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Abstract

Th is work assesses the importance o f non linearity in  the s ta b ility  o f flows 

over com pliant and rig id  walls, and comprises three m ain parts. The firs t 

pa rt considers inviscid flow w ith  a free surface over a flexib le boundary. The 

dispersion re la tion  is obtained, and the conditions fo r linear in s ta b ility  investi

gated. The linear dispersion relation is then used to  show th a t the conditions 

fo r nonlinear three-wave resonance are often m et. In  some circumstances, the 4

resonance may be o f ‘explosive’ sort, involving waves o f opposite energy sign; 

bu t non-explosive resonant configurations are most common. Next, the wave- 

am plitude evolution equations for three-wave resonance are derived, firs tly  by 

a ‘d irec t’ approach, and then via  a varia tional (averaged Lagrangian) method.

Results agree w ith  those o f Case &  Chiu (1977) fo r cap illa ry-g ravity  waves, 

and C ra ik &  Adam  (1979), fo r three-layer flu id  flow , on taking  the appropriate |

lim its . We also consider a nonlinear model fo r the flexib le boundary.

In  the second p a rt, s ta b ility  of Blasius flow over a com pliant surface is 

studied. This extension of rig id -w a ll work of C raik (1971) and Hendriks (ap- 

pendix to  Usher &  C raik 1975) determines the quadratic in teraction coefficients %

o f three-wave resonance, and complements the linear analysis o f Carpenter &;

G arrad (1985, 1986) and others. F irs t, the linear eigenvalue spectrum  is in 

vestigated fo r various values o f the w all parameters. Then, resonant triads are 

located and the quadratic interaction coefficients determ ined num erically. By 

way o f in troduction  some rig id -w a ll results are also presented, extending those 

o f Hendriks.

...



11

Acknowledgements

The author was supported during  th is  work by a SERC (CASE) Research 

Studentship, in  co llaboration w ith  the Procurement Executive, M in is try  o f De

fence. January-M arch 1988 was spent a t the Ind ian In s titu te  o f Technology,

D elhi, where the author was under the guidance o f Professor P. K . Sen. He is 

m ost gratefu l to  Professor Sen fo r the invaluable assistance he received during 

th is  period, and subsequently, and also to  the H T authorities fo r p rovid ing  a 

generous research scholarship. Substantial financial assistance fo r the v is it was 

also received from  the A d m ira lty  Research Establishm ent. The author would 

like  to  thank D r. D. J. A tk in s , M r. A . V . Yorke and D r. A . N. H icks fo r th e ir |

help during two pro fitab le  summer stays at ARE Teddington.

F irs t and forem ost, though, I  would like  to  thank my supervisor. Professor 

A lex D. D . C raik, w ith o u t whose expansive knowledge o f and great insight in to  

the subject o f flu id  mechanics th is  work could not have been possible. I  am 

much indebted to  h im .



D eclaration

I, M ichael Dom inic Thomas, hereby ce rtify  tha t th is thesis has been com

posed by myself, th a t it  is a record o f my own work, and th a t i t  has not been 

accepted in  p a rtia l or complete fu lfilm en t o f any other degree or professional 

qua lification.

Signed Date j. .

(M ichael D . Thomas)

111



I
#

C ertificate

I, as supervisor o f the candidate, hereby ce rtify  th a t he has fu lfille d  the ê

conditions o f the Resolution and Regulations appropriate to  the Degree of Ph.D . ‘ :

Signed Date . /  T ? '

(Alexander D. D. C raik)

IV



Signed Date ^  I ^  .

{M ichael D . Thomas)

Research H isto ry

I  was adm itted as a Research Student to  the Faculty o f Science o f the i

U niversity o f St. Andrews under Ordinance General No. 12 on 1st October 

1986, and as a candidate fo r the degree o f Ph.D . on 1st O ctober 1987.

I



C opyright

In  subm itting  th is  thesis to  the U n iversity o f St. Andrews I  understand th a t 

I  am g iv ing perm ission fo r it  to  be made available fo r use in  accordance w ith  

the regulations o f the U niversity L ib ra ry  fo r the tim e being in  force, subject to  

any copyright vested in  the work not being affected thereby. I  also understand 

th a t the tit le  and abstract w ill be published, and th a t a copy o f the work may 

be made and supplied to  any bona fide lib ra ry  or research worker.

VI



Nom enclature

Roman

c phase speed

d damping coefficent

h mean flu id  depth (Chapter 2), step size (Chapters 3 and 4 )

k  wavenumber vector (Chapter 2)

m  w all mass per u n it span

R  Reynolds number

S w all restoring force

F  wall tension

t  tim e co-ordinate

UjU flu id  flow  speed

X  streamwise co-ordinate

y transverse co-ordinate

z vertica l co-ordinate

Greek

a  streamwise wavenumber

P transverse wavenumber

■7 surface tension (Chapter 2 ), oblique wavenumber (C hapter 3)

6 boundary layer thickness

€ ordering parameter

Ç free-surface displacement

T? w a ll displacement

p density

1/  kinem atic viscosity

<p velocity potentia l 

<i> stream function 

ij) ad jo in t stream function

w frequency

A

V ll



Subscripts

0 reference value

00 value in  free stream

1 im aginary pa rt o f complex quantity

m  value perta in ing  to  w a ll m ateria l

r real p a rt o f complex quantity

w value at w a ll

Abbreviations

c.c. complex conjugates

n .l.t. nonlinear term s
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Chapter 1 In troduction



1.1 M o tiva tion

An understanding o f flows over flexib le boundaries is o f technological and S

scientific im portance, m ainly because o f the po tentia l benefits o f drag and noise 

reduction fo r m arine cra ft. Since a fu lly  nonlinear analysis o f such problems 

is presently im possible, previous studies have concentrated on the linear sta

b ility  o f such flows. The present resurgence of interest in  th is  area is largely 

due to  encouraging experim ental results by Gaster (unpublished) and Gad-el- 

Hak (1986). Recent studies by Carpenter (1985), Carpenter &  Garrad (1985,

1986) and Yeo (1987) survey the earlier lite ra tu re  at length and present new 

theoretical and com putational results based on linear s ta b ility  theory.

However, litt le  systematic theoretical work has yet been done on nonlinear 

aspects o f such problems, despite the well-developed state o f weakly-nonlinear 

s ta b ility  theory, both fo r flu id  flows between rig id  boundaries and fo r interacting 

in te rfacia l waves (see fo r example Craik 1986a). In  Chapters 2 , 3 and 4 of th is 

work we focus on simple weakly-nonlinear models th a t y ie ld  insight in to  the role 

o f non linearity in  such flow configurations, and in  p a rticu la r in to  the potentia l 

im portance o f resonant interactions.

There are several reasons why three-wave resonance can be o f im portance.

F irs tly , th is  weakly-nonlinear interaction occurs at quadratic order in  wave 

am plitude, and therefore can be expected to  often be o f more significance than «

the cubic-order in teraction studied by S tuart (1960) and W atson (1960). This 

is p a rticu la rly  like ly  to  be so a t smaller wave am plitudes.

Secondly, three-wave resonance provides a mechanism fo r the development 

of three- dim ensionality in  the transition  to  turbulence o f shear flows: the work 

o f C ra ik (1971) and others has shown th a t certa in form s o f resonant tria d  in 

viscous shear flows exh ib it remarkably large quadratic in te raction  coefficients, 

these being 0(jR ) fo r sufficiently large Reynolds number R. Th is mechanism has 

received qua lita tive  support from  the experim ental investigations o f Kachanov 

Sc Levchenko (1984), Saric &  Thomas (1984) and others.

1.2 The Navier-Stokes equations and the linear approxim ation

The s ta rting  po in t fo r a ll th a t follows is the incompressible Navier-Stokes



equations

+  (u .V )u  =  F  — — V p  +  i/V ^ u , ( l. la )

V .u  =  0 , (1.1b)

where u  is the to ta l flu id  velocity, and F  is a body force. A t rig id  boundaries 

the flow  m ust be exactly zero (no tangentia l s lip , and no norm al ve loc ity). The 

no-slip cond ition  does not obta in  fo r inviscid flows. For flows w ith  deformable 

boundaries the exact boundary conditions are (i) a ll velocity components m ust 

be continuous, and ( ii)  shear stress and norm al stress must both be continuous 

across any boundary.

For inviscid , irro ta tio n a l flow  we can define a velocity potentia l $  by u  =

V $ ; then (1 .1b) becomes Laplace’s equation

V " $ = 0  (1.2) I

and ( l. la )  can be re-expressed as the unsteady B ernou lli equation

1 «
_  +  _ V $ . V $ +  ^2: +  -  = / (O ,  (1.3)

on tak ing  F  =  —pzk. I f  we assume th a t some basic flow U  satisfying (1.1)

is perturbed by in fin itesim al trave lling  waves o f the form  exp{iA;(a: — c()}, the |

problem  becomes an eigensystem: solutions fo r $  at a given wavenumber k 

w ill only exist fo r certa in values o f the phase speed c =  c, +  iq . Evaluation of 

(1.3) a t boundaries (where we impose conditions on the pressure) yields a linear 

dispersion re la tion  fo r the problem . This can be obtained e xp lic itly  fo r many 

inviscid flow  problems. Several d is tin c t solutions fo r c w ill in  general exist a t a 

given k\ these represent different wave modes. For example, in  many situations 

pairs o f upstream  and downstream propagating waves w ill be supportable on 

any deformable boundaries th a t are present (such as free surfaces or com pliant 

walls).

The dispersion re la tion can be w ritte n  generically as

£)((*;, fe) =  0. (1.4)

3



In  simple cases the degree o f th is  equation is equal to  the number o f wave-modes 

th a t the system supports. The dispersion re la tion (1.4) can often be w ritte n  in  

term s o f two or more sm aller systems tha t are coupled to  some extent:

D{uyk) =  Di{oj,k)D2{<jJ,k) — (w, t) . (1.5)

Here provides a d irect measure o f the strength o f the coupling; in  the lim it 

A - 4  0 the systems are com pletely uncoupled, and we may w rite

((*̂ 1 > ^) — (wg, /î) — 0 , (1.6)

In  practice A is negligible except when Wi and Wg are almost equal: Wg =  

Wi +  fi, |fi| <C 1. Cairns (1979) has examined mode coupling using the concept 

o f wave energy; he has shown th a t, fo r conservative (non-dissipative) systems, 

the energy W  o f a given wave may be expressed as

W (1.7)
4 '

where A  is the wave am plitude. O f course, D  has to  be su itab ly defined in  some 

frame of reference in  order to  be meaningful. The frequency w w ill norm ally be 

real fo r non-dissipative systems.

I f  we suppose th a t w =  Wi +  A , |A | <  1 , then

D i ((^1 4" A , k^Dz (^2  4" A  — 6, &) — A^ =  0,

doji

=>A^ -  A8

du}2 

a P i dP2
du)i dwg

0,

Â  = 0 ,

giving

S ±  \  +4A^
d P ^ \  

\  doji du)2 /
(1.8)

I t  is clear, on remembering th a t a ll quantities in  the discrim inant o f (1.8) are 

real; th a t if  and are both positive then the roots and Wg w ill rem ain 

real and d is tinct. If, however, the product is suffic iently negative then

<jji and Wg w ill form  a complex-conjugate pa ir. In  other words, the two roots
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coalesce, one o f them  becoming unstable w h ils t the other evanesces. The range 

o f wavenumbers over which the in s ta b ility  extends is o f course dependent upon |

the nature o f the dispersion curves w versus k fo r the two p a rc ip ita tin g  wave- 

modes: the in teraction can only occur where these curves are su ffic ien tly  near 

to  each other.

The wave energy W  =  can be negative, in  an appropria te ly 4

chosen frame o f reference: the creation o f such a wave results in  a reduc

tio n  o f the to ta l energy o f the system. For example, an otherwise upstream - 

propagating wave th a t is forced to  trave l downstream by a su ffic ien tly  strong 

basic flow U  w ill possess negative energy. I t  is clear from  the above sim ple t

model tha t in teraction o f two waves o f opposite energy sign w ill resu lt in  insta

b ility  (due to  the negative d iscrim inant), whereas waves o f like sign w ill no t: in  

fact, in  the la tte r case the waves w ill exchange identities. Both possib ilities are 

w e ll illus tra ted  in  Chapter 2 below.

Negative-energy waves have the im portan t property o f being driven unsta

ble by dissipative processes, such as viscosity, or damping in  a flexib le  w a ll. Th is |

phenomenon was the subject o f a fine theoretical study by Benjam in (1963): he 

was able to  place the possible wave-modes fo r th is combined flu id -so lid  problem  

in to  three classes, according to  th e ir behaviour as damping is in troduced in to  

the system. Class A  consisted o f negative-energy waves, and orthodox positive- 

energy waves were defined as belonging to  Class B. The th ird  category. Class C, 

was reserved fo r those modes th a t are not significantly affected by dissipation.

Benjam in was able to  show th a t the well-known Tollm ien-Schlichting in s ta b ility  

waves are in  fact Class A . The classical Kelvin-H elm holtz in s ta b ility  is Class 

C, and modes on flexib le walls can also be o f th is type, although they m a in ly 

belong to  Class B (see below).

I t  should be noted th a t fo r dissipative systems, such as viscous shear flows, 

the va lid ity  o f Cairns’ sim ple in teraction model is (as he adm its) ra the r dubious.

The presence of a c ritica l layer (th a t is, the neighbourhood of a p o in t where 

u[Zc) — Cj =  0) would unquestionably be o f im portance, and there is also a 

d ifficu lty  in  defining wave energy fo r non-neutral modes—  which are, o f course, 

the norm  in such systems. One can nevertheless make ten ta tive  deductions.

i



at least fo r modes th a t are in  some sense ‘near-neutral’ . I f  we allow  6 to  be 

com plex, then clearly the solutions fo r A  w ill not comprise a conjugate p a ir, 

whatever the value o f Hence we do not in  general expect to

observe m odal coalescence in  dissipative systems: instead, some fo rm  o f near

coalescence is likely. This is indeed found to  be the case (see Chapter 4 below).

1.3 N onlinear theories

There are basically two kinds o f nonlinear theory. In  the firs t k ind , which 

is the m ost general, one considers a rb itra rily  large disturbances in  the context 

o f the fu ll, unapproxim ated Navier-Stokes equations. In tegra l inequalities are 

used to  provide bounds on various flow  properties, fo r example disturbance 

energies, and in  th is way one obtains s ta b ility  crite ria . These take the form  o f 

necessary o r sufficient conditions fo r grow th or decay w ith  tim e. The p rinc ipa l 

advantage, o f course, o f th is  approach is the lack of assumptions about the 

nature o f the disturbance. However, fo r many flow  problems, such as shear 

flows, the s ta b ility  c rite ria  thus obtained are much too imprecise to  provide 

useful in form ation.

A  second type o f theory is a ra tiona l extension o f the fact th a t linear theory Ij
J

is va lid  fo r disturbances which are in  some sense sufficiently sm all; b u t s tric tly  ,4

speaking fo r any non-zero wave am plitude linear results are nevertheless only

an approxim ation. A  sequence o f successive approxim ations is obtained by ex-

panding in  powers o f a dimensionless wave am plitude. This kind o f approach is |
4term ed ‘weakly-nonlinear’, and has proved very fru itfu l in  illu m ina ting  underly- 4

ing physical processes. Not a ll weakly-nonlinear theories have been developed %

w ith  fu ll regard to  m athem atical rigour, bu t very often th is comes la te r as |!

the fundam ental physics becomes more clear. We shall be considering weakly 

nonlinear theory in  chapters 2, 3 and 4 of th is work.

N onlinear interactions may involve one mode only, or several. The form er 

case is known as ‘self-interaction’ , and was the subject o f im portan t studies 

by S tua rt (1960) and Watson (i960 ), using amplitude-expansion techniques.

W atson decomposed an in itia l disturbance in to  Fourier components—  in  other

words, in to  a fundam ental mode and an in fin ite  series o f associated harm onics. I
This yielded a sequence of ordered equations, which could be then solved sue- -M



cessively.

M ost o f the work presented below is concerned w ith  resonant tr ia d  in te r

actions. A  resonant tria d  exists if  there are three wave-modes o f frequencies 

Wy and wavenumbers ky for which Wy =  0, X^y^^ ky =  0 . The p rinc ipa l

im portance of the resonant tria d  in te raction  is th a t it  is an O(A^) phenomenon, 

where A  is wave am plitude—  other nonlinear effects, such as se lf-in teraction or 

mean-flow m odification, typ ica lly  occur a t 0 (A®) or higher, and so on ly become 

im portan t at higher am plitude levels. For th is  reason it  has been suggested th a t 

the resonant tria d  in teraction can play a m ajor rôle in  the tran s ition  o f flows 

from  the lam inar to  tu rbu len t regimes.

The in teraction equations may be w ritte n  in  the ir most general fo rm  as

+  V y . V ^  A y  +  cry A y  =  Ay A y ^  i  ^ J + 2  > J  =  1 , 2 , 3  ( 1 . 9 )

on trunca ting  at 0(A®). Indices are evaluated m odulo three in  (1.9), and * rep

resents complex conjugation. The group ve locity  o f the jth . wave is represented 

by Vy, and linear growth or decay by the factors cry. These equations are only 

va lid  fo r a fin ite  range o f A ; at suffic ien tly large am plitudes, higher-order term s 

m ust be retained. Thus in  terms o f an evolving tim e t, some tim e to may arrive 

a t which (1.9) no longer have va lid ity : indeed. Ay may become in fin ite  at some 

tim e, in  w hich case we have ‘breakdown’ .

In  seeking ever greater accuracy and v a lid ity  o f solutions, increasing use 

has been made o f the com putational fac ilities  th a t are now available and which 

indeed continue to be enhanced. The Navier-Stokes equations have been tack

led d irectly  by several research groups, fo llow ing the pioneering w ork o f Fasel 

(1976). Others have looked to extend the trie d  and tested weakly-nonlinear 

theories to  ever-higher orders o f wave am plitude: indeed, extrapolations to  in 

fin ite  order have been accomplished, w ith  some success; the work o f Sen and 

co-workers (Sen &  Venkateswarlu 1983; Sen, Venkateswarlu &  M a ji 1985, etc.) 

is a good example. Com putational flu id  dynamics is now viewed by many as 

com prising a v irtu a lly  self-contained subject in  its  own righ t, and many o f the 

m ost exciting current developments are occurring in  th is area, bu t more tra 

d itio n a l approaches w ill surely always have a place, as it  is never easy to  gain



understanding from  num erical data alone. We believe th a t the work presented 

below represents an appropriate blend o f theoretica l analysis and, where neces

sary, num erical investigation.

1.4 Solutions of the resonant-triad in teraction equations

Since th is  work is in large measure concerned w ith  resonant tria d  interac

tions, it  is appropriate to present here a b rie f summary o f the known solutions 

to  the three-wave resonant in teraction (3W R I) equations, fo r la ter reference. A  

much fu lle r account is given in  the monograph o f C raik (1986a). The equations 

may be w ritte n  in  the form  (1.9).

1.4.1 Conservative svstems

F irs tly  we shall consider conservative systems, fo r which the quadratic 

in te raction  coefficients Ay can a ll be taken as real quantities. We shall also 

take the linear dam ping/am plification factors Oy to  be a ll zero, and so (1.9) is 

s im plified to

+  Vy.V^ Ay =  AyAy^i Ay^g, j  = 1 ,2 ,3 (1.9)'

I

Exact solutions for the Ay (t) are then known in  term s of Jacobi e llip tic  functions 

if  there is no spatia l varia tion. I f  the signs o f Ay d iffe r, then the known solutions 

are m ostly periodic, bu t there are non-periodic lim itin g  cases (see fo r example 

B retherton 1964). I f  the signs o f Ay are a ll the same then a s ingu la rity  may 

develop at a fin ite  tim e t —io \ th is  is often referred to  as ‘explosive’ breakdown. 

The to ta l energy o f the system is conserved, however, and breakdown w ill in  fact 

only occur i f  the wave actions E j /wy have the same sign. Numerous examples o f 

th is have been found in  plasma physics—  see W eiland &  W ilhelmsson (1977). 

C raik &  Adam  (1979) studied three-layer Kelvin-H elm holtz flow , and found 

th a t th is  scenario supported both periodic and explosive sorts of tria d , even 

in  linea rly  stable cases. M a (1984) studied a sim pler Kelvin-H elm holtz flow 

problem , and found tha t triads only existed fo r linearly unstable flows. In  

Chapter 2 below we present sim ilar findings fo r inviscid flow over flexib le walls.

For near-resonance, we have ky =  0 as before bu t Wy =  Aw.

This yields in teraction equations sim ilar to  (1.9)' bu t w ith  exponential factors



exp(~ ïA (jjt) on the right-hand-sides. These too have solutions expressible in  

term s o f e llip tic  functions, b u t the to ta l energy is no longer a constant.

An im portan t special CEise is when one o f the waves, say A%, has a much 

larger am plitude than the others. Then we have in  the linearised approxim ation

^  =  0 , =  ( 1.10)

or equivalently

A i =  (constant), =  AaAgjAf^ ( i  l l )

I f  Ag and A3 have opposite signs then periodic solutions fo r Ag and A 3 exist w ith  

frequency |A^°^ |. O therwise, there are solutions w ith  exponential grow th/decay 

rates ± |A i°^  |. For waves in  flu id  a t rest, each Ay has the same sign as the corre

sponding Wy ; and Ag, A 3 rem ain much sm aller than A i except when the la tte r 

has the largest frequency |w|. In  th is  case, A i is unstable to  Ag and A 3 ; plasma 

physicists ca ll A i a ‘pump-wave’ when it  is able to  boost the am plitudes o f the 

other two waves, and the in s ta b ility  o f these others is known as ‘param etric 

resonance’ . I f  the Ay a ll have the same sign then the growth o f A 2 and A 3 

is lim ite d  by depletion o f A% at larger am plitudes, and periodic m odulations 

ensue.

The pump-wave approxim ation can also be applied to  three waves varying |

in  both  tim e and space, w ith  one wave dom inant (C raik &  Adam 1978). This 

o f course breaks down when the waves become o f comparible m agnitude, unless 

the pump-wave is a rtific ia lly  m aintained at constant am plitude. In  th is  la tte r 

case the governing equations reduce to  the Klein-G ordon equation

d^A  d^A  a^A  ^ ,
dt^ dy^ ’

which is easily solvable.

The conservative 3W R I equations (1.9)' fo r undamped waves may be solved 

by the method of inverse scattering; solutions are known in  two, three and four |

dimensions. The reader is referred to  the review articles o f Kaup, Reiman &

Bers (1979) and Kaup (1981) fo r details on the inverse-scattering m ethod. The



two-dim ensional solutions comprise (i) closed fo rm  n-solitons, w hich only exist 

if  the Ay have d iffe ring  signs, and (ii) a continuous spectrum , whose con tribu tion  

is not tim e-decaying (because the conservative 3W R I are non-dispersive in  the 

linear lim it)  and therefore is o f equal im portance to  the so liton  solutions.

In  three or fou r dimensions there are ‘n-lum p* solutions ra ther like  the 

ri-solitons, which however do not arise from  discrete bound-state eigenvalues. 

The one-lum p solution is ‘phase-locked’. A set o f solutions are said to  be phase- 

locked when th e ir collective existence requires th a t certa in  quantities, such as 

linear frequencies, or perhaps the arguments o f com plex nonlinear in teraction 

coefficients, m ust be related to  each other by some (often sim ple) condition.

1.4.2 L inearlv  damped conservative svstems

I f  one or more o f the waves is linearly damped o r am plified, then the 

inverse-scattering method cannot be applied and indeed few analytic solutions 

are known to  equation (1.9). I f  the grow th/dam ping rates are a ll equal and 

there is no spatia l dependence then (1.9) can be reduced to  the undamped 

system (1.9)' by a transform ation; bu t if  only one wave has non-zero damping 

then other solutions exist which resemble those fo r a nonlinear, damped, sim ple 

pendulum .

Wersinger, F inn  &  O tt (1980a,b) examined the 3W R I equations fo r near

resonant triads w ith  frequency m ismatch Aw fo r which the wave o f greatest 

frequency is linearly am plified and the others are linea rly  damped. Tem poral 

evolution only was studied. A  rem arkably rich  so lution set was found, com pris

ing periodic o rb its  th a t bifurcate through period-doubling to  ever more complex 

form s, and also other solutions exh ib iting the chaotic behaviour o f a ‘strange 

a ttra c to r’ .

1.4.3 Non-conservative svstems

C raik (1971) gave some particu la r solutions to  the non-conservative 3W R I 

equations (1.9). I f  a ll three waves are linearly damped o r linea rly  am plified then 

there are periodic solutions, the wave phases being inter-dependent. Further 

solutions exist if  the oblique grow th/dam ping factors Oi and Og are equal, fo r 

which any two o f the wave phases are a rb itra ry ; moreover, if  cti and are not
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too large then sign la rities in  fin ite  tim es are possible. Recently some solutions 

fo r the case o f tem poral and spatia l varia tion have been discovered (C ra ik  1986b,

1987). These have some s im ila rities w ith  the conservative ‘one-lum p’ solutions, 

and like them  are phase-locked. Here again the wave-amplitudes may exh ib it 

fin ite -tim e  explosion.

1.4.4 H igher-order effects

A  more accurate approxim ation to  three-wave resonant-triad in teractions #

is gained by re ta in ing th ird -o rd e r term s: instead o f (1.9), we then have

12

+ 0 2 ^2  — Ci^AzA\ -  iA 2 (1.13a, b,c)
dt

k ~ l

+  O3A3 =  cJjAi As -  iAg ^  dsjfejAfc |̂ .
dt

k ~ l

I t  w ill be seen th a t there are nine cubic-order in teraction coefficients d iji the 

real parts o f these give rise to  am plitude-dependent frequency sh ifts , whereas 

the im aginary parts y ie ld  add itiona l grow th or dam ping term s. For conservative 

cases, Oy =  0 and the c,y and d^y are purely real, and there are no unbounded 

solutions. Cases which are explosive in  the absence o f th ird -o rd e r term s ty p i

cally exh ib it ‘repeated stabilised explosions’ when such term s are included. For 

non-conservative systems, if  ĉ y ^  0 then only approxim ate ana ly tic  solutions 

are known, though num erical solution is not unduly d iffic u lt. Usher &  C raik 

(1975) examined cubic-order three-wave interactions, bo th  resonant and non

resonant, in  shear flows, using asym ptotic (large Reynolds num ber) estimates. 

I t  was found tha t the th ird -o rde r interaction coefficients could be large, and 

like  the ir second-order counterparts (studied in  Chapters 3 and 4 below) could 

influence the grow th o f oblique modes in  C raik-type triads.

1.5 Review of experim ental w ork on flows over com pliant walls

Previous work on s ta b ility  o f flows over flexible walls is reviewed here and 

in  the follow ing section. Several excellent and more detailed reviews are already 

extant in the lite ra tu re , and those by Carpenter &  G arrad (1985), R iley, Gad- 

el-Hak &  M etcalfe (1988) and Carpenter (1989) are p a rticu la rly  recommended.

11
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The possib lity o f com pliant-w all induced drag reduction was firs t experi

m enta lly investigated by Kram er (1957, 1960); the stim ulus fo r his w ork was 

provided by the idea th a t the surprising speed capability o f the do lph in  was due 

to  the p a rticu la r structure o f its  skin , which enabled it  to  m ainta in lam inar flow 

over its  body. K ram er conducted a series o f experments (K ram er 1960, 1962,

1965) in  open water, tow ing an axisym m etric body w ith  a flu s h ly -fittin g  com

p lia n t coating. The coatings he used consisted of an array of stubs surrounded 

by h igh ly  viscous damping flu id  and enclosed w ith in  seamless rubber hose. He 

claim ed to  have achieved significant drag reduction fo r certain o f the coatings, 

and p u t th is  down to  the ir supposed property o f ‘d istributed dam ping’ .

K ram er’s pioneering work n a tu ra lly  spurred others to  take in terest in  com

p lia n t surfaces; however, over the next two decades his results were no t validated 

by subsequent experiments and came to be regarded w ith  considerable scepti

cism . Puryear (1962) conducted experiments in  a tow ing tank using prola te 

spheroids p a rtia lly  covered w ith  coatings resembling those o f K ram er. U nfor

tuna te ly  his coatings exhib ited an increase in  drag o f 2- 6% compared w ith  rig id  

ones; th is  was thought by Puryear to  be the result o f an insu ffic ien tly smooth 

jo in  between the body nose and the coating, since cavita tion and separation 

were w ont to  occur at the jo in . Carpenter &  Garrad (1985) also in fe r th a t none 

o f Puryear’s coatings was equivalent to  K ram er’s best one.

Nisewanger (1964) used bodies o f revolution w ith  b lunt noses, the firs t me

tre  o f w hich were covered w ith  com pliant coatings. These bodies were released 

from  the bottom  o f a lake, being propelled to  the surface by th e ir own buoy

ancy. Once again, the com pliant coatings showed increased drag compared w ith  

a rig id  surface, th is  tim e about 6- 11% more.

R itte r &  Messum (1964) employed square fla t-p la te  models fo r th e ir exper

im ents; they obtained at best only m in im al drag reduction. R itte r &  Porteous 

(1965) used a cy lind rica l body w ith  an ellipsoidal nose, which was immersed 

in  a w ater tunnel. The com pliant coating was situated im m ediate ly a ft o f the 

nose, and a slot at the jo in  enabled the removal of the boundary layer by 

suction, thereby ensuring lam inar flow  at the fron t of the coated region. Car

penter &  G arrad (1985) cla im  th a t the coating used was probably comparable
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to  K ram er’s softest coating, which would help to  explain why no sign ificant 

drag reduction was observed. The background turbulence level in  the tunne l 

may also have been a factor.

Grosskreutz (1971, 1975) used fla t-p la te  models w ith  silicone-rubber coat

ings s im ila r to  those o f Kram er, except th a t the stubs were inclined a t 45° in to  

the flow  d irection. A  reduction in  momentum thickness o f 3.6% was obtained 

fo r a speed o f 1.5 ms“ ^, bu t adverse results were obtained fo r h igher speeds.

In  recent years th e ir have been a number of experim ental studies o f the 

tra n s itio n  process. Gad-el-Hak et al. (1984) carried out a comprehensive inves

tig a tio n  in to  lam inar, trans itiona l and tu rbu len t flows over com pliant surfaces. 

The apparatus consisted o f a fla t plate having a working section w hich could 

be fille d  w ith  a soft PVC plastisol. Sophisticated flow -visualisation and mea

surement techniques were employed. Coatings o f various thicknesses and shear 

m oduli o f r ig id ity  were used, fo r various flow  speeds üoo • Large-am plitude 

‘static-divergence’ waves appeared on the com pliant surfaces in  tu rb u le n t flow  

regimes, b u t no t in  lam inar or transitiona l ones. Such waves are slow-moving, 

w ith  speeds no more than 5% of üoo , and have am plitudes o f the order o f the 

coating thickness. For the thicker coatings, the am plitudes were 20-40% o f the 

undisturbed boundary-layer thickness, which was increased by the presence o f 

the waves by up to  100%. The static-divergence waves only appeared if  ex

ceeded a certa in  onset value, which was larger fo r th inner coatings; they never 

appeared under a lam inar boundary layer, even fo r flow speeds o f tw ice the onset 

values fo r tu rbu len t regimes. Thus they cannot tr ip  lam inar flows in to  tu rbu len t 

states. As was increased, so the static-divergence waves exhib ited increasing 

thee-dim ensionality, developing significant am plitude m odulations along th e ir 

crests. Th is resulted in  the creation of extra waves w ith  shorter spans.

Gad-el Hak et ah conclude tha t static-divergence waves must be elim inated 

or at least m itiga ted  in  order to  reduce drag on the surface. They refer to  

w ork o f Ash at NASA, wherein the static-divergence waves were suppressed by 

covering the com pliant coating w ith  a th in  and tig h tly  stretched layer o f M yla r. 

However, an add itiona l and somewhat detrim ental side-effect was a lessening 

o f the dynam ic response of the surface. The authors note th a t in  the work o f
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Hanson &  Hunston (1983) on flows over a ro ta ting  disc static-divergence waves 

were observed in  lam inar flows, provided th a t the ro ta tiona l ve locity was at 

least 1.6 times the corresponding onset speed fo r tu rbu len t regimes.

M . Gaster and G. J. K . W illis  have recently conducted a very im portan t 

series o f experiments using a tow ing tank at B ritis h  M aritim e  Technology L td . 

(see W illis  1986). These experiments were conducted in  tandem  w ith  a nu

m erical investigation based on linear s ta b ility  theory. The com pliant surfaces 

consisted o f silicone rubber or silicone o il compounds over which were stretched 

a th in  latex rubber skin. The skin was an im portan t feature, fo r it  seems tha t 

it  reduced the m agnitude o f tangentia l surface m otion w h ils t p e rm itting  rela

tive ly  free norm al m otions. (As described below, many theoretical models om it 

tangentia l surface m otions). The coating was situated in  a rectangular well 

on a fla t plate. Flow disturbances were introduced in  a controlled m anner up

stream o f the plate and were o f harm onic two-dim ensional o r point-source type. 

D isturbance grow th and decay rates were measured downstream by ho t-fllm  

probes. P a rticu la rly  notew orthy o f these experiments is the extreme care tha t 

was taken at every stage, be it  measurement o f the surface properties, keeping 

ambient turbulence levels very low or achieving a smooth coating surface and 

leading-edge jo in t.

Tests using a rig id  surface gave results agreeing well w ith  theory, pa rticu la r 

fo r the varia tion o f am plication factor w ith  flow  speed at given forcing frequen

cies. For the com pliant surface tests, parameters were selected according to 

theoretical predictions o f supression o f Tollm ien-Schlichting (TS) instab ilities. 

Results were very encouraging, indicating substantia l reductions in  am plifica

tion  factors re lative to  the rig id -w a ll case; indeed, fo r some conditions TS wave 

growth was reduced by an order o f m agnitude, leading to  v irtu a l e lim ina tion 

o f th is  pa rticu la r form  o f in s tab ility . Strong instab ilities were restricted by the 

presence o f a com pliant surface to  flow-speed regimes so much higher th a t they 

tended to take the form  o f travelling-wave flu tte r.

1.6 Review of theoretical work on flows over com pliant walls

The early experim ental works na tura lly  inspired theorists to  tu rn  the ir at

ten tion  to  the analysis of com pliant w all boundary-layer s tab ility . The most
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im portan t o f the pioneering theoretica l contributions are those o f Benjam in 

(1960, 1963) and Landahl (1962). Benjam in had previously considered the sta- 

b ilily  o f flows over wavy boundaries (Benjam in 1959), expanding upon the work 'è

of M iles on wind-generated w ater waves (M iles 1957, 1959a,b). In  his sem inal 

work o f 1960, Benjam in set ou t some o f the fundam ental aspects o f com pliant 

w a ll s ta b ility  theory. He reasoned th a t the presence o f a com pliant boundary 

would certa in ly affect the th in  fric tio n  layer adjacent to  the w a ll, thereby in 

fluencing the generation there o f Tollm ien-Schlichting waves (term ed Class A  4

waves by Benjam in). O ther possible mode^classes were also described (which 

could also exist in  inviscid flows). Class B waves were a surface-resonance phe

nomenon, trave lling  at speeds close to  the free-wave speed Cq o f the boundary.

Class C waves were of K e lvin -H elm holtz type, and included in s tab ilitie s  arising |

from  the coalescence o f modes.

Benjam in considered w a ll models having negligible tangentia l m otion, and 

introduced a response coefficient Z , characterising the effect o f a flu id  pressure 

wave on the w a ll m otion. He expanded upon the linear s ta b ility  theory o f 

Tollm ien (1929), Schlichting (1933) and L in  (1945) and was able to  dem onstrate 

th a t a flexible, non-dissipative w a ll could stabilise TS waves having velocities 

lower than Cq . For Zj. >  0  ̂ the neu tra l curves are shifted to  lower wavenumbers 

a  and higher Reynolds numbers R. D issipative flexible walls were shown to  

destabilise TS waves through in te rna l damping (th is was also found by Betchov 

1960).

Benjam in’s analysis suggested th a t boundary-layer s tab ilisa tion  could be 

effected using two very d ifferent types o f flexible walls, which may be called 

‘resonant’ and ‘com pliant’ surfaces. ‘Resonant’ surfaces would have Cg close to  

the phase speed of the most ra p id ly  growing Class A  in s tab ility . Hence Class A  

and Class B waves would have s im ila r phase speeds and any in te raction  m ight 

have a favourable effect on the w a ll fric tio n  layer. I t  was believed th a t K ram er’s 

coating was of th is type. The present author regards such surfaces as being 

most unsuitable for tran s ition  delay, as linear modal interactions have a strong 

tendency to  produce very severe in s ta b ility  (see Chapter 4 below). ‘C om plian t’ 

surfaces would be sufficiently flexib le  to  have a large negative value o f Z^, yet

15



would also have negligible in terna l dam ping. Such a surface could stabilise 

Class A  instab ilities, b u t Cq would have to  be large enough to  avoid Class B 

ins tab ilities .

Landahl (1962) u tilised the concept o f adm ittance (an acoustical concept) 

as a characterisation o f surface response; he defined it  as

_  /  norm al w a ll ve locity \  . .
“  ”  V w a ll pressure )  ' ^

One advantage o f Landahl’s fo rm ula tion  is th a t it  is re la tive ly sim ple to  

determ ine whether or not a pa rticu la r change in  wall parameters w ill be sta

b ilis ing . He considered an approxim ate m odel o f the Kram er coating, and was 

able to  confirm  Benjam in’s conclusions on the effect o f in terna l dam ping on 

TS waves. In  add ition, he reasoned th a t since the theoretical c ritic a l Reynolds 

number was only m arginally increased by a flexib le  w all, i t  was im probable th a t 

K ram er’s drag reductions were due to  tra n s itio n  delay. This opinion was held 

to  be corroborated by the fact th a t K ram er obtained his best results using a 

h igh ly  viscous damping flu id . A  disadvantage o f Landahl’s approach is th a t 

when the Reynolds number was varied, the non-dim ensional w a ll parameters 

were held constant, which meant th a t he was in  fact considering a d ifferent 

membrane fo r each Reynolds number.

G yorgyfalvy (1967) used Landahl’s methods in  a comprehensive inves

tig a tio n  o f s ta b ility  and transition  o f boundary layers fo r internally-dam ped 

spring-backed membranes. The e® m ethod o f Sm ith &  Gamberoni (1956) was 

used to  calculate the transitiona l Reynolds num ber, and i t  was found th a t any 

favourable effects on transition  were due to  a reduction in  am plifica tion rates 

ra ther than an increase in  c ritica l Reynolds number. G yorgyfalvy estim ated 

th a t as much as 90% drag reduction was possible fo r water flows, a lbe it on ly 

fo r a lim ite d  range o f Reynolds numbers. However, it  appeared th a t K ram er’s 

coatings were unsuitable for trans ition  delay.

Landahl &: Kaplan (1965) studied a m odel wherein the wall boundary con

d itions allowed fo r a non-zero streamwise component of surface velocity. This 

was accomplished by introducing a second surface adm ittance fo r the stream - 

wise m otion. Com pliant surfaces composed o f non-dissipative elastic media
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and viscoelastic m edia (Voigt bodies) were studied in  add ition  to  spring-backed 

membranes. The im portance o f pressure-gradient effects was also investigated, I
as w ell as secondary in s ta b ility  fo r flexible walls. I t  was found th a t any reduc

tion  in  secondary in s ta b ility  was non -triv ia l b u t sm all, hence confirm ing the 

conclusion Benjam in (1964) had reached using a sim pler model. The results 

of G yorgyfalvy fo r spring-backed membranes given above were also confirm ed.

Landahl &  Kaplan reasoned th a t a lig h t and h igh ly  flexib le  w a ll would have op

tim a l effect in  delaying trans ition . However, Carpenter &  G arrad (1985) place 

doubt on th e ir results fo r spring-backed surfaces, though agreeing w ith  th e ir 

general conclusions.

Am ong other work on flexib le surfaces, Nonweiler (1961) studied flows over 

non-dissipative elastic walls. K o ro tk in  (1965) presented an a lte rna tive  form ula

tion  o f the problem  which catered fo r both norm al and tangentia l compliance, 

bu t as pointed out by Carpenter &  Garrad (1985) the no-slip cond ition was 

incorrect. K o ro tk in  looked at the effect o f a streamwise pressure gradient. Am - 

fllokh iev, Droblenkov &  Zavordkhina (1972) used K o ro tk in ’s m ethod to  calcu

late tran s ition a l Reynolds numbers and am plifica tion factors. They obtained 

reasonable agreement w ith  G yorgyfalvy (1967).

Some o f the most im portant theoretical work on tra n s itio n  delay fo r flexib le 

boundaries has been undertaken by Carpenter (1985) and Carpenter &  G arrad 

(1985, 1986), w ork which has already been referred to  several times in  th is  te x t.

Carpenter &: G arrad (1985) argue tha t K ram er’s coatings are best modelled 

by spring-backed plates w ith  fin ite  bending stiffness, and the results o f the ir 

analysis based on linear s ta b ility  theory would appear to  substantiate th is . They 

also examine the possibilities and effects o f coalescence between the various 

mode-classes. A  detailed evaluation o f the values to  be assigned to  the various #

parameters in  order to  comply w ith  K ram er’s experiments is given. The surface 

mode classes are studied in  Carpenter &  G arrad (1986); they are referred to  as 

‘Flow-Induced Surface Instab ilities ’ (F IS I), and are investigated using po tentia l 

flow theory w ith  an energy analysis of the waves (a fter Landahl 1962). T he ir 

results are compared w ith  those o f the causal theory evinced by B razier-Sm ith 

&  Scott (1984). The m ain overall conclusions th a t they reach are:
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(i) There are four m ain in s ta b ility  modes o f practica l im portance, namely 

Tollm ien-Schlichting In s ta b ility  (TS I, Class A ), F IS I (travelling-w ave flu tte r. 

Class B ), a coalescence o f these two mode-classes (probably Class C) and a 

slow-moving Ke lvin -H elm oltz-like in s ta b ility  which they ca ll ‘s ta tic  divergence’ 

(also probably Class C).

( ii)  Any damping w ill in  m ost cases stabilise F IS I and destabilise TS I.

( iii)  M odal in teraction, and even coalescence are perm itted  by viscous 

dam ping, b u t not by viscoelastic dam ping.

(iv ) Kram er-type coatings can in  theory postpone tran s ition , in  the absence 

o f m odal in teraction.

(v) There may be an optim um  value o f substrate viscosity, because o f ( ii) .

Yeo (1986,1988) investigated the linear s ta b ility  o f spatia l disturbances in

flows over m ulti-layered com pliant surfaces; his work incorporates oblique flow  

and anisotropic walls. He also studied inviscid flow over passive com pliant walls, 

and extended the classical theorems concerning the range o f allowed values o f 

the complex tem poral eigenvalue (the phase speed c)—  see Yeo &  Dow ling 

(1987). For isotropic viscoelastic surfaces, he found the effects o f compliance 

and damping to  be consistent w ith  those determined in  previous w ork; he also 

discovered a long-wave spatia l in s ta b ility  which exists even at very low Reynolds 

numbers, and may be related to  s im ila r phenomena reported by Landahl (1962). 

I t  has sm all spatia l grow th rates, and is considered by Yeo to  be irre levant as 

fa r as tran s ition  is concerned. Yeo found th a t wall modes could be s ign ifican tly 

stabilised by a two-layer surface, the outer layer being s tiffe r than the inner 

and preferably embedded ju s t beneath its  surface. Such an arrangement has 

a sm all destabilising influence on TS I, bu t th is is outweighed by the much 

stronger effect on the F IS I, or C IF I (compliance-induced flow ins tab ilities) as 

Yeo calls them. A  four-layer w a ll having a s tiff top layer and progressively 

softer ones underneath, w ith  moderate substrate damping was found to  reduce 

the m axim um  spatia l am plifica tion rate by up to  70%.

For anisotropic walls Yeo finds th a t the orientation angle o f the fibres and 

the elastic Young’s modulus in  th a t direction (related to  the concentration o f 

fibres) are im portan t parameters. Large fibre concentration tends to  stabilise
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the C IF I b u t destabilise the T S I, and these effects decrease w ith  increasing 

anisotropy. Yeo finds best results usually fo r angles o f about 45®. The other 

w a ll parameters are s till c ritic a lly  im portan t fo r beneficial results, and any such 

results in  general only obta in fo r a ra ther narrow  speed range.

Three-dim ensional instab ilities are found by Yeo to  be extrem ely im por

ta n t fo r flow  over isotropic surfaces. This is because oblique modes perceive 

a s tiffe r w a ll, which destabilises T S I (although suppressing C IF I). Hence both  

the m inim um  c ritica l Reynolds num ber and the m aximum am plifica tion  factor 

may belong to  such modes. However, Yeo makes the reasonable p o in t th a t fo r 

su ffic ien tly com pliant surfaces the m axim um  grow th rate may well be less than 

fo r the rig id  w all, given th a t such a surface would tend to  stabilise TS I.

Sen &  A rora (1988) approached the probem  from  a com pletely d ifferent |

angle, gaining some valuable new insight. Instead o f defining various w a ll- 

param eter values, they assigned the eigenfunction a particu la r value a t the w a ll 

(re la tive  to  its  norm alisation), and back-calculated the wall-param eter values.

In  th is  way they were able to  determ ine param eter values tha t would be like ly  to  

in h ib it the development o f instab ilities. The argument o f the eigenfunction at 

the w a ll, (j>yf, was varied through 360® or more at a fixed modulus and the change 

in  the eigenvalue plotted. The periodicities observed enabled the iden tifica tion  

o f no t on ly Tollm ien-Schlichting and Kelvin-H elm oltz mode-classes, b u t va ri

ous ‘resonant’ and ‘trans itiona l’ mode-classes too. Those classes fo r which the 

eigenvalue traces out a closed loop in  one 360® cycle are termed ‘regu lar’ by Sen 

and A rora. Three such classes were identified , namely TS, ‘K e lv in -H e lm ho ltz ’

(K H ) and ‘ low-speed stable’ . The la tte r occurs at low values o f c, and h igh 

values o f 1^^ I» is re la tive ly uninteresting due to  its inherent s ta b ility . The 

K H  mode-class exists for low values o f |^w|> bu t the lim it 0 does not

correspond to  the rig id  w all, thereby distinguishing the K H  and TS classes. Sen 

and A rora  note tha t th is lim it represents a neutrally-stable sta tionary periodic 

ripp le , b u t th e ir use o f the appellation ‘K e lvin-H elm holtz’ is ra ther unfortunate 

and like ly  to  cause confusion. The classical Kelvin-H elm holtz in s ta b ility  occurs 

when there is a velocity d iscontinu ity at the interface between two flu ids, the 

more dense being below the less dense; a fundam ental characteristic o f th is  in -

19



s ta b ility  is the existence o f complex conjugate eigenvalue pairs, b u t such pairs 

are nowhere in  evidence in  the study o f Sen and A rora.

Another im po rtan t mode-class identified by Sen &  A rora  is the ‘resonant’

(R) class. Modes in  th is  class are periodic over fou r cycles o f arg <j>yf, generally 

exh ib it large c, (>  0.7), and exist only fo r large values o f \(j>y,\̂  B ifu rca tion  

to  regular R  modes occurs v ia  various trans itiona l modes, periodic over two or 

three cycles o f arg <j>^. These modes may exh ib it characteristics o f the regular 

modes over parts o f th e ir cycles. The TS to  R b ifu rca tion  appears to  occur v ia  a 

singularity, and Sen &  A rora conjecture th a t the concepts o f ‘m odal coalescence’ 

and ‘s ta tic  divergence’ (see Carpenter &  G arrad 1985) may be re lated to  the 

behaviour o f modes near to  th is  singularity. The appropriateness o f the term  

‘resonant’ is manifested by back-calculation o f the free-wave speed on the w all, 

which as Sen &  A rora  demonstrate is m im icked closely by c^. The authors 

conclude, in  som ething o f a departure from  previous workers, th a t the TS and 

R modes should both be avoided rather than any a ttem pt made to  stabilise 

them . They suggest th a t sm all values o f free-wave speed and dam ping offer the 

best prospect (by way o f compromise) for flow  stab ilisa tion .

In  recent years many researchers have investigated flu id  dynam ical prob

lems by d irect num erical in tegra tion o f the Navier-Stokes equations, ra ther than 

considering the Orr-Som m erfeld equation fo r example. Such an approach has 

been made possible by the continued increase in  com puting power, although 

such large-scale approaches o f course incur add itiona l d ifficu lties. Interest has 

also increased in  ‘active’ walls: as the name suggests, these walls do not ju s t 

move as a resu lt o f pressure perturbations in  the flu id  above, b u t are given 

external forcing o f some sort in  the hope o f favourably influencing the overall 

flu id -w a ll m otion. A  sim ilar bu t perhaps more subtle approach is the use o f 

so-called ‘sm art’ walls. The idea is tha t the w a ll response to  flow  perturbations 

is coupled back in to  the flow  fie ld , and the w a ll is designed or modelled in  such |

a way th a t its  response is ta ilo red to  n u llify  these perturbations. Among the 4

works to  have been perform ed on flows over flexib le w alls using some of these |

methods are those o f K leiser &  Laurien (1985), Lekoudis &  Sengupta (1986), 1

M etcalfe et ai. (1986) and Dom aradzki &  M etcalfe (1987). B iringen (1984) con- lî!
1
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sidered periodic suction /b low ing, w ith  w all forcing applied at a single tim e-step. 

A  reduction by h a lf o f TS wave am plitudes in  a single tim e-step was atta ined. 

No significant transients were generated, bu t at la ter tim es the residual wave 

was found to  grow at the same ra te  as before the app lication o f forcing. Hence 

there was only qualified success.

Kleiser &  Laurien (1985) considered a system having suction and blow ing 

a t the w all w ith  mass forcing and direct m anipulation o f the Fourier modes. 

They found th a t out-of-phase forcing was successful in  dam ping ou t unstable 

two-dim ensional linear modes, b u t th a t if  two-dim ensional modes exceeded a 

c ritica l am plitude they became very unstable to  three-dim ensional disturbances.

Domaradzki &  M etcalfe (1987) used d irect num erical sim ulation to  study 

flow  over a membrane. The membrane parameters were kept constant in  d i

mensional un its, so th a t va ria tion  in  Reynolds number d id  not mean th a t one 

was considering different physical membranes. Reynolds num ber varia tion  was 

taken to  correspond to  a va ria tion  in  boundary layer thickness, and hence in  

streamwise location. These authors located membrane parameters th a t doubled 

the c ritic a l Reynolds number over its  rig id -w a ll value, b u t found th a t th is  was 

offset by a significant increase in  grow th rates in  the unstable region. They also 

studied the kinetic energy balance equation.

H a ll (1988) examined the effect o f surface response on TS grow th rates 

using a tu rbu len t w a ll pressure model, and considering three com pliant surfaces: 

soft PVC, s tiffe r PVC and a two-layer surface consisting o f a th ick  layer of 

soft PVC covered w ith  a th in  layer o f neoprene. The Navier-Stokes equations 

were solved using a pseudospectral technique, and th is was coupled to  a fln ite - 

element calculation fo r the com pliant w a ll. The response o f each o f these walls 

to  an imposed Tollm ien-Schlichting wave was calculated, at a displacement 

thickness Reynolds number o f 1000: the soft PVC developed large pertu rba tion  

am plitudes after a period o f tim e; so d id the two-layer surface, though the 

m agnitude of the perturbations was less. The s tiffe r PVC surface atta ined a 

steady state. U n fortunate ly no comparison was attem pted w ith  other work, 

and the number of calculations performed would appear to  be insufficient for 

any firm  conclusions to  be drawn.

21



I

In  summary, then, it  may be said tha t a considerable level o f understanding 

o f the linear s ta b ility  o f flows over flexible walls has been reached, bo th  through 

ever more m eticulous experim ental work, and through the jo in t app lica tion  o f 3

ana lytic and com putational methods by an increasing number o f theoreticians. I

The stage is therefore w ell set fo r some exploratory forays in to  the weakly- 

nonlinear regime, where many topics o f great interest aw ait those w illin g  to  

tackle the form idable d ifficu lties th a t are entailed. In  th is  w ork we make such 

a foray, fo llow ing the programme summarised below.

1.7 O utline o f studv topics

In  Chapter 2 , we study a configuration consisting o f an inviscid , constant- Z

velocity, free-surface flow over a simple flexib le wall. Linear m odal interactions 

are examined in  deta il, and resonant triads are located. The poss ib ility  o f ‘ex

plosive’ resonance, wherein several in teracting wave-modes can grow sim ultane

ously, is revealed. A lthough no experim ental evidence o f th is  phenomenon is yet 

available fo r flows over com pliant surfaces, such resonance is well-known to  play J

a prom inent rôle in  boundary-layer s ta b ility  (see for example C ra ik 1986a), and 

so may confidently be expected also to  influence the evolution o f disturbances 

in  com pliant-boundary flows when appropriate conditions are satisfied.

In  Chapter 3 we proceed to  study resonant-triad in teractions in  Blasius 

flow over rig id  walls. Numerous triads are located, and th e ir quadratic in te r

action coefficients calculated. This work agrees w ith , and considerably extends 

existing num erical results, thereby provid ing fu rthe r evidence fo r the po ten tia l 

im portance o f three-wave resonance in  shear flows.

Chapter 4 concerns the analogous bu t coniderably more com plex problem  

o f the nonlinear resonant in s ta b ility  of boundary-layer flow  over flex ib le  walls. ;i

F irs tly , linear interactions between Tollm ien-Schlichting modes and w a ll modes 

are investigated in some deta il, complementing the findings o f other authors. I t  

is then shown th a t resonant triads can be form ed from  various com binations of 

these modes, and may also comprise higher-order flu id  modes. The quadratic 

in teraction coefficients are calculated, and comparisons made w ith  data for 

the rig id -w a ll case. In  order to  h igh light the principa l phenomena, a tten tion  

is restricted throughout to  re la tive ly simple (but nevertheless rea lis tic ) w all
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m o d e l s .
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Chapter 2 Inviscid  free-surface flows over flexib le  boundaries
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2.1 In troduction

The problem  studied here concerns unifo rm  inviscid free-surface flows over 

flexib le  boundaries: a deliberate s im plifica tion tha t perm its ana lytic trea tm ent 

and precise physical insights. In  some senses, th is problem  may be viewed as a 

sim ple analogue of the more im po rtan t boundary-layer flows, in  w hich Tollm ien- 

Schlichting waves in teract w ith  a com pliant boundary. The study o f flows o f 

the la tte r k ind  follows in  the next chapter. The author hopes th a t these studies 

may provide a spur to  fu tu re  experim ental work on nonlinear resonances. This 

work has been published elsewhere (Thomas &  Craik 1988).

We consider the fo llow ing: inviscid irro ta tiona l flu id  o f constant density p 

and mean depth h flows w ith  constant velocity U  =  (Ug. , Uy, O) over a flexib le  

boundary, the flu id  having a free upper surface. The mean position o f the lower 

boundary is z =  0 , and th a t o f the free surface is z =  h, A  m odel dispersion 

re la tion  incorporates the properties o f the lower boundary, and allows fo r the 

possib ility  o f some form  o f substrate m ateria l. We consider a sm all irro ta tio n a l 

pertu rba tion  u ' =  V ^ ',  where the complex velocity potentia l is y? =  U .x  +  

which induces waves on the free surface and flexible boundary w ith  norm al 

displacements h and z respectively (see Figure 2 .1). For th is  problem  there are 

four boundary conditions, com prising a kinem atic and a pressure cond ition  at 

each interface. A t the upper, a ir-w ater interface, these are

+  ^V(p.V<p

+  (2.1) I
+  g{h +  ^) +  ~  =  0 , (2 .2) ^

where 7  is the coefficient o f surface tension, /c is the mean surface curvature and |

g is g ravita tiona l acceleration. W ith ou t loss, tz is henceforth represented by the |

approxim ation /c which is correct to  second order in  wave slope.

A t the lower boundary o f the flu id , where it  meets the flexib le  m ate ria l, 

the norm al stress N  may be represented by a linear model

N  =  m ft* +  Sç, (2.3)

such as was used by Benjam in (1963), The parameters may be assigned p a rticu 

la r physical identities, fo r example those characteristic o f a stretched membrane:
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m  would then be the effective membrane mass per u n it area, d a dam ping co

efficient due to  viscous or fric tio n a l effects, F  the tension per u n it span o f the 

membrane and S its  effective spring stiffness.

In  practice, the com pliant m ateria l may be o f complex construction. For in 

stance, the ‘K ram er surfaces’ discussed by Carpenter &  Garrad (1985) consisted 

o f a layer o f p liab le  rubber-like m ate ria l supported on a rig id  base by an array 

o f closely-spaced flexible stubs, w ith  viscous flu id  in  the gap between them .

Since detailed m athem atical analysis o f such composite m aterials is im practica 

ble, they are best represented by jud icious choice o f parameters in  models like  

th a t ju s t in troduced. Usually, however, the effective mass, stiffness and so on 

w ill no t be constants, b u t w ill depend on the  length-scale o f the disturbance.

Accordingly, i t  is best to  replace (2.3) by a corresponding representation o f the 

stress iV (k ) associated w ith  each in d iv idua l Fourier mode f(k ) , p ropo rtion a l 

to  e xp (ik .x  — iw t), w ith  real wavenumber k  and (perhaps complex) frequency 

w (k); nam ely

JV(k) == [— — idcj -f-12]^, (2.4)

where R  is the restoring force (typ ica lly  given, as in  most of the fo llow ing , by 

Fk^ +  S) and m , d (and perhaps 5 ) are perm itted  to  be prescribed functions 

of k — |k | ra ther than ju s t constants. O f course, w ith  t-dependent param eters, 

the to ta l stress N  is no longer sim ply given by (2.3), bu t by Fourier inversion 

o f iV (k ).

For example, a simple interface w ith  surface tension F  and deep inviscid  

substrate flu id  o f density p. yields m  =  p./A;, d =  0 , JR =  Fk^ +  p^g: clearly, 

the ‘effective mass’ per u n it area then varies inversely w ith  k. S im ila rly , a 

th in  stretched membrane under tension T  and w ith  mass mo per u n it area, 

th a t lies over a deep inviscid substrate flu id  o f density p, would have m (k)  =  

mo - f Ps / kj where mo is the density o f the membrane times its  thickness. The 

model considered here is taken to  have constant m , and so may be regarded as 

acting like a th in  membrane supported by springs, w ith ou t a substrate flu id ; i.e. 

w  =  Pm ̂  where p^ is the equivalent membrane density and 6 is its  thickness.

One could also incorporate the effect o f bending stiffness due to  a te rm  f

added to  (2.3) (where 6 is p roportiona l to  Young’s modulus) by choosing the
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[r), +  , (2.5)

- \ - g z -  ^ (m r/„ +  drjt -  FV ^rf  4- S r̂;) =  0 . (2 .6)
* = n

i f  (2.3) is used. Corresponding results hold fo r the various Fourier modes when 

the more general model (2.4) is employed; b u t on ly those nonlinear term s o f 

appropriate p e rio d ic ity  are then retained.

2.2 Linear Theorv
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‘effective stiffness’ to  be S(k) — p,g bk*. Likewise, various types o f dam ping 

may be accommodated by suitable choice o f d(k).

I t  should be noted th a t the representation (2.4) is designed to  m odel the 

entire dynamics o f the com pliant m ateria l, and so differs from  the fo rm u la tion  o f 

Carpenter &  G arrad (1985), who trea t the substrate pressure fluctua tions sep

arately. There are no procedural d ifficu lties associated w ith  using k-dependent 

parameters m , d, F ,  S in  (2.3); bu t pa rticu la r choices m ust be made in  order 

to  display quan tita tive  results. Here, detailed results are presented fo r cases 

w ith  constant m , F  and w ith  d =  Imk, I constant; the last k-dependence being C

in  line w ith  expectations th a t damping is weaker fo r long waves than fo r short.

O ur m ain purpose is to  establish the conditions fo r resonantly-interacting wave |

triads, to  derive the corresponding resonance equations and to  provide details 

o f specific illu s tra tive  cases. Accurate results fo r pa rticu la r com pliant m ateria ls |

would en ta il precise k-dependent estimates fo r the various parameters used in

(2.4): b u t use o f a m ore elaborate model, such as th a t o f Carpenter &  G arrad 

(1985) fo r a ‘K ram er coating’ , seems prem ature in  the absence o f guidelines fo r 

sim pler models.

Despite our concern w ith  a nonlinear problem , the stress representations 

(2.3) or (2.4) are linear ones in  the wave elavation z o r its  in d iv idua l Fourier 

components. La ter, in  section 6 , we consider how th is  representation may 

be altered by add itiona l nonlinear terms. Since the norm al stress N  is equal I
to  m inus the flu id  pressure a t the interface, the  appropriate lower boundary 

conditions fo r the flu id  are



A {u  — XJ.k)^ =  — Cgk^ Hh 1— w) — —(<9 — pg)}> (2.15)

We also have from  (2.10) and (2 .12) the follow ing am plitude re lations:

A smh.(kh) +  B  cosh (Ac h) =  —ik~  ̂(w — U .k )o , (2.16)

B  =  - i ik - '( w - U . k ) 6. (2.17)

From (2.14) and (2.15) the dispersion re la tion  is easily obtained as

D iD g  =  (2.18)

where

D , =  [(w -  U .k )*  -  (gfc +  tanh(jfefe)),
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F irs t, assume th a t t} and f  have the follow ing single-mode form s:

<p =  U .X  +  cosh(kz) 4- B  s in h (k z )}e x p {i(k .x  — w t)}  4- c.c.], (2.7)

f  =  ie [o e x p {i(k .x  — w t)} 4- c.c.], (2 .8)

rj =  ic [ 6 e x p {i(k .x  -  w t)} 4* c.c.], (2.9)

correct to  0 (c), where c is a sm all dimensionless ordering param eter character- %

is tic  o f wave slope, c.c. denotes com plex conjugation and the scaled am plitudes 

a, 6, A, B  are 0 (1 ). The linearised boundary conditions are then

f . =  (2 .10) ;

[ioj +  u.Vvj']^_,^ +  jfc — =  0, (2.11)

% + 11.V ,; =  , (2.12)

[<Pf 4- "u.Vy)’ ]̂ _Q — —{mrjtt 4- drjt — (S — pg)ri} =  0 . (2.13)

Equations (2.10) and (2 .11) give the follow ing re la tion , on e lim ina tion  o f 

the wave am plitude a:

Likewise, e lim ination o f b from  (2 .12) and (2.13) yields



Z?2 =  — clk^  4- i^ w )  — p  ̂(S' — pg)k 4- (w — U .k )* tanh(A;h)], (2.19)

=  (w — U .k )^  {gk 4- -^)sech^(A ;A ),

and c j =  F /m .

The quantity is exponentia lly sm all fo r large values o f /eh, and in  th is  

lim it (2.18) has two pairs o f roots fo r w: those given by = 0  are ju s t deep 

water cap illa ry-gravity waves, and w ill be referred to as and Wg ; the others 

correspond to waves on the flexib le  boundary, and w ill be called Wg and . As 

kh  is decreased, coupling occurs between the free surface and lower boundary 

modes, and is pa rticu la rly  im po rtan t whenever the roots are nearly equal.

Illu s tra tive  num erical solutions o f (2.18) were obtained and depicted graph

ica lly  fo r the case o f U  =  Ui. In itia lly , S was set equal to  pg^ and d to  zero. A  

ra the r large value o f m /p  =  5.0 metres was chosen both  to  im prove the c la rity  

o f the graphical displays and to  provide, by analogy, some provisional insight 

in to  the behaviour o f a irflow  over com pliant boundaries. O f course, large values 

o f m /p  are not possible fo r liq u id  flows over an actual membrane, the thickness 

o f which must be sm all compared w ith  the disturbance wavelength; b u t such 

values may be appropriate in  models o f more complex com pliant m aterials.

I t  was found th a t in s ta b ility  o f waves on the flexible boundary can occur 

even in  the absence o f coupling between these waves and those on the free 

surface (i.e. when kh —► 0). Th is in s ta b ility  occurs provided U  is not too 

sm all, and is confined to  a sm all region o f (w ,k) space near k =  0 (bu t such 

th a t kh  is s till large). This is ju s t a slow-moving Kelvin-H elm holtz in s ta b ility  

o f the lower boundary. W ith  kh  large, two mode crossings are seen in  F igure 

2 .2a: one w ith  w >  0 involving Wg and and another w ith  w <  0 , a t sm aller 

wavenumber, involving Wg and W4 . Since surface tension causes Wg to  become 

negative again fo r k sufficiently large, there are in  fact two more mode crossings 

no t shown in  Figure 2 .2a. F igure 2 .2b shows the grow th rates o f the long

wave Kelvin-H elm holtz in s tab ility . A t sm aller h, fu rthe r regions o f in s ta b ility  

appear near the erstwhile crossing points. O nly one o f these is shown

in  Figure 2.3, the other being a t much larger k. In  contrast the Wg and 

modes exchange identities near where they previously crossed, no in s ta b ility
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appearing (see Figures 2.3 and 2.4). This is in  agreement w ith  expectations, 

since a t the Wg-w^ crossing (bu t not a t the crossing) Wg has negative 4

energy (measured in  a stationary fram e o f reference) and has positive energy.

In  sim ple term s, a wave has positive energy i f  its  creation results in  an increase 

in  the to ta l energy o f the sysyem, and negative energy if  the energy o f the 

system is decreased. I t  is known th a t coalescence o f modes o f like energy sign 

always results in  an exchange o f identities, and coalescence o f modes o f opposite 

energy sign always results in  linear in s ta b ility—  see e.g. Cairns (1979). When k  

was decreased yet fu rthe r, the two regions o f in s ta b ility  coalesced in to  a single, 

larger region o f in s ta b ility  (see Figure 2.5).

The case o f S> pg was also studied: it  was discovered th a t the effect o f 

a greater effective spring stiffness was to  displace any regions o f in s ta b ility  to  

larger wavenumbers (see Figure 2 .6).

Inclusion o f damping (i.e. allow ing a non-zero value o f d) has the interesting 

effect o f d riv in g  any negative-energy waves unstable. This is demonstrated in  

Figures 2.7 and 2.8 fo r two separate cases, where d =  Imk . The modes shown 

are n e u tra lly  stable fo r / =  0 (Figures 2.7a, 2 .8a); dam ping produces in s ta b ility  

o f the Ws mode, w hich has negative energy (Figures 2.7b,c, 2 .8c; see B a ll 1964,

Landahl 1962). However, th is  in s ta b ility  is very weak since the Wg mode is 

centred on the upper interface and so experiences litt le  damping. Also, it  is 

seen in  Figure 2.7a and 2.7b th a t modes Wi and Ug exchange identities near 

t  =  3 0 0 m -\

2.3 Three-W ave Resonance

The poss ib ility  o f finding three-wave resonance in  cases o f no linear insta

b ility  and no damping is now investigated. The requisite c rite ria  are

k i  +  k a  +  k a  =  0 ,  ( 2 . 2 0 )

Re{c*;jL +  Wg 4- Wg} = 0 . (2.21)

I t  is p a rticu la rly  noteworthy th a t resonant triads can give rise to  explosive 

in s ta b ility , wherein a ll three waves grow sim ultaneously, provided th a t the wave

of greatest absolute frequency has energy o f opposite sign to  the other two. B u t
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even when th is  c rite rion  is not m et, resonant interactions rem ain o f interest (see 

e.g. C ra ik &  Adam  1979).

A  graphical technique may be employed to  find  the approxim ate locations 4

o f resonant triads (F igure 2.9; see e.g. B a ll 1964, C ra ik &  Adam  1979). The 

procedure is as follows: firs tly  the dispersion curves and axes are copied onto 

a transparency; then the o rig in  on the transparency is moved along one o f the 

curves on the o rig ina l graph, the orientation o f the axes being m aintained. I f  at 

any po in t a curve on the transparency intersects a curve on the o rig ina l graph, 

a resonant tria d  has been located, approxim ately. The exact position can then I

be com puted num erically.

The procedure outlined above was carried ou t fo r the dispersion re la tion ^

(2.18), tak ing  various physically realistic values o f the parameters m , Cgy U, S 

and res tric tin g  wavenumbers to  the two-dim ensional fo rm  k  =  (k ,0 ). Examples 

o f explosive three-wave resonance were found, b u t on ly when linear in s ta b ility  

was also present a t other wavenumbers. W hen U  is so sm all th a t there is no 

linear in s ta b ility , the model yields numerous examples o f non-explosive resonant 

triads b u t no explosive ones.

Accordingly, to  get two-dimensional explosive in s ta b ility  in  the present 

context one m ust e ither accept th a t linear in s ta b ility  is also present or le t one 

or more o f the parameters previously held constant vary w ith  wavenumber in  

some suitable manner. The la tte r possib ility is illu s tra te d  in  Figure 2.10 , where 

Co decreases like as A: increases. ( It  should be noted th a t in  the form er

case linear in s ta b ility  is confined to  a narrow range o f wavenumbers, w hile the 

nonlinear in s ta b ility  due to  resonance covers a much larger range). We now 

therefore consider a model w ith  a spring stiffness S th a t is A:-dependent, i.e. 

may be expanded in  powers o f k:

S =  Sq S ik  -\- S^k"  ̂ 4~...

(where % m erely supplements the tension term  F ). Terms o f higher order in  

k are considered to  be negligible. I f  we also pu t S2 == F  =  0, we have a to ta l 

restoring force R ~  So-\-Sik. A lthough the previous model yielded no explosive 

ins tab ilities , th is  new restoring force does y ie ld  examples of such phenomena.
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Num erical results fo r th is  case are given in  Figure 2.11.

The present investigation o f the possible existence o f explosive three-wave 

resonance is in  accord w ith  the findings o f C raik &  Adam  (1979) fo r three-layer 

fiu id  fiows. Indeed, th e ir lower o r upper interface may be represented by a 

suitable stress model (2.3) and th e ir results viewed as fu rth e r illu s tra tio n s  o f 

the present analysis. B oth in  th e ir and the present work, resonant triads are 

ubiquitous; b u t explosively-unstable configurations are not always present.

The analysis th a t follows applies equally to  resonance o f the explosive and 

non-explosive sorts. We calculate nonlinear evolution equations fo r resonant 

triads, involving wave modes on bo th  boundaries. This is accomplished in  

two ways. F irs tly  a d irect a ttack is made on the governing equations and the 

am plitude-evolution equations derived fo r purely tem poral varia tions. Then, a 

Lagrangian m ethod s im ila r to  those o f W hitham  (1974) and Simmons (1969) is 

used to  derive the evolution equations for both tem poral and spatia l varia tions.

2.4 D erivation bv ‘d irect’ m ethod

To proceed, we perform  T aylo r expansions of equations (2 .1), (2.2), (2 .3),

(2.5) and (2.6) to  second order about the mean levels z — h and z =  0 o f each 

boundary. This yields

f , = f [ ( P . . L = k  -  , (2.22)

[(£>, + u .v  H .=«. -  +

+  fu .V ÿ j, +  ^Vtp .V tp
(2.23)

V. +  u.Vt? -  =  T? , (2.24)

[(Pt +  u .V  — — ( V t t  +  —% — -  P  ‘ (^ “  PS)*?

VfPzt +  4- iv ( p . v ^
*  =  0

(2.25)
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where (p is the o f previous sections, 0 (£®) terms have been neglected, and |

linear terms have been placed on the left-hand sides o f the above equations.

Now, on neglecting O(e^) second-harmonic and mean-fiow term s w hich do not



contribu te  to  our analysis, y), f  and rj may be taken in  the form  

(p =  +  c iy )  cosh(kyz) +  (By +  (By) sinh(fcz)}

X  e x p { i ( k y . x  — W y ^ )}  4 -  c.c. 

f  e x p { i ( k y . X  -  W y t ) }  4- C.C.

e ( p i  + e ^ < p 2 y

y = 1
3

(2.26)

* fi +  £ Ü) (2.27)

» î = + 4 y )  e x p { i ( k y . x  — W y i ) }  4- c.c. =  6r?i 4 - e^t?3. ( 2 . 2 8 )

^  cosh.(kjh)(gkj 4- —  )

X
ky(wy -  U .ky)=Q (U  -  iAU)^ cosh" (fey h)5<^‘ 
iA (')a COsh"*(kyA)B(U -  ty(wy -  U .ky)^B (
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(2.31)

■f-
$

Here, it  is supposed th a t the chosen wavenumbers do not adm it quadratic 

second-harmonic resonance (i.e. 2 fci ^  fcs, 2(Ji ^  Wg). The la tte r case is 

s tra ightfo rw ard bu t would require separate treatm ent. Setting the righ t-hand  

sides o f equations (2.22)-(2.25) equal to  zero would recover the results o f sec

tio n  2 . Now in  the weakly nonlinear regim e, the am plitudes are assumed to  

be slow ly varying in  tim e in  such a way th a t the derivative o f an 0 (1) quan

t ity  is 0 (e ), etc. To obta in  the evo lu tion equations for the problem , equations 

(2.14)-(2.17) and th e ir derivatives are used to  reduce equations (2.22)-(2.25)

(a t 0 (e®)) to  ju s t two equations, v iz.

- ( (w  -  U .k ))-U < '> “ c o s ii(kM à i  +
(2.29)

=  (wj- -  U .ky ) +  Q<-''>sech(fcyfc)],

£><'■> 0y-(W y -U .ky)-= S ech (fcy /l)6y =  -i(W y -  U .k y  ) ‘ ‘
(2.30)

X [A y (W y  -  U . k y ) - ' U < ' )  C O S h (& y A )C y ,, +  S<>>).

Here j  =  1 ,2 ,3 , (),, denotes ^  where r  =  £“ * t, and fO ')^ Q d ), R^’ ) , 5 O) 

are as given in  Appendix A , equations (A 1 )-(A 4 ). Note from  (2.29) and (2.30) 

th a t i f  one sets the right-hand sides equal to  zero the O(e^) am plitudes satisfy 4

the linear dispersion re la tion , as required. Now (2.29) and (2.30) m ust be 

com patib le, i.e. must y ie ld  a unique so lu tion  fo r each and app lica tion  o f 

th is  com pa tib ility  condition gives the fo llow ing evolution equations:



where are quadratic functions o f the o,, Ai etc. and j  ~  1 , 2 , 3 .

These can be re-expressed, using (2.14)-(2.17), as

on invoking the linear relationships (2.14)-(2.17) and evaluating subscripts i +  l  

and J + 1  w ith  m odulo 3. Complex conjugation is denoted by *, and u, , A are as 

given in  Appendix A , equations (A5) and (A 6). Equation (2.32) can be shown 

to reduce to  the results o f Case &  Chiu (1977) on tak ing  the lim its  C/ —> 0 , 

h —» oo, 0 (w ith  7̂  0 ). I t  also agrees w ith  the w ork o f C ra ik &

Adam  (1979) on three-layer flow  w ith  two interfaces if  th e ir p i -> 0, d oo.

2.5 D erivation bv method o f averaged Lagrangian

This problem  is now tackled from  a Lagrangian fo rm ula tion , and am plitude 

m odulations are allowed to  depend on z  as well as t. In  w hat follows, the 

coefficient o f dam ping, d, has been set to  zero. This is because the incorporation 

o f terms involving d prevents construction o f an appropriate Lagrangian (but 

see Jimenez &  W hitham  1976); fo r systems w ith  d ^  0 are non-conservative. In  

the follow ing, as before, we shall assume the sym m etric resonance conditions, 

(2.20) and (2 .21). A  suitable Lagrangian for the problem  is

£7 /a h + f J
(<pt +  u.Vy? +  -V(p.V<p +  gz)dz

A II 55,1/

+  —[ \ / l  4* V f.V ^  — l]

1 m S \  (2.33)
-  -c J V t /.V r ? )------- T j ^ j j d x dy d t

z p P /

= J j  j  L d x d y d t ,

A l l  x , y

This is a m odification o f the Lagrangians given by Luke (1967) and Simmons
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(1969); i t  can be transform ed to  the fo llow ing (see M iles 1986):

£■ / / (i
A U x , y  ^[i

< p { p *  -  V f . V ^ )  -  (pÇ t -  v ^ u .V f

-  I - ( p { ( p z  -  Vyy.Vy) -  (prjt -  p u .V r j
*= ij

+  ^ [ \ / l  -j- Vfy.Vfy — l]

~ 2  ~  -  g )  »)*

- \ f ^  j  j  p ^ ' ‘ p d x d y d z d t
" A l l  PC,y

r t i  P O O  I  f c + f  i

+  /  /  V?(Ĉ * +
y to J y =  — oo I » = fj ^

p f i  P O O  r  h + f  1

+  /  /  ^ ( (4  +
</to Jx=z — 00 I M~n "

J dxdydt

dydt

dxdt

+ / j  p d z d x d y
L A l l  x , y

*1

( 2 . 3 4 )

The last three integrals in  the above are evaluated at tem poral o r spatia l end

points, and so make no con tribu tion  to  varia tion  o f the Lagrangian.

A t O(e^) the Lagrangian density L  sim plifies to

L  = - (p iU .V Ç i
z ~ h

V x  ^ X z  -  ^ x  V x i  -  V>x u .V f /i
z = 0

+  5 P ‘ ' l V f , . V < r i  ( 2 . 3 5 )

m

IP

where (pi satisfies Laplace’s equation =  0 , and v?i, f i ,  rji are as defined

in  (2.26)-(2.28). This is now averaged over horizontal distances large com

pared w ith  the fundam ental wavelengths 27r/A;y and periods 27r/|wy |, b u t short
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compared w ith  the m odulation length- and time-scales. This gives 

3 1
L  — coshk jh  — B j sm hkj h){A*. sinhAsyh — B*- cosh/cy/i)

+  V>izP2) ~

■iit<P2 -  (a t(P i - C i r P i  - P i z ù ( ù t  + U . V C i )  - ^ P a U . V f i

1 1
2 ^ l { ^ l z  - ^ ^ l P l z z ) +  ~(V>l<P2z -^<PXz<P2 )

~ r j x i P 2  - i l 2 t < P x  - r i i r < P x  ~  V?i*»7i (»? i t  + u . V » ? i )

■ÿ?2 U.V(ji -P iU -V f /îL ^ j +  ^ (V g i.V f, +  V fi.V f i)

^ ( n t t V 2 t  +  V i t V i r  -c § V i/i .V r /2 -c ’ Voi.Vrji) -  - g )  % %

(2.38)

where 'V^(p2 = 0  and ^ 2 , <2 , ^2  are as in  (2.26)-(2.28). The operator V  rep

resents {d ld (ex)yd ld {ey)yd ld [ez))  and yields the slow spatia l varia tions o f 

and »7i . Averaging the above Lagrangian as before results in  a long expression 

invo lv ing  the am plitudes, the ir tem poral and spatia l derivatives, and com plex 

conjugates (see Appendix A, equation (A7)).Since we have the am plitude rela

tionships given by (2.14)-(2.17), the averaged Lagrangian may be re-expressed

36

— j i ( w y  — U .k y )o y (A y  c o s h ty h  — By s in h ty h )  — ^A jyA yB t

1 1 ^ 7  (2.36)
-  -i(W y -  U .k y ) 6yAy +  C.C.] +  -  ^ ^ ( g  +

y = i

y= i

The Euler-Lagrange equations, a t O(e^) are sim ply

where q represents any o f the am plitudes Ay, B y, ay, 6y. These resu lt in  equa

tions exactly equivalent to  (2.14)-(2.17), and give the dispersion re la tio n  (2.18) 

s im ila rly .

A t next order, the Lagrangian is supplemented by the add itiona l 0(c®) 

term s



in  term s o f ju s t ay, A y, B y, ây and Sy (plus derivatives and complex conju

gates). W hen th is  is done a ll term s invo lv ing  ây and Sy are e lim inated, and the 

coefficients o f Ay and By vanish on app lica tion  o f the dispersion re la tion  (2.18). 

The resu ltan t averaged Lagrangian has the form

^ '  =  i »  E  k » ,  ( | :  +  U - v )  a ;  +  ( S y U  +  C y k y ) . V a t
L \  / (2.39)

+  — A a iO g U g  + C . C . ,  
8

where the A j ,  Sy, Cy are as defined in  A ppend ix A , equations (A 8 )-(A 10 ) and 

A is as defined in  Appendix A , equation (A 6), bu t w ith  I now taken to  be zero; 

and a ll summations are m odulo 3. The evolution equations fo r ay are then 

found from  the appropriate Euler-Lagrange equations, i.e.

d U  d d V  d d U
+

da^ dtda^^t àx i d a j ^ /
(2.40)

w hich y ie ld :

^ y (—  + U .V )(S yU  +  Cyky).V + 2 (2.41)

Now if  we define ) as

D '-’ ' =  AT ‘ (wy -  u .k y ) - " D i’ ' ( £ > < ' ■ > -  A<’ >“ ) cosh^ (Ayfe) (2.42)

( J )
then Aj- is ju s t - . Hence we obta in , a fte r a litt le  rew riting ,

where j  =  1, 2, 3 and a ll subscripts are evaluated modulo 3. In  fact, the le ft 

hand side o f (2.43) is ju s t i -^ J ^  {—  -{- Cg.V)ay where Cg denotes the group 

ve locity  o f each wave.

This result can be reproduced by the follow ing heuristic analysis. In  the 

linear regime, we have the dispersion re la tion

i
«

B (w ,k ) =  0. (2.44)
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As we move in to  the weakly nonlinear regime, th is is m odified to

D (w  +  i | : , k  -  iV )oy «  | :  -  ^ -V J a y  =  n . l. t „  (2.45)

where the righ t-hand side denotes nonlinear terms and i ^ ,  — iV  m ay be iden

tifie d  w ith  sm all changes Su, 5k in  frequency and wavenumber. From  (2.44) 

these are related by the dispersion condition

d D  _  dD
Su

which gives

d k

Thus we obta in  the generic evolution equation

and so (2.43) may fin a lly  be w ritte n  as

where

(2.49)

c('> =  ( l - | ) U  +  ^A y. (2.50)

As a check, c , was calculated e xp lic itly  using (2.47), and the fo rm  (2.50) was 

thereby confirm ed. Result (2.50) agrees precisely w ith  (2.32) when / =  0 in  the 

la tte r. Note th a t in  bo th  th is  section and the previous one S has been assumed 

to  be constant; i f  i t  is allowed to  vary w ith  k the only change is an extra  term  

in  the group ve locity (2.50), given below:

( ^ r )  -  U .k y ) - 'D ( " ' c o s h '(A y k )^ k y . (2.51)

2.6 Nonlinear M odel o f F lexib le Boundary

In  a ll the foregoing, we assumed a linear model fo r the flexib le  boundary, 

given by equation (2.3) or (2.4), and hence the only non linearity occuring due 

to the membrane results from  Taylor expansion about the mean position z ~ 0 ,  

A  possible nonlinear m odel fo r a conservative norm al reaction iV  is as follows:

N  =  m{r}tt -  c lV^Tf[ l -  +  i f i 77 +  i f a +  K^r)^ - j- ... (2.52)
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A ll term s o f higher than quadratic order in  t) may be om itted  w ith o u t loss, 

since they only give rise to  term s o f in  Z. We now replace (2.3) by (2.52) 

in  our Lagrangian fo rm u la tion .

There are no extra  term s resulting at 0 (e *), and so the linea r dispersion 

re la tion  is unaffected (except o f course th a t S is everywhere replaced by iC i). 

A t 0(€®), however, the Lagrangian has the add itional te rm  ~p~ ^ w h i c h  

on averaging becomes (61^2^3 + c .c .), or equivalently

^ n { (^ 3  — U .k y )“ ^Z?[^^ cosh(A:y/t)}^( % Ug + c .c .). (2.53)

I t  is then stra ightfo rw ard to  show th a t th is is precisely the te rm  to  be added 

to  the in teraction coefficient A in  (2.49).

2.7 Conclusions

We have derived the linear dispersion re la tion fo r flow  w ith  a free surface 

over a flexib le boundary, and studied the linear s ta b ility  o f such a flow , w ith  

and w ith o u t damping. We have shown th a t three-wave resonance can be of 

im portance in  free-surface flows over certa in types o f flexib le  boundary, and 

have derived the wave-am plitude evolution equations fo r bo th  tem pora l and 

spatia l varia tion . These equations have considerable m athem atical in terest in  

th e ir own rig h t and have been studied by several authors (e.g. K aup, Reiman 

&  Bers 1979, C raik 1986a, 1986b, 1987). The nature o f solutions is therefore 

w ell known. Indeed, i t  is known th a t under certain circumstances ‘bursting ’ 

may occur, i.e. the wave am plitudes may become in fin ite  in  a fin ite  tim e.

The model adopted here is perhaps unrea listica lly sim ple in  th a t the flu id  

flow is un ifo rm  and inviscid. However, th is s im p lic ity  has pe rm itted  ana lytica l 

ra ther than num erical so lu tion o f the problem  and so establishes a firm  base fo r 

fu tu re  studies o f other, more compex flows. In  pa rticu la r, we now proceed to 

study viscous shear flow  over flexib le  surfaces (in  effect, replacing the  waves on 

the free surface w ith  Tollm ien-Schlichting waves). Carpenter &  G ar rad (1985, 

1986) and others have considered the linear theory fo r such configurations, 

bu t the corresponding nonlinear problems have not previously been confronted. 

F irs tly , though, we study the problem  of Blasius flow over a rig id  w a ll.
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Chapter 3 Boundarv-laver flow  over rig id  walls
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3.1 Introduction

Boundary-layer flow  over a fla t plate has long been the subject o f research in  

hydrodynam ic s ta b ility  theory, and the theory is well-developed both  fo r linear 

and weakly- nonlinear regimes. The linear eigenvalue spectrum  has been exten

sively studied, by Jordinson (1970, 1971), Mack (1976) and Grosch &  Salwen 

(1978) among others. The nonlinear theories studied by C ra ik (1971), Usher 

&  C ra ik (1974, 1975), Herbert (1983a,b, 1984, 1988) and other w ork provide 

some understanding o f the processes causing the onset o f three-dim ensionality 

in  lam inar-turbu lent tra n s itio n  through a consideration o f subharmonic and res

onant modes. A sym ptotic, high-Reynolds number trip le-deck theory has been 

used by Sm ith (1979) to  examine the grow th o f disturbances in  a boundary 

layer and also by Sm ith &  Stewart (1987) fo r resonant interactions. The exper

im ental w ork o f K lebanoff, T idstrom  &  Sargent (1962) was the insp ira tion  fo r 

much o f the earlier theoretical work, and more recently the studies o f Kachanov 

&  Levchenko (1984) have helped to  give renewed im petus to  the subject. Hen

driks (appendix to  Usher &  C ra ik 1975) computed some resonant triads and 

in teraction coefficients using the form ula tion o f C raik (1971); he showed th a t 

oblique modes experience a rem arkably strong resonant in te raction  at quadratic 

order, as predicted by C raik (1971). Volodin &  Zel’man (1979) considered an 

analogous fo rm ula tion  fo r spatia lly  growing disturbances, and had analogous 

results to  those o f Hendriks. We shall present an extension o f the results o f 

Hendriks (see §3.5).

Sm ith &  Stewart (1987) applied trip le-deck theory to  resonant-triad in ter

actions in  high Reynolds number Blasius flow. They considered high-frequency 

disturbances asym ptotica lly close to  the lower branch o f the neu tra l curve (tha t 

is the locus o f points in  the (a , J2)-plane fo r which disturbances are neu tra lly  

stable); both tem poral and spatia l wave-modes were allowed fo r. The d is tu r

bance frequency 0  was assumed to  be less than R * .  In  the h igh Reynolds 

number regime the oblique constituents o f C raik-type triads as defined in (3 .9) 

below have oblique-mode propagation angles 0 o f exactly 60°. This value is in 

fa ir agreement w ith  the experim ental data o f Kachanov &  Levchenko (1984)—
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those authors cite values fo r 9 o f 56-63°. The interaction coefficients derived by 

Sm ith &  Stewart have quadratic term s which are of like sign and are also purely 

im aginary: such fo rn ^  preclude any fin ite -tim e  bursting o f the solutions—  see 

Chapter 1, §1.4 above.

In  th is chapter we consider Blasius flow over a rig id  w all. The problem  fo r

m ulation is given in  fu ll, fo r completeness, although it  has been given elsewhere 

(C raik 1971). Tem poral eigenvalues o f the Orr-Sommerfeld equation, resonant 

triads and in teraction coefficients are found by numerical in tegra tion . Paralle l 

flow is assumed throughout, a lthough the Blasius solution is in  fact on ly ‘nearly 

parallel*. Previous work (fo r example Sm ith 1979) has shown th a t pa ra lle l and 

non-parallel theories give broad ly s im ila r results, the m ajor discrepancy being 

an extension to  the t ip  o f the neu tra l curve, which gives im proved agreement 

w ith  experiment. Tem poral modes are investigated in  preference to  spa tia l ones 

chiefly because they present a s lig h tly  more tractable num erical task. For the 

tem poral problem , a real wavenumber a  is specified together w ith  a Reynolds |

number R, and the complex eigenvalue to  be found is the phase speed c. The 

spatia l problem  requires the specification o f R  and a real frequency w, and 

the eigenvalue is the com plex wavenumber a. The two mode types are equiva

lent only on the curve o f neu tra l s ta b ility , bu t Caster (1962, 1965) has shown 

th a t they can also be related fo r sm all spatia l and tem poral am plifica tion  (or 

damping) rates, by applying the Cauchy-Riemann equations.

3.2 Linear theorv

Here we shall consider two-dim ensional disturbances only. A ll physical 

quantities are non-dimensionalised using appropriate com binations o f U^o, 

and the boundary-layer thickness S =  5y/i/xfUoo . Non-dim ensionalisation in 

troduces the Reynolds num ber R  as a flow parameter—  here i t  is defined as ^

R =  UooSju. The basic flow  u =  U {z ) lU ^  is assumed to  be quasi-parallel, 

satisfying the Blasius equation

r + / / " = o ,  (3.1)

where / ' ( x )  == %(^) ®-nd % =  Primes denote d iffe ren tia tion  o f /  w ith
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On neglecting O(c^) quantities, th is  yields the Orr-Som merfeld equation, the 

governing equation o f the flu id  flow  in  the linear regime:

L[(f>\ = ia  ((«  -  c )(^ "  -  a V )  -  û"<i>)

-  i  (4>"" -  2a’  4 "  +  a V )  =  0. (3.4)

respect to  %. Boundary conditions are

/(O ) =  f  (0) =0» f  (x ) 1 as X -+ oo, (3.2a, b ,c )

corresponding to  the physical requirements th a t the flow should be s ta tiona ry  

at the w a ll and reach some constant value a t a certa in distance from  the w a ll. A  

stream  function  $  is defined b y a  =  w =  — We consider a rb itra ry  sm all 

disturbances o f the form  =  €<j>(z) exp(iaa; — ia c t), c «C 1, and substitu te  fo r 

the to ta l stream function $  =  /  ü d z - \ -^ p  in to  the v o rtic ity  equation

j

Prim es here and elsewhere denote d iffe ren tia tion  w ith  respect to  the dependent 

variable, in  th is  case z (vertica l distance from  the w a ll).The boundary conditions 1

fo r (3.4) are, in  terms o f the pe rtu rba tion  velocities:

tt(0) =  w(0) — 0; >>0 as z o o .  (3 .5 a ,b ,c ,d )

These correspond to  requirements o f no s lip  at the w all, and zero pe rtu rb a tion  

velocities fa r outside the boundary layer. R ew riting these in  term s o f we |

have:

(^(0) =  <̂’ (0) =  0. (3.6a, b)

The free-stream  boundary conditions in  term s o f <j> are

4>[z )y< l> '{z )0 as z —> 00 . (3.7a, b)

Equation (3.4) together w ith  the boundary conditions (3.6) and (3.7) constitu te  

an eigenvalue problem  for c =  c (a ,R ).

3.3 Nonlinear theorv: tria d  resonance
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For the nonlinear analysis we consider a tria d  o f waves defined by

=  J =  1 .2 ,3 , (3.8)
t = l

where

The velocities U i,2 , Vi.s are defined in  the directions yi^a, w hich are re

spectively perpendicular and para lle l to  the crests o f the relevant oblique wave:

a  , /?
"  2^ ^  7 ^ ’

(3 OL 
V i,. = T - i + — y.

(3.11)

(3.12)

From  the defin itions (3.8) and (3.9) i t  follows th a t

« 1.2 =
t - 1 

«̂ 1,2 =
*= 1

The linearised v o rtic ity  equation fo r the 3-wave gives the Orr-Som merfeld equa

tion
Ls[(f>z] =  ia [(«  -  c )(^^ -  a  V s )  -  « 'V s]

(3.13)
- R - X « ^ r - 2 a V ; + a V 3 ) = 0 ,
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E l  =  e x p { i(^ x  +  I 3 y -  ^ c t) } ,

jE?2 =  e x p { i( |x  -  /?y -  ~ c t ) } ,  (3.9)

E q =  exp{i(aa: — a c t)}.

These shall henceforth be term ed the ‘ 1-wave’ , ‘2-wave’ and ‘3-wave’. Exact

resonance requires th a t =  c,. F igure 3.1 illu s tra te s  the resonant-triad config

u ra tion . A n ordering parameter e has been introduced, so th a t a ll pe rtu rba tion  

quantities are 0 (c) w ith  o(e) corrections. The am plitudes are assumed to  be 

slow ly varying on an stretched tim e scale r  — et. I t  is convenient to  w rite  (cf. 

C ra ik 1968)
.  _  a
“ l.2 — ^ « 1 ,2  f  —«1,3,

«1,2 =  +  ^ « 1 .2 , (3.10)



where ^3 =  We now define an oblique Reynolds num ber R  by

Æ =  (3.14)

giving fo r the 1-wave and 2-wave equations equivalent to  (3.13), nam ely

^ 1,2 [4̂ 1,2] =  h [(«  -  c m , ,  -  f< A i,2 ) -  Û V 1.2I

-  ^ 1,2 +  7*01,2) =  0,  ̂ ^

where 01,3 =  (3.10) and (3.14) constitu te a Squire transform  (Squire

1933). The linearised momentum equations in  the directions y ie ld

«Ï.2 -  [7 " +  i7 ^ («  -  c)l«i,2 =  ±iPRW .  (3.16)

The ve locity components arise because o f the d is to rting  influence o f the 

basic shear flow  on oblique wavemodes. The boundary conditions fo r (3.13) 

and (3.15) are ju s t (3.6) and (3.7) w ith  appropriate quantities subscripted by

1, 2 o r 3. The two boundary conditions fo r equation (3.16) are

«1,2 (0) = 0 , (3.17)

« i,2 ( « ) —̂ 0 as z 0 0 . (3.18)

The firs t o f these results from  the requirement th a t tangentia l ve locity be zero 

at the w a ll, and the second follows on remembering th a t a ll disturbances must 

tend to  zero outside the boundary layer. As was found by C ra ik (1971), at 

O(e^) the nonlinear v o rtic ity  equations are

(3.19)
■̂ 3 (0 ^3  [03] — — ^ ( 0 3  “  c? +  is  =  ,

-^1,2 (0 ^ 1,2 [01 ,2] =  ^ ^ ( 01,2 — 7 ^01 ,2) +  i l ,2 =

where 0 j =  , j  =  1, 2, 3, and i \ , 1^, F3 are as follows:

Ft =  jia A g  a ;  e x p (a c it) (^  -  2)0 3 (0 ; " ' -  7 V Î ')

+  -  3) 0 ;  (0 !"  -  f  0: )  -  20! ' ( 0 ;' -  <x'03) (3 .20a)

-  0 ; '( 0 : ' -  a v ; )  -  ^ ( 0 3  0 ;" +  0 ; o r + 7 '0 3 « :)
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— -ia A sA J  e x p (a c ii)(—  — 2 )0 ;(0J"' — 7 ^ 0 i')

o?

(3.20c)

+  ( ; ^  ”  3 )0 ; (01" “  7 *0 i)  -  20Î (0 ;  — a^0s) (3.20b)

-  0 :(0 ;"  -  a v ; )  -  ^ ( 0 3 0 ; " + 0 ;< > r+ 7"03<>i)

R3 =  ^ ia A iA i  exp{a(cr -  C i)f}(3  -  ^ ) 0 i  (0 " -  7 ^0 1 )

+ 01 (01" “  7* 01 ) + («1 (01 -  7* 01 ) + 01 «1 )

— 01 (0;” ~ (%̂ 01) + ~ (0 it)i +20101 + 7̂  01 «1 )

In  the last equation above we have used the facts th a t 0a =  4>i and Og =  —t)i fo r 

reasons o f symmetry. These expressions fo r i i ,  iL, is, iden tica l to  C ra ik ’s, were 

re-derived independently by the present author. In  the rem ainder o f th is  section 

the index j  takes the values 1, 2, 3, corresponding to  the three constituents o f 

the tria d . The w all boundary conditions fo r (3.19) are s im ila r to  those fo r the 

0(e) equation (3.2), th a t is

0y(O) =  ^l(O ) =  0, J =  1 ,2 ,3  (3.21a, b) |

and

0 y (z ),^ l.(z ) - 4̂ 0 as z —)■ 00 . (3.22a,b)

In  order to  solve equations (3.19), we now consider the linear system ad jo in t 

to  (3.13) and (3.15), viz.

1 — i^y [(«  “  Cy)0y]" — i/îy[A:J (ü — Cy) +  ü "]0y
(3.23)

- R ; X 0 r - 2 k v y + t ; 0 y )  =  o,

(see e.g. Ince 1956, §9.31), where ^ 1,2 =  7 , fca =  a , ^ =  R , R 3 =  R  and 

Cl,2 =  c, C3 =  c. The expressions Ly[0y] and Lt [0y]  are related by the Lagrange 

id en tity

0y4 10y! -  0yL ] [0y| =  ^ 4  (0 ,0 ) (3.24)

where Py (0 ,0 ) is the b ilinear concom itant. For an ordinary d iffe ren tia l equation 

o f form
d "0  , d " - V  d(f>
^ ‘ d ï + P"
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with adjoint equation

r i  (P l0 ) +  -  -  ^ (P n -1 0 )  + P » 0  =  0, 

the b ilinea r concom itant is given by

Thus fo r our system we have

p , i4 ,4 )  =  +  -  k ] 4 i )

— 4'i(4 'l ~  +  ik jR ,[u  — Cj)(4j4^j — 4 i4 i )  +  ^kjR,n'4i-4i]-
(3.25)

In tegra tion  aeross the range o f the independent variable yields Green’s form ula

r  -  4 iL ] W } d z  =  [P ,i< l> ,4 )]" . (3.26)
Jo

The righ t-hand side o f (3.26) contains the boundary conditions bo th  fo r 0y and 

fo r 0y. I t  may be w ritte n  as eight b ilinea r term s in  0y and 0y, fou r term s being 

evaluated a t each o f the flow  boundaries:

(3.27)
i = l

where

I f} ’ ) =  M O ),

U<’ > =  <^;(o).

— 4 j (oo),

U<’ > =  <^;.(oo),

a<’ > =  4 '; ( o ) -

£/<’ ) =  M (0 )  -

tf<’-) =  4'! (oo) -

u<’ ) =  4 " '{o o )-

(3.28)
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and

y (i)
*̂ 3

y ü )

y (j) - V W ( o o ) “ ^ ? 0 y M ) ,

=  ■

^y0y(O))»

=  ■ ~^(V ’"’ (o) -  f c y  01.(0)).

(3.29)

Thus the 0(e®) boundary conditions fo r 0y may be re-expressed sim ply in  term s 

o f and ü } ’ ’ :

t f } ’ ) =  0, 

a y  =  0,

Cf<’ > =  0,
(3.30a, b ,c ,d )

tf} ’ ’ =  0.

The general theory o f d ifferentia l systems (Ince 1956, §9.34) then attests th a t 

the boundary conditions fo r the homogeneous ad jo in t system must be

v / ’ ) = 0 , 1 =  1-4. (3.31)

Furtherm ore, in  order fo r the principa l system given by (3.19), (3.21) and (3.22)

to have a so lu tion the follow ing re la tion must obta in:

l>oo
/  0yr(^')dz =  O. (3.32)

Jo

A fte r a litt le  re-arranging o f (3.32), we arrive at the evolution equations

dAa
«3 A i A ; ,
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where

a -

° j4 i  4 a  {4a  - a ‘ 4 a )  d z

and
/o ~  4 , 2  0 1 ,2  d z

« 1,2 =
^ s A ; 1 01,2(01,2 - 7 V i,2 ) d z '

3.4 Num erical method

3.4.1 Discussion o f num erical schemes

There are various com putational techniques applicable to  equations o f O rr- 

Sommerfeld type, indeed th is pa rticu la r equation has been the p rinc ipa l reason 

fo r the development o f some o f these techniques. There are two m ain d ifficu l

ties in  its  num erical solution: (i) the eigenfunctions and the ir derivatives vary 

very rap id ly  in  the v ic in ity  o f the c ritica l po in t Zc, given by tl(zc) =  c; and (ii) 

the two ‘physical’ solutions, th a t decay exponentia lly in  the free stream , tend 

to  become contam inated w ith  the unphysical, rap id ly  growing viscous solution. 

The Orr-Som merfeld equation is therefore an example of what is known as a 

‘s tiff ’ equation. Among the more frequently-used methods are orthonorm ali

sation (a ‘shooting’ m ethod), compound m atrices and fin ite  differences. The 

firs t of these utilises the fact th a t contam ination cannot occur if  the solution 

vectors are made orthogonal to  each other at each stage o f ‘shooting’ across the 

region o f in tegration. One disadvantage o f th is  scheme is th a t reconstruction of 

the eigenfunctions subsequent to  the in tegra tion is a rather awkward process. 

The m ethod o f compound matrices has been used w ith  success by Ng &  Reid 

(1979) and Davey (1980) among others. Its  p rinc ipa l disadvantage is th a t the 

compound m a trix  increases vastly in  size w ith  the order o f the d iffe ren tia l equa

tion . Thus it  is unsuitable fo r fu lly  three-dim ensional problems fo r instance, 

although practicable fo r Orr-Som merfeld calculations.

The methods of orthonorm alisation and compound matrices have been 

compared by the present author (Thomas 1988) fo r boundary layer flows over 

both heated and unheated fla t plates. Fourth- and sixth-order m athem atical 

models were employed. The compound m a trix  m ethod was found to  require 

four times as many grid-points across the boundary layer to  achieve the same 

accuracy as the orthonorm alisation m ethod, and also generally needed a much
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1
more accurate in itia l guess in  order to  successfully converge. î

The Chebyshev polynom ia l collocation method was firs t used by Davey &

Nguyen (1971) for pipe flow and by Orszag (1971) fo r plane Poiseuille flow.

Orszag recommended the m ethod on the basis th a t the trunca tion  error de

creases rap id ly  w ith  the number o f polynom ials used. This m ethod is more 

com plicated to  program  than fin ite  differences fo r example, b u t o f course stan

dard packages are available in  program  libraries (such as the N AG  lib ra ry ).

3.4.2 The finite-difference scheme

The m ethod o f fin ite  differences is re la tive ly easy to  program , and recon

s truction  o f the eigenfunctions is straightforw w ard. Accuracy is determ ined 

by the choice o f finite-difference scheme, by step size and by the number of 

significant figures o f the floa ting -po in t arithm etic used. An extension o f the 

fin ite-difference m ethod o f Thomas (1953) was used fo r the boundary-layer com- I

putations presented below. Th is method utilises a Noumerov a u x ilia ry  function  

to  increase the accuracy o f the differencing. The p rincipa l advantage o f fin ite - 

difference methods is often said to  be the ir inherent num erical s ta b ility , which 

may be considered more im po rtan t than the superior speed and accuracy of 

more sophisticated in tegra tion techniques.

The five-point fin ite  difference scheme w ill now be described. The equa

tions to  be solved for the resonant-triad problem  are: firs tly  the O rr-Som m erfeld 

equation (3.13); then its  ad jo in t, from  (3.23); then the oblique O rr-Som m erfeld 

equation for the 1-wave from  (3.15), followed by its  ad jo in t from  (3.23); and 

fin a lly  the cross-flow equation fo r the 1-wave, from  (3.16). For the linear prob

lem  we only solve (3.13). Let % represent any o f 0y, 0y, j  =  1 ,2 ,3 . We define 

an aux ilia ry  function g by

S =  X -  ^ k 'x "  +  ~ h ^ x " "  (3.34)

where h is the step size, and % may be given in terms o f g by the Noumerov

transform

Xj =  9} +  +  360^*^^' (3.35)

where 8 is the centred difference operator. The coefficients o f (3 .35) are se

lected so th a t the approxim ations to  the derivatives g iving O (h^) accuracy are
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sim plified (see Thomas 1953). The function and derivative approxim ations can 

be shown to  be

X) ~  1 +  246gy +  56^y+i +  âfy+2 ) +  0(h^)y

^Xy =  +  93 + 2 ) +  0{h*)y

h^x'j — ^ ( a ^ j - 2  +  8 g fy _ i — ISflfy +  8 f f y + i  +  g^y+g) +  0 ( / i ® ) ,  ( 3 . 3 6 )

=  ~ ( - 9 i - 2  +  2gy_ 1 -  2(Jfy+i + S fy + 3 )  +  0 ( h * ) ,

^ * X y "  =  9 i - 2  — ^ 9 i ~ i  +  ^ 9 j  “  ^9i - \ ‘ i  +  9' / + 2  +  0 { h ^ ) .

Differencing o f the relevant governing equation over n  intervals o f equal w id th  h 

yields n + 1  equations fo r 1, but four fic titio u s  points 1 ,gfo ,9n + 2 ,9n + s

are also created; these are dealt w ith  as follows. The four boundary conditions, 

two at each end o f the in tegration domain, are finite-differenced at the stations 

J =  1 and j  =  » +  1 as appropriate. This yields four algebraic equations fo r 

the unknown quantities S'»+2 >5 n + 3 - Hence these unknowns can be re

expressed in  terms o f the ‘known’ quantities gy near to  the two end-points o f 

the dom ain.

The general equation at the j t h  sta tion is

9 : - 2A ( j ,  1) +  gy_ 1 A ( j , 2) +  g y A ( j , 3 ) + gy +1 A ( j , 4 )  +  gy+2A ( j , 5) =  P ( i ) ,  (3 .37 )

fo r some A ( j , $ ) ,  i =  1-5 and some P { j) .  Consider now the firs t sta tion: we 

have

S - , ^ ( l , l )  + S o ^ ( l , 2 )  +  S . A ( 1 , 3 )  +  Sj ^ ( 1 ,4 )  + S 3 A ( 1 , 5 )  =  P ( l ) ,  (3 .38 )

and from  the w all boundary conditions we have equations o f the form

9 -1  — J ^ i9 i  +  J^292 +  J^s93 +
(3.39)

9o — ^ i 9 i  +  V 2 g 2 +  T a g s  +  Ypy 

fo r some AQ , Y) , J  =  1,2,3 and some X p ,Y p .  Using these we may rew rite  (3.38)

as

A i i g i  +  A i2 g 2  +  A is g a  ~  P i , ( 3 . 4 0 )  I
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where !
A ll — A (1 ,3) +  A ( l,  l ) X i +  A ( l,  2)Y i,

A i2 =  A ( l,4 )  +  A ( l,  1)%2 +  A ( l,  2)12 >
(3.41)

A i3 =  A ( l,  5) +  A ( l,  l )%3 +  A ( l,  2 )4  ;

Pi - P ( l ) - A ( l , l ) X p - A ( l , 2 ) 4 .

S im ila r relations may be obtained fo r the second and th ird  stations, and thereby

a ll the term s involving g_ i and go are absorbed in to  terms involving non-

fic titio u s  points, A s im ila r procedure may also be enacted at the [n  +  l) th

sta tion . I t  follows th a t the complete system can be re-expressed as a m a trix

equation o f the form

[A v is  =  P (3.42)

where [A,y] is an (n +  1) x  (n +  1) pentadiagonal band m a trix  and g and p  are 

colum n vectors o f dimension (n +  1). The m a trix  [A<y] is forward-diagonalised f

in to  an upper-triangu lar m a trix  by Gaussian e lim ination. For equations (3.13), |

(3.15) and (3.23) p  is the nu ll vector, and a norm alisation condition is required #

fo r g , w hich is taken as g „+ i =  1. Thus the eigenvalue re la tion J5(a ,R ,c) = 0  

is ju s t A^ + i.n + i = 0 . The Orr-Som m erfeld equation and its  ad jo in t must 

share the same eigenvalues, by the theory o f d ifferentia l systems, and hence no 

ite ra tio n  is required fo r the solution o f (3.23). Solution o f (3.16) by a three- 

po in t scheme is also stra ightforw ard since th is  equation does not have its own 

eigenvalue, being inhomegeneous.

I t  is im practica l to  employ the exact outer boundary conditions (3.7) and 

(3.18) in  any num erical method: clearly we m ust impose some approxim ations 

to  these, at some selected fin ite  value Zi o f z. A t sufficiently large z, the 

two physically relevant solutions of the Orr-Som m erfeld equation are those 

which decay exponentially at the respective rates (—az) and (—pz), where 

p =  y/o?  +  ia R ( l — c), the root w ith  positive real pa rt being taken. The 

general so lu tion at large z is then sim ply a linear com bination o f these two 

solutions so th a t

0 -  Ae~“ *

where A , B  are constants. The simplest d iffe ren tia l operator which w ill an

n ih ila te  the right-hand side above is {D  a) (D  +  p) so the most appropriate
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/ { t ') d r  -^ (7 u o  +  32u i +  1 2 u2 +  32tts +  7 ^ 4 ).

»

numerical forms of the outer boundary conditions (3.7a, 6) to  be used a t z =  Z i, 

say, are
0 "  +  (a  +  p)0 ' +  ap0  =  0 ,

(3.43a, b)
0 " ' +  (a  +  p )0 "  +  ap0 ' =  0 .

The above numerical idea is due to  A . E. G ill, and was firs t published in  G ill &  I

Davey (1969). For the cross-flow velocity t ) j, we approxim ate (3.18) by v[ (z i)  =

+  n R ( l — c) Vi (z i) , the roo t w ith  negative real pa rt being selected.

The integrals appearing in  the expressions fo r the quadratic in te raction  

coefficients ay, j  =  1 ,2 ,3  (equations (3.33) above) are evaluated using Boole’s 

rule:

Th is is a five-point ru le , and so fo r successive applications over n  in tervals n  

m ust be a m ultip le  o f four (herein we use 1001 g rid  points, th a t is 1000 in tervals).

Boole’s ru le  has good accuracy, the estim ated error being ~  “

/ l^ l( a ) }  fo r an in tegration range [a, 6] (Buckingham  1957).

The program  used by the author was developed from  one supplied by Pro

fessor P. K . Sen, th a t computes eigenvalues and eigenfunctions fo r the linear, 

two-dim ensional problem. In  the author’s program , eigenvalues are located 

by a com bination o f Newton-Raphson and régula falsi convergence schemes.

The transverse wavenumber (3 fo r resonance is determ ined using the bisection 

m ethod w ith in  the calculation o f the eigenvalue c subject to  the cond ition  th a t 

Cj. =  Cp. The ite ra tive  scheme in  general requires a reasonably good in itia l 

estim ate fo r the eigenvalue in  order to  converge, bu t fo r modes o ther than 

Tollm ien-Schlichting modes th is  tended not to  be available. Hence the author 

developed an alternative scheme based on the P rincip le o f the Argum ent, fo l

low ing the work of Yeo (1986). A  closed contour is traced out anticlockw ise in  

the complex phase-speed plane, and the accumulated change in  a rg {d e t[A jy ]} 

is 2n 7T if  n  eigenvalues are enclosed in  the contour (assuming there are no sin

gu larities). On finding th a t an eigenvalue is enclosed, the a lgorithm  causes the 

procedure to  be repeated continua lly using a reduced contour enclosing h a lf the 

area o f the orig inal u n til at a prescribed lim it the ite ra tion  procedure is invoked.

This m ethod is reliable, bu t very costly in  CPU tim e since the step-length along %
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the contour m ust be sufficiently sm all to  avoid bypassing any loops. Hence the 

PA scheme was only used in  the event o f fa ilu re  o f the o rig ina l in itia l-guess it-  g

eration routine . Yeo (1986) suggests tha t the step-by-step phase-change should 

not be perm itted  to  be more than 7t/4, bu t the present author found th is  gen

erally to  be an unnecessarily severe constraint given the large num ber o f modes 

th a t had to  be located. Problems d id  however occur in  the region o f =  1 due 

to  the presence o f the tem poral continuous spectrum  there.

A ll calculations were performed on a V A X  11/785 com puter a t the U n i

versity o f St. Andrews using double precision arithm etic (64-b it word length 

for real quantities), which gives a nom inal accuracy o f about sixteen sign ifi

cant figures. The eigenvalues and discretised eigenfunctions obtained have an |

estim ated accuracy o f about five significant figures, which is adequate fo r most 4#

purposes.

3.5 Results and discussion

Linear eigenvalues are compared w ith  the data o f Mack (1976) and Caster 

(1977) in  Table 3.1. The agreement is clearly satisfactory. Differences in  the 

authors’ choices o f length scales make algebraic transform ations o f wavenum

ber and Reynolds number necessary in  order to make comparisons, and th is  

accounts fo r the occasional very sm all discrepancy between the two sets of 

data.

Resonant triads fo r Blasius flow over a rig id  w all, encompassing a wide 

range of wavenumbers a  and Reynolds numbers R, are presented in  Tables

3.2, 3.3 and 3.4. Here, and below, the domain o f in tegra tion extended 2.5 

boundary-layer thicknesses out from  the w all, and 1000 grid-po ints were used.

Table 3.2 presents the present results together w ith  those o f Hendriks (appendix 

to Usher &  C ra ik 1975). Agreement is very good both  fo r the linear data 

(tha t is, eigenvalues), and for the nonlinear data (tha t is, quadratic in teraction 

coefficients), w hich confirm s the soundness o f bo th  authors’ num erical methods.

Plots o f the eigenfunctions 03 , 0%, the ir respective adjoints 03, 0 i and the 

cross-flow ve locity Vi are presented in  Figure 3.2 for the case o f R =  2562.8 and 

a =  0.6, and are also consistent w ith  equivalent figures o f Hendriks.

Considering the linear eigenvalue c (representing a Tollm ien-Schlichting
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disturbance), the real p a rt at firs t increases w ith  wavenumber b u t eventually 

begins to  decrease; C; fo r the streamwise mode has a peak, unstable value. For -4

the oblique modes, Ci clearly reaches its peak value at a wavenumber larger 

than is considered here. Note th a t the propagation angles 0 o f these modes . #

are determ ined by the requirem ent tha t resonant triads be form ed, and so are 

different in  each case.

I t  w ill be seen from  Tables 3.3 and 3.4 th a t the quadratic in te raction  coeffi- 

cient as fo r the streamwise modes always remains 0 (1) in  m agnitude, in  marked Ï

contrast to  its  oblique counterpart O i, the modulus o f which increases very sub

stan tia lly  w ith  both wavenumber and Reynolds number. These results have 

sim ilarities w ith  those o f Volodin &  Zel’man (1979) fo r spatia l wave-modes. I t  

would appear from  the a  =  1.0 cases tha t a^ decreases fo r su ffic ien tly large R, 

although the evidence is on ly provided by a single data po in t. Note th a t by 

sym m etry ag =  a i, and the ay are a ll complex.

I t  is in teresting to  note the behaviour of the phases o f a@ and a^ as a  and R 

change. I t  is clear from  Tables 3.3 and 3.4 th a t arg a j decreases w ith  both  a  and 

R (w ith  the exception o f the very last entry in  Table 3.4(e)), b u t in  contrast 

arg as is quite erra tic and no general trend can be deduced. The spanwise 

wavenumber 0  o f the oblique constituents of the triads generally increases w ith  

increasing a  bu t decreases w ith  increasing R . The propagation angle 0 o f these 

waves decreases w ith  both wavenumber and Reynolds number, as w ill be shown 

later.

Comparison o f the present results w ith  those o f Sm ith &  S tew art (1987) 

is not stra ightforw ard. This is because the la tte r results assume th a t the res

onating wave-modes lie  asym ptotically close to  the lower-branch neu tra l curve, 

which is ce rta in ly  not in  general the case for the triads th a t are given in  Tables 

3.2-3.4. However, it  m ust be said th a t both works are ce rta in ly  va lid  in  th e ir 

appropriate contexts.

Since the in teraction coefficients a^, as which are presented in  Tables 3 .2- 

3.4 are complex, not real, quantities it  follows th a t fin ite -tim e  bursting  is pos

sible, th is being an im portan t difference from  the scenario studied by Sm ith 

&  Stewart. Also, the propagation angles 0 — c o s "^ (~ ) fo r the oblique-mode
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tria d  constituents are never very close to  the inviscid value o f 60°: they are 

always less than th is , and indeed decrease w ith  increasing a  or R .

3.6 Conclusions

In  th is  chapter we have located num erically a large number o f resonant t r i

ads fo r Blasius flow, thereby considerably extending the work o f Hendriks (ap

pendix to  Usher &  C raik 1976). The results clearly demonstrate th a t three-wave 

resonance can strongly influence p a rtic ip a ting  oblique wave-modes, the stream - 

wise mode being much less affected. The strength o f the in te raction  increases 

very m arkedly w ith  bo th  increasing wavenumber and increasing Reynolds num 

ber. Thus resonant-triad in teractions can be assumed to be extrem ely relevant 

in  tran s ition a l flow regimes, as has indeed been shown experim enta lly to  be the 

case (in  the studies o f Kachanov &  Levchenko 1984, for example).
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4.1 In troduction

The possible im portance o f nonlinear effects in  flows over flexib le  surfaces 

has h ithe rto  not been considered in  theoretica l analyses. However, many o f the 

experiments (e.g. those of Gad-el-Hak, Blackwelder &  R iley 1984) strong ly in 

dicate th a t three-dim ensionality (and hence perhaps nonlinearity) is even more 

prom inent than for rig id -w a ll flows. A lso, the m u ltip lic ity  of modes in  flexib le - 

w a ll flows suggests tha t nonlinear m odal in teraction (in  the form  o f resonant 

triads, fo r example) may often be o f im portance, especially when there is no 

linear mode-coupling. In  th is  chapter we consider Blasius flow  over a sim ple 

model w all, s im ilar to  th a t used above in  Chapter 2 . Temporal eigenvalues o f 

the Orr-Sommerfeld equation, resonant triads and in teraction coefficients are 

found by num erical in tegration. As in  the previous chapter, para lle l flow  is as

sumed throughout, although the Blasius solution is in  fact only ‘nearly pa ra lle l’ . 

M uch o f the follow ing theoretical fo rm ula tion  is the same as fo r the rig id -w a ll 

problem  studied in  Chapter 3, b u t we w ill perm it a degree o f repe tition  in  the 

interests o f presentational c la rity .

We consider a simple w a ll m odel, th a t could fo r instance be representative 

o f a membrane supported by springs:

^  +  ‘*1 ^  -  f V ’ ,, +  Sr,, (4.1)

The ve rtica l displacement o f the w a ll from  its  undisturbed position is measured 

by ?7, and m , d, F  and S are a ll as defined in  (2.3) above. As previously, it  

is assumed th a t la teral m otion o f particles in  the surface is zero or negligible. 

For present purposes it  is advantageous to  res tric t the number of independent 

w a ll parameters while reta in ing a reasonable degree of realism . M ore complex 

models may be examined by s im ila r methods, if  required.

A ll quantities, including those perta in ing to  oblique modes, are non-dim 

ensionalised using appropriate com binations o f Uoo , Pe and the boundary-layer 

thickness 6, which we define to  be 5 ~  The Reynolds num ber R

is defined w ith  respect to  6 , i.e. R =  The wall parameters are non-

dimensionalised in  the follow ing way:

m =
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where c j =  m ~ ^F  and * denotes dimensional quantities. This scheme is akin 

to  th a t o f Dom aradzki &  M etcalfe (1987). R  can be taken to  vary w ith  6, 

or f/: here we assume th a t «oo aud 1/  are fixed, and R  varies only as S changes, 

th a t is, w ith  x. I f  allowance is not made fo r th is , d ifferent walls w ill be modelled 

a t d iffe rent Reynolds numbers. Thus we define reference values o f m  and 

o f S at some Reynolds number Rq> and m  and S vary according to

Note th a t R  may a lterna tive ly be taken to  be a function  of Uoo ra ther than o f 

6 , in  w hich case a different scheme is required.

4.2 L inear theorv

Here we shall consider two-dim ensional disturbances only. The basic flow 

Û =  U(z)/Uoo is assumed to  be para lle l, satisfying the Blasius equation

/'»  +  / / »  =  0 (4.4)

where / '( x )  =  «(z) and x  =  primes here denote d iffe rentia tion w ith

respect to  x- Boundary conditions are

/(O ) = /'(O ) =  0, / ' ( x ) 1 as X 00 , (4.5a, b ,c)

corresponding to  the physical requirements th a t the flow should be stationary
I

at the w a ll and reach some constant value at a certa in distance from  the w all. A

stream  function  0  is defined b y u  =  w =  —§7 - We consider a rb itra ry  sm all |

disturbances o f the form  $p =  €<f>(z) exp(iaa; — ia c t), e <  1, and substitute fo r -j
-1

the to ta l stream  function #  =  /  ü dz +  $p in to  the v o rtic ity  equation |

I
(4.6) I

i
On neglecting O(e^) quantities, th is  yields the Orr-Sommerfeld equation, the |

governing equation o f the flu id  flow in  the linear regime: |

L[(f>] ~  ia [(w  — c)(0 " — 00<f>) — ü "0 ] — — (0 "" — 2o0<f>”  +  c0 (f>) ~  0 . (4.7) ;
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The boundary conditions fo r (4.7) are, in  term s o f the pertu rba tion  velocities:

u(i?) =  0, w (»?)== ^ ^  +  u .V ^  u ,w ~ ^Q  as z -> oo. (4 .8a ,b ,c ,d )

These correspond to  requirements o f no s lip  at the w all, and zero pertu rba tion  

velocities far outside the boundary layer. Perform ing Taylor expansions o f the 

firs t two about the und isturbed w a ll position yields at firs t order

2 dw  
R 'd z N (v ) . (4.12)

»= I?

From  the r-m om entum  equation.

—  +  u .V u  — —^  — V ^u, (4.13)
a t ox R

and using (4.11) we have

p(0) =  ^ ( ÿ ' " ( 0 )  -  a V '(O )). (4.14)

The quantity N(r}) is as given in  (4.1), w ith  appropriate no ta tiona l changes. 

From  (4.1), (4.10), (4.12) and (4.14) we obtain

0"'(O ) -  3a"0 '(O ) -  J30(O) =  0, (4.15)

where

- c l ) - \ - ia c d - S ] .  (4.16)

The free-stream boundary conditions in  terms of 0 are

0 as z —> oo. (4.17a,b)
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0 '( o ) + # '( o )  = 0 , (4.9) 1

0(0) -  C7? =  0. (4.10)

E lim ina tion  o f t] gives the homogeneous condition

0(0) +  —( ) 0(0) =  0. (4.11)

We require one other boundary cond ition at the w all, and th is is obtained from

a consideration o f the norm al stress:



where
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Equation (4.7) together w ith  the boundary conditions (4.11), (4.15) and (4.17) |

constitu te  an eigenvalue problem  fo r c (a ,R ).

4.3 N onlinear theorv: tria d  resonance

The fo rm u la tion  o f the resonant-triad problem  fo r flow over a flexible |

boundary is a reasonably stra ightforw ard extension o f th a t fo r rig id  walls given 

in  the preceding chapter: however, care m ust be taken in  deriv ing the w all 

boundary conditions fo r the adjo int system, since these cannot be obtained 

from  any physical considerations. Hence the analysis w ill be given in  detail.

We consider a tria d  o f waves defined by

=  ]^ k '0 y ) ( z ) A y ) ( t ) ]4 ,  j  =  1 ,2 ,3 , (4.18)

E l =  e x p { i( |x  +  -  ^ c t) } ,

E 2 =  e xp {i(^a : -  0y  -  ~ c t) } ,  (4.19) |

4  — e xp {i(a x  -  a c t)}.

These shall henceforth be termed the ‘1-wave’ , ‘2-wave’ and ‘3-wave’. Exact 

resonance requires th a t c, =  c,. Figure 3.1 illustra tes the resonant-triad config

u ra tion . An ordering parameter € has been introduced, so th a t a ll pertu rba tion  

quantities are 0(e) w ith  0 (c) corrections. The am plitudes are assumed to  be

slow ly varying on a stretched tim e scale t =  et. I t  is convenient to  w rite  (cf.

C raik 1968) %
. _  «  .  ^  0  .
«1,2 — 2^  «1,2 +  ^«1,2,

V l,2  =  ± ~ U i , 2  +  “ « 1 ,2 ,  ( 4 .2 0 )

The velocities tZi,g, fii g are defined in  the directions X i,2 , y i,2 , w hich are re

spectively perpendicular and paralle l to  the crests o f the relevant oblique wave:

- f - f
y i . 2 - ^ - x + — y.

■ Hi ,.. ■



(4.22)

From  the defin itions (4.18) and (4.19) it  follows th a t

(« ) ]£ ,,„
4 = 1

Wl,3 =  - h X ^ [ f ’> ( ’ ’ (2).4}.’ )(f)]Æ i,2 .
*'=1

The linearised v o rtic ity  equation fo r the 3-wave gives the O rr-Som m erfeld equa

tio n
^3 [03 I =  M ( «  -  4 (0 3  “  a^03) -  «"03]

1 ....... _ .  . .  , . _ (4.23)
^ ( 0 r - 2 a = 0 ; ' +  a ^0 3 )= O ,

where 03 =  0g^\ We now define an oblique Reynolds num ber R  by

R =  ~ ,  (4.24)

g iving fo r the 1-wave and 2-wave equations equivalent to  (4.23), namely

^1,2 [01,2] =  h[(« -  4 (01,2 -  7^01,2) -  «"01,2]

-  i { < i , z  -  =  0 .

where 01,2 =  01 2̂* The linearised momentum equations in  the y i ,2 directions 

yie ld

«1,2 -  [7 " +  i7 ^ («  -  c )]« i.2 =  ± i/0 R « '0 i,2 . (4.26)

The velocity components 01,2 arise because o f the d is to rting  influence o f the 

basic shear flow  on oblique wavemodes. The boundary conditions fo r (4.23) 

are ju s t (4.11), (4.15) and (4.17) w ith  appropriate quantities subscripted by 3. 

For equation (4.25), however, the w a ll boundary conditions depend c ritic a lly  

on the type o f w all being modelled. In  th is  w ork we shall consider an idealised 

anisotropic w a ll: the effective w all tension experienced by obliquely-propagating 

w a ll modes is assumed to  be FcosO  (tha t is, ~ F )  ra ther than ju s t F ; 0 is the 

angle between the directions of propagation o f the oblique wave and the basic 

flow. M ore com plicated anisotropic models are o f course possible, and indeed 

have been investigated elsewhere in  the context o f the linear s ta b ility  problem  

(for example Yeo 1986), b u t we feel th a t our sim ple model is adequate fo r th is  

exploratory study. A t 0(e) we have fo r the 1-wave

M O )= -~ ü ' (0 ) r , „  (4.27)
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which gives

The norm al stress is

01 M =
u

0i(O ) +  y(O )0 i(O ) = 0 .

Pi +  =  ^1  w ,R dz

and the x-mom entum  equation

du

yields

+  u .V tt — ——— f- —V  u 
a t ox R

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

I

Thus we obta in the second w all boundary condition as

0 Ï' (0) -  3 f  0 ; (0) -  B i 01 (0) =  0, (4.33)

where

(4 .34)

Note th a t in  (4.30)~(4.34) the Reynolds number is the orig ina l one, not th a t 

defined by (4.24). This can be verified by re-deriving the boundary cond ition 

in  dimensional un its, and then non-dimensionalising according to  the scheme 

given above. The two boundary conditions fo r equation (4.26) are

«1,2(0) =  ± ^ u ' (0) 771,2, 

«1,2 (4  “ ^0  as z —̂ 00.

(4.35)

(4.36)

The firs t o f these results from  the requirement th a t tangentia l ve loc ity  be zero at 

the w all, and the second follows on observing th a t ü =  1 outside the boundary 

layer. As was found by C ra ik (1971), at O(e^) the nonlinear v o rtic ity  equations 

are

A 3 (4^3  [03] =
dr

Ai,2 (4 ^ 1,2 [01,2] =  “ ^ ^ ^ ( 01.2 -7 ^ 0 1 ,2 )  + ’P'l,2 =

(4.37)
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where ÿy =  j  =  1 ,2 ,3 , and F i,  F3 , b ilinear in  the firs t-o rde r dis

turbance quantities, are exactly as given in  Chapter 3, equation (3.20). The 

expressions fo r JPj, JP3 , identica l to  C ra ik ’s, were re-derived independently 

by the present author. In  the rem ainder o f th is  section the index j  takes the 

values 1 , 2 , 3, corresponding to  the three constituents o f the tria d . The w a ll 

boundary conditions fo r (4.37) are found after a considerable am ount o f alge

bra ic m anipula tion to  be

u ’

( .3 8 a ,. )
^7 (0 ) -

where the O(e^) nonlinear term s fij- are as given in  Appendix B, equations ( B l) -  

(B4) and k i ^2 =  ^3 =  <%; =  c, =  c. The three pairs o f free-stream

boundary conditions are the same as fo r the linear problem, i.e.

^ ^  “ > 00 , y =  1,2,3. (4.39a,b)

In  order to  solve equations (4.37), we now consider the linear system ad jo in t 

to  (4.23) and (4.25), viz.

=  i/:y[(ü  -  Cj’)ip j]"  -  (ü -  Cy) +  ü "l^y

(see e.g. Ince 1956, §9.31), where jR i,2 =  ^  and E 3 =  E. The expressions 

Zfy[^y] and are related by the Lagrange iden tity

A  h  [ *  I -  <i>3 L]. [0 y ] =  ~  [Py ((f>, ^ ) ] (4.41)

where Py (^ , ^ )  is the b ilinear concom itant, defined by

^ 3  (4.42)
“ V'yC^y “  +  iA:yPy(ü -  Cy)(^y^: -  * '^ y )  +  ifcy Pyü'<Ĵ y ̂ y ].

In tegra tion  across the range o f the independent variable yields Green’s form ula

j  [<̂ y] - =  [^y (<̂ , V^)ir • (4.43)
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Note th a t the range o f in tegra tion is 0 to  oo. This is because we have elim inated 

the O(e^) w all displacement ijj- from  the second-order w all boundary conditions 

(4,38), w ritin g  the left-hand-sides in  terms of ÿy only, and evaluating at the 

undisturbed w a ll position 2 =  0. In  order to solve the linear flow  equations 

num erically we of course have to  impose outer boundary conditions at some 

fin ite  value o f 2 , bu t it  is inappropria te to  introduce these approxim ations at 

th is  stage (the fo rm ula tion o f the outer boundary conditions fo r num erical pur

poses was discussed above, in  §3.4; there is no difference between the  rig id - and 

flexib le-w all cases).

We now rew rite the righ t-hand side of (4.43) as

(4.44)
t= i

where

u

u

u:u

u u

u,u
( i

u.u
u

=  <^y(0) 4---- ^ < ^ y (0 ),

— ^ 7  ( 0 )  — 3A:J ( 0 )  -  B j (f>j- ( 0 ) ,

=  <^y(oo),

=  (^;.(oo),

—  < ^ y ( 0 ) ,

=  <Ay ( 0 )  -  ( 2 & y  -  i k j R j C j )  0 y ( o ) ,  

=  <^y(oo) -  fcy(^y(oo),

=  <^;"(oo) (oo) (4.45)

and

y [ 3 )
1

y { 3 )

y U )

V’j(o o ),

R.

J t y  C y  C y
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=  - ^ |V '" ( o o )  -  k'jil>i(oo) -  i k i R j ( l  -  C y)* (oo)],

-  i k , R , i l  -  c,)V-;(oo)],

(4 '"  =  i- iA X o ),

r ( 3 )

(4.47)
m ”  = 0,

&

^  +  (^y +  (4.46)

These pa rticu la r forms fo r the and are only one p a rticu la r choice: 

others are also possible. Thus there is some freedom in  selecting 

and since it  is these which determ ine the ad jo in t boundary conditions =  0, %

i  =  1-4, i t  follows tha t there is not a unique ad jo in t fo r th is  problem .

Thus the O(e^) boundary conditions fo r <j>j may be re-expressed in  term s 

o f C/y) and

( /y )  =  0.

The general theory o f d ifferentia l systems (Ince 1956, §9.34) then attests th a t 

the boundary conditions for the homogeneous ad jo int system m ust be

V/'> = 0 , i  =  1-4. (4.48) I

Furtherm ore, in order for the p rincipa l system given by (4.37), (4.38) and (4.39) 

to  have a solution the follow ing re la tion  m ust obtain:

poo

/  i}jj-r^^^dz =  f i7  ̂Vg^̂   ̂ ^. (4.49)
Jo

A fte r some re-arrangement of (4.49), we arrive at the evolution equations

_ dAs _  ̂  ̂ ^
^ 3  f —  ^3 A i  A 2 ,

The quantities <jy and ^  are somewhat lengthy and hence are given in  Appendix 

B , equations (B 5)-(B 8). We define the quadratic in teraction coefficients Uy by

% =  C jM » i  =  1, 2 , 3 .
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4.4 Num erical method

The numerical scheme fo r the com pliant-w all problem is very s im ila r to  th a t 

fo r the rig id -w a ll problem  described above in  Chapter 3; the fin ite-d ifferencing 

o f the boundary conditions is no t in  itse lf appreciably more d iffic u lt than fo r 

the earlier case. A  seven-point scheme (supplied by Professor P. K . Sen) was 

implemented, w ith  the aim  o f increasing com putational accuracy. However, 

serious d ifficu lties were experienced w ith  th is  seven-point scheme in  a ttem pt

ing to  integrate the cross-flow equation (4.26). I t  was found th a t a fo rm  o f 

num erical in s ta b ility  occured in  the region adjacent to  the w a ll, m anifesting 

itse lf as oscillations in  the values o f Vj and v” ’ on the scale o f the step-size h.

The problem  persisted w ith  d ifferent choices of step-size. The author surmised 

(a fter some discussions) th a t the problem  was due to  the seven-point scheme, I

fo r the follow ing reasons.

Any seven-point scheme requires six boundary conditions, three at each 

extrem ity, since there are three fic titio u s  points beyond each in teg ra tion  lim it.

The second-order cross-flow equation (4.26) has only one boundary cond ition 

at each end, however, nam ely (4.35) and (4.36); hence an extra w a ll cond ition 

and an extra free-stream cond ition  must bo th  be decided upon. Such a rti

fic ia l conditions may be obtained by fo r instance using fin ite-d iffe rencing of 

lower-order accuracy (g iving a reduced equation), or by d iffe ren tia ting  the fie ld  

equation. Note th a t two extra  boundary conditions are also required fo r the 

Orr-Som merfeld equations (4.23) and (4.25) and the ir respective ad jo in t equa

tions; no numerical problems were encountered regarding these equations. For 

equation (4.26), the two add itiona l w a ll equations were chosen as (4.26) itse lf, 

evaluated at the w a ll, and its  derivative, again evaluated at the w all.

For the orig inal five-po in t scheme described in  Chapter 3 above, only 

one extra w all boundary cond ition  is required; th is was taken to  be the w a ll- 

derivative of (4.26). The num erical in s ta b ility  appeared once again, however.

F ina lly , a three-point scheme was implemented, for the cross-flow equation

(4.26) only; this gives O (h^) accuracy. No a rtific ia l conditions are here required,

(4.35) and (4.36) sufficing. Th is scheme was found to  produce num erica lly 4

stable results. The seven-point scheme was abandoned, the Orr-Som m erfeld
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equations and adjoints being solved v ia  the five-po in t scheme o f Chapter 3. A ll 

calculations were performed on a V A X  11/785 com puter at the U n ivers ity  o f St. f

Andrews using double precision a rithm etic (64-b it word length fo r real quanti- 4

ties), w hich gives a nom inal accuracy o f about sixteen significant figures. The a

eigenvalues and discretised eigenfunctions actua lly  obtained had an estim ated 

accuracy o f about five significant figures, w h ich is adequate fo r m ost purposes.

4.5 Results fo r the linear problem

4.5.1 W alls w ith o u t damping

Eigenvalues fo r various values o f a , R  and the w a ll parameters , Co,

are presented in  Tables 4.1-4.6. Here streamwise modes only are considered, 

and there is no w all damping {d — 0). As explained above, the quantities 

and are the values of mass per u n it area and w all restoring force 

a t a reference value Rq o f R  (taken, a rb itra rily , to  be 2562.8 th roughout). |

Three classes o f wave-mode were found, nam ely Tollm ien-Schlichting (TS), w a ll 

flu tter-m odes (which w ill be labelled F modes, and correspond to  free waves on 

the flexib le  w a ll) and a class of slow-moving w a ll mode typ ica lly  propagating 

upstream  and having weak rates o f am plifica tion or dam ping (S modes). Th is 

la tte r class corresponds to  the *Kelvin-H elm holtz’ (KH ) mode-class o f Sen &

A rora  (1988). Examples of the three mode classes are shown in  F igure 4.1 and 

in  Tables 4.1 and 4.2.

In  the absence o f modal interactions, TS mode eigenvalues are typ ica lly  

very s im ila r to  the ir rig id -w a ll counterparts, having values between about

0.25 and 0.5 fo r the Reynolds numbers and wavenumbers considered herein.

Since th is  w ork is p rinc ipa lly  concerned w ith  resonant in teractions, Cq and S 

were m ain ly chosen to  give w a ll modes having s im ila r c, to  those fo r Tollm ien- 4

Schlichting (TS) modes. This was in  order to  allow  the possib ility  o f resonant 

triads form ed from  a m ixture  of mode types. Such values o f Cq and S have a 

tendency to  produce strong linear interactions and ensuing very severe linear 

in s ta b ility , as is evidenced in Figure 4.1, where cq =  0.1 and S =  0.15, and 

also in  Tables 4.1-4.3. This is because TS and F modes have opposite energy 

signs in  an appropriate choice of reference fram e. As was explained in  Chapter

1, if  modes o f d iffering energy signs of two uncoupled systems are close to  each



other in  some param eter space, then on coupling the systems they w ill in teract 

and produce linear in stab ility .

For the F mode o f Figure 4.1, decreases rap id ly  w ith  wavenumber a. I t  is 

in  fact easy to  show th a t fo r the w a ll model (4.16) the behaviour o f streamwise 

modes in  the absence o f w a ll damping is as follows:

« ~  (4-51)

Thus fo r sm all values o f Cq, as we have in  F igure 4.1, as a  increases so c, 

decreases as the inverse square o f a ; th is  is w hat is here observed. For the 

TS mode, c, a t firs t increases, bu t ab rup tly  s ta rts to  decrease on reaching a 

certa in closeness to  the F mode eigenvalue curve. A fte r th is  po in t, the TS mode 

curve m im ics the F mode curve. These two modes are in  fact in te racting , as is 

dem onstrated by the curves fo r c,. There is a huge ‘bubble’ o f in s ta b ility , the 

F mode being unstable and the TS mode stable, w hich commences at about 

the same value o f a  as the sudden change in  the slope o f c, fo r the TS mode; 

the in s ta b ility  extends beyond the upper lim it o f the investigated wavenumbers 

a. The F and TS modes are analogous to  the com plex-conjugate pairs o f the 

classical Kelvin-H elm holtz instab ility , w ith  the im portan t difference th a t the 

Cp values fo r the two modes remain d is tinc t ra the r than coalescing. The non

coalescence of the modes is due to  the dissipative influence of viscosity—  see 

Chapter 1 above.

A  s tiffe r w a ll (cq =  0.8 and S =  0.15) produces a general increase in  fo r 

the F mode w h ils t not affecting the corresponding TS value very much (F igure

4.2, Table 4.1; see also Table 4.3(a)). Thus the TS and F modes do not come 

as close to  each other as fo r the previous case, and the fo r the TS wave has 

no abrupt changes o f slope. The in teraction is weaker than fo r the less s tiff 

w a ll o f F igure 4.1, certa in ly fo r the range o f wavenumbers considered: c; fo r 

the F mode has a sm aller maximum value. Another consequence o f the weaker 

in teraction is th a t the TS mode is less damped (c, ^  —0.05 ra ther than —0.15).

The linear m odal interactions behave ra ther like the m odal coalescence of 

Carpenter &  C arr ad (1986), and tha t illu s tra te d  in  Chapter 2 above, except 

th a t the values o f c, fo r the two in teracting modes rem ain d is tin c t ra ther than
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1

m erging as is the case fo r true  coalescence. The dispersion curves fo r c-, fo rm  f

upper and lower branches o f a ‘bubble’, ju s t like true coalescence, these typ ica lly  

being unstable and damped respectively (Figures 4.1 and 4.2, Tables 4.1-4.3).

The lack o f proper coalescence may perhaps be due in  p a rt to  the pa rticu la r |

choices o f param eter values used here (for example, the w a ll being re la tive ly  |

less or more flexible than those considered by Carpenter &  G arrad (1986), 

although it  is not very m eaningful to  make such comparisons since the models 

are m arkedly d ifferent) or to  the basic w all model itse lf, which is much sim pler 

than th a t o f the earlier authors. However, the m ain reason th a t coalescence 

does not occur is th a t the system studied herein is dissipative, th a t is, viscous; 

the results o f Carpenter &  G arrad (1986) are fo r po ten tia l flow over a com pliant 

w all—  a conservative system.

The eigenfunctions o f the TS, F and S classes have d is tinctive  shapes, as 

can be seen from  Figures 4.3-4.7. Here and elsewhere a ll eigenfunctions <f> and 

adjoints ^  are normalised to  u n ity  at 2 =  1.7208, tha t is a t five displacement 

thicknesses from  the w a ll; th is  norm alisation was used by Hendriks (appendix 

to  Usher &  C ra ik 1975). There is much s im ila rity  between <f> fo r Tollm ien- 

Schlichting waves over rig id  walls and for those over flexib le  walls as can be 

seen on comparing F igure 4.3 w ith  Figure 3.2. For the two examples compared 

here, there is however a noticeable difference in  the slopes o f (f>r outside the 

boundary layer (tha t is, fo r 2 >  l) .  The adjoint functions are very s im ila r also.

The F mode eigenfunction is completely different in  shape to  th a t o f the TS 

mode, as can been seen from  Figure 4.4. The norm al ve locity (o f which ^  is a 

measure) has its  m axim um  at the w all and decreases ra p id ly  w ith  increasing 2 .

This is o f course expected fo r w a ll modes. The large value o f <f>̂  is a consequence 

o f norm alisation being imposed in  the free-stream ra ther than at the w a ll. The 

F mode adjo int eigenfunction also has a characteristic shape (F igure 4.4), w ith  

an extrem ely sm all im aginary pa rt.

The S-class mode eigenfunction, illustra ted in  Figure 4.5, has a real pa rt 

which bears some resemblance to (f>r fo r TS modes, although there is a ‘k in k ’ 

near the wall. The shape o f the S-class eigenfunction is in  fact ju s t like  th a t 

o f the K H  mode class eigenfunction given in  Sen &  A rora (1988), and we may
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therefore state w ith  confidence th a t these classes are equivalent. Note th a t the 

S-mode ad jo in t eigenfunction bears no resemblance to  th a t fo r the TS mode.

Figures 4.6 and 4.7 depict an F mode and a TS mode at a wavenumber of 

a  =  0.6, larger than th a t fo r Figures 4.3 and 4.4. Here the TS and F modes are 

in teracting linearly. The most remarkable feature is tha t <f>r fo r the F mode has 

changed drastica lly in  shape from  th a t o f Figure 4.4, and now is ind istingu ish

able from  a TS mode. The im aginary pa rt (f>i has retained its  p ro file , a lbe it 

reflected about the 2-axis and considerably increased in  m agnitude. Com pari

son o f Figures 4.7 and 4.3 reveals much less dram atic changes fo r the TS mode—  

the m ain one being an increase in  the size o f (f>i. The dram atic change in  char

acter o f the F-mode eigenfunction is solely due to  its linear in te raction  w ith  the 

TS mode. Here we do not have the straightforw ard phenomena o f exchange o f 

identities or Kelvin-H elm holtz in s ta b ility  tha t were so well illu s tra te d  in  Chap

te r 2: viscosity has a greatly com plicating influence. The p rinc ipa l physical 

effect o f th is  behaviour is th a t the w a ll mode extends its  influence (as measured 

by its  norm al velocity) much fu rth e r out in to  the flu id .

4.5.2 W alls w ith  damning

In troduction  o f linear dam ping d to  the w a ll model can have a sign ificant 

effect on these modal interactions, as we shall now see. In  Figures 4.8 and 4.9 Cq 

has a value o f 0.6, less than Figure 4.2 b u t more than Figure 4.1; the restoring- 

force param eter S =  0.15 is however the same as fo r the previous cases. Thus 

the in s ta b ility  due to  modal in teraction has a strength interm ediate to  those 

earlier examples. The plots o f and Ci fo r the TS and F modes in  F igure 4.8, 

where d =  0.05, are s im ila r to  th a t fo r F igure 4.1, except th a t the TS mode 

is now less damped than the F mode fo r wavenumbers a  less than about 0.6. 

The F mode again forms the upper branch o f the ‘bubble’ which is however 

displaced to  wavenumbers a litt le  higher than th a t shown in  F igure 4.1. The 

m axim um  value o f Ci fo r the F mode is about 0.08—  ind ica ting a m oderately 

strong in s tab ility .

A  larger damping factor d =  0.1 rad ica lly alters the characteristics o f the 

dispersion curves, as is demonstrated by Figure 4.9. The curves fo r the TS 

and F modes now cross one another, at a  1.0, and the region o f in s ta b ility
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extends to  sm aller wavenumbers. I t  is now the TS mode which is unstable—  it  

has exchanged rôles w ith  the F mode, which is now damped. This reversal o f the 

m odal s ta b ility  characteristics is due to  the fundam entally different effects o f 4
J

dam ping on the TS and F modes: the form er are Class A  and hence destabilised 

by dam ping, w h ils t the la tte r being Class B are stabilised. These energy classes 

were postulated by Benjam in (1962) and Landahl (1962), and are discussed in  

Chapter 1. Note th a t the m axim um  value o f c-, (fo r the range of wavenumbers 

considered) is reduced from  0.07 to  0.05 by the increase in  dam ping; 

b u t th is  beneficial effect must be weighed against the increase in  the range o f 

wavenumbers fo r which there are unstable eigenmodes.

The S mode-class waves are rendered less stable by w all dam ping, sug

gesting th a t they are Class A , (and hence probably upstream -propagating TS 

waves): however, the eigenvalues fo r these waves are more sensitive to  changes 

in  the w a ll parameters than is expected fo r flu id  modes, to  such an extent th a t 

the author was unable to  keep track o f them  or to  find  rig id -w a ll analogues 

(hence fewer S modes were located than TS and F modes). This indicates th a t 

they m ight be upstream -propagating w all modes (which we however expect to  

be stabilised by w a ll dam ping). Sen &: A rora  (1988) clearly hold the la tte r 

view , since they regard th e ir K H  modes as ‘sta tionary periodic ripp les’ in  the 

lim it o f |c| 0. There has been very litt le  work done on upstream -propagating

TS waves fo r any Orr-Som merfeld problem , other than the derivation o f form al 

bounds fo r the eigenvalues (Joseph 1968, 1969), although Mack (1984) does 

b rie fiy  m ention them  in  the context o f the spatia l s ta b ility  problem. Thus the 

true  nature o f these modes must be considered to  be uncertain at present.

4.5.3 O ther flu id  modes

In  add ition  to  the three mode types already described, there also exist 

higher-order flu id  modes (see for example M ack 1976, where these are discussed 

fo r the rig id -w a ll configuration) and oblique Squire modes o f v. The form er #

category fa lls in to  two d is tin c t groups, com prising discrete and continuous parts 4

of the eigenvalue spectrum. These are in  general heavily damped and hence 

often considered to  be o f litt le  practica l in terest, although as a or R  increases 

they m igrate towards c =  0 in  the (complex) phase-speed plane (th a t is, they
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4
become less damped). I t  has been suggested th a t the continuous spectrum  4|

plays a role in  the transfer o f energy between the boundary layer and the free 

stream (Corner, Houston &  Ross 1976), because the associated pertu rba tion  

velocities can rem ain sign ificant at the edge o f the boundary layer and beyond.

An example o f a higher-order (HO) mode belonging to  the discrete p a rt o f the 

spectrum  is depicted in  F igure 4.10, where a damping level d =  0.2 applies; 

see also Table 4.6(c). The HO eigenfunction and ad jo in t and those of the F 

mode are shown in  Figures 4.11 and 4.12 respectively, fo r a wavenumber of 

0.6. The TS and F eigenmodes (real parts) cross at a  «  0.86, as do the F 

and HO eigenmodes at a  »  0.65, ju s t larger than the value a t w hich we have 

sample plots o f the eigenfunctions. The TS mode is unstable, w ith  C{ having a 

m axim um  value o f ~  0.05. The F mode is strongly damped due to  the  presence 

o f w a ll damping, w ith  c\ % —0.1; and the HO is rather more heavily damped, 

having C; % —0.2. The F mode strongly resembles a typ ica l TS mode, as was 

the case in  F igure 4.6. The HO mode also has some s im ila rity  w ith  TS modes, 

bu t there are d is tinctive  ‘wobbles’ in  the profile  o f The peaks in  <f>i fo r 

the two modes are located at the critica l po in t, where — ü. Exam ination 

of the adjoints reveals remarkable sim ilarities between them  (and considerable 

differences from  any previously considered). I t  seems th a t these modes are 

in teracting in  some way, although there is no evidence o f th is  in  the behaviour 

o f Ci fo r these modes in  F igure 4.10. We are in  no doubt th a t the F mode 

has been correctly identified—  an exam ination of Figure 4.13, where there is no 

w all damping, reveals th a t fo r d =  0 the dispersion curves are q u a lita tive ly  very 

sim ilar, in  both  real and im aginary parts, to  those cases already considered in 

Figures 4.1 and 4.2.

Squire modes are solutions to  the homogeneous version o f (4.26), tha t is

“  [ l^  +  n-K(« -  c,q)|v.q =  0. (4.52)

The outer boundary cond ition is the same as fo r the cross-fiow velocities 

th a t is (4.36), b u t at the w a ll we have the simple condition (0) =  0. This is 

because Squire modes have no vertica l velocity component, and hence cannot 

induce any displacement o f the w all from  its undisturbed position. Thus in the
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linear lim it  there is no difference between Squire modes over flexib le  walls and 

th e ir rig id -w a ll counterparts, a t the same values of a  and R. The Squire-mode 

problem  is an eigensystem in  its  own rig h t, w ith  a spectrum  o f eigenvalues 

Cgq. I t  is known tha t these are a ll damped (see Davey &  Reid 1977, where the

m athem atically equivalent problem  o f tem perature modes in  a s tra tifie d  flu id  i
■I

is studied; and also M urdock &  Stewartson 1977, where the plane Poiseuille 

problem  is investigated v ia  a m odel equation). However, they may resonate lin 

early or nonlinearly w ith  the eigenvalues o f the Orr-Sommerfeld system, e ither 

exactly or approxim ately, and therefore should not be overlooked.

Solutions to  the Squire-mode equation are somewhat s im ila r to  the two 

viscous solutions o f the O rr-Som m erfeld equation. There is a continuous spec

tru m  o f damped modes w ith  c, =  1, together w ith  a set o f discrete modes having 

sm aller c^. Interactions between TS and Squire modes in  boundary-layer flow  

have been examined fo r the case o f spatia l disturbances by Nayfeh (1985): he 

found th a t the interactions could be strong, hence suggesting th a t they rep

resent an additional means o f am plify ing three-dimensional effects. H erbert 

(1983a,b) has studied forms o f secondary in s ta b ility  in  rig id -w a ll flows (th a t is, 

three-dim ensional effects th a t fo llow  the Tollm ien-Schlichting in s ta b ility ); he 

found tha t near-resonant triads can be form ed between a TS wave and a p a ir 

o f (h igh ly damped) Squire modes.

The present author experienced d iffic u lty  in  locating Squire modes: in  the 

absence of in itia l guesses, the ite ra tive  convergence scheme was unsuccessful, 

and the Principle of the Argum ent (PA) method proved inadequate; th is  is 

because, as fo r the Orr-Som m erfeld S-modes, the eigenvalues are located in  very 

narrow  troughs o f the eigenvalue function  F (c r,C i;a ,R ). Hence a substantia l 

amount o f cpu tim e is required fo r the PA a lgorithm  to reduce the in itia l contour 

in  the (c,,C i)-plane to  a size comparable to  the diameter o f the trough.

4.6 Results for the resonant-triad problem

4.6.1 Resonant triads o f three TS waves

Resonant triads com prising three TS waves were located m ain ly fo r one 

set o f w all parameters, bu t considering a w ide range of wavenumbers a  and y

Reynolds numbers R, and are presented in  Tables 4.7 and 4.8. The w a ll pa-
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ram eters were selected to  emulate a w a ll th a t is s tiff enough to  preclude linear 

m odal interactions. The real pa rt o f phase speed, c^, is generally higher than  

fo r the equivalent rig id -w a ll case. I t  is d iffic u lt to  make any firm  observations 

on the effect o f surface compliance on linear s ta b ility  from  these results, except 

to  say th a t in  the m ain both the streamwise and oblique modes are a litt le  

more am plified (or less damped) than th e ir rig id -w a ll analogues; th is  indicates 

th a t the w a ll parameters selected here are not beneficial in  prom oting tra n s itio n  

delay.

Q uadratic interaction coefficient m oduli are p lo tted  against wavenumber 

at constant R  in  Figure 4.14a, along w ith  the corresponding rig id -w a ll values.

I t  w ill be seen th a t the difference between the two cases in  term s o f these 

coefficients is on ly sm all, although the com pliant-w all values are usua lly larger.

A  comparison o f the propagation angles $ o f the oblique constituents o f the 

triads fo r the two configurations (F igure 4.14b) reveals th a t the o b liq u ity  is 

consistently greater fo r com pliant w a ll flow  than fo r rig id  w a ll flow. The phases 

o f tti and Us are given in  Table 4.7: as fo r the rig id -w a ll case (Table 3.3), 

arg tti exhib its a general decrease w ith  increasing a , w h ils t arg is much m ore 

erra tic . Q uadratic interaction coefficient m oduli and propagation angles are 

p lo tted  against Reynolds number fo r (fixed) a  — 0.29056 in  Figure 4.15, and fo r 

a  =  1.0 in  Figure 4.16. Here differences between the rig id  and com pliant cases 

are a litt le  more apparent, although they rem ain broadly sim ilar. For a  =  1.0,

the oblique coefficients a t firs t increase in  m agnitude w ith  R, bu t eventually
I

begin to  decrease; the behaviour o f th e ir respective arguments (Table 4.8) is 4
J

sim ila r to  the previous case (Table 4.7). The propagation angles $ decrease '

w ith  R  as they do w ith  a, bu t more m arkedly. i

A  few results are also given fo r a s lig h tly  s tiffe r w all in  Table 4.7. Once 

again, there is no consistent trend in  the linear s ta b ility  data, although Cj is 

sm aller than fo r the less s tiff w a ll and larger than fo r the rig id  w all (which is as 

expected, since the rig id  wall corresponds to  the lim it o f in fin ite  stiffness) .The 

quadratic in teraction coefficients are however clearly always a litt le  sm aller in  

m agnitude than fo r the less s tiff w a ll; th is  indicates th a t w all fle x ib ility  has a 4

reinforcing effect on the strength o f resonant tria d  interactions, even though no 4
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w all modes are partic ipa ting .

4.6.2 Mixed-mode resonant triads

I t  was envisaged at the outset th a t resonant triads com prising a m ixtu re  

o f TS and other modes would be o f pa rticu la r interest. However, as has already 

been mentioned, location o f such triads was hampered by the presence o f m odal 

coalescence or neàr-coalescence. Indeed, the author was unable to  locate any 

clear example o f th is  sort o f resonant tria d . This does not im p ly  th a t such 

triads do not exist, because an exhaustive search o f w all param eter space would 

require to  be undertaken before such an assertion could be made, and would 

be a daunting task. However, it  is undoubtedly true  th a t the existence o f such 

triads is crucia lly dependent on the p a rticu la r w all model considered.

I t  is quite d ifficu lt to  locate any triads w ith  oblique w a ll (F) mode con

stituents: th is is because the the eigenvalue c fo r such modes (the free-wave 

speed on the w all) varies w ith  o: according to

~  (4-53)

in  the absence o f w all dam ping. Note the differences between (4.53) and (4.51): 

the factor ~  is due to  the pa rticu la r form  o f tension we have selected; b u t the 

extra  4 in  the restoring-force term  arises from  the pa rticu la r form  o f p e rio d ic ity  

e x p { i(^ a x  ± /Jy  — |« c t ) }  th a t is required fo r C raik-type resonance. The effect 

is generally to  make c much larger than c, which obviously is detrim enta l to  the 

location o f resonant triads.

Triads comprising three w a ll modes have nevertheless been located, and 

two examples are given in  Table 4.9. The oblique in teraction coefficients |a i | 

are large, being 0 (100) w h ils t the streamwise coefficient lag] remains 0 (1). 

(Note th a t in  each case there is some linear in s tab ility , and fo r the second w a ll

mode tria d  presented Ci and Ci are bo th  ra ther large at 0 (10 “ ^). A  TS-mode 

tria d  at the same values o f a, R  and w a ll parameters as one o f the w a ll triads 

is also given, and it  w ill be observed th a t fo r the TS tria d  is substantia lly  

less than fo r the wall-mode tria d  (note also the comparative smallness o f the 

propagation angles 9 fo r the oblique modes in  both cases). The eigenfunctions, 

th e ir adjoints and the cross-flow velocity are presented in  Figure 4.17.
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Triads formed o f a streamwise TS wave and a pa ir o f oblique higher-order 

modes have been located at a Reynolds number o f 15000, and are presented in 

Table 4.9 for both rig id -w a ll and com pliant-w all configurations. The oblique 

modes are sign ificantly damped in  the linear regime (ci «  0 .1) b u t nevertheless 

have rem arkably large oblique quadratic in teraction coefficients , these being 4

0(8000) in  modulus fo r the com pliant w all and 0(6000) fo r the rig id  w all; the 

U3 rem ain 0 (1 ) in  m agnitude. These pa rticu la r triads could be w ritte n  o ff as r|

o f no practical significance because o f the ir ra ther strong linear dam ping, bu t ;

examples exh ib iting  less severe dam ping may well be possible. '4{

4.6.3 M ixed-mode resonant triads w ith  w all damping ]

The presence o f linear m odal in teraction has a strong influence on the 

nature o f resonant tria d  in teractions. Figure 4.18 shows dispersion curves for 

three modes, namely a TS, an F and a higher-order flu id  mode. A  dam ping 

coefficient d =  0.2 applies here. The TS and F mode phase speeds (real parts) 

cross at a  «  0 .86 , and strong linear in teraction is indicated by the presence o f 

a ‘bubble’ in  Figure 4.10b (c; versus a ). This particu la r scenario adm its a wide 

variety o f resonant tria d  configurations, involving a ll three o f the d iffe rent mode- 

types here present. Triads have been located at the various points m arked on the 

curves. Points A, B , C, D , E ind icate the eigenvalues o f streamwise constituents 

o f resonant triads, where a ll three pa rtic ipa ting  modes are o f TS type. In  each 

case the streamwise mode is undergoing a strong linear in te raction  w ith  the 

streamwise F-mode (the in te raction  occurs over a wide range o f wavenumbers 

a , as can be seen from  F igure 4.10b). I t  is the TS mode w h ich is driven 

unstable (c; 0.05 at m ost), b u t the w a ll damping m itigates the severity o f the

in s ta b ility  (cf. F igure 4.13, where C; % 0.088 at most for the F m ode). Points

X , Y , Z correspond to  a streamwise w a ll mode in teracting resonantly w ith  a j
pa ir o f oblique TS modes. A ll the triads located are tabulated in  Table 4.10. i

The various points A -E , X -Z  ju s t represent particu la r examples o f the triads !

th a t may be constructed; there are in  fact two continua o f points representing I

triads, each of which extends some distance along the TS and F mode dispersion 

curves (we have not determ ined these distances).

The quadratic in teraction coefficients fo r the heterogeneous TS triads are
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h igh ly  in teresting as can be seen from  F igure 4.19: |% | has a sharp spike cen

tred  a t about a  =  1.0, w ith  m axim um  m agnitude o f approxim ately 2000 . The 

streamwise coefficient 03 behaves much less spectacularly, being 0 (10) in  mag

n itude and having its  m axim um  in  the region a  =  0.8-0.9. Note however th a t 

|as I is an order o f m agnitude larger than has h ithe rto  been norm al fo r TS t r i

ads. I t  is clear from  Table 4.10 th a t the phases arg U3 , argUx o f the in teraction 

coefficients are m arkedly different from  earlier cases: eirg % is typ ica lly  ^  30® 

ra ther than roughly 90®; and the smallness o f arg 03 indicates th a t 03 is a l

m ost a pure real number. The propagation angles 9 are somewhat larger than 

previously, decreasing w ith  a  from  ~  69° to  about 57®.

The eigenfunctions, the ir associated adjoints and the cross-flow ve locity are 

presented in  Figure 4.20: the cross-flow ve locity and its  derivatives are large in  

m agnitude re la tive  to  other triads, and it  is these functions which give rise to  

the unusually large value o f 1% |. I t  was considered a possib ility  th a t the large 

values o f v are due to  resonance or near-resonance w ith  Squire modes; b u t a 

search fo r Squire modes w ith  appropriate values o f c, (tha t is, close to  0.5012) 

proved unsuccessful.

The interactions at points X , Y , Z are no less interesting (Table 4.10, F ig

ure 4.18): at po in t X , the streamwise tria d  component experiences a stronger 

resonant in teraction than its  oblique counterparts (|a |3 >  |a |i), though as a  

increases th is  in teraction weakens rap id ly  unlike the oblique ones. The phases 

arg Ü3 , arg Oi and the oblique-wave propagation angle 9 also change substan

tia lly  as a  increases from  0.8 to  1 .0 .

Points 1-4 o f F igure 4.18 and Table 4.10 designate the linear eigenvalues 

o f the streamwise constituents o f four different resonant triads th a t have been 

located fo r a streamwise wavenumber a  =  1 .2 . For points 1 and 2 the streamwise 

mode is a higher-order flu id  mode, whereas fo r points 3 and 4 the streamwise 

mode is a TS mode. The two oblique constituents o f these four triads are of the 

fo llow ing mode-classes: fo r po int 1, w a ll (F ); fo r po in t 2 , TS; fo r po in t 3, TS; 

fo r po in t 4, w a ll (F ). For each of the triads the oblique modes experience strong 

resonant in teraction, as indicated by the values o f 1% |, which are a ll 0 (100). 

The tria d  at po in t 3, comprising three TS waves, has the largest value of |u i],
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bu t by contrast also has the smallest value o f the streamwise coefficient jug |.It 

w ill be seen from  Table 4.10 th a t the phases arg @3 are again sm all, ind ica ting  

th a t «3 is alm ost pure real; no trend can be discerned in  the values o f arg U i.

D ispersion curves o f c versus the transverse wavenumber /?, a t fixed values 

0.9, 1.0 and 1.2 o f a  are given in  Figures 4.21, 4.22 and 4.23 respectively. 

B oth oblique TS and oblique F mode eigenvalues are shown, and the locations 

o f com puted resonant triads are shown. A  linear in teraction is tak ing  place 

between the TS and F modes, which increases w ith  increasing a. The mode- 

crossing phenomenon th a t is a feature o f linear interactions in  the presence of 

w a ll dam ping is observed to  occur at a =  1.2 (F igure 4.23), bu t not at the 

sm aller values o f a  (Figures 4.21, 4.22). One may speculate th a t th is  linear 

in teraction is in  some way responsible fo r the curious spike in  |% | described 

earlier, a lthough the nature o f the underlying mechanism is at present unclear. 

E igenfunctions, adjoints and cross-flow velocities fo r the triads a t points 1-4 

are given in  Figures 4.24-4.27.

In  Figure 4.24, we see th a t ^3 has the d istinctive  pro file  o f higher-order 

flu id  modes; and (j>3i has a strong peak, which is in  fact located at the c ritica l 

po in t 2c. The oblique F mode <f>i looks like a TS mode, bu t the m axim um  

value is in  fact a t the w a ll. The cross-flow velocity Vi is very much like those o f 

Figures 3.2 and 4.20, and is like  them  almost en tire ly located w ith in  the th ird  

quadrant o f the com plex plane.

From  Figure 4.25 we see th a t the oblique TS mode <l>i has the profile  

expected, w ith  its  m axim um  am plitude well away from  the w all; b u t the imag

inary p a rt resembles an F mode. (Note tha t points 1 and two share a common 

streamwise mode, as do points 3 and 4). The cross-flow ve locity is noticably 

bigger than th a t fo r po in t 1, though of very s im ila r shape.

A t po in t 3 we have a tria d  composed of three TS waves. The eigenfunction 

profiles are as expected, w ith  m axim a away from  the w a ll (F igure 4.26). The 

cross-flow ve locity has s im ila r m agnitude to  th a t fo r p o in t 1.

From Figure 4.27 we see th a t the oblique F mode eigenfunction <f>it has 

m axim um  am plitude both  at the wall and at a certa in distance from  it. The 

cross-flow ve locity Vi resembles tha t for po in t 2 in  m agnitude, bu t the defin ite
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‘k in k ’ a t 2 »  0.8 is s im ila r to  th a t occuring in  Vi for po in t 1 (and also evident 

in  Figure 4.20).

W hen considering the re la tive  magnitudes o f quadratic in te raction  coeffi

cients Ua, tti fo r different resonant triads, and even w ith in  the same tria d , it  

m ust be remembered th a t these magnitudes are dependent on the norm alisa

tions employed fo r <f>j and . T h is  is p a rticu la rly  im portan t when com paring 

w a ll modes (F or S) w ith  flu id  modes (TS or H O ). The obvious norm alisation 

to  employ fo r w a ll modes is to  set equal to  some constant, say u n ity , b u t 

th is  is not very suitable fo r flu id  modes, especially when one is also considering 

the rig id -w a ll problem. We have imposed norm alisation at a p o in t away from  

the w a ll because th is perm its investigation o f both basic scenarios.

4.7 Conclusions

4.7.1 The linear regime

We have found and exam ined four d is tin c t classes o f wave-mode fo r the 

problem  o f Blasius flow over flexib le  walls, which we labelled TS, HO , F and 

S. The Tollm ien-Schlichting (TS) class has very sim ilar properties to  its  rig id - 

w a ll counterpart, as does the HO class o f discrete higher-order wave-modes.

The class o f w all modes which we have termed F modes is identifiab le  w ith  the 

F IS I o f Carpenter &  G arrad (1986), and the C IF I o f Yeo (1986); the S class 

corresponds to  th a t o f Sen &  A ro ra  (1988).

The s ta b ility  o f TS modes is determ ined in  the absence o f m odal in te raction  

p rinc ipa lly  by the values o f wavenumber a  and Reynolds number R , being much 

less dependent on w a ll param eter-values. The F modes, being fundam enta lly 

inviscid in  character, are typ ica lly  very close to  a state o f neu tra l s ta b ility , again 

provided they are not pa rtic ip a ting  in  m odal in teraction. The S modes th a t have 

been located fo r various walls have a tendency to  be very slow-m oving (c; «  0 ), 

usually in  the upstream d irection , and have sm all to  moderate (—0.05 <  c; <  0) 

rates o f linear damping. We believe these to  be w a ll modes, a lthough th is  

has not been defin ite ly established. The HO modes tend not to  be especially 

interesting, at least in  the linear regime, as they are strongly damped except 

fo r large values o f a  and /o r R.

M odal interaction between TS waves (Class A) and F waves (Class B) al-
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m ost invariab ly produces strong in s ta b ility  o f one or other of the pa rtic ipa ting  

modes. Such interactions have some s im ila rity  to  the classical Kelvin-H elm holtz 

in s ta b ility —  the C; versus a  curves fo r the two modes have the fam ilia r ‘bub

b le ’ shape, the extent o f th is bubble ind ica ting  the range of wavenumbers over 

which linear in teraction is occurring. There are im portan t differences, how

ever: the Cp values o f the modes do not coincide during the in teraction bu t 

rem ain d is tin c t, th a t is there is no coalescence; and the phenomena o f quasi- 

K e lvin-H elm holtz in s ta b ility  and m odal exchange o f identities are not m utua lly j|

exclusive, unlike non-dissipative cases such as th a t studied earlier in  Chapter 2 .

F-mode eigenfunctions are often transform ed by modal interaction in to form s
'i.

indistinguishable from  TS-mode eigenfunctions, bu t the converse has not been 

observed.

C learly such instab ilities are most undesirable, and they are best avoided 

by choosing walls which have sufficient stiffness to  render c, fo r the F modes 

appreciably larger than c, fo r TS modes a t a ll relevant values o f a  and R,

[In  th is  work we have not investigated the linear in s ta b ility  o f oblique 

wave-modes fo r preselected propagation angles 9, being p rinc ipa lly  interested 

in  nonlinear resonant interactions. Such problem s have been adm irably studied 

elsewhere, fo r example in  the work o f Yeo (1986).]

4.7.2 Resonant tria d  interactions

We have searched fo r and located numerous examples of C raik-type reso

nant triads (C ra ik 1971), for various values o f a , R  and o f the wall parameters 

m , Cq, d, S. The located triads comprise a varie ty o f combinations o f TS, F and 

HO modes. Triads composed o f three TS waves show non triv ia l bu t sm all d iffe r

ences from  rig id -w a ll analogues regarding both the magnitudes of the quadratic 

in te raction  coefficients % and Ui and th e ir respective variations w ith  a  and R.

I t  has been demonstrated th a t triads o f three w a ll modes (tha t is, F modes) 

are possible fo r our spring-backed tensioned membrane w all model. These t r i

ads are not found at such low values o f a  as TS triads, because o f differences 

in  the «-varia tion  o f and . Constructive comparison o f quadratic interac

tio n  coefficients for wall-mode triads w ith  those fo r TS triads is d iffic u lt due to  

the d ifficu lty  in  defining a m utua lly satisfactory norm alisation o f the respective
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eigenfunctions.

Triads com prising a streamwise TS mode and two oblique (strongly lin 

early damped) HO modes have been found fo r both  rig id  and com pliant w a ll 

cases. These are notable p rinc ipa lly  fo r the rem arkably large magnitudes o f «

the quadratic in teraction coefficients : |u i| 0(1000). The streamwise, rea

sonably near-neutral TS mode has a less exceptional in te raction  coefficient, J

though: I @3 1 ^  0 (1 ). I t  is known (Mack 1976) th a t fo r HO modes C; and c, 

both approach zero w ith  increasing a  or R, im p ly ing  th a t such resonant-triad 

interactions may well be o f physical significance a t large wavenumbers. Large 

values o f R  are un like ly to  be p ractica lly im portan t however, as they tend to  

im p ly  tu rbu len t flow regimes.

A  pa rticu la r s itua tion  involving linear m odal interactions in  the presence o f 

w all damping was found to  support an abundance o f resonant triads o f varying 

com position. There are a number o f curious aspects to  the data obtained fo r 

these triads, most notably the spike in  the graph o f oblique in teraction coeffi

cient m odulus |a i,21 versus a  fo r the case o f triads composed o f three TS waves.

I t  is most un like ly tha t norm alisation has much to  do w ith  th is  pa rticu la r ef

fect, which is related to  the «-varia tion of the cross-flow velocities t/x 2 ' Linear 

resonance w ith  Squire modes may be responsible, b u t we d id  no t manage to  

prove th is .

In  conclusion, then, it  is clear th a t flexible walls greatly enrich the possi

b ilitie s  fo r the form ation o f resonant triads, b u t linear instab ilities  in  the form  

o f m odal interactions tend often to  be present fo r the required param eter val

ues. The strength o f these often vigorous instab ilities can be reduced by the 

in troduction  o f jud icious amounts o f w all dam ping, bu t th is  tends to  fu rthe r Q

com plicate the phenomenology o f the interactions.

We believe th a t our understanding o f th is  very complex problem  would be 

sign ificantly enhanced by a re-exam ination o f it  from  the standpoint o f nonlin- 

ear, h igh Reynolds number triple-deck theory, in  tandem  w ith  fu rth e r, carefully ;■

selected num erical investigations.

"  _ . _  % . ■ ' - ' ■' . - . - . J  ' ' J - -------------------------------------- , A'.'A.
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5 Overall conclusions
■J;

In  th is  work we have made w hat is to  our knowledge the firs t investigation |

o f resonant interactions in  flows over flexib le walls. This being so, it  was en

deavoured to  restric t a tten tion  to  re la tive ly  simple problems using sim ple w a ll 

models. F irs tly , in  Chapter 2 free-surface inviscid flow over a flexib le  w a ll was 

studied: th is  could be described as a model problem , a pre lim inary foray in to  

th is  area o f hydronamic s ta b ility  theory. The phenomenology o f linear m odal 

in teractions was examined in  de ta il, g iv ing valuable insight and com plementing 

the w ork o f other authors fo r d ifferent (bu t in  some sense analogous) flow con

figurations. The am plitude evolution equations for resonant tria d  interactions 

were derived both by a m u ltip le  scales approach and by an averaged Lagrangian 

technique, the forms o f the in te raction  coefficients being given exp lic itly .

Chapter 3 was concerned w ith  Blasius flow over a rig id  w a ll. O ur m ain 

aim  was to  extend the w ork o f Hendriks (appendix to  Usher &  C raik 1975) 

on resonant-triad interactions. The orig ina l form ulation of C raik (1971) was 

re-derived, and a considerable num ber of resonant triads together w ith  the ir 

associated quadratic in teraction coefficients was computed. The coefficients 

were found to  increase substantia lly bo th  w ith  increasing wavenumber and w ith  

increasing Reynolds number, as broad ly predicted by C raik (1971).

In  Chapter 4 we proceeded to  study the top ica l subject o f Blasius flow over 

flexib le  walls. Some illu s tra tive  linear results were given, showing the severe and 

generally detrim ental effects o f linear m odal interactions. Three-dim ensional 

resonant triads were then sought and located, and the quadratic in teraction 

coefficients determ ined num erically. As had been anticipated, the m u ltip lic ity  o f 

mode-types was shown to  give rise to  many interesting phenomena; these can be 

expected to  be o f importance in  selecting and designing com pliant surfaces w ith  

op tim a l transition-delaying properties, although it  is recognised th a t fu rth e r 

w ork is necessary to explain a ll the characteristics of the resonant interactions 

reported herein.

83
4lc#

J



References

A m fîlokhiev, V . B ., Droblenkov, V . V . &  Zavordkhina, A . S. (1972) G row th 

of sm all disturbances in  a boundary layer on an elastic surface. [In  Russian.]

PM TF-Zh . P r ik l Mekh, i  Tekh. Fiz., M a rch -A p ril, 137-139 

B a ll, F. K . (1964) Energy transfer between external and in te rna l g rav ity  waves.

J. F lu id  Mech. 19, 465-78

Benjam in, T . B . (1959) Shearing flow over a wavy boundary. J. F lu id  Mech.

6 , 161-205

Benjam in, T . B. (1960) Effects o f a flexible boundary on hydrodynam ic stab ility , 

j r .  F lu id  Mech. 9 , 513-532

Benjam in, T . B . (1963) The threefold classification o f unstable disturbances in  

flexib le  surfaces bounding inviscid flows. J. F lu id  Mech. 16, 436-450 

Benjam in, T . B . (1964) F lu id  flow w ith  flexib le boundaries. In  Proc. 11th In tl.

Congr. Appl. Mech., Munich  (ed. H. G ortle r), p l09 . Springer.

B iringen, S. (1984) Active control o f trans ition  by periodic suction blow ing.

Phys. F lu ids  27(6), 1345

Brazier-Sm ith, P. R. &  Scott, J. F. (1984) S ta b ility  o f flu id  flow  in  the presence 

o f a com pliant surface. Wave M otion  6 , 547-560

Bretherton, F. P. (1964) Resonant interactions between waves. The case of 

discrete oscillations. J. F lu id  Mech. 2 0 , 457-479 

Buckingham , R. A . (1957) Numerical Methods. London: P itm an 

Cairns, R . A . (1979) The role o f negative energy waves in  some instab ilities of 

para lle l flows. J. F lu id  Mech. 92, 1-14

Case, K . M . &  C hiu, S. C. (1977) Three-wave resonant interactions o f g ravity- 

cap illa ry waves. Phys. Fluids 20, 742-745

Carpenter, P. W . (1985) The optim iza tion o f com pliant surfaces fo r trans ition  

delay. University o f Exeter Technical note 85/2

Carpenter, P. W . (1989) Status o f transition  delay using com pliant walls. In  |

Viscous Drag Reduction (eds. D. M . Bushnell, J. N. Heffner), A IA A  (to appear) ;

Carpenter, P. W . &  G arrad, A. D. (1985) The hydrodynam ic s ta b ility  o f flow %

over K ram er-type com pliant surfaces. Part 1. Tollm ien-Schlichting instab ilities.

84

k . . . , . . . a



85

J. F lu id  Mech. 155, 465-510

Carpenter, P. W . &  G arrad, A . D . (1986) The hydrodynam ic s ta b ility  o f flow 

over Kram er-type com pliant surfaces. Part 2. Flow-induced surface in s ta b ili

ties. J. Flu id  Mech. 170, 199-232

Corner, D ., Houston, D . J. R. &  Ross, M . A. S. (1976) H igher eigenstates in  

boundary- layer s ta b ility  theory. J. F lu id  Mech. 77, 81-103 

C ra ik, A . D. D. (1968) Resonant gravity-wave interactions in  a shear flow. J.

F lu id  Mech 34, 531-549 

C ra ik, A . D. D. (1971) N on-linear resonant in s ta b ility  in  boundary layers. J. |

F lu id  Mech. 50, 393-413 j

C ra ik, A . D. D. (1986a) Wave Interactions And F lu id  Flows. Cambridge: ;

C.U.P. i
j

C ra ik, A . D. D. (1986b) Exact solutions o f non-conservative equations fo r three- 4

wave and second-harmonic resonance. Proc. Roy. Soc. A  406, 1 -1 2  

C raik, A . D. D. (1987) A  note on the exact solutions fo r non-conservative three- 

wave resonance. Proc. Roy. Soc. Edin. 106A , 205-207

C raik, A . D. D. &  Adam , J. A . (1978) Evolution in space and tim e o f resonant 

wave triads. I. The ‘pump-wave approxim ation’. Proc. Roy. Soc. A  363,

243-255

C raik, A . D . D. &  Adam , J. A . (1979) ‘Explosive’ resonant wave interactions 

in  a three-layer flu id  flow . J. F lu id  Mech. 92, 15-33

Davey, A. (1980) On the num erical solution of d ifficu lt boundary-value prob

lems. J. Comp. Phys. 35(1), 36-47

Davey, A . &  Nguyen, H. P. F . (1971) F in ite-am plitude s ta b ility  o f pipe flow . J.

F lu id  Mech. 45, 701-720

Davey, A . &  Reid, W . H. (1977) On the s tab ility  o f s tra tified  viscous plane 

Couette flow. Part 1: Constant buoyancy flow. J. Flu id  Mech. 80, 509-525 

Dom aradzki, J. &  M etcalfe, R. W . (1987) S tabilization o f lam inar boundary 

layers by com pliant membranes. Phys. Fluids  30(3), 695-705 

Fasel, H. (1976) Investigation o f the s tab ility  of boundary layers by a fin ite - "J

difference model o f the Navier-Stokes equations. J. F lu id  Mech. 78, 355-383

I

1



A

Gad-el-Hak, M . (1986) Com pliant coatings research: a guide to  the experimen

ta lis t. J. Fluids and Structures 1 (1), 55-70

Gad-el-Hak, M ., Blackwelder, R. F. &  R iley, J. J. (1984) On the in te raction  o f 

com pliant coatings w ith  boundary-layer flows. J. F lu id  Mech. 140, 257-280 

G aster, M . (1962) A note on the re la tion between tem porally-increasing and 

spatia lly-increasing disturbances in  hydrodynam ic stab ility . J. F lu id  Mech. 14,

222-224

Gaster, M . (1965) On the generation o f spa tia lly  growing waves in  a boundary |

layer. J. F lu id  Mech. 2 2 , 433-441

Gaster, M . (1977) Series representation o f the eigenvalues of the Orr-Som mer

feld equation. Lam inar-turbulent transition: A G A R D  conference proceedings |

No. 224

G ill, A . E. &  Davey, A. (1969) Instab ilities  o f a buoyancy-driven system. J.

F lu id  Mech. 35, 775-798 I
Grosch, C. E. &  Salwen, H. (1978) The continuous spectrum of the Orr-Som m 

erfeld equation. P art 1. The spectrum  and the eigenfunctions. J. F lu id  Mech. |

87, 33-54

Grosskreutz, R. (1971) Wechselwirkungen zwischen turbulenten Grenzschichten 

und weichen Wanden. M P I fu r Stromungsforschung und der AVA, Gottingen,

M it t .  No. 53

G rosskreutz, R. (1975) An a ttem pt to  contro l boundary-layer turbulence w ith  

nonisotropic com pliant walls. University Science Journal (Dar es Salaam) 1 , |

67-73

G yorgyfalvy, D. (1967) Possibilities o f drag reduction by the use o f flexib le  skin.

J. A irc ra ft 4, 186-192

H a ll, M . S. (1988) The in teraction between a com pliant m aterial and an unstable 

boundary layer flow. J. Comp. Phys. 76, 33-47 

Hansen, R. J. &  Hunston, D. L. (1983) F lu id -p roperty effects on flow-generated 

waves on a com pliant surface. J. F lu id  Mech. 133, 161-177 

H erbert, T . (1983a) Subharmonic three-dim ensional disturbances in  unstable 

shear flows. A IA A  Paper 83-1759

H erbert, T . (1983b) Modes of secondary in s ta b ility  in plane Poiseuille flow.

86



Proc. lU T A M  Symp. ‘Tubulence and Chaotic Phenomena in  F lu ids^ Kyoto  

1983

Herbert, T . (1984) Analysis o f the subharmonic route to  tran s ition  in  boundary 

layers. A IA A  Paper 84-0009 

Herbert, T . (1988) Secondary in s ta b ility  in  boundary layers. Ann. Rev. F lu id  |

Mech. 2 0 , 487-526

Ince, E. L . (1956) O rdinary D ifferentia l Equations. Dover 

Jimenez, J. &  W hitham , G. B. (1976) An averaged Lagrangian m ethod for 

dissipative wavetrains. Proc. Roy. Soc. A  349, 277-287 

Jordinson, R. (1970) The fla t-p la te  boundary layer. P art 1. Num erical integra

tion  o f the Orr-Som m erfeld equation. J. F lu id  Mech. 43, 801-811 

Jordinson, R. (1971) Spectrum  o f eigenvalues o f the Orr-Som m erfeld equation 

for Blasius flow. Phys. F lu ids  14, 2535-7

Joseph, D . D . (1968) Eigenvalue bounds fo r the O rr-Som m erfeld equation. J.

F lu id  Mech. 33, 617-621

Joseph, D . D. (1969) Eigenvalue bounds fo r the Orr-Som merfeld equation. Part

2 . J. F lu id  Mech. 36, 721-734

Kachanov, Yu. S. &  Levchenko, Ya. V . (1984) The resonant in te raction  o f dis

turbances at lam inar-tu rbu len t transition  in  a boundary layer. J. F lu id  Mech.

138,209-247

Kaup, D. J. (1981) The lum p solutions of the Backlund transform ation for 

the three-dim ensional three-wave resonant in teraction. J. M ath. Phys. 2 2 ,

1176-1181

Kaup, D. J., Reiman, A . &  Bers, A . (1979) Space-time evolution ofnonlinear 

three-wave interactions. I. Interactions in a homogeneous m edium . Rev. Mod.

Phys. 51, 275-310 [E rra ta , in  Rev. Mod. Phys. 51, 915, are corrected in  

reprints.]

Klebanoff, P. S., T idstrom , K . D. &  Sargent, L . M . (1962) The three-dim ension

al nature o f boundary-layer in s ta b ility  J. F lu id  Mech. 1 2 , 1-34 

Kleiser, L. &  Laurien, E. (1985) Numerical investigation of in teractive  trans ition  

control. A IA A  Paper 85-0566

K oro tk in , A. I. (1965) The s ta b ility  o f lam inar boundary layers in  the presence

87



88

o f com pliant boundaries. M .I.T . Sc.D. Thesis 

K ram er, M . O. (1957) Boundary-layer stabilisa tion by d is tribu ted  dam ping. J. f

Aero. Sci. 24,459

Kram er, M . O. (1960) The dolphins’ secret. New Scientist 7, 1118-1120 

K ram er, M . O. (1962) Boundary-layer stabilisa tion by d is tribu ted  dam ping. J.

Am. Soc. Naval Engrs. 74, 341-348

K ram er, M . O. (1965) Hydrodynam ics o f the dolphin. Adv. in  Hydrosci. 2 ,

111-130 I

Landahl, M . T . (1962) On the s ta b ility  o f a lam inar incompressible boundary %

layer over a flexible surface J. F lu id  Mech. 13, 609-632 

Landau, L. D. (1944) On the problem  o f turbulence. C.R. Acad. Sci. U.R.S.S. «

44,311-314 (Also Collected Papers (1965), pp. 387-391)

Landahl, M . T . &  Kaplan, R. E. (1965) Effect o f com pliant walls on boundary 

layer s ta b ility  and transition . AG ARDograph  97-1-353 i

Lekoudis, S. G. &  Sengupta, T . K . (1986) Two-dimensional tu rb u le n t boundary ,i

layers over rig id  and m oving swept wavy surfaces. Phys. F lu ids  29, 964-970 

L in , C. C. (1945) On the s ta b ility  o f two-dim ensional paralle l flows. Parts I, I I  

and III .  Q. Appl. M aths 3, 117-142, 218-234, 277-301

Luke, J. C. (1967) A  varia tiona l p rincip le  fo r a flu id  w ith  a free surface. J.

F lu id  Mech. 27, 395-397

M a, Y .-C . (1984) Resonant triads and direct resonance for K e lvin -H elm holtz 

waves. Phys. Fluids 27, 571-578

M ack, L. M . (1976) A  num erical study o f the tem poral eigenvalue spectrum  of 

the Blasius boundary layer. J. F lu id  Mech. 73, 497-520

M ack, L. M . (1984) Boundary-layer s ta b ility  theory. AG AR D  special course on 

s tab ility  and transition o f lam inar Bow

M etcalfe, R. W ., R utland, C .J., Duncan, J.H . &  Riley, J. J. (1986) Num erical 

sim ulations o f active stabiliza tions o f lam inar boundary layers. A IA A  J. 24,

1494-1501

M iles, J. W. (1957) On the generation o f surface waves by shear flows. J. F lu id  

Mech. 3, 185-199

M iles, J. W. (1959a) On the generation of surface waves by shear flows. P art

• ••.. .r  ̂ i. i i .? i, '■‘v ? . 'J *1... t . .' :/ \ .. , »- J



2 . J. F lu id  Mech. 6 , 568-582 

M iles, J. W . (1959b) On the generation o f surface waves by shear flows. P a rt 4

3. Ke lvin-H elm holtz instab ility . J. F lu id  Mech. 6 , 583-598 

M iles, J. W . (1962) On the generation o f surface waves by shear flows. P art 4.

J. F lu id  Mech. 13, 433-448 Î

M iles, J. W . (1986) Weakly nonlinear waves in  a s tra tifled  flu id : a va ria tiona l 

form ula tion. J. F lu id  Mech. 172, 499-512

M urdock, J. W . &  Stewartson, K . (1977) Spectrum  o f the Orr-Som m erfeld 

equation. Phys. Fluids 20, 1404-1411

Nayfeh, A . H. (1985) Three-dimensional spatia l secondary in s ta b ility  in  bound

ary-layer flows, A IA A  Paper 85-1697

Ng, B. S. &  Reid, W . H. (1979) An in itia l value m ethod fo r eigenvalue problems 

using compound matrices. J. Comp. Phys. 30(1), 125-136 

Nisewanger, C. R. (1964) Flow noise and drag measurements o f vehicle w ith  |

com pliant coating. U.S. Naval Ordnance Test Station^ China Lake, California.

NAVW EPS Rep. 8518

Nonweiler, T . (1961) Q ualita tive solutions o f the s ta b ility  equation fo r a bound

ary layer in  contact w ith  various forms of flexib le surface. A.R.C. Rep. No. 2 2 ,

670

Orszag, S, A . (1971) Accurate solution of the Orr-Som m erfeld s ta b ility  equa

tio n . J. F lu id  Mech. 50, 689-703

Pur year, F . W . (1962) Boundary layer contro l drag reduction by com pliant 

surfaces. U.S. Dept, o f Navy, David Taylor M odel Basin. Report 1668 

R iley, J. J., Gad-el-Hak, M . &  M etcalfe, R. W . (1988) Com pliant coatings.

Ann. Rev. F lu id  Mech. 2 0 , 393-420

R itte r, H. &  Messum, L. T . (1964) W ater tunnel measurements o f tu rbu len t 

skin fric tio n  on six different com pliant surfaces o f one foot length. A d m ira lty  

Research Laboratory Report A R L /G /N 9

R itte r, H. &  Porteous, J S. (1965) W ater tunnel measurements of skin fric tio n  

on a com pliant coating. A dm ira lty  Research Laboratory Report 

A R L /N 3 /G /H Y /9 /7

Saric, W . S. &  Thomas, A. S. W . (1984) Experiments on the subharmonic

89



I

route to turbulence in  boundary layers. Proc. lU T A M  Symp. ‘Turbulence and 

Chaotic Phenomena in  F luids \  Kyo to  1983

Schlichting, H. (1933) Zur Entstehung der Turbulenz bei der P lattenstrom ung.

Z. angew. M ath. Mech. 13, 171-174 

Sen, P. K . &  A rora, D . S. (1988) On the s ta b ility  o f lam inar boundary-layer |

flow over a fla t-p la te  w ith  a com pliant surface. J. F lu id  Mech. 197 , 201-240 

Sen, P. K . &  Venkateswarlu, D. (1983) On the s ta b ility  o f plane-Poiseuille flow 

to  fin ite-am plitude disturbances, considering the higher-order Landau coeffi

cients. J. F lu id  Mech. 133, 179-206
'I

Sen, P. K ., Venkateswarlu, D. &  M a ji, S. (1985) On the s ta b ility  o f pipe- 

Poiseuille flow to fln ite -am p litude  axisym m etric and non-axisym m etric d is tu r

bances. J. F lu id  Mech. 158, 289-316

Simmons, W .F. (1969) A  varia tiona l method for weak resonant wave interac

tions. Proc. Roy. Soc. A  309 , 551-575

Sm ith, F. T . (1979) On the non-paralle l flow  s ta b ility  o f the Blasius boundary 

layer. Proc. Roy. Soc. A  366, 91-109

Sm ith, F. T . &  Stewart, P. A . (1987) The resonant-triad nonlinear in te raction  

in  boundary-layer tran s ition . J. F lu id  Mech. 179, 227-252 

Squire, H. B. (1933) On the s ta b ility  fo r three-dim ensional disturbances o f 

viscous flu id  flow between para lle l walls. Proc. Roy. Soc. A  142, 621-628 

S tuart, J. T . (1960) On the non-linear mechanics o f wave disturbances in  stable 

and unstable para lle l flows. P art 1. The basic behaviour in  plane Poiseuille 

flow. J. F lu id  Mech. 9 , 353-370

Thomas, L . H. (1953) The s ta b ility  o f plane Poiseuille flow . Phys. Rev. 91,

780-784

Thomas, M . D. (1988) Comparison o f the compound m a trix  and orthonorm al

isation methods fo r ca lcu la ting the s ta b ility  o f heated water boundary layers.

A dm ira lty  Research Establishment Tech. Memo. AR E(U H A) 88505 

Thomas, M . D. &  C ra ik, A . D. D. (1988) Three-wave resonance fo r free-surface 

flows over flexible boundaries. J. Fluids and Structures 2 , 323-338 

Tollm ien, W . (1929) Über die Entstehung der Turbulenz. 1 . M itt. ,  Nachr. Ges.

Wiss. Gottingen, M ath. Phys. Klasse, pp. 21-44

90



I

Usher, J. R. &  C raik, A . D. D. (1974) Nonlinear wave interactions in  shear 

flows. P art 1. A  varational fo rm ula tion . J. F lu id  Mech. 6 6 , 209-221 

Usher, J. R. &  C raik, A . D. D. (1975) Nonlinear wave interactions in  shear 

flows. P art 2 . Th ird -order theory. J. F lu id  Mech. 70, 437-461 

Volodin, A. G. &  Zel’man, M . B. (1979) Three-wave resonance in te raction  o f 

disturbances in  a boundary layer. F lu id  Dyn. 13, 698-703 [T ranslation o f |

Mekh. Zhid. i  Gaza 5, 78-84]

W atson, J. (1960) On the non-linear mechanics of wave disturbances in  stable 

and unstable paralle l flows. P art 2 . The development o f a so lu tion fo r plane |

Poiseuille flow and fo r plane Couette flow. J. F lu id  Mech. 9, 371-389 

W eiland, J. &  W ilhelmsson, H. (1977) Coherent nonlinear interaction o f waves 

in  plasmas. O xford: Pergamon

W ersinger, J-M ., F inn, J. M . &  O tt, E. (1980a) B ifurcations and strange be

haviour in  in s ta b ility  saturation by nonlinear mode coupling. Phys. Rev. Le tt.

44, 453-456

W ersinger, J-M ., F inn, J. M . &  O tt, E. (1980b) B ifu rcation and ‘strange’ be- S

haviour in  in s ta b ility  saturation by nonlinear three wave mode coupling. Phys. 4

Fluids  23, 1142-1154

W hitham , G. B. (1974) Linear and Nonlinear Waves. W iley 

W illis , G, J. K . (1986) Hydrodynam ic s ta b ility  o f boundary layers over com pli

ant surfaces. Ph.D . Thesis, U n iversity o f Exeter 

Veo, K . S. (1986) The s ta b ility  o f flow  over flexible surfaces. Ph.D . Thesis, '"4

U niversity of Cambridge

Yeo, K . S. (1988) The s ta b ility  o f boundary-layer flow over single- and m u lti

layer viscoelastic walls. J. F lu id  Mech. 196, 359-408 

Yeo, K . S. and Dowling, A . P. (1987) The s ta b ility  o f inviscid flows over passive 

compliant walls. J. F lu id  Mech. 183, 265-292

91 4



Appendix A

f  =  —2t I  — — j ^ ~ ~ +  ^ if^ j ) cosh(fcjA) I  (A l)

q( 3 ) =1 { i(w y + i -  tJ .k y + i) fc y + i(A ‘ + i  s inh (Â ;y+ i/i) +  cosh(fcy+ ih ))a*+2

+i(wy+2 -  U.ky+a)Â:y+2(A;.j.3 sinh(fcy+ah) +  Bt+g cosh(Ay+2/i))aJ+i 

+fcy+ ik y + 2 ( A ;+ 1 sinh(fcy + 1h) +   ̂cosh(ky + 1h))

X ( A ^ + a  s i n h ( k y + 2 k )  +  H y + g  C O S h (k y + 2 k ) )  -  k y + i . k y + 2  

X {A*.  ̂1 c o s h ( k y + 1 h) -f- B*^ ̂  s i n h ( k y + 1 h))

X ( A * .^ 2  C O s h (k y + 2 k )  +  B y ^ 2  s i n h ( k y + 2 k ) )  — c o s h (k y k )

+ i +1 ) k y + 1 1 6 y ^ 2

+  i ( W y + 2  — U . k y ^ . 2 ) k y y _ 2 B * ^ 2 ^ y + l  +  k y + i  ky^ . 2 B y ^   ̂B y ^  2

- k y + i . k y + 2 ^ y + i ^ y + 2 |  ~  i k ÿ ^ (w y  -  U . k y )  s i n h ( k y k )

X  [k y  .k y  +  2 ̂ y +  1 -'^y +  2 +  1 ■̂ j+ 1 +  2 ] }

RIU =  _  2 s i n h ( k y k )  |  ^ ^ ^ ( c j y  — U . k y )   ̂ (Wy +  " i k y )
I p

(Wy -  u .k y )  ̂ 1̂—̂ ( W y  -  Cgky +  Wky Wy ) ~  ~  P 9 ) k j  |  (A3)

= _  {ky.ky+2ay+i(AJ^.2 cosh(ky+2k) +  B ;^2  sinh((ky+2k)

+ k y  . k y + 1 Oy^ 2 ( ^ y + 1 c o s h (k y + 1 h) +  B T +   ̂ ( s in h ( k y + 1  h)

+i(wy - U . k y ) “ ^ky sinh(kyk)[i(wy+i - U .k y + i ) k y + i B ; ^ . i6 ; + 2  

+i(wy+ 2 "  U .ky+ 2 )ky+ 2 By^ g 11 +  ky + 1 ky+ 2 B j  + 1 By^ g

-k y + i .k y + 2 A J ^ iA * + 2  "  cosh(kyk)

X  [k y  .k y  ̂  1 A y ^  1 6y_p 2 +  k y  k y  4.2 A y  4. g 6y_^ j  j j  ( A 4)
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l/y = 4
m

I P
(^3  +  (^3 ~  U .ky

cosh^(kyk)
(Wy-U.ky)5

-  ”  C jk j  +  i/fcyWy) -  I

+(wy — U . k y ) "   ̂ ( g  -\-------  ) l  (A 5 )

A - | :  |(u,< -  U .k , ) ( w ,+ .  -  u . k , +  . )  +  ^

n ̂ z t ë r ]  È { ( w , - u . k , ) ( w . + ._ u . k , + . )
 ̂ cosh(kyk)

(w? — cjk? 4- ilk ^W i)  h 5

L t! (

+  k ik i+ i iw T  -  c^fc; +  uiCiijji} -  -
LP /)

\p ~ ^ M ^ h i ~ 4 ^ h i  + i/k ,4 -iW f4 .i) +
(wi ”  U .k f ) (a ; , + 1  — U  kf+1) /

(A6)

. 3
i '  = "  [ky (Ay cosh(kyk) +  Ê j  sinh(kyk))(A*. sinh(kyk) +  B *  cosh(kyk))

y= i

+  ky(Ay cosh(kyk) 4- B j  sinh(kyk))(Â* sinh(kyk) 4- BT cosh(kyk))  

+  ky+ 1 ky+atty (Ay+ i sinh(ky4- 1 k)  4* By+ j C0Sll{ky4. i h))

X (Ay + 2 s in h ( k y + 2 k )  4- By+g C08h ( k y + g k ) )  4- ^ k y + i . k y + g  

X  (Ay c o s h (k y k )  4- By s i n h ( k y k ) )

X  { û y + i  (Ay+2 cosh(ky+2k) 4* By+g smh(ky+2k))

4- ay+ 2 (Ay+1 cosh(ky+1 h) 4- B y + 1 sinh(ky+1 h))

4- 2(wy -  U .ky){ iay(A y cosh(kyk) 4- BT sinh(kyk))

4- ioy(A*. cosh(kyk) 4- BT s in h (k y + ik ))}

4- ifcy+ 2 (wy+ 1 -  u ,ky+ 1  )ay dy+ i 

X (Ay + 2 s inh (ky+2 k) 4- By+2 cosh(ky+2k))

4- 2 (g  4- ~ ^ ) a j  à* -  2ay,  ̂(A* cosh(kyk) 4- B* sinh(kyk))
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—  k y  ( Â y  B y  +  A y  B y  )  —  k y +  i  k y  +  2  B y  +  1 B y  +  2

-  g ( k y + i  +  k y + 2 ) 6 y A y + i  A y + 2  “  2 i ( W y  - U . k y ) ( 6 y A y  " h  S y  A y  )

“  1 "ky+2 Ay (6y+ 1 Ay+ 2 +  ^y+ g Ay+ 1 )

—  i(W y +  1  — U . k y +  1  )6 y  6 y +  1  B y + g  k y + g

-  2 [  — ( W y  -  C o k J )  -  -  g ) ] 6 y S y

+  2 6 y ,f  A y  — 2 i — W y 6 y ,,.6 y

— 2 ( A y  c o s h ( k y k )  +  B y  s i n h ( k y k ) ) U . V a y

Of m* mf fn  ^
+  2 i^ o ,k y .V o ; +  2A *U .V 5y +  2 i— c’ iy k , .V 6*

-  ^ { ( ^ s in h ( 2k ,k ) +  fc ,/i)A *k ,-.V A ,

+  ( i  sinh(2k ,ft) — k jh ) B jk j .V B j  

+  sinh“ (ky h) (B ; k , .VA,- +  a;. ky . VBy } ] +  c.c}

[  jg +  p -^ ik f .)

'  \ ( w y - U . k y )

cosh^(kyk)
( W y - U . k y ) ^

—  (WyU.ky — Cgky ) — — +  ^ }
„ f  mwy cosh^(kyk) )

K - U .k y ) 4  }

Cy =  +  mc„(wy - U . k y )  cosh^(fcyk))

+ cosh®(kyk) sinh(kyk) _ cosh^(kyk) 1

"  k ^ W y - U . k y ) «  jk5 (W y -U .k y ) +

mky

+

P
, (J )2
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2B /  cosh (kyk)sinh  (ky k)

> ' ] }
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Appendix B

“  ^ ^ o )  + i^ c d - B ]À 3 }

(0) 1^3 (0) +  («^ +  iaRc)xf)^{0)]

^ 3(0 )^3(0)[iaR (2 iacm  -  d) -  3 ] (B 5)

^(3) _  g
me ,

J

=  -R { ia c p [^ ^  +  /s -  ia /4 +  c  ̂[ma^{c^ -  c^) +  iacd  -  S] / ^ }  (B 2)

(84) I

O '(0)B

+  /  {<̂ 3 ~  <f>s)̂ 3 d,Z
J o

«'i =  WIV""(0) +  ( f  +  ilR 'c )^ i (0)1

-  ; ^ 4 l ^ ^ 'i(0 )^ i (0)lh iJ(iQ :cm  -  (i) -  ^ B i]  (B6)

+  /  ( ' !> " - ' f  <l>i)'l)i dz 
J o

/•«> 1 J
I  +  t/»3 (0 ) [ia c /i +  %'(0) /g +  /s — ia /4  4- ;——B 3 / 2]
Jo la B  (B 7) 1
1 ü 'fO l ^

-  ; ^ [ / i  +  I ^ A I K ( O )  +  ((^  4-m Bc)V,8(0)i

Cl =  +  “ ^2 4- - r V A s I K (0) 4- (1  ̂ 4- (O)]

+  y  F i ^ i d z -  ^ 0 i(O ){ i7 A 4  -  —  A5 -  ^Ae (B 8 )

~  + ^ c A 2 -  iü '(0)A3] -  r ^ B i A3 }
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where

27

<^i(o)vx(o)
■7» V 8 2

- l< ^ i(0 )  (§ ^ lX 0 ) - ,9 6 ;(0 ) ) )

+  ( § ( C ( 0 )  - f  ̂ ;X 0)) -  W ( 0 )  - f  o ;(o ))) ( B ii)

A  =  -  ( % ( 0 )  +  i ( —

- \ ^ v [  (0) +  i7 ( - j—  (0)^ (B12)

“  ~ 2  (0 )^ (B13)

Ag =  -»?3 (B14)

As -  - i -  (^u'[0)v*iVo “  2^t)J (0)?73 + ^ 3 (0 )77* +  )^l*(0)r)3  ) (B l5 )

A4 = -  “ (»? IpU O)  +  m P i ( 0 ) )  +  i i r i z < l> l " { 0 )  -  \ a r j ; ( f> ” {0 )

+  (<̂ 3 (0) +  «̂ 3 (0)) (B I6 )
4

96

h  =  n. ( ^ K io )  -  ~ m o ) )  (B9)

A  =  i “ »)i -  ^ ^ 'i(O )  -  5 « '(0 )> î:) (BIO)

ÎÎ

A =ë«7i(f̂ "(o)-/Se;(o))-ifviPi(o) + î «'(o);,. (%(o) + fe;(o)) 1



2R

Ae = i ^  +  f  ® r(o )) -  2 M o m v ' { o )  +  f e r w ) )

-  ( w ( o )  +  : ^ w ; " " ( o )  - 7 V : " ( o ) )

+  -  f « I '( 0 ) ) )  (518)
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i f  O? a d  ry2
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a R (c  p c j) [Caster] (t' n ^  i) (a)

0 . 8 7 1 6 9
0 . 5 8 1 1 3
0 . 4 3 5 8 4

1 4 5 2 . 8  
4 3 5 8 . 4  
8 7 1 6 .  9

( 0 . 3 9 7 6 8 ,  - 0 . 0 0 0 9 3 )  
( 0 . 3 1 5 6 1 ,  0 . 0 1 5 7 8 )  
( 0 . 2 6 8 1 3 ,  0 . 0 1 8 5 4 )

( 0 . 3 9 7 6 8 ,  - 0  
( 0 . 3 1 5 6 2 ,  0 
( 0 . 2 6 8 1 3 ,  0

. 0 0 0 9 3 )

. 0 1 5 7 8 )

. 0 1 8 5 4 )

a R (c p c j) [Mack] (C r,C j) (b)

0 . 8 9 5
0 . 8 9 5
0 . 8 9 5

2 9 0 0 . 0  
5000 .0  

1 0 0 0 0 . 0

( 0 . 3 6 4 1 ,  0 . 0 0 8 0 )  
( 0 . 3 3 8 3 ,  0 . 0 0 4 8 )  
( 0 . 3 0 8 9 , - 0 . 0 1 6 6 )

( 0 . 3 6 4 1 ,  0 .  
( 0 . 3 3 8 3 ,  0 .
( 0 . 3 0 8 9 ,  - 0 .

0080 )
0048 )
0166 )

TABLE 3.1 R igid wall, linear eigenvalues: (a) firs t column, data o f Gaster (1977); (b) firs t 

column, data o f Mack (1976); second column in both cases, data o f present author.

a r R Cr Ci |a 3 I | 3 i l

0 . 2 9 0 5 6 0 . 1 7 9 2 0 . 2 3 0 7 1 6 1 3 . 7 0 . 2 8 6 0 - 0 . 0 4 6 1 - 0 . 0 8 8 8 0 . 8 2 5 0 . 9 4 9  (a)
0 . 5 8 1 1 3 0 . 3 5 1 2 0 . 4 5 5 8 1 6 3 3 . 7 0 . 3 3 9 4 0 . 0 0 4 1 - 0 . 0 2 9 5 0 . 2 4 2 3 . 8 2
0 . 7 3 8 0 3 0 . 4 3 0 3 0 . 5 6 6 9 1 6 6 8 . 2 0 . 3 5 6 9 0 . 0 1 0 1 - 0 . 0 1 2 2 0 . 452 6 . 0 2
0 . 8 7 1 6 9 0 . 4 9 5 5 0 . 6 5 9 9 1 6 9 2 . 7 0 . 3 6 8 5 0 . 0 0 8 3 - 0 . 0 0 3 4 0 . 5 3 6 8 . 7 2
1 . 1 6 2 3 0 . 6 0 6 9 0 . 8 4 0 3 1 7 7 2 . 4 0 . 3 8 4 7 - 0 . 0 1 0 8 0 . 0 0 3 5 0 . 642 1 9 . 1 3
1 . 4 5 2 8 0 . 5 5 6 0 0 . 9 1 4 8 2 0 3 5 . 0 0 . 3 8 3 5 - 0 . 0 4 4 6 0 . 0 0 4 8 0 . 977 3 0 . 2 2

0 . 2 9 0 5 6 0 . 1 7 9 3 0 . 2 3 0 7 1 6 1 3 . 7 0 . 2 8 5 9 - 0 . 0 4 6 1 - 0 . 0 8 8 8 0 . 8 2 4 0 . 8 9 0 ( b )
0 . 5 8 1 1 3 0 . 3 5 1 3 0 . 4 5 5 9 1 6 3 3 . 4 0 . 3 3 9 4 0 . 0 0 4 1 - 0 . 0 2 9 4 0 . 247 3 . 9 2
0 . 7 3 8 0 3 0 . 4 3 0 0 0 . 5 6 6 6 1 6 6 9 . 1 0 . 3 5 7 0 0 . 0 1 0 2 - 0 . 0 1 2 2 0 . 4 5 5 6 . 1 2
0 . 8 7 1 6 9 0 . 4 9 5 4 0 . 6 5 9 8 1 6 9 2 . 9 0 . 3 6 8 5 0 . 0 0 8 3 - 0 . 0 0 3 3 0 . 5 3 7 8 . 8 3 '4
1 . 1 6 2 3 0 . 6 0 9 6 0 . 8 4 2 2 1 7 6 8 . 4 0 . 3 8 4 6 - 0 . 0 1 0 7 0 . 0 0 3 5 0 . 6 4 2 19 . 24
1 . 4 5 2 8 0 . 5 5 5 3 0 . 9 1 4 3 2 0 3 6 . 1 0 . 3 8 3 4 - 0 . 0 4 4 4 0 . 0 0 4 7 0 . 9 7 1 3 0 . 2 0 !
TABLE 3.2 R igid w all, resonant triads, R = 2562.8: (a) present author, (b) Hendriks. 

I a 11, la 3I are given (in this table only) in the nondimensional form  used by Hendriks.



a r R C Ci 0° l a g 1 l a i  1 a r g a s a r g a i

0 . 2 9 0 5 6 0 . 1 7 9 2 0 . 2 3 0 7 1 61 3. 7 0 . 2 8 6 0
- 0 . 0 8 8 8 1

—0 . 04  61 5 0 . 9 7 0 . 4 3 9 0 . 8 0 2 - 4 7 . 5 4 1 5 6 . 3 3 ( a )

0 . 4 0 . 2 5 4 3 0 . 3 2 3 5 1 5 8 4. 2 0 . 3 11 1
- 0 . 0 6 1 1 1

- 0 . 0 1 9 7 5 1 . 8 1 0 . 3 9 2 2 . 2 1 3 9 . 5 134 . 72

0 . 5 0 . 3 0 9 5 0 . 3 9 7 9 1 6 1 0. 3 0 . 328 2
- 0 . 0 4 1 9 1

- 0 . 0 0 3 8 5 1 . 0 8 0 . 1 5 5 4 .246 93. 21 1 1 9 . 3 6

0 . 5 8 1 1 3 0 . 3 5 1 2 0 . 4 5 5 8 1 63 3. 7 0 . 3394
- 0 . 0 2 9 5 1

0 .0 04 1 5 0 . 4 0 0 . 2 5 1 6 . 4 6

0 . 6 0 . 3 6 0 8 0 . 4 6 9 2 1 6 3 8. 5 0 . 3 41 8
- 0 . 0 2 6 9 1

0 . 0 0 5 5 5 0 . 2 5 0 . 2 9 4 7 .065 - 1 6 8 . 8 7 1 0 8 . 1 9

0 . 7 0 . 4 1 1 3 0 . 5 4 0 1 1 6 6 0 . 9 0. 353 1
- 0 . 0 1 5 7 1

0 . 0 0 9 6 4 9 . 6 1 0 . 5 0 2 1 1 . 01 - 1 4 3 . 0 1 9 9 . 9 6

0 . 7 3 8 0 3 0 . 4 3 0 3 0 . 5 6 6 9 1 66 8. 2 0 . 3 56 9
- 0 . 0 1 2 2 1

0 . 0 1 0 1 4 9 . 3 9 0 . 5 7 1 1 2 . 91

0 . 8 0 . 4 6 1 0 0 . 6 1 0 4 1 6 79 . 5 0.3626
- 0 . 0 0 7 6 1

0 . 0 0 9 9 4 9 . 0 6 0 . 6 7 2 1 6 .62 - 1 3 0 . 9 2 9 3 . 5 8

0 . 8 7 1 6 9 0 . 4  955 0 . 6 5 9 9 16 92 .7 0 . 3 68 5
- 0 . 0 0 3 4 1

0 .0 08 3 4 8 . 6 6 0 . 7 7 7 2 2 . 1 0

1 . 0 0 . 5 5 2 4 0 . 7 4 5 1 1 7 19 . 8 0 . 3772
+ 0. 00 13 1

0 . 0 0 2 1 4 7 . 8 5 0 . 9 4 1 3 6 . 12 - 1 2 2 . 3 7 84 . 2 6

1 . 1 6 2 3 0 . 6 0 6 9 0 . 8 4 0 3 1 772. 4 0 . 38 47
+ 0. 00 35 1

- 0 . 0 1 0 8 4 6 . 2 4 1 . 1 3 6 4 .61

1 . 2 0 . 6 1 4 7 0 . 8 5 9 0 1 79 0. 1 0 . 38 58
+0. 00 37 1

- 0 . 0 1 4 5 4 5 . 6 9 1 . 1 8 3 7 3 . 22 - 1 3 1 . 5 2 7 8 . 4 1

1 . 4 5 2 8 0 , 5 5 6 0 0 . 9 1 4 8 2 0 3 5 . 0 0 . 3 83 5
+0. 00 48 1

- 0 . 0 4 4 6 3 7 . 4 3 1 . 64  :1 2 7. 6

0 . 2 9 0 5 6 0 . 1 8 3 6 0 . 2 3 4 1 2 4 8 2. 1 0 .2712
- 0 . 0 2 7 3 1

- 0 . 0 6 4 9 5 1 . 6 4 0 . 3 6 0 1. 054 - 2 2 . 0 1 1 4 8 . 0 2 ( b )

0 . 4 0 . 2 4 7 3 0 . 3 1 8 1 2 5 15 . 2 0 .2937
- 0 . 0 0 3 2 1

- 0 . 0 3 9 4 5 1 . 0 4 0 . 1 3 7 2 . 7 04 5 6 . 97 1 2 6 .5 2

0 . 5 0 . 2 9 8 9 0 . 3 8 9 7 2 5 6 6 . 1 0 .3 09 0
+0. 00 93 1

- 0 . 0 2 1 7 5 0 . 0 9 0 . 2 0 8 4 . 9 2 6 - 1 7 1 . 8 0 1 1 2 , 8 6

0 . 6 0 . 3 5 1 2 0 . 4 6 1 9 2 5 98 .2 0 . 3 2 1 6
+0. 01 50 1

- 0 . 0 0 8 4 4 9 . 5 0 0 . 4 0 1 8 . 1 4 0 - 1 4 3 . 9 3 1 0 3 . 1 7

0 . 7 0 . 4 0 4 3 0 . 5 3 4 7 2 6 18 .2 0 . 332 3
+ 0. 01 59 1

0. 00 08 4 9 . 1 1 0 . 5 5 7 1 2 . 9 6 - 1 3 1 . 9 4 9 5 . 8 1

1 . 0 0 . 5 4 7 9 0 . 7 4 1 7 26 96. 4 0 . 354 8
- 0 . 0 0 2 0 1

0 . 0 11 0 4 7 . 6 1 0 . 9 8 7 4 7 . 5 9 - 1 2 7 . 8 0 8 1 . 2 0

TABLE 3.3 R igid w all, resonant triads, (a) R = 2562.8, (b) R = 4000



' W

R P r R C Cj 6P l a a l la 1 1 a r g a a a r g a i

2 5 6 2 . 8 0 . 1 7 9 2 0 . 2 30 7 1 61 3. 7 0 . 2 8 6 0
- 0 . 0 4 6 1 1

- 0 . 0 8 8 8 5 0 . 9 7 0 . 4 3 9 0 . 8 0 2 (a)

4000 0 . 1 8 3 6 0 . 2 3 4 1 2 4 8 2 . 1 0 . 2 7 1 2
- 0 . 0 2 7 3 1

- 0 . 0 6 4 9 5 1 .64 0 . 3 6 0 1 . 0 54 - 2 2 . 0 1 1 4 8 . 0 2

5000 0 . 1 8 3 1 0 . 2 3 3 7 3 1 0 8 . 0 0 . 2 6 3 6
- 0 . 0 1 9 0 1

- 0 . 0 5 4 8 5 1 . 5 6 0 . 2 91 1 . 1 9 7 - 8 . 2 1 1 4 3 . 7 3

10000 0 . 1 7 4 9 0 . 2 27 4 6 3 8 9. 3 0 . 2 3 9 5
+ 0 . 0 0 1 7 1

- 0 . 0 2 9 1 5 0 . 2 9 0 . 0 63 1 . 6 5 1 5 4 . 3 6 1 3 1 . 1 4

15000 0 . 1 6 9 2 0 . 2 2 3 0 9 77 1. 1 0 . 2 25 4
+ 0 . 01 0 3 1

- 0 . 0 1 6 9 4 9 . 3 5 0 . 0 5 9 1 . 8 9 2 1 7 3 . 7 0 1 2 4 . 7 7

20000 0 . 1 6 6 2 0 .2 20 7 1 3 1 6 4 . 8 0 . 2 1 5 6
+ 0 .0 1 4 8 1

- 0 . 0 0 9 3 4 8 . 83 0 . 0 9 9 2 . 0 5 7 - 1 6 1 . 5 8 1 2 0 . 6 5

4350 ■ 0 . 2 6 4 1 0. 342 4 2 7 6 8 . 3 0 . 2 9 6 1
+ 0 . 0 0 4 5 1

- 0 . 0 2 9 0 5 0 . 47 0. 104 3 . 5 1 4 1 4 4 . 2 6 1 1 9 . 7 4 ( b )

8 7 1 6 . 9 0 . 2 52 7 0 . 3 33 7 5 6 9 2 . 3 0 . 2 6 8 1
+ 0 . 0 1 8 5 1

- 0 . 0 0 4 6 4 9 . 23 0.236 4.367 - 1 4 9 . 1 4 1 1 0 . 3 6

13050 0 . 2 5 1 2 0 . 3 3 2 6 8 55 1. 7 0 . 2 5 2 8
+ 0 .0 2 2 5 1

0 . 0 0 6 1 49 .07 0 . 2 7 5 5 . 0 1 7 - 1 3 8 . 9 4 1 0 5 . 5 7

4 3 5 8 . 4 0 . 3 3 9 8 0 . 4 47 1 2 8 3 2 . 3 0 . 3 1 5 6
+ 0 .0 1 5 8 1

- 0 . 0 0 7 5 4 9 . 4 7 0 . 382 7 . 6 4 6 - 1 4 4 . 2 3 1 0 3 . 8 5 ( c )

2900 0 . 5 0 4 8 0 . 6 7 4 6 1 92 3. 7 0 . 3 6 4 1
+ 0 . 0 0 8 0 1

0 . 0 0 1 6 48 .44 0 .8 11 25.68 - 1 2 4 . 1 7 8 7 . 7 9 ( d )

5000 0 . 5 0 4 3 0 .6 74 2 3 3 1 8 . 6 0 . 3 3 8 3
+ 0 . 0 0 4 8 1

0 . 0 1 3 7 4 8 . 41 0 . 855 3 5 . 4 6 - 1 2 6 . 0 6 8 3 . 4 3

10000 0 . 5 1 5 0 0 .6 82 2 6 55 9. 3 0 . 3 0 8 9
- 0 . 0 1 6 6 1

0 . 0 1 8 0 4 9 . 01 1 .5 07 6 5 . 4 0 - 1 4 4 . 9 7 7 7 . 5 9

2 5 6 2 . 8 0 . 5 52 4 0 , 7 45 1 1 71 9. 8 0 . 3 7 7 2
+ 0 . 0 0 2 1 1

0 . 0 0 1 3 4 7 , 8 5 0 . 941 3 6 . 1 2 - 1 2 2 . 3 7 8 4 . 2 6 ( e )

4000 0 . 5 4 7 9 0 .7 41 7 2696.4 0 . 3 5 4 8
- 0 . 0 0 2 0 1

0 . 0 1 1 0 4 7 . 61 0 . 987 4 7 . 5 9 - 1 2 7 . 8 0 8 1 . 2 0

6000 0 . 5 4 4 6 0 . 7 3 9 3 4 0 5 7 . 9 0 . 3 35 4
- 0 . 0 1 2 9 1

0 . 0 1 5 2 4 7 .44 1 .2 3 6 5 . 3 9 - 1 4 0 . 2 6 7 8 . 4 2

10000 0 .3 96 7 0 . 6 38 2 7 8 3 4 . 1 0 . 2 9 7 1
- 0 . 0 4 6 0 1

0 . 0 1 9 6 3 8 . 42 1 . 8 5 6 3 . 9 9 1 4 4 . 0 9 8 6 . 1 5

TA B LE  3.4 R igid w all, resonant triads, (a) a  = 0.29056, (b) a = 0.43584, 

(c) a  = 0.58113, (d) a = 0.895, (e) a = 1.0



i
I:

a C J S C F C s

0 . 2 9 0 5 6 ( 0 . 4 0 7 1 , - 0 . 0 1 9 8 ) < 1 . 1 9 1 4 , 0 . 0 0 0 9 ) (a)
0 . 4 ( 0 . 4 6 1 9 , - 0 . 0 2 2 0 ) < - 0 . 1 5 0 6 , - 0 . 0 3 4 2 )
0 . 5 ( 0 . 4 9 9 5 ,  - 0 . 0 5 7 2 ) ( 0 . 7 9 0 2 , 0 . 0 2 2 0 ) < - 0 . 0 9 5 5 , - 0 . 0 4 5 0 )
0 . 6 ( 0 . 4 7 7 6 , - 0 . 1 1 6 6 ) < 0 . 6 8 4 6 , 0 . 0 8 5 6 ) < - 0 . 1 1 2 2 , - 0 . 0 4 1 3 )
0 . 7 ( 0 . 4 3 9 4 , - 0 . 1 2 5 1 ) < 0 . 6 4 3 5 , 0 . 1 2 2 6 )
0 . 8 ( 0 . 4 1 5 9 ,  - 0 . 1 2 2 6 ) <0 . 6 1 9 1 , 0 . 1 3 6 4 ) < - 0 . 0 8 3 0 ,  - 0 . 0 4 8 1 )

0 . 2 < 0 . 3 3 2 1 , - 0 . 0 4 9 2 ) <1 . 5 0 6 5 , 0 . 0 0 0 9 ) (b)
0 . 2 9 0 5 6 < 0 . 3 8 2 1 , - 0 . 0 2 0 7 ) ( 1 . 2 7 3 6 , 0 . 0 0 0 7 )
0 . 4 < 0 . 4 1 3 8 , - 0 . 0 0 9 7 ) ( 1 . 1 0 0 0 , 0 . 0 0 0 4 )
0 . 6 < 0 . 4 3 3 5 ,  - 0 . 0 1 4 7 ) ( 0 . 9 2 6 5 , 0 . 0 0 0 8 )
0 . 7 < 0 . 4 3 4 8 ,  - 0 . 0 2 1 4 ) ( 0 . 8 7 8 4 , 0 . 0 0 3 3 )
0 . 8 < 0 . 4 3 3 1 , - 0 . 0 2 9 6 ) ( 0 . 8 4 5 4 , 0 . 0 0 5 8 )
0 . 9 < 0 . 4 2 9 4 , - 0 . 0 3 8 7 ) ( 0 . 8 2 2 7 , 0 . 0 0 7 9 )
1 . 2 < 0 . 4 0 4 6 , - 0 . 0 6 7 5 ) < 0 . 7 8 7 2 , 0 . 0 1 1 1 )

0 . 2 < 0 . 3 4 9 8 ,  - 0 . 0 4 4 6 ) <1 . 4 2 9 , 0 . 0 0 1 2 ) < - 0 . 0 8 9 6 , - 0 . 0 4 4 6 ) (c)
0 . 2 9 0 5 6 < 0 . 4 2 9 4 ,  - 0 . 0 2 1 0 ) <1 . 1 3 3 , 0 . 0 0 1 ) < - 0 . 0 4 9 2 , - 0 . 0 5 3 5 )
0 . 3 5 < 0 . 4 7 8 4 ,  - 0 . 0 2 7 7 ) < - 0 . 0 3 9 9 ,  - 0 . 0 5 4 4 )
0 . 4 < 0 . 5 2 6 9 , - 0 . 0 5 9 8 ) < 0 . 8 2 6 3 , 0 . 0 1 6 5 ) < - 0 . 0 3 5 9 , - 0 . 0 5 4 1 )
0 . 4 4 < 0 . 5 3 5 8 , - 0 . 1 4 1 5 ) <0 . 7 2 5 4 , 0 . 0 7 7 9 )
0 . 4 7 < 0 . 4 8 9 5 , - 0 . 1 6 9 7 ) <0 . 6 9 0 9 , 0 . 1 2 5 5 )
0 . 5 < 0 . 4 5 8 8 ,  - 0 . 0 5 7 2 ) <0 . 6 6 8 8 , 0 . 1 5 7 8 ) < - 0 . 0 3 2 7 , - 0 . 0 5 2 3 )
0 . 6 < 0 . 4 0 5 0 , - 0 . 1 6 4 7 ) ( 0 . 6 1 7 8 , 0 . 2 1 3 2 ) ( - 0 . 0 3 2 4 , - 0 . 0 5 0 1 )
0 . 7 < 0 . 3 7 4 7 , - 0 . 1 5 4 9 ) < 0 . 5 8 0 4 , 0 . 2 3 3 0 ) ( - 0 . 0 3 3 3 , - 0 . 0 4 7 8 )

J

TA B LE  4.1 Compliant w all. A = /?o = 2562.8, = 1.1, d=  0, S (°) =0.15:

(a) Cq = 0.5, (b) Cq = 0.8, (c) Cq = 0.1



a cts C F Cs

0 . 4 ( 0 . 3 8 5 5 ,  - 0 . 0 0 7 6 ) ( 1 . 2 2 1 0 , 0 . 0 0 0 3 ) (a)
0 . 6 ( 0 . 4 3 4 8 , - 0 . 0 1 5 4 )
0 . 7 ( 0 . 8 1 4 2 , 0 . 0 1 0 8 )
0 . 8 ( 0 . 4 4 9 9 , - 0 . 0 6 4 7 ) ( 0 . 7 3 1 1 , 0 . 0 3 1 6 )

0 . 2 9 0 5 6 ( 0 . 3 4 1 1 , - 0 . 0 2 7 6 ) ( 1 . 2 8 7 7 , 0 . 0 0 0 5 ) (b)
0 . 4 ( 0 . 3 8 1 8 ,  - 0 . 0 0 7 8 )
0 . 5 ( 0 . 4 0 8 5 ,  - 0 . 0 0 5 0 )
0 . 6 ( 0 . 4 2 8 2 ,  - 0 . 0 1 3 2 ) ( 0 . 7 5 7 4 , 0 . 0 1 3 6 )
0 . 7 ( 0 . 4 3 9 8 , - 0 . 0 3 1 0 ) ( 0 . 6 7 4 5 , 0 . 0 3 2 4 )
0 . 8 ( 0 . 4 3 7 6 ,  - 0 . 0 5 3 2 ) ( 0 . 6 2 3 2 , 0 . 0 5 5 4 )

0 . 2 9 0 5 6 ( 0 . 3 8 7 0 , - 0 . 0 2 0 3 ) ( 1 . 2 5 5 4 , 0 . 0 0 0 8 ) ( - 0 . 1 2 1 7 , - 0 . 0 4 4 1 ) (c)
0 . 2 9 0 5 6 ( 0 . 5 2 6 3 , - 0 . 0 4 4 3 )
0 . 2 9 0 5 6 ( 0 . 7 3 8 4 , 0 . 2 1 7 1 )

0 . 8 7 1 6 9 ( 0 . 5 5 0 6 ,  0 . 2 1 2 2 ) ( - 0 . 0 7 0 9 , - 0 . 0 4 0 1 ) (d)

TA BLE  4.2 Compliant wall. A = Aq = 2562.8, cf = 0:

(a) m(0) = 1.1, Cq -  0.5, S (°) =0.3; (b) as (a) but m(°) = 2; (c) m(°) = 1.1, Cq « 0.1, 

S (0) =0.2, 0.1, 0.05; (d) as (b) but S (O) =0.2



a C t S C F

0 . 4 ( 0 . 3 8 2 3 , - 0 . 0 1 9 7 ) (a)
0 . 5 ( 0 . 4 2 9 9 , - 0 . 0 5 4 5 )
0 . 6 ( 0 . 4 6 0 0 , - 0 . 0 6 1 4 )
0 . 7 ( 0 . 4 7 3 1 , - 0 . 0 7 3 7 ) ( 0 . 7 9 0 0 , 0 . 0 1 3 7 )
0 . 8 ( 0 . 4 7 8 2 , - 0 . 0 8 9 5 ) ( 0 . 7 5 0 6 , 0 . 0 2 2 2 )
0 . 9 ( 0 . 4 8 0 4 , - 0 . 1 0 7 5 ) ( 0 . 7 2 5 2 , 0 . 0 2 9 2 )

0 . 4 ( 0 . 4 2 2 8 , - 0 . 0 4 3 0 ) (b)
0 . 5 ( 0 . 4 9 6 3 , - 0 . 0 6 4 1 )
0 . 5 5 ( 0 . 5 2 0 5 , - 0 . 0 8 3 4 )
0 . 6 ( 0 . 5 3 4 2 , - 0 . 1 1 5 4 )
0 . 6 5 ( 0 . 5 3 5 6 , - 0 . 1 5 4 7 )
0 . 7 ( 0 . 5 4 4 6 , - 0 . 1 7 8 1 ) ( 6 . 6 6 0 6 , 0 . 0 9 1 1 )
0 . 8 ( 0 . 5 3 7 9 , - 0 . 1 9 0 0 ) ( 0 . 6 3 5 1 , 0 . 1 0 9 6 )
0 . 9 ( 0 . 6 1 8 9 , 0 . 1 1 5 6 )
1 . 0 ( 0 . 6 0 7 7 , 0 . 1 1 5 5 )
1 . 2 ( 0 . 5 9 3 9 , 0 . 1 0 6 6 )
1 . 4 ( 0 . 5 8 6 4 , 0 . 0 9 3 5 )

T A B LE  4.3 Compliant w all. A = Aq = 10000, m(°) = 1.1, d=  0, S (®) =0.15:

(a) Cq = 0.7, (b) Cq = 0.55



a c t s

0 . 2 9 0 5 6 ( 0 . 3 9 3 2 , - 0 . 0 5 3 5 ) ( 0 . 8 9 1 9 0 . 0 0 2 9 ) (a)
0 . 4 ( 0 . 4 4 4 8 , - 0 . 0 3 7 7 ) ( 0 . 6 9 2 6 0 . 0 2 3 8 )
0 . 5 ( 0 . 4 7 4 9 , - 0 . 0 5 0 6 ) ( 0 . 5 8 9 7 0 . 0 5 5 6 )
0.6 ( 0 . 4 7 3 3 , - 0 . 0 6 8 6 ) ( 0 . 5 4 8 3 0 . 0 8 3 2 )
0 . 7 ( 0 . 4 6 3 7 , - 0 . 0 7 4 3 ) ( 0 . 5 3 1 7 0 . 0 9 2 5 )
0.8 ( 0 . 4 5 5 0 , - 0 . 0 7 5 2 ) ( 0 . 5 2 3 8 0 . 0 9 3 4 )
0 . 9 ( 0 . 4 4 7 7 , - 0 . 0 7 4 7 ) ( 0 . 5 2 0 0 0 . 0 9 0 4 )

0 . 2 9 0 5 6 ( 0 . 3 9 2 1 , - 0 . 0 4 5 6 ) ( 0 . 8 9 1 0 - 0 . 0 2 7 2 ) (b)
0 . 4 ( 0 . 4 4 6 9 , - 0 . 0 2 2 7 ) ( 0 . 6 8 7 0 - 0 . 0 1 2 7 )
0 . 5 ( 0 . 4 9 9 4 , - 0 . 0 3 4 1 ) ( 0 . 5 6 1 5 0 . 0 1 9 2 )
0.6 ( 0 . 4 9 1 2 , - 0 . 0 7 2 0 ) ( 0 . 5 2 7 3 0 . 0 6 8 5 )
0 . 7 ( 0 . 4 7 5 5 , - 0 . 0 7 9 6 ) ( 0 . 5 1 7 2 0 . 0 8 1 4 )
0.8 ( 0 . 4 6 3 6 ,  - 0 . 0 8 0 5 ) ( 0 . 5 1 2 9 0 . 0 8 3 8 )
0 . 9 ( 0 . 4 5 4 3 , - 0 . 0 7 9 6 ) ( 0 . 5 1 1 6 0 . 0 8 1 7 )

0 . 2 9 0 5 6 ( 0 . 3 8 9 5 , - 0 . 0 3 7 9 ) ( 0 . 8 9 2 1 - 0 . 0 5 7 6 ) (c)
0 . 4 ( 0 . 4 4 3 6 , - 0 . 0 0 7 2 ) ( 0 . 6 8 7 5 - 0 . 0 5 0 3 )
0 . 5 ( 0 . 4 9 1 6 ,  0 . 0 1 9 8 ) ( 0 . 5 6 6 3 - 0 . 0 5 5 1 )
0.6 ( 0 . 5 0 3 5 ,  0 . 0 5 9 4 ) ( 0 . 5 1 2 2 - 0 . 0 8 1 4 )
0 . 7 ( 0 . 5 0 1 9 ,  0 . 0 7 2 6 ) ( 0 . 4 8 8 6 - 0 . 0 8 7 5 )
0.8 ( 0 . 5 0 1 6 ,  0 . 0 7 5 4 ) ( 0 . 4 7 3 0 - 0 . 0 8 7 3 )
0 . 9
1.0

( 0 . 5 0 2 8 ,  0 . 0 7 3 8 )  
( 0 . 5 0 4 9 ,  0 . 0 7 0 0 )

( 0 . 4 6 1 5 - 0 . 0 8 5 5 )

TA B LE  4.4 Com pliant w all. R = 1500, Rq = 2562.8, m(®) = 2, Cq = 0.5, S (°) =0.3: 

(a) d =  0, (b) d =  0.05, (c) d=  0.1



a c j s cp

0.2 ( 0 . 3 3 5 4 , - 0 . 0 4 1 8 ) (a)
0 , 2 9 0 5 6 ( 0 . 3 9 3 5 , - 0 . 0 0 9 7 )
0 . 4 ( 0 . 4 3 7 7 ,  0 . 0 0 0 5 )
0 . 5 ( 0 . 4 6 4 0 , - 0 . 0 0 4 5 )
0 . 6 ( 0 . 4 8 2 6 , - 0 . 0 1 9 5 )
0 . 7 ( 0 . 4 9 2 5 , - 0 . 0 4 7 1 ) ( 0 . 7 2 2 7 , - 0 . 0 2 6 8 )
0.8 ( 0 . 4 1 5 9 ,  - 0 . 1 2 2 6 ) ( 0 . 6 7 3 3 , - 0 . 0 0 0 3 )
0 . 9 ( 0 . 5 6 2 0 , - 0 . 1 5 5 4 ) ( 0 . 6 5 2 5 ,  0 . 0 2 1 8 )
1.0 ( 0 . 5 5 9 4  - 0 . 1 5 6 5 ) ( 0 . 6 4 3 7 ,  0 . 0 3 3 0 )

0.2 ( 0 . 3 3 2 5 , - 0 . 0 3 6 2 ) (b)
0 . 2 9 0 5 6 ( 0 . 3 9 0 4 ,  0 . 0 0 0 5 )
0 . 4 ( 0 . 4 3 5 7 ,  0 . 0 1 5 5 )
0 . 5 ( 0 . 4 6 3 5 ,  0 . 0 1 5 5 )
0.6 ( 0 . 4 8 5 1 ,  0 . 0 0 7 5 )
0 . 7 ( 0 . 5 0 5 2 , - 0 . 0 0 8 1 ) ( 0 . 7 3 0 5 , - 0 . 0 9 6 5 )
0.8 ( 0 . 5 3 5 5 , - 0 . 0 3 6 4 ) ( 0 . 6 6 1 3 , - 0 . 0 9 2 8 )
0 . 9 ( 0 . 5 9 6 3 , - 0 . 1 2 5 3 ) ( 0 . 6 0 0 4 , - 0 . 0 2 0 1 )
1.0 ( 0 . 5 8 2 7 , - 0 . 1 4 4 5 ) ( 0 . 6 1 0 1 ,  0 . 0 0 3 6 )
1.1 ( 0 . 6 1 4 7 ,  0 . 0 1 3 5 )
1.2 ( 0 . 6 1 8 1 ,  0 . 0 1 8 0 )
1 . 3 ( 0 . 6 2 1 1 ,  0 . 0 1 9 7 )

TA B LE  4.5 Compliant wall. R - R q = 2562.8, m(0) = 1.1, Co -  0.65, S (0) =0.15:

(a )d = 0 .0 5 , (b )d = 0 .1



I
a C TS Cp C m

0 . 2 9 0 5 6 ( 0 . 3 6 3 6 - 0 . 0 3 7 4 ) (a)
0 . 4 ( 0 . 4 0 8 6 - 0 . 0 1 7 8 )
0 . 5 ( 0 . 4 3 8 3 - 0 . 0 1 6 8 ) ( 0 . 7 2 4 6 ,  0 . 0 1 8 0 )
0 . 5 5 ( 0 . 4 4 9 9 - 0 . 0 2 1 9 )
0.6 ( 0 . 4 5 8 2 - 0 . 0 3 0 9 ) ( 0 . 6 3 2 9 ,  0 . 0 4 1 9 )
0 . 7 ( 0 . 4 5 9 4 - 0 . 0 5 2 6 ) ( 0 . 5 8 4 3 ,  0 . 0 6 8 8 )
0.8 ( 0 . 4 4 8 8 - 0 . 0 6 5 7 ) ( 0 . 5 6 2 5 ,  0 . 0 8 3 1 )
0 . 9 ( 0 . 4 3 7 4 - 0 . 0 7 2 1 ) ( 0 . 5 5 1 1 ,  0 . 0 8 7 8 )
1.0 ( 0 . 4 2 7 2 - 0 . 0 7 5 6 ) ( 0 . 5 4 4 6 ,  0 . 0 8 7 3 )
1.1 ( 0 . 4 1 8 0 - 0 . 0 7 7 9 ) ( 0 . 5 4 0 7 ,  0 . 0 8 4 2 )

0 . 2 9 0 5 6 ( 0 . 3 6 0 8 - 0 . 0 2 8 5 ) (b)
0 . 4 ( 0 . 4 0 6 8 - 0 . 0 0 2 4 )
0 . 5 ( 0 . 4 3 9 9 0 . 0 0 6 9 ) ( 0 . 7 2 0 1 , - 0 . 0 5 1 9 )
0.6 ( 0 . 4 7 2 8 0 . 0 0 7 2 ) ( 0 . 6 1 3 0 , - 0 . 0 4 1 3 )
0 . 7 ( 0 . 5 2 3 8 0 . 0 2 8 4 )
0 . 7 5 ( 0 . 5 2 6 0 0 . 0 4 6 5 )
0.8 ( 0 . 5 2 5 7 0 . 0 5 6 2 )
0 . 9 ( 0 . 5 2 4 6 0 . 0 6 4 8 )
1.0 ( 0 . 5 2 4 3 0 . 0 6 6 4 )
1.1 ( 0 . 5 2 4 8 0 . 0 6 4 7 )

0 . 2 9 0 5 6 ( 0 . 3 5 5 8 - 0 . 0 2 0 5 ) (c)
0 . 4 ( 0 . 3 9 9 6 0 . 0 1 1 1 )
0 . 5 ( 0 . 4 2 9 4 0 . 0 2 6 8 )
0.6 ( 0 . 4 5 3 1 0 . 0 3 6 2 ) ( 0 . 6 3 1 6 , - 0 . 1 1 9 7 ) ( 0 . 6 0 4 4 ,  - 0 . 2 6 3 8 )
0 . 7 ( 0 . 4 7 1 9 0 . 0 4 3 2 ) ( 0 . 5 5 8 9 , - 0 . 1 1 4 4 ) ( 0 . 5 9 3 3 , - 0 . 2 4 6 3 )
0.8 ( 0 . 4 8 5 3 0 . 0 4 8 4 ) ( 0 . 5 1 1 5 , - 0 . 1 0 8 7 ) ( 0 . 5 8 1 0 , - 0 . 2 3 4 5 )
0 . 9 ( 0 . 4 9 4 4 0 . 0 5 0 8 ) ( 0 . 4 8 0 3 , - 0 . 1 0 4 6 ) ( 0 . 5 6 8 9 , - 0 . 2 2 3 7 )
1.0 ( 0 . 5 0 1 2 0 . 0 5 0 4 ) ( 0 . 4 5 7 9 , - 0 . 1 0 1 2 ) ( 0 . 5 5 8 1 ,  - 0 . 2 1 3 5 )
1.1 ( 0 . 5 0 6 9 0 . 0 4 8 1 ) ( 0 . 4 4 0 5 , - 0 . 0 9 8 5 ) ( 0 . 5 4 8 9 , - 0 . 2 0 3 9 )
1.2 ( 0 . 5 1 1 7 0 . 0 4 4 6 ) ( 0 . 4 2 6 2 , - 0 . 0 9 6 4 ) ( 0 . 5 4 1 2 , - 0 . 1 9 5 1 )

TA B LE  4.6 Compliant w all. R = 2000, Rq -  2562.8, m(C) = 2, Cg = 0.5, S (°) =0.3; 

(a) ûf= 0, (b) d=  0.1, (c) d=  0.2



a P R C r C i C j la s  1 la 1 1 a r g a s a r g a i -!

0 . 2 9 0 5 6 0 . 2 1 3 9 5 5 . 8 2 1 4 3 9 . 9 0 . 3 0 1 6 - 0 . 0 3 9 9 - 0 . 0 8 4 7 0 , 6 3 1 1 . 0 9 5 - 2 6 . 8 8 9 4 . 4 0 ( a )  ■
0 . 4 0 . 3 08 2 5 7 . 0 2 1 3 9 5. 2 0 . 3 32 2 - 0 . 0 1 3 5 - 0 . 0 5 4 8 0 . 5 7 3 2 . 7 0 5 4 . 9 8 7 9 . 0 6
0 . 5 0 . 3 8 4 1 5 6 . 9 4 1 3 9 8 . 0 0 . 3 5 3 2 - 0 . 0 0 0 3 - 0 . 0 3 4 9 0 . 5 1 4 4 . 5 9 1 4 9 . 1 7 3 . 5 2
0 . 6 0 . 4 5 7 3 5 6 . 7 3 1 4 0 5. 8 0 . 3 69 7 0 . 0 0 4 8 - 0 . 0 2 0 8 0 . 8 0 5 7 . 2 5 - 1 5 4 . 0 7 2 . 3 6
0 . 7 0 . 5 2 8 1 5 6 . 4 6 1 4 1 5 . 8 0 . 3 8 2 9 0 . 0 04 2 - 0 . 0 1 1 5 1 . 1 3 1 1 . 3 9 - 1 2 6 . 5 7 2 . 5 9
0 . 8 0 . 5 9 4 2 5 6 . 0 5 1 4 3 1. 2 0 .3 93 4 - 0 . 0 0 0 8 - 0 . 0 0 6 0 1 . 4 1 1 7 . 9 7 - 1 1 0 . 8 7 2 . 8 5
1 . 0 0 . 6 8 8 9 54 . 03 15 05. 4 0 . 4 0 6 3 - 0 . 0 2 1 0 - 0 . 0 0 2 6 1 . 5 0 4 3 . 2 - 1 0 5 . 1 7 3 . 3 3
1 . 2 0 . 6 2 3 7 4 6 . 1 1 1 7 7 6. 8 0 . 4 0 3 5 - 0 . 0 5 0 8 - 0 . 0 0 1 2 1 . 0 3 7 8 . 1 - 1 7 4 . 2 7 8 . 5 8

0 . 2 9 0 5 6 0 . 2 0 5 2 5 4 . 7 0 2 3 1 1 . 5 0 . 2 8 1 3 - 0 . 0 2 3 0 - 0 . 0 6 1 6 0 . 4 3 9 1 . 1 4 - 4 . 1 8 1 0 8 . 3  (b)
0 . 4 0 . 2 8 2 5 5 4 . 7 0 2 3 1 1 . 3 0 . 3 0 7 3 0 . 0 00 4 - 0 . 0 3 4 6 0 . 2 3 4 2 . 7 6 1 0 2 . 6 9 4 . 7 4
0 . 5 0 . 3 4 9 9 5 4 . 4 5 2 3 25 . 4 0 . 3 2 5 5 0 . 0 1 0 6 - 0 . 0 1 6 6 0 . 3 9 9 4 . 9 1 - 1 6 7 . 0 8 8 . 4 9
0 . 6 0 . 4 1 8 6 5 4 . 3 7 2 3 3 0 . 1 0 . 3 4 0 3 0 . 01 32 - 0 . 0 0 4 3 0 . 6 4 1 8 . 2 6 - 1 3 5 . 5 84 .74
0 . 7 0 . 4 8 6 9 5 4 . 2 9 2 3 3 4 . 8 0 . 3 5 2 5 0 . 0 1 0 3 0 . 0 0 3 2 0 . 8 5 1 1 3 . 7 1 - 1 1 9 . 1 8 1 . 8 3
0 . 8 0 . 5 5 1 3 5 4 . 0 4 2 3 4 9 . 0 0 . 3 6 2 3 0 . 0 0 2 9 0 . 0 0 6 8 1 . 0 2 2 2 . 6 - 1 1 0 . 4 7 9 . 2 5
1 . 2 0 . 4 3 2 6 3 5 . 7 9 3 2 4 4 . 6 0 . 3 59 7 - 0 . 0 6 1 0 0 . 0 0 9 8 1 . 2 9 6 6 .4 1 4 7 . 7 8 6 . 1 5

0 . 2 9 0 5 6 0 . 1 9 5 6 5 3 . 4 1 3 5 7 7 . 3 0 . 2 6 4 0 - 0 . 0 0 1 0 - 0 . 0 4 4 8 0 . 2 5 2 1 . 3 2 2 0 . 0 9 1 1 6 . 4  (c)
0 . 4 0 . 2 6 3 5 5 2 . 8 0 3 6 2 7 . 6 0 . 2 8 6 7 0 . 0 1 0 0 - 0 . 0 1 9 6 0 . 1 8 0 3 . 0 8 1 6 7 . 9 1 0 2 . 3
0 . 5 0 . 3 2 7 9 5 2 . 6 7 3 63 7. 7 0 . 3 0 3 0 0 . 0 1 7 3 - 0 . 0 0 3 3 0 . 3 8 8 5 . 5 9 - 1 4 5 . 5 9 4 . 5 6
0 . 6 0 . 3 9 5 5 5 2 . 8 2 3 6 2 6 . 3 0 . 3 16 7 0. 01 74 0 . 0 0 7 0 0 . 5 6 9 9 . 7 7 - 1 2 7 . 2 8 8 . 9 9
0 . 7 0 . 4 6 2 9 5 2 . 9 1 3 6 1 8 . 5 0 . 3 2 8 3 0 . 0 1 1 9 0 . 0 1 2 5 0 . 7 2 9 1 6 . 9 - 1 1 7 . 6 8 4 . 3 8
0 . 8 0 . 5 2 6 3 5 2 . 7 7 3 63 0. 4 0 . 3 37 7 0 . 0 0 1 6 0 . 0 1 4 2 0 . 8 8 4 2 9 . 0 5 - 1 1 5 . 9 8 0 . 4 3
1 . 0 0 . 5 8 0 1 4 9 . 2 4 3 9 1 7. 2 0 . 3 4 5 6 - 0 . 0 3 6 1 0 . 0 1 2 1 1 . 6 6 7 3 . 8 - 1 6 9 . 5 7 8 . 4 0

0 . 2 9 0 5 6 0 . 1 91 4 5 2 . 8 0 3 02 3. 4 0 . 2 6 7 6 - 0 . 0 1 7 3 - 0 . 0 5 3 4 0 . 3 1 3 1 . 1 8 0 - 0 . 1 0 1 2 9 . 2  (d)

0 . 2 9 0 5 6 0 . 1 8 8 5 5 2 . 3 8 3 6 6 2 . 9 0 . 2 60 7 - 0 . 0 1 1 4 - 0 . 0 4 6 1 0 . 2 4 0 1 . 2 9 8 1 1 . 5 9 1 2 8 . 7  (e)
0 . 6 0 . 3 7 1 0 5 1 . 04 3 77 2. 7 0 . 3 10 4 0. 018 7 0 . 0 0 5 9 0 . 4  98 9 . 6 0 0 - 1 3 1 . 0 9 3 . 8 8
0 . 8 0 . 4 9 2 3 5 0 . 9 0 37 83. 4 0 . 3 3 0 6 0 . 0 0 6 6 0 . 0 1 4 8 0 . 7 9 6 2 7 . 2 6 - 1 2 0 . 7 8 3 . 1 2

TABLE 4.7 Compliant wall, resonant triads comprising three TS modes. Rq ~ 2562.8,

m(0) = 2,0, Co = 0.5, d =  0, S (0) =1.0: (a) R = 2562.8, (b) R = 4000, (c) R = 6000, 

(d) R = 5000, S (0) = 2.0, (e) R = 6000, S (0) = 2.0



R P r A C C j œ lag ! l â i  1 a rg a g a r g a i

2 5 6 2 . 8

4 0 0 0 . 0

6 0 0 0 . 0

0 . 2 1 3 9

0 . 2 0 5 2

0 . 1 9 5 6

0 . 2 5 8 6

0 .2 51 4

0 . 2 4 37

1 4 3 9 . 9

2 3 1 1 . 5

3 5 7 7 . 3

0 . 3 0 1 6  - 0 . 0 8 4 7  
- 0 . 0 3 9 9 1  
0 . 2 8 1 3  - 0 . 0 6 1 6  

- 0 . 0 2 3 0 1  
0 . 2 6 4 0  - 0 . 0 4 4 8  

- 0 . 0 0 1 0 1

5 5 . 82

5 4 . 7 0

5 3 . 4 1

0 . 6 3 1

0 . 4 3 9

0 . 2 5 2

1 . 0 9 5

1 . 1 4

1 . 3 2

(a)

10000 0 . 1 8 3 3 0 . 2 3 3 9 6 21 1. 7 0 . 2 4 3 4  - 0 . 0 2 7 4  
+ 0 . 0 0 3 2 1

5 1 . 6 0 0 . 0 7 6 1 . 6 2 7 4 . 9 6 1 1 9 . 2 2

15000 0 . 1 7 5 0 0 . 2 2 7 5 9 58 0. 7 0 . 2 2 5 4  - 0 . 0 1 6 9  
+ 0 . 0 1 0 3 1

5 0 . 3 1 0 . 0 72 1 . 8 7 1 7 1 . 4 1 1 1 7 . 9 8

20000 0 . 1 7 0 7 0 . 2 24 2 1 2 9 62 . 5 0 . 2 1 7 5  - 0 . 0 0 8 4  
+ 0 . 0 1 5 4 1

49. 61 0 . 1 07 2 . 0 4 - 1 6 2 . 8 4 1 1 6 . 1 3

4350 0 . 3 0 1 8 0 , 3 72 2 2 5 4 6 . 7 0 . 3 0 9 7  - 0 . 0 2 4 3  
+ 0 . 0 0 7 1 1

5 4 . 1 6 0 . 2 47 3 . 5 1 1 5 8 . 6 9 9 4 . 0 4 ( b )

8 7 1 6 . 9 0 . 2 7 3 3 0 . 3 4 9 5 5 4 3 4. 4 0 . 2 7 4 9  - 0 . 0 0 2 0  
+ 0 . 0 1 9 1 1

5 1 . 4 3 0 . 2 82 4 . 3 5 - 1 4 8 . 1 9 1 0 1 . 1 5

13050 0 . 2 6 5 8 0 . 3 43 7 8 2 7 4. 2 0 . 2 5 7 4  0 . 0 0 7 6  
+ 0 . 0 2 2 5 1

5 0 . 6 5 0 . 3 0 1 5 . 0 5 - 1 3 7 . 3 2 1 0 0 . 5 1

4 3 5 8 . 4 0 . 3 9 9 8 0 . 4 94 2 2 5 6 2. 4 0 . 3 3 2 5  - 0 . 0 0 3 5  
+ 0 . 0 1 4 5 1

5 3 . 9 9 0 . 5 8 0 7 . 7 4 - 1 3 7 . 1 0 8 6 . 7 8 ( c )

2900 0 . 6 3 4 7 0 . 7 7 6 6 1 6 7 1 . 0 0 . 3 9 1 8  0 . 0 0 0 2  
- 0 . 0 0 7 9 1

5 4 . 81 1 . 4 0 2 9 . 5 3 - 1 0 4 . 1 4 7 4 . 6 8 ( d )

5000 0 . 5 8 7 1 0 .7 38 2 3 0 3 1 . 0 0 . 3 5 5 2 0 . 0 1 1 3
- 0 . 0 0 9 7 1

5 2 . 6 8 1.05 4 1 . 7 2 - 1 1 8 . 3 4 7 7 . 7 2

10000 0 . 5 2 9 8 0 . 6 93 5 6 4 5 2 . 6 0 . 3 1 4 2  0 . 0 1 6 2  
- 0 . 0 3 5 7 1

4 9 . 81 2 . 4 6 7 0 . 4 2 - 1 7 9 . 9 3 7 9 . 1 9

2 5 6 2 . 8 0 . 6 8 8 9 0 .8 51 2 1 50 5. 4 0 . 4 0 6 3  - 0 . 0 0 2 6  
- 0 . 0 2 1 0 1

5 4 . 0 3 1 . 50 4 3 . 2 - 1 0 5 . 0 8 7 3 . 3 3 ( e )

5000 0 . 6 1 2 7 0 . 7 9 08 3 16 1. 4 0 . 3 5 8 7  0 . 0 10 1  
- 0 . 0 2 8 9 1

5 0 . 7 8 1 . 32 6 6 . 7 —1 4 8 . 0 6 7 7 . 0 1

6000 0 . 5 8 0 1 0 . 7 6 58 3 9 1 7 , 2 0 . 3 4 5 6  0 . 0 1 2 1  
- 0 . 0 3 6 1 1

49. 24 1 . 6 6 7 3 . 8 - 1 6 9 . 4 8 7 8 . 4 0

10000 0 . 2 4 4 2 0 . 556 4 8 9 8 5 . 5 0 . 2 8 8 4  0 . 0 2 0 8  
- 0 . 0 5 4 3 1

2 6 . 02 1 .07 2 9 . 2 1 3 1 . 5 4 9 3 .  66

i

i
.3
i

I

TA B LE  4.8 Compliant wall, resonant triads comprising three TS modes. R q = 2562.8, |

m(0) = 2.0, Co = 0.5, d =  0, S (°) =1.0: a = (a) 0.29056, (b) 0.43584, (c) 0.58113, 

(d) 0.895, (e) 1.0



a p r  R c 'c\ lagi la^l argag arga-j

0 . 8  0 . 3 3 1 0  0 . 5 1 9 2  3 9 . 6 1  1 9 7 4 . 4  0 . 3 8 2 4  - 0 . 0 0 6 8  0 . 3 1  1 5 . 5 5  - 1 2 8 . 9 2  8 6 . 0 9  (a)
+ 0 . 00 39 1

0 . 8  0 . 2 5 0 8  0 . 4 7 2 1  3 2 . 0 8  2 1 7 1 . 3  1 . 1 57 7  0 . 000 1 2 . 3 9  8 9 . 4 8  4 5 . 2 7  5 4 . 0 9
-0.00021

1 . 2  0 . 8 7 2 9  1 . 0 5 9 2  5 5 . 5 0  1 4 5 1 . 7  0 . 7 8 7 2  0 .0 12 8  1 . 3 9  1 3 0 , 4 5  4 8 . 3 2  - 1 3 2 . 0 4  (b)
+0.1111

1 . 0  0 . 5 31 7  0 . 7 2 9 9  4 6 . 7 6  1 0 2 7 6 . 0  0 . 3 5 2 5  - 0 . 1 1 2 5  0 . 6 0  6373.  1 3 5 . 4 7  1 5 7 . 5 5  (c)
- 0 . 0 3 9 0 1

1 . 0  0 . 8 10 1  0 . 9 5 2 0  5 8 . 3 2  7 8 7 8 . 4  0 . 3 6 3 5  - 0 . 0 9 0 4  4 . 2 2  8 54 4.  - 5 2 . 5 4  1 5 2 . 9 5
- 0 . 0 4 1 8 1

TA BLE 4.9 Compliant w all, resonant triads. R q -  2562.8. (a) R = 2562.8, m(0) = 2.0, 

C q =  1.2, d -  0, S (C) =0.1 : firs t row is a triad o f three TS modes, second row is a triad o f 

three F modes; (b) R -  2562.8, m(°) = 1.1, cq = 0.8, d=  0, S (°) =0.15: triad o f three F 

modes; (c) R = 15000, firs t row is rig id  wall, for second row  m(0) = 2.0, Cq = 0.5, d =  0, 

$  (C)= 1.0: in  both cases triad comprises a streamwise TS mode and two oblique HO modes. 

Oblique-wave propagation angle 9 in  degrees.
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T A B LE  4.10 Compliant w all, resonant triads. R  = 2000, R q = 2562.8, /77(C) = 2.0, Cq = 

0.5, d ~  0.2, 8 (C) =0.3: (a) TS resonant triads, (b) triads formed o f one streamwise w a ll

mode and two oblique TS waves, (c) case 1: HO wave and two oblique wall waves; case 2: 

HO wave and two oblique TS waves; case 3: three TS waves; case 4: TS wave and two 

oblique w all waves.

a P r R C C j 0° lag i la i  1 argag a rg a i

■V

1
A 0 . 6 0 . 7 8 2 9 0 .8 38 4 7 1 5 . 6 0 . 4 5 3 1  - 0 . 0 2 7 9 6 9 . 0 3 1 0 . 0 0 2 9 . 0 5 (a) ■?

.. i

+ 0 . 03 6 2 1
'ii

B 0 . 8 1 . 0 6 6 8 1 . 1 39 2 7 0 2. 2 0 . 4 8 5 3  - 0 . 0 2 7 5 6 9 .44 2 4 . 8 9 2 . 1
+ 0 . 04 8 41

C 0 . 9 1 . 1 3 8 6 1 . 2 2 4 3 7 3 5 . 1 0 . 4 94 4  - 0 . 0 3 0 9  
+ 0 .0 5 0 8 1

6 8 . 4 3 2 5 . 2 2 18.  6 - 4 . 77 2 9 . 9

0 . 9 5 1 . 1 40 7 1 . 2 3 5 6 7 6 8 . 9 0 . 4 9 8 0  - 0 . 0 3 2 3  
+ 0 .0 5 0 9 1

6 7 . 3 9 2 1 . 9 8 4 2 9 . 5 - 2 . 0 5 3 1 . 1 1

0 . 9 7 5 1 .1 28 4 1 . 2 29 2 7 9 3. 2 0 . 4 9 9 6  - 0 . 0 3 2 5  
+ 0 . 05 0 81

6 6 . 6 3 1 9 . 4 6 7 3 2 . 4 - 1 . 8 0 3 2 . 2 7 è

D 1 . 0 1 . 1 0 4 1 1 . 2 12 0 8 2 5 .1 0 . 5 0 1 2  - 0 . 0 3 2 3  
+ 0 . 05 0 41

6 5 .64 1 6 . 4 2 0 2 0 . 0 - 2 . 3 0 36.90 1

1 . 0 5 1 . 0 09 3 1 . 1 3 7 6 9 2 3. 0 0 . 5 0 4 1  - 0 . 0 2 9 1  
+ 0 . 04 9 51

6 2 . 52 9 . 6 2 9 9 7. 2

E 1 . 1 0 . 8 5 8 2 1 . 0 1 93 1 079. 2 0 . 5 0 6 8  - 0 . 0 2 0 8  
+ 0 . 0 48 1 1

5 7 . 3 4 4 . 18 477 . 8 - 8 . 0 4 - 1 6 1 . 3

X 0 . 8 1 . 4 6 9 3 1 . 5 2 2 8 525 .4 0 . 5 1 1 5  - 0 . 0 4 8 2  
- 0 . 1 0 8 7 1

7 4 .77 7 2 . 32 5 0 . 6 3 - 1 1 , 4 1 5 . 4  (b)

Y 0 . 9 0 . 9 2 8 6 1 . 0 3 1 8 87 2. 2 0 . 4 8 0 3  - 0 . 0 2 0 3  
- 0 . 1 0 4 6 1

6 4 .14 4 . 0 0 8 5 . 1 5 5 . 1 5 7 6 . 8 1

Z 1 . 0 0 . 4 5 7 1 0 . 677 4 14 76. 1 0 . 4 5 7 9  - 0 . 0 0 1 5  
- 0 . 1 0 1 2 1

4 2 . 4 3 0 . 4 7 6 . 1 4 6 . 5 9 - 1 0 0 . 9

1 1 . 2 0 . 5 6 9 8 0 .8 27 4 1 45 0. 3 0 . 5 4 1 2  - 0 . 0 5 7 6  
- 0 . 1 9 5 1 1

4 3 . 5 2 2 . 5 9 2 0 5 . 1 3 . 0 5 - 5 9 . 6 2 (c)

2 1 . 2 1 . 0 0 7 5 1 . 1 7 2 6 1023. 4 0 . 5 4 1 2  0 . 0 1 1 2  
- 0 . 1 9 5 1 1

5 9 . 2 2 7 . 2 3 1 0 7 . 9 8 . 8 0 - 1 6 2 . 0 ■y
i

3 1 . 2 0 . 5 70 4 0 . 8 2 7 8 1 4 4 9. 6 0 . 5 1 1 7  0 , 0 0 1 1  
+ 0 .0 4 4 61

4 3 . 5 5 0 . 4 1 3 3 8 . 1 - 2 . 2 0 1 7 5 . 9 1

4 1 . 2 0 . 8 7 5 2 1 .0 61 1 1 1 3 0 . 9 0 . 5 1 1 7  - 0 . 0 7 5 4  
+ 0 . 04 4 6 1

5 5 . 5 7 4 . 8 7 2 6 6 . 1 3 . 9 1 - 8 8 . 0 5
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Figure 2.8 An example of damping producing instability of a negative energy wave in an 
otherwise linearly stable system. U =0.5 ms'̂ , p m  = 5.0 metres, Cg = 0.5 ms'l, 
h = 0.1 m ,p‘^(ps-p)*1.0: (a) Offor/=0: = 0 (noinstability); (b) m f̂br /=  10.0
ms*“* (membrane modes are damped almost to zero); (c) ©gj for I = 10.0 ms*̂  (this is the 
only mode that has a positive growth rate).
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H p ire  2.9 A  graphical technique fo r finding the approximate location o f resonant triads: here 
+ = û>a + ®B = û)c .
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F igure 2.10 An example o f explosive three-wave resonance. U = 0.268 ms’^, p m = 5.0 
metres, Co = /=O m s \  h = 0.25 m ,p  l(pg-p)=1.0.
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Figure 2.11 Wavenumbers and Ajg permitting exposive three-wave resonance, w ith + k2

= + a>2 = -û>3. Computed w ith U = 0.27,0.268,0.265 ms'̂  fo r outer, middle and
inner loops respectively. Other parameters:
Cq = 0 m s"l, p = 5.0 metres, /=  0 ms*^ S q = 2pp, = m, h = 0.25 metres.



p

U ( % )  ^

ElgHPg 3tl The model: resonant triad configuration.
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Figure 3.2 R igid w all: a -  0.6, R = 2562.8 (see Table 3.1).



3 r

5 .5

0.0 0 .2 0.4 0.80.6 1.0 1.2 1.4 1. 6 1 . 8 2.0 2 .2 2 .4

5.5

5 .0

2.5

2.0

0.0

0.5

0.0 0.4 0.6 0.8 1.0 1 . 2 2.40.2 2.0 2 .21.6 1 .81.4

Figure 3.2 (contd) Adjoint eigenfunction.
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Figure 3.2 (contd.) Oblique eigenfunction.
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Figure 3.2 (contd.) Oblique adjoint eigenfunction.
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Figure 4.1 m = 1.1, = 0.1, cf= 0, S = 0.15: R = Rq — 2562.8 (see Table 4.1).
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Figure 4.3 (contd.) Adjoint eigenfunction.
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Figure 4.4 As Figure 4.3, but F mode: c = (1.1914, 0.0009).
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Figure 4.4 (contd.) Adjoint eigenfunction.
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Figure 4.6 As Figure 4.5, but interacting F mode: c = (0.6846, 0.0856).
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Figure 4.17 (contd.) Oblique eigenfunction.
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Supplement: the resonant-triad program

PROGRAM OSCR53
C
C T H IS  PROGRAM USES NEWTON-RAPHSON ON F IR S T  EIGENVALUE ESTIMATE,
C AND E^GULA F A L S I FOR SUBSEQUENT ITERATIONS (SUBROUTINE E IG E N ).
C P R IN C IP L E  OF ARGUMENT ALSO AVAILABLE (SUBROUTINE E I G I T ) . B ISEC TIO N
C IS  USED ON BETA (TRANSVERSE WAVENUMBER) . RESONANT TRIAD INTERACTION
C C O EFFIC IEN TS ARE CALCULATED. FINDS EIGENVALUE, THEN
C THREE EIGENFUNCTIONS, THEN THREE ADJO INTS, THEN ONE TRANSVERSE
C V ELO C ITY , AND FIN ALLY F 1 ,F 3 .  F IV E -/T H R E E -P O IN T  CENTRAL
C DIFFERENCE TECHNIQUES USED.
C

IM P L IC IT  C 0 M P L E X *1 6 (A ,G ,H ,S ,X ) ,R E A L *8 (B -F ,0 ~ R ,T -W ,Y ,Z )
DIM ENSION U L (3 2 0 1 ) ,U L P (3 2 0 1 ) ,U L D (3 2 0 1 ) , ADS( 3 2 0 1 , 2 ) ,A D P (3 2 0 1 ,2 )

1 ,A D D ( 3 2 0 1 , 2 ) ,XVS ( 3 2 0 1 ) ,X V P (3 2 0 1 ) ,X V D ( 3 2 0 1 ) ,X V T (3 2 0 1 )
1 ,X J S ( 3 2 0 1 , 2 ) ,X J P  ( 3 2 0 1 , 2 ) ,X J D ( 3 2 0 1 , 2 ) , X J T ( 3 2 0 1 , 2 ) , X JQ (3 2 0 1 ,2 )  

COMMON/RR/R, RO, R l ,  R 2 , RF, R L /M V L/U L , ULP, ULD 
C 0 M M 0 N /P P 1 /P 1 ,P 2 ,P 3 ,P 4 ,P 5 ,P 6 ,P 7 ,P 8 /X F L /X V S ,X V P ,X V D ,X V T  
COMMON/NNW/N, N M l, N P l, W, W2 , W3, W4/AD J /A D S , ADP, ADD 
C O M M O N /W /VL, V L 2 , V L 3 , V L 4 , PR, P I /P H I /X J S ,  XJP , XJD, X JT , XJQ 
COMMON/COQ/AZ, A IO , ARL, ARL3, ACO, A C /IN D /N K l, LLEV, NLEV, IP N  
COMMON/TF/AFF, R FF /R T D /B L , IB L , ITM /YM A X/YL/G A M M /XVL, XVLO 
COMMON/PAR/VLO, V L 0 2 , RRO, EPS, E P S l, D C R ,D C I/X X /X B 3 , X B l 
C O M M O N /PRO P/EM ,C O ,D ,SS,ULPO /DET/D AR G ,DD AR G ,JR,JI,NA RG , FOR, F C I 

1 /P P 2 /R F V , P IV ,  P 2V , P3V, P4V  
C Y L - IS  WIDTH OF Y-DOMAIN
C N - IS  NO. OF STEPS
C I P N = 0 , 1 , 2 ,  ORDER OF PRINT STATEMENTS
C PROGRAM EXECUTION BEGINS
C

W R IT E ( 6 ,6 7 )
67 F O R M A T (IX //1O X ,’ P ro gram  O S C R T '/ / IX , 'L o c a t e s  re s o n a n t t r i a d s

1 i n  B la s iu s  f l o w ' / / / I X , ' IN C = 0 ,1  l i n e a r , n o n l i n e a r  p ro b le m ;
1 N L E V = 0 ,1  r i g id ,c o m p l ia n t  w a l l ' / /
I I X ,  'E n t e r ;  N ,Y L , IN C ,N L E V ,IP N ,IS E T ,L L E V ,IT M '/ / )

READ (5 ,  * ) N ,  Y L, IN C , NLEV, IP N , IS E T , LLEV, ITM  
ISQ =0
IF (L L E V .E Q .3) ISQ =1  
I F ( L L E V .N E .1) GOTO 42
W R IT E ( 6 , * )  'A d j o in t  i t e r a t i o n  s e le c t e d '
W R IT E ( 6 , * )

42 IF (L L E V .E Q .3) W R ITE ( 6 , * )  'S q u ir e  mode p ro b le m  s e le c t e d *
W R IT E (6 ,4 4 )

44 F O R M A T ( IX / IX , 'E n t e r ; E P S ,E P S l;D C R ,D C I ( t r i a d ,e i g e n v a l u e  s e a rc h
I t o l e r a n c e s ; ' / I X ,  'e ig e n v a lu e  in c re m e n ts );N A R G ,J R , J I ,F C R ,F C I ' / )

READ( 5 , * )  EPS, E P S l, D C R ,D C I, N A R G ,J R ,J I, F C R ,F C I 
W=YL/N
W R IT E ( 6 , 1 0 ) Y L ,N ,W  

10 FORMAT( / , lO X , ' Y L = ', F 8 .5 ,  lO X , 'N = ' , I 4 , 1 0 X ,  ' h = ' , F l l . B / )
NM 1=N-1  
NP1=N+1 
RO=O.ODO 
R 1 = 1 .0 D 0  
R 2 = 2 . ODO 
NK1=0 

C LLEV=0
C
C BLASIUS SOLN/MEAN-VEL CALCULATIONS BEGIN



E TA L=5. 0 *Y L /S Q R T ( 2 .0 )
WB=ETAL/N 
E TA =0. ODO 
F = 0 . ODO 
P=O.ODO
Q = 0 .4 6 9 5 9 9 9 9 0 4 7 4 0 3 1 4 D 0  
T R = 0 . ODO 
KB=1
I F ( I P N . N E .2 ) GO TO 23
OPEN( 3 , F ILE ='M FLO W . D AT' , STATUS=' NEW')
W R IT E (3 ,2 1 )

21 F O R M A T (4 X , 'Y ',8X , ' F ' , 8X , ' F ' ' , 8X , ' F "  ' , 6X , 'F  ' ' " )
C 23 U I ( K B ) = F * ( S Q R T ( 2 .0 ) /5 .0 )
23  U L(K B )=P

U LP (K B )= 0 * ( 5 . 0 /S O R T ( 2 . 0 ) )
U L D (K B )= T R *1 2 .5  
IF ( IP N .N E .2 ) G 0  TO 26  
Y Y = (K B -1 )*Y L /N  
W R IT E (3 ,2 4 )Y Y ,F ,P ,Q ,T R

24 FO R M A T(2X ,F4 . 2 , 2 X , F 8 . 5 , 2 X ,F 8 . 5 , 2 X ,F 8 . 5 , 2X , F 8 .5 )
25 F O R M A T (2 X ,F 4 .2 ,2 X ,F 8 . 5 , 2 X ,F 8 . 5 , 2 X ,F 8 .5 )
26 DELF1=WB*P 

DELP1=WB*Q 
D ELQ 1=W B *(-F*Q )
D E L F 2 = W B *(P + D E L P l/2 .0 )
D E L P 2=W B *(Q +D E L Q l/2 .0 )
DELQ2=WB*( - (F + D E L F l /2 . 0 ) * (Q + D E L Q l/2 .0 )  )
DELF3=W B*(P+DELP2/ 2 . 0 )
D ELP3=W B *(Q +D ELQ 2/2.0 )
D E L Q 3 = W B *(~ (F + D E L F 2 /2 .0 )* (Q +D E LQ 2/2 .0 )  )
DELF4=W B*(P+DELP3)
DELP4=WB*(Q+DELQ3)
DELQ4=WB*( - (F + D E L F 3 )* (Q +D ELQ 3))
F = F + (D E L F l+ 2 . 0 *D E L F 2 + 2 . 0 *D E L F 3 + D E L F 4 )/6 .0  
P = P + (D E L P l+ 2 . 0 *D E L P 2 + 2 . 0 *D E L P 3 + D E L P 4 )/6 .0  
Q =Q +(D E LQ l+2 . 0 *D E LQ 2+2 . 0*D E LQ 3+D E L Q 4)/6 .0  
T R = -(F *Q )
ETA=ETA+WB 
KB=KB+1
IF ( K B .L E .N P l)G O  TO 23  
IF ( IP N .N E .2 ) G 0  TO 35  
W R ITE (3 ,2 8 )

28 FORMAT( / , 4 X , » Y ' , 7 X , ' U L ' , 8X , 'U L P ' , 8X , 'U L D ' , / )
C 29 FORMAT( / ,  4 X , 'Y ' , 7 X ,  ' U I ' , 8X , ' U L ' , 8X , 'U L P ' , / )

DO 30 J=1 ,N P 1  
Y Y = ( J - 1 ) * (Y L /N )
W R IT E (3 ,2 5 )Y Y ,U L (J ) ,U L P (J ) ,U L D (J )

30 CONTINUE
CLOSE(3)

C BLASIUS SOLN/MEAN-VEL CALCULATIONS END
C
C DATA GENERATION

35 CONTINUE
C VL— IS  REAL ALPHA
C R— IS  REYNOLDS NUMBER Î
C CR— IS  REAL PART OF C (T R IA L  VALUE)
C C l— IS  IMAGINARY PART OF C (TR IA L  VALUE)
C

ULPO=ULP(1 )



AZ=DCMPLX(RO,RO)
A IO =D C M PLX(R O fR l)

C W -IS  STEP S IZ E
C W=YL/N

W2=W*W 
W3=W2*W 
W4=W3*W 
R F = R 1 /3 6 0 .0  
P 1 = R 1 /(R 2 *W )
P 2 * R 1 /(1 2 .0 * W 2 )
P 3 = R 1 /(R 2 *W 3 )
P4=R1/W 4  
P 5 = R 1 /( 1 2 0 .0*W)
P 6 = R 1 /(1 5 .0 *W 2 )
P7»R0
P8“ R 2 *W /4 5 .0 D 0  
R F V = R l/6 .0  
P 1V = R 1/(R 2*W )
P2V=R1/W 2 
P 3V = R 1 /(R 2*W 3)
P4V=R1/W 4 

C D C R = 0 .1D -05
C D C I“ 0 .1 D -0 5
C E P S = 0 .1 D -0 6

OPEN( 4 , F IL E = ' RTRES. D A T' , STATUS=' NEW’ )
W R ITE ( 4 ,1 0 )  Y L ,N ,W  
DCRR=DCR 
D C II= D C I
DO 400 IA S = 1 ,IS E T  
DCR=DCRR 
D C I= D C II
IF ( IP N .E Q .O )  GOTO 91 
IF (L L E V .L T .2 )  THEN
OPEN( 7 , F IL E = ' E IG F .D A T ’ , STATUS»'NEW' )
OPEN( 8 , F IL E » ' A D J. DAT * , STATUS»’ NEW * )
END IF
I F ( IN C . EQ. 1 . OR. LLE V . EQ.3 )  OPEN( 9 , F IL E » ' XFLOW. D A T' , STATUS»' NEW•)

91 W R ITE( 6 ,9 3 )
93 F O R M A T ( IX / IX , 'E n t e r :  R O ,A lp h a ,R ,C r ,C i , C l i , B e t a , d B e t a ' / / )

READ( 5 , * )  R R E F ,V L ,R ,C C R ,C C I,C 1 I,B L 0 ,D B L  
IF (N L E V .N E .1) GOTO 95
W R IT E (6 , * )  'IO P T » 0  f o r  R » R (x ) ; I0 P T = 1  f o r  R » R (U ) '
W R ITE ( 6 , * )  'E n t e r  IO P T ,m a s s ,c O ,d ,S '
R E A D (5 ,* )  IO P T ,E M ,C 0 ,D ,S S  |

C I
IF (R .N E .R R E F .A N D .IO P T .E Q .O ) THEN j
W R ITE (4 ,9 1 2 )  R REF,EM ,SS I

912 F O R M A T ( IX , 'R » R ( x ) ' / / 2 X , 'R 0 = ' ,F 8 .1 ,4 X , 'm O = ' ,F 8 .4 ,4 X ,  |
l ' S 0 = ' , 2 E 1 1 . 4 / )  1

EM»EM*RREF/R  
SS=SS*R/RREF  
E L S E IF (R .N E .R R E F ) THEN
W R ITE (4 ,9 2 2 )  R R E F,C O ,D ,S S  ‘

922 FO B M A TdX, *R »R (U ) ' / / 2 X , ’ R 0 » ' ,F 8 .1 ,2 X ,  * c 0 ( 0 ) » ' , F 8 . 4 , 2 X ,  1
l ' d O = ' , F 8 . 4 , 2 X , 'S 0 = ' , 2 E 1 1 . 4 / )  I

CO=CO*RREF/R I
D»D*R REF/R  1
SS»S S *R R E F*R R E F/(R *R ) j
ENDIF i



W R IT E {4 ,9 4 ) E M ,C O ,D ,S S
94 F O R M A T ( 5 X , 'm ' , 7 X , 'c O ' , 6 X , 'd ' ,1 3 X , 'S '

1 / / 1 X , 3 ( F 8 . 4 ) , 1 X , 2 E 1 1 . 4 / )
95 CONTINUE 

VLO=VL 
V L02=V L*V L  
RRO=R 
IT R = 0  
IT N = 0  
THET=RO 
B I i» R O  

IB L = 1
IF ( IN C .E Q .2) THEN
BL=BL0
IB L » 2
EN D IF
KK2»0
CALL E IG E N (C C R ,C C I)
CRO=CCR
C I0 » C C I
ACO=DCMPLX(CRO , C IO )
W R ITE (6 ,1 2 0 0 )  VLO ,B L,R RO , CRO, C IO , RFF 
W R IT E (4 ,1 2 0 0 )  V LO ,B L ,R R O ,C R O ,C IO ,R FF  

C IF (IP N .E Q .O )G O T O  1513
NK1=1
CALL MATSOL(CRO,CIO)
IF (L L E V .E Q .3) GOTO 330
IF (L L E V .E Q .O ) THEN
LLEV=1
ELSE
LLEV=0
EN D IF
ZA D J=FF(C C R ,C C I)

C CALL MATSOL(CRO,CIO)
IF (L L E V .E Q .l )  THEN
W R IT E (6 ,3 3 3 )  VLO ,B L,R RO , C C R ,C C I, ZADJ 
W R IT E (4 ,3 3 3 )  VLO, BL,RRO, C C R ,C C I, ZADJ 

333 F O R M A T ( IX , 'A d jo in t : ' / I X ,  F 7 . 5 ,D 1 7 . 1 0 , F 8 .1  
1 , 3 ( 1 X , D 1 5 . 8 ) / )

LLEV=0
ELSE
WRITE (6 ,3 3 5 )  VLO, BL,RRO, C CR ,C C I ,ZADJ 
W R IT E (4 ,3 3 5 )  V LO ,B L ,R R O ,C C R ,C C I ,ZADJ 

335 F O R M A T (IX ,'P h i : ' / I X ,  F 7 . 5 , D 1 7 . 1 0 , F 8 . 1 , 3 ( IX ,D 1 5 . 8 ) / )
LLEV=1  
END IF  

330 NK1=0
I F ( I N C . N E .1) GOTO 420 
IB L = 2  

1513 IT R = 0  
C C C I= C 1 I 
1515 BL=BLO+ITR*DBL  

C C I» C 1 I
CALL E IG E N (C C R ,C C I)
THET=CCR-CRO 
THMD»ABS(THET)
I F (T H M D .L T .E P S )GOTO 1535
W R IT E (6 ,1400) V LO ,B L ,R R O ,C C R ,C C I ,THET



W R ITE ( 4 , 1 4 00 ) V LO ,B L ,R R O ,C C R ,C C I,T H E T  
1400 F O R M A T ( 1 X ,F 7 .5 ,E 1 7 .1 0 ,F 8 .1 ,2 { 1 X ,E 1 5 .8 ) , 1 X ,E 1 5 .8 )
C IF (IT R .E Q .O .A N D .T H E T .G T .R O ) THEN
C B L 0 = B L 0 -0 .2 D -1
C D B L»0. lD - 1
C CCR=CRO
C C C I= C 1 I
C GOTO 1515
C E L S E IF (IT R .E Q .O ) THEN
C GOTO 1526
C ENDIF

IF ( IT R .E Q .O )  GOTO 1526  
IF ((T H E T *T H E T L ).L T .R O )G O T O  1529  

152 6 THETL=THET 
BLL=BL 
IT R = IT R + 1
IF (IT R .G T .IT M )G O T O  400  
CCR=CRO 
GOTO 1515

152 9  BLR»BL
1530  B L » (B L L + B L R )/2 . ODO 

CALL E IG E N (C C R ,C C I)
THET=CCR-CRO 
THMD»ABS(THET)
IF (TH M D .LT .E P S )G O TO  1535  
W R ITE (6 ,1 4 0 0 )  V LO ,B L ,R R O ,C C R ,C C I,TH E T  
W R ITE (4 ,1 4 0 0 )  V LO ,B L ,R R O ,C C R ,C C I,TH E T  
IF ((T H E T *T H E T L ).G T .R O )G O T O  1533  
BLR»BL 
GOTO 1534

1533  BLL»BL 
THETL=THET

1534  KK2»KK2+1 
IF (K K 2 . G T.1 0 0 ) GOTO 400  
GOTO 1530

1535  W R ITE ( 6 , * )
W R ITE ( 6 , * )  'RESONANT TRIAD LOCATED;'
W R ITE (6 ,1 2 0 0 )  VLO, BL,RRO, C C R ,C C I, THET 
W R ITE (4 ,1 2 0 0 )  VLO, BL,RRO, C C R ,C C I,TH E T

1200 F O R M A T ( 1 X /1 X ,F 7 .5 ,D 1 7 .1 0 ,F 8 .1 ,3 ( 1 X ,D 1 5 .8 ) / )
1210  F O R M A T ( IX / IX , 'G A M M A » ',F i l .8 , 5 X , 'R P R IM E » ',F 9 . 1 / / 1 X , ' P = ' ,

1 2 F 1 2 . 6 , 5 X , ’ P 0 = ' , 2 F 1 2 . 6 / )
C IF (IP N .E Q .O )G O T O  400

PR=CCR 
P I= C C I
NK1»1 1

C IB L » 2  j
CALL MATSOL(CCR,CCI) J
W R ITE ( 6 ,1 2 1 0 )  V L ,R ,X V L ,X V L O  |
W R ITE (4 ,1 2 1 0 )  V L ,R ,X V L ,X V L O  j

C IF (B L .G T .R O ) THEN |
IF (L L E V .E Q .O ) THEN |
LLEV»1 
ELSE 
LLEV=0 
ENDIF
ZA D J=FF(C C R ,C C I)

C CALL MATSOL(CCR,CCI)
IF (L L E V .E Q .l )  THEN



W R IT E (6 ,4 2 3 )  V LO ,B L ,R R O ,C C R ,C C I,ZA D J  
WRITE < 4 ,4 2 3 )  VLO, BL,RRO, C C R ,C C I, ZADJ 

423 F O R M A T ( IX , 'A d jo in t  ( o b l i q u e ) ; ' / 1 X , F 7 . 5 ,D 1 7 .1 0  
1 , F 8 . 1 , 3 ( 1 X , D 1 5 . 8 ) / )

ELSE
W R ITE ( 6 ,4 2 5 )  V LO ,B L ,R R O ,C C R ,C C I, ZADJ 
W R ITE ( 4 ,4 2 5 )  V LO ,B L ,R R O ,C C R ,C C I, ZADJ 

425 F O R M A T (IX ,'P h i ( o b l i q u e ) : ' / 1 X , F 7 . 5 , D 1 7 . 1 0 , F 8 .1  
1 , 3 ( 1 X , D 1 5 . 8 ) / )

END IF
LLEV=2
CALL MATSOL(CCR,CCI)
LLEV=0
NK1=0
CALL COEFF 

C EN D IF
420 IF ( IP N .E Q .O )  GOTO 400 

IF ( I S Q . E Q . l )  GOTO 773  
IP Q =1  
IP R = 1
IF ( IN C .G T .O )  IPR =2  
IF ( IN C .E Q .2 ) IPQ =2  
DO 773  I= IP Q ,IP R  

DO 776 J » 1 ,N P 1 ,4  
C IF ( J . L T . 5 1 . 0 R . J . G T . ( N P l - 5 1 ) ) THEN

W R ITE ( 7 ,7 7 0 )  X J S ( J , I ) , X J P (J ,  I )  , XJD (J , I ) , X J T ( J , I ) , X J Q ( J , I )
W R ITE ( 8 ,7 7 2 )  ADS( J , I ) , ADP(J , I ) , A D D ( J , I )

C EN D IF
77 6 CONTINUE

W R ITE ( 7 , * )
W R ITE ( 8 , * )

773 CONTINUE
IF ( IN C .E Q . l .O R . IS Q .E Q . l )  THEN 

DO 753  J = 1 ,N P 1 ,4
C I F ( J . L T . 5 1 . O R .J .G T . (N P l -5 1 ) )W R IT E (9 ,7 7 1 ) X V S ( J ) , X V P (J ) , XVD (J ) ,
C 1 X V T (J )

W R ITE (9 ,7 7 1 )  X V S (J ) , X V P (J ) , XVD(J ) ,X V T ( J )
753 CONTINUE
771 FORMAT(8E10 .3 )

CLOSE(9 )
ENDIF

770 F O R M A T (lO E lO .3)
772 FO R M A T(6E 12.5)

I F ( I S Q . E Q . l )  GOTO 400 
CLOSE( 8 )
CLOSE(7 )

400 CONTINUE 
406 CLOSE(4 )

STOP
END

C
C

SUBROUTINE E IG IT (T R ,T I,N G A M )
C
C TRACES CLOSED CONTOUR IN  (C R ,C I)-P L A N E . EIGENVALUES LOCATED BY
C P R IN C IP LE  OF ARGUMENT.
C

IM P L IC IT  C 0 M P L E X *1 6 (A ,G ,H ,S ,X ) , REAL* 8 ( B -F ,0 - R ,T - W ,Y ,Z )  
COMMON/RR/R,RO, R l , R 2, R F ,R L /C O Q /A Z , A IO ,A R L ,A R L 3 , ACO, AC



COMMON/PAR/VLO, VLO2 , RRO, E P S ,E P S l,D C R ,D C I/T F /A F F ,R F F  
C O M M O N /D ET/D A RG ,D DA RG ,JR ,JI,N AR G ,FC R,FCI 
C O M M O N /W /V L ,V L 2 ,V L 3 ,V L 4 ,P R ,P I/R T D /B L , IB L , ITM  
P I» 3 .1 4 1 5 9 2 6 5 4 D 0  
W R IT E (4 ,1 8 0 )  VLO,BL,RRO  

180 F O R M A T (1 X /1 X ,F 7 .5 ,E 1 7 .1 0 ,F 8 .1 / )
N IT » 0  

40 J M X = 2 * (J R + J I)
J IR = J R + J I  
J IR 2 = J I+ 2 * J R  

50 CALL M A TS O L(TR ,T I)
IF (R F F .L T .E P S l)  GOTO 1000  
RMIN=RFF 
CRMIN=TR  
C IM IN “ T I  
NGAM»0 
DARG1=DARG
W R IT E (6 ,2 0 0 )  T R ,T I,R F F ,D A R G  

C I F ( N I T . N E .0) GOTO 220
W R IT E (4 ,2 0 0 )  T R ,T I,R F F ,D A R G  

200  F O R M A T (IX /IX ,2 (E 1 5 . 8 , I X ) , 2 (E 1 3 . 6 , I X ) )
TRO»TR 
T I0 = T I  

220  DO 100 J = l,J M X
C

IF ( J .L E .J R )  THEN 
TR=TR+DCR 
NWR=1
E L S E IF (J .L E .J IR )  THEN 
T I= T I+ D C I  
NWR=2
E L S E IF (J .L E .J IR 2 ) THEN u
TR»TR-DCR  
NWR»1 
ELSE
T I= T I - D C I  
NWR=2 
EN D IF

C
CALL M A TS O L(TR ,T I)
IF (R F F .L T .E P S l)  GOTO 1000  
IF (R F F .L T .R M IN ) THEN 
RMIN=RFF 
CRMIN=TR  
C IM IN = T I  
END IF
DDARG=DARG-DARG1

C
IF (D D A R G .G E .P I) THEN 
NGAM=NGAM-1
E LS E IF (D D A R G .L E . ( - P I ) ) THEN 
NGAM=NGAM+1
E L S E IF (A B S (D D A R G ).G T .1 .5 D 0 ) THEN 
W R IT E (6 , * )  'STEP S IZ E  MAY BE TOO LARGE : '
W R IT E (6 ,3 0 0 )  TR ,TI,R FF,D A R G ,D D A R G  
W R IT E (4 ,3 0 0 )  T R ,T I ,R F F , DARG, DDARG 

C GOTO 95
IF (N W R .E Q .l)  THEN 
DCR»DCR/R2



JR»JR*R2
ELSE
D C I= D C I/R 2
J I= J I* R 2
ENDIF
IER R=IERR +1
TR=TRO
T I= T I0
IF ( J R . L T .8 0 .A N D .J I .l t .8 0 )  GOTO 40
W R ITE ( 6 , * )  'TOO MANY PO INTS; TERMINATING EXECUTION'
W R ITE ( 4 , * )  'EXECUTION TERMINATED- TOO MANY P O IN TS '
GOTO 1000  
ENDIF

C
IF (J .E Q .J R .O R .J .E Q .J IR .O R .J .E Q .J IR 2 .0 R .J .E Q . JMX) THEN 
W R ITE (6 ,3 0 0 )  TR ,T I,R FF,D A R G ,D D A R G  
W R IT E (4 ,3 0 0 ) TR ,T I,R FF,D A R G ,D D A R G  
ENDIF

300 F O R M A T(IX ,2 (E 1 5 . 8 , I X ) , 2 (E 1 3 . 6 , I X ) , E 1 2 .5 )
95 DARG1=DARG 
100 CONTINUE

IF (N G A M .L T .O ) NGAM=-NGAM 
W R ITE (6 ,4 0 0 )  NGAM 
W R ITE (4 ,4 0 0 )  NGAM 

400 FORMAT( I X / 6 X , 1 4 , '  E IG E N V A L U E (S )' / )
C

IF (N G A M .N E .0) THEN 
W R ITE( 6 ,6 5 0 )  C R M IN ,C IM IN ,R M IN  
W R ITE(4 ,6 5 0 )  C R M IN ,C IM IN ,R M IN  

650 F O R M A T ( IX / IX , 'C M IN = ( ' ,E 1 2 .5 , ' , ' , E 1 2 . 5 , ' )  R M IN »», E 1 2 . 5 / )
ENDIF

C IF ( ( D C R .L T .O .1 D -3 .A N D .D C I.l t . O . lD -3 ).A N D .N G A M .N E . 0) THEN
C IF (R F F .L T .0 .2 D -5 .A N D .N G A M .N E .0 ) THEN

IF (N G A M .N E .0) THEN 
DELCR=DCR*JR 
D E L C I= D C I*J I

C IF ( (A B S (T R ) .G T .0 .2 D 0 .A N D .D E L C R .L T .0 .1 D -1 .A N D .D E L C I.L E .
C 1 O . lD -1 ) .O R .(D E L C R .L E .0 .1 D -3 .A N D .D E L C I .L E .0 .1 D -3 ) ) THEN

IF (D E L C R . L T . FCR. AND. D E L C I. L T . F C I) THEN 
DCR=0. lD - 5  
D C I» 0 . lD - 5  
GOTO 1000  

ENDIF  
ENDIF

C
G O T O (5 0 0 ,6 0 0 ) , N IT
IF (N G A M .E Q .O .A N D .N IT .E Q .O ) GOTO 1000  

500 IF (N G A M .E Q .O ) T I» T I+ J I * D C I  
DCR»DCR/R2 
N IT » 2  
GOTO 50

600 IF (N G A M .EQ .O ) TR»TR+JR*DCR  
D C I» D C I/R 2  
N IT = 1  
GOTO 50 

1000  CONTINUE 
RETURN 
END



SUBROUTINE E IG EN (C R, C I)
C
C EIGENVALUE LOCATION BY NEWTON-RAPHSON/REGULA F A L S I.
C

IM P L IC IT  COMPLEX* 16 (A , G, H, S , X) , REAL*8 ( B - F ,0 - R ,  T-W , Y , Z) 
COMMON/RR/R, RO, R l , R 2, RF, R L /W /V L , VL2 , V L 3 , V L 4 , PR, P I  
COMMON/RTD/BL, IB L , IT M /C O Q /A Z , A IO , ARL, ARL3, ACO, AC 
COMMON/PAR/VLO, V L02, RRO, EPS, E P S l, DCR, D C I/T F /A F F , RFF 
COMMON/DET/DARG, DDARG, JR, J I , NARG, FCR, F C I

C E P S l= 0 . lD - 0 9
IF (B L .E Q .R O )G O T O  1010  
BLS=BL*BL
RGAM»SQRT (B L S + V L 0 2 /4 . ODO)
R» (V L O / (2  . ODO*RGAM) ) *RRO 
VL=RGAM

1010 V L2=V L*V L  
V L3= V L2*V L  
V L4=V L2*V L2  
RL=R*VL  
A RL»RL*A IO  
ARL3=VL2*ARL  
IF (N A R G .N E .0) THEN 

NG=0
CALL E IG IT (C R ,C l,N G )
'lF (N G .E Q .O .O R .R F F .L T .E P S l) GOTO 930  

E N D IF
Z 1 = F F (C R ,C I)
A C1=DCM PLX(CR,CI)
AF1=AFF

C IF (Z l .L T .E P S l)G O T O  930
W R IT E (6 ,2 7 5 )  V L 0 ,B L ,R R 0 ,C R ,C I,Z 1
VCR»DCR
V C I= D C I
C1»CR+VCR
C 2 = C I+ V C I
Z 2 = F F (C 1 ,C I)
Z 3 = F F (C R ,C 2 )
E C R = (Z 2 -Z 1 )/V C R  
E C I= ( Z 3 - Z 1 ) /V C I  
DEN»ECR* E C R +EC I*EC I 
BCR =-Z1*EC R/DEN  
B C I= -Z 1 *E C I/D E N  
CR=CR+BCR 
C I= C I+ B C I 
Z Z P R = F F (C R ,C I)
A C2»DCM PLX(CR,C I)
AF2=AFF
IF (Z Z P R .L T .E P S l)G O T O  930
W R IT E (6 ,2 7 5 )  V L O ,B L ,R R O ,C R ,C I,Z Z P R
IT C = 0

900 A C 3=(A C 1*A F2-A C 2*A F1) /  (A F 2-A F1)
CR=DREAL(AC3)
C I=D IM A G (A C 3)
F F 3 = F F (C R ,C I)
I F (F F 3 .l t . EPS l)GOTO 930
W R IT E (6 ,2 7 5 )  VLO, BL,RRO, C R ,C l, FF3

275 F O R M A T ( 1 X ,F 7 .5 ,E 1 7 .1 0 ,F 8 .1 ,3 (1 X ,E 1 5 .8 ) )
AC1=AC2



AF1»AF2
AC2»AC3
AF2=AFF
IT C = IT C + 1
I F ( I T C . L T . ITM)GOTO 900
W R IT E ( 6 , * )  'EIGENVALUE SEARCH NOT CONVERGING' 

930 CONTINUE 
RETURN 
END

FUNCTION F F (V R ,V I)
IM P L IC IT  C 0 M P L E X *1 6 (A ,G ,H ,S ,X ), R EA L*8 (B -F ,0 -R ,T -W , Y , Z) 
COMMON/TF/AFF,RFF  
CALL M A TSO L(VR ,V I)
FF=RFF
RETURN
END

SUBROUTINE M A TSO L(C R ,C l)
IM P L IC IT  COMPLEX*1 6 (A ,G ,H , S , X ) , R EA L*8 (B -F ,0 - R ,T - W ,Y ,Z )  
DIM ENSION A (3 2 0 1 ,5 ) ,H P (3 2 0 1 )
C O M M O N /IN D /N Kl, LLEV,N LEV, IP N /R T D /B L , IB L , ITM  
COMMON/MAT/A, H P /T F /A F F , RFF 
COMMON/NNW/N, N M l, NP1 , W, W2, W3 , W4 
COMMON/RR/R, RO, R l , R2 , RF, RL 
CO M M O N /W /VL, V L 2 , V L 3 , V L 4 , PR, P I  
COMMON/COQ/AZ , A IO , ARL, ARL3 , ACO, AC 
AC=DCM PLX(CR,CI)
CALL MATRIX  
CALL DIAG  
A F F = A (N P 1 ,3 )
IF (L L E V .E Q .3) A F F = A (N P 1 ,2 )
RFF»ABS(AFF)
IF (N K 1 .E Q .O )G O  TO 100  
CALL SOLN 

100 CONTINUE 
RETURN 
END

SUBROUTINE MATRIX
IM P L IC IT  C 0 M P L E X *1 6 (A ,G ,H ,S ,X ) ,R E A L * 8 (B -F ,0 -R ,T -W ,Y ,Z )
D IMENSION A ( 3 2 0 l , 5 ) ,U L ( 3 2 0 1 ) , U L P ( 3 2 0 1 ) ,U LD (3 2 0 1 )

1 ,H P ( 3 2 0 1 ) , X JS ( 3 2 0 1 , 2 ) , X J P ( 3 2 0 1 , 2 ) , X J D ( 3 2 0 1 , 2 ) , X J T ( 3 2 0 1 , 2 ) ,
1 X J Q (3 2 0 1 ,2 )

COMMON/RR/R, RO, R l ,  R 2, RF, R L /E E /H F l, HF2 , H F3, H G l, HG2, HG3 
C O M M O N /P P l/P l,P 2 ,P 3 ,P 4 ,P 5 ,P 6 ,P 7 ,P 8 /V B C /X B B ,X C C  j
COMMON/NNW/N, N M l, NP 1 , W, W2 , W3, W 4/PROP/EM, CO , D , SS, ULP0 
C O M M O N /W /VL, V L2, V L 3 , V L 4 , PR, P I /X X /X B 3 , XB l 
COMMON/COQ/AZ, A IO , ARL, ARL3, ACO, A C /PA R /VLO , V L02 , RRO, 

lE P S ,E P S l,D C R ,D C I/R T D /B L , IB L ,IT M /P H I/X J S ,X J P ,X J D ,X J T , XJQ 
C O M M O N /IN D /N Kl, LLEV, NLEV, IPN /BCS/HBW A, HBWB, HBWC, HCWA,

1 HCWB,HCWC/GP/GPO/GAMM/XVL,XVLO 
COMMON/MAT/A, H P /M V L /U L ,U L P ,U L D /P P 2 /R F V , P lV , P2V, P3V, P4V  
IF (N L E V .E Q .l .A N D .IB L .E Q .l )  THEN 

X B » (A R L *(E M *V L 0 2 *(A C *A C -C O *C O )+ A IO *V L O *D -S S )) /AC  
XB3=XB



E L S E IF (N L E V . EQ . 1 . AND. IB L . EQ.2  ) THEN 
XB= (A IO *R 2 *V L 2 *R R O / (VLO*AC) ) *  (EM* (V L 0 2 /4  . 0 ) *  (A C *A C - (VLO*CO 

1 *C 0 ) /  (R 2 *V L ) ) + (A IO *V L 0 *A C *D /R 2 )-S S )
XB1=XB

ENDIF
A1»AZ
IF ( L L E V .L T .2 ) THEN
A 0 » -V L 4 / ARL+VL2 *AC
A2»R2 *V L 2 /A R L -A C
A 4 = -R 1 /A R L
AOO=RF*AO
A 22=P 2*A 2
A 4=P 4*A 4
ELSE
AOO=-RFV* (V L 2 - (ARL*AC) )
A2=DCMPLX (P 2V , RO)
A4=AZ
ENDIF
DO 50 J » 1 ,N P 1  
A O =A O O -R F*VL2*U L( J)
IF (L L E V .E Q .O ) AO=AO-RF*ULD(J)
IF (L L E V .G E .2 )  A 0= A 00-(R F V *A R L *U L (J ) )
IF ( L L E V .E Q . l )  A 1 » P 1*R 2*U L P (J )
IF (L L E V .L T .2 )  THEN 
A 2 » A 2 2 + P 2 *U L (J )
A (J ,1 )= A 0 + A 2 + A 4
A (J , 2 ) » A 0 * 5 6 . 0 + A 2 *8 . 0 -A 4 * 4 . 0 -A l  
A (J ,3 ) » A O * 2 4 6 .0 -A 2 * 1 8 .0 + A 4 * 6 .0  
A (J ,4 ) = A (J ,2 ) + R 2 * A 1  
A ( J , 5 ) » A ( J , 1 )
HP(J)=AZ
ELSE
A (J ,  1 )=A 2+A 0
A (J ,2 ) = -R 2 * A 2 + 4 .0 * A 0
A ( J ,3 ) = A ( J ,1 )
HP (J)=AZ
IF (L L E V .E Q .2) H P (J )= A IO *U L P (J )*B L *R R 0 *X J S (J ,2 )
ENDIF  

50 CONTINUE 
GPO»AZ 
GP1=AZ 
GP2=AZ 

C WALL B .C . - S
IF (L L E V .L T ,2 .A N D .N L E V .E Q .O ) THEN
HBWA=AZ
HBWB=R1
HBWC=AZ
H CW A »-246.0D 0
H C W B =-112.0D 0
HCWC=-R1
E L S E IF (N L E V .E Q .O ) THEN 

CC AV0=ARL*AC-VL2
C HFV=AV0*P1
C HFV1=P3+HFV
C G D 1 » 1 8 .0 * H F V 1 -6 .0 * P 3 “ 4 0 .0 *H F V
C H BD »56. 0 * G D l - 7 . 0 *  ( 9 . 0 *H F V 1+ 15 . 0 * P 3 -1 5 7 . 0*H FV )
C H B W A » -(1 1 4 .0 *G D 1 + 3 9 2 .0 *H F V 1 )/H B D
C H B W B = 7 .0 * ( (9 .0 *H F V 1 + 1 5 7 .0 *H F V -1 5 .0 *P 3 ) -8 .0 *G D 1 ) /H B D
C HBW C=7.0* (18  .0 *H F V l+ 6  .0 *P 3 + 4 0 .0 *H F V -G D 1 ) /HBD



c  HBWD=14 .0  *H FV1 /HBD
C H C W A = -1 1 4 .0 /7 .0 -8 .0 *H B W A
C HCW B»-8.0*(R1+HBW B)
C H C W C = -(R l+ 8 .0  *HBWC)
C HCWD»-8 .0  *HBWD
C H D W A »56.0 -18 .0*H C W A -9 .0*H B W A
C H D W B =-9 .0 -18 .0*H C W B -9 .0 *H B W B
C H D W C »-18 .0 -18 .0 *H C W C -9 .0 *H B W C
C H D W D »-R 1-18.0*H C W D -9.0*H B W D
CC H B W A = -11 .0 /R 2  
CC HBWB=“ R1
CC HBWC»AZ
CC HCWA»6 2 . ODO
CC HCWB=AZ
CC HCWC=-R1

H BW A=-4.0D0  
HBWB=-R1 
GPO=AZ 
E ND IF
IF (N L E V .E Q .l.A N D .L L E V .E Q .O ) THEN 
H D1=ULP0*RF/AC  
H D 2 = 3 .0 *V L 2 *P 1  
HD3=XB*RF 
HCA»P3+HD3
H B D = H C A *(5 6 .0 *H D 1 -P 1 )+ H D 1 *(R 2 *P 3 + H D 2 -5 6 . 0*H D3)
HBW A=HD1*246. 0 * (HD3-HCA)/HBD
HBW B»(HDl* (R 2*P 3+H D 2+ 56 . 0 *H D 3 )-H C A *( 5 6 . 0 *H D 1 + P 1 )) /HBD 
HBW C=HD1*(HD3-P3-HCA)/HBD  
H C X » P 1 -5 6 .0 *H D 1  
HCWA»( - 2 4 6 . 0*HD1+HCX*HBW A)/HDl 
H C W B =(H C X *H B W B -(56.0*H D 1+P 1)) /H D l  
HCW C»(HCX*HBW C-HD1)/HDl 
E L S E IF (N LEV. EQ. 1 . AND. LLEV. EQ.1 )  THEN 
H D 1»U LP0*P2/A C  
H D 2 » R F *( (Ü L P 0 *V L 2 /A C )-X B )
HBWA=AZ 
HBWB=R1 
HBWC=AZ
HCD»P3-HD1-HD2
H C W A = (2 4 6 .0 *H D 2 -1 8 .0 *H D 1 )/H C D  
H C W B = (1 6 .0 *H D 1 + 1 1 2 .0 *H D 2 )/H C D  
HCW C»(P3+HD1+HD2)/HCD  
E L S E IF (N L E V .E Q .l)  THEN 

C AV0=ARL*AC-VL2
C A V1=-A RL*U LP0 |
C H P 0»R 2*B L *U L P 0*X JS ( 1 , 2 ) / (VLO*AC*RF) j

G PO »R2*B L*U LPO *XJS( 1 , 2 ) / (VLO*AC*RFV) i
HBW A=-4. ODO I
HBWB=-R1 I
END IF I
IF (L L E V .G E .2 ) THEN j
A (1 ,2 )» A (1 ,2 )+ H B W A *A (1 , 1) |
A (1 ,3 )= A (1 ,3 )+ H B W B * A (1 ,1 )  I
H P (1 )= H P (1 ) -G P 0 * A (1 ,1 )  I
ELSE i
A ( l ,  3 ) » A (1 , 3) +HBWA*A(1, 2 ) +H C W A *A (1,1) |
A (1 ,4 )= A (1 ,4 )+ H B W B *A (1 ,2 )+ H C W B *A (1 ,1 )  |
A (1 ,5 )» A (1 ,5 )+ H B W C *A (1 ,2 )+ H C W C *A (1 ,1) |
A (2 ,2 )= A (2 ,2 )+ H B W A * A (2 ,1 )  {



A (2 ,3 )= A (2 ,3 )+ H B W B * A (2 ,1 )
A (2 ,4 )= A (2 ,4 )+ H B W C * A (2 ,1 )
E N D IF

C END OF WALL B .C .-S
C VARIABLES REQD. FOR OUTER B .C .-S

IF (L L E V .L T .2 ) THEN 
X V L 2»V L 2+A R L *(R l-A C )
XVL=CDSQRT(XVL2)
I F ( I B L . E Q . l )  XVLO=XVL 

C XVL=VL
C XVL2=VL2
C X B F 1 » P 1 /(X V L *R F )
C X B F 2 = -P 2 /(X V L 2 *R F )
C X C F M » (5 6 .0 + 8 .0 *X B F 2 ) / (R1+XBF2)
C X C F »( 2 4 6 . 0 - 1 8 . 0 *X B F 2 )/ (R1+XBF2)
C X B B = -( 5 6 . 0 -X B F l-X C F M )/ ( 5 6 . 0+XBFl-XCFM )
C X C C = - (2 4 6 .0 -X C F ) / ( 5 6 . 0+XB Fl-XCFM )
C X D D » - ( ( 5 6 .0 -X B F l)+ (5 6 .0 + X B F l) * X B B )
C X E E = -(2 4 6 .0 + (5 6 .0 + X B F l)*X C C )
C X B B =EXP(-R 2*VL*W )
C XCC=XBB*XBB

X A 1= (X V L + V L )*P 1
XA2=XVL*VL*RF
X A 3»(X V L +V L )*P 2
XA4=XVL*VL*P1
XC1=XA2+P2
XC2=XA3+P3
H FD »X C 1*( 8 . 0 *X A 3 -R 2 *P 3 + X A 4 )-X C 2 *( 8 . 0 *P 2 + X A l+ 5 6 . 0*X A 2) 
H F 1 = (X C 2 * (X A 2 + P 2 )-X C l* (X A 3 -P 3 )) /HFD
H F 2 » (X C 2 * ( 8 .0 * P 2 - X A l+ 5 6 . 0 *X A 2 )-X C 1 * (R 2 *P 3 + 8 . 0 *X A 3 -X A 4 )) /  

1 HFD
H F 3 » (X C 2 * ( 2 4 6 .0 * X A 2 -1 8 . 0 *P 2 )+ X C 1 *1 8 . 0 *X A 3 )/H F D  
H G C =-( 8 .0  *P 2 + X A l+ 5  6 .0  *X A 2) /X C l  
HG1=-R1+HGC*HF1
H G 2 = (X A l-8 . 0 * P 2 - 5 6 . 0*X A 2)/X C 1+H G C *H F2  
H G 3=(1 8 .0  *P 2 -2  4 6 .0  *X A 2 ) /XC1+HGC*HF3 

C OUTER B .C . 'S
A (N P l ,1 )= A ( N P 1 ,1 ) + H F 1 *A (N P 1 ,4 ) +H G 1*A (N P l, 5) 
A (N P 1 ,2 )» A (N P 1 ,2 )+ H F 2 *A (N P 1 ,4 )+ H G 2 *A (N P 1 ,5 )
A ( N P l ,3 ) = A (N P l,3 ) + H F 3 *A (N P 1 ,4 ) + H G 3 *A (N P l,5) 
A (N ,2 )= A (N ,2 )+ H F 1 * A (N ,5 )
A ( N ,3 ) = A ( N ,3 ) + H F 2 *A (N ,5)
A (N ,4 )= A (N ,4 ) + H F 3 * A (N ,5)

C A (N P 1 ,1 )= A (N P 1 ,1 )+ X C C *A (N P 1 ,5 )
C A (N P 1 ,2 )= A (N P 1 ,2 )+ X B B *A (N P 1 ,4 )
C A (N ,3 )= A (N ,3 )+ X B B *A (N ,5 )
C A (N P 1 ,1 )= A (N P 1 ,1 ) -A (N P 1 ,5 )
C A (N P 1 ,2 )= A (N P 1 ,2 )+ A (N P 1 ,4 )*X B B + A (N P 1 ,5 ) *XDD 
C A ( N P l ,3 ) » A (N P l ,3 ) + A ( N P l ,4 ) *X C C +A (N P l, 5 ) *XEE
C A (N ,3 )= A (N ,3 )+ A (N ,5 ) * X B B
C A (N ,4 )= A (N ,4 )+ A (N ,5 ) * X C C

ELSE
X V L 2»V L 2+A R L *(R l-A C )
XVL=CDSQRT(XVL2)
SNN=XVL*RFV
X B B = (P IV -S N N )/ (P IV+SN N)
X C C » -4 . 0 *S N N /(S N N + P IV )
A (N P 1 ,1 )» A (N P 1 ,1 )+ X B B *A (N P 1 ,3 )
A ( N P l ,2 ) » A (N P l ,2 ) + X C C *A (N P l,3)



E N D IF
C END OF O UTER B . C . - S

R ETURN  
END

C
C

S U B R O U TIN E  D IA G
C
C DIAGONALISATION OF MATRIX OF EQUATION.
C

IM P L IC IT  C 0 M P L E X *1 6 (A ,G ,H ,S ,X ), R EAL*8 (B - F ,0 - R ,T - W ,Y ,Z )  
DIMENSION A ( 3 2 0 l ,5 ) ,H P ( 3 2 0 1 )
COMMON/IN D /N K I,L L E V ,N L E V ,IP N  
COMMON/NNW/N,NMl, NP1 , W,W2, W3, W4 
COMMON/W /V L ,  V L 2 , V L 3 , V L 4 , PR, P I
COMMON/MAT/A,HP/DET/DARG,DDARG, JR , J I ,  N A R G ,FC R ,FC I 
IF ( L L E V .L T .2) THEN 
DO 40 J= 1 ,N P 1  
ZA»ABS ( A ( J , D )
DO 37 K = 2 ,5  
Z A 1 = A B S (A (J ,K ))

37 IF (Z A .L T .Z A 1 )Z A = Z A 1  
C IF (L L E V .G T . l )  H P ( J )» H P (J ) /Z A

DO 40 K = l ,5  
A ( J ,K ) = A ( J ,K ) /Z A  

40 CONTINUE
C W R IT E (6 , * )  A ( l , 4 )

DO 45 J = 2 ,N  
X A = A ( J ,2 ) /A ( J - 1 ,3 )
X A 1 = A (J + 1 ,1 ) / A ( J - 1 ,  3)

C IF (L L E V .G T . l )  THEN
C H P (J )» H P (J ) -H P (J -1 ) * X A
C H P (J + 1 )= H P (J + 1 ) -H P (J -1 )* X A 1
C ENDIF

DO 45 K = 4 ,5
A ( J ,K - 1 ) = A ( J ,K - 1 ) - A ( J - 1 ,K ) * X A  
A (J + 1 ,K - 2 ) = A ( J + 1 ,K - 2 ) - A ( J - 1 ,K ) * X A 1  

45 CONTINUE
X A » A (N P 1 ,2 ) /A (N ,3 )
A (N P 1 ,3 )= A (N P 1 ,3 ) -A (N ,4 ) *XA  

C IF (L L E V .G T . l )  H P (N P l)= H P (N P l) -H P (N )*X A
ELSE
DO 140 J= 1 ,N P 1  
Z A = A B S (A (J ,1 ) )
DO 137 K » 2 ,3  
Z A 1 = A B S (A (J ,K ))

137 IF (Z A .L T .Z A l)Z A » Z A 1
IF (L L E V .E Q .2 ) H P (J )= H P (J ) /Z A  
DO 140 K = l ,3  
A ( J ,K ) = A ( J ,K ) /Z A  

140 CONTINUE
DO 145 J= 2 ,N P 1  
X A = A ( J ,1 ) /A ( J - 1 ,2 )
IF (L L E V .E Q .2 ) H P (J )» H P (J ) -H P (J -1 ) * X A  

C DO 145 K = 4 ,5
K=3
A ( J ,K - 1 ) » A ( J ,K - 1 ) - A ( J - 1 ,K ) * X A  

145 CONTINUE 
C X A = A (N P 1 ,2 ) /A (N ,3 )



c  A (N P 1 ,3 )= A (N P 1 ,3 )~ A (N ,4 ) *XA
C H P(N P 1 ) = H P (N P l) -H P (N )*X A

EN D IF
IF (N A R G .N E .0) THEN 
JG=3
IF (L L E V .G E .2 )  JG=2 
G D E T=A (1,JG )
G D ET=G D ET/CD AB S(A (l, JG) )
DO 80 J» 2 ,N P 1
G D E T = (A (J , JG) /C D A B S (A (J , JG) ) ) *GDET 

80 CONTINUE
DETX»DREAL(GDET)
DETY=DIMAG(GDET)
DARG=ATAN2(DETY,DETX)
END IF
RETURN
END

C
C

SUBROUTINE SOLN
C
C CONSTRUCTION OF SOLUTION VECTOR.
C

IM P L IC IT  C 0 M P L E X *1 6 (A ,G ,H ,S , X ) , REAL* 8 (B -F ,0 -R ,T -W ,Y , Z) 
DIMENSION A ( 3 2 0 1 ,5 ) ,G ( 3 2 0 7 ) ,H P ( 3 2 0 1 ) ,X J S ( 3 2 0 1 ,2 ) ,X J P ( 3 2 0 1 ,2 )  

1 , X J D ( 3 2 0 1 , 2 ) ,X J T ( 3 2 0 1 ,2 ) ,X J Q ( 3 2 0 l ,2 ) ,A D S ( 3 2 0 1 ,2 ) ,A D P (3 2 0 1 ,2 )  
1 , ADD( 3 2 0 1 , 2 ) , XVS ( 3 2 0 1 ) ,X V P ( 3 2 0 1 ) , XVD ( 3 2 0 1 ) ,X V T (3 2 0 1 )  
1 ,X S ( 3 2 0 1 ) , X P (3 2 0 1 ) ,X D ( 3 2 0 1 ) ,X T ( 3 2 0 l ) ,X Q ( 3 2 0 1 ) ,
1 R A L (2 ) ,R A L 3 (2 ) ,U L (3 2 0 1 )  ,U L P (3 2 0 1 ) ,U L D (3 2 0 l)

COMM ON/PHI/XJS, XJP, XJD, X J T , X JQ /A D J/A D S , ADP, ADD/X F L /X V S , XVP,
1 XVD, XVT/PROP/EM ,CO, D ,S S , ULPO /PAR/VLO , V L02 , RRO, EPS, EPS1 , DCR, 
1 D C I/M V L /U L ,U L P ,U L D /V B C /X B B ,X C C  

COMMON/IN D /N K I,L L E V ,N L E V , IP N /R T D /B L ,IB L ,IT M  
COMMON/NNW/N,NMl, NP1 , W,W2, W3, W 4/EE/ HF1 , HF2, HF3 , H G l, HG2, HG3 
CO M M O N/W /VL, V L 2 , V L 3 , V L 4 , PR, P I/P P 2 /R F V , P lV , P2V, P3V, P4V  
COMMON/RR/R, RO, R l ,  R 2 , RF, RL 
C O M M O N /P P l/P l,P 2 ,P 3 ,P 4 ,P 5 ,P 6 ,P 7 ,P 8
COMMON/COQ/AZ, A IO ,A R L ,A R L 3 , ACO, AC/BCS/HBWA,HBWB,HBWC,

1 HCWA,HCWB,HCWC 
COMMON/MAT/A,HP/YMAX/YL/GP/GPO  
DO 127 1 = 1 ,N+7 

127 G ( I)= A Z
G (N P l+ 3 )= D C M P LX (R l,R O )
IF (L L E V .G E .2) THEN
IF (L L E V .E Q .2) G (N P 1 + 3 )= H P (N P l) /A (N P l ,2 ) 
G ( N P l+ 2 )= (H P (N ) - A (N ,3 ) * G ( N P l+ 3 ) ) /A ( N ,2 )
G (N P 1 + 1 ) = (H P (N M l) -A (N M l,3 ) * G (N P l+ 2 ) ) /A (N M l ,2) 
G (N P l+ 4 )= X B B *G (N P l+ 2 )+ X C C *G (N P l+ 3 )
G (N P 1+5)=A Z
G (N P 1+6)=A Z

C A N = R F V *(G (N P 1 + 1 )+ G (N P l+ 5 )+ 5 6 . 0 * (G (N P l+ 2 )+ G (N P l+ 4 ) ) + 2 4 6 .0 *
C IG (N P l+ 3 ) )
C A N = A N /E X P (V L * (1 .7 2 0 8 -Y L ))
C S U M = G (N P l+ 1 )+ G (N P l+ 2 ) + G (N P l+ 4 )+ G (N P l+ 5 )
C AN1=AN/SUM
C CA=ABS (AND
C IF (C A .G T .0 .1 D -0 9 )  G (N P l+ 3 )= - (G (N P l+ 1 )+ 5 6 . 0 * (G (N P l+ 2 )+
C IG ( N P l+ 4 ) ) + G (N P l+ 5 ) ) /2 4 6 .0
C G (N + 4 )= G (N + 4 )/A N



c  G (N +3 ) » ( H P (N ) -A (N ,  4) *G (N +4) ) /A (N ,  3)
DO 450 J = 1 ,N  
M =NP1-J
G (M + 3 )= (H P {M )“ A (M ,3 ) * G (M + 4 ) ) /A (M ,2 )

450 CONTINUE
C G (N + 5 )= G (N + 3 )*X B B + G (N + 4 )*X C C
C G (N + 6 )= -G (N + 2 )+ G (N + 3 )*X D D + G (N + 4 )*X E E

G ( 3 ) =HBWA*G{ 4 ) +HBWB*G( 5 ) +GP 0 
C G ( 2 ) »HCWA*G( 4 ) +HCWB*G( 5 ) +HCWC*G{ 6 ) +GP1
C W R ITE ( 4 , * )  G ( 2 ) ,G ( 3 )

DO 280 JJ = 1 ,N P 1  
J=JJ+3

C I F ( J J . L E . 8 .0 R .J J . G E . ( N - 6 ) ) W R IT E (4 ,* )  G (J )
X V S (J J )= R F V * (G (J -1 ) + G ( J + 1 )+ 4 . 0*G  ( J ) )
X V P (J J ) = P 1 V * (G (J + 1 ) -G ( J -1 ) )
XVD(J J ) » P 2 V * ( G ( J - 1 ) + G ( J + 1 ) - R 2 * G ( J ) )
X V T (J J )= A IO *B L *R R O *(U L P (J J ) * X J P ( J J ,2 ) + U L D (J J )*X J S (J J , 2 ) ) +

1 ARL*ULP ( J J ) *XVS ( J J ) + (VL2+A RL* (UL ( JJ ) -A C) ) *XVP ( J J )
C X V T ( J J ) = P 3 V * ( G ( J + 2 ) - G ( J - 2 ) - R 2 * ( G ( J + l ) - G ( J - l )  ) )
280  CONTINUE
C W R ITE( 4 , * )  G (N + 5 ) ,G (N + 6 )
C W R ITE( 4 , * )

ELSE
G (N P1+2) =  (HP (N ) -A (N ,4 ) * G (N P l+ 3 )  ) /A (N ,3 )
G (N P l+ 1 ) = (H P (N M l) -A (N M l,4 ) *G (N P l+ 2 ) -A  (N M l,5 ) * G ( N P l+ 3 ) ) 3

1 /A (N M 1 ,3 ) i
C G (N P 1+ 4 )= X B B *G (N P l+ 2 ) |
C G (N P l+ 5 )» X C C *G (N P l+ 1 ) I
C G (N P l+ 4 )« G (N P l+ 2 )*X B B + G (N P l+ 3 )*X C C  )
C G (N P l+ 5 )= -G (N P l+ 1 )+ G (N P l+ 2 )*X D D + G (N P l+ 3 )*X E E  |

G (N P l+ 4 ) =H F 1*G (N P 1 + 1 )+H F2*G  (N P l+ 2 ) + H F 3 *G (N P l+ 3 ) |
G (N P l+ 5 )= H G 1 *G (N P l+ 1 )+ H G 2 *G (N P l+ 2 )+ H G 3 *G (N P l+ 3 ) j
AN=RF* (G (N P l+ 1 ) +G (N P l+ 5 ) + 5 6 .0 *  (G (N P l+ 2 ) +G (N P l+ 4 ) ) + :}

1 2 4 6 .0 * G (N P l+ 3 ) ) I
A N = A N /E X P ((1 .7 2 0 8 -Y L )*V L ) j

C IF (L L E V .E Q .2 ) GOTO 50 |
G (N + 4 )= G (N + 4 )/A N  I

50 CONTINUE j
G (N +5)=A Z I
G (N +6 )=AZ ;i
DO 250 J = 2 ,N P 1  j
J J = N P l-J + 4  i
K=N P1-J+1 1
G ( J J ) = ( H P ( K ) - A ( K ,5 ) * G ( J J + 2 ) - A ( K ,4 ) * G ( J J + 1 ) ) /A ( K ,3 )  |

250 CONTINUE 1
C G (N +5)=X B B *G (N +3) |
C G (N +6)=X C C *G (N +2) |
C G (N P l+ 4 )= G (N P l+ 2 )*X B B + G (N P l+ 3 )*X C C  |
C G (N P l+ 5 )= -G (N P l+ 1 )+ G (N P l+ 2 )*X D D + G (N P l+ 3 ) *XEE |

G (N P l+ 4 )= H F 1 *G (N P l+ 1 )+ H F 2 *G (N P l+ 2 )+ H F 3 *G (N P l+ 3 ) |
G (N P l+ 5 )= H G 1 *G (N P l+ 1 )+ H G 2 *G  (N P l+ 2 )+ H G 3 *G (N P l+ 3 ) j
G (N +7)=A Z j
G (3)=H B W A *G (4)+H B W B *G (5)+H B W C *G (6) |
G ( 2 ) =HCWA*G( 4 ) +HCWB*G( 5 ) +HCWC*G( 6 ) |
G (1 )= A Z  I

C IF (L L E V .E Q .2 ) GOTO 350 J
A N = R F *(G (N + 2 )+ G (N + 6 )+ 5 6 . 0 * (G (N + 3 )+ G (N + 5 ))+ 2 4 6  . 0 *G  (N +4) ) I
A N = A N /E X P ((1 .7 2 0 8 -Y L )*V L ) I
DO 300 J = l ,N + 7



D IF ( J .L E .1 0 .O R .J .G E . ( N - 2 ) ) W R IT E ( 4 , * )  G (J )
G (J )= G (J ) /A N  

300 CONTINUE
W R IT E ( 4 , * )

C350 CONTINUE
DO 700 J J = 1 ,N P 1  
J = J J + 3
XS < J J )= R F * (G ( J -2 )+ G (J + 2 )+ 5 6 .0 D 0 * (G (J - 1 ) + G (J + 1 ) ) +

1 2 4 6 .0 D 0 * G ( J ) )
X P ( J J ) = P 1 * ( G ( J + 1 ) - G ( J - 1 )  )
X D (J J ) = P 2 * ( G (J - 2 ) + G (J + 2 ) + 8 . 0 * ( G ( J - 1 ) + G ( J + 1 ) ) - 1 8 . 0 * G (J ) ) 
X T ( J J ) “ AZ
IF ( L L E V .N E . l )  X T ( J J ) = P 3 * ( G ( J + 2 ) - G ( J - 2 ) + R 2 * ( G ( J - l ) - G ( J + l ) ) )  
X Q (J J )« A Z
IF (L L E V .E Q .O ) X Q (J J )= P 4 * (G (J - 2 ) + G ( J + 2 ) - 4 . 0 * (G (J - 1 ) +

1 G ( J + 1 ) ) + 6 .0 * G ( J ) )
IF (L L E V .E Q .O ) THEN 
X J S (J J , IB L )= X S (J J )
X J P (J J ,IB L )= X P (J J )
X J D (J J ,IB L )= X D (J J )
X J T (J J , IB L )= X T (J J )
X J Q (J J , IB L )= X Q ( JJ )

D I F ( J J . L T . 1 0 .O R . J J .G T . ( N P l - lO ) ) THEN
D XERR=XQ(J J ) - (R 2 *V L 2 + A R L *(U L (J J ) - A C ) ) *X D (J J ) + (VL4+ARL*
D 1

U LD (J J )+ A R L 3 * (U L (J J ) - A C ) ) *X S ( J J )
D I F ( J J . E Q . l )  W R IT E (6 , * )  'O .S .  ERROR:'
D W R IT E ( 6 , * )  JJ,X E R R
D IF (J J .E Q .N P 1 )T H E N
D XVL=CDSQRT (VL2+ARL* (R l-A C ) )
D XERR1=XT ( J J ) + (VL+XVL) *XD ( J J ) +V L*X V L*XP  ( JJ)
D XERR2=XD ( J J ) + (VL+XVL) *XP ( J J ) +V L*X V L*XS  ( JJ )
D W R IT E ( 6 , * )  'BC ERRORS: ' , X E R R l, XERR2
D E N D IF
D EN D IF

E L S E IF (L L E V .E Q .l)  THEN 
A DS(J J , IB L ) = X S (J J )
A D P (J J ,IB L )= X P (J J )
ADD ( J J ,  IB L ) =XD ( JJ )

C E L S E IF (L L E V .E Q .2 ) THEN
C X V S (J J )= X S (J J )
C X V P (J J )= X P (J J )
C X V D (J J )= X D (J J )
C X V T (J J )= X T (J J )

EN D IF  
700 CONTINUE

EN D IF  
R A L (1 )= V L 0  
R A L (2 )= V L  
R A L 3 (1 )= V L 0 *V L 0 2  
R A L 3 (2 )= V L 3  

C DO 800 J = l , 2
C X J P (N P 1 ,J )= -R A L (J ) * X J S (N P l,  J )
C X J T (N P 1 ,J )= -R A L 3 (J ) *X J S (N P 1 ,J )
C800 CONTINUE 

RETURN 
END

C
C



SUBROUTINE COEFF
C
C NONLINEAR TERMS ON R .H .S .
C

IM P L IC IT  COMPLEX* 16 (A ,G ,H ,S ,X >  , REAL* 8 (B -F ,0 -R ,T -W ,Y , 2) 
DIMENSION X J S (3 2 0 1 ,2 )  ,X J P ( 3 2 0 1 ,2 ) ,X J D ( 3 2 0 1 ,2 ) ,X J T ( 3 2 0 1 ,2 ) ,

1 XJQ ( 3 2 0 1 , 2 ) ,A D S ( 3 2 0 1 ,2 ) , A DP( 3 2 0 1 , 2 ) ,  ADD( 3 2 0 1 , 2 ) , X V S (3 2 0 1 )  
1 ,X V P (3 2 0 1 ) , XVD(3 2 0 1 ) ,X V T ( 3 2 0 1 ) ,H F ( 3 2 0 1 ,2 ) ,
1 R A L 2(2 ) ,S V (3 2 0 1 ,2 )  ,H F A ( 3 2 0 1 , 2 ) ,  SVA(3 2 0 1 , 2)

COMMON/PHI/XJS, XJP, XJD, X J T , X JQ /A D J/A D S , ADP, A D D /X FL/X V S , XVP 
1 ,X V D ,X V T /X X /X B 3 ,X B 1 /P R O P /E M ,C O ,D ,S S ,U L P O
1 / IN D /N K l,  LLEV,NLEV, IP N /R T D /B L , IB L , IT M /W /V L ,  VL2 , V L3 , V L 4 , PR, 
IP  I /R R /R ,  R 0 ,R 1 ,R 2 ,R F , RL/CO Q /AZ , A IO , ARL, ARL3 , ACO , AC 
1 /P A R /V L O , V L02 , RRO, EP S, EP S1 , DCR, DC I  
1 /N N W /N , N M l, N P l, W, W2, W3 , W4

C
RAL2 (1 )= V L 0 2  
R A L 2(2 )= V L2  
DO 100 J=1 ,N P 1

C
HF (J , 1) = A IO * (V L 0 /R 2 ) *  ( (3  . ODO- (V L 0 2 /V L 2 ) ) *XJP ( J ,  2 ) *  

1 ( X J D ( J ,2 ) - ( V L 2 * X J S ( J ,2 )  ) ) +XJS (J , 2 ) *  (XJT (J , 2 ) -  (V L2*
IX J P  (J , 2 ) ) ) +R 2* (V L 0 *B L /V L 2 ) *  (XVS (J ) *  (XJD (J , 2) -  (V L 2*
IX J S  (J ,  2 ) ) )  + (XJP (J , 2 ) *XVP (J )  ) ) - 4  . ODO* (B L *B L /V L 2 ) *
1 (XVS (J ) *XVP (J ) ) -R 2 *  (B L/V LO ) *  (XJD (J ,  2 ) *XVS (J ) + 
1 R 2 * X J P (J ,2 ) * X V P (J )+ X J S (J ,2 )  *X V D (J ) ) )

C
HF ( J ,  2 ) « A IO * (VLO /4 . ODO) *  ( ( (V L 0 2 /V L 2 ) -R 2 ) *XJS (J , 1) *  

1 D C 0 N J G (X J T (J ,2 ) - (V L 2 *X J P (J ,2 )  ) ) + ( (V L 0 2 /V L 2 )- 3 .  ODO) *
IX J P  (J ,  1) *DC0NJG(XJD ( J ,  2 ) -  (V L 2*X JS  ( J ,  2 ) ) ) -R 2 *
IDCONJG (XJP (J , 2) ) *  (XJD ( J ,  1 ) -  (V L 02*X JS  ( J ,  1) ) ) -  
1DC0NJG(XJS (J ,2 )  ) *  (XJT (J ,  1 ) -  (V L 02*X JP  (J ,  1) ) ) -R 2 *B L *
1 (V L 0 /V L 2 ) *  (XJS (J , 1) *DCONJG (XVD (J )  ) +XJP ( J ,  1) *
IDCONJG (XVP (J ) ) +VL2*XJS ( J ,  1 ) *DCONJG (XVS ( J ) ) ) )

C
DO 90 1 = 1 ,2
SV (J ,  I )  =XJD (J , I )  -  (RAL2 ( I )  *X JS  ( J ,  I )  )
S V A (J , I )  = S V (J , I )  *ADS (J ,  I )
HFA( J , I )  =HF (J , I )  *ADS (J , I )

90 CONTINUE
100 CONTINUE
C

CALL IN TEG R(HFA ,XN3,XN 1)
CALL IN TEG R(SVA ,XD3,XD1)

C
IF (N L E V .G T .O ) THEN
A E T A 1 = -R 2 *(V L /(U L P O *V L O )) * X J P ( 1 ,2 )
A E T A 3=-X JP ( 1 , 1 ) /ULPO

C
HPREP1= (V L 0 /R 2 ) *V L*A C *X JS  ( 1 , 2 )  -A IO *  (VL/RRO) *SV ( 1 , 2) 
HPREP3=VL02*AC0*XJS ( 1 ,1 )  - A IO *  (VLO/RRO) * S V ( 1 ,1)

C
XMU1= (A E TA l/V L ) *  (BL*XVP (1 ) -  (V L 0 /R 2  ) *XJD (1 , 2) )

C
XMU2=AIO*VLO*AETA1* ( (B L /V L ) *XVS (1 ) -  (V LO / (R 2*V L) ) *XJP (1 , 2 )

1 -  (U LP 0/R 2) *AETA1)
C

XM U 3=A I0* (VLO /  (R 2*V L) ) *A C *A E TA 1* ( (V L 0 /R 2 ) *XJD ( 1 ,2 )  -B L *
1 XVP (1 ) ) -A IO *  (V L 0 /R 2 ) *AETA1*HPREP1+ (A E T A l/ (VL*RRO) ) *  ( (VLO



1 /R 2 ) * (X J Q < 1 ,2 ) -V L 2 * X J D ( 1 ,2 )  ) - B L * ( X V T ( l ) - V L 2 * X V P ( l )  ) ) + A IO *
1 (B L /V L ) *U LP 0*A E TA 1* (BL*XJP ( 1 ,2 )  + (V L 0 /R 2 ) *XVS ( 1 ) ) -  (A I0 /V L 2 )  
1 * ( ( (V L 0 * V L 0 2 /8 . 0 ) - (V L 0 /R 2 )*B L *B L )* X J P (1 ,  2 ) *X J P ( 1 , 2 ) +VLO*
1 B L *B L *X V S ( 1 ) *XVS ( 1 ) + B L * (B L *B L -( 3 . 0 / 4 . 0 ) * VLO2 ) *X J P ( 1 , 2 ) *
1 X V S ( 1 ) -V L * X J S ( 1 , 2 ) * ( (V L 0 /R 2 )*X J D (1 ,  2 ) -B L *X V P ( 1 ) ) )

X M U 4= -A E T A 1*H P R E P 1-A I0 *(A E T A l/R R O )* ( ( 3 . 0 *V L 0 2 + 4 . 0 *B L *B L )*
1 (XJD ( 1 ,2 )  /V L ) -V L O *  (B L /V L ) *XVP ( 1 ) +V L * ( (V L 0 2 /4  . 0 ) -B L *B L ) *
1 X J S ( 1 , 2 ) )

X K A 1=- (A E TA 3/ (R 2*V L ) ) *  ( (V L 0 /R 2 ) *DCONJG (XJD (1 ,  2 ) ) -B L *
1 D C O N JG (X V P d) ) ) “ DCONJG(AETAl) *  (XJD ( 1 , 1 )  /R 2 )

X K A 2=(A E TA 3/ (R 2*V L ) ) *  (BL*DCONJG (XJD (1 ,  2 ) ) +  (V L 0 /R 2 ) *
1 D C 0 N J G (X V P (1 )) )

X K A 3 = -A I0 *  (V L O /4 .0) *  (ULPO*AETA3*DCONJG (A E T A l) -R 2 *  (B L /V L ) *
1 AETA3*DC0NJG (XVP (1 ) ) +XJP ( 1 ,1 )  *DCONJG (A E TA l) + ( (V L 0 2 -R 2 *V L 2  
1 ) /  (V L *V L O )) *A E TA 3*D C 0N JG (X JP ( 1 , 2 ) ) )

X K A 4=- (R 1 /R 2 ) *  (AETA3*DC0NJG (HPREPl) +HPREP3*DC0NJG (A E TA l) )
1 +A IO *V L*A E TA 3 *DCONJG (XJD ( 1 , 2 ) )  -A IO *V LO  *XJD  ( 1 , 1 ) *
1 DCONJG (A E TA l) -A IO *  (VLO /  (R 2*V L ) ) *A E TA 3* ( (V L 0 /R 2 ) *
1 DCONJG (XJD ( 1 , 2 )  +VL2*XJS ( 1 , 2 ) )  -BL*DCONJG (XVP ( 1 ) ) ) + A IO *
1 (V L O /4 .0 ) *D C O N JG (A ETA l)* (X J D ( 1 , 1 ) + V L 0 2 * X J S (1 ,1 ) )

X K A 5 = A I0 * (V L O /4 .0 ) * (A ETA 3*D CO NJG (HPR EPl)-R 2*H PR EP3*
1 DCONJG (A E TA l) -A E TA 3* (VLO / (R 2*V L ) ) *DCONJG (AC*XJD ( 1 , 2 ) )  +
1 BL*AETA3 *DCONJG (AC*XVP ( 1 ) ) +R2 *ACO *XJD ( 1 , 1 )  *DCONJG (A ETA l ) )
1 -  (A IO / (R 2*V L ) ) *  ( (V L 0 2 /4 .0 )  * X J P (1 ,1 )  *DCONJG(XJP ( 1 ,2 )  ) -V L O *  
1 (B L /R 2  ) * X J P ( 1 , 1 ) *DCONJG(XVS ( 1 ) ) +VL2 *X J D ( 1 , 1 ) *
1 DCO NJG (XJS( 1 , 2 ) ) - ( V L 0 2 /R 2 ) * X J S ( 1 ,1 )  *D CO NJG (XJD( 1 , 2 ) ) +VLO* 
1 BL*XJS ( 1 , 1 )  *D C 0N JG (XV P (1) )+B L*U LP 0*A E TA 3* (DCONJG (XJP ( 1 ,2 )  ) 
1 *B L + (V L 0 /R 2 )*D C 0 N J G (X V S (1 )) ) ) - ( R l / ( R 2 * R R 0 ) ) * (DCONJG(AETAl) 
1 * (X J Q ( 1 , 1 ) -V L 0 2 *X J D ( 1 , 1 ) )  + (A E T A 3 /V L )* ( (V L0/R 2)*D C O N JG  (
1 XJQ ( 1 , 2 ) -V L 2 *X J D ( 1 , 2 ) ) -B L*DC O N JG (XVT( 1 ) -V L 2 *X V P ( 1 ) ) ) )

X K A 6 = A I0 * (V L O /( 4 . 0 * V L ) ) * (A E TA 3*D C 0N JG (A C )-R 2*X JS ( 1 , 1 ) ) *
1 DCONJG(BL*XJD ( 1 ,2 )  + (V L 0 /R 2 )*X V P ( 1 ) ) - (A E T A 3 /R 2 )* (A IO *B L *
1 D C O N JG (H P R E P l)+ (B L /(V L *R R O )) *DCONJG(XJQ( 1 , 2 ) -V L 2 * X J P ( 1 ,2 )
1 )+ (V L 0 / (R 2 * V L * R R 0 ) ) *D C 0 N J G (X V T (1 )-V L 2 *X V P (1 )) )

G V 6 3 = (A D D ( l , l )  + (V L 0 2 + A IO *V L 0 *R R 0 *A C 0 )*A D S (l, l)  ) /RRO 
G V 5 3 = A D S (1 ,1 ) /RRO
G V 61=(A D D ( 1 ,2 )  + (VL2+A R L*A C )*A D S (1 ,  2 ) ) /R  
G V 5 1 = A D S (1 ,2 ) /R

XD 3=XD 3+G V63*(XJP  ( 1 , 1 ) / (A IO *V LO *A C O )) -G V 5 3 * (X J P ( 1 , 1 ) /ULPO  
1 ) * (A IO *V L O *R R O *(R2 * A IO*VLO * ACO *E N -D ) + (X B 3 /(A IO *V L O )) )

XN 3=XN 3+G V 53*R R 0*(A IO *V L0*A C 0*X M U l+U LP 0*X M U 2+X M U 3-A IO *V L0  
1 *XMU4+ (X B 3 / (A IO*VLO*RRO) ) *XMU2) -G V 6 3 * (XMU1+ (ULPO/ (A IO *VLO  
1 *A C 0 ))*X M U 2 )

X D 1=XD 1+G V61*R 2* (XJP (1 ,2 )  /  (A IO *VLO *A C) ) -R 2 *  (V L / (V L0*U LP 0) )
1 *G V 5 1 * (A IO *V L *R R 0 * (A IO *VLO *A C *EM -D ) + (X B l/  (A IO *V L ) ) ) *
1 X J P ( 1 ,2 )

X N 1 = X N 1 -(G V 6 1 /V L )*  ( (V L 0 /R 2 )*X K A 1 + B L *X K A 2 + (U L P O /(A IO *A C ))



1 *XKA3) -  (RRO/VL) *G V 5 1 * (A IO *V L 2*X K A 4- (V L 0 /R 2 ) *X K A 5-B L *X K A 6- 
1 A IO *  (V L 0 /R 2 ) *  ( (V L 0 /R 2 ) *AC*XKA1+BL*AC*XKA2-AIO*ULPO*XKA3) +
1 A IO *(X B l/R R O )*X K A 3 )

C WRITE ( 4 , * )  XM U 1,XM U2,XM U3,XM U4,XKA1,XKA2,XKA3,XKA4,
C 1 X K A 5,X K A 6,G V 63,G V 53,G V 61,G V 51

END IF
W R ITE ( 4 , * )  'H F 3 ,H F 1 ,S V 3 ,S V 1  (N ,N P 1 ): ’
W R IT E ( 4 , * )  H F ( N ,1 ) , H F (N ,2 ) , S V (N ,1 ) , SV{N, 2)
W R IT E ( 4 , * )  H F ( N P l,1 ) ,H F ( N P l ,2 ) , S V (N P l,1 ) , S V (N P 1 ,2) 
W R IT E (4 ,* )  ' P H I , P S I , 3 , 1 : '
DO 988 J = l , 4  
K=J
IF ( J . G T . 2 )  K =N +J-3  
DO 999 1 = 1 ,2
W R IT E ( 4 , * )  K, ' ,  ' , I , X J S ( K , I ) , X J P ( K , I ) , X J D ( K ,  I ) , X J T ( K , I ) ,

1 X J Q ( K , I ) ,A D S ( K , I ) ,A D P ( K , I ) ,A D D ( K , I )
999 CONTINUE

W R IT E ( 4 , * )
988 CONTINUE

W R IT E ( 4 , * )  'V ,V P ,V D ,V T ; J = 1 , . . . , 5 ; N - 3 , . . . ,N P 1 '
DO 1047 J = l ,1 0  
K=J
IF ( J .G T .S )  K =N P 1-10+ J
W R IT E ( 4 , * )  X V S (K ),X V P (K ),X V D (K ) ,X V T (K )

1047  CONTINUE
W R IT E ( 4 , * )  ' ETA3,ETA1,PRESSURES : '
W R IT E ( 4 , * )  A ETA 3,A ETA l,H P R E P 3 , HPREPl

C
XLAM1=XN1/XD1 
XLAM3=XN3/XD3  
BLAM1=ABS(XLAMl)
BLAM3=ABS(XLAM3)
X LA M 1A =-A I0*XLA M 1* 1 . 7 2 0 8 / ( 5 . 0  *VLO)
XLAM3A=AI0*XLAM3 * 1 . 7 2 0 8 * V L 0 / ( 5 . 0  *V L 2 )
BLAM1A=ABS(XLAMIA)
BLAM3A=ABS(XLAM3A)
W R IT E (6 ,2 0 0 )  XLAM 3,XLAM l,XLAM 3A,XLAM IA  
W R IT E (4 ,2 0 0 )  XLAM3, X LA M l, XLAM3A,XLAMIA  

200  F O R M A T ( IX / IX , ' In t e r a c t io n  c o e f f i c i e n t s ; ' , / / I X , ' a 3 = ' , 2 D 1 5 . 8 ,  
1 2 X , ' a l = ' , 2 D 1 5 . 8 , ' (w r t  d e l t a ) ' / / I X ,  
l ' a 3 = ' , 2 D 1 5 . 8 , 2 X , ' a l = ' , 2 D 1 5 . 8 , ' (w r t  d e l t * ) ' / )

W R IT E (6 ,2 1 0 )  BLAM3, B LA M l, BLAM3A,BLAMIA  
W R IT E (4 ,2 1 0 )  BLAM3, B LA M l, BLAM3A,BLAMIA  

210 FORMAT ( I X / I X ,  'M o d u l i ;  ' / / I x ,  ' a 3 = ' ,D 1 1 . 4 , 2X , ' a l = ' , D l l . 4 ,
1 2 X , ' a 3 ( d e l t * )  =  ' , D 1 1 . 4 , 2 X , • a l  ( d e l t * )  = ' ,D 1 1 . 4 / )

RETURN
END

C
C

SUBROUTINE IN T E G R (X I, X R l , XR2)
C
C S O LV A B IL ITY  C O N DITIO N .
C

IM P L IC IT  C0MPLEX*16 (A ,G , H , S, X) , REAL*8 (B -F ,0 - R ,  T -W , Y , Z) 
DIMENSION X I (3 2 0 1 ,2 )
C O M M O N /P P l/P l ,P 2 ,P 3 ,P 4 ,P 5 ,P 6 ,P 7 ,P 8 /

IN N W /N , N M l, NP1 , W, W2, W3, W4 /C O Q /A Z, A IO , ARL, ARL3, ACO, AC
C

XR1=AZ



XR2=AZ
DO 70 1 = 1 ,2
DO 50 J = 3 ,N M 1 ,4

C
X A = 7 . O D O * ( X I ( J - 2 , I ) + X I ( J + 2 , I ) ) + 3 2 . O D O * ( X I ( J - 1 , I ) + X I ( J + 1 , I ) ) 

1 + 1 2 . 0 D 0 * X I ( J , I )
C

I F ( I . E Q . l )  XR1=XR1+XA 
I F ( I . E Q . 2 )  XR2=XR2+XA

C
50 CONTINUE
70 CONTINUE

XR1=XR 1*P8
XR2=XR2*P8
RETURN
END


