB*G (N+3)
G (N+6) =XCC*G (N+2)
G (NP1+4) =G (NP1+2) *XBB+G (NP1+3) *XCC
G(NP1+5)=~G (NP1+1) +G (NP1+2) *XDD+G (NP1+3) *XEE
G(NP1+4)=HF1*G (NP1+1) +HF2*G (NP142) +HF3*G (NP1+3)
G (NP1+45)=HG1*G (NP1+1) +HG2*G (NP1+2) +HG3*G (NP1+3)
G (N+7) =AZ
G (3) =HBWA*G (4) +HBWB*G (5) +HBWC*G (6)
G (2) =HCWA*G (4) +HCWB*G (5) +HCWC*G (6)
G(1)=AzZ
c IF (LLEV.EQ.2) GOTO 350
AN=RE* (G (N+2) +G (N+6) +56 . 0* (G (N+3) +G (N+5) ) +246.0*G (N+4) )
AN=AN/EXP ( (1.7208-YL) *VL)
DO 300 J=1,N+7
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IF(J.LE.10.0R.J.GE. (N-2) )WRITE (4, *) G(J)
G(J)=G(J) /AN
CONTINUE
WRITE (4, *)
CONTINUE
DO 700 JJ=1,NP1
J=JJ+3
XS (JJ) =RF* (G (J-2) +G(J+2) +56 .0DO0* (G (J-1) +G(J+1) ) +
1 246.0D0*G(J))
XP (JJ)=P1l* (G(J+1)~G(J-1))
XD (JJ)=P2* (G(J-2)+G (J+2) +8.0* (G (J~-1) +G(J+1) ) -18.0*G (J))
XT (JJ)=AZ
IF(LLEV.NE.1l) XT(JJ)=P3*(G(J+2)~-G(J-2)+R2*(G(J-1)-G(J+1)))
XQ (JJ) =A2
IF(LLEV.EQ.0) XQ(JJ)=P4*(G(J-2)+G(J+2)~-4.0%*(G(J-1)+
1 G(J+1))+6.0*G(J))
IF (LLEV.EQ.0) THEN
XJS (JJ, IBL) =XS (JJ)
XJP (JJ, IBL)=XP (JJ)
XJD (JJ, IBL) =XD (JJ)
XJT (JJ, IBL)=XT (JJ)
XJQ (JJ, IBL) =XQ(JJ)
IF{(JJ.LT.10.0R.JJ.GT. (NP1-10) ) THEN
XERR=XQ (JJ) = (R2*VL2+ARL* (UL (JJ) =AC) ) *XD (JJ) + (VL4+ARL*

ULD (JJ) +ARL3* (UL (JJ) —AC) ) *XS (JJ)
IF(JJ.EQ.1) WRITE(6,*) '0.S. ERROR:'
WRITE(6,*) JJ,XERR
IF (JJ.EQ.NP1) THEN
XVL=CDSQRT (VL2+ARL* (R1-AC) )
XERR1=XT (JJ) + (VL+XVL) *XD (JJ) +VL*XVL*XP (JJ)
XERR2=XD (JJ) + (VL+XVL) *XP (JJ) +VL*XVL*XS (JJ)
WRITE(6,*) 'BC ERRORS: ', XERR1, XERR2
ENDIF
ENDIF
ELSEIF (LLEV.EQ.1l) THEN
ADS (JJ, IBL) =XS (JJ)
ADP (JJ, IBL)=XP (JJ)
ADD (JJ, IBL)=XD (JJ)
ELSEIF (LLEV.EQ.2) THEN
XVS (JJ) =XS (JJ)
XVP (JJ) =XP (JJ)
XVD (JJ) =XD (JJ)
XVT (JJ)=XT (JJ)
ENDIF
CONTINUE
ENDIF
RAL(1)=VLO
RAL(2)=VL
RAL3 (1) =VLO*VL02
RAL3 (2) =VL3
DO 800 J=1,2
XJP (NP1, J)=-RAL (J) *XJS (NP1, J)
XJT (NP1, J)=-RAL3 (J) *XJS (NP1, J)
CONTINUE
RETURN
END




Qo0

90
100

SUBROUTINE COEFF
NONLINEAR TERMS ON R.H.S.

IMPLICIT COMPLEX*16 (A,G,H,S,X),REAL*8 (B~F,0~R, T-W, Y, 2)
DIMENSION XJS(3201,2),XJP{(3201,2),XJD{3201,2),XJ7(3201,2),
1 XJQ(3201,2),ADS(3201,2),ADP(3201,2),ADD(3201,2),XVS(3201)
1,XvVP(3201),XVD(3201),XVT(3201) ,HF (3201,2),

1 RAL2(2),SVv(3201,2),HFA(3201,2),SVA(3201,2)
COMMON/PHI/XJS, XJP, XJD, XJT, XJQ/ADJ/ADS, ADP, ADD/XFL/XVS, XVP
1,XVD, XVT/XX/XB3, XB1/PROP/EM,C0,D, SS, ULP0
1/IND/NK1, LLEV,NLEV, IPN/RTD/BL, IBL, ITM/VV/VL, VL2, VL3, VL4, PR,
1PI/RR/R,R0,R1,R2,RF,RL/COQ/AZ,AIO, ARL, ARL3,ACO, AC
1/PAR/VL0,VL02,RR0,EPS,EPS1,DCR,DCI
1/NNW/N,NM1,NP1,W, W2, W3, W4

RAL2 (1) =VL02
RAL2 (2)=VL2
DO 100 J=1,NPLl

HF (J, 1) =AIO* (VLO/R2) * ({3.0D0~ (VL02/VL2) ) *XJP (J,2) *
1(XJID(J,2) = (VL2*XJIS (J,2) ) ) +XIS (J,2) * (XIT (J,2) = (VL2*
1XJP (J,2) ) ) +R2* (VLO*BL/VL2) * (XVS (J) * (XJID (J, 2) - (VL2*
1XJIS(J,2)) ) +(XIP(J,2) *XVP (J) ) )—4.0D0* (BL*BL/VL2) *

1 (XVS (J) *XVP (J) ) =R2* (BL/VL0) * (XJD (J, 2) *XVS (J) +
1R2*XJP (J,2) *XVP {J) +XJIS (J, 2) *XVD (J) ) )

HF (J, 2) =AIO* (VL0/4.0D0) * ( ( (VL0O2/VL2) —R2) *XJS (J, 1) *
1DCONJG (XJT (J, 2) — (VL2*XJP (J, 2) ) ) + ( (VL02/VL2) =3.0D0) *
1XJP (J, 1) *DCONJG (XID (J, 2) = (VL2*XJIS (J, 2) ) ) =R2*
1DCONJG (XJP (J, 2) ) * (XID(J, 1) = (VLO2*XJIS (J, 1)) ) -
1DCONJG (XJS (J,2) ) * (XIT (J, 1) = (VLO2*XJIP (J, 1) ) ) —R2*BL*
1 (VLO/VL2) * (XJS (J, 1) *DCONJG (XVD (J) ) +XJP (J, 1) *
1DCONJG (XVP (J) ) +VL2*XJS (J, 1) *DCONJIG (XVS (J) ) ))

DO 90 1=1,2

SV(J,I)=XJD(J,I)~-(RAL2 (I)*XJS(J,I))
SVA(J,I)=SV(J,I)*ADS(J,I)

HFA(J, I)=HF (J,I)*ADS (J, I)

CONTINUE

CONTINUE

CALL INTEGR (HFA, XN3,XN1)
CALL INTEGR (SVA,XD3,XD1)

IF (NLEV.GT.0) THEN
AETAl=-R2* (VL/ (ULP0*VL0) ) *XJP (1, 2)
AETA3=-XJP (1,1) /ULPO

HPREP1=(VL0/R2) *VL*AC*XJS (1,2) ~AIO* (VL/RR0) *SV (1, 2)
HPREP3=VL02*AC0*XJS (1, 1) ~AIO* (VLO/RR0) *SV(1,1)

XMUl= (AETAL/VL) * (BL*XVP (1) — (VLO/R2) *XJD(1,2))

XMUZ2=ATO*VLO*AETAL* ( (BL/VL) *XVS (1) - (VLO/ (R2*VL) ) *XJP (1, 2)
1 - (ULP0/R2) *AETALl)

XMU3=ALO* (VL0O/ (R2*VL) ) *AC*AETAL* ( (VL0/R2) *XJD (1, 2) =BL*
1 XVP(1))-AIO* (VLO/R2) *AETA1*HPREP1+ (AETAL/ (VL*RRO) ) * ( (VLO




/R2) * (XJQ(1,2)~VL2*XJD (1,2) ) -BL* (XVT (1) -VL2*XVP (1) ) ) +AIO*
(BL/VL) *ULPO*AETAL* (BL*XJP (1,2)+(VL0/R2) *XVS (1) ) - (AI0/VL2)
* ( ((VLO*VL02/8.0)-(VL0/R2) *BL*BL) *XJP (1, 2) *XJP (1, 2) +VLO*
BL*BL*XVS (1) *XVS (1) +BL* (BL*BL~(3.0/4.0) *VL02) *XJP (1,2) *
XVS (1) -VL*XJS(1,2)*((VL0O/R2) *XJD(1,2)-BL*XVP (1) ))

o

XMU4=~AETA1*HPREP1-AIO* (AETA1/RRO) * ( (3.0*VL02+4.0*BL*BL) *
1 (XJD(1,2)/VL)-VLO* (BL/VL) *XVP (1) +VL* ( (VL02/4.0) -BL*BL) *
1 XJ3s(1,2))

XKAl=~ (AETA3/ (R2*VL) ) * ( (VL0 /R2) *DCONJG (XJD (1, 2) ) -BL*
1 DCONJG(XVP (1)) ) ~DCONJG (AETAL) * (XJD(1,1) /R2)

XKA2=(AETA3/ (R2*VL) ) * (BL*DCONJG (XJD (1, 2) ) +(VLO/R2) *
1 DCONJG (XVP(1)))

XKA3=~AIO* (VL0/4,0) * (ULPO*AETA3*DCONJG (AETA1l) ~R2* (BL/VL) *
1 AETA3*DCONJG (XVP (1) ) +XJP (1, 1) *DCONJIG (AETAL) +( (VLO2-R2*VL2
1 )/ (VL*VLO)) *AETA3*DCONJG (XJP (1,2)))

XKA4=-(R1/R2) * (AETA3*DCONJG (HPREP1) +HPREP3*DCONJG (AETAL) )
1 +AIO*VL*AETA3*DCONJG (XJD(1,2))~-AIO*VLO*XJID(1,1) *

1 DCONJG (AETA1l)~AIO* (VLO/ (R2*VL) ) XAETA3* ( (VLO/R2) *

1 DCONJG (XJD(1,2) +VL2*XJS(1,2) ) ~BL*DCONJG (XVP (1) ) ) +AIO*

1 (VL0/4.0)*DCONJG (AETAL) *(XJD (1,1)+VL02*XJS (1, 1))

XKA5=AIO* (VL0/4.0) * (AETA3*DCONJG (HPREP1) ~R2*HPREP 3 *

DCONJG (AETAL) ~AETA3* (VL0 / (R2*VL) ) *DCONJG (AC*XJD (1,2) )+
BL*AETA3*DCONJG (AC*XVP (1) ) +R2*AC0*XJD (1, 1) *DCONJG (AETAl))
- (AIO/ (R2*VL) ) * ((VL02/4.0) *XJP (1, 1) *DCONJG (XJP (1,2) ) -VLO*
(BL/R2) *XJP (1, 1) *DCONJG (XVS (1) ) +VL2*XJD (1, 1) *

DCONJG (XJS (1, 2) ) =(VL02/R2) *XJS (1, 1) *DCONJG (XJD (1,2) ) +VLO*
BL*XJS (1,1) *DCONJG (XVP (1) ) +BL*ULPO*AETA3* (DCONJG (XJP (1, 2) )
*BL+ (VL0/R2) *DCONJG (XVS (1) ) ) ) = (R1/ (R2*RR0) ) * (DCONJG (AETAL)
* (XJQ(1,1)~VL02*XJD(1,1))+(AETA3/VL) * ( (VLO/R2) *DCONJG (
XJQ(1,2)-VL2*XJD (1, 2) ) -BL*DCONJG (XVT (1) =VL2*XVP (1) )) )

FR B RRERPRRSR

XKA6=AIO* (VLO/ (4.0%VL) ) * (AETA3*DCONJG (AC) -R2*XJS (1, 1)) *

1 DCONJG (BL*XJD (1, 2) +(VLO/R2) *XVP (1) ) — (AETA3/R2) * (AIO*BL*
1 DCONJG (HPREP1) + (BL/ (VL*RR0) ) *DCONJG (XJQ (1, 2) =VL2*XJP (1, 2)
1 )+ (VLO/ (R2*VL*RR0) ) *DCONJG (XVT (1) ~VL2*XVP (1)) )

GV63=(ADD(1,1)+(VLO2+AIO*VLO*RRO*ACO) *ADS (1,1) ) /RRO
GVS53=ADS (1, 1) /RRO

GV61=(ADD (1, 2)+ (VL2+ARL*AC) *ADS (1,2) ) /R

GV51=ADS (1,2) /R

XD3=XD3+GV63* (XJP (1, 1) / (AIO*VLO*ACO0) ) -GV53* (XJP (1, 1) /ULPO
1 ) *(AIO*VLO*RRO* (R2*AIO*VLO*ACO*EM~D) + (XB3/ (AIO*VL0) ) )

XN3=XN3+GV53*RR0O* (ATO*VLO*AC0*XMU1+ULP 0 *XMU2+XMU3-AIO*VL0
1 *XMU4+ (XB3/ (AIO*VLO*RRO0) ) *XMU2) -GV63* (XMU1+ (ULPO/ (AIO*VLO
1 *ACO)) *XMU2)

XD1=XD1+GV61*R2* (XJP (1,2) / (AIO*VLO*AC) ) =R2* (VL/ (VLO*ULPQ) )
1 *GV51* (AIO*VL*RRO* (AIO*VLO*AC*EM-D) + (XB1/ (AIO*VL)) ) *
1 XJp(1,2)

XN1=¥N1-(GV61/VL) * ( (VLO/R2) *XKA1+BL*XKA2+ (ULP0/ (ATO*AC) )




1 *XKA3)-(RRO/VL) *GV51* (AIO*VL2*XKA4~- (VL0/R2) *XKA5-BL*XKA6—
1 AIQ*(VL0O/R2) * ((VLO/R2) *AC*XKA1+BL*AC*XKA2-AIO*ULPO*XKA3) +
1 AIO* (XB1/RR0) *XKA3)

C WRITE (4, %) XMUl,XMU2,XMU3,XMU4,XKAl,XKA2, XKA3, XKA4,
c 1 XKAS5,XKA6,GV63,GV53,GV61,GV51
ENDIF

WRITE(4,*) 'HF3,HF1,SV3,S5V1 (N,NP1):'
WRITE (4, *) HF(N,1),HF(N,2),SV(N,1),SV(N,2)
WRITE(4,*) HF(NP1,1),HF(NP1,2),SV(NP1,1),8V(NP1,2)
WRITE (4,*) 'PHI,PSI,3,1:"
DO 988 J=1,4
K=J
IF (J.GT.2) K=N+J-3
DO 999 I=1,2
WRITE(4,*) K,*',',I,XJS(K,I),XJP(K,I),XJID(K,I),XJT(K,I),
1 XJQ(K,I),ADS(K,I),ADP(K,I),ADD (K, I)
999  CONTINUE
WRITE (4, *)
988  CONTINUE
WRITE (4, %) 'V,VP,VD,VT:J=1,...,5;N-3,...,NP1"
DO 1047 J=1,10
K=J
IF(J.GT.5) K=NP1-10+J
WRITE (4, *) XVS(K),XVP (K),XVD (K),XVT (K)
1047 CONTINUE
WRITE (4,*) 'ETA3,ETAl,PRESSURES:’
WRITE (4,*) AETA3,AETAl,HPREP3,HPREP1

XLAM1=XN1/XD1
XLAM3=XN3/XD3
BLAM1=ABS (XLAM1)
BLAM3=ABS (XLAM3)
XLAM1A=-AIO*XLAM1*1.7208/ (5.0*VL0)
XLAM3A=ATIQO*XLAM3*1,7208*VL0/ (5.0*VL2)
BLAM1A=ABS (XLAM1A)
BLAM3A=ABS (XLAM33)
WRITE(6,200) XLAM3,XLAM1,XLAM3A, XLAM1A
WRITE (4,200) XLAM3, XLAM1,XLAM3A, XLAM1A
200 FORMAT (1X/1X, 'Interaction coefficients:',//1X, 'a3=',2D15.8,
12X, 'al=',2D15.8, "' (wrt delta)'//1X,
l1'a3=',2D15.8,2X, 'al="',2D15.8, "' (wrt delt*)"'/)
WRITE(6,210) BLAM3,BLAM1,BLAM3A, BLAM1A
WRITE(4,210) BLAM3, BLAM1,BLAM3A, BLAM1A
210 FORMAT (1X/1X, 'Moduli:'//1x, *a3=',D11.4,2X, 'al=',D11.4,
12X, *a3(delt*)="',D11.4,2X, "al (delt*)=',D11,4/)

RETURN
END
C
(o)
SUBROUTINE INTEGR (XI,XR1,XR2)
(&)
c SOLVABILITY CONDITION.
c
IMPLICIT COMPLEX*16(A,G,H,S,X),REAL*8 (B-F,0-R,T-W, Y, Z)
DIMENSION XI (3201,2)
COMMON/PP1/P1,P2,P3,P4,P5,P6,P7,P8/
1NNW/N, NM1, NP1, W, W2,W3,W4/C0OQ/AZ, AIO, ARL, ARL3,AC0, AC
(&

XR1=AZ




50
70

XR2=AZ
DO 70 I=1,2
DO 50 J=3,NM1,4

XA=T7.0D0* (XTI (J-2,I)+XI(J+2,I))+32.0D0* (XI(J-1,I)+XI(J+1,I))
1 +12.0D0*XI(J, 1)

IF(I.EQ.1) XR1=XR1+XA
IF(I.EQ.2) XR2=XR2+XA

CONTINUE
CONTINUE
XR1=XR1*P8
XR2=XR2*P8
RETURN
END




