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ABSTRACT

An outstanding problem in the field of nuclear fusion research is the precise mechanism 
by which a hot, magnetically inhomogeneous plasma is heated when illuminated by a con
stant beam of small amplitude radio waves matched in frequency to harmonics of the ion 
Larmor frequency. An accurate model must include microscopic dynamics and inevitably 
a kinetic theory is required. Highly energetic ions(> I Me V)  born from fusion reactions 
or powered by gyrorésonance have large Larmor radii(> 10cm) which are comparable in 
size to the wavelength of the incident radiation. In particular we will focus on fast mag- 
netosonic waves.

Exact full wave equations describing a thermal plasma in a weakly inhomogeneous field 
are presently at least fourth order integro-differential equations(Sauter, 1992). These are 
computationally taxing. Recently a method was proposed to reduce the problem to a 
second order integro-differential equation at the expense of information related to the 
propagation of mode-converted waves (Holt, 1992). We present here a generalisation of 
the theory to allow for arbitrary velocity-dependent equilibria while at the same time 
retaining a general functional form for the field profile. We consider the specific case of a 
bi-Maxwellian plasma immmersed in a linearly inhomogenous magnetic field.

We find tha t therm al anisotropy produces resonance localisation when the perpendicular 
ion tem perature is greater than tha t parallel to the ambient field. A study of the symme
try  properties of the conductivity tensor reveals that the Onsager reciprocal relations are 
obeyed only for an isotropic plasma in an inhomogeneous field. This is a generalisation 
of the result obtained by Nambu(1995). We present a generalisation of the reduction 
method to include effects due to changes in wave amplitude. We find tha t we are able to 
include the odd-order field derivatives responsible for energy conservation.

Our numerical study of fundamental Helium-3 gyrorésonance in a majority Deuterium 
plasma reveals tha t we have >  99.9% energy conservation in all cases. We show that 
locally-uniform theory can be very inaccurate(c± 70% in one case presented in our recent 
paper, Cairns et al., 1995) particularly for higher energy ions whose non-locality is more 
extreme. We present a representative sample of results for minority heating and mode 
conversion heating schemes. We report the appearance of an unexpected cut-off on the 
low field side of the minority gyrorésonance which may have im portant consequences for 
antennae presently placed on the outside of Tokamaks.
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Chapter 1 

Introduction

1.1 The Energy Crisis
It was once said that, ’the sole motivation for scientific thought should be to ease the acqui
sition of our everyday needs through an understanding of nature through science’(Trotsky, 
1925). However, the needs of our modern industrialised age have led to a rapid depletion 
of non-renewable natural resources, in particular the fossil fuels (coal, oil and gas), and 
although the theoretical achievements of nuclear physics in the first half of this century 
have helped to alleviate part of this problem by harnessing the power of the atom in 
the form of fission energy, we all live under the shadow of the catastrophic destruction 
of Nagasaki and Hiroshima by the atom bombs. In its more peaceful guise, the energy 
produced in controlled nuclear fission reactions accounts for a substantial proportion of 
the energy budgets of many European nations. The geological time scales associated with 
the isolation of the radioactive waste are of the order of 100 million years and, as such, are 
a major environmental threat. Widespread public concern (see for example Schumacher, 
1973) has prompted a search for alternative, environment ally friendly renewable sources 
of energy and many nations presently ease their burdens by harnessing the natural power 
of the wind, water waves and the sun. Indeed Iceland receives 90% of its energy supply 
from the geothermal reservoir upon which it rests(Rusbridge, 1992). Despite this success, 
demographical studies have suggested that by the middle of the next century, population 
growth combined with economic development will at least double the global energy de- 
mand(see for example Eleizer, 1984) and furthermore, calculations of maximum energy 
flow by phy si cist 8 ( J onas, 1991) have indicated that we will not be able to meet this de
mand from the renewable natural resources alone even if we could guarantee an energy 
conversion efficiency of 100%.

It has long been known that stars like our sun burn Hydrogen producing Helium gener
ating the energy they need to sustain them  against gravitational collapse. This process 
of fusing light nuclei to form heavier, more stable ones, is known as nuclear fusion. The 
most strongly bound nuclei are those in the middle of the Periodic Table such as Iron, 
accounting for its high occurrence in stable cosmic forms such as the planets of our solar
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system. The complement process to fusion is fission whereby heavy nuclei are trans
formed (by spontaneous mutation) into lighter ones through the process of radioactive 
decay releasing their nuclear binding energy in the form of I M e V  neutrons and tend
ing again towards their most stable existence in the form of Iron. Mankind has been 
able to recreate these processes which fuel the stars only in an uncontrollable fashion 
and sadly only for military uses. The inability to confine and control these processes 
is due to the intense temperatures of some 100 million degrees Centigrade required to 
overcome the electrostatic repulsion of the positively charged nuclei. The relaxation of 
conditions of secrecy in 1958 at the Geneva 2nd U.N. conference on the peaceful uses of 
atomic energy meant that various programmes were made public and a system known 
as a Tokamak (derived from the Russian, toriodalnaya-kamera- m agnitnaya, meaning 
toroidal-chamber-magnetic), was devised in the U.S.S.R.(the first device being built at 
the Kurchatov Institute in Moscow) to confine charged particles in closed magnetic fields. 
This triggered off an international programme of theoretical and experimental research 
into controlled nuclear fusion(see for example Berger, 1958, Bernstein, 1958 and Artsi- 
movitch, 1972). This has had some recent success and it is envisaged tha t fusion power 
will be a significant contributor to the world’s energy needs in the next century.

In addition to the adequacy of fusion to support our energy needs for the future, its 
greatest asset is its limited impact on the environment. Unlike the dwindling reserves of 
fossil fuels, its fuel comprises heavy isotopes of Hydrogen; Deuterium which is abundant 
and accessible through the electrolysis of sea water, and Tritium which may be produced 
in situ from a blanket of abundant Lithium in the reactor vessel. Fusion does not produce 
the large Carbon Dioxide and Sulphur Dioxide emissions created by burning fossil fuels 
and, although care must be taken with radioactive Tritium(due to its affinity to Oxygen 
producing radioactive water), its usage in minute quantities(miligrammes in comparison 
to kilogrammes of Uranium) and comparatively short half life of 12.3 years (Wesson, 1987), 
makes fusion energy a potentially effective and careful solution to the energy crisis which 
we may soon face if governments do not meet the long term  needs of our planet. There 
are still a number of hurdles to be overcome before efficient fusion power stations can be 
built and it is the aim of this thesis to contribute in some small way to our understanding 
of the heating of the reactants to the high temperatures required for controlled nuclear 
fusion.

1.2 The Physics Of Controlled Nuclear Fusion

1.2.1 T h e N atu re O f A  T ypical Fusion P lasm a
The Hydrogen nuclei to be fused together are positively charged ions and are in an ionised 
state. An ionised gas consisting predominantly of ions and their constituent electrons, 
rather than neutral atoms or molecules, is a plasma and is affectionately known as the 4th 
state of m atter(at the time of writing a 5th state has recently been discovered called the 
super-atom which is the Bose-Einstein condensate predicted theoretically over 70 years



ago). Although plasma is the prevalent form of m atter in the universe(c± 99%), we live 
in a small corner where m atter is mostly solid, liquid or a gas and our only contacts 
with plasma are when lightning strikes or when the Aurora Borealis (the northern lights) 
illuminates the sky. A typical fusion plasma consists of fully ionised Hydrogen(Deuterium 
and Tritium) and electrons.

The ionised nature of a plasma means that the inter-particle forces will be dominated by 
the weak, long range Coulomb force contrary to a neutral gas where strong, short range 
forces mean that the dynamics are dominated by collisions. Any individual charge(ç) in 
the plasma will repel like charges away and attract opposite charges leading to an oppo
sitely charged cloud forming around it. As a result, the electrostatic potential produced 
by the charge does not have the Coulomb 1 / r  dependence upon distance(?") but instead

falls off faster as / r  and the Debye length (Ap =   ̂ ) is the distance over
which the effect of the charge is screened off and is therefore the effective range of the 
inter-particle force(if we consider the JET parameters at the end of this chapter then 
for a Deuteron Xd ~  23.5//m and for an electron Xd — 47.0pTi). Here T  is the particle 
tem perature, no is the number density and cq is the permittivity of free space.

A charged particle moving through a plasma interacts with all the charged particles 
surrounding it inside a sphere of radius equal to the Debye length (called the Debye 
sphere= ^TrA^). Any change in its velocity will then be due to a resultant force from 
the surrounding particles. If there are more particles in the Debye sphere then the sur
rounding particles will be more evenly distributed and the chance of a resultant force 
will be less. For a typical fusion plasma the number of charged particles in the De
bye sphere(A =  | 7r?2oA|,) is large (the JET parameters predict tha t N  ~  2.7 million for 
Douterons!) and so the effects of collisions are very weak. Such conditions mean that 
particles are almost free-streaming through the plasma due to their long mean free paths.

An equilibrium charge in a lattice structure will undergo simple harmonic oscillations 
about its origin once displaced, due to the Coulomb attraction on one side and repul
sion on the other. The characteristic frequency of oscillation will be proportional to 
the product of the charge of the displaced particle and the neighbouring charge(by the 
Coulomb force) and will be inversely proportional to mass(?7T.) by inertia and is known as

the plasma frequency (wp =   ̂ )• If we consider again the JET parameters, then
typically ~  IG H z  and ^  ~  GiGHz.

A plasma may then be defined in terms of a typical length scale, the Debye length, 
and a typical time scale equal to the inverse of the plasma frequency. Their prod
uct provides yet another fundamental parameter of a plasma namely the equilibrium
therm al velocity, vt =   ̂ (which for JET  gives vtî ~  ^j^^(non-relativistic) and
VTe — ^(relativistic)). hb is Boltzmann’s constant and c is the speed of light in a vacuum.
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A further consideration is whether or not we need to use quantum mechanics rather than 
classical mechanics in our study of wave-particle dynamics. Quantum physics tells us (see 
for example Rae, 1988) that we may use a classical description whenever Ulü.
Here, n is the number of degrees of freedom of a particle and % is Planck’s constant. To f
check this we find that for JET, ~  4.8 x 10“ ®̂ J . If we consider to then we
find Hto l A  X  10“^^J  indicating that we are well within the classical world.

In terms of the Debye length, the plasma frequency and the thermal velocity we may clas
sify a plasma as being collisional or collisionless, classical or quantum and even relativistic 
or non-relativistic. We have shown that the plasma in the core of a typical Tokamak is a 
classical, collisionless system containing relativistic electrons and non-relativistic ions.

1.2 .2  Tokam ak P hysics
The existence of charged particles means that a plasma can carry electrical currents and 
the physics of Tokamak plasmas is therefore dominated by their interaction with electro- 
magnetic(EM) fields. A charged particle in a magnetic field moves under the influence 
of the Lorentz force, travelling in a helical orbit centred along a line of constant mag- 4;
netic induction(field line). A Tokamak is a device whereby external current carrying coils 
arranged around the circumference of a torus, produce a circular magnetic field (toroidal 
field) around which the charged particles of a plasma will orbit tied to the field lines.
In practice this is not a perfect confinement system since the gradient of the toroidal 
field (which decreases radially from the centre) causes particles to drift in a direction per
pendicular to the field gradient. The direction of the drift will be opposite for ions and 
electrons and so will result in the setting up of an electrical field between the displaced 
ions and electrons. It is the interaction of this electrical field with the toroidal field which 
causes the plasma to become unstable, expanding across the toroidal field along the di
rection of decreasing magnetic field gradient towards the walls of the Tokamak where the 
plasma will thermalize. The Tokamak overcomes this by inductively coupling a toroidal 
current to the plasma, generating a poloidal magnetic field. The resultant magnetic field 
structure is helical in nature being a hybrid of the toroidal and poloidal fields and has a 
cross-section which consists of nested flux surfaces. So the poloidal field compensates for 
the swelling of the plasma by limiting its radial motion.

The Tokamak concept consists then of a toroidal vessel surrounded by poloidal coils which 
generate toroidal magnetic fields, and toroidal coils for inducing the toroidal current in 
the plasma which generates the poloidal magnetic field as shown in figure 1.1.

Other confinement systems are being studied such as magnetic mirrors, theta  pinches,
Stellerators and inertial confinement devices and it is hoped that these will help unveil 
the physics needed for the most efficient scheme. Tokamaks have a simple field geometry 
making them  the most favoured design at present. We will therefore tailor our theory 
of plasma heating to the toroidal geometry of a tokamak plasma, adopting the standard



coordinates: x  along the radial direction, ÿ  along the poloidal direction and z along the 
toroidal direction.

To achieve fusion we need to raise the bulk tem perature of the plasma to tem peratures of 
some 100 million degrees Centigrade(or about IGkeV) so that ions have velocities large 
enough to overcome their Coulomb repulsive forces, and in addition, we need to confine 
the plasma long enough (about Is) for a significant amount of energy to be extracted 
from inside the vessel at a high enough density(about 2 x 10 ‘̂̂ m""̂  so that the nuclei are 
sufficiently close together to have a reasonable probability of interaction(also known as 
the cross-section). The fusion reaction with the highest cross-section and therefore that 
which requires least heating is the D-T reaction,

4- T f +  7̂ ; -b 17.56M eV  (1.1)

This is illustrated in figure 1.2. Since Tritium is a radioisotope then D-D fusion,

D\  -|- D\  —> tiq -j- 3.3AfeV, (1.2)

which is the predominant reaction in the sun, is more desirable although its lower cross- 
section means tha t it requires a higher tem perature to achieve fusion.

The product of the ion temperature(Ti), the ion density(7Zoî) and the confinement time(r£;) 
is known as the fusion product. The Lawson criterion says that it must be at least 
3 X (Lawson, 1957). Under these extreme physical conditions we can re
cycle a sufficient fraction of the output power so as to maintain the tem perature against 
radiation and diffusion losses. Heat generated in the surrounding Lithium blanket of the 
vessel is then used to drive generators in the usual fashion. At the present time, fusion 
experiments have succeeded in achieving these goals individually but no experiment has 
been able to reach the required tem perature and density while maintaining a sufficiently 
long confinement time. Two notable experiments are the Tokamak Fusion Test Reac- 
tor(TFTR ) and the Joint European Torus (JET) which have achieved about 20% of what 
is required for break-even in accordance with the Lawson criterion (for recent experimental 
progress see Phillips and the T FTR  team , 1994 and Gormezano and the JET team, 1993).

The large number of experimental runs performed to date allow us to find correlations 
between experimental data and the physical parameters. From these we may deduce 
empirical scaling laws which offer predictions of the physical behaviour of future devices 
and allow us to determine, within certain error bounds, what physical parameters a fusion 
experiment must have for it to achieve the Lawson criterion and to be efficient enough 
to perform as a viable power station. For example, the confinement time has been found 
to scale according to the square of the minor radius of a Tokamak(Artsimovitch, 1972) 
and so the production of a break-even plasma should simply require the building of a 
large enough experiment. Such an experiment, the International Tokamak Experimental



Reactor(ITER), is currently being designed (see for example Post, 1991). We will be 
concerned here with the heating of the ions to the fusion temperature(T^ IGkeV).

1.3 Raising The Plasma Temperature
The inductively coupled toroidal current in the plasma, apart from creating the poloidal 
magnetic field needed to help confine the plasma, also results in Ohmic heating of the 
order of 2 M W  of power due to the resistance of the plasma to the current. It is well 
known tha t the collisional resistivity of a plasma varies as (see for example Cairns,
1985) and ironically, such a heating scheme becomes less effective as the tem perature 
rises. Temperatures of only around Tj =  'àkeV can be achieved in this way and then we 
must seek to use some other auxiliary method of heating the plasma.

Neutral beam heating involves the bombarding of a plasma with a beam of high energy 
neutral atoms travelling across the toroidal field and which transfer their linear momen
tum  predominantly into the perpendicular velocity of the ions through ionisation and 
then through subsequent binary Coulomb collisions. Present experiments like JET  and 
TFTR  couple about IGMW  of power through this method to the plasma. Despite its 
apparent effectiveness, some highly energetic neutrals pass straight through the plasma 
and bombard the vessel wall recycling atomic fragments of the wall material back into 
the plasma. These higher atomic mass impurities have higher radiation losses(which scale 
with mass number) and degrade the energy confinement of the plasma. Hence there is 
an effective upper limit to the energy of the beams which are useful. Furthermore, the 
physical nature of the beams means that it is only possible to deposit energy locally in 
the plasma although the linear transfer of momentum may be used to provide toroidal 
current, also known as current drive. This may provide a valuable, steady state alter
native to the inductively coupled toroidal current which relies on pulsed operation. The 
ability to actively and accurately deposit heat has a practical foundation since we first of 
all require maximal heating at the plasma core (where the density is highest and where the 
effect of recycled impurities from the wall is least), and also because systems of localised 
heating may provide a mechanism for stabilising the plasma.

Radio frequency heating involves the transfer of energy from an external source to the 
plasma by launching radio waves into the plasma from an antenna(for low frequencies) 
or from a waveguide (for high frequencies). These EM waves may then interact with 
the plasma through collisionless processes transferring energy to the charged particles. 
The power coupled to the plasma from radio waves is of the order of 15MH'^ in current 
experiments. Typically, combinations of Ohmic heating, neutral beam heating and radio 
frequency heating schemes are used in present fusion experiments and it is predicted that 
ITER will operate using a combination of all three schemes.



Heating Schemes For JET
Ohmic Heating 
Neutral Beam Injection 
Radio Frequency Heating

1.3.1 R adio Frequency H eating

Power Coupled
- 2M IF
X lOMH^ 

15MTT

An extensive survey of this im portant topic has been done by Cairns(1991) and we 
present here a brief overview. The ability of a plasma to support a wide variety of 
waves(see for example Stix, 1992) means that we can selectively use different wave modes 
to heat the plasma through collisionless processes. As different wave modes have different 
frequencies(w) and different wave-vectors(k), then, due to the existence of a number of 
resonant frequencies in the plasma, various heating schemes are available and, provided 
tha t these modes do not strongly couple(such as in mode conversion regions which we will 
discuss later), we can launch several waves into the plasma at any one time. The most 
successful of these are(Lashmore-Davies, 1995),

Radio Frequency Heating Schemes Frequency Range
Ion Cyclotron Heating 
Lower Hybrid Heating 
Electron Cyclotron Heating

30 -  120MHz  
1 — SGHz 

100 -  200GHz

Each scheme has the same general features: an efficient, high power generator remote 
from the plasma, a low loss transmission line and an efficient antenna (or waveguide) 
which couples EM energy to the plasma. Once coupled, the energy is required to propa
gate with negligible loss to a localised absorption zone whose spatial position is externally 
controllable.

In the next chapter we will obtain the resonances which are present in each of these fre
quency ranges and here we will simply state what these are for EM waves propagating 
radially towards the plasma core. The incident wave has a frequency(w) which is fixed 
by the generator and a toroidal wavenumber spectrum(A:||) which is determined by the 
antenna or waveguide. So we may tune these variables to match an internal natural res
onant frequency. The lowest frequency scheme is ion cyclotron resonance heating(ICRH) 
for frequencies w cyclotron frequency is given by for a magnetic
field strength(Bo) and for the JE T  parameters gives, ^  ~  2QMHz and ^  c± 96GHz).  
According to cold plasma theory, a resonant frequency occurs for radially propagating 
EM waves only when two or more ion species are present(Buchsbaum, 1960) at the 2-ion 
hybrid frequency(w^).

.2 _  n  n  ^ 1 ^ 2  +  ^ 2 ^ 1

which lies between the cyclotron frequencies of either species. Here X{ = noimi is the 
concentration of ion species i. The lower hybrid resonance frequency lies between and



lOel- For the high density regions of a Tokamak where then neglecting terms of
order rUe /m i ,  the lower hybrid resonance f r e q u e n c y is,

' p e

Finally, the highest frequency scheme is electron cyclotron resonance heating for frequen
cies w |Oel- Again, cold plasma theory predicts a resonant frequency only for radially 
propagating EM waves at the upper hybrid frequency(w[/n),

T fig. (1.5)

Each of these is a linear wave-wave resonance whereby energy from an incident EM wave 
may be transferred reactively to the oscillatory EM fields associated with the collective, 
self-consistent plasma particle motions. Since all of the particles are involved in sustaining 
a natural wave in the plasma, these resonances are strong and any instabilities which may 
be present will also be strong. This is in contrast to wave-particle resonances where, typ
ically, a much smaller number of particles (the resonant ones in the velocity distribution) 
contribute. Another im portant difference is that wave-particle interactions are dissipative 
in nature whereas wave-wave resonances by themselves are not. This will be shown to 
have an im portant bearing upon techniques for heating fusion plasmas by collisionless 
absorption.

Cold theory predicts wave-particle resonance interactions only at the fundamental of the 
ion or electron gyrofrequency as we shall show in chapter 2. We will show that wave- 
particle resonances at all harmonics of the gyrofrequency and for perpendicularly propa
gating EM waves are the province of kinetic theory.

1.3 .2  H eatin g  In T he Ion C yclotron  R ange O f Frequencies (IC R F)
We will focus most of our attention on ICRH in this thesis as it is in this range of frequen
cies tha t the interaction of EM waves with high energy ions(M eF) of large Larmor radius 
is least understood. The direct deposition of energy on the ions is crucial to raise the 
bulk tem perature of the plasma to that required by the Lawson criterion. In essence the 
ions orbit the magnetic field lines with a natural angular frequency (the Larmor frequency 
or gyrofrequency O =  qBo j m )  determined by the strength of the magnetic field(jBo) on 
the field line at the guiding centre position of the ion, and also on the charge to mass 
ratio(ç /m )  of the ion. If a constant stream of circularly polarised EM waves propagate 
into the plasma matched to the ion gyrofrequency at some spatial value(say at the plasma 
core) with the electric field rotating in the same sense as the ions, then the ions at the 
resonance position in the core will see an effectively constant electric field in their frame of 
reference (their natural cyclotron frequency will be in phase with the driving frequency) 
and are accelerated, gaining energy in a direction tangential to their orbit. As mentioned



earlier in the context of neutral beam heating, this then leads to a distribution of ion 
velocities which is largely anisotropic due to a gain in perpendicular energy.

These high energy gyro-resonant ions then transfer energy through binary Coulomb col- J
lisions to other ions raising the energy of the ion population or equivalently the bulk ion ?
tem perature. Alternatively, we may think of ions as moving in to or out of resonance '4
during their traversals of the torus, picking up energy each time they pass through the Î
resonance layer. The ability to tune the EM wave frequency means tha t we can choose ï
where we wish the resonance layer to be in the plasma due to the fact tha t the mag- j
netic field is spatially non-uniform. This also means that the resonance will have a finite ;
absorption width on the scale of a few times the ion Larmor radius (a few centimetres) à
and so we may selectively heat the plasma through localised power deposition allowing -4
us to adjust the thermal profile of the plasma as previously mentioned. A review of the 4
progress in ion cyclotron heating may be found in Swanson(1985). It is our ambition then 
to model the interaction of these high energy, large Larmor radius gyro-resonant ions with j
the incident EM waves. We will place particular emphasis on the effects of the therm al j
anisotropy of the ion velocity distribution and the spatial inhomogeneity of the toroidal j
magnetic field upon these processes. 1

Electron cyclotron resonance heating relies on much the same physics as ion cyclotron 
resonance heating but now the EM wave frequency(w) is matched to the higher gyrofre- 4
quency of the electrons (now in the microwave range of frequencies) and rotating in the 
opposite sense to the ions. In addition we will need to take into account the effects of *
relativity as the velocity of gyro-resonant electrons is an appreciable fraction(0.1) of the “
speed of light. The smaller Larmor radius of the electrons(a few microns) means tha t :
power is deposited on a much shorter local length scale allowing for even more precise ?
power deposition. For heating of the bulk ions the energy deposited must then be trans- ^
ferred to the ions through collisional processes. The high frequency EM waves can couple |
to the plasma(across the wall-plasma interface) without attenuation due to their ability to ^
propagate in a vacuum. The recent development of gyrotrons has facilitated the delivery 4
of larger power loads at these high frequencies, making electron cyclotron resonance heat- 
ing a valuable accessory. An excellent review of this field has been compiled by Bornatici 
et al.(1983). j

In addition to cyclotron resonance heating where energy is dissipated upon the resonant 
particles, there is another mechanism available for transferring energy from incident EM j
waves to the plasma. This involves the reactive loss of energy in an incident mode to a 
second wave mode in a region where the two waves are degenerate(having identical wave 
frequencies (a;) and wave-vectors (k) ). This is known as linear mode conversion(see for 
example Cairns et al., 1982). S

We have already remarked that a linear wave-wave resonance(the 2-ion hybrid resonance) 4
exists for perpendicular propagation in the ICRF. The extensive work by Budden(1956) 1

9 1



on tlie propagation of EM waves in the ionosphere revealed that wave-resonances have 
associated with them  cut-offs which are often in the same local neighbourhood(although 
isolated cut-offs can also occur). We will refer to the zones of the plasma where resonance 
and cut-offs occur (almost back to back) as interaction regions. In the next chapter we 
will show that a characteristic feature of resonance is that k —» oo(or equivalently tha t 
the phase velocity Vp =  ^ > 0). Conversely, the characteristic feature of a cut-off is that
k  —> 0 (or equivalently Vp —> oo). Figure 1.3 illustrates these features for the propagation 
of the fast wave in the ICRF using a cold plasma theory.

A wave will only propagate when k^ > 0 and so the plasma conditions for which k  —> oo 
or k  0 define absorption and cut-off surfaces respectively. We see tha t in the interac
tion regions of a hot, collisionless plasma the wave-vector can take on an infinite range of 
values. This means that an incident wave is likely to be mode converted to another mode 
which may be propagating in the interaction region.

In the next chapter we will describe how, within the framework of a kinetic theory, it is 
possible for the mode-converted waves to deliver energy through other dissipative pro
cesses such as Landau damping and magnetic pumping. Energy is mainly transferred to 
the electron population which then interacts with the ions through collisional processes. 
Heating in the ICRF relies then on both direct dissipation of energy on the ions through 
collisionless wave-particle interactions at gyro-resonances and also through dissipation of 
mo de-converted waves. In chapter 2 we will go into more detail when describing these 
processes.

In regions where k^ <  0(called evanescent regions) then the plasma is unable to support 
the wave. We may classify the wave behaviour into four categories as follows,

Wave Propagation Characteristic Wave-Number Behaviour
Resonance k —̂ oo
Cut-off k - , 0
Propagation k " > 0
Evanescence k^ < 0

However, if the region of evanescence is thin enough then there will be a finite probability 
tha t some of the wave can tunnel through to a region of propagation where k^ > 0 in 
a way analogous to quantum-mechanical scattering of wave-functions from potentials. If 
there is no dissipation in the evanescent region and if the wave energy is unable to be 
transferred to another mode, then there will be part of the wave energy reflected equal 
to the difference between the incident and transm itted energy. Constructive interference 
of these waves then gives a standing wave on the incident side of the cut-off as shown in 
figure 1.4 for an arbitrary potential.

For wide evanescent regions then the probability of transmission is slight and the reflected 
component will be greater. In the neighbourhood of a cut-off there will be a superposition
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of incident and reflected waves meaning that we require a second order ODE to describe 
the underlying physics.

1.3 .3  T he B udden  M od el A nd W ave Interactions
The simplest ODE which is able to describe these processes is the Budden equation(Budden, 
1956),

^  +  =  (1.6)

which is a second order ODE of the Schrodinger type. ^ is a normalised wave amplitude,
C is a normalised spatial coordinate and ko is the asymptotic wave number when |( | Cc- 
There is a resonance at =  0 and a cut-off at =  G- Budden showed how, by calcu
lating the ratio of intensities(|<;ï!> |̂) of the transm itted and incident waves, the fractional 
power transm itted across an interaction region per unit incident power is given by the 
transmission coefficient,

_ g-TrAoCc

and depends only on the separation of the cut-off and the resonance(G)- The transmis
sion is independent of whether or not the wave encounters the cut-off or the resonance 
first and has a robust nature(since calculations performed by a WKB theory give similar 
results to the ODE as we will show in chapter 8). The symmetry in the transmission of 
energy is contrasted by an asymmetry regarding the reflection of energy.

If the wave is incident on the cut-off first, then the reflection coefficient (R) is related to 
the transmission coefficient(T) by, R ~  {1 ~  T)^. If, however, the wave is incident on the 
resonance first then R  = 0(Budden, 1956). Budden found that R-{-T < 1 indicating a lack 
of energy conservation. The missing energy can only be identified using a higher order 
ODE to model the physics because of mode conversion to a new wave mode(a hot plasma 
mode) The inclusion of the extra mode- converted wave means tha t the physics must be 
modelled by a fourth order ODE so that 'the propagation of energy in the new mode is 
included. In a hot plasma, kinetic theory gives additional dissipation due to wave-particle 
phenomena.

Let us consider the propagation of the fast magneto-sonic wave(compressional Alfven 
wave) or fast wave(FW) propagating perpendicularly through a 2-ion species plasma in 
the ICRF. In the next chapter we will show how, in this frequency range, there will be 
gyro-resonances at each harmonic of the gyrofrequency. There will also be the cold plasma 
2- ion hybrid resonance and its associated cut-off, located spatially between the two gyro- 
resonances. Although there will be dissipation of the fast wave energy by wave-particle 
interactions at the gyro-resonances (chapter 2), we will concern ourselves here with the
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transfer of energy due to a cold, 2-ion hybrid resonance(undamped) and cut-off so as to 
compare with the analysis of the Budden model described above.

In the neighbourhood of the 2-ion hybrid resonance, the incident fast wave bifurcates and 
couples to a hot plasma mode called the ion-hybrid wave(IHW) which is a predominantly 
electromagnetic wave propagating perpendicularly to the ambient, toroidal magnetic field. 
An incident fast wave can convert to two different branches of the ion-hybrid wave: one 
propagating to shorter perpendicular wavelengths(A:j. —> oo) and the other propagating 
to longer perpendicular wavelengths(A;j. —> 0). The asymmetry of the reflection is due to 
the difference in physical behaviour of these two branches. The branch going to resonance 
does not meet a cut-off and represents a fast wave incident from the high magnetic field 
side as shown in figure 1.5.

The incident fast wave of unit amplitude has a fraction, T,  transm itted and the remainder, 
1 — T, is mo de-converted at the 2-ion hybrid resonance to the ion-hybrid wave propagating 
to short wavelengths. The story is very different for a fast wave incident from the low 
magnetic field side as depicted in figure 1.6.

In the region of the 2-ion hybrid resonance, the incident fast wave of unit amplitude is 
partially transm itted, T, and partially mo de-converted to the ion-hybrid wave, 1 — T. The 
ion-hybrid wave then propagates to its cut-off where a fraction, T, of the incident energy, 
1 — T, is transm itted, T{1 — T), and the remainder, (1 — T) — T (1 — T) =  (1 — T)^, is 
mo de-converted to the reflected fast wave.

For low field incidence, the net result is that a fraction, T, of the incident fast wave energy 
is transm itted, a fraction, (1 —T)^, is reflected and a fraction, T(1 — T), is mode-converted 
to the ion-hybrid wave. Since the ion-hybrid wave remains in the plasma, this accounts 
for the missing energy absorbed in the Budden model. Furthermore, standing waves, set 
up by the interference of incident and reflected waves on the low field side of a cut-off, are 
a common feature of wave phenomena in interaction regions as we shall show in chapter 
8. The salient behaviour of a wave incident on a cut-off echoes the Airy function(Æ ) and 
may be described simply by multiples of,

1 1 
Ai{x) = — J  dt cos{xt 4- - t  ).

In the region of positive x where the wave propagates, the asymptotic behaviour for large 
X is (Cairns, 1995),

Ai{x) ^  sin(^a:^/^ 4- —),

which, when expressed in terms of complex exponentials, gives a superposition of waves 
of equal amplitude propagating in opposite directions. The standing wave set up on the
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can be cast in the form,

Here ki and are the wave-numbers of the undamped modes and ^ is a measure of 
the closest distance between the modes. This physical behaviour is portrayed in figure 
1.8. Cairns et al.(1982) went on to show how such an approach is able to provide the 
same energy transmission and reflection as the Budden model while at the same time 
quantifying mode conversion. Furthermore, since they found that,

T  oc

there is a simple geometric relation between the closest approach of two waves and their 
coupling. The transmission is inversely proportional to the closest approach and so mode 
conversion is stronger for larger /Li.
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incident side of the cut-off in figure 1.4 has this functional form.

For high field incidence, the net result is that a fraction, T, of the incident fast wave 
energy is transm itted, a fraction, 1 —• T, is mode-converted to the ion-hybrid wave while 
none is reflected.

Most energy is transferred to the plasma for high field incidence but this scheme has the 
misfortune tha t an antenna is less easily placed on this side of the Tokamak due to space 
restrictions(the transformer yoke has to pass through the torus centre). This means that 
large Tokamaks such as JET or TFTR  have low field antennae. All is not lost though as 
we shall see in chapter 2 since there is also dissipation at the gyro-resonances.

In addition to the ion-hybrid wave, which is present around the localised region of the 2- 
ion hybrid resonance, there are also ion Bernstein waves (IB W) which propagate between 
harmonics of the gyrofrequency as shown in dispersion diagram in figure 1.7.

There is also the possibility of mode-conversion of the fast wave to these waves but their 
coupling is much weaker due to the involvement of only a few particles in the velocity I
distribution in the wave-particle interactions at the gyro-resonances. At the 2-ion hybrid -|
resonance the ion-hybrid wave is supported by the whole plasma and so coupling to the 
fast wave is strong.

In an early paper, Cairns et al.(1982) showed how, due to the degeneracy of two waves 
in a mo de- conversion region, the local dispersion relation associated with the Budden 
equation.
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We are now able to provide an explanation of the behaviour of the fast wave near to 
the gyro-resonances and in the vicinity of the 2-ion hybrid resonance. Close to the gyro- 
resonances, fji is small and so the coupling is weak and mode conversion to ion cyclotron 
waves is negligible but at the 2-ion hybrid resonance, /j, is much larger and the coupling and 
mode-conversion to ion-hybrid waves is much more significant. In figure 1.9 we present 
the dispersion diagram for these wave interactions.

In general, interaction regions of a Tokamak contain gyro-resonance layers (in addition to 
linear wave-wave resonances and their associated cut-offs) and so EM energy incident on 
an interaction region with unit amplitude will have fractions of energy partly transm itted 
(T), partly reflected(R), partly dissipated(D) upon resonant particles and partly mode- 
converted(C) to another wave mode which can carry energy away from the interaction 
region as portrayed in figure 1.10.

In the next chapter we will see how there is an intimate relationship between the amount 
of energy dissipated by the resonant particles and the occurrence of mode conversion re
gions. We will explain this effect by appealing to the polarisation of the EM waves. In 
a single ion species plasma the damping of the fast wave by gyro-resonant absorption 
is found to be weak at the fundamental of the gyrofrequency(w =  üi)  but stronger at 
the first harmonic of the gyrofrequency (a; =  2fl*). In a 2-ion species plasma, produced 
deliberately by injecting protons into the plasma or by the recycling of ions from the 
radio frequency antenna or the vessel Beryllium wall, then there can be strong damping 
of the fast wave at the fundamental of the minority gyrofrequency. This occurs because 
the majority ion species dictates the wave polarisation which is found to be favourable 
for gyro-resonance of the minority ions at the fundamental of the minority gyrofrequency.
The strength of the damping increases proportionally with the concentration of the mi
nority ions until the 2-ion hybrid resonance occurs at a critical minority ion density. The 
appearance of this linear wave-wave resonance affects the wave polarisation profoundly, 
making it less favourable for minority gyro-resonance, and setting an upper limit to the 
amount of energy which can be dissipated on the minority ions. Since energy will be de- i
posited in a small fraction of the ion population, a tail will be produced on the ion velocity 
distribution which will remain if there are not enough Coulomb collisions to thermalize 
the distribution(to make it Maxwellian or isotropic). Since the Coulomb cross-section 
decreases with particle velocity, these high energy ions have a higher probability of losing 
energy to electrons than to other ions and can therefore lead to bulk electron heating.
Further transfer of energy from the fast wave to the plasma may occur only as a result of 
mode conversion to a hot plasma mode which itself may be dissipated on the electrons.
We will discuss this further in chapter 2.

Let us simply state here tha t there will be two regimes of heating in a two ion species 
plasma which are differentiated by the ratio of the densities of the ion species(?7). In the 
first regime, known as minority heating, rj is less than a critical value(?;c') and the 2-ion 
hybrid resonance is absent and fast wave energy is dissipated on the minority ions through
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gyro-resonant absorption. In the second regime, known as the mode conversion regime, 
the 2-ion hybrid resonance is present when r] > rjc and fast wave energy is transferred to 
the ion-hybrid wave which damps on the electrons. Another complex scenario which will 
not be relevant to this thesis involves minority heating of pure Hydrogen in a Deuterium 
plasma since the fundamental gyro-resonance of Hydrogen coincides precisely with the 
first harmonic gyro-resonance of Deuterium allowing gyro-resonant absorption by both 
species. In chapter 8 we will apply our theory of non-local, large Larmor radius wave-ion 
interactions to the first two heating scenarios.

We will find tha t we would like to apply our theoretical investigations to a relevant fusion 
experiment. The JET  experiment is currently the largest experiment capable of investi
gating the regime of high energy fusion products and we take our physical parameters as 
those of JET(Lashmore-Davies),

Physical Parameters Of JET Range Case Study
Major Radius(L) 3.1m 3.1m t
Minor Radius 1.25m
Toroidal Magnetic Field(Ro) 1 - 4 T 3.4T

JPoloidal Magnetic Field 0 .5 - I T
Toroidal Plasma Current 0.1 -  5MA
Plasma Mass 0.1 — Img
Plasma Volume 1 — lOOm^ i1

4Plasma Pressure 0.1 — lÆ m
Central Ion Density(noi) 1019 _  lQ20^-3 5 X lO^^m”^
Central Ion Temperature(T^) 1 — lOkeV 2A:ey
Central Electron Density(noe) 1019 _  lQ20y^-3 5 X lO^^m"^
Central Electron Temperature(Tg) 1 — lOkeV 2A;ey 1
Ion Confinement Time 0.1 -  Is
Parallel Wavenumber spectrum(A:||) 2 -  7m“ i 2 -  7m“^ 4X'

1.4 Overview Of The Thesis
The cornerstone of this work is the derivation of the non-local wave equations which will 
describe the propagation of EM waves through ion gyro-resonances in the presence of high 
energy, large Larmor radius ions and fusion products in a weakly inhomogeneous fusion 
plasma for a general equilibrium distribution function.

In chapter 2 we will discuss the merits of existing theories while at the same tim e arguing 
for an extension of locally non-uniform, guiding centre theory so as to include the effects 
of therm al anisotropy(which is a congenital feature of plasmas heated by auxiliary m eth
ods). In addition, we will introduce the tools of the trade which we will use in our study 
of wave-particle interactions such as ordering, analytic continuation and causality, and 
wave polarisation. On a more practical note we will discuss the conservation of energy
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and the problem of accessibility of the resonances.

In chapter 3 we will present a generalisation of the guiding centre theory of Cairns et 
al.(1995) so as to cover a range of plasma equilibria in weakly inhomogeneous plasmas. 4
We will follow the path integral method of Shafranov(1962) to derive the conductivity §
tensor of a hot, thermally anisotropic plasma immersed in an inhomogeneous magnetic 
field.

We then present in chapter 4 an application of the results of chapter 3 to the analytically 
tractable Tokamak scenario of a bi-Maxwellian plasma immersed in a linear magnetic 
held gradient. As a verification of our equations we show how we may reproduce the 3
results obtained by other authors in certain limits of our equations. We then form the 
2D non-local, integro-differential wave equation (IDE) describing the propagation of EM 
waves into a weakly inhomogeneous magnetic field gradient, which will be the pivot about 
which the remainder of the thesis will revolve.

In chapter 5 we review resonance broadening from the standpoint of statistics and co- 
variance theory allowing us to determine a criterion for the absorption width of the ion 
gyro-resonances which we will show to be of the order of a few Larmor radii. We will also |
derive a criterion for their resolution. Covariance theory shows how resonance broadening 
effects simply sum as errors when they are uncorrelated. We will use the results born out 
from our statistical analysis to explain some of the qualitative features of the theoretical 
results of chapter 4. We present a new physical effect due to thermal anisotropy; namely %
a reduction in resonance broadening when the ion temperature parallel to the field is 4
less than the perpendicular temperature(which is typically the case in auxiliarly heated 
plasmas). As a useful aside, we shall perform a short calculation which estimates the 
broadening of a cold plasma, linear wave-wave resonance due to therm al effects in a hot 
plasma. 3

In chapter 6 we discuss the relevance of the Onsager reciprocal relations to the micro
scopic tim e reversible dynamics of our theory, generalising the work of Nambu(1994) so as 
to include the effects of magnetic field inhomogeneity. We are able to reiterate Nambu’s 
claims that Onsager symmetry is evident for an isotropic plasma but not for an anisotropic 
plasma. We also show that the Onsager relations are independent of their m athematical 
formulation revealing the covariant nature of the underlying physics.

Chapter 7 is devoted to a study of the IDE derived in chapter 4. We present a new ap
proximation which formalises and extends the fast wave approximation (Kay et ah, 1988 
and Lashmore-Davies et al., 1988) so as to retain effects due to odd-order derivatives of 
the electric field which have been shown to be necessary for energy conservation (Swanson,
1985). This will be shown to be an extension of the work of Cairns et al.(1991) into the 
large Larmor radius regime. Indeed, we are able to recover their energy conserving 0 - 
mode equation from our general summation form for the plasma response by taking the
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limit of small Larmor radius ions. We will then use our theory to deduce a second order, 
energy conserving ODE for the spatial variation of the fast wave electric field along with 1
its conservation law. This is then extended to allow for a symmetrisation of the response 
function with respect to the incident wave-modes allowing odd-order derivatives of the f
held to enter the ODE in a simple way. In addition we offer a solution to the contro
versy surrounding the effective dielectric tensor of Beskin et al. (1987), clarifying some 
conhicting reports in the literature about the applicability of their theory to the study of |
inhomogeneous plasmas.

In chapter 8 we investigate numerically the behaviour of the fast wave for various heating 
scenarios in the ICRF. We will place particular emphasis upon the role of the magnetic 
held inhomogeneity in affecting the energy transport through a ion gyro-resonance region 
in the company of large Larmor radius ions or fusion products. We present a represen
tative sample of results calculated from non-uniform and locally-uniform theories. We 
will show that the locally-uniform models of large Larmor radius ions can be very inac- 
curate(especially for high energy ions) suggesting that our theory may present a more 
efhcient and energy conserving alternative. We report the appearance of a novel physical 
effect at high energies and high minority ion densities, namely a cut-off on the low mag
netic held side of the minority gyrorésonance. This may have im portant implications for 
ICRH in future experiments.

Finally we draw to a close in chapter 9 by bringing together the results of the hrst 8 
chapters in the light of recent theoretical and experimental developments.

17



Transtorm er winding  
(Prim ary circuit) Iron transform er

core Toroidal 
field coils

Poloidal 
m agnetic  field

 Toroidal
m agnetic  field

P la sm a  curren t 
(S e co n d a r y  circuit) I R esultan t 

helical field 
(Twist exaggerated) (Diagram œ urtay c f  UKAEA

Culham LahcmUny)

Figure 1.1: Schematic representation of the magnetic field coils 
used to confine the platsma in a Tokamak.

(Diagram cotatay of UKAEA  -  

CuUtam LabonUory)

(Deuterium Tritium

&  %
\

A 6
Helium - 4

w
neutron

3 5M eV 14-1 MeV

Figure 1.2: The D euterium -Tritium  fusion reaction



Wave-Vector Squared

0. 1-,

0 .0 5 -

0.0

- 0 .0 5 -

Cut-off
- 0 . 1-

- 0 . 15 -

- 0 . 2 -

- 0 .2 5 - 2-Ion Hybrid Resonance
- 0.3

82 64-2 0- 4

Radial Coordinate
X

Figure 1.3: Fast wave radial propagation in the ICRF illustrating the 2-ion 
hybrid resonance and cut-off.

A ttenuationIncident and Reflected Wave

Transm itted Wave

Evanescent
Layer Wave Potential

Figure 1.4: Wave tunneling through an evanescent layer illustrating trans- 
mission at the output and interference at the input (after Froman, 1965).



Wave-Vector Squared

Mode-(.'Converted IHWi
1 - r

Incident FW Transmitted FW

Radial Coordinate

Cut-off

Low Magnetic FieldHigh Magnetic Field

Figure 1.5: Mode conversion of the fast wave for high magnetic field inci
dence.

Wave-Vector Squared

fcl A

T
Transm itted FW  

 -̂-----------------

Transmitted IHW
T { l ~ T )

Mode-Converted IHW 

Reflected IHW

m
Incident FW

Reflected FW
(1 -  T):

Radial Coordinate

Cut-off

High Magnetic Field Low Magnetic Field

Figure 1.6: Mode conversion of the fast wave for low magnetic field incidence.



Normalised Frequency 
w
Çlb

IBW

IHW

Normalised Wave-Vector
0

Figure 1.7: Electrostatic dispersion relation for the ion-Bernstein wave (IBW) 
and the ion-hybrid wave(IHW) in the ICRF (after Lashmore-Davies, 1995).

Wave-Vector 
k k ~  k2{()

Radial Coordinate
0

Cut-off ^  (c

Figure 1.8: Schematic representation of a typical mode conversion event 
illustrating the coupling constant //(after Cairns, 1982).



N orm alised Frequency 
w

FW

FW CHWCHW
Weak C oupling  

IHW

FW:

IHW

Strong Coupling
F W

CH WCHW

Weak Couplin,
FW

N orm alised Wave-Vector 
k±PL

Figure 1.9: E lectrom agnetic dispersion relation illu stra tin g  the coupling of 
th e  fast w ave(FW ) to the  ion-hybrid wave(IHW ) and to  the  cyclotron 
harm onic waves(CHW ) in the  IC R F (after Lashm ore-Davies, 1995).



C

1 Interaction Region

D
Resonant Particles 

iz  or

T

R

Indden t(l) =  Transmitted (T) +  Reflected(H) -t- Absorbed

Mode Converted(C)

Dissipated (P )

Figure 1.10: Schematic representation of the distribution of incident 

energy through an interaction region.



Chapter 2 

Related Elements Of Plasma Wave 
Theory

Following the discovery by Appleton in 1925 of electrically conducting layers in what 
became known as the ionosphere, much of the theory of waves in a cold plasma was devel
oped to help explain the propagation of radio waves. Astrophysicists such as Alfven then 
developed the theory of magnetohydrodynamics(MHD) in the early 1940’s to study low 
frequency phenomena and, shortly after, a more thorough kinetic theory was devised to 
extrapolate to high temperature, high frequency phenomena culminating in the famous 
work of Landau in 1946 with a description of the collisionless damping of electrostatic 
waves. The onset of research into fusion in the early 1950’s then further developed the 
zoo of plasma waves. As a result of this effort, there are now numerous works on this 
subject notable examples of which include Allis, Buchsbaum and Bers(1963), Chen(1987), 
Swanson(1989) and Stix(1992).

Although cold plasma theory is capable of describing some of the properties of plasma 
waves in homogeneous and weakly inhomogeneous magnetic fields, we will show that it 
does not predict the existence of gyrorésonance at all harmonics of the gyrofrequency in 
the plasma and can not therefore describe EM wave propagation through them. For this 
we must use a kinetic theory. Furthermore, although the theory of Wentzl, Kramers and 
Brillouin (WKB) is able to describe the local EM wave amplitude changes (and hence can 
estimate absorption) due to wave-particle interactions, its single mode character means 
that it is incapable of describing linear wave-wave phenomena such as resonant reflection 
and linear mo de- conversi on. We will use the limitations of these various methods to argue 
for a simpler full wave kinetic theory which can describe multi-mode processes in addition 
to the microscopic dynamics of individual particles. Let us first of all set the scene by 
starting with a brief discussion of EM wave propagation in a homogeneous plasma.
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2.1 Waves In A Homogeneous Plasma
By homogeneous we mean that the plasma is immersed in a uniform magnetic field which ï
has no gradient in field strength. This may seem a rather crude model of a Tokamak 
plasma in a toroidal field but it does lead to an analytically tractable description housing 
some of the effects present in inhomogeneous fields, namely gyrorésonance phenomena 
due to charged particle orbits in a magnetised plasma.

The basic analysis proceeds as follows. We take the equilibrium plasma state with zero 
order quantities such as the ambient magnetic field(Bo) and the ion density (no) static in 
time and uniform in space. Next, we perturb the plasma with a small amplitude EM wave 
which is harmonic in time and space so that all first order(perturbed) quantities vary as 

Fourier analysis then reveals that V =  zk and d Id t  = — zw so tha t Maxwell’s 
equations for the EM field yield the following wave equation in momentum(Fourier) space,

z
—rk  X (k X E (w, k)) -h E (w, k) -| J  (w, k) — 0. (2.1)

tQU)
We then solve the linearised equation of motion for the plasma(which is dependent upon 
the model being used) to write the perturbed current density (J) in terms of the perturbed 
wave electric field (E). Substitution into (2.1) then yields a dispersion equation for E  of 
the general form.

% (w,k)eE(w,k) = 0. (2 .2)

The condition for non-trivial solutions of this equation is that the determinant of the 
dispersion tensor(%)) be zero. This condition gives the dispersion relation lo = to (k). 
In general, for a given wave-vector(k), the dispersion relation can contain a multiple(and 
sometimes infinite) number of u) roots so that, w =  Wj(k) for j  — 1,2, ..n. The roots of the 
dispersion relation then describe the natural(often named normal) modes of oscillation of 
the plasma and provide details of the group velocity(cu / A; ) and phase velocity(^cu /<9k ) of 
each mode. Substitution of w into (2.2) then enables us to determine the eigenvector(E_,) 
corresponding to each eigenvalue(w_y). From E j ,  the polarisation of the perturbed elec- 
tric(or magnetic) field for the branch(normal mode) with respect to the direction of 
propagation along k  or to the ambient magnetic field(Bo) is known. This provides the 
essential information required for phase synchronisation in resonance phenomena as we 
will describe in more detail later in this chapter. Let us begin by deducing the dispersion 
tensor for waves in a cold plasma and also for waves in a hot plasma.

2.1 .1  Cold P lasm a W aves
In the cold plasma model we treat each particle species (s) as a zero tem perature, fric- 
tionless fluid having fluid velocity Us(r, t). The motion of each plasma species is then 
determined by the momentum equation,
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dt
+  (u^ • V) u,

m.
(E +  u , x B ) , (2.3)

which we linearise. The wave fields(E and B) are the same in each set of fluid equations 
and, being dependent upon the combined motion of all particles, provide the link between 
the separate equations for each species. Since Ug is a first order quantity representing the 
perturbed fluid velocity then, in a linear analysis, only the unperturbed ambient part of 
the magnetic field(Bo) will give any physical effect. Fourier-transforming over space and 
time and taking the vector and scalar products with Bo, we obtain the solution of (2.3) 
for the fluid velocity. The perturbed current density is a function of this velocity,

(2.4)

The dispersion tensor is found by inserting this expression for the current into the wave 
equation (2.1). W ithout loss of generality, we consider the ambient magnetic field (Bo) 
to be along the z direction making an angle(^) with the wave-vector (k). For EM waves 
propagating in the x  — z plane (which is the equatorial plane of the Tokamak) then the 
dispersion tensor can be shown to be of the general form.

T>ij (w, k) =  k) -  n^ôij ■+■ m i, (2.5)

with dielectric tensor(Qj),

eij =  8ij ^  =
1 - E s

0

1
S w(w2-02)

0

0

0

1 - E . J

(2 .6)

The dispersion tensor may also be written in the following more transparent form(Stix, 
1992),

with.

Vij (w, k) =

R  =  1 +  E s  Xs 

L =  1 -b E s x j  
^  =  1 (B  +  T) 

D =  | ( R - T )

ri  ̂cos^ 0 
iD

n cos a sin

~ iD

0

n cos tf sin ( 
0

P — sin^
(2.7)

E
E

=  1 

=  1 

=  l - E  

=  E

4s_

1 - E s #

=  e, 
=  ie

X X

x y

^zz

-yy
— Itys; =

1̂1-

(2 .8)

P = 1 + Es X z z { s )

Here, Hg is the particle gyro-frequency(which is negative for electrons with Çg <  0 and 
positive for ions with qi > 0), Wpg is the plasma frequency and n =  ^{k  sin 9,0, k cos 0)
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I
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is the refractive index which gives a measure of the opacity of the plasma. In chapter 1 
we defined the limiting behaviour of the refractive index. Cutoffs are present whenever 
the refractive index goes to zero and resonances are present whenever the refractive index 
goes to infinity. Harmonics of the gyrofrequency are absent from the dispersion tensor 
and so we see tha t the cold plasma description fails to predict gyrorésonance at harmonics 
of the gyrofrequency although it does provide the framework for the basic properties of 
EM waves in a plasma away from such regions. %

+  BrP C = 0,

with,

The determinant of the dispersion tensor, Det\V\ = 0, gives the following general disper- 1
sion relation which is quadratic in (representing the propagation of two distinct wave 
modes).

A = S  sin^ 6 + P  cos^ 0,
B  =  RLsin^ e + P S  [ l + c o s ' ^ e ) ,
C  =  PRL.

We may eliminate the sin 9 and cos 9 dependences giving,

tan^ f
{Sn^ -  RL)  -  P y

We may stress more strongly the difference between parallel and perpendicular propa
gation by introducing ny =  ncos9  and n i  =  n sm9 .  Let us first consider EM waves 
propagating along the magnetic field with n  =  (^0,0,?Z||). Since 9 = 0 then tan  ̂ =  0 
and we have the solutions: ny =  L and ?%jj =  R  representing left and right-circularly po
larised EM waves propagating along the magnetic field. A glimpse at the expressions for >
L  and R  above in (2.8) reveals that these represent ion and electron cyclotron resonance 
respectively. At high frequencies(w \Cte\) electron gyrorésonance is possible with the 
i?-wave(the ’whistler’ mode) but not with the L-wave which rotates in the opposite sense 
to the electrons. At low frequencies(w ~  H,) ion gyrorésonance is possible with only the 
L-wave. Both the L and R-waves become shear Alfven waves(w =  k\\UA) in the low fre
quency limit flowing along the ambient magnetic field at the Alfven speed(z«A =  , )

V  (MO Pi)

rather like waves on mass-loaded strings. Cut-offs will be present when R  = 0 ov L = 0.

Now let us consider EM waves propagating perpendicularly across the magnetic field with 
n  =  (n_L,0,0). Since 9 = ^  then t an^  =  oo and we have the solutions: = ^  and
n \  = P.  There will be resonance when 5  =  0 and cutoffs when R =  0, L =  0 or P  =  0.
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We will be interested in the study of EM waves propagating radially across the toroidal 
magnetic field(as launched from an antenna or waveguide at the plasma edge in a Toka
mak) and it will be useful to look at the dispersion relations which arise for perpendicular 
propagation. Returning for a moment to (2.7) and setting 9 = ir [2 then we have,

' S  - i D  O '
Vij  (w, k) • E (w, k) = iD S - n l  0 Ey = 0

0 0 P - n l [ e .

We note tha t due to the disappearance of the x and y elements of the z-manifold in %), the 
equations for and Ey have decoupled from the equation for E^ giving two independent 
wave modes: the ordinary mode(O-mode) where Ex — Ey = 0 and the extra-ordinary 
mode(X-mode) where Ez = 0.

For the 0-m ode only Ez is non-zero and so we have a purely transverse mode with 
dispersion relation,

" l  =  ^  =  i - ç S -

This is just the usual light wave (EM wave with in a vacuum) modified by the
presence of the plasma. For Tokamak plasmas the sum over all particle plasma frequen
cies is dominated by the electron plasma frequency by a factor m* / rrie and so an electron 
wave will propagate in this mode only if cu >  Wpe determined by a critical electron density

For the X-mode, Ex and Ey are non-zero and so we have a partly transverse and partly 
longitudinal mode with dispersion relation,

In a single ion species plasma we may neglect terms of order mg /m* giving the radial 
refractive index squared,

2 (w  ̂— Wpg -f- flifle T tuOe)(u;^ — -f- HiOe “  U)Çle)
(w2 -  w 2^)(w 2-w ^^) '

There is a low frequency(ct; <C Hg) resonance when lo = iou-i at the lower-hybrid fre
quency (equation (1.4)) and a high frequency(w ~  Dg) resonance when uj =  loujj at the 
upper-hybrid frequency (equation (1.5)). Both of these resonances have arisen from the 
condition tha t 5  =  0 and, in a multiple-ion species plasma, this condition also gives rise 
to extra resonances (in addition to the lower and upper-hybrid resonances) due to inter
actions between any two ion species at the 2-ion hybrid resonance where w =  (equation 
(1.3)). The terminology 0  and X are usually reserved for high frequency, electron dom
inated waves propagating through a static ion background. Low frequency oscillations
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due to both electron and ion dynamics reveal a similar separation into instead the slow 
and fast magnetosonic waves (slow and fast waves) otherwise known as the compressional 
Alfven waves. The slow wave is almost entirely linearly polarised with E || Bq while the 
fast wave is almost entirely elliptically polarised with E T B q.

A more general dispersion relation allows for oblique angles of propagation. At the low 
frequencies (w ~  Cli) considered here, the higher mobility of electrons compared to ions (due 
to smaller electron inertia) means that charge separation along the magnetic field is in
evitable. The resulting electric field shorts out any pre-existing electric field meaning that 
effectively Ez — 0. A valid approximation then is to neglect the z-manifold of V  which is 
the coefficient of This effectively means tha t we are neglecting the propagation of the 
slow wave. The determinant of the remaining æ, ^/-manifold in (2.7) then gives the fast 
wave dispersion relation,

<=W-
The fast wave propagates across the ambient field and so is well suited to transport of EM 
energy radially to the centre of a Tokamak plasma subject to the cut-offs and resonances 
which may be encountered on the way. We will say more about this later at the end of 
the chapter when we discuss accessibility conditions. In this thesis we will focus on the 
wave-particle dynamics introduced by the fast wave. Using the definitions in (2.8), the 
fast wave dispersion relation of (2.9) can also be written as,

_ [R — »j|)(E -  n^) 
{S -  n |)

The 2-ion hybrid resonance occurs when 5  — 72y =  0 and the associated cut-off condition 
is T — ny =  0. The cut-off associated with R — 7Zy =  0 is the low density cut-off of the 
fast wave, which, for Ajy occurs around 7Zg ~  2 x 10̂ ®7n“ .̂

Away from a resonance layer in a Tokamak plasma, cold plasma fluid theory adequately 
describes wave propagation. Thermal(finite temperature) effects will add minor correc
tions to the basic wave behaviour which will be dominated by the cold plasma cut-offs and 
resonances. In these regions where the refractive index may vary substantially such that 
the plane wave approach used here is not reliable(the wavelength is no longer negligible 
in comparison to the Larmor radius), we need to use other levels of description such as 
a WKB theory or a full wave theory as we will describe a little later on. Furthermore, 
we have shown that cold plasma theory does not predict gyrorésonance for perpendicular 
propagation or gyrorésonance at harmonics of the gyrofrequency, which are known to 
exist experimentally (Stix, 1975). In order to describe EM waves passing through them 
we must use a kinetic theory which will include the dynamics of individual particles at a 
microscopic level.
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2.1 .2  H ot P lasm a W aves
We may describe the dynamics of individual particles using a kinetic theory. In chapter 
1 we showed that Tokamak plasmas typically have a large number of particles in their 
Debye sphere and in a magnetised plasma charged particles effectively free-stream along 
the toroidal magnetic field in helical orbits. This can be thought of as the equilibrium 
state(/o) and, for an unperturbed plasma may be described by a Maxwellian velocity 
distribution.

fo. =  , (2 .10)

which simply states that most particles will have the thermal velocity(u =  ut)’ The 
equation of motion for each particle species in a hot, collisionless plasma is the Vlasov 
equation which describes the tim e evolution of a general particle distribution(Fs) of par
ticle positions(r) and velocities(u),

0 . (2 .11)

We linearise and write B in terms of E  using Maxwell’s equation for Faraday induction. 
Integration along the equilibrium orbits then gives us an expression for the perturbed par
ticle distribution(/s) in terms of the equilibrium particle distribution(/os). The perturbed 
current density is then given by the first velocity moment of the perturbed distribution 
function (/a),

(2 .12)

which, when inserted into the wave equation (2.1), gives us the following dispersion ten- 
sor(see for example Cairns, 1985 or Stix, 1992),

Vij (w,k) =  eij{Lo, k) -  rPSij +  nn .

with dielectric tensor.

to.
Cij =  Sij T rC ose

X

to
Ph Z

—il  [I'l — I i ] Z  [ ( ^  +  Il — 2A s//] Z  i \ J \  [I'l — It] Z '

~  —IiCisZ'

(2.13)

and,

to îlîf
k \ \ U T s  ’

UTs 2 Æ
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Here ps is the Larmor radius of the particle, // =  Ii (As) is the modified Bessel function of 
order I and Z  = Z  (("(g) is the plasma dispersion function(Z-'function) shown graphically 
in figure 2.1. Primes denote derivatives with respect to the argument. The Z-function 
was first tabulated by Fried and Conte(1962) and has the following equivalent definitions,

Z(C) = 4 =  f  <Rt - 4  = * r  P  dte*^ + (2.14)
\/TT J L  t  — Ç Jo Jo

where L  is known as the Landau contour in the complex plane, chosen as as to satisfy 
causality requirements(this notion will be expanded upon in a later section) by integrat
ing around the simple pole on the real t-axis at  ̂ Note tha t the Z-function is
complex even for real arguments. The Landau contour is such that there is no response 
of the plasma until the EM field is present ensuring that causes precede effects. The 
Z-function is a congenital feature of wave-particle phenomena in a hot plasma having a 
therm al (Maxwellian) velocity distribution function.

The hot plasma dispersion tensor contains a sum over all cyclotron harmonics(Z). There 
will be collisionless dissipation of the EM wave by gyroresonant absorption. This reso
nance behaviour is embedded in the X-function.
En route to the dielectric tensor of (2.13) it was necessary to evaluate velocity integrals 
of the form,

which, if Sij is a function of a thermal velocity distribution, is seen to be the origin of the 
X-functions by glancing back at (2.14). Ions will be in resonance with the incident EM 
waves whenever the following wave-particle condition is satisfied,

u) =  Ills +  or uii =  (2.15)
fc|| /C||

The Landau(or Cerenkov) resonance condition is given by / =  0. Wave energy in this 
resonance is transferred to the parallel degree of freedom of the resonant particles by the 
electric field component parallel to the ambient magnetic field. This is significant for the 
fast wave in the ICRF(Lashmore-Davies et ah, 1995) and has the following physical inter
pretation. Particles with a velocity(uy) close to the wave phase velocity(^) may ’surf’ the 
wave. We may make some general comments about average gains or losses of energy by 
examining the slope of the equilibrium velocity distribution function(/os) so as to offer a 
physical interpretation. Let us consider first of all particles with an initial velocity slightly 
higher than the wave phase velocity. Those particles which gain energy move away from 
the resonant velocity while those that lose energy approach it, interacting more effectively 
with the wave and hence there is a net transfer of energy from particles to the wave. The 
opposite is true if we consider particles whose initial velocity is slightly slower than the 
wave phase velocity. For a Maxwellian (thermal) distribution there will be more particles
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in the la tter state, resulting in a net loss of energy from the wave by collisionless processes.

There is also another mechanism by which wave energy may be transferred under the 
Landau resonance condition known as magnetic pumping (or transit tim e damping). Es
sentially, magnetic field energy is transferred by the interaction of the component of the 
wave magnetic field parallel to the ambient magnetic field and is known to contribute to 
direct electron dissipation of the fast wave, being comparable to the dissipation due to 
Landau damping.

When I 7̂  0 then gyrorésonance occurs and, contrary to the Landau resonance, energy is 
fed into the perpendicular energy of the resonant particles. This can occur irrespective of 
whether or not the particle velocity is slow or fast compared to the wave phase velocity. 
Moreover, the Z-functions, having a Gaussian form for their imaginary p a rt(~  
introduce a smooth absorption profile at each gyroresonance(since the singularity arising 
from the pole is smoothed out by the imaginary part which moves the contour off the 
real i-axis). We see tha t there will be collisionless absorption of energy from the EM 
waves whenever gyroresonant particles, orbiting at harmonics of the gyrofrequency, see 
the Doppler-shifted incident wave frequency. In chapter 5 we will perform a detailed sta
tistical analysis of resonance broadening.

For large ("(in the limit of perpendicular propagation where fcy —> 0 or in the limit of a 
cold plasma where T —> 0) then the asymptotic expansion of Z(Fried and Conte, 1962),

Z  ( 0  Czf iy/%cre- e <J =
0 > 0,
1 7m{(} =  0, (2.16)
2 I m { ( }  < 0

means tha t Z'  is a negligibly small quantity. In this case the x and y parts of the 
z-manifold of Vij vanish and we have the same block structure as was found for the 
cold plasma waves with independently propagating 0  and X-modes. Their dispersion 
relations are now modified by the introduction of thermal effects which are housed in 
the modified Bessel functions. Thermal effects introduce extra hot plasma modes (not 
described by cold plasma theory) which are associated with higher powers of k in the 
dispersion relation. If we expand the modified Bessel functions to order unity in the low 
tem perature approximation(A —» 0) using the following series expansion for small A (see 
Stix, 1992),

(2.17)

then the dispersion equations for the 0-M ode and X-mode become order I polynomials 
in k. These higher order terms in k, which have arisen from the thermal effects of kinetic 
theory, correspond physically to extra modes of propagation. A polynomial of order I
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in will describe I non-degenerate wave modes. It has been known for some time that 
there is a family of hot plasma modes which propagate between the cyclotron resonances 
of the ions(there is a family for the electrons too), known as the ion Bernstein modes 
after Bernstein(1958). When different species of ions are present in the plasma then this 
family of waves bifurcates at the 2-ion hybrid frequency and we have another set of hot 
plasma modes known as ion-hybrid waves (Lashmore-Davies, 1995). The fact that these 
hot plasma modes propagate between harmonics of the gyrofrequency means tha t they 
will be present in the interaction regions described in chapter 1. Incident EM waves may 
then be mode-converted to these hot plasma modes in the neighbourhood of gyroréso
nances and cut-offs where the wave-vector has dramatic variation.

In recent years, investigations of wave-particle interactions in hot jilasmas have used (2.17) 
to expand the modified Bessel functions so as to provide simple expressions for the plasma 
response correct to order A (see for example Lashmore-Davies et ah, 1988). Such expan
sions are known as, ’finite Larmor radius(ELR) expansions’ and are amenable to analytic 
progress due to their simplified nature. In figure 2.2 we show the functional form of the 
first few orders of (2.17).

In the last chapter we described how thermal effects are weak for fundamental gyrorés
onance in a single ion species plasma along with other related effects. We are now in a 
position to say a little more about this. When we perform the FLR expansions (note that 
this is only possible when A <C 1 and will not be applicable to a study of large Larmor 
radius ions of high energy where A > 1) then we see that thermal effects arise from the 
powers of A. In a single ion species plasma then thermal effects at the fundamental of the 
gyrofrequency arise from the 1 = 1 terms. However, the order A terms cancel leaving only 
therm al effects of order Â  which are negligible and hence gyroresonant absorption will be 
negligible at the fundamental. At twice the ion gyrofrequency(the first harmonic) then 
therm al effects arise from the 1 = 2 terms. The first order thermal terms of order A no 
longer cancel and we find tha t there is strong gyroresonant absorption. In a 2-ion species 
plasma the picture is more complicated since thermal effects are distributed between the 
resonant response of the different ions and also propagating hot plasma modes. The 
strength of gyroresonant absorption is infiuenced by wave polarisation and we find tha t it 
is possible to have effective gyroresonant absorption at the fundamental of the minority 
ion gyrofrequency. We will discuss the role of wave polarisation in a later section.

Away from gyrorésonances, most of the ions in the velocity distribution will be non
resonant, having velocities(u) which are non-thermal {u I ut > 3) and will not contribute

2 /2
to resonant absorption which is scaled by a factor proportional to 0.0001. This
will be true for particles some distance from the gyrorésonance layer where (  will be large. 
We may then replace the non-resonant particle response by its cold plasma counterpart. 
This is most easily done by retaining only the I = 0, ±1 terms in (2.17) and keeping only 
the leading order terms in the asymptotic series for Z .
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We turn  now to a study of the dispersion properties of an inhomogeneous plasma.

2,2 Waves In An Inhomogeneous Plasma
By inhomogeneous we mean to say that macroscopic quantities such as the ambient mag
netic field(Bo), the plasma density(7̂05) and the plasma tem perature(T) have a spatial 
variation. In a Tokamak, both the ion density and temperature profiles decrease almost 
parabolically from the centre to the plasma edge while the toroidal magnetic field profile 
falls off as 1 / r  with radial distance(r) from the centre. Tlris is a direct consequence of 
Ampere’s law (f Bo»dx =  Ew Pô n ) which, for a circular loop of radius(r), gives B  =

We have seen in the last section that the dispersion properties of hot collisionless plas
mas are dominated by the effects of wave-particle interactions at resonant magnetic field 
lines. Although spatial variations in plasma density and tem perature will proportionately 
modify the values of plasma frequencies and thermal velocities, the dominant behaviour 
of charged particles is governed by gyrorésonance and so will be markedly altered by 
small variations in magnetic field strength due to a field gradient. We will use this fact 
to simplify our analysis of the inhomogeneous plasma by including only the spatial vari
ation of the ambient magnetic field, treating density and temperature profiles as constants.

We will consider a weakly inhomogeneous Tokamak plasma where the toroidal field is 
along z and has a gradient in strength along the radial x  direction, varying slowly over a 
long length scale so that we may approximate the field variation by the first few terms of 
a Taylor series expanded about the resonance position(which we are free to choose at the 
origin).

Bo (z) =  Bq (1 +  ex) ,

with e =  We ignore curvature effects due to the poloidal field (which is an
order of magnitude weaker than the toroidal field) so that we have a ID inhomogeneity. 
We note that there will now be a variation in the strength of the magnetic field across 
the Larmor orbits of the charged particles. Some models of inhomogeneous plasmas in
clude only the spatial variations of macroscopic variables like the magnetic field in the 
dielectric tensor elements for a homogeneous plasma. While including the global variation 
of physical parameters due to the inhomogeneity, these models fail to include the local 
variation of the magnetic field across the Larmor orbits and are known as locally uniform 
models. They fail to produce energy conserving wave equations however as we shall see. 
Due to the lack of availability of a simple theory to describe large Larmor radius ions and 
fusion products in an inhomogeneous plasma, computer codes presently in use at JET  
are using precisely this type of locally uniform theory to model large Larmor radius ion 
gyrorésonance and it will be our aim to devise an efficient and energy-conserving physical
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model for this which is fully inclusive of the effects of inhomogeneity.

For most of the plasma in a Tokamak(away from resonance layers) the dielectric prop
erties vary slowly over a length scale which we may associate with the major radius (a 
few metres) in contrast to the rapid variations of the incident waves on the much shorter 
length scale of the wavelength(a few centimetres in the ICRF). In this regime we may use 
a single mode WKB theory to obtain equations similar to those for a homogeneous plasma.

2.2 .1  Single M ode M eth od s
In the derivation of the dispersion properties of waves in a homogeneous plasma, we 
considered perturbations which vary harmonically in time and space in the single mode 
form of plane waves. For example the wave electric field was chosen to vary as.

E =  Eqc

This provided an easy way of obtaining the momentum space(k-space) variables from 
which we could derive the dispersion relation. In a weakly inhomogeneous plasma the 
plasma parameters are slowly varying functions of position and the dielectric tensor will 
also be a slowly varying function of position. When these slow changes in the plasma 
are accommodated by adiabatic changes in the wave-vector(k) then a single mode can 
continuously propagate throughout the plasma. In the case of our ID  inhomogeneity 
along X  we may model the perturbed quantities, for instance the wave electric field by,

E(æ) =  Eo (æ) (2.18)

with the values of ky and kz being pre-determined by the antenna spectrum. A fully 
3D description requires the introduction of an eikonal (W) such tha t V #  =  k  with k  
satisfying the local dispersion relation. In accordance with this eikonal analysis we may 
approximate the electric field by,

E(æ) =  Eo(x)e''®-” ‘.

The group velocity gives the direction of energy flow,

dto dr
^  â k

In a stationary plasma then the dispersion relation is given by,

R:(r,k,w) = De^|D| = 0 ,

with total derivative.

dk aA: dr ^
df "  ak  d  ̂ a r  d  ̂"  '
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giving the relations,

dr _ aA:/ak _aw
df " aAT/aw " ak'
dk d K  /d r  du
dt d K  I du  dr '

These are known as the ray tracing equations which are similar to Hamilton’s equations 
in classical mechanics. A source at the plasma edge produces a wave-number spectrum 
and we integrate the ray tracing equations to find paths along which various components 
of the spectrum fiow into the plasma (see for example Bhatnager et ah, 1982).

The condition for validity of approximations like (2.18) is that hx{x) be slowly varying 
such that,

1 dkx ,
kx •kx dx

However, in the neighbourhood of gyrorésonances and cut-offs then the dielectric resiDonse 
of the plasma varies instead on the short length scale of the absorption width which is 
comparable to the wavelength and so we expect WKB theory to be inaccurate. The theory 
also breaks down in mode conversion regions where two modes couple since it is unable 
to distinguish between them. A more elaborate multi-mode theory must be adopted in 
these regions.

2.2 .2  M ulti-M o de M eth ods
The essence of multi-mode theory is that we retain the full spectrum of wave modes in the 
description of perturbations. In the derivation of the full wave equations we will adopt 
the method of orbit integration(Shafranov, 1962) to work out the dielectric response. As 
outlined in the last section, we integrate the perturbed distribution along the equilibrium 
orbits of the charged particles but rather than assuming plane wave forms for the field 
quantities, we now express them as a complete sum over all Fourier modes. This compli
cates the analysis by introducing an extra integral but allows for wave-wave interactions 
which are crucial to a detailed understanding of the behaviour of interaction regions. We 
will perform this calculation for a general plasma equilibrium in a weakly inhomogeneous 
magnetic field in chapter 3.

In modelling the whole plasma what we do then is calculate the effect of resonances, 
cut-offs and mode-conversions using a multi-mode theory and we m atch asymptotically 
to solutions from the simpler WKB theory calculated outside these regions of extreme 
variation of the dielectric tensor. This provides a global picture of EM wave propagation
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in the plasma.

There have been numerous approaches to the problem of describing wave-particle interac
tions in an inhomogeneous plasma apart from the path integral method of Shafranov(1962) 
which we will use(see for example the geometrical optics methods of Bernstein(1975), the 
contour integral methods of Swanson(1978) and also Antonsen and Manheimer(1978), 
the boundary layer analysis of Imre(1987), the Hamiltonian methods of Ye and Kauf- 
man(1988), the gyrokinetic theory of Lashmore-Davies and Dendy(1989), the Lie trans
form methods of Littlejohn(1993) and more recently the guiding centre method of Cairns 
et al.(1991) and (1995)). In essence they are all either single mode(plane wave or wave 
packet) methods or multi-mode methods.

2.2 .3  Locally U niform  A nd Locally N on-U niform  T heories A nd  
T h e C onnection  W ith  E nergy C onservation

Another distinction(in addition to that between single mode and multi-mode methods) 
is tha t between locally uniform and locally non-uniform treatments of the magnetic field 
variation on the short length scale of the Larmor radius(which can be of the same size 
as the wavelength). We have already described how, in an inhomogeneous plasma, the 
magnetic field strength varies across the Larmor orbits of the charged iDarticles so tha t 
locally it is non-uniform. Only an accurate mathematical model of this phenomenon, tak
ing into account the effects of non-uniformity, will lead to fully energy conserving wave 
equations. The inclusion of these effects is non-trivial however and it is only recently that 
energy conserving equations describing electron and ion gyrorésonance have appeared in 
the literature (relativistic electron gyroresonance(Maroli, 1986) and ion gyrorésonance 
(Lashmore-Davies and Dendy, 1989)). The basic reason is that in an inhomogeneous 
plasma no simple, closed form for the equilibrium orbits exists since the inhomogeneity 
transforms the nature of the orbits making them  nonlinear(Beskin et ah, 1987). We will 
discuss this in more detail in chajDter 3.

A simple way of overcoming this problem has been proposed recently (Cairns et ah, 1991). 
Essentially they realised that, due to the variation of the field strength across the Larmor 
radius, the gyrofrequency should be evaluated at the guiding centre (a: +  ^ )  rather than 
at the actual particle position (x). This correction to the gyrofrequency became known 
as, ’the gyrokinetic correction’. When all the spatially varying quantities are evaluated 
at the guiding centres a simplified form for the equilibrium orbits may be used. Cairns et 
ah then showed how this simple method leads to energy conserving wave equations. This 
fact was reiterated by an independent analysis(Lashmore-Davies and Dendy, 1989) using 
the rigorous gyrokinetic theory of Chen and Tsai(1983). Moreover, they showed that the 
inclusion of the gyrokinetic correction introduces an additional damping mechanism due 
entirely to the variation of the magnetic field strength felt by gyroresonant particles in 
different parts of their orbit. More recently still, the simplicity of the method of Cairns
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et al. lias allowed for a straight-forward extension so as to include weakly relativistic 
electron effects (McDonald et al., 1994).

In the work of Cairns et al. (1991) and of McDonald et al. (1994), energy conserving or
dinary differential equations(ODEs) describing the propagation of EM waves through 
gyrorésonances were obtained in the limit of small Larmor radius particles (small com
pared to the wavelength). Echoing the results obtained by other authors(Brambilla, 1991 
and Sauter and Vaclavik, 1992), Cairns et al. remarked that for large Larmor radius 
particles, such as gyroresonant ions or fusion products produced by high tem perature 
break-even fusion plasmas, the energy conserving wave equations are integro-differential 
equations (IDEs) rather than ODEs. We have shown in a recent paper(Cairns et ah, 
1995) how an approximation (called, ’the fast wave approximation’(Kay et ah, 1988 and 
Lashmore-Davies et ah, 1988), similar in spirit to the Born approximation of quantum- 
mechanical scattering theory (see for example Harding, 1968), allows us to reduce the IDEs 
to ODEs while retaining the non-local effects of the large Larmor radius particles. Let 
us describe briefly the physical basis for this approximation. In a linear mode conversion 
process two wave modes interact due to their degeneracy. The backward propagating 
modes play no role in the process and so we expect that a second order equation should 
provide the required information concerning the wave interactions. Essentially the mode 
converted wave (the ion-hybrid wave for hot EM waves in a multi-species plasma) exists 
as the driven response of the fast wave in the interaction region. Consideration of the 
fast wave alone, using the local value of the wave-number, then provides information of 
the degree of mode-coupling. There will not, however, be any information concerning the 
propagation of the mode-converted wave available. In chapter 7 we will formalise this 
reduction process and we will show how higher order corrections may be obtained in a 
simple way.

2 .2 .4  T he Form ulation O f D ifferential W ave E quations
Differential equations describing EM wave propagation through a plasma may be easily 
constructed using the method of Cairns et al.(1991) whereby we simply replace the wave- 
vectors by differential operators such that,

T> (w, k (r)) — V  ^w, —i

In essence this is equivalent to an inversion of the Fourier transform. In a locally uniform 
theory the differential operators act only on the EM fields. Unfortunately the resultant 
equations only conserve energy for a homogeneous medium. The problem is that, due to 
the spatial variation of the physical parameters in an inhomogeneous medium, not only 
the EM fields vary spatially, the dielectric tensor will vary spatially too. The differential 
operators obtained by inverting the Fourier transform above act only on the field. It is 
the absence of differential operators acting on the dielectric tensor which ultimately leads
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to a lack of energy conservation in a locally uniform model of an inhomogeneous medium. 
This was clearly demonstrated for the Budden form of the 0-mode by Cairns et al.(1991).

The method of Cairns et al. (1991) which includes the gyrokinetic correction, gives an inte
gral representation of the plasma response when applied to large Larmor radius particles 
in an inhomogeneous plasma(as opposed to the algebraic form obtained for a homoge
neous plasma). It was shown how, in the low energy limit (small Larmor radius particles), 
the modified Bessel functions can be expanded to any order of their argument (A) which 
is a simple function of the wave-vectors k and k\. By differentiating under the remaining 
integral, which is of the form of the Z-function, they showed how each wave-vector k gives 
rise to a differential operator acting on the EM field(E) while each wave-vector ki gives 
rise to a differential operator acting on the response function(Z-function) so that.

The ODEs now include the odd order derivatives of the dielectric function required for 
energy conservation(Swanson, 1985). We will provide an example of this technique in 
chapter 4 and also in chapter 7 within the context of high energy, large Larmor radius 
ions.

However, in the high energy regime(large Larmor radius particles), A becomes a large 
numb er ( comp arable to unity) and we cannot expand the modified Bessel functions us
ing it as an expansion parameter. Instead, we must retain the full integrals(which are 
essentially modified Z-functions) leading to IDEs as we will show in chapter 4. Bram- 
billa(1991) expressed the integral response in terms of a sum of polynomials and Sauter 
and Vaclavik(1992) used the integral representation of the modified Bessel functions to 
obtain a non-local real space(r-space) integral. More recently, Holt(1992) reproduced the 
result of Sauter and Vaclavik after considerable algebra, starting instead from the guiding 
centre method of Cairns et al.(1991). The equations obtained in each case did not have 
a closed analytical form and yielded only through elaborate and time consuming finite 
element methods of numerical computation.

In our recent publication(Cairns et ah, 1995), we used the guiding centre method of 
Cairns et al. (1991) to describe the inhomogeneous plasma. We then applied the fast 
wave approximation to the IDE enabling us to reduce it to a second order ODE having 
a non-local potential function which housed the effects of large Larmor radius particles. 
In chapter 7 we will obtain a summation form for the response of the plasma and we will 
show that the fast wave approximation is simply the zero order case. The second order 
ODE is amenable to rapid and accurate solution using standard Runge-Kutta routines. 
Furthermore, Lashmore-Davies and Dendy(1993) have shown how such second order wave 
equations conserve energy in the low energy regime. We will show in chapter 8 that this 
is also the case for the high energy regime of large Larmor radius particles as we will

33



demonstrate for some topical Tokamak scenarios in chapter 8.

In the remainder of this chapter we will present the techniques which we will need in our 
study of the propagation of EM waves in inhomogeneous plasmas.

2.3 Techniques Used To Study Inhomogeneous Plas
mas

2.3.1 Ordering
We will find tha t the full response of the plasma to perturbing EM waves will be of 
the form of an infinite summation picking up contributions due to EM wave interaction 
with each and every harmonic of the gyrofrequency. Fortunately, in practice, we are 
limited(by engineering constraints) to the launching into the plasma of just a couple of 
non-interacting waves matched perhaps to a single harmonic of the ion gyrofrequency or 
the electron gyrofrequency. This means that the response of the plasma will be dominated 
by those terms in the sum which are related to these harmonics. We may approximate 
the other non-resonant terms in some way (usually by their cold plasma counterparts).

As we have already remarked, cold plasma theory describes the salient behaviour of waves 
in a plasma. Finite tem perature effects will, in general, add small corrections to the basic 
cold plasma behaviour. We need a way of quantifying the relative magnitudes of the 
terms and, moreover, we would like to describe other orderings which arise naturally in 
our m athem atical model of the underlying physics.

One of the most fundamental properties of the plasma which is independent of EM wave 
characteristics and Tokamak device length scales, is the ratio of the masses of the con
stituent particles. The ratio of the mass of the electron to the proton is much smaller 
than unity. Let us assign the parameter y to be the order of quantities which are small 
compared to unity such that,

—  -  7?" C  L (2.19)
77%̂

In our discussion of the production of ODEs we described how thermal effects are in
herent in the argument of the modified Bessel functions. Ag is dependent upon the 
perpendicular wavelength(A:j. =  27r/Aj_) and also the Larmor radius(pg). In the ICRF 
the wavelength of the EM waves is typically a few centimetres. For low energy ions the 
Larmor radius is typically a few millimetres and so the ratio of the Larmor radius to the 
wavelength is a quantity small compared to unity and is of order 7y,

1 Pi 1k±pi ~  ~  77 <  1.
Ajl
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In the case of electrons, this is further reduced by the ratio,

Pe .
77 <  1 .

Pi V

But Ag is proportional to the square of k_ips so that,

Â 2  ̂77̂  <  1,

and we are justified in using A, as a small expansion parameter in this regime. More
over, apart from appearing explicitly as the perpendicular and parallel temperatures in 
an anisotropic plasma(as we shall see in chapter 4 ), thermal effects also appear through 
the therm al velocities(uTa oc y/T^) of the charged particles. As Ag is dependent upon the 
therm al velocity through the Larmor radius, we see that thermal effects are at most of 
order Ag in the low energy regime. The resonant terms in the dielectric response will then 
be small corrections to the order unity cold plasma terms (although they are found to be 
essential for the production of energy conserving wave equations).

For high energy ions(cf IM eV) and fusion products the Larmor radius can be comparable 
to or greater than the wavelength and so our ordering in this case is,

k±Pi K  -  1- (2.20)

In this case Ag is comparable to unity and we cannot expand the modified Bessel functions 
using this as an expansion parameter as now the resonance terms can be of the same order 
as the cold plasma terms. Although this has the disadvantage that we cannot expand 
the modified Bessel functions so as to produce ODEs according to the recipe of Cairns 
et al. (1991), we note tha t the non-resonant terms may simply be approximated by their 
cold plasma values with only the n =  0, ±1 terms in the sum contributing. This allows 
us to reduce the infinite sum to a finite one over just a few terms: the resonant term  and 
the cold plasma terms.

In addition to these orderings, obtained through finite tem perature considerations, there 
is another ordering related to the physical length scales inherent in the model. The wave
length (a few centimetres) is much smaller than the length scale over which the toroidal 
magnetic field varies (a few metres) and if we retain the constraint that the Larmor radius 
be comparable to the wavelength then we have the ordering,

^  ^  -  77̂  C  1. (2.21)
Jb JÜ

The equilibrium orbits, which must be obtained iteratively in an inhomogeneous plasma, 
are presented to first order in this ratio in chapter 3.

Finally, we will mention in passing the order of the width of the resonances, scaled to 
an appropriate length scale. In (2.15) we showed that there was an error(6w /Og) in
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the cyclotron resonance condition w =  lü,s due to the parallel motion of the charged
particle guiding centres along the field lines (producing a Doppler shift). The parallel wave-
number(ib||) is typically of the same order as the cold plasma asymptotic perpendicular 
wave-number(^j.) so that in this case,

k\\pi rj, (2.22)

In our discussion of the effects of field inhomogeneity above, we indicated that there will 
now be an additional source of error in the resonance condition arising from the gyrokinetic 
correction. In this case the resonance condition will be,

hi
w = %  + A;,p|| -  (2.23)

and if we ignore Doppler broadening effects(A:|| = 0 )  for a moment so as to isolate the 
error due only to the gyrokinetic correction, we find that there is a symmetric absorption 
profile on the scale of,

Following this rather non-mathematical and heuristic discussion we turn now to a more 
involved study of some of the physical effects brought about by the long mean free path 
of free-streaming charged particles in a collisionless plasma.

2.3 .2  N on -loca lity
In deriving the momentum space representations in our discussion of the dispersion prop
erties of homogeneous plasmas, the electrical displacement(D) is related to the electric 
held(E) through the dielectric tensor(cij) as follows,

D (w, k) =  (u, k) # E  (w, k ) , (2.25)

so that they have a simple multiplicative relation in momentum space. There is a theorem
of Fourier analysis called the convolution theorem which states that the convolution of
two functions in real space is equivalent to the simple product of their Fourier transforms 
in momentum(Fourier) space. So we may equivalently relate the electrical displacement 
(D) of a space-time point to the electric field (E) at every other point in space-time via 
the correlation function which is the dielectric tensor (e^j),

D (r, t) = —^  /  dr' f  dt'tij (r -  r ', t -  f  ) # E  (F, t ' ) . (2.26)
(27rj J—CO

The displacement at a point is then evaluated from the non-local interaction of the elec
tric field at every other point. In practice, there are restraints due to specific plasma 
conditions which mean that the response at a point may be influenced by only a few
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neighbouring points. We will show that this is the case for gyrorésonance where the 
charged particles are confined to field lines(restricting their degrees of freedom as shown 
in figure 2.3) and effectively they sample the electric field of the plasma only within a 
few Larmor radii (for high energy particles this can be an appreciable distance typically 
several tens of centimetres).

The free-streaming of particles along the field in a collisionless plasma means that the 
particles have long mean free paths and an impulse at one point in space-time leads to 
responses not only later in time, but also at different positions in the plasma. We see tha t 
because the response of the plasma is in the form of a convolution integral, it is non-local 
in nature.

A question arises quite naturally here. If we consider the electric field as the stimulus of 
action (in the Hamiltonian sense) in the plasma and the current density as the response of 
the particles(such that the susceptibility is the response function), how do we incorporate 
into this description of impulses and non-local responses the fact that causes must pre
cede effects? This requirement places a strong restriction on the mathematical character 
of the response functions and we will see that a correctly formulated dispersion relation 
will always obey causality.

2 .3 .3  C ausality  A nd A n alytic  C ontinuation
We have already remarked that we will follow Shafranov’s path integral method(1962) 
for determining the perturbed current density (the response of the particles) whereby we 
integrate the equation of motion along the equilibrium orbits of the charged particles. In 
doing so we will use a multi-mode representation of the perturbing quantities such as the 
electric field.

For an inhomogeneous plasma whose equilibrium state is independent of the spatial co
ordinate, the plasma response will have the general form,

J (r, k, w) =  r ( k , w , T ) . B ( k , w ) .  (2.27)
J  — CO

For complex wave frequencies(w =  -b icoi) then The addition of a
positive infinitesimal imaginary part(W() to w ensures that vanishes as r  —> —oo
guaranteeing causality so tha t we pick up contributions from the whole of the orbit up 
until the present time. This process of making to complex so as to satisfy causality is an 
example of analytic continuation. To see more clearly what this means we will discuss it 
in the light of an example from the derivation which will be presented in chapter 3. In 
the course of the derivation of the plasma response we will encounter velocity integrals of 
the following singular form (a simple pole of order unity at U|| = uq = j^).
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I (« o )=  f  d u u   ̂ . (2.28)
J U|j — tio

For integrals of this type we need to specify a contour of integration due to the vanishing of 
the denominator for real w. The integral comprises a contribution from the pole and also 
the remaining line segment along the real U|| axis. The addition of a positive, infinitesimal 
imaginary part(w*) to the real wave frequency(wy) in order to ensure causality, moves the 
singularity above the real axis. The integral for real w is then obtained by letting w* — 0. 
Feynman showed that this prescription is equivalent to simply bypassing the pole on the 
real axis by an infinitesimal, semicircular excursion of radius |ŵ | below the axis. Contours 
avoiding the pole in this way for both negative and positive are shown in figure 2.4. 
We will be using contours like the one in the lower diagram in figure 2.4 since our causal 
arguments mean that we have added a positive w, to the real wave frequency. There 
will be a contribution from the pole equal to 7ri times the residue at Uq which is g{uQ), 
Physically the residue represents the initial conditions and we see tha t this is how the 
effects of causality are illustrated mathematically. The remainder of the real axis will 
provide the Cauchy principal value(P) such that,

f r i M + r
J —oo U\ \  — Wo W* —> 0 W - c o  W|| — U q  Jtto+w i W[| — U q  j

If the imaginary part of w is truly positive then there is no pole on the real axis and 
we may simply integrate along the entire axis without difficulty. If the imaginary part 
of w is negative we can still use the above technique to obtain the integral. However we 
must now deform the contour of integration so that the contour always passes below the 
pole as shown in figure 2.5. The deformation of the contour of integration in this way 
provides the analytic continuation of the integral for all values of ŵ . This prescribed 
deformation of the contour by the pole is analogous to the way that a marble depresses (or 
warps) a rubber sheet when placed upon it. The use of contour integration to calculate 
the causal response of a hot, collisionless plasma was first described by Landau(1946) 
in a classic paper which revealed the collisionless damping of an electrostatic wave in 
an unmagnetised plasma. This work paved the way for the discovery of other damped 
waves and instabilities(see for example Mikhailovskii, 1968) and indeed the very under
standing of the process of the resonance heating of Tokamak plasmas is a credit to Landau.

2.4 Practical Considerations

2.4 .1  Spatial D isp ersion
In chapter 1 we saw tha t there will be regions of the plasma where < 0 and so k(r) 
can become complex. To see what effect a complex wave-vector has upon the dispersive



properties of the plasma let us write out E  in complex form for a ID  inhomogeneity along 
the ic-direction using (2.18),

E (r) =  E qC* /

The first exponent is oscillatory while the second is not and is responsible for field am
plification or reduction and provides a measure of the spatial dispersion. This is often 
quantified by the so-called, ’optical depth’ or ’opacity’,

J  Im{k{x)}dx.

We see tha t it is the imaginary part of the wavevector which results in wave damping 
or growth. In our analysis of cold plasma waves earlier in this chapter we obtained 
expressions for the fast wave refractive index squared which, in figure 1.1 of chapter 1, 
can be seen to have negative values indicating wave evanescence on the high magnetic 
field side of the cut-off associated with the 2-ion hybrid resonance. In this region k  is 
complex and the fast wave is attenuated or damped. However the dielectric tensor of a 
cold plasma(equation (2.5)) has no explicit dependence upon the wavevector and so the 
damping of the fast wave is a passive one arising from a whole plasma wave resonance 
rather than the active damping which due to wave-particle dynamics which occur in 
processes like gyrorésonance. We see then that active damping by particles will enter 
through the dielectric tensor.

2.4 .2  E nergy C onsiderations
When an EM wave propagates in a plasma there will be energy associated with the 
oscillating electric field(% ) and also the oscillating magnetic field(f/M) as in the case of 
light transit through the vacuum of space. The flow of this EM energy is known as the 
Poynting fiux(V#S). There will also be energy associated with the particle motions caused 
by the oscillating fields. The coherent mechanical motion of the particles which carries the 
information connected with the EM wave is known as the acoustic flux or kinetic flux( V • 
T ) and represents a reversible flow of acoustic(kinetic) energy(1/^) around the plasma. 
A hot plasma is a dispersive medium(since the dielectric response is a spatially varying 
function of k. Any dispersive medium is also a dissipative medium as we demonstrated 
in the last section and so there will be dissipative energy(D) transferred between the 
EM field and the particles. Since we must have global conservation of energy there will, 
naturally, be a balance of energy between the fields and the particles whereby a decrease 
in energy in a local volume will be balanced by a flux of energy density in to or out of the 
volume boundary. Intuitively we may write down the following energy balance equation 
a priori^

V .  (S +  T ) +  +  %  +  % )  +  Z) =  0. (2.29)
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The EM field related terms: Ue ^Um  and S have a mathematical form which is inde
pendent of the properties of the medium. The remaining terms are dependent upon the 
dispersive properties of the plasma and are sensitive to the method of description(for ex
ample cold theory or kinetic theory).

Let us derive expressions for the various terms in the above energy balance equation whose 
interactions are represented schematically in figure 2.6. We begin with two postulates (see 
for example Feynman, 1965):

• Global Energy Conservation: All the energy in the universe is constant.

• Local Energy Conservation: If the amount of energy changes in a region then this is
because energy is flowing through the boundaries of the region or works on m atter.

If we let U represent the total energy density in the EM field, S represent the energy flux 
in the EM field and W  be the rate at which work is done on m atter then we may write 
down the following energy balance equation based solely upon the above postulates,

W  =  - ^ - V » S .  (2.30)

In appendix A we use this formula to derive Poynting’s energy conservation theorem,

E . J  =  - V .  ( ^ ^ )  -  ^ [ | ( E .  E) +  ^ ( B  .  B)]. (2.31)

The to tal EM energy density(ff) is,

[ / =  | ( E . E )  +  ^ ( B . B )  =  (7e  +  [1m , (2.32)

and the EM energy fiux(S) is,

S =  5 ^ .  (2.33)
ho

We see tha t the left hand side of (2.31) is the rate at which work is done by the EM fields 
on the plasma and has arisen naturally out of Maxwell’s field equations. The fact that the 
current density is a source term  is indicative of the properties of the medium supporting 
the EM wave. In a hot, collisionless plasma, the most accurate description of the plasma 
state is provided by the Vlasov equation. As the rate of work done involves the product
of two first order (linearly perturbed) quantities then we need to consider the second or
der equation of state(the second order Vlasov equation). A single mode analysis(WKB 
or other) is able to provide lucid expressions for particle-related energy terms (see for 
example Shafranov, 1962, Landau and Lifshitz, 1980 or Stix, 1992) although there will 
be no information concerning linear wave-wave interactions (such as reflection or mode 
conversion). Here we write the current density in terms of the full dielectric tensor so as
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to preserve the generality of a multi-mode analysis.
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As energy enters kinetic theory through the second velocity moment of the distribution 
function, we may obtain the rate of work done by multiplying the second order Vlasov 
equation by the kinetic energy (T =  |m v^) and then integrating over all velocity space f
(the second velocity moment inetgral). The resulting kinetic energy theorem is(Maroli,
1988),

E  • J  =  ^  y  d v T (v )/2(r, V , t) -f V •  J  d v T (v )v /2(r, v ,  t). (2.34)

The first term  on the right hand side is the power absorbed by the plasma from the EM 
fields and includes energy dissipated. When this term  is negative then it represents a flow |
of power from the plasma back to the field.

The second term  is the kinetic power flux (or sloshing flux) flowing reversibly around the 
plasma. Such terms have been shown to integrate to zero across the whole plasma(Maroli, |
1988, Lashmore-Davies and Dendy, 1989 and McDonald et ah, 1994) indicating conserva
tion of kinetic energy within the plasma. The above authors worked entirely within the 
framework of small Larmor radius particles meaning that closed, algebraic forms for the 
plasma response functions could be obtained.

However, in an inhomogeneous plasma containing high energy, large Larmor radius ions 
we are unable to deduce closed analytic forms for the terms on the right hand side of 
(2.31) since the plasma response is described by non-local response integrals(which will 
be derived in chapters 3 and 4). Our priority in this work is to quantify the absorption 
of energy from EM waves through wave-particle interactions and, although we will not 
identify explicitly the mathematical forms of the kinetic flux, the kinetic energy of the 
particles and the dissipation, we will derive an energy conserving wave equation which 
is inclusive of all of these effects and which allows us to identify the fraction of incident 
energy absorbed. The absorbed energy is distributed between resonant particles (in the 
neighbourhood of gyro-resonances) and mo de-converted hot plasma waves in interaction 
regions. In general it is impossible to separate these two effects and we will seek to quan
tify the total energy transferred to the plasma.

In chapter 7 we will derive an ODE describing the spatial variation of the electric field 
amplitude(Ey) in the neighbourhood of a gyrorésonance region which will be shown to be 
of the form,

^ E y { x )  -f V{x,  ko)Ey{x) =  0,

where V{x,ko)  is the fast wave potential function and has, folded into it, the physical 
make-up of the wave-particle interactions. By this we mean that effects of non-locality, 
therm al anisotropy and magnetic field inhomogeneity are included. In addition, the cou
pling of the incident fast wave to the mode-converted, hot plasma modes present in



the interaction region is also described allowing a quantification of the degree of mode- 
conversion. However, as a 2"^ order ODE this describes only the spatial variation of 
the fast wave and cannot give any information concerning the propagation of the mode- 
converted modes.

We will show in chapter 7 that the fast wave ODE has, associated with it, the following 
conservation relation,

dx
- I m { V  {x,ko)}\Ey (2.35)

We now demonstrate that this does indeed satisfy the law of conservation of energy.

If we average the energy balance equation over a few oscillations of the field using the 
mean value theorem for the average of the product of two periodic complex quantities 
over a few cycles,

I
a(.T,i)b(o;,t) =  -i?e{a’"(æ)b(æ)},

and note tha t terms proportional to average to zero, then the average rate of work
done on the particles is equivalent to the average EM energy flux delivered to the particles.

-Re{B* # J}  =  - R e { V
E X B'

ho } ■ (2.36)

For the ambient magnetic field which we are modelling (Bq =  B q ( x ) z )  then the left hand 
side of (2.36) can be shown to be equivalent to.

;Be{V
E X B"

. ho
d

2toho dx

If we compare (2.35), (2.36) and (2.37) then we have the relation,

(2.37)

(2.38)

and we see that the time-averaged work done on the plasma by the EM fields is related to 
the average divergence of EM flux. The right hand side of the conservation law in (2.35) 
is then just the average work done in accordance with the energy balance required for 
energy conservation. We may now discuss our conservation law of (2.35) in the light of 
these results and also in the more general framework of the energy balance equation of 
(2.29). We have shown unambiguously how the conservation relation of (2.35) comprises 
a balance of the time-averaged field EM flux and the time-averaged work done on the 
plasma,

< V # S > - b < W > = 0 .
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If we look back at the general energy balance equation for the plasma given by (2.29) then 
we need to account for all of the terms when talking about the energy conserving nature 
of the conservation law. We have already remarked how the rate of work done upon the 
plasma is divided between the kinetic power flux within the plasma, the acoustic energy 
of the particles and also energy dissipated by the particles. When we average over time 
using the mean value theorem then the energy density terms average to zero over a cycle 
and the time-averaged energy balance equation becomes,

< V • (S fi- T ) >  -f <c -Z9 > =  0,

and so the time-averaged work done on the plasma(described by the right hand side of 
(2.35)) contains the combined effects of the kinetic power flux and energy dissipation. In 
chapter 8 we will present a numerical proof of the global conservation of energy represented 
by (2.35).

2 .4 .3  W ave Polarisation
We have already described how wave energy will be strongly absorbed at a gyrorésonance 
if a large fraction of the wave energy resides in electric fields rotating in the same sense as 
the resonant particles. To quantify this let us return to the local wave equation of (2.2) 
written in terms of the dielectric tensor of equation(2.5) which, for EM waves in a cold 
plasma propagating in the equatorial plane of a Tokamak(x — z plane) is,

t^y UjLUji
— ̂ xy — 'n\ — 0
ni?2|| 0 c_L — n[

Here,

f  E,
Ey \ = . (2.39)

w l  w?
-  1 -  1̂1 -   ̂ "  XZ ^

  Ck±_ ^̂ 11
, w(w^ -  ÜI)  =  "II "  1 7 '

If we set to zero the determinant of the m atrix which pre-multiplies the electric field 
vector then we obtain the following dispersion relation,

“  [(̂ -L ~  +  ey) -f n \  -f ey [(ej. -  ny)^ -f e jJ  =  0. (2.40)

Since this is a quadratic in n \  it describes the propagation of two different wave modes 
in the context of cold plasma theory which are the fast and slow magnetosonic waves. 
As described earlier, the higher mobility of the electrons compared to the ions along 
the electric field means that the parallel electric field is eflFectively shorted out and so the 
conductivity(cjI) of particles along z will be large compared to the conductivity of particles
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in the equatorial p l a n e Cxy)> If we retain only the coefficients of ey in (2.40) then we 
recover the fast wave dispersion relation for oblique propagation,

which is equivalent to (2.9) and gives the hybrid resonance surface e± — ny =  0. If we 
return to (2.39) and write out the first and third linear equations noting the effects of 
high electron mobility,

(ej_ — My) Eg; +  ^xyEy ~  0, (2.42)

n±_n\\Ex +  (ey — n \ )E z  — 0, (2.43)

then we have the following relationships between the electric field components,

<C 1, (2.44)
Ex €||
Ey ( e i - n | )
E,

(2.45)
'xy

The first ratio simply reiterates the fact that the parallel electric field is effectively shorted 
out due to high electron mobility along the magnetic field. The second ratio needs more 
careful consideration of the behaviour of the surface — ?%y =  0. Near to the 2-ion hybrid 
resonance, ej. — ny —̂ 0 and so Ey Ex. This indicates that the fast wave polarisation 
is predominantly longitudinal(A:j_ _L B q and kj_ || Ex). This is the crucial piece of physics 
we need regarding gyroresonant absorption. A longitudinal wave can be decomposed into 
a mixture of right and left- circularly polarised waves,

E± = Exdtz iEy., (2.46)

which can interact with the ions(E'+) and electrons(E_) respectively as shown in figure 2.7.

Since, in the region of the 2-ion resonance. Ex Ey the magnitudes of E ^  and E -  can 
be large leading to strong gyroresonant absorption. The longitudinal nature of the fast 
wave polarisation is responsible for the coupling to ion-Bernstein modes and ion-hybrid 
waves which are themselves longitudinally polarised. Far away from the interaction layer. 
Ex Ey and and the fast wave is partly transverse(Ey) and partly longitudinal(Ea,) and 
the circular polarisation is likely to be zero meaning that the electric field of the fast wave 
is polarised in exactly the opposite sense to the ions and electrons and therefore cannot 
interact with them  through gyroresonant wave-particle interactions.

Let us return to the question of how the fast wave polarisation is affected by the presence 
of an extra ion species. First of all let us consider a single ion species plasma. The ratio
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of the transverse and longitudinal polarisations expressed by (2.45) is, for perpendicular 
propagation in the ICRF,

Ey +
&  ~ i( I y  ̂ ’

and since w c:: we find that the singular ion terms dominate so that,

\ w(ù;2—Q?) /
This gives us the polarisation.

— Ex T ^Ey =  0.

Hence there is identically no gyrorésonance at the fundamental of the ion gyrofrequency 
in a single ion species plasma. In a two ion species plasma(majority ion(subscript 1) and 
minority ion(subscript 2)) the story is completely different. The ratio of transverse to 
longitudinal polarisations given by (2.45) is now,

T - I  (  I 1 ^ p e  \

Ex Y  I I
(2.49)

and at the fundamental of the minority gyrofrequency w Ü2, we must retain both of 
the ion terms since Oi ~  giving,

TP _  i" _L \
Æ  =  , (2.50)

and this time there is no cancellation due to the ratio of the ion gyrofrequencies in the 
denominator which cannot equal unity in a plasma containing two different ion species by 
definition. The degree of ion gyroresonant absorption is now dictated by the ratio of the 
ion species densities (due to ratios of the ion plasma frequencies) which allows E ĵ  to take 
on a large range of values. We find that there is now the possibility of gyroresonant ab
sorption at the fundamental of the minority gyrofrequency. A kinetic treatm ent of wave 
polarisation extends this analysis so as to include the effects of additional hot plasma 
modes on the polarisation of the fast wave at the ion gyrorésonances. The appearance of 
the 2-ion hybrid resonance at large minority to majority ion density ratios has destructive 
effects on the value of E+ near to the minority fundamental reducing absorption. We will 
show this to be the case in our numerical studies in chapter 8.
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Although the cold plasma analysis performed here does not include the damping of the 
fast wave at higher harmonics of the gyrofrequency(since these are the province of a ki
netic theory), the principles are equivalent. Detailed calculations identifying the terms 
related to therm al effects on the wave polarisation are beyond the scope of this thesis (due 
to time restraints) although all of the thermal effects are included in our theoretical in
vestigations in the following chapters.

Finally, having presented some of the basic phenomena associated with EM wave prop
agation in plasmas, we need to check that such waves are able to propagate under the 
extreme physical conditions required to achieve fusion in a Tokamak plasma. In chapter 
8 we will apply our model equations to the problem of ion heating. For this an EM wave, 
matched to the fundamental gyrofrequency of the minority ion species (for our study we 
consider a plasma with H e\  being the minority), is assumed to resonate with
the minority ions in some layer of the plasma preferably in the hot, dense core.

2 .4 .4  A ccessib ility
To see this let us look more closely at the dispersion relation of the fast wave whose dis
persion relation was presented in (2.9). Since resonance is a localised phenomenon(recall 
tha t I; <C 1) then we can use cold plasma theory to consider the approach of EM waves 
to such regions.

We have shown that the fast wave will have a low density cut-off at around He — 
2 X The density in a large Tokamak like JET falls off parabolically from a
maximum of around Mg 2 X in the hot plasma core to around ng 1 x 10̂ 7̂72”^
near the plasma edge (Wesson, 1987). The fast wave will be cut-off near the plasma edge 
in the low density region. Provided the radio frequency antenna is situated close to the 
location of the cut-off, the fast wave can tunnel through to a region of propagation without 
much attenuation. However, we have described how, in a 2-ion species plasma, the 2-ion 
hybrid resonance may occur for a minority ion densities above a critical value(n2 <  0.1?7i). 
We have shown how the hybrid resonance has associated with it a cut-off and so the fast 
wave will also have a high density cut-off near the hybrid resonance. Figure 2.8 shows the 
locations of the resonance and cut-off surfaces in the JET plasma. It is the hybrid cut-off 
which will govern the accessibility of the fast wave.

The disparity in the fast wave propagation behaviour in the minority heating regime and 
also the mode conversion regime is revealed in figure 2.9 and some experimental evidence 
of the effect of the hybrid resonance on fast wave heating from the T FTR  Tokamak(which 
has an antenna on the high magnetic field side) is shown in figure 2.10.

The neutron counting rate gives a measure of the degree of ion heating. The counting 
rate is high when the hybrid resonance is situated in the plasma centre as in (a) and (c).
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The counting rate is low when the proton resonance is situated in the plasma centre and 
the hybrid resonance is at the plasma edge as in (b). This indicates tha t heating is pre
dominantly due to mode conversion rather than minority heating. Furthermore, it is clear 
that mode conversion is stronger in the plasma core where the density and tem perature 
are several orders of magnitude higher than at the edge.

The Budden model, described in chapter 1, has shown how fast wave energy is distributed 
after crossing the interaction region. If fast wave energy is to be deposited on the reso
nant ions by minority heating then we must launch the fast wave from the low magnetic 
field where it has an unimpeded path to the minority gyrorésonance. Furthermore, if the I
undamped fraction of fast wave energy(calculated to be at most 75%(Jacquinot, 1987)) 
is to be absorbed in the interaction region, the fast wave incident on the low field side 
must tunnel through the evanescent layer which exists on the low field side of the 2-ion 
hybrid resonance before being mode converted and subsequently damped on electrons. 
Alternatively, if the mode conversion heating scheme is to be used, the fast wave should |
be launched from the high magnetic field side where all of the incident energy can be mode 
converted. Presently, JET has only a low field side radio frequency antenna as can be 
seen in figure 2.11. For optimal heating, a combination of low and high field side antennae 
would allow efficient deposition of fast wave energy on the ions (through minority heating 
for low field launch) and on the electrons (through mode conversion for high field launch).
In chapter 8 we will present numerical results relevant to both of these schemes. We will 
report our finding of a new cut-off at the low field side of the minority gyrorésonance 
which may have profound consequences for the accessibility of the fast wave from the low 
field antenna.

Following this rather lengthy overview of the underlying physics of wave-particle interac
tions in a Tokamak in the ICRF let us now build upon this foundation by deriving a new 
theory which is capable of describing the interaction of radio waves with large Larmor 
radius ions and fusion products in a thermally anisotropic plasma immersed in an inho
mogeneous magnetic field.
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Figure 2.1: Graphical representation of the  plasma dispersion function Z{x)  
for real argument(a;)(After Fried and Conte, 1961).
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Chapter 3 

Waves In A Generalised 
Inhomogeneous Plasma

In the previous chapter we remarked tha t only a kinetic theory of plasma waves is fully 
able to describe the perpendicular gyrorésonances which are present in a hot, collisionless 
plasma when immersed in a uniform magnetic field. We will now describe a theory which 
enables us to introduce into the analysis a gradient in this magnetic field and which, 
contrary to existing models, allows a general field profile to be used while retaining the 
generality of the equilibrium plasma state.

3.1 Vlasov Theory For An Inhomogeneous Plasma
Let us now work out the response of a hot anisotropic plasma to small amplitude electro
magnetic waves (EM waves) when immersed in an inhomogeneous magnetic field(Bo). We 
will use the Vlasov theory whereby the evolution of the particle distribution(/), is gov
erned by the Vlasov equation with the Lorentz force directing the motion of the charged 
particles. In essence, EM waves perturb an equilibrium state(/o) and the response of the 
plasma f i  is obtained by integrating the Vlasov equation along the unperturbed orbits of 
the particles. The perturbed current density and other measurable macroscopic variables 
are then found by taking moments of f i .  Maxwell’s field equations, with the sources of 
charge and current density obtained in this way from the Vlasov equation, then give a 
self-consistent description of EM waves in the plasma.

For EM waves that are harmonic in time, varying as with the wave frequency(w)
having an infinitessimal positive imaginary part so as to satisfy causality, then Maxwell’s 
electromagnetic field equations may be rearranged to give the following wave equation.

 r V  X (V  X E) +  E  +  J =  0. (3.1)
CqU)  ̂ ^

We need to solve this self-consistently with the response of the plasma, in the form of 
the perturbed current density (J), being calculated from the first velocity moment of the
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perturbed particle distribution(/) as follows,

^  — q J  d u u fi .  (3.2)

The particle distribution itself is calculated from the equation of state which, for a hot 
collisionless plasma, is the Vlasov equation,

^  +  u • —  +  ^  (E (r, ^) +  u X B (r, t)) •  — } /  (r, u, t )  =  0, (3.3)

describing the temporal evolution of the particle distribution / .  Here r and u are points 
in (r,u) phase space, and the velocity(u) may be written in polar coordinates with 9 
being the angle between u± and the x  direction so that,

u =  xuj. cos 9 +  yu_i sin 9 +  zuy. (3.4)

In the presence of small amplitude, perturbing EM waves, we may linearise with the 
following ordering,

/  — /o d“ c/ij E =  eE, B =  Bo +  cB, J  =  eJ, (3.5)

and e is a small parameter related to the scale-length of the magnetic field inhomogeneity. 
The ambient magnetic field(Bo) is assumed to be in the z direction with a gradient in field 
strength along the x  direction, that is, Bq =  Bo (x) z. In the case of weak inhomogeneities, 
the magnetic field can be expanded in a Taylor series and may be approximated by the 
first two terms.

Bo z ~  Eo (xo) (1 +  e(æ — æo)) Z, (3.6)

with e =  _ • Our plasma can be thought of as being restrained in a finite
inhomogeneous slab geometry as portrayed in figure 3.1.

The plasma particle charge(q) and mass(m) will, in general, be different for different 
particle species in the plasma and there will be a Vlasov equation of the form of (3.3) 
associated with each species. In what follows we shall assume summation over contribu
tions from all species of charged particles in the plasma.

It is well known that the Onsager reciprocal relations arise from the time reversal invari
ance of many microscopic phenomena in thermodynamic systems. If one reverses tim e in 
(3.3) then the Vlasov equation returns to its original form if one also changes the signs of 
u and also of B. Thus, the Vlasov equation is invariant under the transformation,

t —> —t, u  —> —u, B -4 —B, r  r, E  ^  E. (3.7)

We shall return to these properties later on. We will show that the time reversal invari
ance of the microscopic plasma dynamics is lost when we use non-thermal distributions
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in the macroscopic averaging process associated with taking moments.

The zero order solution of (3.3) is just the equilibrium solution,

(u X Bo) •  =  0. (3.8)
m  au

There are many possible solutions of (3.8) but they are subject to the requirement that 
the equilibrium distribution /o be constructed from the constants of the motion, which 
for a plasma immersed in an inhomogeneous magnetic field are: the perpendicular kinetic 
energy W  = m uj_/2, the parallel momentum py =  muy and the canonical momenta: 
Ca; — ~  f  Ü (v) dy] and =  m{uy  +  /  H (r) dx} which when divided by m ü  give the
coordinates of the guiding centre. The plasma state we wish to describe has a gradient 
only in the x  direction and so the most general equilibrium distribution will be a function 
of Uj_, U|| and (y. In the plasma equilibrium we expect there to be a balance of magnetic
pressure ^  and plasma pressure 2neT. Magnetic pressure arising from a magnetic field 
inhomogeneity along x  should then be balanced by an equal and opposite plasma pres
sure arising from a density inhomogeneity along x. We wish to study the wave-particle 
interactions in a low (5 plasma, one in which the ratio of the plasma to magnetic pressures 
is small, and so we may approximate the density variation by a constant since its effects 
will not be pronounced in comparison with effects due to the magnetic field variation. To 
this end we may consider equilibrium distributions which are independent of the spatial 
coordinates and Cy so that /o =  /o (w^,My) =  /o (u).

The order e solution arising from (3.3) is,

( r , t ,u ) ) ^  =  X B (r ,i)}  .  (3.9)

The left hand side is a total time derivative along the equilibrium orbit and represents 
the rate of change of / i  along the zero order trajectory in phase space. Since (3.9) is 
an exact differential then it may be integrated from t' =  —oo to t' =  t  along a path  in 
(r, u) phase space which coincides with the orbit of a charged particle in the equilibrium 
state. This method of solving differential equations is often referred to as, ’the method 
of characteristics’ and the resultant integral is known in the literature as the Shafranov 
path integral(ShafranoV) 1967),

A (r, u) =  -  dt'{E (r', t') +  u' X B (r', t')} .

+  /i{ r '(~ o o )  ,u '(~ o o ) ,f '( -o o )} , (3.10)

and gives the development of the perturbed distribution f t  in terms of the particle orbits 
in the unperturbed fields which are denoted by primes. We have replaced /o (u') by /o (u) 
since these are equivalent in the equilibrium state. We will seek the time asymptotic result
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when the last term  in (3.10) vanishes so that we can neglect the effect of initial conditions. 
We follow a method, first proposed by Antonsen and Manheimer(1978), whereby we 
express the EM fields in terms of their Fourier modes with amplitudes equal to the Fourier 
coefficients(indicated by a bar),

E (r', t') = I & Ë (k) (3 .11)

so tha t the charged particle orbits undergo a Fourier transformation.

For generality we would like to describe EM waves propagating in arbitrary directions, 
making an angle (j) with Bq and an angle tp with the direction of the inhomogeneity along 
X .  A suitable choice of wavevector is then,

k =  xA:j_ cos +  yfcj. sini/) +  z^l|, (3.12)

having the geometry represented in figure 3.2.

Maxwell’s induction equation conveniently allows us to express B in terms of E as follows,

B (r',t ')  =  i k  X E(r',« ') .  (3.13)w
which, by virtue of an identity from vector analysis: A x (B x C) =  B (A # C) —
C (A • B ), enables us to rewrite the Lorentz force as a sole function of the electric field.
The perturbed distribution may then be written as,

t
/ i ( r , t , u ) =  -  ^  y  dke"'"-''" y

-OO

X
\ LÜ LÜ

The perturbed distribution f i  therefore arises naturally as the space-time correlation of 
the charged particle motion and the guiding centre. We have a vector quantity in the large 
bracket of (3.14) since we have the product of a tensor (square bracket) and a vector (E). 
We identify the tensor as the Lorentz force tensor(T^). If we rewrite (3.14) in terms of 
the time r  = t' — t and introduce the quantity R  — r ' — r then the Fourier coefficient is,

Â  (k ,t ,u ) =  - ^  /  (£ iU k ,u ') .  ' E ( k ) .  (3.15)
“ OO

To proceed further we need to specify the orbit equations for charged particles in the 
equilibrium state of an inhomogeneous plasma.
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3.2 Particle Orbits In The Equilibrium State
In the equilibrium state we know that charged particles move under the influence of the 
Lorentz force, winding around the magnetic field in helical orbits with gyrofrequency 
O (a?) =  qBo (x) /m . This physical situation is the equilibrium, unperturbed state and is 
described by the solutions of the following equations of motion,

^  =  ^ { u ' X B o(r')}  =  u ' X 0 ( r ') z ,  (3.17)

with boundary conditions,

r '( t '  =  t) =  r, u ' { t ' — t) — u, (3.18)

If we recall the form of the weakly inhomogeneous magnetic field given in (3.6) then we 
see tha t the gyrofrequency can be represented by,

n  (x') ~  n  (x) [1 +  e (x' — x )]. (3.19)

The particle orbit equations are then found by iterating (3.16) and (3.17) in the small
param eter e. To order e, we obtain the following orbit equations as solutions when we
utilise the above approximation to the gyrofrequency.

x'
, Wj.

== X +  —  {sm (Or —0) +  sin^}, (3.20)

y' =  y +  -^{cos (Hr - - 6) — cos 9] —
u] t 
 ̂ 2Ü '

(3.21)

z' =  Z +  U||T, (3.22)
i' — t H- r. (3.23)

< =  ujL cos (Hr -- ^ ) , (3.24)

< =  —u± sin (D?- - 0 ) - S
2Ü'

(3.25)

< 16||. (3.26)

The constants of integration were chosen so that at time t' = t then u ' —> u  and r ' — r. 
Since e oc 1 /L  and the Larmor radius p uj. /f l  then these orbit equations are correct 
to order p IL  with the ordering of (2.21).

In a weakly inhomogeneous magnetic field we see that the particle orbits are still helical 
in nature as is the case for a homogeneous field. The orbits are, however, subjected to 
drifts proportional to e. The equilibrium orbits are inherently nonlinear since, in the 
inhomogeneous magnetic field, the gyrofrequency(O) is a function of x ' which is itself
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a function of O so that the orbit equations are built up iteratively. As a next step, 
instead of taking the charged particle orbits correct to order e, we now consider only the 
most im portant contribution of the inhomogeneity to the orbits namely the nonlinear 
correction to the gyrofrequency O (x'). Elsewhere than in the rapidly varying phase 
factors, Ü (x') can be approximated by O (x) where, H (x) =  Oq (xo) (1 +  e (x — x q ) ) .  We 
may choose the coordinate system in order to write our expressions around the position 
Xo =  0 so tha t in the non-rapidly varying terms we put, O q ( x ) =  O q (0) (1 +  ex), with 
Dq (0) =  qBo (0) /m . If we evaluate the gyrofrequency Ü (x') at the x  coordinate of the 
guiding centre position(x^).

(x ) =  X +  — sin (9, (3.27)
' *0 yX j

then we may define,

Üg (x) =  n{x ' =  Xg (x)} =  Hq (x) +  ewi sin0. (3.28)

The nonlinear correction arising from the magnetic field gradient is seen to be euj.siii6*.

We are performing a linear perturbative analysis and it will be shown in a later chap
ter tha t this first iteration is both necessary and sufficient to provide energy conserving
wave equations. If e =  0 then the orbit equations reduce to the traditional orbits in a
homogeneous magnetic field. We note here that there is a secular term  in the ÿ  direction 
which arises from the macroscopic drift motion of charged particles in an inhomogeneous 
magnetic field, commonly known as, ’the grad B drift’. Since we are primarily interested 
in the non-local nature of wave-particle interactions arising from therm al anisotropy and 
magnetic field inhomogeneity, let us consider the less general case of EM waves propa
gating directly into the magnetic field gradient in the x  — z plane so tha t drift effects are 
not included. This does not mean that they are negligible. Indeed it is well known how 
drift terms affect the dispersion properties of low frequency EM waves in a homogeneous 
plasma. The drift effects are most easily filtered out by setting ^  =  0 in (3.12) so that,

k  =  fc||) , (3.29)

and the orbits in the absence of drift effects are,

E =  r  H-x™ {sin  (ü^r — ^) +  sin é?}-f y™ {cos (n^r — 0) — cos 6*}-H zu|jT, (3.30) 
* *0 '̂o

t' = t +  r , (3.31)
u ' =  xuj. cos {flgT ~  0) ~  yu_i sin {flgT ~  6) zuy, (3.32)

It is these orbit equations which we must use in the calculation of the perturbed distri
bution f i  given by (3.15).
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3.3 Calculation Of The Generalised Conductivity Ten
sor

We may now use the orbit equations (3.29) up to (3.32) to write the perturbed distribution 
explicitly. If we define the argument b — then in (3.15),

zk*R -(W T   i6 {s in (0 g T —0 )4 -sm 0 }—t(o;—fc||i4||)r (3.33)

We see that the Fourier transformation of the particle orbits in (3.11) has produced a 
sin (n^T — 6) term  in the exponential, oscillating rapidly on the timescale of the gyrofre- 
quency. This will ultimately be responsible for the appearance of gyrorésonances.

The constants of the motion from which /o is constructed are, u± =  +  Uy and
U|| =  and the gradient of the equilibrium distribution is calculated from them  to be,

T

du' \du_LU_L^ du±_u±^ du\\J 

In addition, the Lorentz force tensor Lij has the following explicit form,

(3.34)

L

fcllUll 0 u>
1 _  (fex<+fep||) k\\u'y

Ul w
0 1 —

klU
(3.35)

We may now write down the Fourier coefficient of the perturbed distribution,

0

7 i ( k , t ,  u ) =  ~  ~  J

X

V

d h _
+ r m _ a i f A .

UA. d u ± to I C»U|| « X  9 i i x

d k
+

_
Us_ dUA. y  "II U±_ duj_

d h
5 u !I

—
kxu '^

UJ
d f o  

i a « i i
_  " I t d f o

iij_  duj_

& ( k )
\  ^ z (k )

(3.36)

/

The helical motion of the charged particles motivates a coordinate transformation from 
Cartesian to cylindrical velocity coordinates where the volume element is du±u±_dOdu\\. 
The Jacobian is identified as and in this system of coordinates, the current density is 
from (1.2),

27T
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X

Ifjj. \
Uy

/

u i  d u  I w  \  dun  « I  d u \u ±  d u ±

4  d f o  , (  d f o .  _  "II d f o
wjL d u ±  ' u> y  a-U|| « X  d u x

d f o  _  kxu[r, f  d f o  _  "II Qfo
du\ \  w  \ S till u x  d u x  J  j

S ,( k )
5 ( k )  
E.  (k)

(3.37)

and here L is the Landau contour described in chapter 2. The Jacobian u± may be included 
in the square bracket of (3.37) which is now of tensorial form and we may associate the 
new bracket with a velocity tensor Vij (k, u ,u ') . J  can now be written as follows,

J (r) =  j  d k e* " -‘"Vÿ (æ, k) • E (k)

and (Tij is the conductivity tensor defined by,

(3.38)

27T

m,' (æ,k) =  d U j . J  d e j  dû  ̂ j  </^eiH=in(n,(x)r-9)+«m«}-i(c-*||«||)rp,, ( k ,u ,u ' )  .

Equation (3.38) may be thought of as the continuous analogue of Ohm’s law.
(3.39)

We may now write out the elements of Vij in full if we express u  and u ' in cylindrical 
coordinates using (3.4) and (3.32),

K:
c o s  ^  COS ( H g T  — ^ )  F i  — c o s  ^ s i n  ( n ^ r  — 6*) F i  c o s  6*7^2

u \  s i n  6  c o s  (O^r — 6)  Fi —u]_ s i n  6  s i n  (O^r — 0)  Fi u \  s i n  9F2 
u i 'u i i  COS [ ù g T  — 0)  F i  — 1(11611 s i n  [ÇlgT — 6)  F \  K i K y i ^

and here we have introduced the following functional dependences on /o,

(3.40)

=  ^/o I (  dfo ĵj dfo
du± ÜJ \du\\ u±duj_

F. = d f o  __ & i% i 

^Kll
c o s ( n , T _ , ) ( # _ a %

w \du\\ Ml du±

(3.41)

(3.42)

The integrations appear formidable but, thanks to the Fourier Bessel identities from the 
theory of Bessel functions, we may remove the trigonometric dependence upon 6 in the 
exponentials of (3.39) as follows.

^ i X s i n Y

cos

sinVe*^"^^
n  ^  

n
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enabling us to identify the following relations,

A {ügT -  e, e)  e*{™(n,r-9)+sine} = J 2 Y ,  4l|,m (6) (3.46)
I m

with A  {ÙgT — 9^0) representing combinations of trigonometric functions which have arisen 
from the particle velocity when expressed in cylindrical coordinates, and Ai^m {b) being 
the resulting combination of Bessel functions and their derivatives. We may summarize 
these forms in the following table,

A  {figT — 9̂  9̂ -4-1,m {b)
1

sin 9 
cos 9 

sin {ÜgT — 9) 
cos (O^r — 9) 

sin {ÜgT —  9) sin 6) 
sin {ÜgT — 9) cos 9 
cos {ÜgT — 9) sin 9 
cos {ÜgT — 9) cos 9

JlJm

—iJ'lJm
fjJlJm

im J !  J

- p i J L

In this way Bessel functions arise naturally from the orbit equations of a plasma immersed 
in an inhomogeneous magnetic field. In addition, we see that a summation over all 
harmonics(/) of the gyrofrequency Qg (æ) is intrinsic to this analysis arising naturally 
from the Fourier transform of the orbits. The conductivity tensor of (3.39) may then be 
expressed in a form independent of trigonometric functions,

2'ir
(7i

where.

(æ, k) =  - ^  x ;  y  rfwx /  rftiy J  (k, u ) ,
( 0 0 -oo

(3.47)

K:,
u l f  J iJ ^ F ,  

- iu \J iJ L F 2
ZKiKjl 7  Jm-Fi K J.K|| Jm-F2

(3.48)

and if we note that f =  ^  then,

Fi

F2

dfo , kîui _  mi dfo 
u± duj_ 

u \ \  d f o

uj_ du±

Ë J Ï  +  (3 49)
w J d u ±  to U|| 5 u | | ’

(3.50)
to J OUn to Uj_ du_i
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The first term  on the riglit hand sides of (3.49) and (3.50) comes from the wave electric 
field while the other terms are from the wave magnetic field and vanish in the limit of an 
isotropic plasma when -  0 ™ t^a t f t  ^  and F j | ^ .

It will be instructive to compare the terms coming from the wave electric field with those 
coming from the wave magnetic field. We may perform a back of the envelope calculation 
to get an idea of their relative magnitudes. Using (3.13) we may write the magnetic field 
in terms of the electric field so that the Lorentz force may be written as,

E  +  u x B  =  E + l u x k x E ~ l : ^ i ^ ~ l : — — . (3.51)
W ÜJ C Ca

Now for a classical nonrelativistic plasma then ut c and c can be large compared to ca 
and so, in general, we cannot say that the wave electric field term  is dominant over the 
additional terms in an anisotropic plasma associated with the wave magnetic field.

We are now able to perform the r-integral which, if we note that the wave frequency has 
a positive, infinitesimal imaginary part by causality then we find.

%  (z ,k )  =  - i - E E  /  f  f  d m „ ---------- M E l i i ----------  (3.52)
'  ™ , m /  I  " ( w- ( x ) - Vi i  +  « )

In (3.52), the denominator is often referred to as the ’resonant denominator’ since its zero 
leads to a simple pole type of singularity. Fortunately for us, the values of the physical 
parameters which bring about this interesting, and indeed im portant, resonant behaviour 
lie within the parameter range of application of our theory to hot thermonuclear fusion 
plasmas. As the singularity arises from a zero of a function, small differences in quantities 
around the zero value of the denominator will lead to important corrections. It is at this 
point tha t the order e correction to the gyrofrequency, arising from the magnetic field 
inhomogeneity, shows its true colours. The resonance condition is given by,

w — lüg (x) — A:{|U|{ =  0. (3.53)

If an EM wave of frequency w is launched into the plasma, matched to the harmonic
of the gyrofrequency at a position x  then, since the gyrofrequency is üg{x)  = Uq (æ) +  
eu_L sin^, the resonance condition may be satisfied over a range of values of x and may be 
written explicitly as,

w — IÜq (æ) — A:||U|| — leu±_ sin 9 = 0, (3.54)

differing from locally uniform models by the nonlinear correction —Îeu±sm9. We will
show in chapter 7 how this correction, often named, ’the gyrokinetic(GK) correction’, is 
absolutely necessary for the creation of energy conserving wave equations.
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The GK correction is also present in 74(3.50) and greatly complicates the form of the 
velocity tensor. We may circumvent this by a neat trick jDroposed by Stix(1992). We use 
the difference — uyFi to eliminate 74 in favour of 74,

cv \  d u n  d u x .
(3.55)

The pre-multiplying velocity components are crucial since only this combination leads to 
a cancellation of the resonant denominator and the GK correction which it possesses. The 
conductivity may now be expressed as.

27T
(Ti j (^,k) =  - i j E E  /  J  deed’- ‘F  (k,u)},  (3.56)

I m D, (z)

and if we note th a t b =  then,

Vij —

The resonant denominator is

ImUn

(3.57)

Di (ic) — Lo — îüg ((c) — A)||U|| T iO, 

and we identify the non-resonant remainder in (3.36) as,

N^j =
W

MlOp J ,  JOlOfn
—ius_JiJ!^

(3.58)

(3.59)

In a homogeneous plasma then the gyrofrequency is independent of the angle 9 and the 
orthogonality integral over 9 is usually performed at this point. If we note the following 
identities,

27T
j  27T Ef Jh m = l,
[ 0 ,  m ^ l , (3.60)

u r n
1

= 0, (3.61)

E  JOl
1

0, (3.62)

E ^ f 1, (3.63)
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then we arrive at the conductivity tensor for a plasma immersed in a homogeneous(h) 
magnetic field,

(T;
2

((c ,k )=  — 2 iT i^  J  du_L J dun i------------------- -633
L " W

27tL
m

(3.64)

with,

=i

?  J
T

and.

D f  ( ( c )  =  w  —  I Üq ( ( c )  — k\\u\\ + zO.

(3.65)

(3.66)
We note here tha t the velocity tensor for a homogeneous plasma is Hermitian.

In an inhomogeneous magnetic field however, we have shown that the gyrofrequency(O) is 
a function of the guiding centre position((Cg) and therefore has a 6 dependence which must 
be addressed prior to evaluation of the velocity integrals. For a self-consistent analysis, 
we must also evaluate all other spatially varying quantities such as the particle density 
and tem perature at the guiding centre rather than at the final position x of the particles. 
Earlier, we said that the GK correction will only be important in the resonant part of 
the integral. In the non-resonant parts of the integral, we may use the terms appropriate 
to a homogeneous plasma. The explicit spatial dependence on the guiding centre in the 
resonant terms may be included using a delta function.

C'a' t j  a )  —  J  d x ' ' a i j  ((c") 8  ( x ”  -  Xg), (3.67)

so tha t the conductivity tensor for an inhomogeneous plasma, (3.36), becomes.

. . .  f , f ^f l  ^
a-ij((C,k)= — 2?rz— /  dux. /  d m —  --------------------—633

771 J J l  to

X

■ q
27T

E E /  d x " j  du^ I  d0ed--‘)̂  J^du^

FiVij (k, u) S (x” — .T — ^  sin 6^
D, (x") 
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with,

Di {x”) = LÜ — ÎÜ {x”) — k\\u\\ +  zO. (3.69)

The subscript g has been dropped from U since our delta function takes into account the 
evaluation of the gyrofrequency at the guiding centre.

It is clear now that the orthogonality integral over 0 cannot be evaluated as for the 
homogeneous plasma since the GK correction has introduced a sin Fortunately there 
is a nice property of the Fourier Bessel identities which allows us to continue unhindered. 
To see this, we first express the delta function as a Fourier integral with h” —

s ( x " - x - ' p s i a 0 )  = P  j
\  Oo /  27t J

(3.70)

and, since the summation index m is associated with angles $, then we see that changing 
the coefficient of sin^ is equivalent to changing the argument of the Bessel functions 
through the relation.

(3.71)

Related to this change is the factor originating from cos 0 in (3.45). The modification
to the argument ft ft — 5" is followed by a subsequent change Having
extracted all trigonometric dependences upon the angle 9, we are now able to perform 
the orthogonality integral over 9. The conductivity tensor may now be written as.

cTij {x, k) =  — 2zrz■q
in

m E  J  dx" j  j  d u x f d ^ F i V i A K ^ )
' D, {x")

with,

Vij =
kx{kx-k")^^'^l {kT-k")

iux.u\\J[Ji v\JiJi

and the Bessel functions have arguments h =■ and b — h” = respectively.
Fi and D\ are given by equations (3.50) and (3.69) respectively.

This is a generalised result for an unspecified plasma equilibrium /o constructed from 
the constants of the motion u \  and when immersed in a weakly inhomogeneous mag
netic field Bo whose precise spatial variation is unspecified due to the general param eter

(3.72)

(3.73)
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The conductivity tensor of a hot, non-uniform plasma is seen to consist of a set of spa
tially varying coefficients of the electric field components. In the general case considered 
here, these are non-local, being made up of kernel functions which multiply the unknown 
electric field components inside integrals. In the next chapter we will provide a theoret
ical basis for the scale-length of the non-locality and we will show that for a thermally %
anisotropic plasma in a linear field gradient that this is of the order of a few Larmor radii. %

In the intensive amount of literature dedicated to the discussion of EM waves in inhomoge
neous plasmas, either the explicit form for the equilibrium distribution was intrinsic to the 
evaluation of the conductivity tensor such as in recent papers by Caldela et al.(1989 and 
1990) or else the explicit form for the spatial variation of the magnetic field was specified 
as in the calculations of McDonald et al.(1994), Cairns et al.(1991) and Lashmore-Davies 
et al.(1989) We have illustrated a method whereby we can preserve the generality of the 
model while enabling further progress to be made without added difficulty. In the next 
chapter we calculate the response to EM waves of an anisotropic Bi-Maxwellian plasma 
immersed in an inhomogeneous magnetic field with a linear gradient profile. This choice, 
while breaking new theoretical ground due to the inclusion of thermal anisotropy terms, 
allows us to make a comparison with well trodden paths since in the limit of an isotropic 
plasma we may compare directly our results with numerous other works in the field.
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Chapter 4 

Inclusion Of Thermal Anisotropic 
Effects

In the previous chapter we derived the response of an inhomogeneous plasma expressed 
in terms of a generalised conductivity tensor. Here we throw caution to the wind and 
specify the functional form of the spatial variation of 0  and, in addition, we specify an 
equilibrium distribution /q.

4.1 A Bi-Maxwellian Plasma In A Linear Gradient
We would like to find a practical application for our generalised conductivity tensor. Of 
topical interest is the use of high frequency EM waves matched resonantly to natural fre
quencies of the charged particle gyrofrequencies in hot thermonuclear fusion plasmas so 
as to produce collisionless transport of energy to the bulk plasma. Our analysis has been 
non-relativistic but may be easily extended to include the relativistic effects of very high 
energy charged particles. Indeed, McDonald et al.(1994) have performed a relativistic 
calculation for an isotropic plasma in a linear held gradient.

In magnetically conhned plasmas, such as in tokamak devices like the Joint European 
Torus (JET), the toroidal magnetic held B q[x ) ^  has a gradient in held strength in the 
radial x  direction. In a tokamak scenario we may identify the radial, poloidal and toroidal 
directions as x, y and z respectively as depicted in hgure 4.1. The functional form of the 
weakly varying magnetic held given by (3.6) may be approximated by a linear gradient 
with a scale-length T,

Bo (%) ~  Bo (0) (1 + ex)% = Bo (0) ( l  -  | )  z, (4.1)

This is illustrated in hgure 4.2. The small parameter used in our model is e — —1 /T  and 
we may associate L with the major radius of a Tokamak.
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The effect of B q is housed in the gyrofrequency(D) which, for a linear field gradient has 
the following form,

ü {x" )  = n o { 0 ) ( l - Ç j .  (4.2)

Further calculations are most easily done by reinstating the resonant denominator as a 
Fourier integral,

Di

with.

U
y  =  y  (4.3)

D, (x") =  w -  mo (0) +  — -  fc||ti|| +  m, (4.4)

S O  tha t the conductivity tensor in (3.72) becomes.

( r r ,k )=  — 2 t ï i —  / au±_ / du\\  --------------------—633
m  J Jl lo

0
2

‘ 0
0

X  I  <iTe-'°‘(*">’'BiV)j (k ,u ) .  (4.5)

Ôij

The ^"-integral gives a 6-function, 

S O  that,

(4.6)

/ I N  ^  -T  f  1 f  1 -^8u„ ^WduxJ^
C T i j ( x , K ) =  — 27T2—  /  du_L  /  d u u   --------------------------— 6 3 3

m  J JL to
0

-  ^  y  j  dux
 ̂ 0

X  y  ( k "  -  , ( 4 . 7 )
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The delta function lets us easily work out the k" -integral and if we recall the definition 
Ho (æ) =  Bo (0) (1 — a; /jL) then we obtain,

cy •7'i (x ,k ) 27rit— / aus_ / anil--------------------------- 633
m J J l  lo

2 CO u

-  /rfu j. /  du|| /  (4.8)
TTt /  * / J  L  J

with.

Vij -

The Bessel functions have arguments and respectively.

(4.9)

fio fio

We now need to specify the last vestige of generality, the equilibrium, /q. In line with our 
plasma physics model, we note tha t due to gyrorésonance when w—f&lo—A:||n|| =  0, charged 
particles receive a boost to their perpendicular velocity component u± and inevitably, in 
the time asymptote, the steady state distribution will have an anisotropy between per
pendicular and parallel temperature. In addition, many magnetically confined plasmas 
also receive an input beam of high energy neutrals which transfer energy into the perpen
dicular component u± of the ions making this thermal anisotropy all the more pronounced.

We choose perhaps the simplest of anisotropic distributions, a bi-Maxwellian,

4 j. “rtifo — T̂qTT ' Uj'

and for substitution into Fi and 633 we also need the derivatives,

(4.10)

9fo
duj_
%

We may now write Fi of (3.50) explicitly as, 

and similarly 633 of (4.8) is.

Uj-jj —

(4.11)

(4.12)

)} , (4.13)
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8/o d fo _ yîi
= ^  - « T i l -  (4.14)ÙJ

If we note tha t the plasma frequency is then the conductivity tensor of (4.8)
becomes.

4 Z6  UJ , II
( " f  j{ -  " ÿ l )  /  a i . i e  “' . . . 3 3

+  v S i ; ? / - ' ” " " " " ”" / ' " ' ' " ' ' * / .

^ {■̂ Tx 4— (^̂ rj| ~'^Tx)}K 'j T,t6j_,u|J . (4.15)

We need only work out the velocity integrals now to complete our analysis. In order to 
ease the algebra we rescale the velocity components to their thermal values as follows,

U =  —
Ut ± 

_  U||
W

U t \\

(4.16)

(4.17)

so that.

( T i j { x , k ) =  +

+

\/Fw

4:CoiO,

v 9

2 oo
yt4 || (tiÿjj -  u ^ l )  J  dUUe-^^ J  d W W ^ e - ' ^ è o z  

0 ^
0  oo

Ç  J  J  dUUe~^^ J

and.

Vij -

 ̂ — C O  0

X {ui.l + -  u ^ l)  }V ij (fcx, r, U, W ) ,

V ^ u t l U J iJ', ulxU^J'lJ'l - iuTxU T\\U W J,Jl
‘■^UTilWJlJ, iUTxUT\\UWJlJi

(4.18)

(4.19)

L AX "II ' ‘ J | |  ‘ ‘ J

The Bessel functions have arguments U and jj  respectively.
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To evaluate the wj.-integrals we are blessed by an apt and beautiful identity of Wat- 
son(1922),

7  2 2 1
y  " J,, J,, (A), (4.20)

which, together with combinations of partial derivatives with respect to a,/3 and p, give 
the set of formulae we need to cope with the various permutations of Bessel function 
products appearing in the [/-integral,

J  (ax) Jn {13x)

r 8J  d x x ^ e -”"’‘" J n { a x )J U l 3 x )  =  ^
P

OO

/  dxx^e-d‘^‘‘jn (ax) J„ (I3x) =

j  dxx^e-”'‘'-’̂ L {a x )L { l3 x )  =

da

J _
4p
d

_i 
4p

_i_A
2pdp  

1
2p

e - “In{X)

(4.21)

—re '‘In (A)

, e - ‘‘ [ < ( A ) - /3 /„ (A ) ] (4.22)

P

— e  ̂[(1 -  (i) In (A) -f AJ  ̂(A)], (4.23)

daj3
e-^/n(A)

(4.24)

Here In is the modified Bessel function with argument A =  ^  (a/I) and p- = (a^ +  /?^).
We note here tha t in a homogeneous(h) plasma then a  appears in the argument of both 
Bessel functions and we may identify Â  =  In each case above a prime indicates
a derivative with respect to the argument. For the non-resonant term  will also need the 
identity.

OO

f  drcæ^"+'e-’”’"
ni

2pîi+i • (4.25)

Setting, æ =  [/, p =  1, CK =  and ^  then the [/-integral may be
performed to give.
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CTij (a;,k) =  4- (^ry “  ^ t i )  g dWW^e  ^^633

Æ 2 0
4 - ^  J  ^ ^ ^ -ir {u ;~ lü o )  J  ^ ^ ^ -W ^ + ik \ iU T \\r W4eoCü'

and,

K-
% [^// -  all] II

~iuTLUT\\W~ [all ~  P^i][ô I'i -  I31i] Wtx [('^ +  z )
Ilk.
k ± ut\\WIi iux±ux\\W^ [j3Ii — all

(4.27)
To perform the W-integral, we complete the square in the exponential containing a 
quadratic in W  through the substitution,

w '  = w -  Ui>,

allowing us to note the following forms.

d W '  =  dW.

W  =  W' +

= W'^ + i ^ W  -  ^ ^ 2,

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

with, if) = kÿUT\\T. We caii factor out «^5. kom  the curly bracket in (4.26) and transfer

it into the velocity tensor. If in addition, we note that -pL =  then the conductivity
tensor may be written as.

226oŵ  T„ _  Tx
/̂7̂ Lû T i \  Tj I  dWW^e~'^^è33

2

^   ̂ —oo

X /  dW e-^'^ L ( W )  Vij (k, r, W ‘) . (4.33)
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Here,

and,

(4.34)

Vi,
21Ü0

kjiUTs. I,A2 m i - a h
Ai —i [al'i — /3Ii] A 2
A 2 21 I A 3

(4.35)
We have defined the following factors Aj  which are associated with the thermal anisotropy 
and we name them  the anisotropy factors.

Ai — 1,

A2 =

A3 =  ^  (vK'2 +  n/>Tr -  •

If we absorb L into the anisotropy factors Ai,  A 2 and A 3  such that,

(4.36)

(4.37)

(4.38)

Ao =

(4.39)

A 3 =
Til
Tx

W

{ (W'  +  tn /.)  -  (1 -  ^ j  (W'^ +  ii>W -  t ^ ' ) } ,  (4.40)

{ ( w ' ^  + i i ) W ' -

1 -
Ti \  ]}, (4.41)

then we may perform the W  and W -integrals with the aid of the following identities.

00
f  dxe -^

“ OO

00

J  dx:i
“ CO

CO

J  d x c i

^̂ 2rt+lg-pæ2
=  0 ,

i -  f i
W ?

(4.42)

(4.43)

(4.44)



giving the conductivity,

6 3 3

+  K-, (k ,r)V 7T ^  V
* “ OO

The velocity tensor is as in (4.35) but with,

■̂ 1

A2

4I3

So we have.

where.

and,

1 -

Til
3zî/j —

CTij (æ ,k )=  -

il [/,' - ¥ ‘ Ai ^hA2
Vij — [̂1 “  f d [(2^ +  x )  - 2i,I', Ai - i f  [j

*f [n - P ‘. A 2 TA3

Al =

A2 =  

At = a
T i

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)
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There are a number of variables in (4.49) and for ease of reference we write them  out here,

“ ' = S -

Ü0 [x) ^  Ü0 {0) ( l  - ,  Ü0 (0) =  ^  r  =  i ' -  t(4.54)

The existence of terms containing the integration variable r  in the velocity tensor mean 
tha t the r-integral cannot be performed and so a closed analytic form for the conduc
tivity cannot be obtained. In addition, as an infinite sum over all the harmonics I the 
conductivity is not very amenable to further calculation. In chapter 7 we will present an 
approximation which will allow us to proceed further with our analysis. We note that 
the velocity tensor does not have the same Hermitian form as its homogeneous plasma 
counterpart given in (3.64). In chapter 6 we will show that the plasma response written 
in terms of the conductivity tensor obeys the Onsager reciprocal relations for an isotropic 
plasma in a homogeneous magnetic field and also in an inhomogeneous magnetic field. 
We will go further and demonstrate tha t the Onsager reciprocal relations are not obeyed 
for an anisotropic plasma.

In order to compare our theoretical results with those of other authors, it will be convenient 
to express the conductivity tensor in forms which allow an easy recovery of well known 
limiting cases.

4.1 .1  A ltern ative R ep resentation s
We may rewrite the conductivity tensor solely in terms of A and Xh so as to facilitate 
expansions of the modified Bessel functions with A as an expansion parameter as discussed 
in chapter 2. We do this as follows. Since, from (4.54), a = y/2X^ and A =  2A /a , then 
we can deduce the following,

2A jg A a  Â  1 X 1

and in the last identity we have made use of the fact that (a^ +  ^^) =  (^ — a)^ +  2a/3. 
In terms of these variables we may write,

< r,,(* ,k )=  -  ! f ^ |L  ê33

0

+ J  (4.56)
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with,

Ai l ^ h A ,  ■

—il [// — Ai Ai 1̂ 1 ~  A^'] A3 , (4.57)

A2 Il As

and the anisotropy factors A j  are as before. The algebraic representation of the conduc
tivity tensor in terms of and fi is useful for symmetry considerations but in order to 
compare with results obtained by other authors in the field, it will be more practical to 
write out the terms explicitly. We do this by noting the following,

+  (/? — a Ÿ  =

The conductivity is then

CTij ((C, k) =

1 +

a

A =  -k^. {kjL -  /OoT I L ) p \  

^  k±_ — içiqt I I
k± — IfloT j  L  ’ a (4.58)

59)

with.

Vxx --

Vxy =

y x

Vyz =

K . =

Vzy =
14. =

il

■il

l i - h Ai,

^vv — [(2A +  x )  7; — (2A + ' ^ ^  )  I'l

■kx.PL

(fex-^^or/L)px
2

I f lo r
1 r

I'i

All  

Ai, 

A2, 

ï l k f 'A î .
fcx A2,

TA3 J

(4.60)

Or, alternatively, we may introduce a new variable k\ having the same dimensions as 
a wavenumber such that k\ — . Apart from a modification of the integration
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range, this also results in the slight changes: ^  (fcj. +  k{) p i, A |Arj. {kx. +  ^i) p \  
and ij} —5- — If, in addition, we write out the ^-dependence of Ho,

UJ — /Oo (a;) =  w — /Oo (0) H-----

then we find that the conductivity tensor of (4.59) takes the following form.

(4.61)

cr,j(æ,k)

+

X

cqujIL  ^  
/Oo (0) ^

J ( k ,  ,(4.62)

with.

= y / ' A . ,  1
Vxy ~ A i ,

Vxz =
Vyx ~ i i [ r , A i,

Vyy — [(2A + I )  I, -  (2A +  \ k l p \ )  II A i ,

Vyz = fj; - A2,

Ka; = t ip x  'A ; ,

%!/ = A2,

= IiAix _

(4.63)

As a check on the validity of our theoretical results let us compare with those obtained 
by some other authors for models which we may aspire to by taking certain limits.

4.2 Comparison W ith Other Related Work
We would ideally like to have a means of checking both the effects of nonuniformity 
which are presented in the form of the integrals and also the terms which have arisen 
due to therm al anisotropy. McDonald et al. (1994) have presented tensor elements for 
a relativistic isotropic plasma in an inhomogeneous magnetic field and so, in the limit 
of non-relativistic particle energies, we may compare the non-local integrals although we 
cannot check our anisotropic terms. Stix(1992) has presented tensor elements for a bi- 
Maxwellian plasma immersed in a uniform magnetic field and so we can compare our 
anisotropic terms although, in this case, our non-local integrals will be approximated by
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their plasma dispersion functions (Z-functions) and so their more general form cannot be 
checked. In what follows we will show that we recover the results of the above authors in 
the limiting cases for which their theory applies. We hope that the numerical results of 
chapter 8 combined with the qualitative insights presented in the next chapter will add 
more credence to our theory.

4.2 .1  A  N on -R ela tiv istic  T herm ally Isotropic B u t M agnetica lly  
In hom ogeneous P lasm a

We begin by quoting equation (3.23) of McDonald et al.(1994),

n -/-oo -/O (1 — it)

from which we may identify the conductivity tensor.

(4.64)

with.

oo
,\5/2 (kxA) (4.65)

(4.66)

a
a xy
^xz — 
C y x  —

^yy ~
a yz
C Z X  --

=

a

J
r A f  ’

»  [^n -  ’
  2ian t  j

- i n  [ /; -  ,

(2A +  x )  4  -  (2A +  r„,
~  [ k x l n  ~  i ^ x  +  h n t )  In ]  ,

 2ian t  r

^ [ ( A : ,  +  W ) 4 - W ,
( l  _  2 ^ ]  T

The definitions of the variables used are.

Cn =  fJ>
LO —  Ti H q

a = n. hn. —
LO

Thv --

nflo/jL
loL

cko
LO

allowing us to write.

/x =  2^ ,  t
LOT

P7'

1   2 (^37 4” P

J T T u )

(4.67)

(4.68)
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dt = - ^ d r ,  h„t = at = = - ^ r ,
P 7  7  7 L  2 7  2 7 ^ 0

l ~ i t = l  + — r, A =  ~kx ( h
//7 2 \

72^0
T I p \

7T y " 472^2

In the limit of a non-relativistic plasma we have the following behaviour,

(1 +

p  — 2^ 2  0 0

7 =  -> 1l/l-w 2/c2
as 0 . (4.70)

If we substitute expressions (4.69) into (4.65) and (4.66), while at the same tim e bearing in 
mind the non-relativistic limits of (4.70) then we obtain the non-relativistic conductivity 
tensor for an isotropic plasma immersed in an inhomogeneous magnetic field.

with.

Hn {kx^ r )  =

Cxx I^T A Y ’
Cxy = A: -̂nnor/L-^«J ’

= inkzQnr j 
kx—nQar/L

Cyx = in \l'n -  ■
^yy =  ^2A +  f ] 1 In (2A 1 2̂ ', )

Cyz kzV̂ T 
~~ 2ÜQ IKIL ~  {kx — uHqT / L)  7n] 5

inkzQoT r 
A*

a . _ kzÛ T
2f2o [(L  --  n üoT / L )  /(, -  k^I„],

= (1 -  ^  ) In

(4.71)

(4.72)

(4.73)

and here, A =  ^kx{kx —nQor /L)p'^, reproducing our result in (4.59) for an isotropic 
plasma with Tj. =  T|| =  T.

4 .2 .2  A  N on -R ela tiv istic  T herm ally A nisotropic A nd  H om oge
neous P lasm a

This calculation is most easily performed if we use the conductivity tensor for a thermally 
anisotropic plasma in an inhomogeneous magnetic held, expressed in terms of r  as in
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(4.59). If we separate out the uniform and the non-uniform parts of A in the exponential 
then we may write,

CTij (3̂ , k) —
T|

— CO

' 0
(4.74)

and we have defined.

X  =■ UJ 

: T2 1 +

Let us now take the limit of a locally uniform plasma whereby L

UJ — I I Ï q%
y  k\iuT\ 
A ^  Â"

as L 00 .

(4.75)

(4.76)

00 S O  that we have,

(4.77)

and.

K a ,  = j h ^ i A i ,

V x y  — il {I'l — I i )  A i ,

=
V y x  — —il {I'l — I l ! A i ,

V y y  — [4 /' + 2A" ( I ,  -  I D A i ,

Vyz = —* v V  ( I ' l  ~  I i )  A s ,

V z x  =

14,  = i M ( I l - h ) A s ,

V z z  = 7; A3

(4.78)

with Aj defined by (4.52) to (4.53). Since the argument of the modified Bessel functions 
is now Â‘ then they are independent of the variable of integration-r. If we recall that the 
plasma dispersion function(Z-function) can be written as.

Z | | ) ^ - i K y - “ dre- (4.79)

and tha t differentiation under the integral sign gives us the generalisation,
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r ~ o o
/  dr [—irY' e 
Jo

I
Ÿ d X ’ {§ I

Ÿ y r
(4.80)

then the homogeneous plasma form becomes,

g ^ . - ' X ' ( K X ) z ( 0 . (4.81)

The operator terms d ( arise from the anisotropic tail factors A j  of Vij which, noting that 
from (4.80) ^  become

A i

A 2

3
T i 2 d C ~ ^  2wAs =  y r { l  +  x x y  +  - ‘ "11

T l

T\\

(4.82)

(4.83)

(4.84)

If we introduce the argument for the fundamental (o =  w / i |̂|«T|| then we have,

A i Z  — {Z T
2(o

1 -
Tl
T\\

Z'].

A  oZ  — ( z  +  l z " ) l ,

1 Tl

(4.85)

(4.86)

(4.87)

These may be further simplified through the use of the recurrence relations for higher 
derivatives of Z,

z ' { Q  =

z"(C) =  

z"'iO  =

SO that we can derive the results.

- 2 [ l  +  fZ(C)],

- 2 [Z (C )  +  CZ'(C)1.
- 4 [ ( l - C " )  Z' ( 0  -  (Z  (()] ,

(4.88)
(4.89)
(4.90)
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z { Q  +  y " ( 0  =  -C Z'(C ),

3Z'(C) +  i z " ' ( 0  =  - 2 ( l - f = ) z ' ( C ) .

The conductivity tensor may now be written as,

(4.91)

(4.92)

4 ( x , k ) =  -  ^ ^ 1 1
T,

G33

COCoe-^'y.'j (k ) , (4.93)

and the velocity tensor is as before in (4.78) but now we have absorbed the Z-functions 
into the anisotropic tail factors,

Ai

A2

A3 (1-0

1 z ',

-I' 1 +
CoC - i (Z '.

(4.94)

(4.95)

(4.96)

We note the existence of terms involving — Tj. /T y)- These have arisen from the 
therm al anisotropy in the bi-Maxwellian distribution and may be traced back to their 
embryological origin in the magnetic component (u x Bq) of the Lorentz force. These 
naturally disappear in the limit of an isotropic plasma where Tj. =  Ty giving the following 
isotropic plasma result.

X

leocotLOCô

J/Z

■HZ'

.(4.97)

Our isotropic plasma result here is exactly equivalent to that obtained in equation (58) 
of chapter 10 of Stix(1992). To see this we note that for an isotropic plasma then we use 
(66) and (67) of Stix with V =  0. Then if we write the coefficients of the % elements in 
(57) in terms of A we may obtain the required agreement.
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4.3 The Non-Local Integro-Differential Wave Equa
tion (IDE)

The conductivity t e n s o r i s  a non-local response function, comprising a set of coeffi
cients which multiply the electric field(E) so as to give the response of the plasma in the 
form of the current density (J). If we introduce the susceptibility tensor,

== (<L98)

then the current density described by (3.38) may be written,

— J (r) =  /  dke*'""-’"'xii(r) • Ë(k). (4.99)
6qüJ J

This then, is the required term  in Maxwell’s wave equation (3.1). If we note the vector 
identity,

A X  (B X  C) =  B (A  • C) -  C(A .  B),

we may identify the wave equation,

^  V^E(r) -  ^ V ( V  .  E (r )) +  E (r) +  j  • E(k) =  0. (4.100)

This is an integro-differential equation (IDE) for the electric field although, in this form, it
appears confusing since the plasma response integral involves Fourier components of the 
electric field(E(k)) in momentum(k)-space while the vacuum part (the first two terms) 
involves the electric field in real(r)-space. We shall resolve this in chapter 6. Before doing 
so, let us perform a qualitative analysis of the conductivity tensor so as to get an insight 
into its physical properties.
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Chapter 5 

A Statistical Approach To Resonance

In this chapter we will look carefully at the qualitative effects introduced by our analysis 
in comparison with existing theory. We can consider the insights we obtain, through a 
qualitative analysis, as a type of data. Indeed we obtain a crucial bit of knowledge about 
the resolution of the harmonics which allows us to handle the infinite summation over all 
harmonics in the response function of the previous chapter. A quote seems appropriate 
here.

It is a capital mistake to theorise before one has data. Inevitably one 
begins to twist the facts to suit theories instead of theories to suit facts.

-Sir Arthur Conan Doyle.

5.1 Resonance Broadening Described By A Standard 
Deviation

Since the object of any description is to convey an idea in a way that is effective, easy to 
grasp and honest, we present here an alternative study of the effects of therm al anisotropy 
and magnetic field inhomogeneity upon the conductivity with the hope of achieving this 
aim.

We have shown how a simple pole in the denominator of the conductivity tensor is re
sponsible for resonance phenomena in hot magnetised plasmas. The resonance condition 
for a bi-Maxwellian plasma in a linearly inhomogeneous magnetic field is,

(jj Slo ~  /Ho, (5.1)

with,

=  jfc|pi|| — fujL sin 0 / T  , (5.2)
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and 6u) is the frequency spread about the resonant harmonic of the gyrofrequency due to 
resonance broadening effects. The first term  in (5.2) may be associated with the Doppler 
frequency shift due to motion of the resonant particles along the magnetic field while the S
second term  is a frequency shift associated with the variation of the magnetic field across 
the orbit of the resonant particles. Each of these terms contribute uncertainties to the 
value of the frequency w. We may construct a simple error analysis using the equilibrium 
distribution(/o) as a continuous probability distribution function since the error in this 
case Sco is a function of the independent variable in the distribution, the particle velocity.

If we recall tha t the gyrofrequency varies as, Do (^) =  Dq (0) (1 — x / L )  then (5.1) gives 
us the condition,

i  = Wo-
Here æ /T  is a physical distance measure of the spread of frequencies 6lj about the res
onant harmonic of the gyrofrequency. The velocity dependence of 6lo means tha t the 
resonance will be spread effectively by the velocity distribution.

We may now exploit the statistical nature of fo to calculate the actual absorption width 
of resonances in a hot magnetised plasma through a little knowledge of statistics,

...only by understanding the ways distributions give rise to data can 
we go on to use the particular behaviour of the data to produce general 
statements about the processes that produced them in the first place- %
or, as Holmes puts it, to twist your theory to suit your observed facts.

-R. J. Barlow

Our equilibrium distribution function /o is a continuous Gaussian probability distribution 
whose mean velocity is centred at the origin so that contours of constant /o are curves for :i
which the quadratic exponent is a constant. This gives ellipses centred on the origin and |
whose minor and major axes are determined by the degree of thermal anisotropy being 
equal to Wy j Uy|| and u \  . In the limit of an isotropic distribution then the ellipses 
becomes circles. I

The Gaussian nature of the distribution means that most of the particles in the plasma 
will have a velocity approximately equal to the mean velocity which is, for our equilibrium, 
uj*. These particles will not contribute to and so will not be responsible for spreading 
the resonance. However, particles with velocities comparable with their thermal values so 
tha t u \  and Uy will have a pronounced effect on the resonance width con
tributing to both the Doppler shifting and GK correction parts of 6w, although they will 
number only about 1 /e  of those particles with the mean velocity. Similarly, particles of

80



even higher energies will contribute more, on an individual level, to the resonance broad
ening but their cumulative effect will be less than at the thermal velocity since they are 
fewer in number. In this way, we can see physically how exactly an equilibrium distribu
tion function, constructed from the constants of the motion, is responsible for resonance 
broadening when their exist terms in the resonance condition which are also dependent 
on the constants of the motion of charged particles in an inhomogeneous magnetic field. 
We now replace this physically meaningful, though rather heuristic, thought process with 
one which has a more rigorous mathematical basis.

As a first step, we may normalise the distribution function to the total particle density 
Uo such that,

J  fo {u )d u  = l,  (5.4)

expressing the fact tha t a real-valued random velocity must certainly lie between — oo and 
C O . The expectation value(6!) of any quantity(^) which, since velocity is the independent 
variable in the distribution, must also be a function of velocity, is given by,

^  [9 (u)] = <  9 (u) > =  y  (/ (u) /o (u) dll. (5.5)

In particular, the mean, ü  is just the expectation value of u. .It should be mentioned that 
this is a special property of Gaussians and is not true in general. We will be interested in 
calculating the expectation value of the frequency spread about a gyrorésonance. Since 
the frequency spread arises from velocity dependent physics as described above in (5.2) 
then it may be thought of as introducing errors. For a systematic and thorough study of 
these errors we need to introduce some other statistical quantities.

A sensible measure of the spread of the frequency about the gyrorésonance (equivalent to 
a spread of data about the mean) is the average squared deviation from the mean, the 
variance(V),

V (u) = <  (u — < u  > Ÿ  > =  J  ( u -  < u >)^ fo (u) du = <  > — < u >^ . (5.6)

So the variance is the mean square minus the squared mean! We use the average squared 
deviation and not the average deviation since positive and negative deviations cancel. A 
more physically useful form which has the same dimensions as the independent variable 
is the root mean squared deviation or standard deviation(<S),

<S (u) =  y jv  (u) =  V <  > ~  < u  >^. (5.7)

One problem with using cS as a measure of the spread is that its value can be dominated 
by a few extreme values out in the tails of the distribution (although a Gaussian decays 
monotonically to zero in the tails and hence is well behaved in this respect). An alterna
tive measure often quoted is the full width at half maximum(FWHM) which is determined 
from the region around the central maximum and is related to the standard deviation.
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For a Gaussian then F W H M  2.355.

We have seen how the mean and the standard deviation were calculated from the first 
and second powers(termed moments) of u. Other useful quantities can be obtained from 
higher moments.

The skew is a way of describing the asymmetry(A) of the distribution. It is made from 
the third power of u,

(5.8)

Symmetric distributions like our Gaussian /o have A  = 0. This may easily be shown 
mathematically by a little knowledge of even and odd functions. The Gaussian is a 
symmetric function and since, in calculating the skew, we must integrate the third mo
ment (cubic=odd function) times the distribution over all space then positive and negative 
regions exactly cancel reflecting the fact that an odd function integrates to zero over a 
symmetric interval.

In addition to the skew, the curtosis(C) is a way of describing the peakedness of a distri
bution and is made from the fourth power of u,

c  (u) =  < ( " -  > ) '  .>  -  3. (5.9)

For a Gaussian then C =  0. The 3 in the definition is brought in specifically to ensure this! 
These latter two definitions allow us to compare quantitatively the equilibrium plasma 
state described by the equilibrium distribution fo with the response of the plasma in 
the form of the perturbed distribution / i .  We have shown how qualitative information 
may be found by investigating the moments of the distribution which for a general 
moment (A4) is,

M r  = <  (u— < u >)'" > =  J  (u— < u > )’’ fo (u) du, (5.10)

and so.

M o = 1, (6.11)
M \ =  0, (5.12)
A42 = (5.13)
M s =  Al, (5.14)
M 4 — C. (5.15)

(5.16)

Our measure of the resonance width is given by (5.3) and, since it is velocity dependent, 
then from (5.5) we define,
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dcu 6|| sin (9 .

We may go ahead and work out the variance of this and obtain the absorption width in 
terms of the resultant standard deviation. However, fo is not simply an explicit function 
of u  and is instead a function of the components of u. So we must consider the effect of 
a distribution which is a function of more than one variable. Indeed these variables may 
be connected in some way and the variance should not be expected to have the ID  form 
proposed by (5.6).

A measure of the interdependence of variables in a distribution is the covariance, which 
for a 2D distribution comprising the variables X  and Y  is,

Cm;(%,y) = <(%-<% >) ( y - <  y >)>

=  j  j { X - < X > )  ( Y -  < Y  >) fo (X, Y )  d X d Y

=  < X Y  > -  < X  > < Y  > ~  a x Y ‘ (5.18)

• Positive covariance means that above-average values of X  have a tendency to occur 
together with above-average Y  values, similarly for below-average values.

• Negative covariance means that large X  tend to pair with small Y .

•  Zero covariance occurs when X  and Y  are unconnected so that a positive { X — < X  > ) 
has an equal chance of being multiplied by a positive or negative { Y — < Y  >) lead
ing to a net cancellation.

There is a statistical theorem which allows us to combine variances,

y (X T y) = y (%) + y (y) d= 2Con (%, y ) . (5.19)
So, for independent variables then we simply add the errors in quadrature. We will not go 
into a proof of why this is so. Instead, we quote a corollary of another statistical theorem- 
the central limit theorem which says that any quantity produced by the cumulative effect 
of many independent variables will be approximately Gaussian as the number of variables 
tends to oo. This reflects the fact that the expectation value of a sum is equal to the sum 
of the expectation values.

The covariance is a dimensional quantity and so as a measure of the interdependence is 
not so useful just as a probability defined in metres would not make so much sense. A 
better measure is the correlation coeflScient,

p . 20,
Oxày  à>xOY
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so tha t \Corr\ — 1.

• If Corr > 0 then X  > X  guarantees that Y  > Y.

• If Corr < 0 then X  > X  guarantees that Y  < Y.

•  If Corr — 0 then X  and Y  are uncorrelated.

• If Corr  =  ±1 then X  and Y  are correlated and knowing the value of one precisely 
specifies the other. This is rather like collapsing the wave function in quantum the
ory and is responsible for the results born out of the infamous EPR experiment.

We will now see how all of this fits into a calculation of the resonance absorption width. 

First of all let us write,

5r ( u ) = ^ ( u i ) + 5f(u| | ) ,  (5.21)

so tha t we can identify the separate contributions from each of the resonance broadening
terms. From (5.18) we know that the covariance is,

Cov [g{uj_),g ~ <  g {u_l) g (u||) > -  <g(uA_) >< g (u||) >  . (5.22)

and if we set g (%i) =  — (sin^ /OqT) uj. and g //Do) 'wy in (5.21) and note the
following set of identities,

o o --------------------------------------- I----

/  dxe- ”̂  = (5.23)
-  oo V P

OO

f  =  0, (5.24)

J d x e - ”̂ " =  (5.26)

(5.27)

-OO

oo

oo

0
oo

0
oo
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27T

then we find,

J  d9 sin 0 = 0, 
0

27T

J  dOsin^O ~  7 T ,

(5.29)

(5.30)

Cov [g (uj.) ,g (uy)] =  0. (5.31)

The contributions to g (u) from the velocity components are uncorrelated. Physically we 
expect this as each component lies along an orthogonal axes and their dot product is 
zero. From the way variances combine in (5.19) we expect the velocity dependent errors 
g (uj.) and g to add in quadrature. As a m atter of interest the inclusion of order e 
drift terms proportional to u \  / 2DqT means that there will, in this particular case, be a 
correlation between the resonance broadening due to the GK correction and tha t due to 
guiding centre drifts in an inhomogeneous magnetic field and there will be an extra term  
in the variance due to the covariance of these. If we use our distribution function fo of 
(4.10), the measure of the broadening of the resonance is.

V [g (u)] =  0-2 [g (u)] =  < ^ ( u )  >  -  <  g' (u) > '

=  7 T

J  d u f o  (u) [g (u)]^ -  J  d u f o  (u) g (u)j

o o  27T o o

J  d u “t x  j  d 6  j  d u \ \

X
_ u^shYO  2Aî||W[|Ujl s i n ^  
1-----------------

27T CO

X

oo  u \   ^

J  du_[_u_\_e "Tx J  d9 J  du\\e "̂ 11 

0

/^l|U|| 2̂ 1 sin^^  ̂^
\  ZDq DqT

(5.32)

Our identities for the velocity integrals then give a simple result for the variance V [g (u)] 
since < g (u) is identically zero reflecting the symmetry of the gyrorésonances about 
ZDo (0). This is not the case for a relativistic plasma though. The absorption profile 
obtained by McDonald et al.(1994) for a Maxwellian relativistic plasma in an linearly 
inhomogeneous magnetic field gradient is clearly asymmetric. An elegant piece of m athe
matical analysis was performed by the authors, providing a good foundation for the work 
presented in this thesis, although no account was given as to the physical mechanism re
sponsible for the asymmetry. We know that gyrorésonance at the harmonic will occur
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when üû — 8lo = ZOq. However, the gyrofrequency varies as the inhomogeneous magnetic 
field and so the resonance condition is satisfied over a range of values of x as revealed by 
(5.3). Furthermore, we know that relativistic particles behave differently from classical
particles by the Lorentz factor 7 =  1 — ÿ  • The relativistic gyrofrequency, for exam
ple, becomes Do (a ;)  =  qBo ( z )  /? T io 7  with mo being the classical rest mass. So relativistic 
charged particles with u being an appreciable fraction of c will require stronger magnetic 
fields to bring them  into resonance. In an isotropic distribution of particles then there 
will be fewer resonant particles on the low magnetic field of the gyrorésonance than on 
the high field side, and the resonance profile will be asymmetrically skewed towards the 
low magnetic field side. For our classical analysis which is perfectly valid for the ions in 
a thermonuclear fusion experiment such as JET  since their thermal velocities are of the 
order of c / 1000, then the gyrofrequency is non-relativistic and our resonance profile is 
nicely symmetric with variance,

 ̂ = 5  + i f f )  ■
The first term  is just the variance of the error due to the GK correction while the second 
is the variance of the error arising from Doppler frequency shifting and so we have shown 
explicitly tha t the errors add in quadrature,

(ê)= (^) + (â) ■

The Larmor radius is defined to be = utl /Do and so the standard deviation is found 
from (5.33) by taking the square root and may be written as.

Pi.
\ lÜ oJ L V 2 \

We may now come to the following conclusion. The number of charged particles which 
are resonant in a bi-Maxwellian plasma are symmetrically distributed about the gyroréso
nance and their standard deviation from the gyrorésonance is equal to 1 ^ \/2  times their 
perpendicular Larmor radius scaled by a factor differing from unity only by the amount 
of Doppler shifting and the thermal anisotropy of the distribution.

We may also make the following deductions.

The resonance is broadened even for perpendicular propagation(A:|| =  0). This is in 
agreement with a result obtained by Lashmore-Davies et al.(1989) which revealed 
EM wave damping on resonant particles due to resonance broadening by solely GK 
effects.
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• Resonance broadening is greatest when there is Doppler shifting in conjunction with 
therm al anisotropy of the type T|] > Tj_.

# Gyrorésonance feeds energy into the perpendicular direction and so usually we have 
the case of thermal anisotropy with Ty < Tj. countering the effects of Doppler 
broadening.

A typical gyrorésonance scenario in present day fusion experiments such as JET has the 
following values: fcy cx L  3m, Î = 1 and ^  3T|| giving a standard deviation
of pjly^38 /9  Od 2p± which is about 9 times that of an isotropic plasma perturbed by 
perpendicularly propagating EM waves.

When the incident wave frequency(w) is matched to the harmonic of the gyrofrequency 
with u) =  ZDo (0) then we may equate this to the spatially varying expression for the 
gyrofrequency such that ZOq (0) =  Do {x) =  Dq (0) (1 ~  x /L ) ,  enabling us to to obtain the 
following expression for the locations of the gyrorésonances,

a:f =  ( l - Z ) T .  (5.36)

Furthermore, the separation of the and the gyrorésonances will be,

A x  = \xi — Xn\ =  1 (Z — n) \L. (5.37)

This allows us to obtain a criterion for the resolution of the gyrorésonances as follows.
The standard deviation of (5.35) gives a measure of the width of the resonances which we 
can write as.

CTX =  o L  — —7= . +  (=.!«)

The way we define the resolution is quite arbitrary. We take the lead of Lord Rayleigh who 
defined two similar profiles to be resolved when the maximum of one is commensurate with 
the adjacent minimum of the other. Two equivalent Gaussian distributions, separated by 
the F W H M  =  2\/2  In 25 ~  2.355 will have clearly resolved peaks. When their peaks are 
(2^/2j 5  ~  2.825 apart then the resolution will be excellent. The choice of the factor 2 \/2  
is quite arbitrary. We were guided by the fact that since it is larger than the F W H M  
it guarantees resolution and also leads to an aesthetically pleasing form for the resolving 
distance æ,. which we define to be.

Xr
,  f c p h i i / u )

+    - f  -■ (5.39)(2y/2^ S L  = 2p±\^

The gyrorésonances will be resolved according to this criterion provided, ■

A x  >  Xr, (5.40)
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or equivalently,

| i - n |  >  2^ ^
(rii/T x )

1 H---------- ^ ---------. (5.41)

For the JET  parameters quoted earlier we find for ions of Larmor radius of the order of 
about 3cm that,

Z|Z-Ti| >0.17. (5.42)

So the resonances will be resolved according to the above condition provided that they 
exist(Z > 0) and are non-dégénérâte(Z ^  n). We note that the gyrorésonances should 
not be considered as an independent set of discrete lines. Rather, there is a degree of 
overlap and under certain physical conditions they can merge into a continuous spectrum. 
Fortunately, there is a strong line structure in the radio frequency range meaning that 
we are able to control where we would like to deposit energy in the plasma. A further 
consequence of this is that in calculating the conductivity tensor we may separate out the 
resonant harmonic from the summation over Z and treat it independently from the remain
ing sum which will contain non-resonant terms, since for a JET plasma the resonances 
are well resolved. The contribution to the conductivity from the non-resonant thermal 
terms will be small in comparison to the resonant terms and so the effects of magnetic 
field inhomogeneity will add only minor corrections. This allows us to approximate the 
non-resonant terms by their uniform plasma equivalents or by their cold plasma values, 
making the analysis more tractable.

In the next section we will perform a calculation of the broadening of a cold plasma res
onance by the introduction of thermal effects.

5.2 Broadening Of A Cold Plasma Resonance By Ther
mal Effects

In chapter 2 we described the cold plasma dispersion relations for EM waves (the 0 - 
mode and the X-mode) propagating perpendicularly across an ambient magnetic field. 
We showed tha t there is an additional wave resonance in a two-ion species plasma(such as 
the JE T  D \  (JTcg) e \  plasma) due to the phase matching of oscillations of the ion space 
charge giving rise to the 2-ion hybrid resonance. Being a purely cold plasma resonance, 
the wave potential(y  (%)) is singular in nature(a simple pole) and has a zero absorp
tion width. Thermal effects however move this pole off the real(æ) axis by introducing 
an imaginary part to the singularity. In chapter 2 we have shown how the imaginary 
part of the poten tia l(/m {F  (%)}) is responsible for the power lost by the wave to reso
nant particles (near a gyrorésonance) or to another wave mode(mode conversion at the 
hybrid resonance). Lashmore-Davies et al.(1993) presented a calculation to determine



the asymptotic form of the imaginary part of the wave potential at the hybrid resonance 
which was shown to depend on the sign of the incident wavevector. For loss of power as a 
wave crosses the resonance then { Im {V  (#)} > 0) and the sign of the incident wavevector 
must be chosen to be positive for waves propagating towards positive x. Here we will use 
their result, calculated in the regime of low energy ions (small Larmor radius), to provide 
an approximation to the thermal width of the hybrid resonance which we will use in our 
numerical studies in chapter 8.

Lashmore-Davies et ah(1993) expanded the Z-functions asymptotically by noting that 
for large minority ion(6) to majority ion(a) density ratios, the hybrid resonance is well 
separated from the minority ion gyrorésonance so that the argument( C — ) of
the .^-function will be large when ^  Let us begin by writing the asymptotic
expression for the fast wave potential (their equation (26))in the following algebraic form 
with X  =  — as a normalised variable,Pb ’

=  (5.43)
A U X

If we rationalise the denominator then we find that the imaginary part is,

, „ ( y ( X ) )  .  (5.44)

In determining the width of the resonance, we will use the value of the imaginary part at
the resonance position(X^) as a reference value. To find the half width at half maximum
we need to know at what X  is I m { V  (X)} equal to \ I m { V  (X^)}. Before doing this, we 
need an expression for the position of the resonance {Xr ) which we can determine from 
equation(28) of Lashmore-Davies et al.(1993),

providing the imaginary part of the potential at the resonance as given by their equa- 
tion(31).

Ü? (ri — 1)^7-2L

We want to know at what value of X  this halves. Let us denote,

7 m { y  (X n )}  =  (5.46)

c^Lm{y(X^)}_ (n- l) 'r2L  
^ 2 -  2 n K p l  ■ (5-47)

We must solve the condition / 7'u{y (X)} =  \ l m { V  (X^)} for X  or equivalently.



f (d x )  "*■ A"2 +  a )  -,
l / \ 2 .o j ‘

A F
(5.48)

X j  +  A*

If we divide through by and rearrange then we obtain,

{<FX^ — 2deX  +  ~  ~  x )  ^  }• (5.49)

Since we are in the asymptotic regime for large X  then inverse powers of X  may be 
neglected allowing us to write down the following quadratic equation in X ,

<PX^ -  2deX + C  + =  0, (5.50)

with solution,

cd+af
a (5.51)

Returning now to our expression for V  (X) in (5.43) (which is equation(26) of Lashmore- 
Davies et ah, 1993) we need to identify all of the constants a — f  and also g. If we note 
that qTT/ =  1, gr =  J =  kzL and NzVxb ~  c^kzpb then we find.

a = —d = 

T2L
r l ~ V

2ripè’
1

■{1 +  T ^ l  +  ( l  -  ' / V ) } ,

kxPb

kxPb
(5.52)

If we substitute all of these into the expression we have for the position at which the 
imaginary part of the potential is half the value at the resonance given by (5.51), then we 
obtain after a little algebra,

kxpb
2̂ 1 2(ri —1)A| W  - 1) 2 (r i4 - l )

(5.53)

or.
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X ±  =  X r  ih A. (5.54)

The first term  is the position of the hybrid resonance of (5.45), X r  =  

e{rl  — 1) =  The second term  is then the half width at half maximum which

jarcA

we were seeking. We shall use this result in our numerical calculations in chapter 8. This 
takes on a particularly simple form for perpendicular propagation. Since,

then.

kzL
r =

(1 +
1

k^LTV =
(1 +

\(rf -  1) 1 -

3 +  (1 -f f/2)

2(r i4- l )
and so.

0 as kz 0,

00 as kz 0,

1 as kz —̂ 0,

A — ~^kxpb us kz —> 0.

(5.55)

(ri — 1) as kz —> 0, (5.56)

(5.57)

We see tha t in the limit of a cold plasma(T —> 0 therefore pb —> 0) then we recover the 
singular form for the hybrid resonance.

5.3 A Qualitative Analysis Of The Conductivity
We have derived the response to small amplitude EM waves of an anisotropic bi-Maxwellian 
plasma immersed in a inhomogeneous magnetic field aligned along z with a linear gradient 
in strength along x. It is the aim of the present chapter to identify the terms which have 
arisen from the thermal anisotropy of the plasma and to attach some physical meaning 
to them. The open form of the conductivity tensor means that we may only give here 
a qualitative analysis of the physical effects and we defer a quantitative analysis until 
later on when we have introduced the tools which will better able us to handle our rather 
elusive result.

In chapter 2 we showed how, in a cold magnetised plasma, resonances are singular in 
nature. We then described the gyrorésonances of hot, isotropic and collisionless plasmas 
immersed in homogeneous and inhomogeneous magnetic fields and drew attention to their
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well defined absorption profiles attributable to the resemblance of their resonance integrals 
to the plasma dispersion function(Z-function) which may be written in the form,

p  oo

Z & (5.58)
0

If we recall the conductivity tensor obtained above in (4.62) then we may make the 
following deductions,

• The integral over k' is of the form of a scaled Z-function plus other terms which will 
effectively comprise derivatives of %-functions. We know this because the velocity 
tensor F  is a function of k' and from the method of Cairns et al.(1991) described in 
Chapter 2, we know that powers of k' act as spatial derivative operators upon the 
Z-function integral.

The measure of the resonance broadening as given by (5.35), appears explicitly in 
the F-integral. This is intimately linked to the factor A in (5.58) above as follows,

A =  V 2 S L  '
to

.  ,  ,5 .5 ,,

The quadratic nature of the exponent containing this means tha t when F^A^ is 
greater than a couple of times unity then this term dominates the behaviour of 
the fc'-integral causing it rapidly to tend to zero, ensuring convergence for large k'. 
W hen k'^A^ is of the order of a few times unity then the integrals will converge 
rapidly. So a typical length-scale over which the integrals have a appreciable effect 
is a couple of A. For the JET parameters quoted above A is of the order of about 
9p± 26cm. This then means that the interaction of the resonant particles is
substantially non-local sampling the EM fields over an appreciable section of the 
tokamak radius.

• A corollary of this is also an estimate of the validity of our slab model. The assump
tion of a plane stratified geometry is not strictly correct in a tokamak where the mag
netic field gradient is not exactly perpendicular to the ambient field VBq • Bq 0. 
It is this quality which is responsible for trapped particle effects for example. If we
allow the field to vary along z with a length-scale Lz as well as along x  then the
shift in the gyrofrequency Do after the particle has moved a distance z along the 
field is,

6co = Do— . (5.60)

The time needed to produce this shift for a thermal particle with velocity u t \\ is,

t = —  = (5.61)
U t \\ D q U t I I  
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There is also a frequency shift due to resonance broadening effects which is given 
by (5.2). We know from the previous section that this quantity appears explicitly 
in the resonance integral as the standard deviation. The time for this frequency 
shift may be found from our last deduction since the time r  is related to k' by k' ~ — (/Do /L) T and so,

L

/Dopiy 1 +

T A i i )
^ll"T||

(5.62)

for the regime of oblique propagation where GK effects are negligible. The tim e r  is 
a measure of how long it takes the integral back along the particle orbit to determine 
effectively its response. If the frequency shift along the field is approximately equal 
to the frequency shift due to broadening effects then we can also substitute (5.2) for 
6uj in (5.61) so that, again in the limit of negligible GK effects.

t k\\L,
Dn

(5.63)

We now impose the condition that the time for the generation of the particle response 
r  is much less than the time for the frequency shift due to parallel motion t so that,

1 / 2

kuUT ±
(5.64)

For a Deuterium fundamental gyrorésonance Do 10®s~  ̂ and ut± lO^ms"^. 
The JET  parameters then give Lz >> 10m. This means that in a large tokamak 
such as JET  our slab model is justified since the particle response occurs in a time 
substantially less than the time for any frequency shifts due to toroidal effects which 
vary slowly over a long distance.

• Doppler shifting with a finite k\\ broadens the resonance but may be countered by 
therm al anisotropy when T\\ < T±.

• The standard tensor elements for a Maxwellian plasma in a linearly varying inhomo
geneous field are scaled by the following factors which arise from therm al anisotropy,

1 1

1 1

~  TL
Tj,

• There are now additional terms in the anisotropic tail factors Aj which arise from 
the u  X  Bo term  of the Lorentz force. In chapter 3 we did a back of an envelope cal
culation to compare the relative magnitudes of those terms arising from the electric
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field of the wave with those terms arising from the wave magnetic field and we com
mented tha t they may be comparable. An interesting quality of these magnetic field 
terms is that they not only disappear in the limit of an isotropic plasma, they also 
disappear at perpendicular propagation when Ajy =  0. This may be explained again 
from our statistical approach to resonance. In the absence of Doppler terms then 
resonance broadening will only occur from the GK correction and hence will only 
be dependent upon the uj_ velocity component. In the presence of finite Doppler 
effects then the difference between velocities along and perpendicular to the ambi
ent magnetic field will become important since resonance broadening will be due to 
contributions from both the u±_ and uy velocity components.

Later on in chapter 8 we will present a numerical study of the interaction of EM waves 
propagating obliquely to an ambient and linearly varying inhomogeneous magnetic field 
in a thermally anisotropic bi-Maxwellian plasma, and we will reveal exactly how the qual
itative effects predicted above are borne out.

Having studied in some detail the qualitative effects of thermal anisotropy upon the 
conductivity tensor, we turn now to the question of the symmetry.
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Chapter 6 

Symmetry Laws And Spatial 
Representations

In chapter 1 we remarked that the Vlasov equation, which governs the microscopic dynam
ics of the charged particles in a hot collisionless plasma, is invariant under time-reversal. 
That is, the laws of physics are the same if we reverse the arrow of time. Onsager(1931) 
has shown that this is reflected in the symmetry of a transport m atrix relating therm o
dynamic fluxes to the forces which drive them. We will show here tha t the conductivity 
tensor for a therm al equilibrium obeys this symmetry even in the presence of an inhomo
geneous magnetic field. More importantly we show that thermal anisotropy destroys this 
symmetry.

6.1 General Theory Of Onsager Symmetries
We know tha t a voltage gradient (V F ) will drive an electric current density (J) through a 
conducting medium, and the ratio of J  to —V F  is the electric conductivity tensor(crjj). 
The aim of transport theory is to relate the dissipative fluxes (of heat, particles and cur
rent) to the corresponding thermodynamic forces driving them (pressure gradients, tem 
perature gradients and electric field). The latter quantities, which depend on the spatial 
gradients and the externally applied forces, are a measure of the departure of the system 
from equilibrium since the fluxes represent the response to this non-equilibrium situation. 
We may express the transport phenomena by a set of linear, algebraic, phenomenological 
relations of the general type,

Ti = Y^L i jF j,  (z =  1,2,3, . . . ,n ) , (6.1)
i=i

where T% and Fj  are the fluxes and forces. The whole physics of the problem is contained 
within the transport coefficients Lij. The existence of non-zero off-diagonal elements 
in this m atrix expresses a coupling between various irreversible processes occurring in 
the system. Onsager(1931) showed that a general class of reciprocal relations could be
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derived from the principle of microscopic reversibility by relating macroscopic irreversible 
processes to spontaneous fluctuations in the equilibrium state. The cornerstone of his 
work was the following symmetry property of the transport coefficients,

L(A) =  L t(A ). (6.2)

The dagger represents Hermitian conjugation whereby we transpose the m a t r i x j i )  
and take the complex conjugate (which we will denote by a *), and A represents a set of 
time-dependent quantities which change sign under time reversal.

So as to generalise the results of Onsager’s original work, Krommes and Hu(1993) intro- |
duced the parity matrix(e) so as to allow for variables which may be either odd or even >
under tim e reversal so that F  cF. t  has the important property tha t it is idempotent:
€ • 6  — 1. W ith this in mind they derived the following result, relating the properties of *
fluctuations and transport in the time-reversed state L  and the original steady state T,

L(A) =  e . r * ( - A ) . e t ,  i

or, upon defining A =  e • T we have the more symmetrical form,

£ (A ) =  £ ^ ( - A ) .  (6.3)

For a therm al equilibrium such as with Maxwellian velocity distributions then the particle 
dynamics are Hamiltonian and the time-reversed state coincides with the equilibrium state 
itself so tha t L  and L  are identical. In this case we recover the original Onsager symmetry.

We have already shown in chapter 3 that, at the microscopic level of description, the 
Vlasov equation is invariant under time reversal. So we must address the question of how 
exactly the irreversible nature appears. The perturbed current density (J) is calculated 
from the first velocity moment of the perturbed distribution function as in (3.2). We 
expanded on this in the last chapter where we presented the intim ate relation between i
the first moment and the mean. So we see that essentially we are averaging over all the 
particle velocities. Although we may calculate the mean from a sample of data we cannot 7
reconstruct our original data set from a knowledge of only the mean value. This then is the 
source of the irreversibility in our equations which, we have shown, have a definite basis in 
tim e reversible microdynamics as required by the prescription used by Onsager. Another 
intrinsic element of Onsager’s celebrated work was that he considered fluctuations about 
an equilibrium state which regressed monotonically according to some hydrodynamical $
law. In our analysis we are perturbing a plasma equilibrium by harmonic EM waves and 
we expect the plasma response to similarly regress. Krommes and Hu(1993) further gen
eralised Onsager’s work so as to describe fluctuations about a non-equilibrium state and 
indicated that, providing the regression law is of Markovian form, then there is Onsager 
symmetry of the transport coefficients.
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Nambu(1995) remarked that the forces(jPj) in (6.1) should not be mixed up with forces 
in the Newtonian sense. If we take fluxes (F )  as the electric current density (J) then 
the forces (Fj) in this case are not simply electric fields (Ej), but E j /T j, where T j  is the 
tem perature in the direction. If we define the electrical conductivity tensor cr̂ j by,

n
(i =  1 ,2 ,3 ,..., n ) , (6.4)

i=i
then we find that the transport coefficient L i j  defined in (6.1) is given by,

Lij =  Tjaij, (6.5)

such that,

J i =  ^  {Tjai j )  j  , {i = 1, 2,3 ,..., n ) . (6.6)

Onsager symmetry is then guaranteed by the property,

T,o-„{A) =  T<o-*.(-A). (6.7)

This result has been overlooked by a number of recent authors in the field who have simply 
equated the transport coefficient to the conductivity tensor(see for example Beskin et ah, 
1986, Stix, 1992 and Gaetano et ah, 1992) without including the directional tem perature 
components. Their claims of Onsager symmetry as pertaining to the symmetry of the 
conductivity tensor are purely a coincidence with the true thermodynamic form of (6.7) 
in the limit of an isotropic plasma when Ti = Tj.  As Nambu(1995) rightly pointed out, 
the tem perature dependence of the transport coefficients is unim portant for thermally 
isotropic plasmas where there is no distinction between temperatures in different direc
tions and Onsager symmetry reveals itself in this case. However in thermally anisotropic 
plasmas the tem perature dependence of the transport coefficients is crucial to symmetry 
properties. As is well known the definition of fluxes and forces is not unique. The other 
choice tha t is consistent with (6.1) is that fluxes are given by J^ /Ti and forces are the 
electric field E j so that in this case the transport matrix is Lij = a{j /Ti which is in 
fact equivalent to (6.4). We see that the same physics is preserved independent of the 
formulation which it must be of course.

In the tim e reversed state for charged particles in a magnetic field (Bo), all velocities are 
reversed and the symmetry is assured by the change B q —> —B q. The wave vector k 
must also be reversed if the transport coefficients are Fourier transforms. If the medium 
is invariant under spatial inversion then we have even functions of k. For this we must 
bear in mind the reality condition:

T(w,k) = r ( - w ,- k ) ,  (6.8)
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Since the equilibrium distribution function is constructed from the constants of the motion 
then it too should be reversed with respect to the velocity component parallel to the 
ambient magnetic field. According to Onsager’s principle we then have the following 
symmetry if we note the reality condition of (6.8),

L (k, a;, u, B q; /o ( u ))  =  (k, - w ,  - u ,  - B q; fo ( - u ) ) ,

or equivalently from (6.7),

TjCTij (k, w, u, Bo; fo (u)) =  (k, — w, —u, —B q ;  fo (—u)) •

Having discussed the underlying symmetry engrained in the physics of our model we will 
show how these predictions are borne out by our theoretical analyses of the previous two 
chapters. Before doing that we will say a few words about how symmetries can be affected 
by different coordinate representations.

6.2 Spatial Forms For The Plasma Response
We have outlined the symmetry law suitable for our physical situation in terms of an 
abstract tensor notation representing sets of numbers identifying components in one par
ticular coordinate system. However, as Krommes and Hu(1993) point out, which is the 
’right’ coordinate system for displaying Onsager symmetry? Several authors have claimed 
tha t failure to make the correct choice can lead to a violation. This is contrary to one of 
the most fundamental principles of physics, that of covariance, meaning tha t the physical 
content of an appropriately formulated theorem must be independent of the coordinate 
system used to represent it. Covariance and Geometry are deeply intertwined. Krommes 
and Hu(1993) introduced a fully covariant theory whereby the Weinhold metric was cho
sen to geometrise the thermodynamical basis of Onsager symmetry. This led to a tensor 
formalism which showed their generalised Onsager symmetry to be covariant under arbi
trary transformations of the state variables. Although our aim is to present and discuss 
the Onsager symmetries pertinent to the electrical properties of a hot anisotropic plasma, 
we forego the more generalised formalism of Krommes and Hu(1993) and instead, for 
simplicity, we will present the Onsager symmetries of various spatial representations of 
the transport equations given by (6.4). This section is a collection of ideas formulated 
and clarified by work done by myself and D. C. McDonald.

6.2.1 D erivation  O f T he k-Space Form
In deriving the perturbed current density J  (r) of (4.99), we expressed the Electric field 
E  (r) in terms of its Fourier transform E  (k) leading to an explicit form for the conductivity 
in mixed (r,k)-space which we will call the simple form, and in terms of the dummy 
variable k ' this is,
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J (r) =  J  dk'e*'*V « (r, k') •  E (k ') . (6.9)

The wave equation of (4.100) is expressed in r-space but with Xij expressed in the mixed
space. If we Fourier transform the independence then we obtain,

J (r) =  /  dk'e'“ ' "  j  dk"e'‘‘"“ -0'ij (k", k') •  E  ( k ') . (6.10)

We may obtain the Fourier transform of the current density J (k) through the inverse
relation,

J (k) =  ^  /  (r ) , (6.11)

giving.

J (k) =  J  dre-'‘"  J  dk' J  rfk"e‘(‘‘'+“">"â.j (k", k') .  E (k '). (6.12)

The r  integral gives a delta function allowing us to write down a purely k-space form for 
the Fourier coefficient of the perturbed current,

J  (k) =  j  rfk' f  dk’’S (k' +  k" -  k) âij (k", k') « B (k '). (6.13)

Fortunately the ^function allows us to perform the dk" integral without difficulty,

J  (k) =  j  dk'âi j  (k -  k', k') .  B (k '). (6.14)

We may think of k as the wave mode we are measuring and k ' as the mode which is caus
ing the response and so we see that even in Fourier space the plasma response is non-local.

6.2 .2  D erivation  O f T he r-Space Form
Returning to the current density expressed in mixed space given by (6.9), we may invert 
the Fourier transform,

J (r) =  ^  J  j  dk'e*’''*‘> «  (r, r -  r') .  Ë  (k ') , (6.15)

and if we recall that the electric field has been expressed as a sum over its Fourier modes 
then we see that the integral over k ' is simply the Fourier transform of the electric field. 
The r-space form for the current is then,

J (r) =  J  (r, r -  r') .  E (r '). (6.16)

Here r  is the point in space where the response is measured and F is the position of the 
point where the response is from, in other words, the stimulus. This brings about the
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non-local nature of the plasma to perturbing small amplitude EM waves.

6.2 .3  O ther Forms U sed  In T he Literature
In addition to the non-local r-space form derived above, it is conceivable tha t we could 
have postulated other forms which are sensitive to the choice of coordinate system since 
our response tensor or transport m atrix is not of the covariant Weinhold kind. Two 
notable forms which come to mind are the Cartesian form,

J (r) =  J  d r ’a t j  (r, r') .  E (r '), (6.17)

and the Symmetric form,

J (r) =  J  d r ' a i j  ( i  (r +  r '), r -  r') .  E (r '). (6.18)

Following steps similar to those presented above we may derive the associated r — k and 
k-space forms allowing us to construct the following table of spatial representations of the 
plasma response.

This will be shown to be of essence in deducing the symmetry properties of the response 
tensor and for clarifying conflicting reports in the literature. Note tha t we have not been 
able to obtain a clear expression of the plasma response in mixed space for the symmetric

100

Space Tensor Space Plasma Response 1

Cartesian J  (r) =  (2^)31 dr'crfj (r,r') .  E  (r')
À

r Simple J  (r) -  (2^)31 dv'aij (r, r r ' ) . E  (r') I
Symmetric J  ('■) -  (2̂ )3 /  dr'alj ( '+ ' ,r  r') .  E (r')

>

Cartesian J ( r )  =  /d k V )= .(r ,-k ') .E (k ')
r  — k Simple J  (r) =  /  (r, k') .  E (k')

Symmetric J ( r )  =  /r fk e * " 'J (k ) ;r

Cartesian J  (k) =  /  (k, -k ')  .  E  (k')
i:
1;

k Simple J  (k) =  /  dVaij (k -  k', k') .  E (k') 1
Symmetric J  (k) =  /  dk'ff^ (k -  k', .  E  (k')



tensor. This is due to the appearance of r  in both of the arguments of the associated real 
space(r space) form.

6.3 Onsager Symmetries Of The Transport Matrix
We want to look at the symmetries of the transport m atrix in each space. We will separate 
out the spatial variables r  and k  from the set of variables A =  {tu, u, D; fo } which 
reverse sign in the time reversed state. Onsager symmetry is most conveniently expressed 
in Cartesian form,

T'’ (r, F; A) =  ( r ' , r ; - A ) . (6.19)

A look at the table of spatial forms reveals the following connections between r-space
expressions,

H  (r, F; A) =  T (r, r  — F; A) =  H  ^   ̂ , r  -  F; A j  . (6.20)

So as to convert to the Cartesian form we introduce the variable,

td =  r  — F (6.21)

such that,

L (r, r^ ; A) =  H  (r, r  -  r^ ; A) =  T® r^ ; A^ . (6.22)

Similarly if we introduce the variables,

Vd =  r  -  r  , 
r  H- r '

(6.23)

then,

T" (r, A) =  L  ( r  +  ^ , r D ;A ^  =  L" +  y , r -  ■ (6.24)

Now to obtain the symmetry law for each spatial form we may follow a simple prescription. 
We will illustrate this with the simple form of the transport matrix. First of all we equate 
the simple form with the Cartesian form of the tensor,

T (r, r  — F; A) =  T'’ (r ,F ; A ). (6.25)

As a second step we introduce the variables given by (6.23) so as to convert the chosen 
tensor to Cartesian form,
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Z(r,rD; A) =  L*" (r,r -  Fd; A ). (6.26) J

Next we apply the Onsager symmetry law of (6.19), ;
I

L (r,rp; A) =  (r -  rD ,r;- A ) . (6.27) |

Finally we convert the time reversed result back to simple form by letting r =  r — rp  and 4
r' =  r giving the Onsager symmetry law for the simple form in r-space, î

L  (r, vd\ A) =  (r -  r^ , - r ^ ;  - A ) . (6.28)

Following the same procedure we may arrive at the Onsager symmetry law for the sym
metric form in r-space,

(r,rD ; A) — ( r ,-F i:) ;-A ) . (6.29)

To find the symmetry laws in k-space there is another simple recipe. We need only Fourier |
transform the symmetry law expressed in r-space and find a suitable change of variables |
which will equate the Fourier integrals. Again, we will use the simple form as an example. î

So, Fourier transforming both sides of (6.28) we have,

f  dke''^"’ J  dkDe‘'‘^" '^L  (k, kc; A) =  /  j  - A ) ,

=  J  f (k, -A )(6.30)

We may make the left and right hand sides identically equal by the choice of variables,

k =  /c
k^) =  —/c '— (6.31)

and so the Onsager symmetry law in k-space is,

L  (k, k£>; A) =  —L^ (k, ~ k  -  k^; - A ) . (6.32)

Following the same procedure we may arrive at the Onsager symmetry law for the sym
metric form in r-space,

^k, kjDj A  ̂ =  ^k, —kj); —A  ̂ , (6.33)

and for the Cartesian form,

T' (k, k'; A) =  (k% k; -  A ). (6.34)

102



We may now sum up the Onsager symmetry laws in the following table,

Space Tensor Space Onsager Symmetry Law

r
Cartesian

Simple
Symmetric

(r, r'; A) =  (r', r; —A)
L (r, r^ ; A) =  (r -  icd, - y d ', -A ) 

(r, rn ; A) =  (r, - r ^ ; - A )

k
Cartesian

Simple
Symmetric

(k ,k ';A ) =  L^t (k ',k ;-A )
L  (k, k-D] A) =  ~L^  (k, —k — k^»; — A) 

^k, kf)^ A  ̂ =  ^k, —kjp; — A^

In essence, each of these symmetry laws is equivalent in that they are simply different 
spatial representations of (6.7). Onsager symmetry is then invariant under arbitrary trans
formations of the coordinates revealing the covariant nature of the underlying physics.

We are now in a position to investigate the symmetry properties of our mixed space 
plasma response for the simple form of the conductivity tensor.

6.4 Demonstration Of Onsager Symmetry For Our 
Conductivity Tensor

In the previous section we derived the Onsager reciprocal relations for the thermodynamic 
transport m atrix in real space and in momentum space. However, when we calculated 
the response of the plasma in chapters 3 and 4, we obtained a mixed space form for the 
conductivity tensor. In order to investigate the thermodynamic properties of our result 
using the symmetry laws of the last section, we first need to transform our transport 
m atrix to real space or to momentum space. If we look at the form of the conductivity 
tensor in (4.49) we see that it has the general form.

CT. (6.35)

with.
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+  T  e
z n o (o )Y

(6.36)

If we introduce the Heaviside step function,

0(A:i) =
0 fo r  ki < 0,
1 fo r  ki > 0,

then we may write,

and here.

Cfij (æ, k) =  /  dkxé^^^^cTij (^i, k ) , 
J  — OO

(6.37)

(6.38)

o'ij (^1, k) =  fij  ( t i ,k )  $  (fci). (6.39)

This is the momentum space form of the conductivity tensor. Onsager symmetry is most 
easily demonstrated using the form of the conductivity tensor expressed algebraically in 
terms of and (i in (4.49),

. , ( . , k )  =  - ^ g ( l _ | , e 3 3

+  (6.40)

with.

^ I ,A , il \l[ -  f /,
Vii = - a [(2A + Ç) h  - A, - i f  [/; -  f /,] A ,

«1 k  - A-2 7/As
(6.41)

For the simple form of the conductivity tensor, then the symmetry relation in k-space is,

T (k, ku; A) =  —L f  (k, —k — kp; —A ) .

When applying this to (6.39) then we need to also consider that ki itself changes sign 
under time reversal as it is a function of the gyrofrequency(Oo)- Our symmetry relation 
is then,

TjŒij [/si(Oo), A] — —TiCTj- [A)i(—fio),  ~-k± — jt i (—Oq); —A ] . (6 .42)

So the procedure for obtaining the right hand side involves the following four steps:
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• Firstly, talce aij [A;i(no), and perform the coordinate transformation,

^i(^o) —̂ Ho),
k± —> —kj_ — ki(^—Oq).

• Secondly, perform the time reversal transformation,

t —> —i, Bq —̂ —Bo, w —> —ÜJ.

• Thirdly, we take the complex conjugate i ~i.

• Finally transpose the elements of the resulting tensor.

We may clarify the steps in the analysis by introducing C as a coordinate transform
operator and T as a time reversal transform operator so that,

C {(Tij [A:i(rio), ks.\ A]} =  aij Ho), —k± — ^ i(“ f7o); A], (6.4-3)

and,

'T {aij [fci(no), fci; A]} =  aij [ki{~üo), k±_', - A ] . (6.44)

Let us make the coordinate transform first. Now k±_ appears only in a  and ^  which are
themselves constituents of A and pi. They transform as follows,

C {cx} =  [-A;i -  fci(-Oo)]px,

~â =  -kx.pL- 

The second operation has the following effect,

T  [w] =  — w, 

T  [Oo] — 

T  [px] =  

T  [(o] =  “ Co,

=  -A:i,

"r [^] =

T  [r] =  T .  (6.45)
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The anisotropic factors have the following properties under time reversal and subsequent 
complex conjugation,

T[Al ]  =  A ,,

T[ Al ]  =  - A 3,

T[At ]  = A3. (6.46)

The combined operations of coordinate transformation and also tim e reversal give the 
pleasing symmetry property.

T  C { a } =  (i,

= a .

=

—  6̂ »
(6.47)

As A and p are left unchanged by the transforms, then only the elements of the velocity 
tensor are affected by the coordinate and time-reversal transformations.

We may now write down,

icoUJp T\\
w Tj_ \ T,

CqUjIL

11 — I G33

IÜq (0) "y

with.

(6.48)

(6.49)

^I,A , - i l  [11 -  g;. Ai
il [/; -  |T,] Ai [(2A +  x )  7; — 2nl'i Ai î |  [/,' -  g/f] Ag . (6.50)

p/A j -i%  k  - îiAz
I r ' â i v t j ]

Comparison of aij in (4.49) with T C {cr^} reveals the relation,

aij [A;i(no), A:j_; A] — —cr’ji [A:i(—S7o), —k± — A:i(—Oq); — A].
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Note that this is not the same as the original Onsager symmetry relation of (6.42) as 
we need to prefix both sides of (6.51) by directional temperature components. However, 
the fact tha t the above relation holds, independent of the effects of thermal anisotropy, 
means tha t an isotropic plasma(T; =  Tj), supporting EM waves in an inhomogeneous 
magnetic field, obeys the Onsager reciprocal relations. This property appears not to have 
been reported in the literature within the present context of thermodynamic fluxes and 
forces in an inhomogeneous magnetic field. The most recent investigation of the thermo
dynamic properties of a thermally anisotropic but homogeneous plasma was undertaken 
by Nambu(1995) who reported that the Onsager reciprocal relations are violated for an 
anisotropic plasma supporting EM waves.

We have revealed a novel aspect of EM wave propagation in inhomogeneous plasmas. 
Onsager symmetry is still present for an inhomogeneous plasma provided it is in thermal 
equilibrium (having an isotropic Maxwellian distribution). An anisotropic plasma will 
violate Onsager symmetry since there will be a directional dependence on tem perature 
(Ti + Tj).
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Chapter 7 

A Study Of The Integro-Differential 
Wave Equation (IDE)

In chapter 4 we derived the non-local IDE for small amplitude EM waves propagating 
through a hot, thermally anisotropic plasma immersed in a linearly inhomogeneous mag
netic field. The response of the plasma is expressed through the current density (J) which 
is related to the electric field(E) by the response function, the plasma conductivity((7*j). In 
chapter 6 we indicated that the plasma response may be written in various spatial forms 
each with its own associated Onsager symmetry law. In this chapter we will present 
a study of the IDE in both real(r) space and momentum(k) space, indicating various 
methods of solution.

7.1 The IDE And Reduction To DDEs
In essence (4.100) is an integro-differential equation for the local electric field in real 
space(although in terms of the non-local electric field it is not very amenable to analytic 
solution). If we are able to obtain a solution to the IDE then we will have a global 
treatm ent of wave-wave and wave-particle interactions in the plasma from which we may 
extract information related to energy transport. This is vital for a comparison with ex
perimental measurements.

In the last chapter we obtained an expression for the non-local response of the plasma in 
terms of the conductivity tensor in real space (6.16). We may now write down the wave 
equation (4.100) solely in real space,

4 v ^ E  (r) -  4  V (V  .  E (r)) + E{v )  + j f - f  dr'xa  (r, r -  r') .  E (r') =  0. (7.1)
LÜ W  yZ /'K  j  J
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7.1 .1  M otivation  For A  N ew  A pproxim ation
A few years ago Sauter and Vaclavik(1992) presented a numerical solution of (7.1) using 
an elaborate finite element code. In order to obtain the non-local, real space response, 
they derived the conductivity tensor for a multiple ion species, isotropic plasma immersed 
in a linear magnetic field gradient and with spatially varying density and tem perature 
profiles. In order to give a flavour of the mathematical form of the non-local response 
function in (7.1) we reproduce here a small excerpt from a recent publication which can 
be found at the end of this chapter.

The z-component of the current density arising from the component of the conductivity 
tensor is,

J ,{x )  = J  d k 'é '‘'^ a , , (x ,k ')E ,{ k ') .  (7.2)

Inversion of the Fourier transform of the electric field gives the following ID  analogue of 
(7.11),

Jz{x) ~  J  ^  ^  dx'azz{x,x ~  x')Ez{x'). (7.3)

W ith reference to (4.62) we may identify the non-local, real space resonant response 
of an isotropic plasma at the fundamental{n =  1) of the gyrofrequency in a linearly 
inhomogeneous magnetic field.

kx{k}_ -T k i)p \

As a double integral over an infinite half-plane, this is not a very suitable form for numeri
cal solution or for further analysis. In this thesis we will be concerned with approximations 
to the non-local electric field which allow a reduction in the complexity of the IDEs result
ing from non-local response functions of the above form. Sauter and Vaclavik(1992) took 
a different path and pursued the theory a little further using the integral representation 
of the modified Bessel function, which for the fundamental is,

1
7i(z) =  -  re " " °= ^ c o sW .

7T Jo

The response function then involves the exponential of a quadratic in k' and ki. The 
transformation k' = K  — ~ki switches to the principle axes of this quadratic, separating
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the resulting K  and A^i-integrals. This, combined with the generalised recurrence relation 
for the %-function,

crz(C )
dC

gives us the non-local, real space response function.

6qL0 i f
a ^ ^ [ x , x - x )  =  —  /

lLO\/27r 7T Jo

X

X

\ / l  — cos 9

(7.5)
a ap± ap±

with a — -f- 2 cos 9 +  4A;jjT̂ . This expression for the non-local, real space response
function is a specialisation of the result of Sauter and Vaclavik(1992) to the less general 
case of a linearly inhomogeneous plasma with constant density and tem perature profiles.
We have reduced the response function from a double integral over an infinite half-plane 
to a single, finite integral. We see that the plasma response described by (6.18) now 
involves a double integral rather than the triple integral which we would have in the case 
of the plasma response calculated from the mixed form of the response function (6.17).
Although, on the surface, it appears that progress has been made, in practice it is difficult 
to see how use can be made of further approximations. For example it is not obvious how 
small Larmor radius expansions may be developed here whereas a simple procedure is 
available for expanding the modified Bessel functions to any order in the mixed space 
form of the response function (Cairns et ah, 1991). In addition, a more complex scenario 
such as a thermally anisotropic plasma will introduce new terms into the mixed space 
response function which is unlikely to reduce in the simple way described above.

For these reasons, we will develop a more general form of an existing approximation 
to the wave behaviour, known as, ’the fast wave approximation’ (Kay et al., 1988, and 
Lashmore-Davies et ah, 1988). The fast wave approximation retains all of the information 
associated with the propagation of the fast wave even in the presence of mode conversion 
layers since it utilises the fact that interacting wave modes are degenerate in a linear j
mode conversion process. We hope this will provide more insight into the physics of the 
non-local interactions of EM waves with high energy, large Larmor radius particles.

7.2 The IDE, Dispersion Relations And The Effec
tive Conductivity Tensor

We may Fourier transform the IDE(4.100) so as to obtain a dispersion relation(in mo
mentum space) whose roots give the modes of oscillation of the plasma. We may then
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infer the group velocity and phase velocity of these modes so as to describe the spatial 
and temporal dispersion characteristics of the plasma.

As a first step we express the electric field E (r) in the wave equation in terms of its Fourier 
modes as we did in (3.11) so that V =  zk. If, in addition, we use the momentum space 
representation of the plasma response (6.14) and note the definitions of the refractive 
index and the dielectric tensor in chapter 2, then we may write down the fully Fourier- 
transformed wave equation,

J  I  [nn — • E  (k) -f J  dk'dj  (w, k — k', k') • E  ( k ') |  =  0. (7.6)

This may be solved to give a local dispersion relation which describes the modes of os
cillation of the inhomogeneous plasma. We note that the coefficients of the electric field 
appear as kernels inside integrals and so plane waves are not the eigenfunctions of the 
linear problem. We will show that this is indeed the case when we come to a numerical 
study of our theory in chapter 8. Generally, integral equations like the one above require 
numerical solution since it is a non-algebraic integral equation. Furthermore, the con
volution theorem of (2.25), valid for a homogeneous plasma, is now not the case. This 
is a direct consequence of the introduction of plasma inhomogeneity which transforms 
the nature of the wave-particle interactions meaning that the response function becomes 
spatially dependent, cr ĵ(w, k) —> cr^^(r,w, k). It has been shown(Beskin et al., 1986) that, 
even in this case, the following modified convolution theorem may be used,

’D{k) = e f { x , k ) . E { k ) ,

for a single mode k propagating through a plasma with a I D  inhomogeneity along x. In 
terms of the effective dielectric tensor(e®- -̂^), the following algebraic dispersion relation,

Det\kikj — k^6ij -f (a;, A:) | — 0, (7.7)

can be obtained(Beskin et al., 1986) within the framework of the geometrical optics ap- 
proximation(Bernstein, 1975). This approach is able to give us information about the 
attenuation of an incident EM wave when passing through a volume of plasma since we 
may deduce the change in the wave-vector with position. Integration of the imaginary 
part of the wave-vector across a section of the plasma then gives an estimate of the opacity 
or optical depth(r) of the plasma,

T = J I m{k{x ) }dx ,  (7.8)

from which we may quantify the wave transmission(T ~
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7.2.1 A  C ritique O f T he E ffective Tensor
In recent years a number of authors have discussed at length the relevance of the effective 
dielectric tensor in the study of inhomogeneous plasmas(see for example Beskin(1986), 
Nambu(1989), Michabeli(1991) and Istomin(1993)). Reports have often been conflicting 
and this is not surprising when one considers the complexity of the problem. Beskin et 
al.(1986) have presented a method of obtaining the effective conductivity tensor. They 
showed that the effective t e n s o r i s  seen to comprise an infinite sum of corrections 
to the standard conductivity tensor(<j) obtained as the response of a plasma to a plane 
wave,

o o i / „ - \ n /  f ) 2  \  ^

( a r . a k j
We have included the dot product in the denominator which Beskin et al.(1986) left 
out (they forgot to include the cross terms in the sum). In addition, we have noted 5
Michabeli’s correction(1991) which notes that,

(>■. k) # a-n ■ ai.n (r, k) •d r  •  d k )  \  •  dk^

Beskin et al.(1986) quoted the right hand side and then went on to claim(erroneously) 
tha t all orders of corrections are required in the dispersion relation (7.7) for a study of an 
inhomogeneous plasma due to extreme variations of the conductivity (on the scale of the 
wavelength) which arise in the neighbourhood of resonance and cut-off surfaces. However, 
as Nambu(1989) demonstrated, the standard WKB treatm ent (Bernstein, 1975) of a weak 
inhomogeneity utilises only the first two terms of the expansion,

(r, k) -  cry (r, k) +  if  ■ (7-10)

Higher order terms are not included since they lead to a violation of the geometrical op
tics approximation. For more strenuous variations of the conductivity tensor we need to 
use a multi-mode theory to determine the plasma response. Furthermore, Nambu(1989) 
reiterated Bernstein’s observations that first order corrections to the standard response 
are related to changes in the ray path in the inhomogeneous plasma and are not di
rectly related to wave growth or damping as claimed by Beskin et al.(1986) and also by 
Istomin(1993). In contrast, true dissipation is due to the anti-Hermitian part of the con- |
ductivity tensor (see for example Shafranov, 1962 or Stix, 1992).

The effective tensor has recently been derived in a more concise way by Michabeli(1991).
We will repeat a part of his calculation so as to bring to light some of the properties of 
the mixed form of the conductivity tensor which we have derived in chapter 4.

As our starting point let us take the simple form for the non-local response of the plasma 
in real space as given by (6.16). If we Fourier transform the non-local second argument 
of the conductivity tensor,
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aij ( r , r  -  r') =  J  ( r ,k ') ,

then we may express the real space current density in terms of the mixed tensor as follows,

J (r) =  ^  /  dv’ j  (r, k') .  E (r '). (7.11)

We may then write the non-local electric field in terms of its Fourier modes as we did in 
chapter 3 using (3.11) so that,

J (r) =  J  dr' j  rfke**' J  dk'e‘C‘'-'‘)’("-'')o-y (r, k') .  Ë  (k) .

A key theme is the symmetrisation of the position vectors about a point (.  This is most
easily achieved through the change of variables,

)? =  r ' - r ,  1 r r  =  C -  i / / 2 ,
C =  J l r '  =  C +  i / / 2 .

In this symmetric form, the plasma response at a point (  =  r  is,

J (r) =  ^  J d r i J  rfke-*'"- J  (r -  ^ k') .  E  ( k ) .

Writing the plasma response in the familiar form of (3.38), we may identify the effective 
tensor as,

a f  (r, k)  = - ^ j d n j  ( r - | , k ' ) ,  (7.12)

in agreement with equation (21) of Beskin et al.(1986). We see that this representation 
of the effective tensor is simply an integral transform which symmetrises the standard 
response of the plasma and has nothing at all to do with the inclusion of extra energy- 
related terms as claimed by Beskin et al.(1986).

We now use this integral transform to symmetrise our mixed space representation of the 
conductivity tensor to see how its symmetry properties are affected. This is most easily 
done by writing our response function (4.62) in the following symbolic form,

/■CO

<Tij (x, k') = Cê33 + D P  dki (fci, k') ,

where C = — (l — and D  = in"fo) • Note that we are using a dummy variable
for the wave-vector and also that we are considering a ID  inhomogeneity along x. Now,

cry {x -  &') =  Cê33 +  D  a ie '" ') ' -* )* ,-  (fci, k') ,
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and so we may construct the effective tensor using (7.12)

<r f { x , kx )  = f j d v j  dVe-‘''4-'=')»ê33 

^  j d v j  dk' r  d h é ’‘̂ '‘g i j { h ,k ' ) r ' i ' ‘̂ - ' ‘' - ' ^ ) \  
J d k '  I f  dkie '’‘̂ ‘'gij {k i ,k ')  6 (kj_ -  k' -

27T

=  C g33 4- D

Cê33 + D I f  ( k i , k x  -  f )  ,

(7.13)

If we make this change in our mixed space form for the response function in (4.62) then,

(a;, A;±) =

+

X

^ X X

V x y

Vxz =

Vyx

Vyy

Vyz I'l

+ 1^1 PÏ) I  I

(^x-^)px

(7.14)

and here, A =  |  {iff — \ k f j  p \ .  The effective tensor is then simply the symmetrised with 
respect to x form of the mixed space tensor. In other words, the integral transform of 
(7.12) does not alter the physics of the wave-particle interaction(it does not separate out 
resonant particle effects for example), and instead simply re-expresses the conductivity 
in terms of a different (symmetrised) coordinate system. We note tha t under the tim e 
reversal transformation, t —t, it may be shown(with reference to chapter 6) tha t the 
symmetrised tensor, derived in the above manner, does indeed satisfy Onsager symmetry 
for an isotropic plasma but not in an anisotropic plasma for reasons described in the last
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chapter. This provides yet another example of the invariance of Onsager symmetry to 
arbitrary changes of the coordinate system.

It will prove to be instructive to expand the conductivity tensor of (7.13) in a Taylor 
series about a local mode A;,

4 -  IT - 2 ^ - 7  —x2 /  dk'

so tha t we consider only the perturbative effects of a single mode. If we notice tha t in 
d_ 

d x(7.14) each ik\ =  A  then we may equivalently express the effective tensor as,

a f

This is precisely the summation form of the effective tensor quoted by Beskin et al.(1986) 
and is the ID  analogue of (7.9). As we have already mentioned, the usual geometric 
optics approximation is valid for the first two terms of the series. Higher order terms 
are irrelevant to a discussion of a weak inhomogeneity. This lies at the heart of many 
of the misconceptions in the literature(in particular Beskin et al.(1986) and Istomin et 
al.(1994)). The effective tensor obtained by the Beskin prescription is then just a sym
metric representation of the plasma response to a single local wave mode.

A fundamental problem with writing the effective tensor in terms of the response to a 
single mode as above is tha t the single mode character of WKB theory excludes the pos
sibility of studying resonant reflection and linear mode conversion phenomena since these 
require the existence of more than one wave. So WKB theories are generally only able 
to describe wave absorption effects. A global treatm ent of the wave-particle and linear 
wave-wave interactions in the plasma requires a full wave(multi-mode) description. In the 
next section we will present a study of the full IDE.

7.2 .2  T h e N on-L ocal R esp on se A s A n Order Sum m ation
As mentioned in chapter 2, Cairns et al.(1991) have shown how energy-conserving ODEs 
may be constructed from a multi-mode theory by constructing spatial derivatives of the 
field(E) and of the response function(Z). In what follows, we will derive an effective 
dielectric tensor comprising derivatives of the response function(like Beskin et al., 1986) 
but one which also provides the field derivatives which are known to be vital for energy 
conservation(Swanson, 1985).

In an interaction region, the electric field will have a phase angle which will not vary 
appreciably but an amplitude which is predicted to have substantial variation due to 
collisionless absorption from wave-particle and linear wave-wave energy exchanges. We
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now make an approximation to the unknown, non-local electric field guided by the above a 
priori physics which is similar in spirit to the Born approximation of quantum-mechanical 
scattering theory (see for example Harding, 1968). We will let the phase angle be equal 
to the product of the local wave-vector(ko) which may be evaluated from a cold plasma 
model and the non-local position vector(r'). We will express the amplitude as a Taylor 
series expansion,

/ ( 4  =  E > - o r ^ .  (7.15)

Let us expand about a local position vector r. A suitable form for the non-local electric 
field is then.

E (r') = f ;  1  (r' -  r)"
dv'' (7.16)

The zero order case(n =  0) is the fast wave approximation which we have used in a recent 
publication(Cairns et ah, 1995). Equation (7.16) represents a generalisation of the ap
proximation to include effects due to amplitude variation. We will show how these effects 
bring about the odd-order derivatives of the electric field which are required for energy 
conservation.

We may substitute this form for the electric field into our expression for the non-local 
response of the plasma given by (7.11),

(r) =  E  (r' -  r)" /  (r, k') .

If we note tha t we can identify each ir' with an operator 5ko by differentiating under the
integral sign, then we may take the term  (r' — r)" outside the integrals as follows,

Jn (r) =  E  { - i d u  -  r)" /  * '  /  (r, k') .

The r'-integral is 21̂ 8 (ko — k') and the delta function allows us to easily perform the
k'-integral giving,

J - ("■) =  E  A  -  r)" my (r, k„) .
n = 0

We may use Leibnitz’ theorem for order differentiation of a product,

f ^ H x ) v { x ) ]  =  t  ( f j  { ( ” )  =

to obtain the following identity,
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( - i ô k „  -  r)" [cTij (r, k o )  e * - ' - ]  =  ( - i ) "
Ô k r

The plasma response is then,

J f ri -  V  ko) d-E o  (r)
J n W - 2 ^  gko» dr- '' ■

n —0 ni (7.18)

In the spirit of the approximation to the unknown non-local electric field in (7.16) we 
approximate the local electric field by,

E (r) =  Eo (r) e'"»", (7.19)

such that,

Eo (r) =  E (r) e"'''"",

Leibnitz’ theorem(7.17) then gives us,

^ ^ = è f ^ )  H k o ) ^ - “»

(7.20)

a"-'=E(r)

k= 0  \ d r i—k

Finally if we substitute this into our expression for the non-local response given by (7.18) 
then we obtain the following summation form for the non-local response,

<^"-'=E(r)
 ̂ ^  »! 8kn"n = 0 . S W

(7.21)

Let us write down the non-local response to second order(?z =  2) in the corrections to the 
unknown electric field amplitude.

Jg (r) =  cTij (r, ko) • E (r)
.a<Jij(r,ko)
'  ako •
1 (r, ko)
2 akn^

dE(r)
dr
cPE (r)

ikoE(r)

2 i k o ^ ^ - k ^ E ( r )
dr

(7.22)

We see tha t the method provided above gives us an easy way of obtaining the non-local 
response of the plasma up to an order correction of the field amplitude. In the 
order we note tha t we recover the exact behaviour of the electric field amplitude although 
we are approximating its phase behaviour since we are considering only a single mode(ko). 
Note also tha t our approximation provides the derivatives of the field as well as of the
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response function. As we mentioned briefly in chapter 2 the odd-order derivatives of the 
electric field have been shown to be necessary for energy conservation(Swanson, 1985) 
and these appear naturally from this method.

An alternative view may be taken so as to retain the exact nature of the unknown non
local electric field behaviour while approximating the phase. Returning then to the exact 
non-local response in real space given by (7.11), we may expand the conductivity tensor 
in a Taylor series about a local wave-mode(ko),

a y  (r, k') = E  A  (k' -  ko)“
n = 0 n\

The non-local response is then,

Mr) = t jf^Jdr 'Jdk'(W-kor

ôko”

dko"

(7.23)

•  E (r').

If we now introduce the change of variable k i =  k ' — ko and also associate each i (ki 4- ko) 
with an operator by differentiating under the integral, then we are able to write the 
response as,

J - (r) =  E  J -  ko)" E (r')l e*»*''-*'') j  dkxe’“' ‘(‘- ‘-').

The ki-integral is 27r8 (r — r') and again the r'-integral may be performed in a straight
forward way to give,

J . (r) = E  k  • [(-»ar -  ko)" E (r)].7T n\

The Binomial theorem.

( a +  6)" =  ; ^  ,
k=0

n ni
k j  {n — k)\k\ ’

(7.24)

allows us to write.

k=0

n
{—idr — ko)” =  (—%)” X) ( 7 1 (—̂ ko)^ ^E (r)

and so the plasma response becomes,

{ - i f  d^aij {r,ko)
(y) = X

n = 0 ni w
(7.25)

which is equivalent to (7.21). This is a surprising result. Namely that Taylor expansion 
of the unknown electric field E (r') about a local position r  gives a non-local response J ( r )
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identical to one obtained by a Taylor expansion of the conductivity tensor k') about 
a local wave-mode (ko). An explanation for this lies again in the spatial representation. 
As we are starting from a mixed space description, the dependence of the phase angle 
on both r  and also on k' means that there will be an intrinsic symmetry between the 
differential forms created when we differentiate under the integral sign.

Furthermore, the non-local response is now an operator acting on the local electric field 
rather than convolution integrals over the non-local field. The non-local kernels are now 
embedded in the electric field operator and so the non-local response leads to ODEs rather 
than to IDEs. W ith this in mind we may use (7.25) to write the wave equation (3.1) as 
follows.

(-«)" d^Xij (r, ko) ^  f n

n = 0 n\ ^kf
E ( r )  = 0 ,

or, equivalently.

with

3V ^ - ^ V V  +  5i, +  x 'f ( r ,k o ) • E ( r )  =  0, (7.26)

(7.27)
n = 0  j t = o

We note tha t each zko has come from a spatial derivative of the electric field reminiscent 
of the work of Cairns et al.(1991). We will now apply our wave equation (7.26) to a case 
of topical interest.

7.2 .3  R ed u ction  To O D Es
The simplest hot plasma wave-mode which our IDE can describe is the high frequency (w 
|De|) ordinary EM mode(O-mode) propagating perpendicularly across the ambient mag
netic field, or equivalently along the direction of the magnetic field inhomogeneity, in an 
isotropic plasma. In this case we set =  0 and note that only the element of the sus
ceptibility tensor will couple to the 0-m ode electric held component (r). Furthermore, 
we may approximate the non-resonant sum by the cold plasma electron susceptibility 
xTz^ =  —Wpg /  since for high frequency waves we may neglect terms of order mg /  rm . 
This may be interpreted physically as a sea of electrons intermingling an immobile ion 
background. In the resonant terms we retain only the contribution from the gyroresonant 
electrons. If we do all this then the 0-m ode in the vicinity of the fundamental(/ = 1 )  
gyrorésonance is described by.

w , <P
ujP up- dx^ % ( 4 + E

V- (-* )"  (^4'o)
n —0 n\ E

- f e = 0
k ] ^   ̂ dx^-^ Œz (a;) =  0,
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where the resonant part of the susceptibility is denoted by an R. To 2”  ̂ order(n =  2),

W dx^ J E ,{ x )

dXzz (*, ko) _  j^d'^xZ (*. ko)
dko dkl

1 (æ, ko) <PEz (x)
2 ^^0

The resonant susceptibility from (4.62) is given by,

dEz (x) 
dx

0 .

x S  (^, ko) =  ^  Ji (A) e - \

(7.28)

(7.29)

with A =  A&o (&o +  &i) /3j. We will also require the first and second derivatives of x â  with 
respect to ko- Noting that,

then.

dx^z i^ ,ko)  _  ^
ôfco "  n§, X

X | — (&o +  -fci) f l lh  (A) e“  ̂+  {ko + -fci) p ,— j ,
and,

^ Xzz ^o) _  /7k

+

+  (^0 +  f l )  P 

P e ~ ‘̂  {ko +  2 ^ l)  P

Il (A) ,-A

<̂ Ii (A) 
dX

+ (̂ o + ifci)

A first step towards a simplification of this equation is to use the recurrence relation which 
relates modified Bessel functions to their derivatives.

d/((A)
dX fi - i  (^) — (/ )̂ • (7.30)
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We then have,

d ii (A) 
d \  

d 'A (A ) 
dA2

h  (A), 

( l  -  f  )  I l (A).

Substitution of these relations into our expressions for the derivatives of the resonant 
susceptibilities gives.

dXzz ^o)
d k o

d^xfz  (a;, feo)

iLoj^
%  AO

iLuil

{ko 4- l^ i)

5e AO
I i ( A ) e - \

Il (A) e - \  (7,31)

(7.32)

We may now write out explicitly our 2“'* order non-local 0-mode using (7.29), (7.31) and 
(7.32) in (7.28),

W,pe

L0“ ijp dx^■ ' ' r . W  + o f  i ' »
X =  C(.7.33)

Notice the appearance of the odd-order derivative of the electric field. We would like to 
show how we may recover the result obtained by Cairns et al.(1991) in the limit of small 
gyroradius charged particles where A <C 1. Using A as a small expansion parameter, we 
may expand the modified Bessel function to order A,

A W
A

^  h i - A )  4 -0  (a4  . (7.34)

The 0-m ode equation is then.

I _
dx"̂ dx"̂

Cairns et al.(1991) showed that the integral part of the response gives a plasma dispersion 
function(Z-function),

Jo ip \ p j

The wave-numbers ko^s and k f s  may then be associated with differential operators which 
act on the electric held and the %-function respectively.
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=  ' i

In accordance with this prescription we obtain the ODE,

1 6?
Ez (a;) — Lpe p e

Oe

(PEz (x ) f  x \  dEz (æ) dZ {x j  p^ ) 
'Z

dx“̂ + dx dx =  0 ,

which may be w ritten in the following equivalent form for the 0-m ode at perpendicular 
incidence to the fundamental gyrorésonance in a hot isotropic plasma,

P  d
dx

1 Lpe ^pe 2j dP , (z)
dx + Ez (æ) =  0, (7.35)

reproducing exactly equation (44) of Cairns et al.(1991). The extra terms associated with 
the large gyroradius non-locality have dropped out in the limit of small gyroradius. This 
gives us a glimpse of how higher order corrections in the effective tensor relate to the 
inhomogeneity. Particles of high energy have large gyroradii and thus sample the non
local fields over an appreciable layer of the plasma and are therefore more sensitive to the 
effects of the inhomogeneity. Conversely, low energy particles sample locally and do not 
see the effects of inhomogeneity. So it is quite natural that the extra corrections due to 
the inhomogeneity become negligible for low energy particles. The idea of locally-uniform 
effects in a globally non-uniform theory crops up often in physics. As an example consider 
the propagation of light near a large mass. According to the general theory of relativity, 
a large enough mass may cause the light to refract on a global scale although locally the 
light is seen to propagate linearly. Such gravitational lensing is now an intrinsic part of 
modern cosmology and astrophysics.

7.3 The Fast Wave ODE
In chapter 1 we described how the fast wave is a suitable EM wave mode for auxiliary 
heating of a hot Tokamak plasma. It is accessible to the interaction regions subject only 
to the restraint that the plasma density be sufficiently high(which we have shown to be 
the case in a JE T  plasma). We are now in a position to use our non-local wave equation 
(7.26) to derive an ODE describing the fast wave.

To zeroth order our wave equation(7.26) is.

V"E (r) _  __V  (V .  E (r)) -f E (r) + (r, ko) .  E (r) =  0.
w (7.36)
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In the ion cyclotron range of frequencies then the electrons have effectively zero inertia in 
comparison to the ions and so in a characteristic time equal to a few times the inverse of 
the ion gyrofrequency(c± their motion along the ambient magnetic field results in
an electric field due to charge separation. This field shorts out any pre-existing electric 
field. In our calculation we set ~  0 allowing us to write down equations for the com
ponents Ex and Ey of the wave electric field due to the remaining x,y-manifold. This is 
most easily done as follows.

Let us assume the following WKB form for the local electric field, which is relevant to 
EM wave propagation in the x  — z plane of a tokamak, with inhomogeneity along the 
x-direction,

E(r)  =  5 ^

SO tha t we may identify the operator,

We may then infer the following,

V ( V . E ( r ) l  =
dx"̂

V ( V . E ( r ) ) „  =  0.

If we recall the definitions of the dielectric tensor and also the refractive index then we 
have the following wave equations for the wave electric field.

(r, ko) -  n^) Da; (r) +  (r, ko) Dy (r) =  0, (7.37)

up dx^
(cyy (r, ko) -  Mj|) Ey (f) +  (r) +  (r, ko) E^ (r) =  0. (7.38)

From (7.38) we obtain.

(r) =  (r ) , (7.39)
(1*5 ko) — nyj

which gives the wave polarisation relating transverse and longitudinal components of the 
field as described in chapter 2. We use this to substitute for E^ in (7.38) giving the 
following 2'^̂  order ODE for the fast wave electric field,
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■ E s y  (r) +  V  (r, ko) Ey (r) =  0, (7.40)

whose wave potential is defined by,

^  (r, ko) -  rzji) (eyy (r, ko) -  nji) -  ea;y (r, ko) €yo7 (r, ko)

V  is the non-local fast wave potential which has folded into it all of the effects of plasma 
anisotropy and inhomogeneity. Although our neglect of the shear Alfven wave(the zero 
e“ inertia approximation), means that we cannot describe the effects of this mode, our 
approximation does describe the effects of the mode-converted hot plasma mode(the ion 
hybrid wave) since the fast wave potential is inclusive of the amount of incident energy 
transferred to this mode. Since it is possible to assign a conservation law to ODEs of the 
above form, we may adequately describe the transport of energy carried by the fast wave

7.3.1 T he C onservation  R elation  For T he Fast W ave
If we neglect the propagation of the shear Alfven wave as described in the last section we 
expect tha t the generalised IDE of (7.1) will have the following general non-local form,

d f f  {x) 
dx“̂

The complex conjugate is.

- f  J  dx'G {x ,x  ~  x') (f){x') = 0. (7.42)

^ ^ 2^^ + J  dx'G* (x^ X — x') (j)* {x') =  0. (7.43)

We now follow a well understood procedure for determining the conservation equation 
whereby we calculate <^*x(7.42) —̂ x(7.43). For ease of notation let us introduce, (f){x) — 
(f)x and df{x) /dx  = We then obtain,

f*D^(f>x -  + J  dx' [4>IG (æ, X -  x') fx'  -  fxG* (æ, x -  x') =  0.

The following identity for differentiation of products,

then gives us the complex conservation law for our ODE,

D i f l D f x  — fxDc/Q +  J  dx' [ f lG  {x, x — x') fx'  -  fxG* (æ, x  -  x') =  0. (7.44)
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It may be shown that,

7m =  2D (7m {(^:D(^,}),

and so the conservation law for the imaginary part of (7.4-4) is given by,

2D (7m { (j fD fx})  +  7m J  dx' [ f lG  {x ,x  — x') <f)x> — fxG* {x, x — x') fl,] = 0. (7.45)

If we integrate over all space then we may find the total power absorbed,

2 [7m +  E n  J  dx J  dx' [ f lG  (x, x — x') 4>x> -  (æ, x — x') fl,] — 0,

and if we interchange x and x' in the second term  in the integral then we find,

2 [7m {(f>lD(/)x}]f^ + I m  J  dx J  dx' [ f lG  (æ, x -  x') cf)x> -  f lG* {x -  x', x) = 0.

At this point we may introduce a new complex function,

H  {xyx') = G (æ, X — x') — G* {x — æ', x ) ,

so that,

2 [7m {<^%D^a;}]^ +  7m J  dx J  dx' [ f lH  (æ, x') 0̂ ;/] =  0. (7.46)

This is the conservation relation for a general second order IDE with a non-local potential 
term  which has the form of an integral over a kernel function. The integral part of (7.46) 
is the continuous analogue of the more usual quadratic form which is a common feature 
of such Liouville-Green ODEs.

To check this we will aim to recover the conservation relation obtained by Lashmore-Davies 
et al.(1993). In (7.18) we obtained an expression for our non-local response tensor. By 
analogy we may write,

G { x , x -  x') = j  (æ, k'). (7.47)

Let us now expand the mixed form about a local wave-mode ko so that,

CO 1 Qn
G {x, k') =  ^  — [k' — k o f  'Kr~G (3;, ko) . (7.48)

n=o ^^0
We follow the familiar road of replacing ik' by dx allowing us to solve the k' integral which 
becomes a simple delta function,

00 1
G {x, X — x') =  — {—idx — fco)” - ^ G  {x, ko) 27t6  { x  — x ' ) . (7.49)

n=o
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Substitution into (7.45) then gives,

n = 0

{-idx -  k o f  {x, ko) 2tt6 {x -  x') fa
d^

-  fx { — i d x  — A))" (a:, ko) 27t<5 (æ -  x') (jff, 0 .

The delta functions may be performed and we obtain to zeroth order(n. =  0),

2D {Im {(ffDfx})  +  7m {G  (rc, ko) -  G* (æ, ko)} f x f l  — 0.

Finally, if we associate the generalised function G with the fast wave potential V  and note 
that.

7 m { y - y * }  =  27m{y},

then we find.

A
dx

I m
df{x)

dx
= —I m  [V {x, &o)] |<̂ (a;)| (7.50)

reproducing exactly the fast wave conservation relation quoted by Lashmore-Davies et 
al.(1993). In chapter 2 we showed how energy is distributed in the plasma. We showed 
that the left hand side of the above conservation law represents the time-averaged Poynting 
flux whereas the right hand side represents the time-averaged work done on the particles by 
the field. This includes the time-averaged kinetic power flux, resonant particle absorption 
of energy and loss of energy to another mode through linear mode conversion. The integral 
of the right hand side gives the absolute power absorbed by the plasma since the kinetic 
power flux integrates to zero across the whole plasma indicating a conservation of kinetic 
energy in the plasma. Since our ODE is only of second order, it describes only the fast 
wave and does not describe the propagation of the mode-converted mode. This means 
that we are unable to separate, in general, the mode converted energy from the energy 
absorbed by resonant particles. This limitation is not so im portant from a practical 
viewpoint since ultimately energy is transferred to the plasma.

7.3 .2  Sym m etrisation  O f T he Fast W ave A pproxim ation
Although the generalised fast wave approximation is energy conserving it would be de
sirable for the response function to be even with respect to ko when describing EM wave 
propagation phenomena as EM waves may be incident on an interaction region from 
either side(±X)o). The response function, calculated by the standard fast wave approxi
mation, is not an even function of ko and therefore gives a different wave potential (V) 
depending upon whether or not the wave is incident from the left or the right. This is 
an unpleasant feature since there are then two different factors to consider. We know.
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from the asymmetry of an interaction region in a plasma, that wave propagation charac- 
teristics(transmission, reflection and absorption) will also depend upon the direction of 
wave incidence(whether or not a wave is incident upon a resonance or a cut-off first for 
example). If, in addition, the wave potential, which houses the physics of the interaction 
region, is also direction dependent then how are we to be clear about the results? The 
wave potential has, embedded within it, all the relevant physical make-up of the wave- 
particle interactions and we seek here a form which is even with respect to the incident 
wave-vector.

Another motivation for symmetrising the response function is that it may offer a way of 
including the odd-order derivatives of the electric field without having to evaluate deriva
tives of the response function which are difficult to calculate numerically. A glimpse back 
to (7.22) reveals that odd-order derivatives of the electric field are always coupled to odd- 
order derivatives of the response function in the generalised fast wave theory. We present 
here a technique, which apart from the desirable feature of producing a plasma response 
which is symmetric with respect to ko, also brings about an odd-order derivative of the 
electric field without the need to evaluate derivatives of the response function.

We begin with the zero-order plasma response which from (7.21) is,

J(æ) o-ij{x, ko) • E(æ). (7.51)

We may symmetrise the response function as follows. Let us define,

<^^{ko) = — [c7'(A;o) T a[—ko)] =  a'^(-ko),

a~{ko) =  i[o-(A;o) -  cr(-A:o)] = -cr"(-A:o). (7.52)

Therefore cr+ is an even function with respect to ko while a~ is odd. In order to obtain 
(7.51) we considered a local mode E(o:) C:! EoC^^° .̂ Fourier analysis reveals that d / dx ~
iko and so we may write down the following plasma response in terms of a symmetrised («S')
response function which is even with respect to ko,

J(a;) ~  o-ij{x, ko) • E(rr), (7.53)

where,

cr^{x, ko) = cr‘*'(x, ko) +  { ^ , k o ) d ^  -ko).  (7.54)
2 A/Q CtüO

This is the form of the plasma response which needs to be included in Maxwell’s equations. 
It is the second term  of this which introduces odd-order derivatives of the electric field. If 
we neglect electron inertia effects as we did in the last section then we have the following 
wave equations for the electric field,
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+  =  0, (7.55)

(Sy (^) “  ^̂ ll) ^ y  (^) "h (^) ^o) (^) =  0. (7.56)

We now use (7.56) to obtain the wave polarisation which relates and Ey. This may be
done by neglecting derivatives acting upon E^ such that,

E .  (x) =  ( z ) . (7.57)

This may be substituted into (7.56) giving the following 2^  ̂ order ODE for the fast wave 
electric field,

(p d
— (æ) +  U {x, ko) — Ey (or) +  V (x, ko) Ey (æ) =  0, (7.58)

where,

U{x,ko) -  t t tT T   ̂ S / Î / ^o) “

 ̂ ( ( e t  (®, ko) -  nj|) (e+ {x, ko) -  u |) -  e+ {x, ko) ej, (x, ko) \

=  ^4 ( e t ( x , M - n | )

The symmetrisation procedure described above introduces an odd-order derivative into 
the fast wave ODE, which is an even function of ko and therefore describes equivalently 
EM waves incident from the left or from the right. Rather than derive a new conservation 
law for this ODE we may use a suitable integrating factor to transform it into the stan
dard form of the fast wave ODE(7.40) having the conservation relation of (7.50). We will 
present some numerical solutions of the symmetrised ODE in chapter 8 for the minority 
heating scenario. It will be shown how this procedure dramatically improves upon the 
standard fast wave approximation.

In this chapter we have considered several different but connected theoretical concepts
relating to solutions of the IDE. Before we move on to discuss the numerical results let
us briefly recap.

Summary

The most general wave equation resulting from Maxwell’s equations is the full wave IDE 
of (7.1) which provides the non-local, multi-mode response of the plasma in real space. 
This involves a double integral even for the simplest case of an isotropic plasma immersed
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in a linearly inhomogeneous magnetic field as was shown in section 7.2.1.

The simplest estimate of the amount of energy absorbed from the fast wave by the plasma 
may be obtained by solving the local dispersion relation(7.6) associated with the Fourier 
transform of (7.1). In general this still contains a convolution integral and so has no ready 
analytic solution. Single-mode approximations, like the one used by Beskin et al.(1986) 
or the fast wave approximation of Kay et al.(1988) and Lashmore-Davies et al.(1988), are 
able to reduce the convolution integral to an algebraic function. However, as we pointed 
out in section 7.1, such methods are subject to the restraints of geometrical optics. Fur
thermore, they do not include effects due to other interacting wave modes and so cannot 
describe multi-mode processes such as resonant reflection or linear mode-conversion.

Motivated by the numerical difficulties encountered by Sauter et al. (1992) when solving 
equations like (7.1), we presented in section 7.2.2 a generalisation of the fast wave ap
proximation which included amplitude effects. A pleasing result was tha t we were able to 
eliminate one of the integrals by sacrificing information related to the propagation charac
teristics of mode-converted waves. However, we were able to retain the fraction of energy 
mode-converted. In addition, our new result(7.21), provides the odd-order derivatives 
known to be necessary for energy conservation.

In section 7.2.3 we derived the 2"^ order fast wave approximation to the exact, elec
tronic 0-m ode matched in frequency to the fundamental of the electron gyrofrequency 
and propagating perpendicularly through an isotropic plasma. We showed how, in the 
limit of small gyroradius electrons, the additional terms related to the non-local, large 
orbit effects dropped out giving the result obtained by Cairns et al. (1991).

In section 7.3 we presented a novel derivation of the standard fast wave, 2"'̂  order 
ODE(Lashmore-Davies et ah, 1993) and its conservation relation starting from the more 
general premise of our 2"'̂  order IDE.

Recognising tha t the non-local response is not symmetric with respect to the direction of 
wave incidence, we proposed a symmetrisation procedure in section 7.3.2 which provided 
an odd-order field derivative in the fast wave ODE. Although we have shown that the 
fast wave ODE is energy conserving, in the next chapter we will see tha t the symmetrised 
form resolves a non-physical result which we obtained from the standard fast wave ODE.
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Absorption of waves propagating across an inhomogenous magnetic field is of crucial importance 
for cyclotron resonance heating. When the Larmor radius of the resonant particles is small compared 
to the wavelength then the propagation is described by differential equations, a comparatively 
simple method for obtaining which has recently been given by Cairns e t  a l. [Phys. Fluids B 3, 2953 
(1991)]. In a fusion plasma there may, however, be a significant population of ions whose Larmor 
radius is not small compared to the wavelength. In this case the system is described by 
integro-differential equations, reflecting the fact that the plasma response at a given position is 
determined by the wave field over a region of width o f the order of the Larmor radius. The 
simplified method referred to above is adapted to this case and used to obtain various forms o f the 
equations. Methods of simplifying tlie equations while still retaining information from the non-local 
response, are discussed and some illustrated numerical results presented.

I. INTRODUCTION

Cyclotron heating of either ions or electrons is o f vital 
importance in various schemes for heating magnetically con
fined plasmas. The theory of cyclotron absorption requires, 
as its starting point, the derivation of equations to describe 
the propagation of waves through a region of cyclotron reso
nance treating, in the simplest case, a slab geometry in which 
the gradient of the magnetic field strength is perpendicular to 
the field. A considerable number of authors have studied this 
problem for the case when the Larmor radius of a thermal 
particle is much less than the wavelength, in which case 
there is a local response of the plasma to the waves, in tlie 
sense that the current at a point depends only on the fields 
and tlieir derivatives at that point, and the system is de
scribed by differential equations.’"̂  Some recent work by the 
present authors^ has shown how these equations may be ob
tained in a comparatively simple way. Earlier work using a 
somewhat similar approach was carried out by Antonsen and 
Manheimer,^ though they worked in Fourier transform space 
and could only obtain a tractable approximation by making 
an expansion which is equivalent to taking the asymptotic 
expansion of the plasma dispersion function. We work in real 
space, where it is possible to obtain much more general re
sults. Our approach begins with the uniform plasma dielec
tric tensor and then recognises that, in the presence of a 
magnetic field gradient (with the gradient perpendicular to 
the direction of the field), the non-uniform response is ob
tained by evaluating the cyclotron frequency in the resonant 
denominators at the position of the particle guiding centre. 
This condition arises automatically in gyrokinetic theory 
where its importance for cyclotron resonance has been em
phasised in Ref, 8. The technique has also been applied to 
the weakly relativistic problem, which is relevant to electron 
cyclotron heating.^

In the case of ion cyclotron heating, particularly when 
minority heating is being used or when hot fusion products 
are present, the assumption o f small Larmor radius may not 
be valid. In this case the response o f the plasma to the waves 
is non-local and the system is described by integro- 
differential equations. These have been derived by Sauter 
and Vaclavik'®’” and by Brambilla.^^ Our purpose here is to 
show how the simple method referred to above can be used 
to obtain the governing equations for the large Larmor radius 
case more easily. The method also provides a convenient 
way of generating different forms of the equations. The re
sults obtained are completely equivalent to those obtained 
rigorously by taking a Fourier transform of the wave prob
lem in an inhomogeneous medium.

We then develop We ntzel -  Kramers -  B rillou in (WKB) 
and fast wave'^ ''̂  approximations to these equations, which 
include the full finite Larmor radius effects in a non-uniform 
magnetic field, but which are computationally much simpler 
than the full integro-differential equations. In particular, the 
fast wave approximation, which reduces the problem to a 
second order ordinary differential equation, should be valu
able in allowing simple and rapid numerical modelling o f  
experiments in which fusion plasmas are heated by waves in 
the ion cyclotron range of frequencies. Some illustrative ex
amples are given of the use of the fast wave approximation 
for the case of minority ion cyclotron heating.

II. DERIVATION OF THE EQUATIONS FOR A LINEAR 
FIELD GRADIENT

Initially we shall treat the case of a linear field gradient 
with B =  Bo( \ - x l L ) ,  since this relates to our previous work
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on the small Larmor radius case and gives rather simpler 
equations than the more general case in which we allow ar
bitrary variations, in the direction perpendicular to the field, 
of the field strength, density and temperature. In the next 
section we shall discuss this general case, allowing for an 
arbitrary density, temperature in addition to magnetic field 
variation. For simplicity we shall discuss only the z- z  ele
ment of the conductivity tensor, since it serves to illustrate 
the method. All other elements can be obtained in a similar 
way. We use the usual coordinate system in which the mag
netic field is along the ^-direction. Also, we shall consider 
resonance at the fundamental o f the ion cyclotron frequency. 
Again, the basic method is easily adaptable to any harmonic.

We begin with a standard integration along orbits, for a 
uniform plasma, which gives

dudVi^dd J \{b)e i(bsine- 0)

( 1)

where the usual cylindrical coordinates in velocity space are 
being used, with u the parallel velocity, and b —
Now, we recognise that the part o f Eq. (1) where the spatial 
dependence of is important is in the final resonant inte
gral, and that we can take this into account by putting

oi— co^— o)A ~r +  - — sin^ 
L Leu,. (2)

Elsewhere we can simply put . The second term
in the bracket in Eq. (2) arises because, as pointed out above, 
we must evaluate the field at the guiding centre of the par
ticle, not at its final position. This is the gyrokinetic effect 
discussed by Lashmore-Davies and Dendy.^

Since the variable x  has already been Fourier trans
formed in obtaining Eq. (1), the introduction of x here should 
be regarded as being part o f a separation into different length 
scales, with the k̂ _ corresponding to the short scale length of 
the waves and the x  to the long scale length of the equilib
rium gradient. This simple procedure gives the same result as 
orbit integration carried out to first order in x!L in a non- 
uniform field. We shall take &̂  =  0, but if then the drift 
velocity due to the magnetic field gradient should be taken 
into account, since it can introduce a term of the same order 
as the gyrokinetic effect when kyp^ I where p is the Larmor 
radius of a resonant particle.

If Eq. (2) is substituted into Eq. (1) and the variable in 
the r integral changed to k — ~  co^t / L  we obtain

Lcot
LiVxdu dvxdd

ikkaLu ku,
X  I dk  exp| i k x  —------ 1 i - ^ s in ^ [ .

Using

exp .(^1 + /:)I --------- ViSmd

the integrals over velocity can be carried out in the usual 
way. In terms of cr^,{kx), the z-component of the current 
coming from the z-z component of the conductivity tensor, 
is, in a uniform plasma.

7(x)= j d k ' E { k '  ) or^^{k' ) e '^'^ .

In the non-uniform case, we substitute the expression 
obtained above for cr„ , depending both on k^ and explicitly 
on X, in this integral to obtain

y(x) = ê L — d k ' E ( k ' )  d k
O) J  —OO J o

X A- (Âp̂ /4) - {k̂ Ûk̂ p̂ /4)

k ' { k  +  k ' ) p ^ ^
X / ,

(3)

In this equation p is the Larmor radius of a thermal 
particle, i.e. where the distribution function has been
taken to be proportional to exp(-u^/u^), and E is the 
z-component o f tlie electric field. If the Larmor radius is 
small we may expand the Bessel function and the final ex
ponential function in power series and use the fact that

1

ip(I+#LD2 r  2 \ l / 2 2r2\l/2

Powers of k '  then produce derivatives of the electric 
field and powers of k  derivatives of the Z function and the 
integral in Eq. (3) becomes a differential operator acting on 
E, as discussed in Ref. 6. The procedure described here is a 
somewhat streamlined version of that given in the earlier 
paper. Now, however, we wish to consider the large Larmor 
radius regime where such an expansion is not valid. In this 
regime we might expect the response of the plasma to the 
field to be non-local and the current to be given by a term of 
the form

y ( x )= e o L —Y E { x ' ) G {x ,x ' ) dx '

£qL

Ù) J  -

‘“I r I (4)

We now note that Eqs. (3) and (4) will be identical if

=  dk gdk + k')x-k' p̂~/4--k' k̂̂ L̂-p' /̂Af ‘k'ik + k')^^
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Since the left hand side of this equation is the Fourier 
c transform of G with respect to x ',  wc can use the Fourier 

inversion theorem to obtain

G (x ,x ')=  — f ' I dk
J o

y . ^ i ( k  + k ' ) x - k ^ p^ / 4 - k ' ^ k j Û p^ / 4

' k ' { k  +  k ' ) p ^ ' ^
XI ,

2

(5)

Equation (5) gives an explicit expression for G (x ,x ') ,  
but as a double integral over an infinite half-plane it is not a 
very suitable form for numerical calculation or further analy
sis.

One way of simplifying Eq. (5) to some extent is to use 
the expression

1 r IT
/ i ( z ) = “  d6.

7T J o (6)

The integrand then involves the exponential o f a qua
dratic in k and k ' . The transformation k ' = K — k̂ switches 
to the principal axes of this quadratic and separates the K  and 
k integrals. Using

k^\
expl ~^jdk.

k^Qxp\^ik^—— \dk
(7)

we obtain

G (X ,X ')— ^;/2^3/2 ddcos6

ap ap (8)

with

a = (2 4-2cos^+4A'j[L )̂'̂ .̂
This reduces G ip a single integral over a finite range 

rather than a double integral over an infinite half-plane. An 
alternative derivation avoiding the use of Fourier transforms 
is given in the Appendix.

III. GENERAL GRADIENTS

The previous section deals with linear magnetic field 
gradients and neglects gradients in density or temperature. 
Since the resonance condition is determined by the magnetic 
field, this approximation may be adequate for many pur
poses. It is, however, of interest to consider the more general 
case where we show that a comparatively simple calculation 
can give the results of Brambilla and of Vaclavik and

Sauter.’̂ ~'“ Again, for the sake of illustration, we restriidour 
attention to the z- z  element of the dielectric tensor, amd be
gin with it in the form

yuvydu dv^dO
du

(9)

This is just the standard homogeneous plasma expres
sion, with k the perpendicular wave number. As before we 
have separated out the resonant contribution for the funda
mental resonance.

If we now suppose that the parameters have a .slow 
x-dependence, we can regard this as a dependence on a 
slowly varying variable x, despite the fact that we have al
ready Fourier transformed over the rapid x variation corre
sponding to the oscillations of the fields in the wave. How
ever, we must recognise that, as before, the dependence 
should be on the values of the parameters at the guMing 
centre, not at the final position of the particle. Thus the spa
tial dependence comes through the magnetic field, density 
and temperature being evaluated at

u,sin6> 
x +  .

This can be done by writing 

.2
f rc r „ = - z e o | d x " - ^ \  uv ,  du du^ d 6

0
du

ÙJ — cüy~ k\\u
x " - x

V I sinéi\
/
(10)

In this integral the density, temperature and magnetic 
field, in the distribution function or elsewhere are to b e taken 
as functions of x". For convenience, we have taken the dis
tribution function normalised so that its integral over veloc
ity is one, the density variation being in the plasma fre
quency.

The contribution to the current from this tensor element
is

7 (x )=  I dke'^^^a^Eik), ( 11)

where E is the Fourier transform of the z-component of the 
field. Again we suppose that this current is given by a non
local response of the form

J{ x) ~  G{x ,x ' )E {x ' ) dx '

zfx'G (x,x')e'*" '

Comparing (11) and (12) gives

J  dx'  G(x,x')c"'‘̂  =c'*'cr.^

( 12 )
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and. inverting the Fourier transform, we obtain
.2

G(x.x')

X i w , (ludv : d 6

ikv I sin Wcu,. - / 0

X (5| x" — X —
oj- u)^- k\̂ \u 
u . sin0)

(13)

Assuming the velocity distribution to be Maxwellian, we 
can carry out the integral over u, using

du
u

(o — (ô —k^i A:

where Z is the plasma dispersion function and

0)  —  U),.

If we now use the formula

<5 x' -  x-u
sin0 1

2it j -

then Eq. (13) is found to contain a factor

f” 2, 2 (kVx
d v X  d d v x ^  'V| -—

Jo Jo \ toc

i ( k ~ k ' ) u xX exp -s in 0 - i^ + /A : '(x " -x )

which can be treated by methods familiar from the derivation 
of the dielectric tensor in a hot uniform plasma to give

2w: exp
kH (k+ k ' r

This still leaves infinite integrals over k and k ' in the 
expression for G. As in the previous section it is possible to 
reduce these to a single integral over a finite range by again 
using the identity of Eq. (6).

The integrals over k and k ' then become

1:4: £//:'exp( ik' {x"- x) + ik { x  —x' )

k { k  +  k ' ) p ^  k~p^ { k  +  k ) ‘̂ p^
H  — — cos 6 ------:----------------:------

,2_2 . ' \ 2 _ 2

which can be integrated using standard techniques to give the 
final result

ten f cjo
G ( x ,x ' ) = —  dx"  --------2  ^( 1 +  ^Z(^)) ddco t d  expTT J k̂ \t>ihP

( x - x ' ) ' ^ (  1 - C O S 0 )  +  4 ( x " -  Ÿ x -  j x ' ) ^ ( l  + C O S 0 )

4p s in ^ (14)

In this formula the spatial dependence o f the plasma fre
quency, the Larmor radius p, etc., is to be taken into account 
by regarding them as the appropriate functions o f x". This 
result is in a form identical to that derived by Sauter and 
Vaclavik." It is clear from the presence of the final exponen
tial term in Eq. (14) that there is only a significant contribu
tion from values of x , x' and x" within a few Larmor radii 
of each other. It is unlikely that smoothing out density and 
temperature variations over such a scale length, as opposed 
to taking the local value, will make much difference to ab
sorption calculations. The magnetic field, however, appears 
in the argument of the Z function which can vary rapidly in 
the vicinity of a cyclotron resonance. It is in the evaluation 
of  ̂as a function of x" that the important effects of inhomo
geneity occur rather than in u) ,̂ v or p. For the linear 
magnetic field strength gradient study in Section II we have 

 ̂-  oj^x"!Lk\\v . If the integral representation of the plasma 
dispersion function is used once again, the integral over x" in 
Eq. (14) can then be carried out analytically and we recover 
the results of Section II, though it is more straightforward, as 
there, to introduce the linear magnetic field gradient at an 
earlier stage in the calculation. This calculation also demon
strates that in the limit as /c|j—>0 there is not, as might appear 
from the form of Eq. (14), any singularity and that the ab
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sorption profile remains of finite width as would be expected 
since the gyrokinetic correction is included.®

IV. WKB SOLUTIONS AND REDUCTION TO 
DIFFERENTIAL EQUATIONS

A WKB approximation, using the integral response cal
culated in Section II can be obtained as follows. A conve
nient starting point is provided by combining Eqs. (4) and 
(5), showing that the plasma current is

p J ( P  r 30 Too

7 ( . ^ ) = f - - ?  cfx'E (x')
2̂  TT W  J — oc J  — oo

X dk exp 
'o

x ( i - W L 4 V ) / i
Æ'(A-PA:')

Xexp) - ( 1 5 )

If we take E(x) — then the integral over x' in Eq.
(15) just involves
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rco
 ̂ ^x' =  2 ' T r 8 { k „ - ~ k ' )

J  - 0 0

which, in turn allows us to evaluate the k ' integral and leaves 
us with

o)̂  r “
J{x)  =  SgL —I dk<u Jo

k^p^ A:j|L̂ A:̂ p̂  
~Â  4Xexpi ikx —

x ( l-W L 2 tY )/i

Xexpj (16)

All the dielectric tensor elements behave similarly, so we 
can obtain a local dispersion relation in which the coeffi
cients are integrals, which retain the non-local response to 
the field, rather than the simple polynomials in k^ which 
would result from a differential equation. The integral of the 
imaginary part of k  ̂ through the resonance region generally 
yields a good approximation to the wave transmission coef
ficient though it does not, o f course, give any information on 
reflection or mode conversion,

A related approximation which can give the reflection 
coefficient, but does not separate mode conversion from cy
clotron damping, is the fast wave approximation,’®’*'̂  which 
is very similar to the widely used Bora approximation in the 
theory of atomic collisions.’  ̂ This is a perturbative method 
in which the unknown electric field, which occurs in the 
kernels of the integrals describing the resonant non-local re
sponse (the scattering terms), is approximated by a plane 
wave £'(x) =  £ô *̂ °'* where the wave number k  ̂ is obtained 
from the cold plasma dispersion relation. A term of the form

(17)

is obtained in exactly the same way as Eq. (16). The fast 
wave approximation consists of replacing the full integral by 
the terms of the form given in Eq. (17), while retaining the 
derivatives of E which come from the V x (V  x E ) term in 
the wave equation. In this way a simple differential equation 
for the electric field is obtained, with the large Larmor radius 
effect included through the coefficients which are of the form 
of Eq. (16) and the corresponding terms of a similar nature 
for the other dielectric tensor elements.

Some preliminary work has been carried out on the ap
plication of this technique to minority cyclotron damping. 
With the usual neglect of the z-component of the electric 
field, the equations for the other two components become

''I ''2
c ' a : l ( 7 F T y " T

iw

(4 -1 )  4 Ey(;c)

(i) L
(18)

where the subscripts “m” and denote the majority and 
minority ion species respectively,

,X)

= f - (to + -h X, &o) , (19)
Jo

^ x y i b o ,^)= rJo
-(fco + \)A:oP'̂ /2

XGj,y(ko + X,ko)d\,

and

--7 - |  "  Y  L
l kk ' p^ \  k'  Ikk'p^

We also obtain

Id )  0),
+  7  2̂(4 - 1) 4

L (X)

EK;:)

T ^  2̂ t>tpjjKyŷ {kg ,x)Ej.{x)

d  Ù) (o CO

5 7 + ? " ?  a
pa f-2

( 4 - 1) 4
E,(x)

iL CO _
^ fY ?  ^pb^yy^^o ,x)Ey{x) = 0

where

and

(20)

(21)

(22)

(23)

Jo

XGyjf(kQ-hk,kQ)dk , (24)

Kyy(k„,x)= J   ̂ / 4 g - ( A o + M / c o P  / 4

XG /̂Ao4-\,A:o)(/\, (25)
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FIG. 1. Non-uniform, large Larmor radius calculation of the transmission (T), absorption (D) and reflection (R) coefficients as a function of the toroidal 
' (parallel) wave number k, for a fast wave incident on the helium-3 fundamental resonance from the low field side in a plasma where the majority ion species 

is deuterium. The plasma parameters are n ^ -5 X  10‘® m“ ,̂ nj^Jn^=0.05, B„ =  3A  T, 1= 3 .1  m for helium-3 temperatures of 100 keV (solid line) and 1 
MeV (dotted line).

f „2 k Ikk'

4 \ k V p ^  Ikk'p"  ̂
G y y { k , k ' ) ^ \ 2 + ^ 2 j ^ . 2 p 4 j  2  î[ “ 2

^2 — ̂ Qb'^bf^Oa^a where ,Z^ are the charges of the two 
(26) ion species and and n„h their equilibrium densities. The 

fast wave equation can now be obtained from Eqs. (18) and 
(23) by eliminating E ^ i x )  in favour of E y ( x ) ,  giving

(27)
^  Ey(x)+ y(x)Ey(x) = 0 (28)

i

The quantities and ^ 2  are given by r^=Cii , /Cla, where

V(%) =
2 2

(X ) Cl) _ _ n _  [2 
( r j - l )  4

i L  0 ) (1)  (t) Cl),

' p a

n.
■I ^3•f — T2

(r^-1) 4

Of, c"

L  i o  -  I I fci) ci)_

i d )  L  2 Cl)p b

X

2 2 r, ^ f- 2

C

(Cl) L  2 Cl)

( r j - l )  4

Cl) L

c  P b  n  Th
K^Jko ,x)

3
+ 7''2( r " - l )  4

( r T -1 )  4 ^  P b  ^ T b
(29)
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FIG. 2. Locally uniform, large Larmor radius calculation of the transmission, absorption and reflection coefficients for the same parameters as Fig. I.

The fast wave approximation has therefore allowed us to 
reduce two coupled integro-differential equations to a second 
order differential equation. The response of the large Larmor 
orbit ions in the non-uniform magnetic field is contained in 
the fa s t .^ v e  potential given in Eq. (29).

We have obtained some preliminary results from a nu
merical solution of Eq. (28). These results are shown in Fig.
1 which refer to the case of a fast wave incident on a minor
ity, helium-3 fundamental resonance from the low magnetic 
field side. The majority ion species is deuterium. Two sets of 
curves are shown in Fig. 1 which correspond to helium-3 
temperatures of 100 keV (full line) and 1 MeV (dotted line). 
The other parameters specified in the calculation are an elec
tron density of 5 X lO’  ̂ m“ ,̂ a minority ion to electron den
sity ratio of 0.05, a magnetic field of 3.4 T and a magnetic 
field scale length of 3.1 m.

In the case of the 100 keV minority ions, 0.32
and for the 1 MeV ions, —1.02 where we have taken 
/cĵ  — gi vi ng k^^ph=UrbfcA with b denoting helium-3. 
The transmission coefficient for a minority fundamental cy
clotron resonance obtained from a locally uniform model 
with the small Larmor radius approximation yields a value 
which is independent of the minority temperature.’'* How
ever, Fig. 1 shows a pronounced change in the transmission 
coefficient between 100 keV and 1 MeV minority ions. Also 
shown in Fig. 1 is the total absorption which is the sum of 
the energy dissipated by minority ion cyclotron damping and

the energy mode converted to an ion Bernstein wave’'*. The 
reflection coefficient can be seen to be completely negligible 
for the higher temperature case and only noticeable for the 
lower temperature for values of k|j below 2 m ~’.

A comparison has been made between these results, ob
tained from the non-uniform, large Larmor radius theory and 
the corresponding results obtained from a locally uniform, 
large Larmor radius model. The results from the locally uni
form model are given in Fig. 2. The curves for 100 keV are 
in reasonable agreement with those obtained from the non- 
uniform model. The main discrepancies occur for the reflec
tion coefficient for the smaller values of and the transmis
sion and absorption coefficients at the larger values of ^y. 
The locally uniform model predicts more reflection at the 
lower values of fcy and more absorption for the larger values 
of A:II. The difference between the non-unifonn and locally 
uniform theories is more pronounced at the higher minority 
ion temperature but only for values of larger than 
12 m ” '. Notice that the dependence o f the transmission co
efficient on the minority ion temperature predicted by the 
non-uniform theory is also given by the locally uniform 
model. This dependence is evidently due to the inclusion of 
large Larmor radius effects.

V. CONCLUSIONS

We have shown how the response of an inhomogeneous 
plasma, with gradients in magnetic field strength, tempera-
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ture and density perpendicular to the field direction, can be 
obtained using a comparatively simple technique. This tech
nique is, in fact, fully equivalent to the Fourier transform of 
the inhomogeneous problem. For an inhomogeneity de
scribed by a linear spatial dependence the Fourier transform 
can be carried out exactly. The general results of earlier 
w o r k e r s c a n  be reproduced but, in Section II, we have 
derived equations for the special case in which the strength 
of the magnetic field is assumed to have a linear gradient, 
while other quantities are constant. Since the effect of large 
Larmor radius ions extends only over a few Larmor radii, we 
have pointed out that gradients in temperature and density 
are not likely to be important, but that the magnetic field 
gradient in the vicinity of cyclotron resonance does lead to 
rapid variation in the plasma response. The terms which we 
have calculated for this case have not, so far as we are aware, 
been given previously in this form. Since they involve one 
fewer integration than the general forms they are likely to be 
of some advantage for numerical computations.

We have also shown how a local dispersion relation, 
which still retains features of the non-local response, can be 
obtained and how an approach analogous to the Bom ap
proximation of scattering theory can yield differential equa
tions in which the coefficients are modified by the non-local 
response. Some preliminary results of the use of this ap
proximation to describe minority heating are described. 
Fuller development of the numerical work and comparison 
of the solutions of the differential equation with those of the 
full integral equation are planned for the future.

Clearly many different representations of the non-local 
response of a plasma containing high energy ions are pos
sible. The methods given have provided a relatively easy 
way of exploring the possibilities, with a view to obtaining 
forms amenable to numerical calculation. The forms given in 
Section II for a linear magnetic field gradient include, in our 
view, the major physical effects of importance and are sim
pler than the general form used in the numerical analysis of 
Sauter and Vaclavik.’® We have also suggested ways in 
which the problem can be further simplified, at the cost o f  
losing some information on the division between absorbed 
and mode-converted power. If further study verifies that 
these techniques, which have been successful in the small 
Larmor radius regime, are of use here, then a considerable 
simplification will result. This will make analysis of the im
portant problems of ion cyclotron heating in the presence of 
a high energy minority tail or a-particle distribution much 
easier. It is also of relevance to ion cyclotron emission from 
fusion products and other energetic ions.

We have already shown, in Section 11, how such equations 
can be derived from the /c-space expressions for the conAic- 
tivity tensor. Here we offer an alternative approach in which 
the response is calculated directly in x-space without the 
need to Fourier transform forwards and backwards.

As usual, we look at the simplest case— that of the ordi
nary wave propagating perpendicularly through the 
fundamental— to illustrate the technique. Solving the lin
earised Vlasov equation by the method of characteri^ics, 
gives us the following standard expression for the perturbed 
current density:

(Pv  J  d r

{ s in (n T -0 )  +  s in 0 } |«  ^

E, is clearly oscillatory in ù r -  6 and so wc may express it 
in terms of a Fourier series,

£ |U ')=  E

where

1 I v_i_
E , I % + —  {sin cr-f sin

thus enabling us to express the perturbed current density, 
7 1 , in terms of harmonics of Ü. r. For the fundamental reso
nance, we need only consider the first ( n = l )  harmonic of  
E j, giving.

2 m n
J  d r \ j à a

XE, (  x +  {sin Of-t-sin 9}

du
Xu  —  g-'(a+6)g-'((u-n)r

The gyrokinetic correction is now included by inserting,

_  f ix  u,
(JÜ-0.-  —  -f -J- sind,

in the final exponential, to give.

7 i ( x ) = - iTmi d^v d r  \ d a  
'o
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XE, |  x +  (sin Of + sin 6}

du

APPENDIX: CONFIGURATION-SPACE CALCULATION 
OF NON-LOCAL REPO NSE

For a detailed solution of propagation across a reso
nance, the equations must be solved numerically in x-space.

The expression for J , now contains five integrals, two of 
which, u and r, are reasonably straightforward. The u_, and 
Vy integrals, however, cannot be performed as they are both 
arguments of E , . However, one of these integrals can be 
made tractable by linearly transforming the velocity coordi-
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-.'nates so that only one occurs in E , . Noting that, 
* sinof-f sin^-2sin^(o'+ cos4(0 '- 0), we may make the sub

stitution a '  -  î(^ +  or) and 0' =  ^(0— a )  (which in Cartesian 
velocity space gives us the linearly transformed velocities 
V;f=LixCOS0', Vy=Uj^sin0' and we also take w), to give,

I eqcoI f   ̂ fo riiT I 2V,
5 /2 ^ 5  J r/ V j d r \  Jof E ,| x + -TT-sina'J \ {x ) TT JO a

■ y  g - 'K O j c / l )  +  (V ^ sin a '  +  Vy  cos a ' ) / L ] T

with O' now having the range [-7r ,7r]. It should also be 
noted that we have taken a Maxwellian distribution, o f the 
form fQ — r i Q ' i T ~ ^ ' ^ v ~ ^ . The U integral is in the form 
of a gamma function and can be evaluated. The integrand of 
the Vy integral is quadratic, and can also be evaluated in the 
form of a gamma function, by completing the square with the 
substitution V'y—Vy l v ,  +  iTVfiosa' /2L.  Performing both of 
these integrals, in this fashion, gives us,

bqoP f®

aXE;I x +  sin a ' |e  l̂o

tity,

y  g - i [ ( f l x / Z . )  +  ( V j S ) n a - '/L ) ] T - ( l /4 ) ( t ; ,c o s  a ' I L ^ - p -

The T integral can also be performed by noting the iden-

f d t  — Z(x /a ) ,  where a > 0 ,
Jo (a

y ,(x)= - 27T
f 2 n

d a ' E
.

Xe seca 'jZ
x +  ( V;,./a)sin£x'

pjcosa'I

Finally, by making the change of variable 
i ( x - x ' ) a  cosec a '  the expression for the perturbed 

current density becomes,

ienColL f27r
7 i( x ) =  -  - — 372-------- dx '  \ cl a 'c o s e c  or'sec a  Me

47t^'>uJ„oo Jo

xz x + x' 
2p|cosor'

exp
21

giving,

If the change of variable 0 —2 a  is made, this becomes 
equivalent to the result of Eq. (7) for the case when k|j=0.
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Chapter 8 

Fast Wave Numerics: Heating Of A 
2-Ion Species Plasma

Our study of the propagation of the fast wave through a hot Tokamak plasma has so far 
been of a purely theoretical nature. Let us now solve numerically some of the equations, 
which we have derived and analysed only qualitatively up until now, with the aim of 
illustrating the various physical phenomena which we have predicted to occur.

When you can measure what you are speaking about, and express it in 
numbers, you know something about it; but when you cannot measure 
it, when you cannot express it in numbers, your knowledge is o f a mea
gre and unsatisfactory kind.

-Lord Kelvin.

8.1 Numerical Model Of The Fast Wave
We wish to study wave-particle interactions in a 2-ion species plasma. As an example 
we will model the D\{He^e^_^ JET plasma presently under experimental observation at 
Culham laboratory although other plasma types may be described by the theory pre
sented in chapter 4. In the introduction to this thesis we. mentioned th a t heating in the 
ICRF may be accomplished by either minority ion heating or by mode conversion heating 
schemes in a 2-ion species plasma. In what follows we shall consider a predominantly 
Hydrogen(Deuterium) plasma containing a smaller fraction of Helium ions. Such plasmas 
form the main constituents of many newly born stars which support themselves against 
gravitational collapse by the energy released from nuclear fusion reactions. Theoretical 
and experimental studies of such 2-ion species Tokamak plasmas, it is hoped, will provide 
clues to the behaviour of plasmas which are likely candidates for future, large
scale experiments such as ITER.

We will study the minority heating scenario for small concentrations of the minority ion 
s p e c i e s ~  1%) as well as the mode conversion heating scenario for larger concen
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trations of H e l i u m c ±  10%). Both of these schemes operate most efSciently at the 
fundamental of the minority gyrofrequency where the wave polarisation is most favourable. 
In chapter 2, we described how thermal effects are present at each and every harmonic of 
the gyrofrequency, but that these will provide minor corrections to the salient behaviour 
of a plasma which may be described by a cold plasma theory. Furthermore, we argued 
in chapter 5 that, since the gyrorésonances are clearly resolved in a Tokamak plasma 
such as in JET, we need only retain the thermal effects of the resonant harmonic(which 
may be of the same order as the cold plasma effects from our analysis in chapter 2). By 
considering the orderings of various terms appearing in the response function, we showed 
in chapter 2 tha t the remaining non-resonant terms will have negligible thermal effects 
in comparison to the resonant term  in the sum, providing a justification for keeping only 
those t e r m s =  0, T l)  which asymptotically give the cold plasma behaviour. To model 
the interaction with the plasma of the fast wave matched to the fundamental of the mi
nority ion gyrofrequency, we retain only the resonant minority term  in the sum in (4.62) 
so tha t the fast wave manifold of the conductivity tensor(this is the x,y-manifold for the 
case of zero e" inertia) may be written as the following resonant(R) susceptibility tensor 
in terms of the cold plasma wavenumber ko,

X
[/( -  A i  [(2A +  y )  A  -  (2A 4- l k ^ p \ )  I[ Ai

, (8.1)

with,

1 k"̂ zP T
A =  ~ko{ko 4- k\)p^, — 1 i k i L ^ ^  (1 ~  tT")’2no(æ)' Ti,

The cold plasma expressions for the non-resonant cold((7) dielectric tensor elements are, 
from (2.6),

'M/
W, Wpe

■'xy 'yx T
to.pHê

to top — up — Og 2(w -j- ri/Jes)
(8.2)

Note tha t we have only included half of the Helium-3 contribution to the non-resonant 
cold plasma dielectric elements. This is because the other half contribution is housed in 
the resonant susceptibility tensor elements of (8.1) so that,

% -  4  +  xO-
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The fast wave potential defined by (7.41) for fundamental gyrorésonance in a 
plasma, written in terms of the above expressions is the most amenable form which 
includes all of the relevant physics. The potential contains the details of the wave-particle 
dynamics due to magnetic field inhomogeneity, thermal anisotropy and also due to energy- 
transferral to mode-converted waves. The next step is to solve the full wave equation so 
as to quantify the energy transport.

8.2 The Fast Wave ODE: Boundary Conditions and 
WKB Estimates

In the last chapter we obtained a second order ODE describing the fast wave(7.40) and in 
the last section we specified the wave potential. However, as a second order ODE, the fast 
wave wave equation requires two boundary conditions. The complex nature of the wave- 
particle dynamics in the interaction region of the plasma means that it will be difficult 
to specify accurately the waveforms at boundaries selected in this region. Instead we 
are guided by the well-understood behaviour of the fast wave in a cold plasma. Far from 
interaction regions, thermal effects will be negligible and the fast wave will resemble plane 
waves asymptotically. The spatial inhomogeneity of the magnetic field will inevitably lead 
to spatial dispersion since the fast wave dispersion relation of (2.9) is dependent upon the 
spatially varying gyrofrequency ^ 0(2;). A more accurate representation of the fast wave 
is the WKB waveform,

derived in appendix B. Fast waves incident on an interaction region with unit amplitude 
will have a fraction transm itted(T), a fraction refiected(R) while the remainder will be 
absorbed by the plasma directly or will be convected away in a mode-converted wave as we 
described in chapter 1. This state of affairs is sketched in figure 8.1 for fast waves incident 
from the low and high magnetic field sides of the Tokamak. Provided tha t we choose the 
boundaries A  and B  to be far enough away from the interaction region so tha t the fast 
wave is effectively only a fluid wave(a cold plasma wave independent of thermal effects), 
then we may write down the boundary conditions by summing the various combinations 
of wave modes at each boundary.
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These are summed up in the following table,

Wave Incidence Superposed Waves At A Superposed Waves At B

High Field Side 

Low Field Side

4>a =  tîtÎtt

+RTT§-re-'
k i  (o;) J

<!>a  = kX (a?)

4’B = r-TyS-e'r

% w J

Combinations of these boundary conditions with their derivatives (which we will denote 
by primes) and normalisation of the incident waves to unity gives the following set of 
boundary conditions in m atrix form,

0 -0(S)  =
and also the following explicit expressions for the energy transport coefficients

2Ua
0 (8.3)

Wave Incidence Transmission CoefficientT Reflection Coefficient R

High Field Side 

Low Field Side T  = s / ï t \ M

2 k  A —-  
! . .  _^1 (I>b+4>'b

— ik' 
2 k B + - j ^

The NAG routine will supply us with the waveforms and their derivatives but we must 
evaluate the derivatives of the wavevectors at the end points. These are most easily 
estim ated by a plane wave treatm ent. If we consider waveforms which vary as then 
the fast wave ODE becomes simply, k'^{x) = V{x, ko). Implicit differentiation then gives.

k'{x) =
2k{x)

We calculate the derivative of the potential at a point by a simple finite difference method 
whereby we average the local gradients at neighbouring points. Having set up the bound
ary conditions let us discuss some of the intricacies of our computer code.
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8.3 The Numerical Recipe And Self-Consistency
The computer code which we have written to solve the fast wave problem is structured as 
follows. Our code first of all sets up the physical constants pertaining to the experimental 
scenario in question and rescales all quantities to a relevant length and time scale which 
we have chosen to be the minority Larmor radius at the location of its fundamental gy
rorésonance at the origin and also the inverse of the minority fundamental gyrofrequency. 
In this way we avoid handling large numbers and the errors they incur. Next, it solves 
the cold plasma local dispersion relation for the fast wave (2.9) to obtain a value for the 
cold plasma wavenumber(/^o) which doubles as the asymptotic value of the kinetic model 
since therm al effects will be negligible away from interaction regions. W ith this value of 
ko the code steps through the interaction region evaluating the resonant integrals which 
are present in the conductivity tensor. The quadrature method used to solve the integrals 
is presented in appendix C. The integrals are constrained to meet a convergence criterion, 
set by the user (effectively the number of decimal places accuracy) which guarantees that 
a suitable(in terms of computing time) step size is used and also that there will be a 
sufficiently large number of data points for an accurate solution of the ODE routine. The 
fast wave potential is then constructed from the resonant integrals and the non-resonant 
cold plasma terms and its value at each radial position is stored in a data file. This 
data file is then read by the ODE routine which interpolates a cubic spline through the 
data so as to determine its functional form. The ODE solver then solves the boundary 
value problem using the boundary conditions (8.3) above. Values of the potential are 
interpolated using the cubic spline at different radial positions selected by the adaptive 
mesh of the ODE solver which returns an array containing the complex waveform and its 
derivative at different points on the mesh.

In addition to plotting the fast wave potential, the waveforms and deducing the energy 
transmission, reflection and inferred absorption coefficients using (8.3) above, we may also 
check the energy conservation relation for the fast wave presented in (7.50) which is also 
constructed from the waveforms and the potential. Since the integral of the right hand 
side of (7.50) is the total power absorbed across the integration interval(physically the 
slab of plasma being considered), we may compare this value with the deficit from unity 
of the transm itted plus reflected energy. This provides an excellent check on the self- 
consistency of our numerics. Indeed a fully energy-conserving system of equations should 
give unity when we sum the transm itted and reflected energy calculated from the ODE 
with the power absorbed calculated from the energy conservation law. The results of our 
numerical experiments presented later in this chapter bear this out beautifully indicating 
energy conservation to within 1%.

A further check may be made by comparing values of the transmission coefficient calcu
lated from the fast wave potential using a WKB method with values calculated directly 
from solutions of the ODE. To see how to obtain a WKB estimate of the wave trans
mission coefficient we take the fast wave ODE of (7.40) and seek a WKB solution of the
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form,

Ey{x )  ~

such tha t derivatives of the field produce wavevectors in the manner described in chapter 
2. We obtain the simple dispersion relation,

k^{x) =  V{x, ko).

We know from (7.8) that the optical depth(r) of the interaction region is related to the 
imaginary part of the wavevector and we may write,

T — Im{^Jv{x,  ko)}dx.

The transmission coefficient(T) is then simply given by T =  So we see tha t it is
straight-forward to obtain an estimate of the transmission simply from the fast wave po
tential before we even solve the ODE. Furthermore we see clearly tha t it is the imaginary 
part of the potential(strictly speaking the square root of the potential) which is responsi
ble for the absorption of energy from the EM wave. We must be clear tha t energy from the 
incident wave may be channelled into either the gyroresonant ions or to mode-converted 
waves and tha t both of these ’absorptive’ effects are folded into the fast wave potential. 
Of course we are unable to say anything about reflection since that would require the 
presence of another mode which is beyond the scope of this simple WKB estimate. In the 
next section we will present the results of our numerical calculations. We present plots 
of the energy transport coefficients calculated from the ODE and also the transmission 
coefficient calculated from the same fast wave potential. We find excellent agreement 
between the ODE and WKB solutions to within 1% in all cases considered.
The fast wave ODE is to be solved as a general two-point boundary value problem with 
National Algorithms Library(NAG) routine D02GBF  which uses a deferred correction 
technique based on an adaptive mesh. We only need to provide the ODE with values of 
the fast wave potential at different radial positions as well as the boundary conditions 
which we derived in section 8.2. The fast wave potential E(æ, ko) comprises complex reso
nance integrals which are time consuming to solve. Rather than calculate V  at each value 
of X  used in the adaptive mesh, we calculate the potential separately for a small data set 
which more densely populates the regions of high curvature around the resonances. We 
divide the radial distance of the plasma across which we integrate the ODE into three 
distinctive regimes based on step size as shown in figure 8.2. In chapter 5 our statistical 
analysis gave us an expression (5.38) for the width of the minority gyrorésonance and also 
the effective thermal width of the 2-ion hybrid resonance due to the minority gyroréso
nance (5.53). We calculate these widths in our code so that we ensure a high density of 
data points in these regions. Exterior to these regions we may use a much larger step size. 
In this way we can increase the efficiency of our code as well as providing a good data set 
from which to interpolate an accurate cubic spline.
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Having obtained a representative data set for the fast wave potential, we fit a cubic spline 
to the data using NAG routine E d lB A F .  The functional form of the spline is then fed 
into the ODE routine so as to easily interpolate V{x.,ko) on its adaptive mesh. Due to 
the highly peaked nature of the potential, particularly around the 2-ion hybrid resonance, 
we tested the spline routine on an exponential function as shown in figure 8.4. Although 
this function is not as taxing as our potential, the agreement is excellent even as the 
exponential function becomes more and more steep at large values of the exponent. This 
technique using cubic splines was found to accelerate the running of the code.

Let us now look at the results of a series of numerical experiments which were performed 
to investigate both minority heating and mode-conversion heating scenarios.

8.4 Numerical Experiments
We present here a representative selection of results for a Maxwellian plasma equilibrium 
subjected to a variety of experimental conditions. We will compare our new nonuniform 
theory with the existing locally-uniform theory(which we will refer to as uniform theory) 
presently in use on computer support software at JET. In particular, we will consider 
the effects of the direction of launch of the fast waves into the plasma either from the 
high or low magnetic field side. In addition to absorption of energy (which is our primary 
aim) this will also provide details of the accessibility and mechanisms of the various 
heating channels. We will see that an unexpected new result from nonuniform theory 
predicts strong reflection from the low field side of the minority gyrorésonance for a 
plasma containing a high density(20%) of energetic minority ions(0.66MeI/). This may 
have serious consequences for the accessibility of the minority gyrorésonance from the low 
field side.

8.4 .1  R esu lts For T he M inority H eating Schem e
In this subsection we present results relevant to small proportions of Helium-3 ions in a 
reservoir of Deuterium. Our analysis will be restricted to minority density ratios(^^^^) 
less than 10% although pure minority heating is only observed less than about 1%.

Figure 8.5 indicates quite clearly an excellent(±l% ) agreement between the transmis
sion curves for both the different theories and also for different directions of incidence. 
Uniform theory appears to overpredict absorption by up to 15 ±  2% for perpendicular 
incidence though this discrepancy is rapidly washed out by the effects of Doppler broad
ening when the toroidal wavevector >  Absorption by the resonant ions falls off
with wavevector since it depends critically upon the number of ions in corotation with 
the left-handed electric fields as we saw in our discussion of wave polarisation in chapter 
2. The increased parallel motion due to EM field components along the toroidal direction 
means tha t fewer ions are in coresonance(they will in general be moving transiently into
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and out of resonance) and so absorption is reduced. The broadening of the gyroresonace 
also means tha t it may partially overlap the 2-ion hybrid resonance smoothing its sin
gular profile and hence reducing its reflectivity. Energy conservation then dictates tha t 
we see an increasing trend in the transmission. Note also the value of the total energy 
conservation calculated from the sum of the transmission, the reflection and the integral 
of the power absorbed from the fast wave potential. We have apparently perfect energy 
conservation. This will be seen to be the case in every case studied within at most ±1%.

In figure 8.6 we consider the effect of having more minority ions present. The result is a 
drastic difference in predicted absorption by uniform theory over nonuniform theory up to 
68 ±2%  for strongest Doppler broadening. Agreement is generally good between the direc
tions of incidence and, in the JET range of operation of the low field antennae(2 —> 7m“^), 
the two theories are not easily discernible within 2%. However this result is one in sup
port of the need to use the more complex nonuniform theory for larger, future devices 
like ITER which may launch fast waves with higher toroidal wavenumber s. Since it is the 
minority ions which are in gyrorésonance, it is also they who are responsible for nonlocal 
effects. The more minority ions which are present, the more strongly will the nonuniform 
and uniform theories disagree since uniform theory does not adequately take into account 
nonlocal effects. There is an upper limit to this argument due to the appearance of the 
2-ion hybrid resonance at high minority densities which affects the wave polarisation in 
the gyrorésonance region.

Figure 8.7 illustrates another concept. The discrepancy of about 15 ±  2% between the
ories for perpendicular incidence is also tem perature dependent. At high temperatures 
the discrepancy is as quoted above but for lower minority temperatures the discrepancy 
reaches a maximum of 42 ±2%  at T^es, tailing off at both higher and lower temperatures. 
For this particular scenario of a 1% density ratio the effect of nonlocality is greatest at 
400 ±  2^K eV .  Why does this deviate from the view that at higher temperatures, the 
minority gyroradii are longer and therefore more nonlocal and consequently more absorp
tive? Could it be that rather than be deposited on the resonant ions, energy is channeled 
elsewhere? Perhaps to cyclotron harmonic waves? This requires further investigation in 
the future.

Figures 8.8 and 8.9 show the expected single absorption peak at the minority gyroréso
nance for both theories as well as the expected absorption of the waves at the gyroresonace 
over a scalelength in direct proportion to the width of the imaginary part of the potential 
which we know (from our investigation of the energy conservation law) to be responsible 
for power absorption. In addition to the small difference in the degree of absorption 
between the theories, the most notable feature is the degree of reflection of the wave 
power(described by |J5y|) which is estimated to be about 30 ±  5%. The standing wave 
pattern on the low field side is due to the superposition of the incident and reflected fast 
wave. Reflection is due to the cutoff effect described in chapter 1. The absence of this 
for high field incidence suggests that wave energy is absorbed by the minority resonant
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ions or may be channeled to another unidentified wave mode at the gyroresonace such as 
a cyclotron harmonic wave. Why the power should have a sinusoidal component is easy 
to demonstrate. If the superposed waves have the general form,

i k x  I r —i k x

then.

=  |a|2 +  16|2 -f

The final two terms are oscillatory and we see that the intensity has a sinusoidal compo
nent. Furthermore, since the power absorbed(P) is equal to,

P{x) =  — /  Im V (x ,ko )\^{x)\ ‘̂ dx
J - A

then this too will have a sinusoidal component. This brief analysis also yields another 
idea. The expression above for the power absorbed is sensitive to the sign and magnitude 
of the imaginary part of the potential and so we are also able to explain the 10 ±  2% 
increase in the wave amplitude just before and just after the gyrorésonance. This may 
be traced back to the negative value of the imaginary part of the potential either side of 
the gyrorésonance absorption peak at the origin. This fits in well with the absence of this 
effect with uniform theory. It appears that only a nonuniform theory is able to produce 
regions in the plasma where energy flows back from the particles to the wave field. This 
may be some direct evidence for a definite wave growth event. Integrated over the whole 
plasma cross-section this effect disappears suggesting that it is in fact a flux of acoustic 
energy being redistributed around the plasma. This fits in well with negative regions of 
the absorption coefficient identified by McDonald et al. (1994). The increased reflection 
with nonuniform theory is presumably due to nonlocal effects. This too requires further 
study.

Figures 8.10, 8.11 and 8.12 illustrate the transition from predominantly minority heating 
to predominantly mode conversion heating schemes at high energy and perpendicular inci
dence as the density of the minority ion is increased. Again there is excellent transmission 
agreement within ±2%. The two theories are indistinguishable for high field incidence 
but are dramatically different for low field incidence suggesting tha t the key factor is the 
develojDment of the cutoff effect with density. In fact we obtained reflection coefficients 
substantially greater than unity with nonuniform theory whereas uniform theory was well- 
behaved with little or no reflection. How are we to account for this dramatic(and perhaps 
theoretically catastrophic) result? We are considering a Maxwellian plasma which has no 
source of free energy and so we do not expect such unstable behaviour. A logical stance 
would be to rule out the possibility of an instability. The plots of the waveforms in figures 
8.11 and 8.12 echo the energy coefficient values and little is to be learned of the mechanism
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from these. However, the fast wave potential is very revealing. The imaginary parts are 
not widely different and result in almost total absorption at this high minority density. 
The real part of the fast wave potential, calculated from uniform theory has a single zero 
crossing which is the standard 2-ion hybrid cutoff. However, nonuniform theory has an 
additional two cutoffs! One on either side of the minority gyrorésonance. Nonlocality has 
had a dram atic effect on the wave-particle dynamics in this case. I have not come across 
additional cutoffs in the vicinity of the 2-ion hybrid resonance in the literature and so I 
am led to believe this is either a real physical effect or is a result of the fast wave approx
imation being invalidated. This is still to be verified. If it is a real effect then presumably 
it is a high order finite Larmor radius effect (at least second order as I am unaware of any 
first order predictions of additional cutoffs). We will see, in the next subsection, tha t this 
behaviour is also to be found at much lower minority temperatures(2^g3 > 100 ±  b^K eV )  
provided we still have a high minority ion density(~ 10%). Another interesting point is 
tha t we still have excellent power conservation despite the anomalous reflections. We shall 
show, in the next section, that the symmetric form of the conductivity tensor appears to 
resolve this difficulty.

Before moving on to look at predominant mode conversion heating, let us consider the 
effect of Doppler broadening upon this startling effect. For toroidal wavenumbers as small 
as kz  ~  2m“ ,̂ figures 8.13, 8.14 and 8.15 give equivalent results to within ^  ±2%. The 
wave is smoothly absorbed over a region of some 20 ion Larmor radii with a hint of evidence 
for group velocity effects with nonuniform theory(although this is hardly visible). The 
additional cutoffs are absent suggesting that they have their origins in gyrokinetic effects 
which are swamped by Doppler effects. This provides a shred of evidence that it is indeed 
the non.local nature of the variation of the magnetic field across the Larmor orbits which 
is the crucial determining factor at perpendicular incidence, echoing the original claims of 
Lashmore-Davies and Dendy(1989). An interesting point here is that there appears to be 
no sinusoidal component to the power absorption. This is attributable to the broadness 
of the resonance meaning tha t even these oscillations are critically damped.

8.4 .2  R esu lts For T h e M ode C onversion Schem e
In this subsection we present results relevant to much higher proportions of Helium-3 ions 
in the Deuterium reservoir. Our analysis will be restricted to minority density ratios(^^^^) 
not less than 5% so that the 2-ion hybrid resonance is not excluded and not more than 
20% so tha t we can observe both resonances.

To dive in at the deep end, let us begin with a critical case. Figures 8.16 through 8.20 
consider the controversial high minority density case at perpendicular incidence. It is 
clear that, although the high field incidence results are well-behaved as was found in fig
ure 8.10, the low field results are divided by the cutoff effect. Reflection again soars above 
unity at minority temperatures in excess of 100 ±  bOKeV with nonuniform theory but 
not with, uniform theory. Again, even in this case, we have excellent power conservation.
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In figures 8.17 through 8.20, we see that uniform theory still provides only the 2-ion hy
brid cutoff even at extreme temperatures of l . l l M e V  whereas nonuniform theory again 
reveals multiple cutoffs one on each side of the minority gyrorésonance.

The introduction of Doppler broadening with a small toroidal wavenumber(2m" ^) again 
removes the additional cutoff effects for the possible reasons provided in the discussion of 
figures 8.13 through 8.15. The asymmetry between low and high field incidence seems to 
be attributable to the skew of the absorption curve (the imaginary part of the potential) 
towards the high field side in contrast to the almost perfect symmetry of the potential in 
figures 8.14 and 8.15. This hypothesis must again be tested.

The occurance of these puzzling effects delayed a study of the effects of therm al anisotropy 
upon the wave-particle dynamics. The problem is that an anisotropic equilibrium, like 
the bi-Maxwellian one considered in chapter 4, does have a source of free energy avail
able and, as such, may lead to physically acceptable instabilities. How are we to resolve 
between genuine instabilities and spurious results due to a possible problem with the fast 
wave approximation which gives reflections greater than unity for a Maxwellian! In the 
light of this dilemma and time restrictions, we opted to study only isotropic plasmas with 
the hope of sorting out the problem of anomalous reflection.

We went back to the drawing board feeling that our fast wave approximation was being 
violated for some reason. Alan Cairns suggested that there could be a source of the prob
lem in the lack of symmetry of the conductivity tensor with respect to the direction of the 
incident wavevector. This is not an unfamiliar difhculty(see for example Lashmore-Davies 
et ah, 1993). So it was suggested that we try  to somehow symmetrise our conductivity 
tensor while at the same time trying to validate the fast wave approximation which reduces 
with ease the order of the exact fourth order IDE problem. We present the preliminary 
results of our findings in the next section.

8.5 Hope For The Future: The Symmetrised Fast 
Wave ODE

In chapter 7 we presented two alternative ways of extending the fast wave approximation 
to introduce additional odd order field derivatives into the fast wave ODE. The generalised 
fast wave approximation of chapter 7, while succeeding in this goal, adds complexity to 
the numerics since it is necessary to evaluate derivatives of the conductivity tensor as well 
as the wave field. Fortunately, the symmetrisation procedure at the end of chapter 7 does 
not complicate m atters much. We have solved the symmetrised fast wave ODE for the 
most pertinent case of high energy(0.66MeV), high density(^^^ =  20%) minority ions in 
a plasma illuminated by perpendicularly propagating fast waves.

Figure 8.24 presents our preliminary findings for the symmetrised nonuniform theory.
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We have excellent energy conservation and the reflection coefficient is well-behaved. The 
real part of the symmetrised fast wave potential(y) shows the characteristic high density 
cutoffs around the fundamental gyrorésonance. They are also present in the first order 
symmetrised potential(C/). The fast waves are seen to be partially transm itted through 
the minority gyrorésonance region despite the multitude of cutoffs before being wholly 
absorbed at the 2-ion hybrid resonance. The behaviour of the reflection coefficient may 
be explained as follows. At very low minority temperatures, the ion Larmor radius is 
insufficiently large to influence the minority gyrorésonance. Increasing the tem perature 
simply has the effect that there are more ions contributing to gyrorésonance owing to their 
large Larmor radii overlapping the gyrorésonance layer. There is increased absorption tak
ing place over a broader plasma profile. Again, the overlap of the broad gyrorésonance 
with the 2-ion hybrid resonance means tha t it will become less singular and will have a 
smaller reflectivity. At a tem perature of about 350 ±  2(^KeV we have the creation of the 
additional cutoffs which then result in increased reflection from the low field side which 
becomes stronger as the cutoffs become more predominant.

All in all there is a possibility tha t the symmetrisation procedure has solved the problems 
previously encountered with the fast wave approximation. This will require further trials 
and tests.
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Figure 8.8d: Waveforms for the fast wave 
electric field(E^) pertaining to the param 
eters of figure 8.7a at =  l . l l Me V,
calculated from non-uniform theory with 
EM waves incident from the low magnetic 
field side.
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Figure 8.9d: Waveforms for the fast wave 
electric field(E^) pertaining to the parame
ters of figure 8.7a at Thc  ̂ = 1-1 IMeV,  cal
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EM waves incident from the low magnetic 
field side.
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Figure 8.10c: Energy transport as a func
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for high energy(T/^e3 = I MeV)  heating 
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lated from locally-uniform theory with EM 
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side.

Figure S.lOd: Energy transport as a func
tion of the minority density ra tio (^ f^) 
for high energy(T//e3 =  I MeV)  heating 
at perpendicular incidence(A;^ =  0), calcu
lated from locally-uniform theory with EM 
waves incident from the low magnetic field 
side.
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Figure 8.13a: Energy transport as a func
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oblique incidence(fc^ =  2m“^), calculated 
from non-uniform theory with EM waves 
incident from the high magnetic field side.

Figure 8.13b: Energy transport as a func
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from non-uniform theory with EM waves 
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Figure 8.13c: Energy transport as a func
tion of the minority density ratio(^^^^^ )̂ 
for high energy(Tf/e3 =  I MeV)  heating 
at oblique incidence(^3 =  2m~^)^ calcu
lated from locally-uniform theory with EM 
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side.

Figure 8.13d: Energy transport as a func
tion of the minority density ratio(^^^^) 
for high energy(7^e3 =  lÂdeV)  heating 
at oblique incidence(A?z =  2m~^)j calcu
lated from locally-uniform theory with EM 
waves incident from the low magnetic field 
side.
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Figure 8.14b: Imaginary part of the fast 
wave potential pertaining to the parame
ters of figure 8.13a at =  1.1%, calcu
lated from non-uniform theory.
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culated from non-uniform theory with EM 
waves incident from the high magnetic field 
side.

2 0

0 5 - - 0 5

- 0.0

- 2 .0 - 2  0
4 0 - 2 0 0 20 40
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Figure 8.15b: Imaginary part of the fast 
wave potential pertaining to the parame
ters of figure 8.13a at =  1.1%, calcu
lated from locally-uniform theory.
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Figure 8.15c: Waveforms for the fast wave 
electric field(F^y) pertaining to the param
eters of figure 8.13a at =  1.1%, calcu
lated from locally-uniform theory with EM 
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Figure 8.15d: Waveforms for the fast wave 
electric held(E'y) pertaining to the param 
eters of figure 8.13a at =  1.1%, calcu
lated from locally-uniform theory with EM 
waves incident from the low magnetic field 
side.
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Figure 8.16b: Energy transport as a func
tion of minority temperature(%e3 ) for 
mode conversion heating(^^^ =  10%) at 
perpendicular incidence(/:^ =  0), calcu
lated from non-uniform theory with EM 
waves incident from the low magnetic held 
side.

C  0 6
'O

t-
0,2 H

■gia a jggHtiMyaglByBiBHBjt ««— ,

2 0 0  4 0 0  6 0 0  8 0 0  1000 1200 4 0 0200 6 0 00 8 0 0 1000 1200

- B - T(OOE)
- h - T(WKB)
- A -  R
- 0 - A

1

M tnortty Temperafi^re T;/g3(;{ey) M m ority Tem perature T;f,3(Key)

Figure 8.16c: Energy transport as a func
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mode conversion heating(^^^ = 10%) at 
perpendicular incidence(A:z = 0), calcu
lated from locally-uniform theory with EM 
waves incident from the high magnetic held 
side.

Figure 8.16d: Energy transport as a func
tion of minority temperature(T//e3) for 
mode conversion heating(^^-^ = 10%) at 
perpendicular incidence(A:z =  0), calcu
lated from locally-uniform theory with EM 
waves incident from the low magnetic held 
side.
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Figure 8.17a: Real part of the fast wave 
potential pertaining to the parameters of 
figure 8.16a at Tue^ — O .llM eV, calcu
lated from non-uniform theory.
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Figure 8.17b: Imaginary part of the fast 
wave potential pertaining to the parame
ters of figure 8.16a at = 0.1 IM eV, 
calculated from non-uniform theory.
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Figure 8.17c: Waveforms for the fast wave 
electric held(E^) pertaining to the param
eters of figure 8.16a at Tfje  ̂ = 0.1 IMeV, 
calculated from non-uniform theory with 
EM waves incident from the high magnetic 
field side.
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Figure 8.17d: Waveforms for the fast wave 
electric f i e l d p e r t a i n i n g  to the param
eters of figure 8.16a at = 0.1 IM eV, 
calculated from non-uniform theory with 
EM waves incident from the low magnetic 
field side.
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Figure 8.18a: Real part of the fast wave 
potential pertaining to the parameters of 
figure 8.16a at = l.llM e V , calcu
lated from non-uniform theory.

Figure 8.18b: Imaginary part of the fast 
wave potential pertaining to the parame
ters of figure 8.16a at Tff^s = l . l l M e V ,  
calculated from non-uniform theory.
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Figure 8.18c; Waveforms for the fast wave 
electric field(F^) pertaining to the param
eters of figure 8.16a at Tfje  ̂ =  l . l lM e F , 
calculated from non-uniform theory with 
EM waves incident from the high magnetic 
field side.

Figure 8.18d: Waveforms for the fast wave 
electric field(Fy) pertaining to the param
eters of figure 8.16a at Tfj^3 = l . l lM e F , 
calculated from non-uniform theory with 
EM waves incident from the low magnetic 
field side.
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Figure 8.19a: Real part of the fast wave 
potential pertaining to the parameters of 
figure 8.16a at Thĉ  = O .llM eF , calcu
lated from locally-uniform theory.

Figure 8.19b: Imaginary part of the fast 
wave potential pertaining to the parame
ters of figure 8.16a at =  O .llM eR , 
calculated from locally-uniform theory.
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Figure 8.19c: Waveforms for the fast
wave electric field(Ey) pertaining to the 
parameters of figure 8.16a at =
O.llA^feV, calculated from locally-uniform 
theory with EM waves incident from the 
high magnetic field side.

0  5 -

- 2 0
■20 0 20
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Figure 8.19d: Waveforms for the fast
wave electric he ld (E J pertaining to the 
parameters of figure 8.16a at =
0.11 A7eF, calculated from locally-uniform 
theory with EM waves incident from the 
low magnetic field side.
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Figure 8.20a: Real part of the fast wave 
potential pertaining to the parameters of 
figure 8.16a at Th ^  — l.llM e V , calcu
lated from locally-uniform theory.

Figure 8.20b: Imaginary part of the fast 
wave potential pertaining to the parame
ters of figure 8.16a at Thc  ̂ =  l .l lM e V , 
calculated from locally-uniform theory.
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Figure 8.20c: Waveforms for the fast
wave electric field(Ey) pertaining to the 
parameters of figure 8.16a at Tfje^ = 
l . l l M e V ,  calculated from locally-uniform 
theory with EM waves incident from the 
high magnetic field side.
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Figure 8.20d: Waveforms for the fast
wave electric field(Ey) pertaining to the 
parameters of figure 8.16a at Th 3̂ = 
l . l lM e l / ,  calculated from locally-uniform 
theory with EM waves incident from the 
low magnetic field side.
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Figure 8.21a: Energy transport as a func
tion of minority temperature(%e3) for 
mode conversion h e a t i n g =  10%) at 
oblique incidence(A:g =  2m“ ^), calculated 
from non-uniform theory with EM waves 
incident from the high magnetic field side.

Figure 8.21b: Energy transport as a func
tion of minority temperature(%e3) for 
mode conversion h e a t i n g =  10%) at 
oblique incidence(A:z =  2m~'^), calculated 
from non-uniform theory with EM waves 
incident from the low magnetic field side.
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Figure 8.21c: Energy transport as a func
tion of minority t e m p e r a t u r e ( ) for 
mode conversion heating(^^^ =  10%) 
at oblique incidence(A:z =  2m“ ^), calcu
lated from locally-uniform theory with EM 
waves incident from the high magnetic field 
side.

Figure 8.21d: Energy transport as a func
tion of minority temperature(T;:^g3) for 
mode conversion heating(^^^ =  10%) 
at oblique incidence(fc~ -  2m"^), calcu
lated from locally-uniform theory with EM 
waves incident from the low magnetic field 
side.
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Figure 8.22a: Real part of the fast wave 
potential pertaining to the parameters of 
figure 8.21a at =  L l lM e F , calcu
lated from non-uniform theory.

Figure 8.22b: Imaginary part of the fast 
wave potential pertaining to the param e
ters of figure 8.21a at T//g3 =  l . l lM e F ,  
calculated from non- uniform theory.
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Figure 8.22c: Waveforms for the fast wave 
electric field(£'y) pertaining to the param
eters of figure 8.21a at =  1.11 M el/,
calculated from non-uniform theory with 
EM waves incident from the high magnetic 
field side.
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Figure 8.22d: Waveforms for the fast wave 
electric field(Æy) pertaining to the param 
eters of figure 8.21a at T//g3 =  1.11 M eV, 
calculated from non-uniform theory with 
EM waves incident from the low magnetic 
field side.



20■20 0 4 0

Radial Coordinate

0.8 -

40 •20 0 20 40

Radial Coordinate —
P

Figure 8.23a: Real part of the fast wave 
potential pertaining to the parameters of 
figure 8.21a at =  l .l lM e V , calcu
lated front locally-uniform theory.

Figure 8.23b: Imaginary part of the feist 
wave potential pertaining to the parame
ters of figure 8.21a at TjjeZ — l . l l M e V ,  
calculated from locally-uniform theory.

1-5

0.5

- 0 .5 -

- -1 .5

XRadial Coordinate

—0 5

- 1 5 -

XRadial C oordinate

 RefEyl
  ImfEyj
 |Eyi

Figure 8.23c: Waveforms for the fast
wave electric f i e l d p e r t a i n i n g  to the 
parameters of figure 8.21a at T//g3 =
1.1 IM eV, calculated from locally-uniform 
theory with EM waves incident from the 
high magnetic field side.

Figure 8.23d: Waveforms for the fast
wave electric field(Ey) pertaining to the 
parameters of figure 8.21a at T//g3 =
1.11 M el/, calculated from locally-uniform 
theory with EM waves incident from the 
low magnetic field side.
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Figure 8.24a: Energy transport as a func
tion of minority temperature(T//g3) for 
mode conversion h e a tin g (^ ^  =  20%) at 
perpendicular incidence(fc^ = 0), calcu
lated from a symmetrised non-uniform the
ory with EM waves incident from the low 
magnetic field side.
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Figure 8.24b: Real part(bold line) and
imaginary part (faint line) of the fast wave 
potential(R) pertaining to the parameters 
of figure 8.24a at =  O.GGMcR, cal- 
culated from a symmetrised non-uniform 
theory.
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Real part(bold line) and 
imaginary part(faint line) of the first order 
potential(f/) pertaining to the parameters
of figure 8.24a at ~  0.66M e\', cal
culated from a symmetrised non-uniform 
theory.
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Figure 8.24d: Waveforms for the real
part(bold line) and imaginary part (faint 
line) of the fast wave electric field(E^) per
taining to the parameters of figure 8.24a 
at 7//e3 = 0.66MelC calculated from a 
symmetrised non uniform theory with EM 
waves incident from the low magnetic field 
side.



Chapter 9 

Closing Remarks

As was mentioned in the abstract to this thesis, an outstanding problem in theoretical 
plasma physics is the precise mechanism by which a hot, magnetically inhomogeneous 
plasma is heated by radio waves. We hope to have covered some ground on this question, 
particularly within the scope of kinetic theory.

9.1 General Equilibria
In chapter 3 we have generalised the existing theory available in the literature to allow for 
a general equilibrium constructed from the linear momentum and the energy which are 
constants of the motion of charged particles in a magnetic field. We showed in chapter 
4 how such an equilibria was not a severe hindrance to the mathematical analysis and 
indeed we were able to draw several important qualitative conclusions about the effects 
of a thermally anisotropic equilibria. We found from our statistical analysis of chapter 5 
that therm al anisotropy in Tokamaks using combinations of ICRH and NBI(of the type 
Tj_ >  T||) produces resonance localisation. We found also that electron inertial terms in 
the plasma response are similarly reduced in effect. These are novel features of high ion 
energy, inhomogeneous plasmas not previously reported. It is hoped tha t further numeri
cal studies will reveal evidence for temperature driven instabilities in the inhomogeneous 
plasma.

So as to bring our code more closely online with present Tokamak experiments, the fol
lowing thought may be worth considering. One of the main obstacles to an inclusion 
of additional physics is the difficulty encountered in solving the velocity integrals which 
appear from the Shafranov path integral method outlined in chapter 2. For therm al 
equilibria these are analytically tractable for a limited class of scenarios, mostly ID  slab 
inhomogeneities. Any realistic equilibria will be unsolvable at the velocity integral stage 
of the calculation. Progress may be made by performing a quasi-analytic calculation 
whereby the path integral approach is taken as far as possible until a point in the cal
culation where the exact form of the equilibria must be specified. These equilibria may
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be determined from a function (cubic spline or other) interpolated from empirical mea
surements of the temperature. This could then be read in by the code in much the same 
way our ODE solver reads in the cubic spline fit to the fast wave potential. The velocity 
integrals could then be performed by a standard quadrature method giving a full wave 
calculation based on real time data.

9.2 General Field Profiles
We have also allowed for a general field profile within the context of a weakly varying 
magnetic field gradient. This combination, while opening a pandora’s box for the study 
of different Tokamak scenarios, does not allow for drift effects or for the effects of toroidic- 
ity. We argued that, provided the Tokamak major radius is about an order of magnitude 
larger than the minor radius, a ID  inhomogeneous slab model is adequate. Any tight
ening of this condition will need a study in toroidal coordinates. This is one possible 
avenue for further work. In addition, we argued that since we will only consider fast 
waves propagating in the x  — z plane, the effects of drifts along ÿ  were removed from 
our study. Any 3D model of the effects of toroidal magnetic field inhomogeneity must 
include these drift effects which lead to additional broadening terms. There will then be 
a 2D gyrokinetic effect in the x  — ÿ  plane. Our study of statistics has shown that it is 
a powerful tool which may give deep insight into the physics of the resonance process 
for different distribution functions. A first step in the study of an unfamiliar equilibrium 
could be a statistical investigation to provide a sound physical basis which may be used 
to guide the mathematical analysis.

A straightforward extension to our theoretical study of chapter 4 would be the inclusion 
of weakly inhomogeneous tem perature and density profiles. These may be introduced in 
much the same way as we took into account the spatial variation of the magnetic field 
using delta functions which allowed us to evaluate all spatially varying quantities at the 
guiding centre.

9.3 Symmetry Properties
The power of symmetry laws in revealing simple underlying principles in complex sys
tems has attracted scientists for centuries. Although we have managed to show that the 
response of an inhomogeneous plasma to small amplitude waves satisfies the Onsager re
ciprocal relations for a thermal plasma, we should try to find utility from such analyses. 
Although we have generalised the thermodynamic study of Nambu(1995) to include an in
homogeneous magnetic field, it is doubtful that we can utilise this property of the plasma 
to ease calculational complexity, say. I feel there are important lessons to be learned from 
the work in chapter 7 related to Beskin’s claims about the symmetric form of the dielectric 
tensor. We should always bear in mind the principle of physical covariance. Our findings 
in chapter 7 related to the effects of symmetrising the fast wave response tensor seem to
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suggest a practical solution to some worrying findings in our numerics. I feel there is an 
underlying link between Onsager symmetry and the practicality of the symmetrised fast 
wave tensor. Perhaps a useful future exercise would be to try to coalesce these somewhat 
unclear concepts.

9.4 Numerics
The code seems to be quite durable and provides excellent energy conservation (to within 
1%) in every case investigated. This is further confirmed by the excellent agreement (again 
within 1%) between transmission coefficients calculated from a WKB analysis of the fast 
wave potential and separately from the fast wave ODE. We have been able to investigate 
a range of Tokamak scenarios with varying minority ion temperatures, densities and for 
different incident wave spectra. Our findings, though not conclusive by any means, have 
opened a few new doors I feel. For example, the appearance of a new family of cutoffs 
is worth investigating theoretically perhaps from the easier viewpoint of high order finite 
Larmor radius theories. See for example Chen and Tsai(1983) or Lashmore-Davies et 
al. (1988). Hopefully a more thorough study of the symmetrised form of the fast wave 
response tensor will, in future, provide more credence to the numerical results born out 
of this thesis. Once a reproducible and consistent category of results is obtained for 
the study of a thermal plasma, it would be interesting to look at the effects of thermal 
anisotropy. The code has this theory already built into it and is ready to study these 
effects once faith in the isotropic plasma results is first established.

All in all, the guiding centre theory of Cairns et al. (1991) allows for a straightforward 
development of complex physical models as revealed by the work of Holt(1992) and Mc- 
Donald(1994) before me which considered large Larmor radius ion effects and relativistic 
electron effects respectively within the context of a Maxwellian plasma immersed in a 
linearly varying magnetic field gradient. The fast wave approximation and the spinoffs 
described in this thesis allow complex systems of fourth order IDEs to be reduced to more 
rapidly solvable and insightful equations. The acid test will be a direct comparison of the %
fast wave ODE with its associated fourth order brother.

The field of theoretical plasma physics is far from exhausted and it is hoped that this 
thesis is able to contribute in some small way to the development of the subject and to 
the international fusion research programme.
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A p p en d ix  A

Derivation Of The Poynting 
Theorem

Let U represent the total energy density in the EM field, let S represent the energy flux 
in the EM field and let W  be the rate at which work is done on m atter.

The field energy inside a volume V  is,

l u d v .

and the rate of decrease of the field energy is,

d  

d t  J vJv

Similarly the rate of work done on a volume V  of the plasma is,

Jv

The flow of field energy out of a volume V  is the integral of the normal component of S 
over the surface A  tha t encloses E,

/  S • ndA.
Ja

So if we balance the work done by the field on the plasma in a volume V  with the flow 
of field energy out of the volume and the rate of decrease of the field energy inside the 
volume we have the energy balance equation.

d t
f  UdV = f  S * n d A +  f  WdV.  

Jv  Ja Jv
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and since we are integrating over the same volume of plasm a(F) then we may equate the 
expressions within the integrals giving,

=  (A .l)

This is the rate of work done by the EM fields on the plasma per unit volume. We may 
get an intuitive physical picture of this by considering the work done by the EM fields on 
a particle whose motion is governed by the Lorentz force,

F  • V  =  q(E +  V  X B) • V  =  çE • V .

Since the current density is given by J  =  N q v  for N  particles then the loss of energy per 
unit time and volume from the field is E  • J . In general the exact mathematical form of 
the work done will depend upon the model used to describe the plasma state. However, 
the rate of work done is always equivalent to E  • J  with the properties of the plasma 
housed in the current density response(J).

We may use Maxwell’s equations to obtain explicit expressions for U and S in terms of 
the fields E and B and we will see that the above form for the work done arises naturally.

From Ampere’s law,

1 dE

then.

V X  B -  MoJ +  2̂ ,

E  .  J  =  — E  .  (V X B) -  eoE .  (A.2)
jiQ dt

We now use an identity from vector calculus,

V • (a X b) =  b • (V X a) — a • (V X b), 

to write out the second term in (A.2) as.

Faraday’s law.

then gives.

■t-E .  (V X B) =  — [B .  (V X E) -  V .  (E X B)l. 
/»o Mo

E . J  =  - V . ( 5 ^ ) - £ „ E . ^ - — B . ^ .
/uo dt jiQ dt
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We may rewrite the time derivative terms as follows. They are of the form, 

Let us write this as,

dsi d .
a t ~  a /

where.

A — J  dta # ^  =  a # a  — J  dta #
d V

after performing integration by parts. Therefore A ~  |a  • a and so,

da _ l  d , .

The energy balance equation is then,

= -  ^ t | ( B  • E) +  ^ ( B  • B)]- (A.3)

Inspection of the conservation law of (A .l) reveals that the first term  on the right hand 
side of (A.3) is the flux of EM energy while the remaining terms give the rate of change 
of the EM field energy.
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A p p en d ix  B

Derivation Of The 
Asymptotic (WKB) Waveforms

Our Governing ODE is,

-^^{x )-^V{x)( l>{x) = 0. (B .l)

For an inhomogeneity along x  chapter 7 revealed tha t plane waves will not be the eigen
functions of (B .l). Instead, a suitable spatially dispersive form is,

-<;i(a;) =  , ^o(x)e‘ (B. 2)

with derivatives,

+  (B.3)

The first order solution of (B .l) is.

P{x)  = V{x),  (B.5)

SO th a t (B.4) becomes,

^ (^ (a :)  +  k’̂ {x)(f){x) =  [^<?^o(^) +  2ik{x)-^(j)o(x) -f i~k{x)(j)o{x)]e'^ fc(x')dx' (B.6)

The left hand side is zero by virtue of (B .l) and, neglecting the second order derivative 
term,

[2ik{x)-^(j)o{x) +  i^k{x)(j)o{x)]e^I K^')dx‘ _  Q
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This is a separable first order ODE,

(f)o{x) 2k{x)  ’

with solution,

(j>o{oc) =  Ck{x)~^^^.

Having identified the amplitude function our WKB waveform is, from (B.2),

ij>(x) ~  / ^  e‘ (B. 7)
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A p p en d ix  C

Evaluation Of The Resonance 
Integrals

The integrals arising in the resonant conductivity tensor must be solved numerically for 
each value of radial position(æ) stepping across the interaction region of the plasma. The 
integrals are Fourier type integrals over a semi-infinite regime and are of the general form,

I{x) = t  f{k)é'"=dk.
Ja

(C .l)

In each subintervall^^? +  h] of width h in [a, b], we approximate the integrand f{ k )  by 
a linear interpolant as shown in figure 8.3. Between a general value of the integrand f {k )  
and a subsequent point f{km)  a distance h away at km, the following first order Taylor 
expansion a b o u t p r o v i d e s  an expression for the linear interpolant.

f {k )  -  f{km)  +
f { k m  +  h)  -  f { k m )

h (ib km̂ > (C.2)

The contribution to the total integral form this segment of width h is found by substituting 
(C.2) into (C .l),

rkm+h
4 ( a ^ )  ^  /  f { k m )  +J km.

f{km +  h) -  f{km)
h

{k -  k„)é '“’dk. (0.3)

We may straightforwardly perform the integrals by parts to give,

h { x )
km~\rk

_1_ / /(^m -j- h) — f {km )^ 1 1 - ] k n i  +  h

-  — )
l i x  I X  }k r,

(C.4)

Evaluation of the limits then provides us with the contribution to the integral from the 
subinterval[A:m, km + h],
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l ^ x )  ~  J _ f ç i { k m  +  h ) x  _  ^ i k m X \
ixh

+

%x
f { k m  + h )

I X

1^ i { k m + h ) x  /  ^ i ( k m + h ) x  _j_ ^ i k m x \   ̂ / q

ixh y ' J

The numerical approximation to the full integral is found by summing over all subinter
vals in [a, 6]. Due to the appearance of the position (a:) explicitly in the denominator, we 
ensure tha t steps near the origin are carefully monitored so as to have small but non-zero 
values. Our integrals run from a =  0 to 6 =  oo.

The integrands are dominated by the linear exponential for very small values of 
ki such tha t kip± <C 1. This effect is swamped by the quadratic exponential term

e i when kip± > 1 ensuring that the integrand is a well-behaved func
tion. It is this dominating behaviour which is responsible for the degree of non-locality of 
the resonant particles. Their effect is seen to be important over a distance equal to a few 
times the ion Larmor radius. Highly energy ions, born out of fusion reactions or fuelled 
by gyrorésonance, will have large Larmor radii(> 10c??%) and so this region of non-locality 
is a substantial proportion of the device scalelength(L 3.1?ri). In the numerical results 
presented at the end of chapter 8 it is clear that highly non-local behaviour is exhibited 
by energetic ions.

The integrand is a finite value when =  0 and falls off monotonically to zero in the 
asymptotic region as oo which, recalling the definition ki — —  ̂ reflects the
fact tha t there is no response of the plasma at a time t — 0 since resonant particles 
haven’t yet moved along their orbits. If we note that for exactly perpendicular wave 
incidence, the quadratic exponential becomes more simply When. 10
then the factor ~  10“^̂  gives us an adequate value of infinity to use in our code,
namely ki(oo) ~  — .
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