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Abstract

Ever since the first recorded observation of a solar flare in September 1859, it has been a key question 

— for physics as a whole and for astrophsics in particular — to ask what mechanism lies behind 

the sudden, violent release of energy from the sun. It has become increasingly apparent that the 

complex structure of the solar magnetic field lies at the heart of the answer. The process of magnetic 

reconnection has, over the years, become the accepted explanation by which magnetic energy can 

be released on both large and small scales in astrophysical and laboratory plasmas. The results of 

reconnection can be seen, for instance, in star formation, solar flares and the earth’s aurorae; indeed 

the 1859 flare was followed by exceptional auroral activity.

The mechanism of magnetic reconnection was first postulated by Giovanelli (1947) as a way of 

releasing the magnetic energy stored in the Sun. He, and later Dungey (1953), realised that the 

behaviour of the plasma in the vicinity of a magnetic neutral or null point, where the field disappears, 

is quite different from other regions of space. In this thesis the nature of magnetic neutral points 

and their role in the process of reconnection is investigated.

Firstly, a general classification of magnetic neutral points is presented. The chapter includes 

equilibrium and steady-state solutions for two-dimensional magnetic neutral points. The differences 

in the field behaviour close to each type of neutral point are explained and criteria for the existence 

of steady-state solutions and equilibria involving pressure balance are presented. In the last section, 

a self-similar solution for a collapsed %-point is explored. The %-point necessarily becomes cusp-like 

in nature if shearing is applied in the ignorable direction.

Two reconnection models are considered. The first is an extension of the Priest-Lee model 

(1990). It incorporates large pressure gradients in the inflow corresponding to the Forbes-Priest 

Almost-Uniform Moisei . The investigation includes both analytical and numerical solutions and a 

study of the separatrix jet. In the numerical study, current spikes are found at the end of the current 

sheets and a much increased reconnection rate is found analytically in the extreme flux flle-up limit.

The second reconnection model presented is also based on the Priest-Lee configuration. A 

uniform field is imposed on the basic structure producing a cusp-point with a non-zero field strength 

as the neutral point is approached from above. This results in the removal of the singularity in the 

flow above the separatrix. A non-singular solution is found analytically for a double-cusp. A much 

larger reconnection rate is found and a numerical solution is presented.
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Chapter 1

Introduction

1.1 Basic Equations

In studying the solar atmosphere and its posokiateU magnetic field, assumptions about the be­

haviour of the plasma must be made in order for a sensible mpthemptikpl model to be konsti•utted. 

By looking at effects happening on sopIcs larger than the mean free paths of the particles in the 

Sun's atmosphere, we may assume that the plasma is a continuous fluid. The general set of equa­

tions describing phenomena on this stale is the set of magnetohyUrodynamical equations (hereafter 

abbreviated to MHD). The set comprises Maxwell's equations of (slow) electromagnetism coupled 

with Ohm’s Law for an electrically neutral plasma and the equations of hydroUynamicpl motion 

(including the magnetic force, continuity and energy).

1.1.1 Maxwell’s Equations and Ohm’s Law

Maxwell’s equations are

. 1 <9E
VxB = W+c2flt’ (11)

V B = 0, (1.2)
dB

VxE = ~ln (1-3)

and

V - E =
c (1.4)

where B is the magnetic induction (usually called the magnetic field), E is the electric field and j 

is the current density. The quantities fi, e, o and pc are the magnetic permeability, the permittivity,
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the speed of light in a vacuum and the electric charge density, respectively. The values for ( and e 

are usually approximated by their values in a vacuum, p0 and e0, with c = (/Zoe©)-1/2.

For processes where the velocity is typically less than 0.1c we may disregard the second term on 

the right-hand side of (1.1), which becomes negligible by comparison with (1.3). This is certainly 

true for many phenomena in the solar atmosphere, so (1.1) becomes

V xB = pj. (1.5)

To this set of equations we may add Ohm’s Law for a neutral plasma which states that the 

current density is proportional to the total electric field. A charged particle moving with velocity v 

in a magnetic field B experiences a total electric field E + v x B. Hence Ohm’s Law becomes

j = <(E +v x B), (1.6)

where a is the electrical conductivity. Substituting E from (1.6) into (1.3) and using constraint 

(1.2) we find
® = Vx(vxB) + r,V2B, (1.7)

where r — l/por) is the magnetic diffusivity and is presumed to be uniform. Equation (1.7) is 

known as the diffusion equation and will fully describe the magnetic field for any given velocity 

profile, v. Comparing terms on the right-hand side of (1.7) will tell us which term will dominate in 

different circumstances. The ratio of the terms is Iv/j, where / and v are a typical length scale and 

speed. This ratio is called the magnetic Reynolds number (Rm) and is very important in the study 

of reconnection, as we shall see later.

A typical global coronal value of Rm is about 10® — 1012, so for most of the solar atmosphere 

(1.7) becomes

= V x(v xB), (1.8)

The limit of Rm 1 is known as the perfectly conducting limit, though this does not mean that 

there is no current, rather that the diffusive term in (1.7) is negligible. MHD governed by this 

equation (and neglecting dissipation in the equation of motion) is often called “ideal” MHD. There 

is a very important consequence in this limit:

Consider a closed circuit, C, bounding a surface, S, which is moving with the plasma, so that the 

flux, F, through S is given by

F = J Jb 'dS' (1.9)

The rate of change of flux through C as it moves is given by

(1.10)
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where ds is an element of circuit C and the operator D/Dt = v ■ V + d/dt produces the convective 

derivative. After invoking Stokes’ theorem, the contour integral can be written as a surface integral 

and the two integrals in (1.10) combined to give a single integral, namely

^ = /s/(^-vx(VXB))'ds' (111) 

which is identically zero when (1.8) holds. Physically, this implies that the flux associated with 

a moving element of plasma remains “frozen” to it. Because the approximation is valid for most 

solar MHD situations this is an important result. In the solar corona, magnetic forces dominate so 

plasma is pulled along with the field, whereas in the photosphere, for instance, the inertia of the 

plasma dominates and the field is dragged by the plasma. Plasma may still move along field lines, 

but once plasma is on a particular field line it must stay on that field line.

Magnetic field lines form distinct topological regions which are separated by limiting field lines or 

flux surfaces. In two dimensions, the limiting lines are called separatrices, and in three dimensions 

the surfaces are known as separatrix surfaces. In two-dimensions the intersection of two or more 

separatrices is a magnetic neutral point. The only way in which plasma may cross separatrices is for 

“ideal” MIID to be violated by the field lines breaking and reconnecting — in other words diffusing 

through the plasma— hence the term magnetic reconnection. It is only in the vicinity of magnetic 

neutral points that length scales exist which are short enough for diffusion to be important in (1.7) 

and for reconnection to take place.

1.1.2 Plasma Equations

To complete the description of MHD, hydrodynamical equations are required. The normal momen­

tum equation in a system with a pressure gradient, gravitational force and Lorentz force is

Dv .
P~^ = -Vp + j xB + pg, 

with D/Dt as above. We also require the continuity equation, 

Dp

(1-12)

Dt
= -p(V • v); (1-13)

the ideal gas law,

and an energy equation,

77
P = —pT 

Pa
(1-14)

Py D ( p
7 — 1 Dt \p7— = -v • q - Lr + (1-15)
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In (1.12)—(1.14), g = —g% is the acceleration due to gravity, R is the gas constant, T is the absolute 

temperature and Pa is mean atomic weight (//a = 0.5 corresponds to an atmosphere consisting solely 

of ionised hydrogen). In the energy equation, 7 is the ratio of the specific heat at constant pressure 

(cp) to the specific heat at constant volume (c„), q is the heat flux due to particle conduction, Lr is 

the radiative loss and p/a is ohmic dissipation. The sound speed, cj = jp/p, is derived from these 

equations for an ideal gas.

The physical description of phenomena in the solpr atmosphere can be built up from equations 

(1.2)-(1.15). However, in order to study steady-state reconnection and solutions around magnetic 

neutral points — the aim here — further approximations and restrictions have to be made.

1.2 Steady-State Reconnection MHD Approximations

In the reconnection models studeed here tw^o major assumptions are made. First, that the models 

are purely two-dimensional and second that the magnetic field is in a steady state. The second of 

these means that the field does not evolve in a time-dependent. manner over many typical toime3-^^^tr^t>i’ 

associated with the system, usually the Affvenic time, 7-4. Consequently

3B
dt = 0, (1-16)

which in turn implies that the electric field, E , is uniform, by (1.3), so Ohm’s Law in the perfectly 

conducting limit becomes

v X B = —E = constant. (1.17)

Hence, for a prescribeU steady-state magnetic field, a corresponding flow can be established 

which is also in a steady state. (In the particular case E = 0, the flow becomes everywhere aligned 

with the field.) Consequently (1.12) reduces to

p(v • V)v = -Vp-f j X B. (1.18)

Gravity is neglected because it is small compared with the pressure gradient if the scale-lengths 

involved pic much less than the pressure scale height, H = RT/pag, which is the tase here.

Another important assumption is that of incompressibility, in other words the plasma density, 

p, is uniform and (1.13) reduces to

V-v = 0. (1.19)

This approximation is vvlad whenehen the macro p^optrfitr are such thah v cs va, which is 

usually the easa in die eolar atmopphosp. et is mtso vlEd when there is a vaiy larpr ]cpusis^o pressure 

present. Together, incompressibility and the steady state assumption mean that the system can
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be fully described, so that with the energy equation determines the temperature in an independent

way.

The flow can now be recast by wr iwing n e= curl so that (1.19) iss atisfied i dentically. Ffo a 

two-dimensional flow, we ^im^p>ly have 'P = y)z yielding

(1.20)

If we assume that the fluid term in (1.18) is much smaller than the magnetic term, in other 

words V <C w ) we have

j X B = Vp. (1.21)

By using (1.5) and (1.2), the Lorentz force may be split into two terms, namely

(VxB)xB = l(B.V)B-vg)
(1.22)

The first term represents a magnetic tension and the second term is a magnetic pressure gradient. 

We may now introduce an important ratio, that of the plasma pressure to the magnetic pressure, 

caned the plasma (3, where

/? =
2pp 
B2 '

(1.23)

A typical coronal value of /? is 0.01, reducing (1.21) still further to

j xB = 0. (1.24)

This approximation is used for many reconnection models. In two dimensions the only solution is

j—0. We can rewrite B as

B = V X A, (1.25)

where A = A^^Z is the flux function, so (1.2) is satisfied identically, whilst (1.5) becomes

0. (1.26)

Consequently, many reconnection problems involve solving for a current-free or potential field, which 

is simply a matter of solving Laplace’s equation subject to relevant boundary conditions. Some 

models, however, do not assume that the plasma /? is small and so (1.21) applies. The importance 

of including significant pressure gradients is explored in Chapter 3.

1,3 Reconnection Models

The idea of the breakdown of idaal MHD allowing localised diffusion near a neutral point was first 

put forward by Dungey (1953). Thernafrer, Sweet 1157) ) ndel ParRer 11958) mdependently came up
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with a steady annihilation model where advection of flux from two sides is balanced by diffusion in 

a thin sheet. In their mddel they consider a diffusion region of width (. nn d length L. There is a

uniform flow, tv, bringing a nnifgrns nfld, lowawds the diffusion region. At the sheeti the inflow

of magnetic flux is balanced by diUusiof, so

(1-27)

where r is the (uniform) diffusivity. Also, by assuming uniform plasma density, continuity of mass 

into and out of the diUuoiof region yields

ViL = vo(-, (1.28)

where v0 is the speed of the plasma coming out of the current sheet. By a simple pressure balance 

and Bernoulli law in the diffusion region, we see that pv2/2 = showing us that the diffuoion

region outflow speed is given by

Vo = VAi, (1.29)

where VAi — BiKpp)1/2 is the Alfven speed. Eliminating C between (1.27) and (1.28), the recon­

nection rate. Mi = Vi/vAi is given by

(1.30)

where Rmi = LvAi/] is the Lundquist number. (This is often referred to as the magnetic Reynolds 

number, but is distinct from the ratio of terms in the induction equation (1.7).) If L is of the same 

order as some external distance. Le, this rate is very small and cannot explain the high rate of 

reconnection in a solar flare, for instance.

Petschek (1964) overcame this difficulty by proposing a mechanism with a small Sweet-Parker 

region in a converging flow which has two pairs of standing slow-mode shocks propagating from each 

end. Because the region is very small compared with the overall length-scales of the system, the 

inflow Lundquist number, Rmi, is very small. In fact Petschek found an external reconnection rate, 

Me = Ve/vAe, only weakly dependent on the external Lundquist number, Rme = LcVa/^, namely

Me
7T

(1-31)
Sog Rme

This rate is much higher than the Sweet-Parker rate for the same Lundquist number (>> 1) and is 

referred to as a fast reconnection rate.

Subsequently, steady-state models have usually incorporated shocks coming of a central diffusion 

region. Sonnerup (1970) finds a fast rate by having an extra pair of shocks coming off each end 

of the difUuoion region, but Vrsyliunao (1975) demonstrated that this is unphysical. Priest and 

Forbes (1986) have generalised the Petschek analysis by including pressure gradients in their inflow
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region. In their model they have expansive and compressive regimes and both fast- and slow-mode 

reconnection. The classification of steady reconnection is due to Vasyliunas and states that if the 

magnetic field strength and plasma pressure are both increasing or decreasing as the diffusion region 

is approached then the reconnection is fast-mode, but if one is increasing and the other decreasing 

then the reconnection is slow-mode.

All the above models involve the analysis of perturbations about uniform fields. However this 

need not always be the case. Often, the effects of reconnection near a potential A-point have been 

considered and numerical simulations (e.g. Biskamp, 1986; Lee and Fu, 1986; Scholer, 1989; Forbes, 

1990) have also been used to explore reconnection and find new features, such as nonuniform fields, as 

well as different reconnection rates. Some studies (e.g. Scholer, 1989) find Petschrk-like reconnection 

by considering the effect of spatially varying resistivity, however this avenue will not be explored 

here. It is clear that the type and rate of steady reconnection that one finds in all these models is 

highly dependent on the boundary conditions imposed. The latest models incorporate nonuniform 

field analysis and numerical simulations (e.g. Priest and Lee, 1990) and consider the effects of 

different boundary conditions. The analysis in this thesis seeks to extend the understanding of the 

way in which different boundary conditions affect magnetic reconnection. Also, the changes brought 

about by considering different types of neutral point in the reconnection model are examined.

7



Chapter 2

Two-Dimensional Magnetic 

Neutral Points and a Self-Similar 

Model for a Cusp-Point

2.1 Chapter Summary

Many different two-dimensional magnetic neutral points have been investigated over the years, but 

a gccerpl classification has not previously been presented. In this chapter, we seek to classify 

and categorise such neutral points. Section 1 presents the four main types of neutrpl point and 

explores conditions pround magnetic neutrpl points which might lead to magnetic equilibria or 

steady states. In Section 2 the potential X-point is generalised, producing non-potential A-points 

and symmetric star-points. The generplisation of the potential T-point is expmined in Section 3, 

with non-potentipl models and asyolmctric star-points UescribcU. Section 4 classifies T-points and 

ousp-points, highlighting the difference in field behaviour in their vicinity. A three-dimensionpl 

equilibrium cusp-point model caused by an A-point collapse is studied in Section 5, following on 

from the work presented by Vekstein and Priest (1991). Section 6 contains the cfctlusions.

2.2 Introduction

In a two-dimensional magnetic configuration, hyperbolic neutral points, where the magnetic field 

vanishes and the neighbouring field lines are not closed or spiral, are of special significance since they 

represent locations where the magnetic field lines may be broken and reconnected [Dungey, 1953;
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Sweet, 1958; Parker, 1957; Furth ei ai , 1963; Vasyliunas, 1975; Sonnerup, 1979; Priest, 1985; Priest 

and Forbes, 1986]. Recently attention has begun to focus on three-dimensional neutral or null points 

as possible sites for reconnection (e.g. Lau and Finn, 1990; Priest and Forbes, 1991) but here we 

shall limit ourselves to the two-dimensional problem. The effects of reconnection are felt far beyond 

the immediate neighbourhood of the neutral point and include; changes in magnetic topology and 

pathways for propagation of fast particles, heat and plasma; conversion of magnetic energy into heat 

and bulk kinetic energy; the creation of shock waves, filamentary currents, turbulence and strong 

electric fields which may accelerate fast particles. Strangely, however, a comprehensive account 

of the possible structure of two-dimensional neutral points has not yet been given. Attention has 

focussed on the simple A-type neutral point with a potential or current-free field

Bx — y, By — X. (2.1)

The field lines are rectangular hyperbolae given by

A=~(y2-x^t

where A is the flux function, related to the magnetic field by 

B _9A _ SA
•' - s' B„- s .

In general the magnetic field is related to the flux function by

B = V x A,

(2-2)

(2-3)

where A = A(x,y)Z, and so we recover (2.3).

y-points, T-points and cusp-points have also been referred to in passing in studies of reconnection 

of partially open magnetic fields to produce two-ribbon solar flares (Pneuman and Kopp, 1970), 

although solutions for their structure have not been presented (Figure 2.1). Extending previous 

ideas of Sturrock and Smith (1968), Pneuman and Kopp (1970) suggested that the physical ^ference 

between these points is as follows. For a Y-point, the magnetic field tends to zero from all three 

principal directions as one approaches it. For a cusp-point, the field tends to zero from only one 

direction, and for a T-point the field tends to zero from only two directions. In fact, these definitions 

need some clarification, as we will see later.

The most fundamental constraint on the magnetic field structure is

V B = 0, (2.4)

so that there can be no monopoles contained inside a space and flux is conserved along a flux tube. 

We shall simply aim here to find flux functions, A, for which dA/dy and dA/dx approach zero from 

at least one direction as we approach a neutral point at the origin.

9



Near each neutral point it is of interest to determine the distribution of the electric current

j = -VxB,
P

which, for our two-dimensional configurations, has only a ■s-component and may be written

(2.5)

1 -72j =---- V2A =-----
P P

rd2A d2A' 
dy2 dx2 (2.6)

Some neutral point structures are in equilibrium under a balance between a magnetic field and a 

pressure gradient.

j x B = Vp. (2.7)

and so the condition that it is possible to find an appropriate pressure distribution is

V X (j x B) = 0.

For our two-dimensional field (2.8) becomes

A
dx = 0.

(2.8)

(2.9)
_2 . dA' 
V2A—

d _2 . dA V2A— = 0, or
'dA A dA a ‘

L dyi dy dx _ dy dx dx dy

Equation (2.9) implies that 22A = f(A) or we can recognise it as (B • V)j = 0 , so that the current 

is constant llnng Gio field fines. In general the resulting pressure, (rom (2.7), is

p(A) = J j(A)dA. (2.10)

More generally, for a force balance between magnetic, plasma pressure and gravitational forces

j xB = Vp - pg. (2.11)

For example, in an isothermal plasma with p = RpT and a uniform gravitational acceleration 

g = —gy this may be recast as

jxB = Vp-j^y =

where H = RT/g is the pressure scale height. Thus the condition for being able to find an equilib­

rium pressure distribution becomes

V x x B)] = 0.

or foe a two-dimensional field B(x, y)

B . VCj^'A = 0

Some cuerent sheets are eeconneceidn, in which case for a kinematic treatment of the surrounding

ideal region one needs to solve

E + vxB = 0, (2.12)

10



B B

Figure 2.1; Magnetic field lines for the simple neutral points: (a) %-point, (b) Y-point, (c) cusp- 

point and (d) T-point. Heavy piiows indicate directions along which the field approaches zero most 

quickly for the cusp- and T-points.

In the particular cpse of steady reconnection the equation V x E = 0 implies for our two-dimensional 

configuration that E _ Ez is constant, and so (2.12) determines the flow speed j normal to the 

magnetio field to be
_ _ E 
_ B'

The flow Dj parallel to the field can be UeicrmiccU by other considerations, such as, for instance, 

the continuity equation for pc incompressible medium

V •v _ 0, (2.13)

together with boundary conditions on U[.

If p configuration is not in p magnetostatic equilibrium satisfying (2.9), but is in p steady state,

11



then the inertial term needs to be added to (2.7) to give

j X B = p{v • V)v 4- Vp. (2.14)

Under condition (2.13) this leads, after taking the curl of (2.14), to

dA d dA 3
dy dx dx dy

V2A = pp
d^l d dt! d
dy dx dx dy

V2#,

or (2.15)
1 <9A d dA d
r dO dr dr dO

V2M = pp 1-A d d^f d
r dO dr dr dO

V2tf,

in cylindrical polar coordinates. Here A is the flux function and is the stream function, related 

to the flow by
dS

' (2.16)

so that (2.13) is automatically satisfied. However, these solutions also need to satisfy (2.12) for ideal 

MHD, which further restricts solutions to (2.15).

For a more difficult fully dynamical analysis one needs to solved the coupled, time dependent 

MHD equations of induction, motion, continuity and energy, which invariably demand a numerical 

approach, even when simplifying assumptions such as isothei’mality are adopted.

2.3 X-Points and Symmetric Star-Points

2.3.1 Generalisations of Potential X-Point

The potential X-point (2.2) has a vanishing current and so is in equilibrium in a un1Uorm-preooure 

plasma. In this section we seek to generalise it systematically in several ways. Its simplest general­

isation is given by the flux function

A — — c2z2), (2.17)

and the field components are

Bx = 2/, By = ex.

The separatr-ices y — ±cx are now inclined to the z-axis at an angle smaller (c < 1) or larger 

(c > 1) than 7/4. From (2.6), the electric current is

>=>-!)■

which is uniform and correspondingly positive or negative. Equation (2.17) satisfies (2.9) so an

equilibrium exists with a pressure given by (2.10) which is

V = jA.
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Figure 2.2; (p) The field Unes of X-points with flux function A — r2 cos 26 and A _ J2{ccr) cos20 

and (b) the ourrent density contours of the Bessel function solution. Negative current is indicated 

by clashed turves.

A self-similar collapse of such p neutral point with uniform plasma pressure and c increasing in time 

on an AlfvCnic time-scale has been studied by Imshennik and Syrovatsky (1967), Chapman and 

Kendall (1963) and Forbes and Speiser (1979). However an equilibrium is possible with p pressure 

gradient, which suggests that, although potential X-points tend to collapse or split to form p turrent 

sheet, in the presence of pressure gradients suoh a collapse or splitting may not necessarily octm'.

In orUer to generalise this uniform-current X-point further it is helpful to write (2.17) in polar 

coordinates as

A _ [(1 — o2) -(14- c2) cos 26] ,

13



or, after absorbing (1 + c2) in A and replacing (1 — c2)/(l + c2) by K,

A = r2 [K - cos 26], -1 < K < 1. (2.18)

This is ooe generalisation of the potential field given by the flux function A = r2cs>22d, which can 

be generalised in a different a^ay tg give thp p>obii'^tlal potentl al tldld described by tin fl ux function

A = r” cos n0, n > 1, (2.19)

with field strength

|E| = nrn~l.

This field will be investigated in more detail later.

2.3.2 General Symmetric Neutral Points

One may note that (2.18) satisfies the conditions

(0
’ i a I dM i a2Ai
r 8r \ 8r J J r de2, is finite at r = 0

0 at 0 0 and 0 = —.
2

(..) B -ldA 
Br — r 86

Another more general flux function that also satisfies these two conditions is

A — r" — cos 2rn1], (2.20)

where n > 2 and m — 1,2,3,... . This haa fidd componenns

Br = 2mr”~1 sin 2?7i£0, Bg = nrn_2(cos 2rrr.0 — K).

It has a magnetic field structure that is similar in each quadrant. The resulting electric current is 

j = -rn-i [ni/< + (4mi — jji) cos 2m0] /p. (2.21)

Let us first consider the specif case of (2.20) wiih K = 0, for winch the separatrices A — 0 occur

at angles given by

cos 2m0 = 0,

namely

0 = (2M + 1)rr/4rrr, M = 0,1,2,..., 4rrr — 1.

When m = 1 we ha-ag an .A-pohtt

A = rn cos 20, (2.22)

14



Figure 2.3: (a) The field lines and (b) the current density contours for symmetric star-points with 

A = rn cos 40. Negative current is indicated by dashed curves. When n = 4 the current vanishes 

everywhere

having separatrices at f? — ±7r/4,±37r/4 and a current density of

j = r*‘-2(?i2 — 4) cos 20/fj.. (2.23)

This does not satisfy (2.9) when n / 2 and so there is no pressure field which can keep the configu­

ration given by (2.22) in equilibrium. However, a steady state solution satisfying (2.12) and (2.15) 

can be found when the flow is not parallel to the magnetic field. For a field given by A = rcos2m0 

the flow will be given by the stream function

4/ = ■ 1 - 7’sin 20, 
y/PP

Although this leads to a singular current density at r = 0, the solution may be valid for reconnection 

models as ideal MHD breaks down near the null point.

15



When m = 2, the flux function reUctcs to

A = 7” tos 42, (2.24)

which has separatr-ites at 2 = tt/S and 6 = Str/S in the fust quaUlaci. The ficlU structure may be 

called a siar-poini , and the torresponding current density is

j = —7n~2(n2 — 16)cos42//i.

This process can be generalised for m > 2 giving further symmetric star-points with m separptrices 

in each quadrant. Potential star-points, which can be generated using the real part of the complex 

flux function A — rc(—z2”), have been discussed by Syrovatsky (1971) in relation to current sheet 

formation.

Alternatively, solutions of the form A — rn cos2m0 tan be pUUcd in p power series starting with 

the potential solution r2™ cos 2m0 to obtain the Bessel function solution

A = J2m(»’’)c°S 2m2, (2.25)

which yields pj = a2A, so (2.25) represents a static equilibrium when there is a pressure p = 

a2A2/2p given by (2.10). The field lines pre shown in Figure 2.2 for the potential A-point and the 

Bessel function case when m — 1. Star point structures arc shown in Figure 2.3 for the tase m. = 2.

Consider next the general case of (2.20) when K 0 for which the seppratrices occur when 

cos 2m6 = K, namely

6 = {2M -- 1)7t/4?72 ±7, M = 0,1, 2,..., 4m — 1 with sin frmj = K.

When m = 1 we have p generalised A-point with

A = r" [A - cos 22], (2.26)

which has seppratrices at 0 = ±(7t/4 — 7), ±(37t/4 -H 7) where sin 27 = K, so that the seppratrices 

previously at 7r/4 and 37t/4 when A = 0 arc rotated through an angle 7 anti-clockwise and clockwise, 

respectively. The case n = 2 reduces to (2.18).

The field lines together with the current density contours given by 

j.n-2
j —--------- [7,2 AA (7_2 _ 4) tos 20] ,

are shown in Figure 2.4. By comparison with thc tasc A = 0, the symmetry about the x— and 

y—axes remains, but thc symmetry about y = ±a: is lost.

When 777 = 2 we have a star-point with

A = 7” [A — cos 42], (2.27)

16



Figure 2.4: (a) The field lines nnf (ty fhe current contours for an asymmetric X-point with

A — ?’3(cos 2(9 — K) when 7 = tr/22.

and separati'ices at angles

0 = ±(7-/8 — 7), 0 = ±(3?r/8 + 7), 0 = ±(5%/8 — 7), 0 — ±(77t/8 + y),

where sin 47 = K. The field lines and current density contours are shown in Figure 2.5.

For the case K = ±1, this etar-pcint uollapeee to an X-point with neutral sheets along

0 — 0, ±7t/2, 77, (X = /),

0 = ±tt/4, ±37"/4 (A = —/),

These differ from the previous A-points (Figure 2.2) where them were no mversal lines and the 

separatr-ices wem flux surOaues (field lines in a two-dimensional section) rather than the neutral 

sheets that occur here.

Other symmetric star-points of the flux function of the form A = rn cos 2m0, (m > 2) collapse in 

the same way producing 2m field mversal lines. The mader may easily construct these higher-order 

star-points in a similar fashion, though thtee flux functions do not satisfy (2.9) and the field will 

tend to evolve in a timh-dhpefdhnt manner.

17



Figure 2.5: (a) The field lines and (b) the current density contours for a star-point with A — 

r3(cos40 — J<) when 7 = 7r/16.

2.4 Y-Points and Asymmetric Star-Points

2.4.1 Generalisations of the Potential Y-Point

In order to model a T-point with the orientation shown in Figure 2.1(b), we may adopt a flux 

function of the form
on

A = r” cos —, (2.28)

where either n — 3/2, which gives a potential field (Figure 2.6(i)), or n > 2. This satisfies the 

conditions that

(/) j is finite at r — 0,

(n) Bg = = 0 at 9 = 7r,

1 dA
(Hi) Br = --ttt = 0 at 0 = 0. 

r dO

The current density is
,,n—2 COS

30 
2 ’

and the field components are

„ 3 n_, . 30 „ n, 30Br - --r 1 sin —, Bg = -nrn cos

The separatrices lie along the directions 0 = ±7r/3 and the field strength grows with distance like 

rn“i. There is a current sheet where Br changes from (3/2)7,n_1 at 0 — 7r to —(3/2)?’n~1 at 0 — —7r.

18



Figure 2.6: The field lines of a single potential y-point with flux function A = r3/2cos(30/2) 

and p double y-point given by a complex function. Thc Bcsscl function solution given by A = 

J3/2(<*r) cos(30/2) with thc current density contours. Negative current is indicated by UashcU curves.

Thc tcrrcnt in thc sheet at p distance r from thc origin is therefore

T = )

and approaches zero at the origin. The potential solution (2.28) with n = 3/2 is in equilibrium with 

p uniform pressure, but none of thc other solutions with n > 2 satisfy (2.9). However p steady state 

solution to (2.15) and (2.12) that has non-pprallel flow and a singular current density at the null 

point exists when A = ~r cos(3(y2) and 2 = —(jp)~irrrsin(30/2').

Again thc Bessel function solution

A = J3/2((o'ir) 30
cosy’ (2.29)
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Figure 2.7; The field lines and uurrent density contours for a F-point with neutral sheets with A = 

r5/2(uce 30—1) and the field linee for a V-point having curved separatr'ices with A = ?’3!2 uos(30/2) — 

r2 sin2 0.

which has field components
D 3<a 73/2(ar) . 30
Br = —~ -(—r- sin “Z",2 (<ar) 2

3 03/2(ar) 30
2 ’

Be = a
,2 (ar)

can be generated, with Ji/2(C) = a/^AC sin0 and J3/2(C) = \/2/7r<S(sin<//£ — cos().

The current density is pj = a2A which satisfies (2.9). This will be in static equilibrium with a

pressure p — a2A2/2p given by (2.10). The V-point is shown in Figure 2.6 along with the current 

density.

In the particular case n — 3/2, the volume currents vanish in the surrounding region and we
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have a potential Y -point which has cartesian components

% = 45 + S'2^1/2 + B " ’ 

fl» = i^2+^1/2-d1-

for y >0, the negative square root being used for y < 0. Since j vanishes for this field, it is in 

equilibrium in the presence of a uniform pressure. An example of a field configuration that involves 

two such potential Y-points (at x = ±a,y = 0) connected by a current sheet is, in terms of the 

complex variable z = x + iy, given by

By 4 iBx = (z2 - a2)a .

This configuration is shown in Figure 2.6. Other potential configurations with current sheets ended 

by Y-points have been discussed by Priest and Raadu (1975), Tur and Priest (1976) and Malherbe 

and Priest (1983) in connection with solar flares and solar prominences.

Another example of a Y-point is a collapsed six-pointed star-point described by the flux function

A = r” — cos 30], when K — ±1 (2.30)

It differs from the previous Y-point in that it has three neutral sheets and no current sheet. This 

configuration is shown in Figure 2.7.

The separatrices of Y-points need not necessarily be straight. A constant current field with the 

properties
dA dA
-r— = 0 at 0 = 7 and -7-7 = 0 at 0 = 0,
dr 09

can be added to produce curved separatrices. This will not affect the current sheet or the mathe­

matical behaviour of the Y-point, i.e. the potential Y-point will not be reduced to a cusp-point or a 

T-point by the addition of a constant current. Equation (2.9) can also be satisfied for the constant 

current field. An example of this is shown in Figure 2.7.

2.4.2 General Asymmetric Neutral Points

The flux function (2.28) may be generalised to the form

A = r" cos(m + -)0, (2.31)

where m = 1,2,3... and n = (m -f |) or n > 2. It also satisfies the conditions (i)-(iii) above and 

describes asymmetric star-points . The field components are

Br — —(m 4- -pr*1-1 sin(m 4- -0, Be = nrn~1 cos(?u 4- -1)#,
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Figure 2.8: Field lines for asymmetric stpr-points with A = r” cos(m -j 1/2)# when (p) m = 2 pnU 

(b) m = 3.

and thc current density is
,n — 2

3 =
n2 — (m -h t;)2 ) cos(?7i + 2)#

It can be seen that there is p ourrent sheet at # = t with current density of magnitude

/ = (m+2)—’

which vanishes at the origin. Sepprptrices octur at

9 = (2M + -} 1), M = 0,1,2, ..‘2rn.

Field lines for the cases m = 2 and m = 3 arc shown in Figure 2.8, for which thc separatrices occur 

at # = ±7i/5, ±37t/5 and 9 = ±7-/7, ±37-/7, ±57i/7 respectively. For these these neutral points thc 

only line of symmetry is thc a-axis. Thc particular case n = m + r gives p potential field outside 

thc current sheet and so is in equilibrium in the presence of a uniform plasma pressure. Bcsscl 

function solutions representing equilibrium fields satisfying (2.9) also exist with a pressure given by 

p = a2vl2/2p..

Other asymmetric stpr-points can be treated using the flux function

A = 7n [AA — cos(2?n. ± 1)#], (2.32)

Here there arc, as in the tase of the collapsed six- and eight-pointed star-points, only neutral sheets 

dividing thc 2m + 1 regions.
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2.5 Cusp-Points and T-Points

2.5.1 Two Dimensional Cusp-Point Models

A double cuop-point may be modelled by a flux function

A = y2 - c2P, (2.33)

for which the eeparatricte are

y = ±cx/

and so are tangential to the z-axis at the origin. The field components and current density are

Bg = 2y, By = 4c2x-3,

and

j — --(2 - Kc^2),
P-

which is positive for |x’| > 1/(a/6c).

A more general field with a similar double-cusp form is given by

A = y2m -c2mx2n, (2.34)

with m < n and m = 1,2, .. ..

The field components and current density are

B/ = 2my2m~-, By =

and

j = —{impm — l)y2m-2 - 2n{2n — l)c2mx2n~2),
I1

with eeparat^icts given by

y = ±cxn'm.

Examples for m = 1 and m = 2 with c = 1 are shown in Figure 2.9.

A double-cusp has been suggested by Priest and Cowley (1975) to exist in the interior of the

Sweet-Parker diOueion region which is at the centre of most reucnnecticn models. Priest and Cowley 

ucnsidhr a steady balance between the Lorentz force, a pressure gradient and an inertial term and 

investigate colttinuoue solutions using a power eeriee expansion. A similar approach is adopted by 

Yell (1976) where the power series expansion about the neutral point is more general as it includes 

logarithmic terms. Our purpose here is to ucfsider even more general solutions, including some 

containing discontinuities (current sheets). In all cusp-point solutions presented here there is no
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Figure 2.9: The field lines and current density for double cusp-points with A = y2m — x2n when (a) 

m = 1, n = 2 and (b) m = 2, n = 3. Negative current is indicated by dashed curves.

equilibrium since flows are driven by unbalanced magnetic tension and pressure forces and solutions 

of the form (2.33) cannot satisfy (2.9). Also steady state solutions are not possible and the fields 

will evolve in a time-dependent manner.

A single cusp-point has the same field as above for x > 0, but straight field lines for x < 0 

(Figure 2.10). Corresponding to (2.33), therefore we have

x > 0,

x < 0.
(2.35)

The field components and current density are
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Figure 2.10: The field lines of a single cusp-point and p single cusp-point with current sheets along 

thc sepaeptriccs..

and

Bx — 2y, By — <
4c2x3

0,

« > 0,

x < 0,

2 — 12c2x2,

2,

x > 0,

x < 0.
J =

Corresponding to (2.34) a single cusp-point would have

A =
y2m - c2mx4n, x > 0,

(2.36)
,2m x < 0,

A single tusp-point has been suggested by Pneumpn and Kopp to exist at the summit of p helmet 

streamer. (Further Uctails arc in Priest, 1982 and Pneumpn and Kopp, 1970.) They have current 

sheets dividing open and closed field regions of thc corona in order to account for thc pressure jumps 

between these regions. This may be modelled by, for instance,
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a(p - c2x4), y2 > Cx4, x > 0

b(y'2 - c2x4), y2 < c2a4, x > 0 (2.37)

ay2, x < 0.

with a > 6 to be consistent with the pressure jump from closed to open field regions (Figure 2.10).

2.5.2 Generalised T-Points

T-points were first investigated by Chapman and Ferraro (1931) in their magnetospheric models 

and are often referred to as Chapman-Ferraro neutral points. A potential T-point (Figure 2.11) may 

be constructed with a flux function

-X, 2 > 0,

A — < -xy, % < 0, y > 0>

xy, x < 0, y <0.

for which the field components are

r
0 1, x > 0,

Bx = < — X By — < y, 2 < 0, y > 0,

X -y, x < 0, y < 0-

(2.38)

The volume current vanishes everywhere and so within each region there is an equilibrium in the 

presence of a uniform plasma pressure, but there is a current sheet along the y-ax\s with a current

i=±(l-|s/l),
H

which peaks at the origin and reverses at |y| = 1; this current sheet is not in equilibrium because 

the magnetic pressure is not equal on either side of it. There is also a current sheet located along 

the negative x-axis with a current
2x

J =

which vanishes at the origin. Magnetic pressure is continuous across this.

The above T-point flux function may be written in cylindrical polar coordinates as
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Figure 2.11: A potential T-point with current sheets along the j/-axis and negative a:-axis.

A =
—r cos 0,

|r2 sin 0 cos 0 j,

PI < tt/2,

PI > tt/2,
(2.39)

and it satisfies the conditions

(i) j is finite at r=0

(ii) A = 0 on 0 = 7t/2, 7t and 37t/2.

A more general T-point, also satisfying these conditions and having current sheets in the same places 

may be modelled by

A =
—rcosO, |0| < 7r/2,

|rn sin 0 cos™1 0|, |0| > 7r/2,
(2.40)

where n > 2, mi = 1,2,3.... The field components for 7t/2 < 0 < tt are 

Br = (-1)™1 [rn_1 cos™1"1 0(cos2 -mx sin2)] ,

B0 = (-l)nil+1 [nrn“1 sin 0 cos”11 0] ,

and for % < 0 < 37t/2 are

Br = (-1)™*+! [r”’1 cos™1"1 0(cos2 -mi sin2)] , 

Be = (—l)™1 [m*”-1 sin 0 cos™1 0] ,
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Figure 2.12: T-points with A = ^sin”*1 0 cos”*2 g| for tt/2 < 0 < 3?r/2 when (a) 777-1 = 1, mg = 2 

and (b) 7771 = 2, m% = 1. Also, a T-point with curved separatrices.

with current density

j =---- -n-“2 sin 0 cos”*1-2 0 [(?72 — 37771 — 1) cos2 0 -f 7771(7771 — 1) sin2 0] .

A T-point satisfying the above conditions but with a neutral sheet at 0 = i may be modelled by

— 7' COS (0, |0| < 7r/2,
(2.41)

|in sin”*a 0 cos”** 6|, |0j > 7/2,

where 77 > 2,7771 = 1,2, m2 = 2,3... The field components for 7/2 < 0 < 7 are 

Br = (—1)'”* [7’n_1 sin”*2-1 0 cos”*-1 0 ( 777g cos2 —777i sin2)] ,

Be = (-1)”*1+1 [w’*-1 sin”*3 0cos”*i 0] ,
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and for 7 < 0 < 3tt/2 are

Br = ( -1)”*!-+”*4+4 sin”l2-4 0cos”**~4 0(7712 COs4 -Til sii?)] ,

Be = (_l)f”i+”*= [nr”-4sin”*20 cos”** 0] ,

with current density

j — — Aft [(77,4 — (777, + ”42)4) sin4 0 cos4 0 + 77-1(771 — l) sin4 0 + 777.2(?7?-2 — 1) cos4 0] ,
A*

where k = rn~2 sin”*2-4 0 cos”11_4 0. Some examples are shown in Figure 2.12.

More generally, the separatrices need not be straight, whilst preserving the mathematical prop­

erties of the field near the T-point. For instance a non-potential T-point (Figure 2.12) with no 

current sheets, but having curved separatrices may be modelled by

A =
„2,„4

.2^4

0 < 0,

y > 0.

(2.42)

with field components

By = 4C4x3.Bx
2?/, y < 0,

0, y > 0,

The curved separatrices may be reduced to current sheets in a similar way as before. Configura­

tions given by (4.10) do not satisfy (2.9) or (2.15) so time-dependent flows are driven by unbalanced 

forces.

From these models, it is observed that the classification for the difference between Y-, T- and 

cusp-points given by Pneuman and Kopp does not necessarily hold. Here, fields for the cusp-points 

presented can tend to zero from all principal directions, as can the non-potential T-point field with 

curved separatrices. What is always true, however, is that the magnetic field tends to zero more 

quickly along the principal directions indicated by the arrows in Figure 2.1. That is to say, the flux 

function A is of a higher order as one approaches the various neutral points along the arrowed paths.

2.6 A Self-Similar Cusp-Point Model

The final neutral point to be considered is a special solution to a cusp-point which arises from a 

magnetic equilibrium about a collapsed potential X-point. The collapse is due to a shearing motion 

solely into or out of the plane in which the initial X-point lies. The shear may be due to photospheric 

motions, for instance. Consequently, a third field component is introduced into the structure and so
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it is unlike all the other neutral points described in this chapter. The third component is, however, 

only introduced to one quadrant of the initial A-point configuration causing a jump in the field 

across the separatrices between the regions with and without shear. This results in excess magnetic 

pressure in regions of shear over regions without shear, so a new magnetic equilibrium must be 

established.

If we consider a magnetic field in the x — y plane and introduce a third component of field in 

the z-direction, which is dependent only on x and y, then

B = B(z, y) = V X A(x, y)z •+■ £4s,y)z, (2.43)

where A(x, y) is the flux function. Also, if we assume that the magnetic field is force-free (j x B = 0), 

which is a good approximation for most of the corona, then by substitution from (2.43) we obtain

Bz(x,y) = Bz(A)-, + (2.44)

the Grad-Shrafanov equation. Solutions satisfying this will therefore take the form

V2A = F(A), (2.45)

where F is some function of A alone.

Bz, however, is also dependent on the shear. The shear, d = d(z), is simply the net displacement 

between one footpoint of a field line and the other, so d(z) = d(A). By considering the ratio of field 

components in the x ~ y plane to the z-component, we see that

dz
ds

Bz
Br.

(2.46)

where ds is measured along the poloidal field and Bp is the poloidal field strength. Integrating (2.46) 

from one end of a field line to the other we find

B> (A) d(A)
V(A)’ (2.47)

where

ds
Bn

and 1 and 2 denote the footpoints of a particular field line.

2.6.1 Vekstein-Priest Self-Similar Solution

To satisfy a magnetic equilibrium we must therefore satisfy both (2.44) and (2.47). Vekstein and 

Priest (1991) realised that this is not possible in an A-type configuration where the separatrices
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Figure 2.13: A potential A-point subject to footpoint motions into and out of the plane in which it

lies.

meet at an angle. Instead they proposed a self-similar solution with the separatrices touching at 

the neutral point, which will be a cusp. The flux function is of the form

A(r,0) = r<7(2), (2.48)

where 2 = 0/{kr^) is the similarity variable and a,? > 0 with the separatrices given by r = 

{O/k)W. This means that 2 = ±1 define the separatrices, so jf(dtl) = 0. The poloidal magnetic 

field components derived from (2.48) are

1 dA 1B'=v&=I'-'-'?®’

dA

(2.49)

Br = - aftf] ,

with Br = 0 when 2 = 0 = 0- By the restriction of both Br and P(A) finite as r —> 0, the

inequality

l + /0 < c< 2 -f /?, (2.50)

is obtained.

To satisfy (2.45) we have

2 , 15/ dA\ 1 d2A „ z ..dB
Y'2 - '• ■ ; ■ - - •

r dr V dr J r2 d02
(2.51)

Vekstein and Priest neglect the first term in V^A, as an expansion close to 7' = 0 is sought, so

2 . _ ^d^A _ ^.2-20 /"(£)
r2 dO2 ' k2

This yields a necessary power law behaviour for F(A), namely

= F(A). (2.52)

=-BZ(A)-^-= F(A).

VM

F(A) = —eA“n, (2.53)
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where, from (2.48) and (2.52),

n = (24 + 2 — a)/a,

so, by (2.50), n > 0. The function f{4>) must therefore be a solution of

(2.54)

no = -^r", (2.55)

where k = 2ek2 subject to the conditions /(±1) = 0, /'(0) = 0. As 4 —*• 1, we note that f" becomes 

singular. From (2.44) we also have

1 deA-n =
2dA

(B?(.4)) , (2.56)

which must lead to finite Bz as A —> 0 so n < 1. Also by considering (2.47), we see that the 

behaviour of V(A) must lead to finite Bz as A —+ 0. Investigation of V(A) about A = 0 yields 

dV
dA (2.57)

so matching powers between (2.56) and (2.47) we find 

2 + /?-a
— 1 = —n. (2.68)

Equating (2.58) and (2.54) it is found that a = 2/(3(l — n)) and 0 — a — 4/3 with 1/2 < n < 1. 

Subsequently, by considering a pressure balance across the separatrices with the non-sheared region, 

Vekstein and Priest (1993) have found that a =1 + 3/24, so that

(2.59)

Also, the constant, /c, is dependent on n. It is found by setting /'(l) = —1 that

K(n) = (1 - (2.60)

where
7(n) = 0 

Jo

dx
Vl - x-1-” ‘

A plot of the field lines for a solution found by Vekstein and Priest is shown in Figure 2.14.

2.6.2 Next Order Solution

The above analysis is to lowest order. The relations for n, a and /? will always hold. To find a 

solution to next order, we consider the full expression for (2.51), noting that

r dr \ dr
«~2 (2-61)

y^((2+3-«^)/^o^)-l

0<)?<i.

Consequently, a second power law for this term arises and (2.53) becomes
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Figure 2.14: Self-similar cusp solutions when n = 7/11, a = 11/6 and /? = 1/2 showing the 

ordinary Vekstein-Priest solution on the left and the series solution on the right. The same contours 

are plotted in both.

V2A = -o4“” - .. = F(A), (2.62)

where, from (2.48) and (2.60), m = (2 — a)/a with (p a constant.

Taking the full expression for (2.50), we see the function / must also satisfy

a2f + (0 - 2a)/j9/' 4- 02f 7" = (2.63)

Equations (2.54) and (2.63) provide two relationships for / which must both be satisfied subject to 

the same conditions as before. Substituting from (2.55) into (2.63), we see that

a2-^ + (l3~2a')K p- + 02e = ^f"-™ (2.64)

Observing that n ~ m — 2(3/a > 0, taking limits of both sides of (2.64) as 0 —» 1 yields

/"(l) = ^^/'(!)• (2.65)

The right-hand side of (2.65) is finite in this limit, so (2.65) contradicts (2.55). This means that, to 

next order, the flux function given by (2.48) is too restrictive.

We consider instead a power series of the form

oo
4r,fl = r*£Cj.W (2.66)

J=O

This yields field components
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Br pa-1-/3
OO

J=0
(2.67)

1
k

oo
Br = r"~lY Cjri [Kff'j(?),-(a + j)fj ({)] .

i=0
The separalrices are still defined as before, so A(r, 1) = 0, which means

/j(±1) = 0, Vj.

Also, Br = 0 when £ = 0 so lhal

/j(0) = 0, vy.

Expanding Ihe Laplacian of A as before, we oblain

£ oo oo
VM = ,.2 " £ Cjr1/" + r«2 Y, cirj [a?/,- + (/- 2ai)3(f, + /J2?2//] ,

j-0 j=0
(2.68)

wilh 0j = a + j.

If /? £ s/2, where s is a posilive inleger, lhen (2.66) resulls in lwo separate power series belween 

which lhe powers cannol match, hence

V2A = -cA“” - V-A-” = F(A)

as before. By malching lhe leading lerms in A ” and A we see lhal lhe same contradiclion 

arises for fQ as £ —> I. Setling /? = s/2, however, resulls in a single power series, so (2.66) becomes

V2A = -cA~n. (2.69)

For inslance, if /? = 1/2, lhen a = 11/6 and n = 7/11, so lhe firsl lwo lerms in (2.69) give

-sA 11 CoCo—J + r"\4 + Ci (2.70)
p 6

Equaling powers lerm by lerm, lhese differential equations can be solved for fj numerically. Solu- 

lions for lhe sum of lhe firsl lwo lerms in lhe expansion are shown along side lhe previous solulions 

found by Vekstein and Priesl also for /? = 1/2.

However, by (2.59), we see lhal ( = s/2 is nol allowed, so (2.66) cannol be used for lhe nexl 

order solulion. This is nol surprising because we expecl lo lose lhe self-similar form as r increases. 

In fulure il will be of inleresl lo see whal form can be used in place of (2.66) in order lo match with 

bolh lhe unsheared polenlial region oulside lhe cusp and an exlernal solulion.
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2.7 Conclusions

Presented here is a classification and a set of models for the different types of hyperbolic neutral 

points in two dimensions. Such neutral points are important for the topology of magnetic equilibria 

since they represent sources or sinks of separatrices which separate topologically distinct areas of 

magnetic flux. They are also locations where current sheets tend to form and where field lines may 

break and reconnect.

A-type neutral points have been considered frequently in the past, particularly with regard to 

reconnection and current sheet formation. Here, however, we have generalised the usual potential 

and uniform-current models. Furthermore, when the separatrix pairs touch rather than cross at a 

non-zero angle, a double cusp-point is formed. Also, higher order (symmetric) neutral points, which 

are referred to as star-points, have an even number of separatrices, except when some collapse to 

an asymmetric star-point configuration with separatrices which are field reversal surfaces.

y-points appear in some magnetic equilibria, especially at the ends of current sheets surrounded 

by potential fields. However, it has been shown here how more general Y-points with non-potential 

fields can exist and have also presented solutions for higher-order asymmetric star-points. Neutral 

sheets can also be ended by T-points or, for instance at the summit of a helmet streamer, by cusp- 

points and again a variety of solutions for the field close to such a neutral point have been presented 

along with a clarification of the definitions of field behaviour in the vicinity of these points.

The equilibrium solution presented in the last section demonstrates how the definitions derived in 

two-dimensions can be used in a specific two-and-a-half-dimensional model. The restrictions placed 

on the field by the footpoint displacement result in a cusp-point in order for there to be a magnetic 

equilibrium.
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Chapter 3

A General Family of Nonuniform 

Reconnect ion Models with

Separatrix Jets

3.1 Chapter Summary

In this chapter we explore a family of Nonuniform Reconnection models by introducing non-potential 

magnetic fields into the model presented by Priest and Lee (1990). This creates significant pressure 

gradients resulting in compressive and expansive regimes. As in the Priest and Lee analysis, the 

presence of a strong plasma jet at the separatrix and numerical solutions in the outflow are explored. 

In Section 1, previous reconnection models are reviewed. Section 2 gives a physical description of 

the effects of plasma pressure gradients in a magnetic field. Section 3 examines the shockless model 

and the diffusion region. In Section 4 a shock is incorporated in the downstream region and a 

new steady-state solution is found by numerically solving the MHD equations in the outflow region 

subject to new boundary conditions on the outflow boundary. Section 5 discusses the actual recon­

nection rate produced by these models and draws conclusions,

3.2 Introduction

For most astrophysical plasmas the global magnetic Reynolds number is extremely large so most 

of the magnetic field does not diffuse and is “frozen” to the plasma. However, if the length-scales
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are sufficiently small, the field may diffuse, be broken and reconnected, releasing magnetic energy 

in the process. Such conditions exist in a diffusion region or current sheet. Originally Sweet (1957) 

and Parker (1958) conceived a model for this phenomenon in which diffusion alone is present, but 

the process is very slow. Petschek (1964) devised a much speedier energy release system that has a 

small Sweet-Parker diffusion region in the centre of the flow with two pairs of standing shock waves 

emanating from its ends. It is this basic configuration which has spawned subsequent steady-state 

models and will be studied here.

The configuration of the magnetic field that has two Y-points at the ends of a current sheet has 

long been recognised as a site for steady magnetic reconnection (e.g. Green, 1965; Syrovatsky, 1971; 

Priest and Raadu, 1975; Priest and Lee, 1990). We consider a current sheet of length 2L lying along 

the ®-axis between x — —L and x = 4-L, and the external magnetic field strength and Alow speed at 

some point (0,Le), where Le > L, are denoted by Be and ve, respectively. The corresponding field 

and flow just outside the current sheet are Bi and Vi and at a point (Le,0) on the outflow boundary 

are Bo and vo. The aim of the analysis is to find the maximum reconnection rate in terms of the 

dimensionless Alfven Mach number, M, where

M =
v

(3.1)

and va — B/fapyW is the Alfven speed. In particular we seek a relation between the current sheet 

half-length L, pressure distribution and the Alfven Mach number. A shock stands in the flow near 

to the separatrix, though it is strictly speaking not a shock, but an Alfvenic discontinuity in the 

incompressible case studied here. The magnetic field may be either weakened or strengthened by 

the shock.

In the analysis carried out by Petschek (1964), he assumes that the inflow is a linear perturbation 

to a uniform field (Bex), so it is potential and only slightly curved. The field he found has a value 

at the inflow to the diffusion region of

(3.2)
T L

The maximum reconnection rate, M*, was found, by putting Bi — ^Be, to be

7T
ac = (3-3)8 log Le/L'

For steady-state reconnection, inwards advection of flux equals outward diffusion, so the inflow 

speed to the diffusion region is

U = (3.4)

where i is the diffusion region width and t is the magnetic diffusivity. If plasma leaves the end of 

the diffusion region at VAi, the local Alfven speed, then continuity of mass implies that
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Lvi = b)Ai- C*5>)

In lhe inflow region Ohm’s law reduces lo

E 4- v x B = 0, (3.6)

where E=B'z is lhe electric field, which is uniform and equal in magnilude lo Bv± (j being 

lhe componenl of lhe flow perpendicular lo lhe field), which, when evalualed al lhe inflow lo lhe 

diffusion region and al lhe exlernal poinl (0,Le), leads lo

E = ViBi = veBe. 33.7)

Afler eliminating 7 and Vi belween (3.4), (3.5) and (3.7), (3.3) becomes

7T 7T
M‘ = S.og(8RmeM^I X 6 log (E„,.)’ (3,8)

where Rme = LeVAe/f is lhe magnetic Reynolds number based on lhe Alfven speed (i.e lhe 

Lundquisl number). This may be compared wilh lhe Sweet-Parker magnetic annihilation model, 

which considers only a balance belween diffusion and inflow and has a reconnection rale of

M = Rff • (3.9)

Equation (3.6) gives a value for lhe reconnection rale M of lypically 0.1 againsl a much lower value 

for Mi from (3.9) when Rm 100.

Following on from Pelschek, Sonnerup (1970) proposed a model in which lhe maximum reconnec­

tion rale is of order unily and lhe inflow region is of slow-mode expansion nalure; whereas Pelschek 

had found a fasl-mode expansion. By inlroducing pressure gradienls inlo lhe inflow, Priesl and 

Forbes (1966) crealed a Unified Almost- Uniform lheory which includes as special cases lhe hilherlo 

separale Pelschek- and Sonnerup-like models and lhe slagnalion-poinl flow model (Sonnerup and 

Priesl, 1975) in which lhere is an infinilely long diffusion region. The Pelschek-like solulion is slill 

polenlial, and hence has no significanl pressure gradienls, bul, depending on lhe pressure distribu­

tion, lhe unified lheory encompasses lhe one exlreme of a slow-mode expansion (flux-pile-up) regime 

lo lhe olher of a slow-mode compression.

Furlher numerical models (Biskamp 1962, 1964, 1966; Forbes and Priesl 1982a,b, 1983a,b,c, 

1964a,b; Forbes 1966, 1966, 1990; Forbes and Malherbe 1966; Scholer 1969; Forbes et al. 1969) 

have found new and inleresling fealures. Biskamp (1966) finds in his numerical experimenls for 

a particular sel of boundary conditions lhal Pelschek reconnection is impossible for large values 

of lhe magnetic Reynolds number. Scholer (1969), however, does find Pelschek reconnection for
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Figure 3.1: Schematic magnetic field lines in one quadrant showing a current sheet OY, separatrix 

YS and Alfvenic discontinuity YH. Bold arrows indicate the flow of plasma into and out of the 

region.

a spatially dependent resistivity that restricts the current sheet length. He also confirmed that 

boundary conditions, as stressed by Priest and Forbes (1986), are of crucial importance to the 

type of reconnection 'that results. Priest and Forbes (1992) show that the Nonuniform Reconnection 

models give the same scaling as Biskamp when his boundary conditions are adopted and so conclude 

that fast reconnection is highly likely with suitable boundary conditions.

Forbes and Priest (1987) clarified the whole range of regimes in relation to the inflow and outflow 

boundary conditions; Petschek reconnection is most likely to occur when the boundary conditions 

are free, for instance. The variation in boundary conditions coupled with more detailed investiga­

tions of the diffusion region (including some time-dependence and spatially varying diffusivity and 

resistivity) has highlighted four important features not present in the classical models:

a) the inflow can be compressive slow-mode with the magnetic field strengthening as one approaches 

the diffusion region, as well as expansive fast mode with a weakening field strength;

b) the inflow magnetic field can be highly curved;

c) strong plasma jets can exist along the separatrices (see also Soward and Priest, 1986);

d) reversed current spikes can be present at the ends of the diffusion region.
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Features (b), (c), and (d) were all incorporated in the Priest-Lee Nonuniform Model. Here, by 

introducing significant inflow pressure gradients, we aim to include feature (a) as well. This will 

generalise both the Priest-Lee Nonuniform Reconnection model by adding pressure gradients and 

the Priest-Forbes Almost-Uniform. model by allowing for strong inflow magnetic curvature and it 

will produce analytical solutions involving the whole, highly curved magnetic field.

3.3 The Inclusion of Inflow Pressure Gradients

In the Priest and Lee (1990) paper it is emphasised that the boundary conditions imposed on the 

numerical box bounding the whole reconnection region are crucial to the physical nature of the inflow 

and hence the regime of reconnection one expects to find. The number of independent boundary 

conditions one can impose in a two-dimensional ideal magnetohydrodynamic incompressible system, 

in which the inflow is slower than the normal Alfven speed, is three (Forbes and Priest, 1987). This 

is the same as the number of characteristics propagating information into the region.

In the system we consider the following equations:

V-B = 0, (3.10)

the fundamental constraint on the magnetic field;

E + vxB = 0, (3.11)

the electric field equation, where E is uniform for the two-dimensional analysis;

p(v • V)v = -Vp+j x B, (3.12)

the equation of motion for a steady state, where j=V x B//t is the current density, and

V v = 0, (3.13)

the continuity equation for an incompressible plasma with uniform density, p.

It is the characteristics which result from (3.10) - (3.13) which determine the position of the

Alfvenic discontinuity and there is also a mismatch between the characteristics above and below 

the separatrix (Soward and Priest, 1977). The slow magnetoacoustic speed is zero across the field 

so a shock ccn exist Because the inflow in necessarily u^n[)erlSlov^magin^net(^;5C3nic. Sarelmlhies will, in 

practice approach tlis seaarairix as mmall ane^i if theri in no pressure gradient. If there is a. strong
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pressure gradient acting to create an expansion as the flow comes in, however, the streamlines can 

approach the separatrix at steep angles, only being deflected toward the neutral point and out again 

in the vicinity of the separatrix (Figure 3.5 (a)).

We consider the case when the flow speed is much less than the Alfven speed in the inflow, 

but, unlike the Priesr-Lee model, the plasma ( (the ratio of plasma to magnetic pressure) is not 

necessarily small so that toere mab be significant pressure gradients in the inflow region. Hence 

(3.12) reduces to

j x B = Vp. (3.14)

If we take the curl of (3.14), we see that for the two-dimensional field

(B . V)j = 0, (3.15)

which means the current is constant along the field lines. From (3.10) the field can be expressed as

B = V X A, (3.16)

where A = A(x,y)z is the flux function, the contours of which are field lines in the a, y-plane, so 

the current density, j, is a function of A. Recasting j in terms of the flux function, we find

j = -I VM = f(A), (3.17)

where V2 is the Laplacian operator in two dimensions.

Consider the potential flux function Ao(x, ?/) with V2Ao = 0 given by Priest and Lee, so that 

(3.17) is satisfied trivially. Now introduce an additional non-potential flux function Ai(x,y) to 

produce a non-potential field from A = Ao 4- Ai, for which (3.17) becomes

V4A- = /(Ao-bAi). (3.18)

This is clearly a severe restriction on possible functions, Ai, which we overcome in the simplest way 

by seeking solutions to

V4Ai = constant. (3.19)

Different solutions can be found for other flux functions (e.g. Chapter 2; Linardatos, 1992).

To find the pressure distribution, we rewrite (3.14) in terms of the flux function:

--V2AjVA = Vp. (3.20)
V

and note now that

V, =

41



so (3.20) and (3.17) lead to
p = J-V—2AidA = J f(A)dA. (3.21)

From (3.19) and (3.21), lhe pressure dislribulion is of lhe form

p(A) = po H kA, (3.22)

where k is a constanl and po is lhe background pressure.

The pressure distribution is of crucial importance for determining lhe nalure of lhe reconnection

laking place. If lhe pressure falls as one approaches lhe diffusion region lhe plasma undergoes an 

expansion and convessely if lhe pressure rises the plasma experiences a compression (Vasyliunas, 

1975). Priesl and Forbe( (1686i i n tlieir unifie d model included a complete classifilation of ehe tepes 

of inflow:

i) expansions (for which lhe pressure decreases) are of fap1-mnde lype if lhe magnetic 

field decreases and slow-mode lype if il increases as one approaches lhe diffusion region;

ii) anmpressinnp (for which lhe pressure increapsp) are of slow-mode lype if lhe magnetic 

field decreases and nas1-mode lype if il increases as one approaches lhe diffcsiou region.

For a fixed exlernal Reynolds number Rme lhey found lhal reconnection rales much larger lhan 

lhe maximum Pelschek rale are possible. The presenl model includes slow-mode compressions, 

nas1-mods expansions and some slow-mode expansions, jusl as in lhe Pries1-Fnrbep model. These 

are presented in lhe following section.

3.4 Reconnection Model

In lhis analysis we seek lo extend lhe mulls of lhe Priesl-Lee model lo include pignifican1 pressure 

gradienls in lhe inflow. Pressure gradienls proved lo be lhe link in lhe Pries1-Fnebsp unified lhe­

ory for Almost-Uniform Reconnection, bringing logelher lhe differenl regimes of reconnection, from 

Pelschek lo stagnation-poml flow. The exlernal inflow speed, ve. magnetic field s1rsug1h, Be, and 

pressure, pe, al a poinl (0,Le) and lhe nc1flnw speed, Vo, al a poinl (Le,0), will all be prescribed 

(Figure 3.1). Then lhe upslream field and flow can be investigated lo oblain lhe necessary infor- 

ma1inu aboul lhe diffusion region, lhe shock relations and lhe downstream field and flow. There 

are lhree slages lo lhe analysis: first, we consider lhe inflow region including lhe separalrix jels; 

lhen we investigate lhe behaviour of lhe diffusinn region in relation lo lhe inflow region; and finally 

lhe differenl recnnnea1ion regimes are explored by considering lhe downstream region wilh a given 

outflow speed, vo.
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3.4.1 Upstream Field, Flow and Pressure Distribution

For the steady-state two-dimensional model the basic equations are the electric field equation (3.11), 

the momentum equation with constant density, p, the divergence-free nature of the magnetic field 

(3.10) and mass continuity (3.13). We assume that the inflow is highly sub-Alfvenic, so the momen­

tum equation reduces to (3.14).

The field outside the current sheet in the Priest-Lee model is a potential one which may be 

generated using complex variable theory. It is of the form

— By A iBx — Bi (|| _ > (3.23)

where Z = x + iy and there is a cut in the complex plane along the real axis between Z = ±£. Bf 

is the value of the field just above the current sheet. By integrating and taking the real part, (3.23)

yields a flux function

do = — 2L
xr — ys — L 2 log

{(a + r)2 + (y + s)2}2
(3.24)

where r — [j ((A" f Y2)i + x)]3 , s — [| ((X2 f Y2)i — a( j * , X = x2 — y2 — L2 and Y = 2xy.

To obtain a constant-current field we can now add a flux function, Ai, satisfying (3.20). As 

the boundary conditions are the same with the new constant-current field, namely that By = 0 on 

the left-hand boundary and also on the lower boundary for x < L, and that Br = 0 on the lower 

boundary for x > L, Ai must produce only a Bx component which disappears on the a-axis. Hence

Ai — (3.25)

where c is a dimensionless parameter which is proportional to the magnitude of the current density.

Thus, overall,

A = Aq -f Ai, (3.26)

which leads to field components

Bx = Bi —-B.^_, By = B,~, (3.27)

with r and s as above.

By evaluating (3.27) at a point (0,Le), an expression for the internal field, Bi, in terms of the 

external field, Be, is obtained:
Be(l + c) 

(B2/L2 + 1)i’
(3.28)
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The internal field Bi must be of the same sign as Be, otherwise there would be an unwanted neutral 

point on the left-hand boundary. So, from (3,28), there is a restriction on the size of c to ensure

that a field reversal does not occur, namely

c> -i . (3.29)

The pressure distribution is then determined from (3.14) and (3.25) using (3.21) and (3.22) to 

be
p(A) = Pe — Sf-(A. — A), (3.30)

^Lfe

where Pe and Ae are the external pressure and flux function at the point (Ls,0). The pressure will 

therefore fall (an expansion) as one approaches the diffusion region for c > 0 and rise (a compression) 

for c < 0. This behaviour is similar to that in the Priest-Forbes models, which contain a parameter 

h such that along the inflow axis there is an expansion when 6 > 0 and a. compression when 6 < 0. 

Clearly, we must ensure that the pressure remains positive throughout the region. This is not a 

problem in the compressive regime, where the pressure is always increasing, but is in the <^^x^p^^nssive 

regime when c > 0. By obsrrvmg hhat Ae BtLe/T, nnd noting that the flux function , A, is never 

less than —Ae (at (Le, 0) when L — 0), the pressure remains positive provided c < j?e/2, where 

Pe = Pe/(Bg/2y) is the plasma p externally. The effects that these pressure changes have on the 

reconnection rate will be explored later.

To evaluate the velocity field associated with the flow, we must consider the relationship between 

the field, which is known, and the flow, which has to be deduced. In the inflow region the electric 

field equation

E + vxB = 0, (3.31)

implies that E — —veBe = —ViBi = —voBo. The velocity field, v, can be written in terms of a 

stream function 4 such that

Vx (3'32)

which ensures that (3.13) is satisfied automatically. Equation (3.31) can then be expressed as

B-V4 = seB?s, (3.33)

which can be integrated along field lines (contours of the flux function, A), to give

' = veBe J (3.34)

44



0 x/Le 1

1

I

x/Le

Figure 3.2; Magnetic field lines for shoakless reconnection in lhe potential case c = 0 for differenl 

currenl sheel lenglhs, L (O.ILss 0.2Ls, 0.4Ls and 0.6Ls).

0 1 1

Al lhe end, (L,0), of lhe curranl sheel lhe held vanishes, so (3.34) leads lo a singularity. Also 

lhe value d^lained for # immediately above lhe separalrix differs from lhal oblained al a cnrre- 

ppnudsng poinl immediately below. Integration above lhe separateix is carried oul from lhe y-axis, 

OA, where #=0, whereas below lhe separalrix il is carried oul from lhe .'Eaaxip, GC, where ’4:=0 

also. The currenl sheel represenls a sile where lhe flow is deflected suddenly away from lhe neulral 

poinl along lhe £-axis, which will in realily ncaur over a Anile widlh due lo physical smnn1hing by 

non-ideal effects of viscosity and dinupivity.
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0 x/Le J 0 x/Le 1

Figure 3.3: Streamlines for shockless reconnection in the potential case c = 0 for different current 

sheet lengths, L (0.1Le,0.2Le,0.4Le and Q%L<>).

3.4.2 Analysis of the Diffusion Region

Priest and Lee found the mass flux into the diffusion region to be 

rL !
pVy dx = - TpL/Vi,

Jp
(3.35)

where Vi = veBe/Bi. This still holds in the present analysis, though now (3.28) implies that Bi and 

therefore Vi changes with different values of the parameter c.

By assuming steady diffusion with inflow speed

(3.36)

the diffusion region width is given by

Vi L
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1 1

Figure 3.4: Magnetic field lines for sliockless reconnection in the case L = 0.6Le for different constant 

currents, c (0.45, 0.0, -0.45, -0.31).

so that the diffusion region narrows as x increases towards L and the flow speed increases. Now 

also we see that its overall thickness decreases as Vi increases, i.e. as c decreases, and vice versa. 

Similarly, by considering mass continuity. Priest and Lse found the flow in the diffusion region to 

be
2vAiL . _1x

vx — ---------------- rsjn x--,
7r(L2 — a;2) 2 L

where uv = VAeBi/Be is the inflow Alfvin speed. Hence the flow slows as the overall diffusion 

width narrows (c decreases), but increases with x.

To investigate ths nature of the separatrix jets. Priest and Les proposed an order of magnitude 

model in which only a proportion (/) of the inflow exits ths diffusion region into the outflow region 

with a speed VAi- Ths remaining (1 — /) proportion forms the plasma jet. Using mass continuity 

they found
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Figure 3.5: Slreamlinep nnr shockless reconneclion in lhe case L = O.GLe nnr dif^ereu1 constanl 

currente, c (0.45, 0.0, -0.45, -0.9).

0 x/Le 1

/±=________ ?________ (3.37)

Again in lhis model lhe effect of c on lhe ralio Be/Bi changes lhe way lhis ea1in and hence lhe 

Mach number. Mt, behaves. This will be considered in lhe following analysis.

3.4.3 Reconnection without Shocks

In lhe Prsep1-Lse model lwo cases were considered, firslly recnnusatson withoul including lhe e^cl 

of shocks and wilh a aomple1ele determined downflow region, and secondly recnnuea1ion in which 

outflow boundary conditions were altered in order lo change lhe recnnnec1inn rale and lhe shock 

posi1inn as well as lhe outflow magnelic field, and slreamlines. The second approach produced
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Figure 3.6; For shockless reconnection with constant outflow speed vo, the variation of (a) current 

sheet length and (b) current sheet width with changes in current and inflow speed, ve.

only weak shocks, which are a consequence of the original field, configuration, and so it is a good 

approximation first of all to investigate the shockless model again. (Also it is important to see 

whether the introduction of pressure gradients has the effect of weakening or strengthening the 

shocks as the outflow boundary conditions are changed, which will be carried out in the next 

section.) Plots of the field and flow are shown for different values of L and c in Figures 3.2 - 3.5.

Numerically, the integration to find the stream function 4' is carried out along field lines, starting 

with a field line at the top left-hand corner (A) of the box in Figure 3.1 and evaluating (3.34) using 

a trapezoidal method. Each field line is followed until it leaves the numerical box at the top 

boundary, AB. Repeating this process, successively smaller, equally spaced values of A are chosen 

so that integration is carried out along field lines which start on the y-axis closer and closer to the 

origin, O. When O is reached, integration is carried out along field lines starting from the r-axis 

below the separatrix following each line beyond the right-hand boundary, BC. Again smaller and 

smaller values of A are chosen until the bottom right-hand corner (C) is reached where the flux 

function, A, has its minimum value. The data are then interpolated onto a regular 100 x 100 grid. 

The interpolation is only second-order accurate: hence the choice of the trapezoidal method rather 

than a more precise integration method.

To consider the downstream region the outflow conditions on field, Bo, and flow, Vo, are examined. 

The outflow field strength (Bo) is given in terms of the external field strength as
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Figure 3.7: For shockless reconnection with constant outflow speed v0, the variation of (a) the 

fraction f {F — fRmevo/v\e) of plasma not escaping along the separatrix jet and (b) the magnetic 

energy conversion rate with changes in current and inflow speed, ve.

Bo_ (L2/L2-1)1(1 + c)
Be +1)1 '

by evaluating (3.27) at C. Similarly, the outflow speed follows from v0B0 — veBe as

no _ {L*/L* + 1)*

ne {LJ/f i 1)1(1+ c) '

(3.38)

(3.39)

The basic reconnection process should involve some of the incoming magnetic energy being converted

into kinetic energy. To try and ensure this it is desirable for the outflow speed to be greater than

the inflow speed. If this is so (3.39) implies that

c < + rf/(L2/L2 - l)i - 1, (3.40)

so that, with (3.29), there is both an upper and lower bound on c. As T —> 0 the upper bound tends 

to 0, but as L — Le it tends to oo. By substituting for Bi/Be equation (3.37) becomes

L_ _ 2 (l + c)3
- rRmeM2 (L2/L2 + l)i ' (3.41)

In the potential case (c=0), Priest and Lee found for f = 1 (when all the plasma goes into the 

downstream region) that the maximum reconnection rate, M*, is
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The question now is: in general how does the parameter c affect the type and rate of reconnection 

expected? Priest and Forbes (1986) found different regimes for their parameter b and these regimes 

are also evident in the present model. For c <0, there is a slow compression, where the pressure 

always increases and the magnetic field decreases on approaching the current sheet. For 0 < c < 

(Lg/L2 + 1)3 — 1 the field weakens as one moves towards the diffusion region and there is a fast-mode 

expansion, but for c > (L\fL? -t 1)2 — 1 there is a slow-mode expansion with the field strengthening. 

(If the inequality (3.40) were adhered to, it would imply, however, that the slow expansion only 

occurs if L/Le > l/v5L) These classifications are used to investigate the reconnection rate.

If we have a fixed value for the outflow speed, Uo, and allow ve to change, then we can see the way 

in which the current sheet length varies as the inflow speed and the current change. By rearranging 

(3.39) one obtains

Z(l + c)2-y2x 
\(l + c)2 + P2/

L_
(i + c)2 + i/2y ’ (3,42)

where V — Ve/v0. Also the width of the current sheet follows from (3.36), (3.42) and (3.28), using 

mBi = veBe as

/ =VVe/ ~V?)-V2)i. (3.43)

These two relations are plotted in Figure 3.6. For c > 0 (the expansive regime) we see that both 

the length and width of the current sheet increase with c and that, as ve goes from 0 to v0, L goes 

from Le to Le(l — 22((1 + c)2 + ID1/2, whilst the current sheet width reduces from j(l 1 + c)/\/2i>e to 

r^c21 2c)?/y/2vo. For the compressive regime , c < 0, both the eeigthh and width go to zero when ve 

goes to Vo(l -k c), so the region where Ve/vo > (1 4- c) is invalid in this model (see also Figure 3.7).

From (3.41) we find

/R VQ
vAe

= ((1+c)2-V2) ((H-c)2 + +2)'
( 3.44)

It is of interest to see how much, if any, of the incoming magnetic energy is converted into kinetic 

energy in this model. To investigate this the incoming and outgoing magnetic energy fluxes are 

compared. The inflow of magnetic energy, We, into the region is given by integrating the Poynting 

flux along the boundary AB, namely

Wf — VeBe I 
Jo

Bx(x, Be)d.x
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and the outflow magnetic energy, Wo, is given by integrating along the boundary BC.

Wo — veBe I By(Le,y)dy.
Jo

In both integrations Bx and By are given by (3.27) and L by (3.42). The rate of magnetic energy 

conversion is given by (We — W0)/We. The relationships illustrating the fraction of plasma entering 

the downstream region and the magnetic energy conversion rate are plotted in Figure 3.7, with F 

in Figure 3.7(a) equal to /Rmevl/vAe.

We see here that the higher the inflow speed the less the plasma goes into the downstream 

region and the more it is forced up the separatrix jet. This corresponds to a shortening of the 

current sheet. For c > 0 (the expansive regime) there is a minimum amount of plasma always 

entering the downstream region, as the current sheet length, L, is always greater than zero. As 

Rme 1; we see from (3.24) that / “Cl except when Ve < Vo, though for c < 0 the current sheet 

length falls to zero when Ve — u<(l + c) and all the plasma goes into the downstream region as a 

jet, so / is small for larger values of Ve/vo.

In the compressive regime (c < 0) outflowing magnetic energy is much less than incoming en­

ergy when Ve is small, but the rate of conversion falls somewhat as the inflow increases and the 

current sheet shortens. Plasma is seen to be greatly accelerated as a. result in most of this regime 

and internal reconnection rates are higher. Inflow and outflow of magnetic energy become equal in 

the potential case when the current sheet length is zero (the potential A-point). In the expansive 

regime (c > 0), however, the outgoing magnetic energy can actually be larger than the incoming 

and the plasma is seen to decelerate. Eventually, when c is greater than about 1.25, the outgoing 

magnetic energy is always greater than the incoming energy regardless of the inflow speed. This 

manifests itself in large external and internal reconnection rates and longer current sheet lengths as 

c increases.

3.5 Reconnection with Shocks

3.5.1 Shock Relations

In the classical Petschek reconnection model there are two pairs of slow-mode shocks, one pair 

coming from each end of the diffusion region. Most subsequent models have incorporated shocks in
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Figure 3.8; Magnetic field lines and streamlines (solid curves) with the Alfvenic discontinuity shown 

dotted, for the case when L = 0.25Le, c = 0 and ve = O.lvAe.

the outflow, both of a slow- and fast-mode nature. Here the shocks are generated by disturbances 

at the end of the current sheet, Y, and propagate out along YH. The location of the discontinuity 

which supports the shock YH is given by the relation

Vn + vAn — 0, (3.45)

where VAn is the normal Alfven speed and vn and the normal flow speed.

By non-dimensionalising the field, B, the flow, v and distances with respect to the quantities 

Be, the external field strength, vAe, the external Alfven speed and Le, the external distance, the 

dimensionless flux and stream functions may be written as A1 — A/LcBe and 'F' = /LevAe. The 

location of the Alfvenic discontinuity is then given by the characteristic

'F/ -j- A' = constant (3.46)

which emanates from the end of the current sheet at (0, L), the dotted line in Figure 3.8. This is 

exactly equivalent to (3.45). The position of this characteristic depends on the magnitude of the 

inflow speed, Ve, in relation to the inflow Alfven speed, VAe, which is held fixed. The slower the 

flow, the closer YH is to the separatrix YS; the faster the flow, the more YH is inclined away from 

YSl.

To investigate the effect the discontinuity might have on the downstream region, new outflow 

boundary conditions are applied along HC, which is downstream of the shock. Upstream, the field
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and flow are still completely described by (3.6) and (3.14) so that the flux and stream functions 

are nuenesnrily continuous across the sOnck io mathh thd downstream with the upsteeam regions.

Conservation of mass means that

Vni — Vn2, (3.17)

where vni and vn2 denote the flow speed normal to the shock downstream and upstream, respectively. 

Similarly, conservation of flux implies that

Bnl = Bn2,

with suffixes as before. Electric field is also conserved {E = —veBe) and so

wy2-®«2 — vxlByi Vy1 Bxi.

(3.48)

(3.19)

The fourth condition is that the total pressure is conserved across the shock.

P2 + 2/j,

B2
-pi+2^’ (3.50)

so that the total pressure is equal at each point along the shock.

We now have four conditions on the five downstream variables Bi, vi and pi, and therefore

according to section 2 we are able to apply one boundary condition at the outflow boundary.

3.5.2 Numerical Solution of Downstream Region

In the downstream region (3.11) and (3.12) are solved subject to the shock relations and an outflow 

boundary condition on HC together with symmetry conditions on the x—axis. The electric field 

equation (3.11) may be written in terms of the flux function, A, as

E = —veBe = (v.V)A. (3.51)

Taking the curl of the momentum equation (3.12) results in

p(v.V^)w = (B.V)i, (3.52)

where w = —V2^ is the vorticity and j = —V2A//j, is the current density.

Here we cnnsi<ttr a downstream region in which (3.51) and (3.52) are solved nomel■ica^y yy

imposing a new boundary cundioion on CC a.nd relaoing tho old downetream aut^'t^t^eties to find the 

new ones using a time-dependent code with small diffusion terms, namely

— = -v.VA - veBe + t)V2A (3.53)
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Figure 3.9: Magnetic field lines and streamlines when Me = 0.05 for reconnection with shocks in 

the potential case c = 0 for L = 0.2Le, 0.4Le.

0 x/Le I

1

xJLe0 I

p— = —pv.Vw + B.Vy 4- (3.54)

where small values of the diffusivity, / and viscosity, u, are included purely to try and establish a 

steady-state in as few Alfven times as possible and not overshoot the required state. These values are 

included purely for numerical reasons and are distinct from the much smaller physical diffusivities 

which determine the dimensions of the current sheet. Equations (3.53) and (3.54) ensure that regions 

where flow dominates or there is a reversed current spike, for instance, are treated self-consistently.

The —VeBe term on the right-hand side of (3.53) updates the flux function on the shock boundary 

as each successive field line passes through it. In the Priest and Lee paper there was an error in 

that the value of A was not updated at the shock boundary so that the downstream solution (e.g.
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Figure 3.10: Magnetic field lines and streamlines when Me = 0.05 for reconnection with shocks 

when c = —0.5 for L = 0.2Le, 0.4Le.

Figure 10 of Priest and Lee) is incorrect.

To implement the code, all equations are written in terms of the four quantities and

u>', which are the dimensionless versions of A, ty,j and u). A' and are given above and j' and 

U are similarly created by non-dimensionalising with respect to Be,VAe and Le. Time is also non- 

dimensionalised with respect to the external Alfven time, TAe — Le/vAe- The whole reconnection 

region becomes a 1x1 numerical box with the code solving downstream of the XP' -h A' = 0 contour. 

For convenience, the prime superscript will be omitted in the remainder of this section and all 

quantities assumed to be dimensionless.

The boundary conditions imposed along the outflow boundary (x = 1) are that 4f(1, y) is a linear 

function of y to give a uniform outflow, whilst the derivatives du/dx and d2A/dx2 are both zero. 

Along y = 0 symmetry conditions are imposed: = 0, w = 0 and dA/dy = 0. Along the shock
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Figure 3.11: Current spikes on the .a-axis for c = 0 and c = —0.5 for three different current sheet

lengths

front YH, W and A are given by continuity whilst at the n + 1 time step the vorticity is given by the 

Laplacian of 'I' at the nih time step: u>n+1 = —V2lkn. Initially the given quantities are those from 

the analytical shockless solution, whilst along the outflow is changed to the imposed value over 50 

time steps. The code is run for several Alfven times to allow information about the new boundary 

conditions to propagate throughout the whole of the downstream region. The usual CFL condition 

is applied to guarantee time stability of the code. Forward differencing is used for time derivatives 

and centred-differencing is used for spatial terms. The full set of dimensionless equations used in 

the code is

dA _ 
dt "
du
dt

V2^ =

J =

_dy_dA 
dy dx 
dy dw 
dy dx

—w

-v2a

dy dA 
dx dy

- Me + R~leV2A

dy du dA dj dA dj 
dx dy + dy dx dx dy

(3.55)

(3.56)

(3.57)

(3.58)

+

+
Me n

+ -Re .

with the two-dimensional Laplacian operator V2 = d"/dx2A"2 /dy2. These equations form a closed 

system with (3.57) solving for away from the outflow boundary using a simple relaxation method. 

Me is the external Alfven Mach number, Rme = VAeLe// the external magnetic Reynolds number 

and Re = veLe/v the viscous Reynolds number. The constants y and p are absorbed into the 

dimensionless variables. The code terminates once the time derivatives become smaller than a very 

small tolerance level. Finally, the quantities are re-dimensionalised so their relative sizes can be 

compared. The results of several simulations are shown in Figures 3.9 and 3.10.

The streamlines adjust quite significantly to match the new outflow boundary conditions, some
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bending down sharply as the boundary is approached. The field responds accordingly near the out­

flow with the field io the vicinity of C weakening as the flow speed increases there and conversely 

strengthening nlote to H where the flow speed decreases. Nearer the end of the current sheet the 

field and flow are less affected. The most significant feature on the x-axis is the very sharp current 

spike at the eud of the current sheet. This is thought to result from the need for the plasma exiting 

the current sheet at the local Alfven speed to decelerate in order to match with the imposed outflow 

boundary speed (Jardine and Priest (1988c)). Also evident is a more diffuse current ‘bump’ in the 

opposite direction near the outflow boundary associated with a small acceleration of the plasma 

as the streamlines bend down. The current spike is characteristic of many numerical simulations 

of renonnentioo (e.g. Biskamp, 1986). Current spikes for different current sheet lengths and two 

constant current values are plotted in Figure 3.11.

3,6 Discussion

3.6.1 Reconnection Rate and Scaiing

As reconnection is ooe of the fundamental processes of MHD, one aim behind new models is to 

try and obtain a reconnection rate which is io agreement with the observed values io astrophysical 

plasmas. The models presented here depend on a parameter, c, such that c <0 gives a family of 

compressive regimes, c = 0 is the potential solution with uniform pressure and c > 0 corre.spoocls 

to a family of expansive regimes. We can deduce the maximum reconnection rate associated with 

each regime, seeing how it varies with c and Rme, the external magnetic Reynolds number.

In general, flux conservation implies that the ratio of the field strength at the diffusion regiou 

inflow to the external value is

= m
Be ’ \Mi

where Me and Mi are the external and inflow Alfven Mach numbers. Me is a. measure of the 

tenonnention rate. Furthermore, the Sweet-Parker relations for the central diffusion region imply

that the length and width are

(3.58)

_L _ 1
L

(3.59)
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and

(3,60)A - i 
L* RmeM?M?

where Le is the external scale length. These relations hold for all steady nonlinear reconnection 

models and the relation Mi(Me,mme) for the inflow Mach number foUows from the deaads of the 

external region. In our case the external solution simply gives the additional relation

A. = (1+c)
Be (L2/L2 + 1)1'

When (3.58) and (3.59) are used to substitute for Bi and L, this reduces to

R2meM?M? + Me~ (1 + c):^M- = 0.

(3.61)

(3.62)

After solving this for Mi(Me, Rme), (3.59) and (3.60) determine the scaling laws for CMe, Rme) and 

L(Me,Rme). The solution of (3.62) is

-1 + [id- 47?2MeM/(l + c)2]3
(3.63)

and is plotted in Figure 3.12 for different values of Rme and c. When Mi <C Rme2, Me % (l + cfMj,
i / n

whereas, when M, %> RmV , Me % (1 + c)/(MiRme). There is a maximum reconnection rate, 
M* = (2/3v3)1/<2(l + c)3/2/E^^f when dMe/dMi = 0, however this is unphysical in the sense that 

L = y/2Le at M*. The maximum allowable rate, M)3, is, therefore, produced when L — Le and is 

given by
MJ* = (1+C" - . , (3.64)

which is slightly less than M* and is shown in Figure 3.13.
When Mi » RmV2, L < Le and the resulting scalings for the diffusion region dimensions are

JS Rnie^e

Le (1 + c)i
(3.65)

and
4- « -r-^--------. (3.66)

+ c)2

so that the sheet length increases with both Me and Rme, as seen in Biskamp’s experiments. At the 
maximum rate these scalings are L/Le = 1 and if Le « Rmme/l A c)'1/2.

In the past it has been assumed that a Rme~A2 scaling of the maximum reconnection rate im­

plies that fast reconnection is not possible. However, it can be seen from (3.64) that this is not the 

case. Furthermore, Priest and Forbes (1992) have shown that reasonable agreement with numerical 

experiments on reconnection can be obtained by allowing c to vary with Me and Rme in such a
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Figure 3.12: The rate of reconnection, Me as a function of internal Alfven Mach number, for (i) 

c = 0 with Rme — (a) 10®, (b) 10®, (c) 104, (d) 103, (e) 102 and (ii) Rme — 10® with c = (a) -0.9, 

(b) -0.5, (c) 0, (d) 5, (e) 10.

way as to satisfy the particular boundary con01tiont that were adopted by the experimenters. Fast 

reconnection is defined to have a rate greater than the pure Sweet-Parker rate, Me ~ R^me~1^2, 

and therefore all the models with c > 0 have maximum rates which are fast. If ooe is restricted to 

potential reconnection with c = 0 (e.g. by insisting oo negligible pressure gradients), the noouoiform 

analogy of Petschek reconnection, then one can only have a recounection rate greater than a given 

value Me if Rme < M~2. If instead we allow c >0 io the present model so that strong plasma 

pressure gradients and large (> 1) plasma /? are present, reconnection faster than Me is possible if 

Rme < (1 + c)3/Mg. Thus rates of 0.1, for instance, at magnetic Reynolds numbers of, say, 10® are 

possible if c > 10 (Figure 3.12 (ii)). In other words, we connluOe that fast flux pile-up reconnection 

at any given magnetic Reynolds number is possible by taking c sufficiently large.

3.6.2 Comments and Comparisons

With the successful marriage of analytical and numerical models, further understanding of the whole 

process of two-dimensional magnetic reconnection can be achieved. Here, we have sought to highlight 

the importance of pressure gradients io creating different reconnection regimes and also emphasise 

the crucial role that boundary conditions play io determining these regimes. The combination 

of analytical and numerical models in this chapter helps understanding of and comparison with 

previous models of both types. The two seminal papers, those of Priest and Forbes (1986) and 

Priest and Lee (1990) (from which the basic model is drawn) can be viewed io this light.

Compressive and expansive reconnection regimes previously found in the Priest-Forbes Unified
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Figure 3.13: The maximum rate of reconnection, M2, as a function of the external magnetic 

Reynolds number Rme for different values of current c: (a) c = —0.9, (b) c = —0.5, (c) c = 0, (d) 

c = 2, (e) c = 10.

Almost- Uniform model are also present in the Nonuniform model and we reproduce and extend the 

Priest-Lee results using, as they did, an analysis of the whole field and not relying on linearisation. 

Also of interest is the current spike observed in the numerical part of the analysis which was first 

seen in the numerical models of Biskamp(1986) and Lee and Fu (1986). These are again evident here 

and of particular interest in the non-potential case when the plasma exits the downstream boundary 

faster (compressive) or slower (expansive) than in the potential case, so the deceleration of the plasma 

changes significantly as c changes, and hence the size of the current spike. The current ‘bump’ seen 

in this model may also be significant in the physics of the outflow boundary conditions. Unlike the 

Priest-Lee model, we do not see the large kink in the magnetic field immediately downstream of the 

shock and this has been explained, but in other respects the numerical simulations are similar.
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Chapter 4

Nonuniform Reconnection Models

with Non-Singular Separatrix Jets

4.1 Chapter Summary

This chapter examines a. different extension to the Priest-Lee Nonuniform Reconnection Model . By 

adding a uniform field in the ^-direction, a cusp-point replaces the Y-point at the end of the current 

sheet, so that the flow is no longer singular everywhere on the separatrix. Section 1 briefly explains 

the singularity, whilst Section 2 presents an analytical non-singular solution about a double-cusp 

point. In Section 3, the adaptation of the Priest-Lee model is explored in detail, with the MHD 

characteristics and the diffusion region being analysed. The analytical model has a. discontinuous 

^-component in the field on the .r-axis, so that solutions which remove this below the separatrix 

must be derived numerically. These solutions are presented in Section 4. Section 5 considers the 

reconnection rate, which is determined by inflow conditions, and Section 6 draws conclusions.

4.2 Introduction

Most of the classical reconnection models have studied perturbations about a potential field (Petschek 

1964; Yell and Axford, 1970, Soward and Priest, 1977; Priest and Forbes, 1986) with standing slow­

mode shocks separating the inflow from the outflow. More recently, with the advent of more sophis­

ticated numerical models, attention has switched to nonuniform, and in some cases non-potential, 

models (Biskamp, 1986; Forbes and Priest, 1986; Lee and Fu, 1986). These models have revealed 

new features including current spikes in the outflow and strong jets of plasma einitted away from 

the diffusion region along the separatrices. The jetting phenomenon can also be studied analyti­
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cally (Soward and Priest, 1977; Priest and Lee, 1990) by investigating the solution to the flow as 

the separatrix is approached. A separatrix is a field line which passes through the neutral point. 

Constant values of the stream function delineate the streamlines, but it is found that the value of 

the stream function is discontinuous across the separatrix (Soward and Priest, 1977). In the case 

of a potential A-point the whole flow can be described analytically and becomes singular along the 

entire separatrix.

Priest and Lee (1990) have made substantial progress in setting up a Nonuniform Reconnection 

Model with potential inflows; they contain finite length current sheets and separatrix jets, but the 

flow becomes singular at the separatrices. Chapter 3 extends this work by including non-potential 

inflows, but separatrix jets are still present. Although the jet is an important feature, the presence 

of the singularity is unphysical. In this paper we seek to address the problem by considering a model 

with a modified neutral point at the end of the diffusion region so that the neutral point changes 

from being an X- or Y-point to being cusp-like in nature so that the field tends to zero inside the 

cusp but remains non-zero outside (see Chapter 2). This removes the singularity in the flow when 

the separatrix is approached from the inflow region. In order to model the cusp-point, a uniform 

is added to the previous field containing an A-point or Y-point. An equal and opposite 

field is imposed in the lower half-plane leading to a discontinuous z-component of the field along 

the z-axis. This discontinuity is removed by solving the full MHD equations numerically below the

separatrix.

4.3 Analytical X-Point and Double-Cusp Solutions

4.3.1 Incompressible Flow about c Potential X-Point

In considering the effects on the flow near the separatrix in a reconnection model, it is useful to look 

first at the solution to the incompressible flow around a potential A-point, which may be treated

analytically. This illustrates the nature o f the discontinuity along the separatrix and provides a 

comparison with a non-singular result wliihh ss abo obtamed for a double cusp-pond,. Starling with

the potential A-point background field described by

B = yCf/xT zy), (4.1)

where Be is the field strength at (0, Le), we can impose the usual constraint on the field, namely

V -B = 0, (4.2)
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to construct a flux function A = A{x,y)z such that

V x A = B, (4.3)

where constant values of A trace out field lines. For the potential A-point, the flux function is given 

by
4 = ^(l,2-*2)- (4.4)

If the magnetic field, B(x, y) is io a steady state, the electric field is curl-free, and so uniform, having

the form

E = Ez. (4.5)

The field is potential and thus Ohm’s Law reduces to

E 4- v x B = 0, (4.6)

where v describes the flow around the A-point. In mosi astcophyslcyi cases, Bee flow speed v ^.v^, 

so that the continuity equation reduces to

V -v = 0, (4.7)

with density, p, uniform. This is satisfied identically by writing the flow io terms of a stream function

<({xy)z

V x $ = v (4.8)

Given (4.6) and (4.8) and a prescribed magnetic field, it is then possible to determine 4 and therefore 

the flow fully.

To do so, (4.6) is recast as

B-V4 = VeBe, (4.9)

where Ve is the external flow speed. This io turn can be integrated to give

f ds f dx , .4 = «4^e / = VeBe I — , (4.10)

where ds is measured along each field line. Symmetry of the flow about the y-axis means that there 

is a streamline along it. We can arbitrarily give this streamline a value, say 4 = 0, and use it as a. 

boundary condition to integrate the projection of the field, dx/Bx, above the separatrix. Symmetry 

about y = x (the separatrix) reveals that the stream function generated by integrating from the 

streamline, 4 = 0, on the z-axis below the separatrix is identical to the function found above the 

separatr-ix, so that io the case of a potential A-point, the resulting stream function, 4(z, y), is given 

by
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Figure 4.1: Potential X-point and corresponding incompressible flow showing jetting along the

separati'ices.

^^-^loge

Equation (4.8) then yields velocity components

x - y
(4.11)

Vx — (x2 - y2) (x2 - y2)
(4.12)5 ^2/ —

Clearly, there is a singularity in the flow and the stream function along the separatrix, y = x. This 

manifests itself as a strong jet of plasma in the vicinity of the separatrix. In reality non-ideal affects, 

such as diffusion, could take over and resolve the singularity but its presence is undesirable.

4.3.2 Non-Singular Stream Function about a Double-Cusp

There is a second way of removing the singularity, however. Instead of considering a potential X- 

point, a modified model can be constructed with an additional piecewise uniform Bx field. This field 

is positive in the upper half-plane, but equal and opposite in the lower half-plane. It transforms 

the neutral point from an X-point to a double cusp-point with the separatrices touching the x-axis. 

The flux function which describes this configuration is given by

./^(l + A:)-1 - x2) + (4.13)

where k is a dimensionless positive constant and the factor (1 + fb) 1 ensures that Bx = Be at (0, Le). 

(If k were to be negative then the separatrix would form a double cusp-point with the cusp touching
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1

Figure 4.2: First quadrant of a double-cusp with notretpon0lng analytical incompressible flow when 

k = 0.5.

1

the j/-axis and not the x-axis.) The equation of the separatrix is simply given by the rectangular 

hyperbola

(y + kL,)2 - x2=k2L2„ (4.14)

which marks the dividing line between the two solutions given below for the stream function. 

When y > 0 the resulting field has components

Bx = 1 Bf
{y + kLe) , By —

1 Be ■ X. (4.16)(1 + 6) L„ (1 + 6) T,

This describes the field above the separatrix. The crucial difference between the X-point and double­

cusp models is that there is a non-vanishing field component as the neutral point is approached from 

above. This will determine a non-singular flow above the separatrix, as we shall see.

Above and including the thparatrix, the stream function can be calculated as before to give 

x + (y + kLe)« = (1 + 4)^ log.
, (y + kLe)

(4.16)

which has velocity components

Vx — veLe(l + k)
(x2-(y+kLe)2)

, Vy=VeLe(l + k) y + kLe
(a.’2 - (?/ + kLe)2)

(4-17)

As the separatrix is approached from above, the stream function is non-singular and behaves like 

sluh”44, where 4 = xs/(kLe) and xs is the x-coordinate of a point on the shparatrlx. The previous 

singular X-point result can be retrieved by setting 6 = 0.
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Below the separatrix, the field is initially described by (4.15), whilst the initial stream function 

is found by integrating along the field lines from the z-axis with the same boundary condition as 

before, namely that 2 = 0. This time the projection of the field in the y-diresticn is integrated so 

(4.10) becomes

— (4.18)

with integration again being along each field line. The stream function generated by this integral 

is different from (4.16), which would give a singularity on the line y = x — kLe. However, the 

imposition of the boundary condition on the z-axis removes the singularity and the stream function 

below the separatrix becomes

2 = + 6) loge _______ + 2/ -f- kLe_________
kLe + x/O1’ - y2 - 2kLey)

(4.19)

Equations (4.16) and (4.19) imply that the stream function is continuous across the separatrix 

and remains finite along its entire length, so that there is no jump in the stream function corre­

sponding to a separatrix jet. This is in contrast to the X-point solution which has a singular stream 

function along its separatrix. The velocity components are

Vg — VgLe(l + k)
y + kLe , 

kLeS + S2 + R Vy — VeLe(l + k)
kLeS + S'2

(4.20)

where R — z + y + &Le and S ~ \/((z2 —y2 — 2kLey). The streamlines are tangent to the separatrix, 

so that the flow is aligned with the field as the separatrix is approached from below. Clearly a field- 

aligned flow will give v x B — 0 for finite velocity and field components. However, we see from (4.20) 

that the velocity components are both singular as the separatrix is approached from below since 

5 — 0. The analytical flux and stream functions are plotted in Figure 4.2 and the full numerical 

solutions for two different values of k with the Bx discontinuity removed and numerical smoothing 

performed on the downstream side of the separatrix are shown in Figure 4.3.

The ratio of flow components in (4.20), Vy/vx, remains finite, however, and the flow is deflected 

through an angle ds at the separatrix given by

0s — cos
-2g,(*?+**£«)* \ 

Mi + '
(4.21)

At the origin 0s is imposed to be —i/2 and as z, increases, Gs increases toward —tt at infinity. In 

the locality of the downstream side of the separatrix, non-ideal effects such as resistivity will tend 

to remove the singularity in the flow.

The fact that a singularity remains in the flow below the separatrix can be explained by the 

following analysis. Previously, the field in all analytical models tends to zero at the neutral point, 

which usually lies at the end of the current sheet. Consequently, v x B — —E can only be maintained
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Figure 4.3: The full numerical solution for the magnetic field lines and streamlines for double-cusp 

models when (a) k = 0.2 and (b) k = 0.5.

if the velocity becomes singular at the neutral point. Immediately above the neutral point there is 

only an x-component of field so that

vxB = —v^B^, (4.22)

and Vy becomes becomes singular. Beyond the neutral point, i.e. below the separatrix, there is only 

a ^-component of field so

v x B = vxBy, (4.23)

and vx becomes singular at the neutral point. As a consequence of the singularities above and below 

the separatrix, the flow becomes aligned with the separatrix field line as it is approached from above 

or below. If the field and flow are aligned, B = 0 unless the flow becomes singular along the field 

line, hence the singularity along the entire separatrix.

In the analytical solution presented above, the field remains non-zero as the neutral point is
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approached from above, so that (4.22) does not lead to a singularity, Vy remains finite and the flow 

does uot align itself with the separatrix. This is also true in the Cusp Current Sheet configuration 

examined below. Below the separatrix, the 4-componeot of the field mtist go to zero by the definition 

of a cusp-like neutral point iu Chapter 2. Consequently, (4.23) always leads to a singularity when 

ideal MHD is being considered. The singularity can be resolved by allowing for a. finite thickness at 

the end of the current sheet: imposing the classical outflow speed, namely vout — v^i, we would, by 

(4.6) and (4.23), expect to have a. y-compooent of the magnetic field given by

By — (4-24)
uAi

This means that both field components would be non-zero at the end of the current sheet, so there 

is no longer a neutral point located there but this analysis lies outside the scope of our current 

investigation.

Clearly the solutioo (4.15) is unrealistic as the x-axis is approached, sionr there is an infinite 

acceleration along the x-axis. Nevertheless, it is a useful analytical solution which sheds light oo 

the nature of the separatrix flow and acts as a preliminary for the full numerical solutions of the 

next section, which removes this current sheet whilst preserving the overall structure.

4.4 Cusp Cmri’en't Sheet Model

4.4.1 MHD Characteristics

Consider a potential model containing two Y-type neutral points at the euOs of a current sheet. The 

field vanishes at the Y-points so that the flow tends to become singular locally if ideal MHD holds. 

The field near a Y-point has a strength proportional to the square root of the distance away from 

the point so that the integral (4.10) is non-singular, but the derivatives of the stream function (the 

velocity components) are. These points act as sources for discontinuities (shocks io the compressible 

case) ccming off the ends o f SIie curren t sheet . Even when a. unfform Bv cor-onnent is added to 

form cuupp so that the flow becomes finite, there is still a discontinuity generated. The shodse exist 

physically because information naeeot propagate cpttrra.m anrott the field lines away from the ends 

of the nutrent sheet. This can be trho by looking at the MHD characteristics of the system.

If ooe considers the momentum equation,

• V)v = -Vp+-(VxB)xB, (4.25)

and the electric field equation

E 4- v x B = 0, (4.26)
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then by taking the curl of (4.26) and looking at the sum and difference of these equations one can

deduce that

and

(v+-V)v_ — —
1

' B2\P +2//) (4-27)

' B2\P + — ) (4.28)

where v+ — v -j- v^, v_ — v — and — TB/Jp is the Alfven velocity (Soward and Priest, 

1977). If the total pressure is uniform, (v+.V)v_ — (v_.V)v+ — 0 and we see that the quantity 

v+ is constant along the characteristics C_ and vice versa. If the total pressure varies, the pressure 

gradient acts as continuous sources for waves.

The characteristics C+, which are the streamlines for v2-, cannot propagate information into 

or out of the downstream region as the limiting characteristic coming from the end of the current 

sheet divides the two regions. This characteristic carries an Alfvenic discontinuity, with magnetic 

information unable to propagate across the field since the slow magnetoaccustis speed is zero across 

field lines. Only the characteristics C_, which are the streamlines for v_, can cross the limiting 

characteristic coming off the end of the current sheet and carry information into and out of the

downstream region.

If v v^, which is the case for most circumstances in the solar atmosphere, the C+ and C- 

characteristics align themselves closer and closer to the field lines and the limiting C+ character­

istic tends toward the separatrix. This means, in general, that the C- characteristics cross the 

discontinuity at shallower and shallower angles.

In addition, there is a mismatch in the stream function across the eepa^ral^.rix winch can be 

evaluated aa the end off hhe current sheer by a simpfe anayysls. From (4.10), the n^uu e o!' Hie stream 

function at a point (A, 0+) just above the end of the current sheet is given by

*£ = veBe fL (4.29)
Jo ^(x)

with integration along the z-axis. If the density, p is normalised, we can see that this is simply the 

mass flux into the current sheet, because, by (4.26),

B,(x)’
(4.30)

with U^(z) being the profile of the velocity just above current sheet bringing plasma in. By contrast, 

the value of the stream function at a point (T+,0) on the z-axis just beyond the end of the current 

sheet is imposed to be 0. This jump is maintained along the entire separatrix, as two field lines 

lying arbitrarily close, but on opposite sides of the separatrix, will cause the stream function to be 

increased by the same amount when the integration along them is carried out.
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Figure 4.4: The streamlines for a Y-point and a cusp current sheet model when there is no diffusion 

or smoothing, with k = 0.8, when L — 0.2Le and ve — O.l^xe- The streamlines are seen to follow 

the separatrix for a distance equal to the current sheet length before joining the corresponding 

streamline below the separati’ix.

If we consider the streamline along the y-axis, which has the value 4/ = 0, it, must match with 

the streamline beyond the end of the separatrix along the x-axis by going along the current sheet, 

so it “jumps” a distance exactly the same length as the current sheet. Consequently, a streamline 

in the inflow joining the separatrix moves along it a distance exactly the same as the current sheet 

length before matching with the streamline with the same value below the separatrix. This can be 

seen in Figure 4.4 for both the Y-point and cusp-point models with the flow tending to become 

singular in the Y-pont model on both sides of the separatrix.

4,4.2 Basic Model

A potential field with a current sheet, which has two Y-points at the ends of the sheet, was used 

by Priest and Lee (1990) in their nonuniform reconnection model and is generated using complex 

variable theory. It is of the form

dAQ „ „ f Z2 A3 . x■jTT — By + lBx — Bo f - lj , (4.31)

where Z = x + iy and there is a cut in the complex plane along the real axis between Z ~ ±L. By 

integrating and taking the real part, (4.31) yields a flux function

Ao = — Bo
2L

ys — L2 log
{(x + rf 4- {y Y s)2p 

L
(4.32)
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where r = [j ((X2 + Y2)i + x)] 2 , s = [j ((X2 + Y2) — x)] 3 , X = x2-y2-L2 and Y = 2xy. 

To this field we may add a flux function A\ which generates a uniform positive Bx field when

y > 0, namely

A! z= Beky, (4.33)

with & as in Section 4.3.2. The field is equal and opposite for y < 0 so that a cusp-point is created 

at the eud of the current sheet and initially there is a jump io Bx across s hs es-axis.

Even more generally, pressure gradients can be introduced bb i mopcinn a cnoetanI-cncruhI field 

(see Chapter 3) generated by the flux function

^2 = (4.34)

where c is a dimensionless constant which can be positive or negative. Hence, ths t ooal Oux function 

is A = Ao + Ai + A2 and the total field is given by

Bx — Bq— -f Bgk — Be~~, By — Bq-—, (4.35)
L Le L

with u and s as above.

The field strength at the external point (0, Le) is fixed at Be, so, by evaluating (4.35) at this 

point we see that Bo is related to the fixed external field strength by

_ (1 + C-i) D
&0 — -- ----------------TTT&e, (4.36)

(Z2/L2 + l)i

with the ratio Bo/L in (4.32) tending to Be(l f c — k)/Le as L tends to zero. Clearly, Bo must be 

the same sign as Be so that 1 ] c > k.

By evaluating the fielO at (0,0+) just above the current sheet, we find the ratio of inflow to 

external field strength to be

(4-37)

This ratio is important in determining the rate at which the reconnection proceeds. As L —— 0 the 

ratio tends to k, whereas as L —+ Le it tends to (1 + c — k)/\/2 f k. First we shall nonsiOrr the 

Oiffunlon region which lies along the --axis between - = ±L.

4.4.3 Diffusion Region Analysis

In the limit when OiOfusioe. is neglected io the external region, the diffu.slon region can be considered 

as a sheet nurrenn. It exists mathematically because there is a cut in the complex plane between z±L 

in the function (4.31). Physically, the field produced by this configuration has a discontinuous Bx
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component across the a:-axis between x — —L and x = 4-L, so that, although the field is current-free 

or potential everywhere away from the axis, there is a current given by

j'(z-) = -1 [B„« , (4.38]

where and — indicate points just above and below the x-axis and the brackets denote the difference 

in the values. As the field below the axis is equal and opposite, the size of the current is simply 

proportional to twice the size of the field above the axis. When the field is given by (4.25]

2S0 (4.39]j(x) - *’)'

with Bq given by (4.36). This means the current disappears at the ends of the current sheet. By 

adding the uniform Bx field, there is a jump along the whole length of the x-axis in the initial field 

(4.35). This discontinuity will be removed numerically for |xj > L, but remains for |x| < L, so the 

new line current is
'B,

x) (L2 - x2)2 ~Bek (4.40)

Now neither the current nor the field disappear at the ends of the current sheet.

By considering ideal MHD, just above the current sheet, we see that

•»«=(4 -41)

In the original model, the velocity becomes singular as x —> L, whereas, with the uniform B% field 

added, Vy remains finite and Vy = ve/k at x = L.

In reality the sheet has a finite width in which diffusion of the magnetic field can take place and 

the field slips through the plasma; hence the term diffusion region. If it is assumed that there is a 

balance between outward diffusion and inward advection, then as the origin is approached

(4.42)

where is the inflow speed at the diffusion region, £ is the width of the diffusion region and y is 

the diffusivity. Along the remainder of its length the diffusion region width as a function of x is

f(%) =
ilBx il Bq

(4.43)
vy(x) veBe veBe l

In the Priest-Lee model, the width vanished at L. In contrast, the width remains finite in this model 

at L where it takes the value r)k/ve.

In the sheet itself, the flow will be approximately one-dimensional. By considering mass conti­

nuity between the mass entering and leaving the diffusion region, the velocity of the plasma in the 

region, Vx, is given by
£(x)vx(x) = [ Vy(x}dx = f dx, (4.44)

jo jo Bx\x)

i Z’

(L* - S)’- B,k
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so
veBe [xv°(x) = N dx

(■!.«)

Once again, we find that the singular flow found in the Priest-Lee models is not present here at

x = L.

4.5 Numerical Solutions

As stated in Section 4.2.1, below the C+ characteristic coming off the end of the current sheet 

marks the position of an Alfvenic discontinuity. Above this characteristic, the magnetic field and 

flow will be preserved, whilst below it the initial field and flow will be used as the initial conditions 

for the numerical solution. The system solves the MHD equations downstream of the characteristic 

subject to new outflow boundary conditions. In solving these equations, the discontinuity in the 

Bx component is removed by applying an altered boundary condition on the x-axis. As the code 

progresses, the additional boundary condition is removed and the field and Alow allowed to adopt a 

steady state over many Alfven times.

The shock relations across the discontinuity are those stated in Section 3.5. We are able to 

impose a new boundary condition on the outflow boundary and choose the one used in Chapter 3, 

namely a uniform vx- The numerical scheme solves for the quantities A' ,j' and w', which are 

the dimensionless versions of A, 'I', j and u> and are non-dimensionalised with respect to Bet V;\e and 

Le. On the x-axis there are symmetry conditions for the stream function and vorticity, co. Also we 

impose dA/dy — 0 on the x-axis by initially setting the value of the dimensionless flux function, 

A', to be the same on the axis as it is one grid point up from it. Normally, a centred-differencing 

scheme, such as the one used here, sets the values either side of a grid point to be equal in order 

for the first derivative of a quantity to be zero at the grid point, but the initial field with the 

discontinuity has this property inherent across grid points on the x-axis, so the discontinuity will 

not be removed unless the modified boundary condition is adopted. After some small number of 

time steps, this altered boundary condition is relaxed and the field evolves with a zero x-component 

along the x-axis for x > L. The outflow boundary condition becomes a. linear function of 4'', the 

dimensionless stream function. The code allows the quantities to develop in response to the new 

boundary conditions by adopting time-dependence for the flux function and vorticity. There will be 

steady states once the time derivatives fall to zero. (In practice the code terminates once the time 

derivatives are smaller than a certain tolerance level.) The full set of dimensionless MHD equations 

used is given below with the prime superscripts dispensed with for convenience.
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1

Figure 4.5: Magnetic field lines and streamlines for cusp models when (a) L = O.lLe and k = 0.2 

and (b) L = 0.2Le and k = 0.3.

0 x/Le 1
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duf
dt
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<94/ du> d'b dw dA dj dA dj Me 2 
dy dx + dx dy + dy dx dx dy+ Re '

—w

j = -V2A

(4.47)

(4.48)

(4.49)

(4.50)

with the two-dimensional Laplacian operator V2 = d2/dx2 + d'/dy2. These equations form a 

closed system with (4.49) solving for 4' away from the outflow boundary using a simple relaxation 

method. Me is the external Alfven Mach number, Rme = V^eLe/f the external magnetic Reynolds 

number and Re — VeLefv the viscous Reynolds number. The constants y and p are absorbed 

into the dimensionless variables. The full set of equations is considered so that regions where flow
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becomes significant are solved consistently. Indeed, we see analytically from (4.12) and (4.20) that 

the flow along the axes grows as r_1 as the neutral point is approached, so that the flow term in 

the momentum equation is of the same size as the magnetic terms when r fa Me' Le.

The lmpoteO boundary condition at the outflow means that the flow is stronger on the z-axis but 

weaker toward the discontinuity. Io the outflow region, the new steady solutions show how the field 

retponOt at the boundary; weakening at (Le,0) but strhegtheolng further up the outflow boundary. 

There is also the possibility of a secondary weak shock propagating from the corner on the outflow 

just below the separatrix where the discontinuity crostet the outflow boundary. This manifests itself 

as a ‘kink’ in the flow as the boundary is approached. Nearer the end of the current sheet, the field 

and flow are lett affected. The results of several simulations for non-zero nutteot sheet lengths are 

shown in Figures 4.5.

4.6 Reconnection Rate and Scaling

In Chapter 3 we saw how the reconnection rate is significantly higher when the effectt of an expansive 

pressure gradient are leniuOeO in the inflow. In the model pi•eseoneO here the relationships which 

determine the reconnection rate are crucially altered because the field tti•eegth is non-zero as the 

neutral point is approached even when the Oiffutloo region length fails to zero. The ptetncre gradients 

which aOenteO the reconnection rate in the Chapter 3 analysis and can be included in this model will 

not be considered io the recooehction rate. Rather, the parameter, fc, which determines the field 

strength at the end of the diffusion region will be the sole imposed variable, so we are considering 

a model which is potential io the inflow region.

The reconnection rate is determined by the relationship between the field strength externally, Be, 

and the field strength at the inflow to the current sheet, B*. By flux conservation, this relationship 

can be recast in terms of the inflow and external Alfven Mach numbers, Mi and Me, as

Bi
Bft (g) (4 .SO)

Me is the rate at which the flux is a.llowrO to be inni•oOuneO into the inflow region and hence a 

measure of the overall tenooerntioo rate.

As iu the previous analysis, indeed for all ttea.Oy-tta.ne models, we have the Sweet-Parker scalings 

for the diffusion region length and width, namely

— - 1 
L* RmeM?M?

(4.51)
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Mi

Figure 4.6: The rate of reconnection, Me as a function of inflow Alfven Mach number, M{ for 

different values of parameter k when R,ne = 10®.

and
£ 1

7- =---------- — (4.52)
Le RmeM?M?

where Le is the external scale length.

In order to progress we must find Mr(Me,Rme) to obtain an overall reconnection rate in terms 

of Rme and k alone. In the potential cusp model, the key relationship between the diffusion region 

inflow and the external region is given by

Be
(1 - fc)

Ti/V + l)i
(4.53)

(4.54)

Using (4.50) and (4.51), Bi and L can be eliminated yielding

M^ / (i - k) +

Mi +

which can be rearranged into a quartic in Me. This is solved numerically, the roots of the quartic 

providing the relationships between M— Me and Rme- Only those roots which yield current sheet 

lengths satisfying L < Le are considered. These can be substituted into (4.51) and (4.52) to obtain 

scaling laws for the length and width of the diffusion region. Relationships between Me and Mr, £ 

and L are plotted in Figures 4.6 and 4.7.

If Mf the diffusion region length is very short (T <C Te) and we see that the first term

on the right-hand side of (4.53) is not significant compared with the second for most values of &. If
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Rme Rme

Figure 4.7: The length and width of the diffusion region as a function of the external magnetic 

Reynolds number Rme = for different values of k.

we neglect the first term we find the simple relation, from (4.54),

M, « k2Mi. (4.55)

In other words, as the inflow speed increases, so does the reconnection rate and the current sheet 

length gets shorter and shorter. Consequently, there is no upper limit on the maximum reconnection 

rate, M*, and it is independent of Rme. In fact this relationship applies even when M* RmV if 

k > 0.5, say. This is in total contrast to the normal Petschek relationship. In the previous Y-point 
analysis the maximum reconnection rate is reached when L = Le and is proportional to RmV2-

The resulting scalings for the dimensions of the diffusion region are 

L k3
(4'56)

and
P k

(4.57)
_P_
Lg

k

Rm.p.Mg

so that the diffusion region becomes shorter and narrower as the reconnection rate increases.

If k is small, typically less than 0.1, the first term in (4.53) is larger than the second when M

is small enough and the scaling is close to that for the potential case (k = 0), so 

(1 ~ k)

with resultant scalings
L_

and
p_

Lg

Mi Rme

 1

Rme Me

1
A ’ 

2^1? ie

(4.58)

(4.59)

(4.60)

MP_
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The scaling given by (4.55) still applies once the second term in (4.53) is larger than the first. This 

occurs once L < kLe. There are no solutions below the k = 0 solution because this corresponds to 

k < 0.
If Mi <C RmV2, the diffusion region length is very long (L >> Le) and (4.54) reduces to Me % Mr, 

which is the same as the k = 0 solution, but L > Le is outside the range of the model.

4.7 Conclusions

From the analytical solution involving the double-cusp point it is possible to have a non-singular 

flow as the separatrix is approached from the inflow region. The flow is also non-singular in the 

inflow region for the cusp current sheet configuration. This is a significant advance over previous 

models. The essential difference in the analysis presented here is that the x-component of the field 

does not vanish at the ends of the current sheet. The singularity in the flow below the separatrix 

is still present, however. This is due to the vanishing ^-component of the field at the end of the 

current sheet which will always be the case if there is a cusp-like neutral point; however it would be 

resolved by including a non-zero current sheet thickness.

In the reconnection model new scalings and reconnection rates are found which are unlike previ­

ous results. The reconnection rate can be arbitrarily large and is totally independent of the external 

magnetic Reynolds number. Again, these results are due to the fact that the field strength does not 

disappear anywhere along the current sheet. In practice, as M* gets close to unity the assumption 

about incompressibility breaks down so the analysis is no longer valid in this limit.
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Chapter 5

Conclusions

Iu this thesis, the study of magnetic reconnection has been brought together with analysis of mag­

netic neutral points. We have seen how neutral points can be generalised and observed how the 

restrictions imposed by seeking magnetic equilibria and steady states determine the behaviour of 

the magnetic 011X0 io the vicinity of neutral points. We have also seen the way iu which definitions 

derived in two-dimensions can be applied to three-dimensional structures.

The nonuniform reconnection models that have been studied have highlighted the crucial roir 

played by boundary conditions iu determining the rate of reconnection. The models Save also been 

able to help explain 0eatci•rs not present io uniform reconnection and reproOunhO different regimes 

of reconnection found previously in the Priest-Forbes Almost-Uniform model by introducing signif­

icant pressure gradients into the inflow region. Following ou from the Priest-Lee model, numerical 

simulations finO the current spikes obsetveO by them and show how the field downstream of the 

shock is affected by the imposition of new boundary nonOitioot. The reconnection rate is found to 

be greatly enhanced if we allow a highly expansive inflow.

We also see here the strong jets of plasma along the separatrix OounO io many previous models. 

The problem of singular flow along the teparattlx is addressed io the second reconnection model. The 

analytical solution about a double-cusp point removes the singularity in the flow as the separaniix is 

approached from above, a feature which has not been seen before. This means it is not necessary to 

perform numerical smoothing above the separatrix in the numerical simulations. The non-vanishing 

field at the end of the current sheet also gives ritr to a quite diOerent relationship between the 

external and inflow fields and consequently a recooeentioo rate is Oetermined which is lnOhpeoOenn 

of the magnetic Reynolds number. This results in a much higher rrcooeectioe rate not previously 

found, with the nutthet sheet shrinking as the renoooention rate increases io contrast to the first 

model in which the nctrent sheet grew with the reconnection rate. The downstream region is also
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solved numerically so that the discontinuous field component along the x-axis is removed.

In future it would be of interest to see if the results produced in this thesis can be reproduced in

other models, in particular in full numerical simulations. As yet, a consistent analytical matching 

between the diffusion region, where the actual reconnection takes place, and the inflow region has 

not been achieved. This seems a natural extension to the work presented here and elsewhere. 

Specifically, a consistent way of including the flow along the separatrix so that it is non-singular 

along the entire separatrix and matches with the inflow might be sought. This thesis stands as a. 

guide toward these goals.
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