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ABSTRACT

An outstanding problem in the field of nuclear fusion research is the precise mechanism
by which a hot, magnetically inhomogeneous plasma is heated when illuminated by a con-
stant beam of small amplitude radio waves matched in frequency to harmonics of the ion
Larmor frequency. An accurate model must include microscopic dynamics and inevitably
a kinetic theory is required. Highly energetic ions(> 1MeV) born from fusion reactions
or powered by gyroresonance have large Larmor radii(> 10cm) which are comparable in
size to the wavelength of the incident radiation. In particular we will focus on fast mag-
netosonic waves.

Exact full wave equations describing a thermal plasma in a weakly inhomogeneous field
are presently at least fourth order integro-differential equations(Sauter, 1992). These are
computationally taxing. Recently a method was proposed to reduce the problem to a
second order integro-differential equation at the expense of information related to the
propagation of mode-converted waves(Holt, 1992). We present here a generalisation of
the theory to allow for arbitrary velocity-dependent equilibria while at the same time
retaining a general functional form for the field profile. We consider the specific case of a
bi-Maxwellian plasma immmersed in a linearly inhomogenous magnetic field.

We find that thermal anisotropy produces resonance localisation when the perpendicular
ion temperature is greater than that parallel to the ambient field. A study of the symme-
try properties of the conductivity tensor reveals that the Onsager reciprocal relations are
obeyed only for an isotropic plasma in an inhomogeneous field. This is a generalisation
of the result obtained by Nambu(1995). We present a generalisation of the reduction
method to include effects due to changes in wave amplitude. We find that we are able to
include the odd-order field derivatives responsible for energy conservation.

Our numerical study of fundamental Helium-3 gyroresonance in a majority Deuterium
plasma reveals that we have > 99.9% energy conservation in all cases. We show that
locally-uniform theory can be very inaccurate(~ 70% in one case presented in our recent
paper, Cairns et al., 1995) particularly for higher energy ions whose non-locality is more
extreme. We present a representative sample of results for minority heating and mode
conversion heating schemes. We report the appearance of an unexpected cut-off on the
low field side of the minority gyroresonance which may have important consequences for
antennae presently placed on the outside of Tokamaks.
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Chapter 1

Introduction

1.1 The Energy Crisis

It was once said that, *the sole motivation for scientific thought should be to ease the acqui-
sition of our everyday needs through an understanding of nature through science’(Trotsky,
1925). However, the needs of our modern industrialised age have led to a rapid depletion
of non-renewable natural resources, in particular the fossil fuels(coal, oil and gas), and
although the theoretical achievements of nuclear physics in the first half of this century
have helped to alleviate part of this problem by harnessing the power of the atom in
the form of fission energy, we all live under the shadow of the catastrophic destruction
of Nagasaki and Hiroshima by the atom bombs. In its more peaceful guise, the energy
produced in controlled nuclear fission reactions accounts for a substantial proportion of
the energy budgets of many European nations. The geological time scales associated with
the isolation of the radioactive waste are of the order of 100 million years and, as such, are
a major environmental threat. Widespread public concern(see for example Schumacher,
1973) has prompted a search for alternative, environmentally friendly renewable sources
of energy and many nations presently ease their burdens by harnessing the natural power
of the wind, water waves and the sun. Indeed lceland receives 90% of its energy supply
from the geothermal reservoir upon which it rests(Rusbridge, 1992). Despite this success,
demographical studies have suggested that by the middle of the next century, population
growth combined with economic development will at least double the global energy de-
mand(see for example Eleizer, 1984) and furthermore, calculations of maximum energy
flow by physicists(Jonas, 1991) have indicated that we will not be able to meet this de-
mand from the renewable natural resources alone even if we could guarantee an energy
conversion efficiency of 100%.

It has long been known that stars like our sun burn Hydrogen producing Helium gener-
ating the energy they need to sustain them against gravitational collapse. This process
of fusing light nuclei to form heavier, more stable ones, is known as nuclear fusion. The
most strongly bound nuclei are those in the middle of the Periodic Table such as Iron,
accounting for its high occurrence in stable cosmic forms such as the planets of our solar




system. The complement process to fusion is fission whereby heavy nuclei are trans-
formed(by spontaneous mutation) into lighter ones through the process of radioactive
decay releasing their nuclear binding energy in the form of 1MeV neutrons and tend-
ing again towards their most stable existence in the form of Iron. Mankind has been
able to recreate these processes which fuel the stars only in an uncontrollable fashion
and sadly only for military uses. The inability to confine and control these processes
is due to the intense temperatures of some 100 million degrees Centigrade required to
overcome the electrostatic repulsion of the positively charged nuclei. The relaxation of
conditions of secrecy in 1958 at the Geneva 2nd U.N. conference on the peaceful uses of
atomic energy meant that various programmes were made public and a system known
as a Tokamak(derived from the Russian, toriodalnaya-kamera- magnitnaya, meaning
toroidal-chamber-magnetic), was devised in the U.S.S.R.(the first device being built at
the Kurchatov Institute in Moscow) to confine charged particles in closed magnetic fields.
This triggered off an international programme of theoretical and experimental research
into controlled nuclear fusion(see for example Berger, 1958, Bernstein, 1958 and Artsi-
movitch, 1972). This has had some recent success and it is envisaged that fusion power
will be a significant contributor to the world’s energy needs in the next century.

In addition to the adequacy of fusion to support our energy needs for the future, its
greatest asset is its limited impact on the environment. Unlike the dwindling reserves of
fossil fuels, its fuel comprises heavy isotopes of Hydrogen; Deuterium which is abundant
and accessible through the electrolysis of sea water, and Tritium which may be produced
in situ from a blanket of abundant Lithium in the reactor vessel. Fusion does not produce
the large Carbon Dioxide and Sulphur Dioxide emissions created by burning fossil fuels
and, although care must be taken with radioactive Tritium(due to its affinity to Oxygen
producing radioactive water), its usage in minute quantities(miligrammes in comparison
to kilogrammes of Uranium) and comparatively short half life of 12.3 years(Wesson, 1987),
makes fusion energy a potentially effective and careful solution to the energy crisis which
we may soon face if governments do not meet the long term needs of our planet. There
are still a number of hurdles to be overcome before efficient fusion power stations can be
built and it is the aim of this thesis to contribute in some small way to our understanding
of the heating of the reactants to the high temperatures required for controlled nuclear
fusion.

1.2 The Physics Of Controlled Nuclear Fusio_n

1.2.1 The Nature Of A Typical Fusion Plasma

The Hydrogen nuclei to be fused together are positively charged ions and are in an ionised
state. An ionised gas consisting predominantly of ions and their constituent electrons,
rather than neutral atoms or molecules, is a plasma and is affectionately known as the 4th
state of matter(at the time of writing a 5th state has recently been discovered called the
super-atom which is the Bose-Einstein condensate predicted theoretically over 70 years

2




ago). Although plasma is the prevalent form of matter in the universe(~ 99%), we live
in a small corner where matter is mostly solid, liquid or a gas and our only contacts
with plasma are when lightning strikes or when the Aurora Borealis(the northern lights)
illuminates the sky. A typical fusion plasma consists of fully ionised Hydrogen(Deuterium
and Tritium) and electrons.

The ionised nature of a plasma means that the inter-particle forces will be dominated by
the wealk, long range Coulomb force contrary to a neutral gas where strong, short range
forces mean that the dynamics are dominated by collisions. Any individual charge(q) in
the plasma will repel like charges away and attract opposite charges leading to an oppo-
sitely charged cloud forming around it. As a result, the electrostatic potential produced
by the charge does not have the Coulomb 1 /r dependence upon distance(r) but instead

falls off faster as e /r and the Debye length (Ap = (%‘;gg) 1/2) is the distance over
which the effect of the charge is screened off and is therefore the effective range of the
inter-particle force(if we consider the JET parameters at the end of this chapter then
for a Deuteron Ap =~ 23.5um and for an electron Ap ~ 47.0um). Here T is the particle
temperature, ng is the number density and ¢ is the permittivity of free space.

A charged particle moving through a plasma interacts with all the charged particles
surrounding it inside a sphere of radius equal to the Debye length(called the Debye
sphere= 7 \}). Any change in its velocity will then be due to a resultant force from
the surrounding particles. If there are more particles in the Debye sphere then the sur-
rounding particles will be more evenly distributed and the chance of a resultant force
will be less. For a typical fusion plasma the number of charged particles in the De-
bye sphere(N = 3mno)3) is large(the JET parameters predict that N o 2.7 million for
Deuterons!) and so the effects of collisions are very weak. Such conditions mean that
particles are almost free-streaming through the plasma due to their long mean free paths.

An equilibrium charge in a lattice structure will undergo simple harmonic oscillations
about its origin once displaced, due to the Coulomb attraction on one side and repul-
sion on the other. The characteristic frequency of oscillation will be proportional to
the product of the charge of the displaced particle and the neighbouring charge(by the
Coulomb force) and will be inversely proportional to mass(m) by inertia and is known as

1/2
the plasma frequency (w, (’;;—'s,";;) f ). If we consider again the JET parameters, then

typically 32 ~ 1GHz and 22 ~ 64GHz.

A plasma may then be defined in terms of a typical length scale, the Debye length,
and a typical time scale equal to the inverse of the plasma frequency. Their prod-
uct provides yet another fundamental parameter of a plasma namely the equilibrium

1/2
thermal velocity, vy = (2—"751) ; (which for JET gives vr; ~ j5655(non-relativistic) and

vre = 5(relativistic)). «p is Boltzmann’s constant and c is the speed of light in a vacuum.




A further consideration is whether or not we need to use quantum mechanics rather than
classical mechanics in our study of wave-particle dynamics. Quantum physics tells us(see
for example Rae, 1988) that we may use a classical description whenever 2xpT > hw.
Here, n is the number of degrees of freedom of a particle and % is Planck’s constant. To
check this we find that for JET, 2kpT; ~ 4.8 X 107'%J. If we consider w = wy; then we

find Aw ~ 1.4 x 10724J indicating that we are well within the classical world.

In terms of the Debye length, the plasma frequency and the thermal velocity we may clas-
sify a plasma as being collisional or collisionless, classical or quantum and even relativistic
or non-relativistic. We have shown that the plasma in the core of a typical Tokamak is a
classical, collisionless system containing relativistic electrons and non-relativistic ions.

1.2.2 Tokamak Physics

The existence of charged particles means that a plasma can carry electrical currents and
the physics of Tokamak plasmas is therefore dominated by their interaction with electro-
magnetic(EM) fields. A charged particle in a magnetic field moves under the influence
of the Lorentz force, travelling in a helical orbit centred along a line of constant mag-
netic induction(field line). A Tokamak is a device whereby external current carrying coils
arranged around the circumference of a torus, produce a circular magnetic field(toroidal
field) around which the charged particles of a plasma will orbit tied to the field lines.
In practice this is not a perfect confinement system since the gradient of the toroidal
field(which decreases radially from the centre) causes particles to drift in a direction per-
pendicular to the field gradient. The direction of the drift will be opposite for ions and
electrons and so will result in the setting up of an electrical field between the displaced
ions and electrons. It is the interaction of this electrical field with the toroidal field which
causes the plasma to become unstable, expanding across the toroidal field along the di-
rection of decreasing magnetic field gradient towards the walls of the Tokamak where the
plasma will thermalize. The Tokamak overcomes this by inductively coupling a toroidal
current to the plasma, generating a poloidal magnetic field. The resultant magnetic field
structure is helical in nature being a hybrid of the toroidal and poloidal fields and has a
cross-section which consists of nested flux surfaces. So the poloidal field compensates for
the swelling of the plasma by limiting its radial motion.

The Tokamak concept consists then of a toroidal vessel surrounded by poloidal coils which
generate toroidal magnetic fields, and toroidal coils for inducing the toroidal current in
the plasma which generates the poloidal magnetic field as shown in figure 1.1.

Other confinement systems are being studied such as magnetic mirrors, theta pinches,
Stellerators and inertial confinement devices and it is hoped that these will help unveil
the physics needed for the most efficient scheme. Tokamaks have a simple field geometry
making them the most favoured design at present. We will therefore tailor our theory
of plasma heating to the toroidal geometry of a tokamak plasma, adopting the standard




coordinates: X along the radial direction, ¥ along the poloidal direction and z along the
toroidal direction.

To achieve fusion we need to raise the bulk temperature of the plasma to temperatures of
some 100 million degrees Centigrade(or about 10keV') so that ions have velocities large
enough to overcome their Coulomb repulsive forces, and in addition, we need to confine
the plasma long enough(about 1s) for a significant amount of energy to be extracted
from inside the vessel at a high enough density(about 2 x 10%m = so that the nuclei are
sufficiently close together to have a reasonable probability of interaction(also known as
the cross-section). The fusion reaction with the highest cross-section and therefore that
which requires least heating is the D-T reaction,

D} + T2 — Hey +ng+ 17.56MeV. (1.1)

This is illustrated in figure 1.2. Since Tritium is a radioisotope then D-D fusion,

D} + D} — Hej +ng + 3.3MeV, (1.2)

which is the predominant reaction in the sun, is more desirable although its lower cross-
section means that it requires a higher temperature to achieve fusion.

The product of the ion temperature(T;), the ion density(no;) and the confinement time(7g)
is known as the fusion product. The Lawson criterion says that it must be at least
3 x 102'm~3keV s (Lawson, 1957). Under these extreme physical conditions we can re-
cycle a sufficient fraction of the output power so as to maintain the temperature against
radiation and diffusion losses. Heat generated in the surrounding Lithium blanket of the
vessel is then used to drive generators in the usual fashion. At the present time, fusion
experiments have succeeded in achieving these goals individually but no experiment has
been able to reach the required temperature and density while maintaining a sufliciently
long confinement time. Two notable experiments are the Tokamak Fusion Test Reac-
tor(TFTR) and the Joint European Torus(JET) which have achieved about 20% of what
is required for break-even in accordance with the Lawson criterion(for recent experimental
progress see Phillips and the TFTR team, 1994 and Gormezano and the JET team, 1993).

The large number of experimental runs performed to date allow us to find correlations
between experimental data and the physical parameters. From these we may deduce
empirical scaling laws which offer predictions of the physical behaviour of future devices
and allow us to determine, within certain error bounds, what physical parameters a fusion
experiment must have for it to achieve the Lawson criterion and to be efficient enough
to perform as a viable power station. For example, the confinement time has been found
to scale according to the square of the minor radius of a Tokamak(Artsimovitch, 1972)
and so the production of a break-even plasma should simply require the building of a
large enough experiment. Such an experiment, the International Tokamak Experimental




Reactor(ITER), is currently being designed(see for example Post, 1991). We will be
concerned here with the heating of the ions to the fusion temperature(T; ~ 10keV).

1.3 Raising The Plasma Temperature

The inductively coupled toroidal current in the plasma, apart from creating the poloidal
magnetic field needed to help confine the plasma, also results in Ohmic heating of the
order of 2MW of power due to the resistance of the plasma to the current. It is well
known that the collisional resistivity of a plasma varies as T;"*/? (see for example Cairns,
1985) and ironically, such a heating scheme becomes less effective as the temperature
rises. Temperatures of only around T; = 3keV can be achieved in this way and then we
must seek to use some other auxiliary method of heating the plasma.

Neutral beam heating involves the bombarding of a plasma with a beam of high energy
neutral atoms travelling across the toroidal field and which transfer their linear momen-
tum predominantly into the perpendicular velocity of the ions through ionisation and
then through subsequent binary Coulomb collisions. Present experiments like JET and
TFTR couple about 10MW of power through this method to the plasma. Despite its
apparent effectiveness, some highly energetic neutrals pass straight through the plasma
and bombard the vessel wall recycling atomic fragments of the wall material back into
the plasma. These higher atomic mass impurities have higher radiation losses(which scale
with mass number) and degrade the energy confinement of the plasma. Hence there is
an effective upper limit to the energy of the beams which are useful. Furthermore, the
physical nature of the beams means that it is only possible to deposit energy locally in
the plasma although the linear transfer of momentum may be used to provide toroidal
current, also known as current drive. This may provide a valuable, steady state alter-
native to the inductively coupled toroidal current which relies on pulsed operation. The
ability to actively and accurately deposit heat has a practical foundation since we first of
all require maximal heating at the plasma core(where the density is highest and where the
effect of recycled impurities from the wall is least), and also because systems of localised
heating may provide a mechanism for stabilising the plasma.

Radio frequency heating involves the transfer of energy from an external source to the
plasma by launching radio waves into the plasma from an antenna(for low frequencies)
or from a waveguide(for high frequencies). These EM waves may then interact with
the plasma through collisionless processes transferring energy to the charged particles.
The power coupled to the plasma from radio waves is of the order of 15MW in current
experiments. Typically, combinations of Ohmic heating, neutral beam heating and radio
frequency heating schemes are used in present fusion experiments and it is predicted that
ITER will operate using a combination of all three schemes.
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Heating Schemes For JET | Power Coupled

Ohmic Heating ~ 2MW
Neutral Beam Injection ~ 10MW
Radio Frequency Heating ~ 1I5MW

1.3.1 Radio Frequency Heating

An extensive survey of this important topic has been done by Cairns(1991) and we
present here a brief overview. The ability of a plasma to support a wide variety of
waves(see for example Stix, 1992) means that we can selectively use different wave modes
to heat the plasma through collisionless processes. As different wave modes have different
frequencies(w) and different wave-vectors(k), then, due to the existence of a number of
resonant frequencies in the plasma, various heating schemes are available and, provided
that these modes do not strongly couple(such as in mode conversion regions which we will
discuss later), we can launch several waves into the plasma at any one time. The most
successful of these are(Lashmore-Davies, 1995),

Radio Frequency Heating Schemes | Frequency Range

Ion Cyclotron Heating 30 - 120MH=z
Lower Hybrid Heating 1—-8GH=z
Electron Cyclotron Heating 100 — 200G H z

Each scheme has the same general features: an efficient, high power generator remote
from the plasma, a low loss transmission line and an efficient antenna (or waveguide)
which couples EM energy to the plasma. Once coupled, the energy is required to propa-
gate with negligible loss to a localised absorption zone whose spatial position is externally
controllable.

In the next chapter we will obtain the resonances which are present in each of these fre-
quency ranges and here we will simply state what these are for EM waves propagating
radially towards the plasma core. The incident wave has a frequency(w) which is fixed
by the generator and a toroidal wavenumber spectrum(ky) which is determined by the
antenna or waveguide. So we may tune these variables to match an internal natural res-
onant frequency. The lowest frequency scheme is ion cyclotron resonance heating(ICRH)
for frequencies w ~ ;(the cyclotron frequency is given by Q, = 9:,—?;‘1 for a magnetic
field strength(By) and for the JET parameters gives, 32 ~ 26 M Hz and Egﬁl ~ 96GH z).
According to cold plasma theory, a resonant frequency occurs for radially propagating
EM waves only when two or more ion species are present(Buchsbaum, 1960) at the 2-ion
hybrid frequency(ws),

X1 + Xo(h
X184 + X0’

which lies between the cyclotron frequencies of either species. Here X; = ng;m; is the
concentration of ion species ¢. The lower hybrid resonance frequency lies between Q; and

w?i = Q]QQ (13)
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|Q]. For the high density regions of a Tokamak where w?; > QF then neglecting terms of

order =~ m, /m;, the lower hybrid resonance frequency(wry) is,

2 02
2 wpifle
gy N, 1.4
Wry w;e i Qg ( )
Finally, the highest frequency scheme is electron cyclotron resonance heating for frequen-
cies w =~ |{2]. Again, cold plasma theory predicts a resonant frequency only for radially
propagating EM waves at the upper hybrid frequency(wyy),

wirg ™~ wi, + 02, (1.5)

Each of these is a linear wave-wave resonance whereby energy from an incident EM wave
may be transferred reactively to the oscillatory EM fields associated with the collective,
self-consistent plasma particle motions. Since all of the particles are involved in sustaining
a natural wave in the plasma, these resonances are strong and any instabilities which may
be present will also be strong. This is in contrast to wave-particle resonances where, typ-
ically, a much smaller number of particles (the resonant ones in the velocity distribution)
contribute. Another important difference is that wave-particle interactions are dissipative
in nature whereas wave-wave resonances by themselves are not. This will be shown to
have an important bearing upon techniques for heating fusion plasmas by collisionless
absorption.

Cold theory predicts wave-particle resonance interactions only at the fundamental of the
ion or electron gyrofrequency as we shall show in chapter 2. We will show that wave-
particle resonances at all harmonics of the gyrofrequency and for perpendicularly propa-
gating EM waves are the province of kinetic theory.

1.3.2 Heating In The Ion Cyclotron Range Of Frequencies(ICRF)

We will focus most of our attention on ICRH in this thesis as it is in this range of frequen-
cies that the interaction of EM waves with high energy ions(MeV) of large Larmor radius
is least understood. The direct deposition of energy on the ions is crucial to raise the
bulk temperature of the plasma to that required by the Lawson criterion. In essence the
ions orbit the magnetic field lines with a natural angular frequency(the Larmor frequency
or gyrofrequency Q = ¢Bp /m) determined by the strength of the magnetic field(By) on
the field line at the guiding centre position of the ion, and also on the charge to mass
ratio(g /m) of the ion. If a constant stream of circularly polarised EM waves propagate
into the plasma matched to the ion gyrofrequency at some spatial value(say at the plasma
core) with the electric field rotating in the same sense as the ions, then the ions at the
resonance position in the core will see an effectively constant electric field in their frame of
reference (their natural cyclotron frequency will be in phase with the driving frequency)
and are accelerated, gaining energy in a direction tangential to their orbit. As mentioned




earlier in the context of neutral beam heating, this then leads to a distribution of ion
velocities which is largely anisotropic due to a gain in perpendicular energy.

These high energy gyro-resonant ions then transfer energy through binary Coulomb col-
lisions to other ions raising the energy of the ion population or equivalently the bulk ion
temperature. Alternatively, we may think of ions as moving in to or out of resonance
during their traversals of the torus, picking up energy each time they pass through the
resonance layer. The ability to tune the EM wave frequency means that we can choose
where we wish the resonance layer to be in the plasma due to the fact that the mag-
netic field is spatially non-uniform. This also means that the resonance will have a finite
absorption width on the scale of a few times the jon Larmor radius(a few centimetres)
and so we may selectively heat the plasma through localised power deposition allowing
us to adjust the thermal profile of the plasma as previously mentioned. A review of the
progress in ion cyclotron heating may be found in Swanson(1985). It is our ambition then
to model the interaction of these high energy, large Larmor radius gyro-resonant ions with
the incident EM waves. We will place particular emphasis on the effects of the thermal
anisotropy of the ion velocity distribution and the spatial inhomogeneity of the toroidal
magnetic field upon these processes.

Electron cyclotron resonance heating relies on much the same physics as ion cyclotron
resonance heating but now the EM wave frequency(w) is matched to the higher gyrofre-
quency of the electrons(now in the microwave range of frequencies) and rotating in the
opposite sense to the ions. In addition we will need to take into account the effects of
relativity as the velocity of gyro-resonant electrons is an appreciable fraction(0.1) of the
speed of light. The smaller Larmor radius of the electrons(a few microns) means that
power is deposited on a much shorter local length scale allowing for even more precise
power deposition. For heating of the bulk ions the energy deposited must then be trans-
ferred to the ions through collisional processes. The high frequency EM waves can couple
to the plasma(across the wall-plasma interface) without attenuation due to their ability to
propagate in a vacuum. The recent development of gyrotrons has facilitated the delivery
of larger power loads at these high frequencies, making electron cyclotron resonance heat-
ing a valuable accessory. An excellent review of this field has been compiled by Bornatici

et al.(1983).

In addition to cyclotron resonance heating where energy is dissipated upon the resonant
particles, there is another mechanism available for transferring energy from incident EM
waves to the plasma. This involves the reactive loss of energy in an incident mode to a
second wave mode in a region where the two waves are degenerate(having identical wave
frequencies(w) and wave-vectors(k)). This is known as linear mode conversion(see for
example Cairns et al., 1982).

We have already remarked that a linear wave-wave resonance(the 2-ion hybrid resonance)
exists for perpendicular propagation in the ICRF. The extensive work by Budden(1956)




on the propagation of EM waves in the ionosphere revealed that wave-resonances have
associated with them cut-offs which are often in the same local neighbourhood(although
isolated cut-offs can also occur). We will refer to the zones of the plasma where resonance
and cut-offs occur(almost back to back) as interaction regions. In the next chapter we
will show that a characteristic feature of resonance is that k — oo(or equivalently that
the phase velocity v, = ¢ — 0). Conversely, the characteristic feature of a cut-off is that
k — 0 (or equivalently v, — oo0). Figure 1.3 illustrates these features for the propagation
of the fast wave in the ICRF using a cold plasma theory.

A wave will only propagate when k? > 0 and so the plasma conditions for which k — co
or k — 0 define absorption and cut-off surfaces respectively. We see that in the interac-
tion regions of a hot, collisionless plasma the wave-vector can take on an infinite range of
values. This means that an incident wave is likely to be mode converted to another mode
which may be propagating in the interaction region.

In the next chapter we will describe how, within the framework of a kinetic theory, it is
possible for the mode-converted waves to deliver energy through other dissipative pro-
cesses such as Landau damping and magnetic pumping. Energy is mainly transferred to
the electron population which then interacts with the ions through collisional processes.
Heating in the ICRF relies then on both direct dissipation of energy on the ions through
collisionless wave-particle interactions at gyro-resonances and also through dissipation of
mode-converted waves. In chapter 2 we will go into more detail when describing these
processes.

In regions where k? < 0(called evanescent regions) then the plasma is unable to support
the wave. We may classify the wave behaviour into four categories as follows,

Wave Propagation Characteristic | Wave-Number Behaviour

Resonance k — oo
Cut-off k—0

Propagation k?>0
Evanescence k?<0

However, if the region of evanescence is thin enough then there will be a finite probability
that some of the wave can tunnel through to a region of propagation where k* > 0 in
a way analogous to quantum-mechanical scattering of wave-functions from potentials. If
there is no dissipation in the evanescent region and if the wave energy is unable to be
transferred to another mode, then there will be part of the wave energy reflected equal
to the difference between the incident and transmitted energy. Constructive interference
of these waves then gives a standing wave on the incident side of the cut-off as shown in
figure 1.4 for an arbitrary potential.

For wide evanescent regions then the probability of transmission is slight and the reflected
component will be greater. In the neighbourhood of a cut-off there will be a superposition
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of incident and reflected waves meaning that we require a second order ODE to describe
the underlying physics.

1.3.3 The Budden Model And Wave Interactions

The simplest ODE which is able to describe these processes is the Budden equation(Budden,
1956),
2
et
- ag? ¢
which is a second order ODE of the Schrédinger type. ¢ is a normalised wave amplitude,
¢ is a normalised spatial coordinate and ko is the asymptotic wave number when [(] > (..
There is a resonance at ( = 0 and a cut-off at ( = (.. Budden showed how, by calcu-
lating the ratio of intensities(|¢?|) of the transmitted and incident waves, the fractional
power transmitted across an interaction region per unit incident power is given by the
transmission coefficient,

Coyg =10, (1.6)

— o—Tkol
T_e Oc.’

and depends only on the separation of the cut-off and the resonance((.). The transmis-
sion is independent of whether or not the wave encounters the cut-off or the resonance
first and has a robust nature(since calculations performed by a WKB theory give similar
results to the ODE as we will show in chapter 8). The symmetry in the transmission of
energy is contrasted by an asymmetry regarding the reflection of energy.

If the wave is incident on the cut-off first, then the reflection coefficient (R) is related to
the transmission coefficient(T") by, R = (1 — T'). If, however, the wave is incident on the
resonance first then R = 0(Budden, 1956). Budden found that R+7 < 1 indicating a lack
of energy conservation. The missing energy can only be identified using a higher order
ODE to model the physics because of mode conversion to a new wave mode(a hot plasma
mode) The inclusion of the extra mode- converted wave means that the physics must be
modelled by a fourth order ODE so that ‘the propagation of energy in the new mode is
included. In a hot plasma, kinetic theory gives additional dissipation due to wave-particle
phenomena.

Let us consider the propagation of the fast magneto-sonic wave(compressional Alfven
wave) or fast wave(FW) propagating perpendicularly through a 2-ion species plasma in
the ICRF. In the next chapter we will show how, in this frequency range, there will be
gyro-resonances at each harmonic of the gyrofrequency. There will also be the cold plasma
2- ion hybrid resonance and its associated cut-off, located spatially between the two gyro-
resonances. Although there will be dissipation of the fast wave energy by wave-particle
interactions at the gyro-resonances (chapter 2), we will concern ourselves here with the
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transfer of energy due to a cold, 2-ion hybrid resonance(undamped) and cut-off so as to
compare with the analysis of the Budden model described above.

In the neighbourhood of the 2-ion hybrid resonance, the incident fast wave bifurcates and
couples to a hot plasma mode called the ion-hybrid wave(IHW) which is a predominantly
electromagnetic wave propagating perpendicularly to the ambient, toroidal magnetic field.
An incident fast wave can convert to two different branches of the ion-hybrid wave: one
propagating to shorter perpendicular wavelengths(k, — oo) and the other propagating
to longer perpendicular wavelengths(ky, — 0). The asymmetry of the reflection is due to
the difference in physical behaviour of these two branches. The branch going to resonance
does not meet a cut-off and represents a fast wave incident from the high magnetic field
side as shown in figure 1.5.

The incident fast wave of unit amplitude has a fraction, 7', transmitted and the remainder,
1—T,1is mode-converted at the 2-ion hybrid resonance to the ion-hybrid wave propagating
to short wavelengths. The story is very different for a fast wave incident from the low
magnetic field side as depicted in figure 1.6.

In the region of the 2-ion hybrid resonance, the incident fast wave of unit amplitude is
partially transmitted, T', and partially mode-converted to the ion-hybrid wave, 1—7'. The
ion-hybrid wave then propagates to its cut-off where a fraction, 7', of the incident energy,
1 — 1T, is transmitted, T'(1 — 7"), and the remainder, (1 —7) —T(1 —T) = (1 = T)?, is
mode-converted to the reflected fast wave.

For low field incidence, the net result is that a fraction, T', of the incident fast wave energy
is transmitted, a fraction, (1—1")2, is reflected and a fraction, T'(1—1T'), is mode-converted
to the ion-hybrid wave. Since the ion-hybrid wave remains in the plasma, this accounts
for the missing energy absorbed in the Budden model. Furthermore, standing waves, set
up by the interference of incident and reflected waves on the low field side of a cut-off, are
a common feature of wave phenomena in interaction regions as we shall show in chapter
8. The salient behaviour of a wave incident on a cut-off echoes the Airy function(Az) and
may be described simply by multiples of,

Ai(z) = > /oo dt cos(zt + 1t3)
o - i
In the region of positive z where the wave propagates, the asymptotic behaviour for large

@ is(Cairns, 1995),

—

. 1 . .3 0
Az(;z:) ~ ﬁm—m Sln(§$3/2 + Z)’

which, when expressed in terms of complex exponentials, gives a superposition of waves
of equal amplitude propagating in opposite directions. The standing wave set up on the
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incident side of the cut-off in figure 1.4 has this functional form.

For high field incidence, the net result is that a fraction, 7', of the incident fast wave
energy is transmitted, a fraction, 1 — 7', is mode-converted to the ion-hybrid wave while
none is reflected.

Most energy is transferred to the plasma for high field incidence but this scheme has the
misfortune that an antenna is less easily placed on this side of the Tokamak due to space
restrictions(the transformer yoke has to pass through the torus centre). This means that
large Tokamaks such as JET or TFTR have low field antennae. All is not lost though as
we shall see in chapter 2 since there is also dissipation at the gyro-resonances.

In addition to the ion-hybrid wave, which is present around the localised region of the 2-
ion hybrid resonance, there are also ion Bernstein waves(IBW) which propagate between
harmonics of the gyrofrequency as shown in dispersion diagram in figure 1.7.

There is also the possibility of mode-conversion of the fast wave to these waves but their
coupling is much weaker due to the involvement of only a few particles in the velocity
distribution in the wave-particle interactions at the gyro-resonances. At the 2-ion hybrid
resonance the ion-hybrid wave is supported by the whole plasma and so coupling to the
fast wave is strong.

In an early paper, Cairns et al.(1982) showed how, due to the degeneracy of two waves
in a mode-conversion region, the local dispersion relation associated with the Budden
equation,

¥ =R,

can be cast in the form,

(k == k1)(k e k‘g) = H.

Here k) and k; are the wave-numbers of the undamped modes and p is a measure of
the closest distance between the modes. This physical behaviour is portrayed in figure
1.8. Cairns et al.(1982) went on to show how such an approach is able to provide the
same energy transmission and reflection as the Budden model while at the same time
quantifying mode conversion. [Furthermore, since they found that,

Pove™

there is a simple geometric relation between the closest approach of two waves and their
coupling. The transmission is inversely proportional to the closest approach and so mode
conversion is stronger for larger pu.
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We are now able to provide an explanation of the behaviour of the fast wave near to
the gyro-resonances and in the vicinity of the 2-ion hybrid resonance. Close to the gyro-
resonances, & is small and so the coupling is weak and mode conversion to ion cyclotron
waves is negligible but at the 2-ion hybrid resonance, p is much larger and the coupling and
mode-conversion to ion-hybrid waves is much more significant. In figure 1.9 we present
the dispersion diagram for these wave interactions.

In general, interaction regions of a Tokamak contain gyro-resonance layers(in addition to
linear wave-wave resonances and their associated cut-offs) and so EM energy incident on
an interaction region with unit amplitude will have fractions of energy partly transmitted
(T), partly reflected(R), partly dissipated(D) upon resonant particles and partly mode-
converted(C) to another wave mode which can carry energy away from the interaction
region as portrayed in figure 1.10.

In the next chapter we will see how there is an intimate relationship between the amount
of energy dissipated by the resonant particles and the occurrence of mode conversion re-
gions. We will explain this effect by appealing to the polarisation of the EM waves. In
a single ion species plasma the damping of the fast wave by gyro-resonant absorption
is found to be weak at the fundamental of the gyrofrequency(w = ;) but stronger at
the first harmonic of the gyrofrequency(w = 2§;). In a 2-ion species plasma, produced
deliberately by injecting protons into the plasma or by the recycling of ions from the
radio frequency antenna or the vessel Beryllium wall, then there can be strong damping
of the fast wave at the fundamental of the minority gyrofrequency. This occurs because
the majority ion species dictates the wave polarisation which is found to be favourable
for gyro-resonance of the minority ions at the fundamental of the minority gyrofrequency.
The strength of the damping increases proportionally with the concentration of the mi-
nority ions until the 2-ion hybrid resonance occurs at a critical minority ion density. The
appearance of this linear wave-wave resonance affects the wave polarisation profoundly,
making it less favourable for minority gyro-resonance, and setting an upper limit to the
amount of energy which can be dissipated on the minority ions. Since energy will be de-
posited in a small fraction of the ion population, a tail will be produced on the ion velocity
distribution which will remain if there are not enough Coulomb collisions to thermalize
the distribution(to make it Maxwellian or isotropic). Since the Coulomb cross-section
decreases with particle velocity, these high energy ions have a higher probability of losing
energy to electrons than to other ions and can therefore lead to bulk electron heating.
Further transfer of energy from the fast wave to the plasma may occur only as a result of
mode conversion to a hot plasma mode which itself may be dissipated on the electrons.
We will discuss this further in chapter 2.

Let us simply state here that there will be two regimes of heating in a two ion species
plasma which are differentiated by the ratio of the densities of the ion species(n). In the
first regime, known as minority heating, 7 is less than a critical value(r¢) and the 2-ion
hybrid resonance is absent and fast wave energy is dissipated on the minority ions through
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gyro-resonant absorption. In the second regime, known as the mode conversion regime,
the 2-ion hybrid resonance is present when n > n¢ and fast wave energy is transferred to
the ion-hybrid wave which damps on the electrons. Another complex scenario which will
not be relevant to this thesis involves minority heating of pure Hydrogen in a Deuterium
plasma since the fundamental gyro-resonance of Hydrogen coincides precisely with the
first harmonic gyro-resonance of Deuterium allowing gyro-resonant absorption by both
species. In chapter 8 we will apply our theory of non-local, large Larmor radius wave-ion
interactions to the first two heating scenarios.

We will find that we would like to apply our theoretical investigations to a relevant fusion
experiment. The JET experiment is currently the largest experiment capable of investi-
gating the regime of high energy fusion products and we take our physical parameters as
those of JET(Lashmore-Davies),

Physical Parameters Of JET Range | Case Study
Major Radius(L) 3.1m 3.1m
Minor Radius 1.25m
Toroidal Magnetic Field(Bg) 1 —4T 3AT
Poloidal Magnetic I'ield 0.5—1T
Toroidal Plasma Current 0.1 -5MA
Plasma Mass 0.1 —1mg
Plasma Volume 1 —100m?
Plasma Pressure 0.1 — 1Atm
Central Jon Density(no;) 109 =10%m2 | 5 x10%m~°
Central lon Temperature(T;) 1 —10keV 2keV
Central Electron Density(nq.) 109 —.10%m> | 5o 10%¥n®
Central Electron Temperature(7:) 1 —10keV 2keV
Ion Confinement Time 0.1 —1s
Parallel Wavenumber spectrum(ky) 2 —Tm™ 2—Tm™t

1.4 Overview Of The Thesis

The cornerstone of this work is the derivation of the non-local wave equations which will
describe the propagation of EM waves through ion gyro-resonances in the presence of high
energy, large Larmor radius ions and fusion products in a weakly inhomogeneous fusion
plasma for a general equilibrium distribution function.

In chapter 2 we will discuss the merits of existing theories while at the same time arguing
for an extension of locally non-uniform, guiding centre theory so as to include the effects
of thermal anisotropy(which is a congenital feature of plasmas heated by auxiliary meth-
ods). In addition, we will introduce the tools of the trade which we will use in our study
of wave-particle interactions such as ordering, analytic continuation and causality, and
wave polarisation. On a more practical note we will discuss the conservation of energy
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and the problem of accessibility of the resonances.

In chapter 3 we will present a generalisation of the guiding centre theory of Cairns et
al.(1995) so as to cover a range of plasma equilibria in weakly inhomogeneous plasmas.
We will follow the path integral method of Shafranov(1962) to derive the conductivity
tensor of a hot, thermally anisotropic plasma immersed in an inhomogeneous magnetic

field.

We then present in chapter 4 an application of the results of chapter 3 to the analytically
tractable Tokamak scenario of a bi-Maxwellian plasma immersed in a linear magnetic
field gradient. As a verification of our equations we show how we may reproduce the
results obtained by other authors in certain limits of our equations. We then form the
2D non-local, integro-differential wave equation(IDE) describing the propagation of EM
waves into a weakly inhomogeneous magnetic field gradient, which will be the pivot about
which the remainder of the thesis will revolve.

In chapter 5 we review resonance broadening from the standpoint of statistics and co-
variance theory allowing us to determine a criterion for the absorption width of the ion
gyro-resonances which we will show to be of the order of a few Larmor radii. We will also
derive a criterion for their resolution. Covariance theory shows how resonance broadening
effects simply sum as errors when they are uncorrelated. We will use the results born out
from our statistical analysis to explain some of the qualitative features of the theoretical
results of chapter 4. We present a new physical effect due to thermal anisotropy; namely
a reduction in resonance broadening when the ion temperature parallel to the field is
less than the perpendicular temperature(which is typically the case in auxiliarly heated
plasmas). As a useful aside, we shall perform a short calculation which estimates the
broadening of a cold plasma, linear wave-wave resonance due to thermal effects in a hot
plasma.

In chapter 6 we discuss the relevance of the Onsager reciprocal relations to the micro-
scopic time reversible dynamics of our theory, generalising the work of Nambu(1994) so as
to include the effects of magnetic field inhomogeneity. We are able to reiterate Nambu’s
claims that Onsager symmetry is evident for an isotropic plasma but not for an anisotropic
plasma. We also show that the Onsager relations are independent of their mathematical
formulation revealing the covariant nature of the underlying physics.

Chapter 7 is devoted to a study of the IDE derived in chapter 4. We present a new ap-
proximation which formalises and extends the fast wave approximation(Kay et al., 1988
and Lashmore-Davies et al., 1988) so as to retain effects due to odd-order derivatives of
the electric field which have been shown to be necessary for energy conservation(Swanson,
1985). This will be shown to be an extension of the work of Cairns et al.(1991) into the
large Larmor radius regime. Indeed, we are able to recover their energy conserving O-
mode equation from our general summation form for the plasma response by taking the
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limit of small Larmor radius ions. We will then use our theory to deduce a second order,
energy conserving ODE for the spatial variation of the fast wave electric field along with
its conservation law. This is then extended to allow for a symmetrisation of the response
function with respect to the incident wave-modes allowing odd-order derivatives of the
field to enter the ODE in a simple way. In addition we offer a solution to the contro-
versy surrounding the effective dielectric tensor of Beskin et al.(1987), clarifying some
conflicting reports in the literature about the applicability of their theory to the study of
inhomogeneous plasmas.

In chapter 8 we investigate numerically the behaviour of the fast wave for various heating
scenarios in the ICRF. We will place particular emphasis upon the role of the magnetic
field inhomogeneity in affecting the energy transport through a ion gyro-resonance region
in the company of large Larmor radius ions or fusion products. We present a represen-
tative sample of results calculated from non-uniform and locally-uniform theories. We
will show that the locally-uniform models of large Larmor radius ions can be very inac-
curate(especially for high energy ions) suggesting that our theory may present a more
efficient and energy conserving alternative. We report the appearance of a novel physical
effect at high energies and high minority ion densities, namely a cut-off on the low mag-
netic field side of the minority gyroresonance. This may have important implications for
ICRH in future experiments.

Finally we draw to a close in chapter 9 by bringing together the results of the first 8
chapters in the light of recent theoretical and experimental developments.
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Figure 1.1: Schematic representation of the magnetic field coils
used to confine the plasma in a Tokamak.
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Figure 1.2: The Deuterium-Tritium fusion reaction.
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Figure 1.7: Electrostatic dispersion relation for the ion-Bernstein wave(IBW)
and the ion-hybrid wave(IHW) in the ICRF(after Lashmore-Davies, 1995).
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Chapter 2

Related Elements Of Plasma Wave
Theory

Following the discovery by Appleton in 1925 of electrically conducting layers in what
became known as the ionosphere, much of the theory of waves in a cold plasma was devel-
oped to help explain the propagation of radio waves. Astrophysicists such as Alfven then
developed the theory of magnetohydrodynamics(MHD) in the early 1940’s to study low
frequency phenomena and, shortly after, a more thorough kinetic theory was devised to
extrapolate to high temperature, high frequency phenomena culminating in the famous
work of Landau in 1946 with a description of the collisionless damping of electrostatic
waves. The onset of research into fusion in the early 1950’s then further developed the
zoo of plasma waves. As a result of this effort, there are now numerous works on this
subject notable examples of which include Allis, Buchsbaum and Bers(1963), Chen(1987),
Swanson(1989) and Stix(1992).

Although cold plasma theory is capable of describing some of the properties of plasma
waves in homogeneous and weakly inhomogeneous magnetic fields, we will show that it
does not predict the existence of gyroresonance at all harmonics of the gyrofrequency in
the plasma and can not therefore describe EM wave propagation through them. For this
we must use a kinetic theory. Furthermore, although the theory of Wentzl, Kramers and
Brillouin (WKB) is able to describe the local EM wave amplitude changes(and hence can
estimate absorption) due to wave-particle interactions, its single mode character means
that it is incapable of describing linear wave-wave phenomena such as resonant reflection
and linear mode-conversion. We will use the limitations of these various methods to argue
for a simpler full wave kinetic theory which can describe multi-mode processes in addition
to the microscopic dynamics of individual particles. Let us first of all set the scene by
starting with a brief discussion of EM wave propagation in a homogeneous plasma.
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2.1 Waves In A Homogeneous Plasma

By homogeneous we mean that the plasma is immersed in a uniform magnetic field which
has no gradient in field strength. This may seem a rather crude model of a Tokamak
plasma in a toroidal field but it does lead to an analytically tractable description housing
some of the effects present in inhomogeneous fields, namely gyroresonance phenomena
due to charged particle orbits in a magnetised plasma.

The basic analysis proceeds as follows. We take the equilibrium plasma state with zero
order quantities such as the ambient maguetic field(Bg) and the ion density(ng) static in
time and uniform in space. Next, we perturb the plasma with a small amplitude EM wave
which is harmonic in time and space so that all first order(perturbed) quantities vary as
c’ker—iwt  Fourier analysis then reveals that V = ik and 8/8t = —iw so that Maxwell’s
equations for the EM field yield the following wave equation in momentum(Fourier) space,

;—ka(kxE(w,k))—}—E(w,k)—F%J(w,k)=U. (2.1}

We then solve the linearised equation of motion for the plasma(which is dependent upon
the model being used) to write the perturbed current density(J) in terms of the perturbed
wave electric field (E). Substitution into (2.1) then yields a dispersion equation for E of
the general form,

'ng (w, k) o E (w, k) =0 (2.2)

The condition for non-trivial solutions of this equation is that the determinant of the
dispersion tensor(D) be zero. This condition gives the dispersion relation w = w (k).
In general, for a given wave-vector(k), the dispersion relation can contain a multiple(and
sometimes infinite) number of w roots so that, w = w;(k) for j = 1,2, ..n. The roots of the
dispersion relation then describe the natural(often named normal) modes of oscillation of
the plasma and provide details of the group velocity(w /k) and phase velocity(Ow /Jk) of
each mode. Substitution of w into (2.2) then enables us to determine the eigenvector(E;)
corresponding to each eigenvalue(w;). From E;, the polarisation of the perturbed elec-
tric(or magnetic) field for the j** branch(normal mode) with respect to the direction of
propagation along k or to the ambient magnetic field(Bp) is known. This provides the
essential information required for phase synchronisation in resonance phenomena as we
will describe in more detail later in this chapter. Let us begin by deducing the dispersion
tensor for waves in a cold plasma and also for waves in a hot plasma.

2.1.1 Cold Plasma Waves

In the cold plasma model we treat each particle species(s) as a zero temperature, fric-
tionless fluid having fluid velocity wu, (r,¢). The motion of each plasma species is then
determined by the momentum equation,
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which we linearise. The wave fields(E and B) are the same in each set of fluid equations
and, being dependent upon the combined motion of all particles, provide the link between
the separate equations for each species. Since u, is a first order quantity representing the
perturbed fluid velocity then, in a linear analysis, only the unperturbed ambient part of
the magnetic field(Bg) will give any physical effect. Fourier-transforming over space and
time and taking the vector and scalar products with By, we obtain the solution of (2.3)
for the fluid velocity. The perturbed current density is a function of this velocity,

+(us.V)us=T‘:(E+us><B), (2.3)

J = Znosqsus. (2.4)

The dispersion tensor is found by inserting this expression for the current into the wave
equation (2.1). Without loss of generality, we consider the ambient magnetic field(Bo)
to be along the Z direction making an angle(6) with the wave-vector (k). For EM waves
propagating in the X — %z plane(which is the equatorial plane of the Tokamak) then the
dispersion tensor can be shown to be of the general form,

D;; (w, k) = E,;_,'(w, k) s 7125,'j + nn, (25)
with dielectric tensor(e;;),
1—Zﬂfﬁ' Qlﬁﬁ%ﬁ 0
& =0+ Xow= | i, ;(ﬁc:%”_gsiﬁ“ -, s wLng 0 : (2.6)
0 0 1-%, 22

The dispersion tensor may also be written in the following more transparent form(Stix,
1992),

S —n%cos?0 —iD n2cosfsind
'D,'_,' (w, k) = 1D S —n? 0 ) (27)
n2 cosdsin 0 0 P —n%sin?6
with,
. B R
R:1+ZSXS :1_Zsma
L=1 + Zs X: Zq ;—w—zg_)a
— %(R—I—-L) _1——-28 w2 Q" =Ea::c=6yy EE,J_’ (28)
w2 $Ss i 5 _
D=3 (R = L) = Zs (w2 — Q“_z) =gy = —Uyy = €/,
P=1+3% Xzz(s) = =1- Es w2 = €3z = €.

Here, 2, is the particle gyro-frequency(which is negative for electrons with ¢. < 0 and
positive for ions with ¢; > 0), wy, is the plasma frequency and n = £(ksin 8,0, k cos §)
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is the refractive index which gives a measure of the opacity of the plasma. In chapter 1
we defined the limiting behaviour of the refractive index. Cutoffs are present whenever
the refractive index goes to zero and resonances are present whenever the refractive index
goes to infinity. Harmonics of the gyrofrequency are absent from the dispersion tensor
and so we see that the cold plasma description fails to predict gyroresonance at harmonics
of the gyrofrequency although it does provide the framework for the basic properties of
EM waves in a plasma away from such regions.

The determinant of the dispersion tensor, Det|D| = 0, gives the following general disper-
sion relation which is quadratic in n?(representing the propagation of two distinct wave
modes),

An*+ Bn? + C =0,

with,

A = Ssin?0+4 Pcos®4,
B = RLsin*§+ PS (1 + cos? 9) ,
€ = PRL.

We may eliminate the sin ¢ and cos @ dependences giving,

P(n®*—R)(n*-1L)

T o7 (B,
W S S R (P

We may stress more strongly the difference between parallel and perpendicular propa-
gation by introducing n) = ncosf and ny = nsinf. Let us first consider EM waves
propagating along the magnetic field with n = (0,0,77,"). Since @ = 0 then tand = 0
and we have the solutions: nﬁ = L and n"’| = R representing left and right-circularly po-
larised EM waves propagating along the magnetic field. A glimpse at the expressions for
L and R above in (2.8) reveals that these represent ion and electron cyclotron resonance
respectively. At high frequencies(w =~ |Q|) electron gyroresonance is possible with the
R-wave(the 'whistler’ mode) but not with the L-wave which rotates in the opposite sense
to the electrons. At low frequencies(w ~ ;) ion gyroresonance is possible with only the
L-wave. Both the I and R-waves become shear Alfvén waves(w = kjuy) in the low fre-
quency limit flowing along the ambient magnetic field at the Alfvén speed(us = 72‘%‘;7))

rather like waves on mass-loaded strings. Cut-offs will be present when R =0 or L =90.

Now let us consider EM waves propagating perpendicularly across the magnetic field with
n = (ny,0,0). Since § = Z then tanf = oo and we have the solutions: n? = £ and

n% = P. There will be resonance when § = 0 and cutoffs when R =0, L=0o0r P = 0.
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We will be interested in the study of EM waves propagating radially across the toroidal
magnetic field(as launched from an antenna or waveguide at the plasma edge in a Toka-
mak) and it will be useful to look at the dispersion relations which arise for perpendicular
propagation. Returning for a moment to (2.7) and setting & = 7 /2 then we have,

Dy (w,k)oE(w,k)= | iD S—nZ 0 E, | =o0.
0 0 P —n? E,

We note that due to the disappearance of the z and y elements of the z-manifold in D, the
equations for E, and E, have decoupled from the equation for E, giving two independent
wave modes: the ordinary mode(O-mode) where E, = F, = 0 and the extra-ordinary
mode(X-mode) where E, = 0.

For the O-mode only F. is non-zero and so we have a purely transverse mode with
dispersion relation,

2

W= Pel -y 28

2
s W

This is just the usual light wave(EM wave with w? = ¢?k?* in a vacuum) modified by the
presence of the plasma. For Tokamak plasmas the sum over all particle plasma frequen-
cies is dominated by the electron plasma frequency by a factor m; /m. and so an electron
wave will propagate in this mode only if w > w,. determined by a critical electron density
Npe-

For the X-mode, 7; and F, are non-zero and so we have a partly transverse and partly
longitudinal mode with dispersion relation,
s-p* _RL

SR R
In a single ion species plasma we may neglect terms of order m. /m; giving the radial
refractive index squared,

Y,

(w? —wl, + Qe + wQ,)(W? — wi, + 00, —wd,)
?—wig)(w? — win) .

There is a low frequency(w < Q) resonance when w = wry at the lower-hybrid fre-
quency(equation (1.4)) and a high frequency(w =~ .) resonance when w = wyy at the
upper-hybrid frequency(equation (1.5)). Both of these resonances have arisen from the
condition that § = 0 and, in a multiple-ion species plasma, this condition also gives rise
to extra resonances (in addition to the lower and upper-hybrid resonances) due to inter-
actions between any two ion species at the 2-ion hybrid resonance where w = w;;(equation
(1.3)). The terminology O and X are usually reserved for high frequency, electron dom-
inated waves propagating through a static ion background. Low frequency oscillations

n’% o~ W
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due to both electron and ion dynamics reveal a similar separation into instead the slow
and fast magnetosonic waves(slow and fast waves) otherwise known as the compressional
Alfvén waves. The slow wave is almost entirely linearly polarised with E || Bg while the
fast wave is almost entirely elliptically polarised with E L By.

A more general dispersion relation allows for oblique angles of propagation. At the low
frequencies(w ~ ;) considered here, the higher mobility of electrons compared to ions(due
to smaller electron inertia) means that charge separation along the magnetic field is in-
evitable. The resulting electric field shorts out any pre-existing electric field meaning that
effectively E, ~ 0. A valid approximation then is to neglect the z-manifold of D which is
the coeflicient of F,. This effectively means that we are neglecting the propagation of the
slow wave. The determinant of the remaining @, y-manifold in (2.7) then gives the fast
wave dispersion relation,

(S —nf)—D?
E—m

The fast wave propagates across the ambient field and so is well suited to transport of EM
energy radially to the centre of a Tokamak plasma subject to the cut-offs and resonances
which may be encountered on the way. We will say more about this later at the end of
the chapter when we discuss accessibility conditions. In this thesis we will focus on the
wave-particle dynamics introduced by the fast wave. Using the definitions in (2.8), the
fast wave dispersion relation of (2.9) can also be written as,

o

(2.9)

(R —nj)(L —nf)
(5 —nf)

7% =

The 2-ion hybrid resonance occurs when S — nﬁ = 0 and the associated cut-off condition
is I — nﬁ = 0. The cut-off associated with R — nﬁ = 0 is the low density cut-off of the
fast wave, which, for k” ~ 5m~! occurs around n. ~ 2 x 108m=3,

Away from a resonance layer in a Tokamak plasma, cold plasma fluid theory adequately
describes wave propagation. Thermal(finite temperature) effects will add minor correc-
tions to the basic wave behaviour which will be dominated by the cold plasma cut-offs and
resonances. In these regions where the refractive index may vary substantially such that
the plane wave approach used here is not reliable(the wavelength is no longer negligible
in comparison to the Larmor radius), we need to use other levels of description such as
a WKB theory or a full wave theory as we will describe a little later on. IFurthermore,
we have shown that cold plasma theory does not predict gyroresonance for perpendicular
propagation or gyroresonance at harmonics of the gyrofrequency, which are known to
exist experimentally (Stix, 1975). In order to describe EM waves passing through them
we must use a kinetic theory which will include the dynamics of individual particles at a
microscopic level.
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2.1.2 Hot Plasma Waves

We may describe the dynamics of individual particles using a kinetic theory. In chapter
1 we showed that Tokamak plasmas typically have a large number of particles in their
Debye sphere and in a magnetised plasma charged particles effectively free-stream along
the toroidal magnetic field in helical orbits. This can be thought of as the equilibrium
state(fo) and, for an unperturbed plasma may be described by a Maxwellian velocity
distribution,

Joi = Nosm /2 u»}fe"“z/“zﬂ ; (2.10)

which simply states that most particles will have the thermal velocity(u = ur). The
equation of motion for each particle species in a hot, collisionless plasma is the Vlasov
equation which describes the time evolution of a general particle distribution(#y) of par-
ticle positions(r) and velocities(u),

5;; o aar “(B+uxB)s aaﬂ = 0. (2.11)
We linearise and write B in terms of E using Maxwell’s equation for Faraday induction.
Integration along the equilibrium orbits then gives us an expression for the perturbed par-
ticle distribution(f,) in terms of the equilibrium particle distribution( fo,). The perturbed
current density is then given by the first velocity moment of the perturbed distribution
function(fs),

J = Zq,/duufs, (2.12)

which, when inserted into the wave equation (2.1), gives us the following dispersion ten-
sor(see for example Cairns, 1985 or Stix, 1992),

Dij (wa k) = eij(w,k) == n26g‘j -+ nn,

with dielectric tensor,

Cij = 633+ZZ__ 0s€

Lhy i -1)Z 7
x | =il -0z [(£+2))h-200]Z i3 -112' |, (213)
%Z' —2\//\?[11 ~ h & S (e
and,
Yoo o _w—1IQ, _ups s _ 26T
/\3 2kJ_ps7 CIS = k”uTs Qs 3 o 5 P M
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Here p; is the Larmor radius of the particle, J; = I; ();) is the modified Bessel function of
order [ and Z = Z ((;s) is the plasma dispersion function(Z-function) shown graphically
in figure 2.1. Primes denote derivatives with respect to the argument. The Z-function
was first tabulated by Fried and Conte(1962) and has the following equivalent definitions,

N 1 e—tz )5 00 ite—1e2 __ —¢2 ¢ 2 g —¢2
Z({() = \/_F./Ldtt_———f—zzfo dte'™ 1" = —2e ./o dte’” +ime ", (2.14)

where L is known as the Landau contour in the complex plane, chosen as as to satisfy
causality requirements(this notion will be expanded upon in a later section) by integrat-
ing around the simple pole on the real t-axis at ¢ = (. Note that the Z-function is
complex even for real arguments. The Landau contour is such that there is no response
of the plasma until the EM field is present ensuring that causes precede effects. The
Z-function is a congenital feature of wave-particle phenomena in a hot plasma having a
thermal(Maxwellian) velocity distribution function.

The hot plasma dispersion tensor contains a sum over all cyclotron harmonics(l). There
will be collisionless dissipation of the EM wave by gyroresonant absorption. This reso-
nance behaviour is embedded in the Z-function.

En route to the dielectric tensor of (2.13) it was necessary to evaluate velocity integrals
of the form,

€ _Coqs Sii(u
6z’j=5ij+2522 o8 / YR J()IQS’

mstw? Ry —
which, if .S;; is a function of a thermal velocity distribution, is seen to be the origin of the

Z-functions by glancing back at (2.14). Ions will be in resonance with the incident EM
waves whenever the following wave-particle condition is satisfied,

w 8
Ry Ry

The Landau(or Cerenkov) resonance condition is given by [ = 0. Wave energy in this
resonance is transferred to the parallel degree of freedom of the resonant particles by the
electric field component parallel to the ambient magnetic field. This is significant for the

fast wave in the ICRF(Lashmore-Davies et al., 1995) and has the following physical inter-
pretation. Particles with a velocity(w)) close to the wave phase velocity({%) may ’surt’ the

w=I0; + ki or u = 2.15
] I

wave. We may make some general comments about average gains or losses of energy by
examining the slope of the equilibrium velocity distribution function(fos) so as to offer a
physical interpretation. Let us consider first of all particles with an initial velocity slightly
higher than the wave phase velocity. Those particles which gain energy move away from
the resonant velocity while those that lose energy approach it, interacting more effectively
with the wave and hence there is a net transfer of energy from particles to the wave. The
opposite is true if we consider particles whose initial velocity is slightly slower than the
wave phase velocity. For a Maxwellian(thermal) distribution there will be more particles
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in the latter state, resulting in a net loss of energy from the wave by collisionless processes.

There is also another mechanism by which wave energy may be transferred under the
Landau resonance condition known as magnetic pumping(or transit time damping). Es-
sentially, magnetic field energy is transferred by the interaction of the component of the
wave magnetic field parallel to the ambient magnetic field and is known to contribute to
direct electron dissipation of the fast wave, being comparable to the dissipation due to
Landau damping.

When [ # 0 then gyroresonance occurs and, contrary to the Landau resonance, energy is
fed into the perpendicular energy of the resonant particles. This can occur irrespective of
whether or not the particle velocity is slow or fast compared to the wave phase velocity.
Moreover, the Z-functions, having a Gaussian form for their imaginary part(~r e~%%),
introduce a smooth absorption profile at each gyroresonance(since the singularity arising
from the pole is smoothed out by the imaginary part which moves the contour off the
real t-axis). We see that there will be collisionless absorption of energy from the EM
waves whenever gyroresonant particles, orbiting at harmonics of the gyrofrequency, see
the Doppler-shifted incident wave frequency. In chapter 5 we will perform a detailed sta-
tistical analysis of resonance broadening.

For large ¢(in the limit of perpendicular propagation where & — 0 or in the limit of a
cold plasma where 7' — 0) then the asymptotic expansion of Z(Fried and Conte, 1962),

Z(C)'zi\/v_rcre"Cz—«l TN SR N (1) ﬁ%zg (2.16)
SR SR Sl 9 Im{¢} <0

means that Z’ is a negligibly small quantity. In this case the z and y parts of the
z-manifold of D;; vanish and we have the same block structure as was found for the
cold plasma waves with independently propagating O and X-modes. Their dispersion
relations are now modified by the introduction of thermal effects which are housed in
the modified Bessel functions. Thermal effects introduce extra hot plasma modes (not
described by cold plasma theory) which are associated with higher powers of k in the
dispersion relation. If we expand the modified Bessel functions to order unity in the low
temperature approximation(A — 0) using the following series expansion for small A(see

Stix, 1992),
L()e = % (%)l [1 _ (%)2 (2 + T%T) & ] , (2.17)

then the dispersion equations for the O-Mode and X-mode become order ! polynomials
in k. These higher order terms in k, which have arisen from the thermal effects of kinetic
theory, correspond physically to extra modes of propagation. A polynomial of order [

26

w0 I LTS




in k? will describe [ non-degenerate wave modes. It has been known for some time that
there is a family of hot plasma modes which propagate between the cyclotron resonances
of the ions(there is a family for the electrons too), known as the ion Bernstein modes
after Bernstein(1958). When different species of ions are present in the plasma then this
family of waves bifurcates at the 2-ion hybrid frequency and we have another set of hot
plasma modes known as ion-hybrid waves (Lashmore-Davies, 1995). The fact that these
hot plasma modes propagate between harmonics of the gyrofrequency means that they
will be present in the interaction regions described in chapter 1. Incident EM waves may
then be mode-converted to these hot plasma modes in the neighbourhood of gyroreso-
nances and cut-offs where the wave-vector has dramatic variation.

In recent years, investigations of wave-particle interactions in hot plasmas have used (2.17)
to expand the modified Bessel functions so as to provide simple expressions for the plasma
response correct to order A(see for example Lashmore-Davies et al., 1988). Such expan-
sions are known as, 'finite Larmor radius(FLR) expansions’ and are amenable to analytic
progress due to their simplified nature. In figure 2.2 we show the functional form of the
first few orders of (2.17).

In the last chapter we described how thermal effects are weak for fundamental gyrores-
onance in a single ion species plasma along with other related effects. We are now in a
position to say a little more about this. When we perform the FLR expansions(note that
this is only possible when A < 1 and will not be applicable to a study of large Larmor
radius ions of high energy where A > 1) then we see that thermal effects arise from the
powers of A, In a single ion species plasma then thermal effects at the fundamental of the
gyrofrequency arise from the [ = 1 terms. However, the order A terms cancel leaving only
thermal effects of order A? which are negligible and hence gyroresonant absorption will be
negligible at the fundamental. At twice the ion gyrofrequency(the first harmonic) then
thermal effects arise from the | = 2 terms. The first order thermal terms of order A no
longer cancel and we find that there is strong gyroresonant absorption. In a 2-ion species
plasma the picture is more complicated since thermal effects are distributed between the
resonant response of the different ions and also propagating hot plasma modes. The
strength of gyroresonant absorption is influenced by wave polarisation and we find that it
is possible to have effective gyroresonant absorption at the fundamental of the minority
ion gyrofrequency. We will discuss the role of wave polarisation in a later section.

Away from gyroresonances, most of the ions in the velocity distribution will be non-
resonant, having velocities(u) which are non-thermal (u /uz > 3) and will not contribute
to resonant absorption which is scaled by a factor proportional to e /¥ ~ 0.0001. This
will be true for particles some distance from the gyroresonance layer where ¢ will be large.
We may then replace the non-resonant particle response by its cold plasma counterpart.
This is most easily done by retaining only the { = 0,41 terms in (2.17) and keeping only
the leading order terms in the asymptotic series for Z.
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We turn now to a study of the dispersion properties of an inhomogeneous plasma.

2.2 Waves In An Inhomogeneous Plasma

By inhomogeneous we mean to say that macroscopic quantities such as the ambient mag-
netic field(Bo), the plasma density(ng,) and the plasma temperature(T") have a spatial
variation. In a Tokamak, both the ion density and temperature profiles decrease almost
parabolically from the centre to the plasma edge while the toroidal magnetic field profile
falls off as 1 /r with radial distance(r) from the centre. This is a direct consequence of
Ampere’s law(§ Boedx = )"y poln) which, for a circular loop of radius(r), gives B = ﬁ‘%
We have seen in the last section that the dispersion properties of hot collisionless plas-
mas are dominated by the effects of wave-particle interactions at resonant magnetic field
lines. Although spatial variations in plasma density and temperature will proportionately
modify the values of plasma frequencies and thermal velocities, the dominant behaviour
of charged particles is governed by gyroresonance and so will be markedly altered by
small variations in magnetic field strength due to a field gradient. We will use this fact
to simplify our analysis of the inhomogeneous plasma by including only the spatial vari-
ation of the ambient magnetic field, treating density and temperature profiles as constants.

We will consider a weakly inhomogeneous Tokamak plasma where the toroidal field is
along Z and has a gradient in strength along the radial X direction, varying slowly over a
long length scale so that we may approximate the field variation by the first few terms of
a Taylor series expanded about the resonance position(which we are free to choose at the
origin),

Bo (z) = Bo (1 + €2),

with ¢ = 353%5;%91. We ignore curvature effects due to the poloidal field(which is an
order of magnitude weaker than the toroidal field) so that we have a 1D inhomogeneity.
We note that there will now be a variation in the strength of the magnetic field across
the Larmor orbits of the charged particles. Some models of inhomogeneous plasmas in-
clude only the spatial variations of macroscopic variables like the magnetic field in the
dielectric tensor elements for a homogeneous plasma. While including the global variation
of physical parameters due to the inhomogeneity, these models fail to include the local
variation of the magnetic field across the Larmor orbits and are known as locally uniform
models. They fail to produce energy conserving wave equations however as we shall see.
Due to the lack of availability of a simple theory to describe large Larmor radius ions and
fusion products in an inhomogeneous plasma, computer codes presently in use at JET
are using precisely this type of locally uniform theory to model large Larmor radius ion
gyroresonance and it will be our aim to devise an efficient and energy-conserving physical
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model for this which is fully inclusive of the effects of inhomogeneity.

For most of the plasma in a Tokamak(away from resonance layers) the dielectric prop-
erties vary slowly over a length scale which we may associate with the major radius(a
few metres) in contrast to the rapid variations of the incident waves on the much shorter
length scale of the wavelength(a few centimetres in the ICRF'). In this regime we may use
a single mode WKB theory to obtain equations similar to those for a homogeneous plasma.

2.2.1 Single Mode Methods

In the derivation of the dispersion properties of waves in a homogeneous plasma, we
considered perturbations which vary harmonically in time and space in the single mode
form of plane waves. For example the wave electric field was chosen to vary as,

B = Eoeikor—iwt

This provided an easy way of obtaining the momentum space(k-space) variables from
which we could derive the dispersion relation. In a weakly inhomogeneous plasma the
plasma parameters are slowly varying functions of position and the dielectric tensor will
also be a slowly varying function of position. When these slow changes in the plasma
are accommodated by adiabatic changes in the wave-vector(k) then a single mode can
continuously propagate throughout the plasma. In the case of our 1D inhomogeneity
along X we may model the perturbed quantities, for instance the wave electric field by,

E(.’E) =T (.17) ei J;’*“ kx(m)dm-l-ikyy-l-ikgz—iwt, (218)

with the values of k, and k, being pre-determined by the antenna spectrum. A fully
3D description requires the introduction of an eikonal (V) such that V¥ = k with k
satisfying the local dispersion relation. In accordance with this eikonal analysis we may
approximate the electric field by,

E(z) = Eo(z)e' ™.
The group velocity gives the direction of energy flow,

2 o Ow _ dr
170k 4t
In a stationary plasma then the dispersion relation is given by,
K(r,k,w) = Det|D| = 0,

with total derivative,

dK 0K dk 0K dr _

F il " S el
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giving the relations,

&t 0K[0k 0w
it = 0K /ow ok’
dk 9K /or  Ow

dt ~ 0K [dw ~  or

These are known as the ray tracing equations which are similar to Hamilton’s equations
in classical mechanics. A source at the plasma edge produces a wave-number spectrum
and we integrate the ray tracing equations to find paths along which various components
of the spectrum flow into the plasma (see for example Bhatnager et al., 1982).

The condition for validity of approximations like (2.18) is that &, (z) be slowly varying
such that,

1 dk,

k. dz < ks

However, in the neighbourhood of gyroresonances and cut-offs then the dielectric response
of the plasma varies instead on the short length scale of the absorption width which is
comparable to the wavelength and so we expect WKB theory to be inaccurate. The theory
also breaks down in mode conversion regions where two modes couple since it is unable
to distinguish between them. A more elaborate multi-mode theory must be adopted in
these regions.

2.2.2 Multi-Mode Methods

The essence of multi-mode theory is that we retain the full spectrum of wave modes in the
description of perturbations. In the derivation of the full wave equations we will adopt
the method of orbit integration(Shafranov, 1962) to work out the dielectric response. As
outlined in the last section, we integrate the perturbed distribution along the equilibrium
orbits of the charged particles but rather than assuming plane wave forms for the field
quantities, we now express them as a complete sum over all Fourier modes. This compli-
cates the analysis by introducing an extra integral but allows for wave-wave interactions
which are crucial to a detailed understanding of the behaviour of interaction regions. We
will perform this calculation for a general plasma equilibrium in a weakly inhomogeneous
magnetic field in chapter 3.

In modelling the whole plasma what we do then is calculate the effect of resonances,
cut-offs and mode-conversions using a multi-mode theory and we match asymptotically
to solutions from the simpler WKB theory calculated outside these regions of extreme
variation of the dielectric tensor. This provides a global picture of EM wave propagation
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in the plasma.

There have been numerous approaches to the problem of describing wave-particle interac-
tions in an inhomogeneous plasma apart from the path integral method of Shafranov(1962)
which we will use(see for example the geometrical optics methods of Bernstein(1975), the
contour integral methods of Swanson(1978) and also Antonsen and Manheimer(1978),
the boundary layer analysis of Imre(1987), the Hamiltonian methods of Ye and Kauf-
man(1988), the gyrokinetic theory of Lashmore-Davies and Dendy(1989), the Lie trans-
form methods of Littlejohn(1993) and more recently the guiding centre method of Cairns
et al.(1991) and (1995)). In essence they are all either single mode(plane wave or wave
packet) methods or multi-mode methods.

2.2.3 Locally Uniform And Locally Non-Uniform Theories And
The Connection With Energy Conservation

Another distinction(in addition to that between single mode and multi-mode methods)
is that between locally uniform and locally non-uniform treatments of the magnetic field
variation on the short length scale of the Larmor radius(which can be of the same size
as the wavelength). We have already described how, in an inhomogeneous plasma, the
magnetic field strength varies across the Larmor orbits of the charged particles so that
locally it is non-uniform. Only an accurate mathematical model of this phenomenon, tak-
ing into account the effects of non-uniformity, will lead to fully energy conserving wave
equations. The inclusion of these effects is non-trivial however and it is only recently that
energy conserving equations describing electron and ion gyroresonance have appeared in
the literature (relativistic electron gyroresonance(Maroli, 1986) and ion gyroresonance
(Lashmore-Davies and Dendy, 1989)). The basic reason is that in an inhomogeneous
plasma no simple, closed form for the equilibrium orbits exists since the inhomogeneity
transforms the nature of the orbits making them nonlinear(Beskin et al., 1987). We will
discuss this in more detail in chapter 3.

A simple way of overcoming this problem has been proposed recently (Cairns et al., 1991).
Essentially they realised that, due to the variation of the field strength across the Larmor
radius, the gyrofrequency should be evaluated at the guiding centre (z 4+ <) rather than
at the actual particle position (z). This correction to the gyrofrequency became known
as, 'the gyrokinetic correction’. When all the spatially varying quantities are evaluated
at the guiding centres a simplified form for the equilibrium orbits may be used. Cairns et
al. then showed how this simple method leads to energy conserving wave equations. This
fact was reiterated by an independent analysis(Lashmore-Davies and Dendy, 1989) using
the rigorous gyrokinetic theory of Chen and Tsai(1983). Moreover, they showed that the
inclusion of the gyrokinetic correction introduces an additional damping mechanism due
entirely to the variation of the magnetic field strength felt by gyroresonant particles in
different parts of their orbit. More recently still, the simplicity of the method of Cairns
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et al. has allowed for a straight-forward extension so as to include weakly relativistic
electron effects(McDonald et al., 1994).

In the work of Cairns et al.(1991) and of McDonald et al.(1994), energy conserving or-
dinary differential equations(ODEs) describing the propagation of EM waves through
gyroresonances were obtained in the limit of small Larmor radius particles(small com-
pared to the wavelength). Echoing the results obtained by other authors(Brambilla, 1991
and Sauter and Vaclavik, 1992), Cairns et al. remarked that for large Larmor radius
particles, such as gyroresonant ions or fusion products produced by high temperature
break-even fusion plasmas, the energy conserving wave equations are integro-differential
equations(IDEs) rather than ODEs. We have shown in a recent paper(Cairns et al.,
1995) how an approximation (called, ’the fast wave approximation’(Kay et al., 1988 and
Lashmore-Davies et al., 1988), similar in spirit to the Born approximation of quantum-
mechanical scattering theory(see for example Harding, 1968), allows us to reduce the IDEs
to ODEs while retaining the non-local effects of the large Larmor radius particles. Let
us describe briefly the physical basis for this approximation. In a linear mode conversion
process two wave modes interact due to their degeneracy. The backward propagating
modes play no role in the process and so we expect that a second order equation should
provide the required information concerning the wave interactions. Essentially the mode
converted wave(the ion-hybrid wave for hot EM waves in a multi-species plasma) exists
as the driven response of the fast wave in the interaction region. Consideration of the
fast wave alone, using the local value of the wave-number, then provides information of
the degree of mode-coupling. There will not, however, be any information concerning the
propagation of the mode-converted wave available. In chapter 7 we will formalise this
reduction process and we will show how higher order corrections may be obtained in a
simple way.

2.2